WorldWideScience

Sample records for bacterium heliobacillus mobilis

  1. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  2. Phenotype Microarray Profiling of Zymomonas mobilis ZM4

    Energy Technology Data Exchange (ETDEWEB)

    Bochner, Barry [Biolog, Inc.; Gomez, Vanessa [Biolog, Inc.; Ziman, michael [Biolog, Inc.; Yang, Shihui [ORNL; Brown, Steven D [ORNL

    2009-01-01

    In this study, we developed a Phenotype MicroArray{trademark} (PM) protocol to profile cellular phenotypes in Zymomonas mobilis, which included a standard set of nearly 2,000 assays for carbon, nitrogen, phosphorus and sulfur source utilization, nutrient stimulation, pH and osmotic stresses, and chemical sensitivities with 240 inhibitory chemicals. We observed two positive assays for C-source utilization (fructose and glucose) using the PM screen, which uses redox chemistry and cell respiration as a universal reporter to profile growth phenotypes in a high-throughput 96-well plate-based format. For nitrogen metabolism, the bacterium showed a positive test results for ammonia, aspartate, asparagine, glutamate, glutamine, and peptides. Z. mobilis appeared to use a diverse array of P-sources with two exceptions being pyrophosphate and tripolyphosphate. The assays suggested that Z. mobilis uses both inorganic and organic compounds as S-sources. No stimulation by nutrients was detected; however, there was evidence of partial inhibition by purines and pyrimidines, NAD, and deferoxamine. Z. mobilis was relatively resistant to acid pH, tolerating a pH down to about 4.0. It also tolerated phosphate, sulfate, and nitrate, but was rather sensitive to chloride and nitrite. Z. mobilis showed resistance to a large number of diverse chemicals that inhibit most bacteria. The information from PM analysis provides an overview of Z. mobilis physiology and a foundation for future comparisons of other wild-type and mutant Z. mobilis strains.

  3. The ultimate ethanol: Technoeconomic evaluation of ethanol manufacture, comparing yeast vs Zymomonas bacterium fermentations. [Zymomonas mobilis:a5; Saccharomyces cerevisiae:a6

    Energy Technology Data Exchange (ETDEWEB)

    Busche, R.M. (Bio En-Gene-Er Associates, Inc., Wilmington, DE (United States)); Scott, C.D.; Davison, B.H. (Oak Ridge National Lab., TN (United States)); Lynd, L.R. (Dartmouth Coll., Hanover, NH (United States))

    1991-08-01

    If ethanol could be produced at a low enough price to serve as the precursor to ethylene and butadiene, it and its derivatives could account for 159 billion lb, or 50% of the US production of 316 billion lb of synthetic organic chemicals, presently valued at $113 billion. This use would consume 3.4 billion bu of corn, or {approximately}40% of the corn crop. This study evaluates advance process engineering and genetic engineering techniques that could generate savings and reduce production costs. The most rewarding development strategy appears to be to demonstrate at pilot scale the use of immobilized Zymomonas mobilis bacteria in a fluidized-bed bioreactor operating in a continuous mode over an extended period of time. Throughput should be adjusted to control product concentration at {approximately}100 g/L (i.e., as close to the threshold of inhibition as possible). There appears to be no inherent design limitation to effect the engineering improvements required in the advanced process operation. The above scenario assumes that the presently available, product-inhibited organisms would be used. In a longer-term, more difficult research effort, it might be possible to reduce or eliminate product inhibition. As a result, price would be reduced further to $1.75 for the Zymomonas system or $1.85 for the yeast fermentation. It is recommended that the engineering proveout of the advanced process be continued at a pilot scale and that a laboratory program aimed at reducing product inhibition and/or increasing specific productivity be initiated. 49 refs., 11 figs., 19 tabs.

  4. Synthesis of sorbitol by Zymomonas mobilis under high osmotic pressure Síntese de sorbitol por Zymomonas mobilis sob elevada pressão osmótica

    OpenAIRE

    Márcio de Barros; Maria Antonia Pedrine Colabone Celligoi

    2006-01-01

    The bacterium Zymomonas mobilis presents potential for sorbitol production when grown in culture medium with high sugar concentration. Sorbitol is produced and accumulated in the periplasma of the bacterium to protect the cells from the harmful effects of high osmotic pressure that results from the action of invertase on sucrose. The conversion of sucrose into glucose and fructose increases the osmolarity of the medium. However, an excessive increase in the osmotic pressure may decrease the s...

  5. Optimization of asparaginase production from Zymomonas mobilis by continuous fermentation

    Directory of Open Access Journals (Sweden)

    Francieli Bortoluzzi Menegat

    2016-10-01

    Full Text Available Asparaginase is an enzyme used in clinical treatments as a chemotherapeutic agent and in food technology to prevent acrylamide formation in fried and baked foods. Asparaginase is industrially produced by microorganisms, mainly gram-negative bacteria. Zymomonas mobilis is a Gram-negative bacterium that utilizes glucose, fructose and sucrose as carbon source and has been known for its efficiency in producing ethanol, sorbitol, levan, gluconic acid and has recently aroused interest for asparaginase production. Current assay optimizes the production of Z. mobilis asparaginase by continuous fermentation using response surface experimental design and methodology. The studied variables comprised sucrose, yeast extract and asparagine. Optimized condition obtained 117.45 IU L-1 with dilution rate 0.20 h-1, yeast extract 0.5 g L-1, sucrose 20 g L-1 and asparagine 1.3 g L-1. Moreover, carbon:nitrogen ratio (1:0.025 strongly affected the response of asparaginase activity. The use of Z. mobilis by continuous fermentation has proved to be a promising alternative for the biotechnological production of asparaginase.

  6. Ethanologenic Enzymes of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Lonnie O' Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  7. N2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis.

    Science.gov (United States)

    Kremer, Timothy A; LaSarre, Breah; Posto, Amanda L; McKinlay, James B

    2015-02-17

    A nascent cellulosic ethanol industry is struggling to become cost-competitive against corn ethanol and gasoline. Millions of dollars are spent on nitrogen supplements to make up for the low nitrogen content of the cellulosic feedstock. Here we show for the first time to our knowledge that the ethanol-producing bacterium, Zymomonas mobilis, can use N2 gas in lieu of traditional nitrogen supplements. Despite being an electron-intensive process, N2 fixation by Z. mobilis did not divert electrons away from ethanol production, as the ethanol yield was greater than 97% of the theoretical maximum. In a defined medium, Z. mobilis produced ethanol 50% faster per cell and generated half the unwanted biomass when supplied N2 instead of ammonium. In a cellulosic feedstock-derived medium, Z. mobilis achieved a similar cell density and a slightly higher ethanol yield when supplied N2 instead of the industrial nitrogen supplement, corn steep liquor. We estimate that N2-utilizing Z. mobilis could save a cellulosic ethanol production facility more than $1 million/y.

  8. Didemnin Biosynthetic Gene Cluster In Tistrella Mobilis

    KAUST Repository

    Qian, Pei-Yuan

    2014-10-02

    A novel Tistrella mobilis strain having Accession Deposit Number NRRL B-50531 is provided. A method of producing a didemnin precursor, didemnin or didemnin derivative by using the Tistrella mobilis strain, and the therapeutic composition comprising at least one didemnin or didemnin derivative produced from the strain or modified strain thereof are also provided.

  9. Transcriptional analysis of adaptation to high glucose concentrations in Zymomonas mobilis.

    Science.gov (United States)

    Zhang, Kun; Shao, Huanhuan; Cao, Qinghua; He, Ming-Xiong; Wu, Bo; Feng, Hong

    2015-02-01

    The ethanologenic bacterium Zymomonas mobilis is usually tolerant to high concentrations of glucose. The addition of sorbitol decreases the lag phase and increases ethanol yield and productivity of the bacteria in high glucose concentrations. The molecular mechanisms of adaptation to high glucose concentrations and the effect of sorbitol are still unclear. In this study, microarray analysis was used to study the global transcriptional adaptation responses of Z. mobilis to high glucose concentrations. A total of 235 genes were differentially expressed when 220 g/L glucose was added with or without 10 mM sorbitol. These genes are involved in diverse aspects of cell metabolism and regulation, including membrane transporters, nitrogen metabolism, and plasmid-encoded genes. However, most differentially expressed genes were downregulated when sorbitol was added. Notably, the transcription of almost all genes involved in the Entner-Doudoroff and ethanol production pathways was not significantly affected. In addition, a prophage and a nitrogen-fixation cluster were significantly induced. These results revealed that Z. mobilis cells responded to high glucose concentrations by regulating the transcriptional levels of genes related to membrane channels and transporters, stress response mechanisms, and metabolic pathways. These data provide insight into the intracellular adaptation responses to high glucose concentrations and reveal strategies to engineer efficient ethanol fermentation in Z. mobilis.

  10. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses.

    Directory of Open Access Journals (Sweden)

    Shihui Yang

    Full Text Available BACKGROUND: Zymomonas mobilis ZM4 is a capable ethanologenic bacterium with high ethanol productivity and ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of its ethanol stress response have not been elucidated fully. METHODOLOGY/PRINCIPAL FINDINGS: In this study, ethanol stress responses were investigated using systems biology approaches. Medium supplementation with an initial 47 g/L (6% v/v ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 55% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated that the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Transcriptomic data were used to update Z. mobilis ZM4 operon models. Furthermore, correlations among the transcriptomic, proteomic and metabolic data were examined. Among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher. CONCLUSIONS: Our study has provided insights into the responses of Z. mobilis to ethanol stress through an integrated "omics" approach for the first time. This systems biology study elucidated key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to ethanol stress.

  11. BIOETHANOL PRODUCTION FROM CELLULOSE IN RED ALGAE Gracilaria verrucosa BY SEPARATED HYDROLYSIS AND FERMENTATION SYSTEM USING Trichoderma viride AND Zymomonas mobilis

    OpenAIRE

    Ahmad, Ahyar

    2014-01-01

    In this study, renewable marine cellulose from red algae Gracilaria verrucosa was utilized for the production of bioethanol. Bioethanol from the red alga cellulose was produced by the enzymatic hydrolysis and fermentation methods and the conversion value of the cellulose in Gracilaria verrucosa was estimated. Trichoderma viride fungus and Zymomonas mobilis bacterium were used for enzymatic hydrolysis and bioethanol fermentation, r...

  12. Stable zymomonas mobilis xylose and arabinose fermenting strains

    Science.gov (United States)

    Zhang, Min; Chou, Yat-Chen

    2008-04-08

    The present invention briefly includes a transposon for stable insertion of foreign genes into a bacterial genome, comprising at least one operon having structural genes encoding enzymes selected from the group consisting of xylAxylB, araBAD and tal/tkt, and at least one promoter for expression of the structural genes in the bacterium, a pair of inverted insertion sequences, the operons contained inside the insertion sequences, and a transposase gene located outside of the insertion sequences. A plasmid shuttle vector for transformation of foreign genes into a bacterial genome, comprising at least one operon having structural genes encoding enzymes selected from the group consisting of xylAxylB, araBAD and tal/tkt, at least one promoter for expression of the structural genes in the bacterium, and at least two DNA fragments having homology with a gene in the bacterial genome to be transformed, is also provided.The transposon and shuttle vectors are useful in constructing significantly different Zymomonas mobilis strains, according to the present invention, which are useful in the conversion of the cellulose derived pentose sugars into fuels and chemicals, using traditional fermentation technology, because they are stable for expression in a non-selection medium.

  13. Effect of ADH II Deficiency on the Intracellular Redox Homeostasis in Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    Nina Galinina

    2012-01-01

    Full Text Available Mutant strain of the facultatively anaerobic, ethanol-producing bacterium Zymomonas mobilis, deficient in the Fe-containing alcohol dehydrogenase isoenzyme (ADH II, showed impaired homeostasis of the intracellular NAD(PH during transition from anaerobic to aerobic conditions, and also in steady-state continuous cultures at various oxygen supplies. At the same time, ADH II deficiency in aerobically grown cells was accompanied by a threefold increase of catalase activity and by about 50% increase of hydrogen peroxide excretion. It is concluded that ADH II under aerobic conditions functions to maintain intracellular redox homeostasis and to protect the cells from endogenous hydrogen peroxide.

  14. Effect of ADH II deficiency on the intracellular redox homeostasis in Zymomonas mobilis.

    Science.gov (United States)

    Galinina, Nina; Lasa, Zane; Strazdina, Inese; Rutkis, Reinis; Kalnenieks, Uldis

    2012-01-01

    Mutant strain of the facultatively anaerobic, ethanol-producing bacterium Zymomonas mobilis, deficient in the Fe-containing alcohol dehydrogenase isoenzyme (ADH II), showed impaired homeostasis of the intracellular NAD(P)H during transition from anaerobic to aerobic conditions, and also in steady-state continuous cultures at various oxygen supplies. At the same time, ADH II deficiency in aerobically grown cells was accompanied by a threefold increase of catalase activity and by about 50% increase of hydrogen peroxide excretion. It is concluded that ADH II under aerobic conditions functions to maintain intracellular redox homeostasis and to protect the cells from endogenous hydrogen peroxide.

  15. Design and construction of improved new vectors for Zymomonas mobilis recombinants.

    Science.gov (United States)

    Dong, Hong-Wei; Bao, Jie; Ryu, Dewey D Y; Zhong, Jian-Jiang

    2011-07-01

    Zymomonas mobilis is a very important gram-negative bacterium having a potential application to simultaneous co-production of biofuel and other high value-added products through biorefinery process technology development. Up to now, pLOI193 has been used as the plasmid of choice for Z. mobilis strains. However, its application has been limited due to its relatively low transformation efficiency, a large plasmid size (13.4 kb), and limited choice of cloning sites for gene manipulations. Some of these limitations can be overcome by the newly designed and constructed plasmid pHW20a, which provides significantly higher transformation efficiency (about two orders of magnitude greater), better stability (for at least 120 generation times), and an ease of gene manipulations. The pHW20a contains three complete cis-acting genes (repA, repB, and repC) encoding the Rep proteins for primosome formation. It has the origin of replication (oriV) to ensure replication in gram-negative bacteria, two mob genes that enhances transformation efficiency, a screening marker (lacZα), expanded multiple cloning sites (MCS) that enables easy gene manipulation, and the tetracycline resistance gene (tc(r) ). The utility of screening marker, lacZα with MCS, was confirmed by the blue-white screening test. Several examples of applications of gene expression in Z. mobilis ZM4 have been demonstrated in this article by using several new pHW20a-derived plasmids and expressing the homologous genes (gfo and ppc) and the heterologous genes (bglA, mdh, and fdh1). The results show that pHW20a is a very useful new vector for construction of new Z. mobilis recombinant strains that will enable simultaneous co-production of biofuel and high value added products.

  16. Elucidation of Zymomonas mobilis physiology and stress responses by quantitative proteomics and transcriptomics

    Science.gov (United States)

    Yang, Shihui; Pan, Chongle; Hurst, Gregory B.; Dice, Lezlee; Davison, Brian H.; Brown, Steven D.

    2014-01-01

    Zymomonas mobilis is an excellent ethanologenic bacterium. Biomass pretreatment and saccharification provides access to simple sugars, but also produces inhibitors such as acetate and furfural. Our previous work has identified and confirmed the genetic change of a 1.5-kb deletion in the sodium acetate tolerant Z. mobilis mutant (AcR) leading to constitutively elevated expression of a sodium proton antiporter encoding gene nhaA, which contributes to the sodium acetate tolerance of AcR mutant. In this study, we further investigated the responses of AcR and wild-type ZM4 to sodium acetate stress in minimum media using both transcriptomics and a metabolic labeling approach for quantitative proteomics the first time. Proteomic measurements at two time points identified about eight hundreds proteins, or about half of the predicted proteome. Extracellular metabolite analysis indicated AcR overcame the acetate stress quicker than ZM4 with a concomitant earlier ethanol production in AcR mutant, although the final ethanol yields and cell densities were similar between two strains. Transcriptomic samples were analyzed for four time points and revealed that the response of Z. mobilis to sodium acetate stress is dynamic, complex, and involved about one-fifth of the total predicted genes from all different functional categories. The modest correlations between proteomic and transcriptomic data may suggest the involvement of posttranscriptional control. In addition, the transcriptomic data of forty-four microarrays from four experiments for ZM4 and AcR under different conditions were combined to identify strain-specific, media-responsive, growth phase-dependent, and treatment-responsive gene expression profiles. Together this study indicates that minimal medium has the most dramatic effect on gene expression compared to rich medium followed by growth phase, inhibitor, and strain background. Genes involved in protein biosynthesis, glycolysis and fermentation as well as ATP

  17. Genome sequence of the ethanol-producing Zymomonas mobilis subsp. pomaceae lectotype strain ATCC 29192.

    Science.gov (United States)

    Kouvelis, Vassili N; Davenport, Karen W; Brettin, Thomas S; Bruce, David; Detter, Chris; Han, Cliff S; Nolan, Matt; Tapia, Roxanne; Damoulaki, Agni; Kyrpides, Nikos C; Typas, Milton A; Pappas, Katherine M

    2011-09-01

    Zymomonas mobilis is an alphaproteobacterium studied for bioethanol production. Different strains of this organism have been hitherto sequenced; they all belong to the Z. mobilis subsp. mobilis taxon. Here we report the finished and annotated genome sequence of strain ATCC 29192, a cider-spoiling agent isolated in the United Kingdom. ATCC 29192 is the lectotype of the second-best-characterized subspecies of Z. mobilis, Z. mobilis subsp. pomaceae. The nucleotide sequence of ATCC 29192 deviates from that of Z. mobilis subsp. mobilis representatives, which justifies its distinct taxonomic positioning and proves particularly useful for comparative and functional genomic analyses. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  18. Elucidation of Zymomonas mobilis physiology and stress responses by quantitative proteomics and transcriptomics

    Directory of Open Access Journals (Sweden)

    Shihui eYANG

    2014-05-01

    Full Text Available Zymomonas mobilis is an excellent ethanologenic bacterium. Biomass pretreatment and saccharification provides access to simple sugars, but also produces inhibitors such as acetate and furfural. Our previous work has identified and confirmed the genetic change of a 1.5-kb deletion in the sodium acetate tolerant Z. mobilis mutant (AcR leading to constitutively elevated expression of a sodium proton antiporter encoding gene nhaA, which contributes to the sodium acetate tolerance of AcR mutant. In this study, we further investigated the responses of AcR and wild-type ZM4 to sodium acetate stress in minimum media using both transcriptomics and a metabolic labeling approach for quantitative proteomics the first time. Proteomic measurements at two time points identified about eight hundreds proteins, or about half of the predicted proteome. Extracellular metabolite analysis indicated AcR overcame the acetate stress quicker than ZM4 with a concomitant earlier ethanol production in AcR mutant, although the final ethanol yields and cell densities were similar between two strains. Transcriptomic samples were analyzed for four time points and revealed that the response of Z. mobilis to sodium acetate stress is dynamic, complex and involved about one-fifth of the total predicted genes from all different functional categories. The modest correlations between proteomic and transcriptomic data may suggest the involvement of posttranscriptional control. In addition, the transcriptomic data of forty-four microarrays from four experiments for ZM4 and AcR under different conditions were combined to identify strain-specific, media-responsive, growth phase-dependent, and treatment-responsive gene expression profiles. Together this study indicates that minimal medium has the most dramatic effect on gene expression compared to rich medium followed by growth phase, inhibitor, and strain background. Genes involved in protein biosynthesis, glycolysis and fermentation as

  19. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui [ORNL; Pan, Chongle [ORNL; Tschaplinski, Timothy J [ORNL; Hurst, Gregory {Greg} B [ORNL; Engle, Nancy L [ORNL; Zhou, Wen [University of Georgia, Athens, GA; Dam, Phuongan [ORNL; Xu, Ying [University of Georgia, Athens, GA; Dice, Lezlee T [ORNL; Davison, Brian H [ORNL; Brown, Steven D [ORNL

    2013-01-01

    Zymomonas mobilis ZM4 is a capable ethanogenic bacterium with high ethanol productivity and high level of ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of ethanol stress response have not been elucidated fully. In this study, ethanol stress responses were investigated using systems biology tools. Medium supplementation with an initial 47.3 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. Metabolomic profiling showed that ethanol-treated ZM4 cells accumulated greater amounts of glycerol during the entire fermentation process, which may indicate an important role for this metabolite. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 56% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. There were fewer genes significantly differentially expressed in the exponential phase compared to that of stationary phase and early stationary phase. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Correlations among the transcriptomics, proteomics and metabolism were examined and among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher. This systems biology study elucidates key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to

  20. Synthesis of sorbitol by Zymomonas mobilis under high osmotic pressure Síntese de sorbitol por Zymomonas mobilis sob elevada pressão osmótica

    Directory of Open Access Journals (Sweden)

    Márcio de Barros

    2006-09-01

    Full Text Available The bacterium Zymomonas mobilis presents potential for sorbitol production when grown in culture medium with high sugar concentration. Sorbitol is produced and accumulated in the periplasma of the bacterium to protect the cells from the harmful effects of high osmotic pressure that results from the action of invertase on sucrose. The conversion of sucrose into glucose and fructose increases the osmolarity of the medium. However, an excessive increase in the osmotic pressure may decrease the sorbitol production. In this work Saccharomyces cerevisiae invertase was added two media containing sucrose 200 and 300 g.L-1. Sorbitol production in sucrose at 200 g.L-1 was 42.35 and 38.42 g.L-1, with and without the invertase treatment, respectively. In the culture medium with 300 g.L-1 sucrose, production reached 60.4 g.L-1 and with invertase treatment was 19.14 g.L-1. These results indicated that the excessive rise in osmotic pressure led to a significant decrease in sorbitol production by the Zymomonas mobilis bacterium in the sucrose medium treated with invertase.A bactéria Zymomonas mobilis, apresenta potencial para produção de sorbitol quando crescida em meio com alta concentração de açúcar. O sorbitol produzido é acumulado no periplasma da bactéria para conter os efeitos prejudiciais da elevada pressão osmótica, que resulta pela ação da enzima invertase, que promove hidrólise da sacarose. A conversão da sacarose em glicose e frutose aumentando a osmolaridade do meio. Entretanto, um aumento excessivo na pressão osmótica pode inibir a produção de sorbitol pela bactéria. Este trabalho empregou invertase de Saccharomyces cerevisiae nos meios de fermentação com sacarose a 200 e 300 g.L-1. A produção de sorbitol no meio com sacarose a 200 g.L-1 foi de 42,35 g.L-1 e 38,42 g.L-1 com e sem tratamento com invertase respectivamente. No meio com 300 g.L-1 sem tratamento, a produção foi de 60,42 e com tratamento 19,14 g.L-1. Estes

  1. The influence of oxygen supply on the production of acetaldehyde by Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    M.F. Mastroeni

    2003-06-01

    Full Text Available The influence of oxygen supply rate on the growth and the production of both ethanol and acetaldehyde by the aerotolerant fermentative bacterium Z. mobilis is discussed in this work. The results showed similar values of cell mass yield (0.043 g/g for the five different levels of initial volumetric oxygen transfer coefficient (K La studied. The maximum specific growth rate (µx,m. under anaerobic conditions was higher than those found in aerated runs. Anaerobic cultivation resulted in the best ethanol yield (0.38 g/g. For initial K La values of 62, 94, and 118 h-1, ethanol yields were 0.10, 0.12, and 0.09 g/g, respectively, whereas for K La of 30 h-1, an intermediate value (0.24 g/g was achieved. Under anaerobiosis, no acetaldehyde was produced. With initial K La values of 62, 94, and 118 h-1, acetaldehyde yields were similar (0.12 to 0.17 g/g, and for K La of 30 h-1 only 0.07 gram of acetaldehyde was formed per gram of glucose. Although increasing values for the maximal specific acetaldehyde formation rate were calculated as K La was increased, our results showed that the presence of an excess of dissolved oxygen throughout fermentation is enough to provide appropriate conditions for the production of acetaldehyde by Z. mobilis.

  2. Fermentación de los fructanos del Agave tequilana Weber Azul por Zymomonas mobilis y Saccharomyces cerevisiae en la producción de bioetanol Fermentation of Agave tequilana Weber Azul fructans by Zymomonas mobilis and Sacchamomyces cerevisiae in the production of bioethanol

    Directory of Open Access Journals (Sweden)

    José L Montañez

    2011-01-01

    Full Text Available Fructanos contenidos en las bases de las hojas del agave fueron extraídos y utilizados como fuente de carbono a varias concentraciones para la producción de bioetanol. Se usaron dos microorganismos etanolgénicos: la levadura Saccharomyces cerevisiae CDBB-L-331 y la bacteria Zymomona mobilis CDBB-B-603. Las hojas del agave tequilero ( Agave tequilana Weber Azul constituyen los residuos agrícolas del cultivo y a pesar de su alto contenido de azúcares reductores totales (ART y a los grandes volúmenes que anualmente se generan, actualmente no se utilizan. Los resultados muestran que la bacteria Zymomona mobilis es capaz de crecer a mayores concentraciones de ART, produce mayor cantidad de etanol y tolera mayores concentraciones del mismo. El rendimiento en la producción de etanol, la eficiencia de conversión y la productividad volumétrica también fueron mayores cuando la fermentación se llevó a cabo con Zymomona mobilis a una concentración de 20% de ART.Fructans contained in the base of agave leaves were extracted, hydrolyzed and used as carbon source at several concentrations for the production of bioethanol through two different ethanolgenic microorganisms: the yeast Saccharomyces cerevisiae CDBB-L-331 and the bacterium Zymomonas mobilis CDBB-B-603. The leaves of agave tequilana ( Agave tequilana Weber Azul constitute the agricultural crop residues and despite its high content of total reducing sugars (TRS and the large volumes generated each year, they are not currently used. The results show that Zymomonas mobilis is able to grow to higher levels of TRS produces more ethanol and tolerate higher concentrations of it. The yield in ethanol production, conversion efficiency and volumetric productivity were also higher when fermentation was carried out with Zymomonas mobilis at a concentration of 20% of TRS.

  3. Optimization of levan production by Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    V. K Ananthalakshmy

    1999-01-01

    Full Text Available Effect of different fermentation conditions on levan production by Zymomonas mobilis B-4286 was studied. Levan production increased from 5.7-g/l to 12.6-g/l with an increase in initial sucrose concentration (50-150 g/l. Above 15% (20 and 25% sucrose concentration, there was no increase in the biomass. The sucrose hydrolysis and levan production occurred even in the absence of significant growth of cells. Maximum amount of levan was produced (14.5 g/l at pH 5 and 15 g /l at 25(0C temperature. At temperature between 35(0C and 40(0C, levan production was not detected. Presence of glucose in the medium considerably reduced levan production (2.8 g/l than fructose 6.7g/l.O efeito de diferentes condições de fermentação na produção de levan por Zymomonas mobilis B-4286 foi estudado. A produção de Levan aumentou de 5.7-g/l a 12.6-g/l com o aumento da concentração inicial de sacarose (50-150 g/l. Acima de 15%, 20 e 25% a concentração de sacarose, não propiciou nenhum acréscimo na formação de biomassa. A hidrólise da sacarose e produção de Levan ocorreram de forma normal na ausência de um crescimento celular significativo. A concentração máxima de levan produzida foi (14.5 g/l em pH 5, 15 g /l a 25(0 C. Na temperatura entre 35(0C e 40(0 C, não ocorreu a produção de levan. A presença de glicose no meio de cultivo reduziu consideravelmente a produção média de levan (2.8 g/l bem como a de frutose (6.7g/l..

  4. Zymomonas mobilis: a novel platform for future biorefineries.

    Science.gov (United States)

    He, Ming Xiong; Wu, Bo; Qin, Han; Ruan, Zhi Yong; Tan, Fu Rong; Wang, Jing Li; Shui, Zong Xia; Dai, Li Chun; Zhu, Qi Li; Pan, Ke; Tang, Xiao Yu; Wang, Wen Guo; Hu, Qi Chun

    2014-01-01

    Biosynthesis of liquid fuels and biomass-based building block chemicals from microorganisms have been regarded as a competitive alternative route to traditional. Zymomonas mobilis possesses a number of desirable characteristics for its special Entner-Doudoroff pathway, which makes it an ideal platform for both metabolic engineering and commercial-scale production of desirable bio-products as the same as Escherichia coli and Saccharomyces cerevisiae based on consideration of future biomass biorefinery. Z. mobilis has been studied extensively on both fundamental and applied level, which will provide a basis for industrial biotechnology in the future. Furthermore, metabolic engineering of Z. mobilis for enhancing bio-ethanol production from biomass resources has been significantly promoted by different methods (i.e. mutagenesis, adaptive laboratory evolution, specific gene knock-out, and metabolic engineering). In addition, the feasibility of representative metabolites, i.e. sorbitol, bionic acid, levan, succinic acid, isobutanol, and isobutanol produced by Z. mobilis and the strategies for strain improvements are also discussed or highlighted in this paper. Moreover, this review will present some guidelines for future developments in the bio-based chemical production using Z. mobilis as a novel industrial platform for future biofineries.

  5. Ethanol fermentation by immobilized cells of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Grote, W.

    1985-01-01

    Previous studies have shown that immobilized yeast cell cultures have commercial potential for fuel ethanol production. In this study the suitability of strains of Z. mobilis for whole cell immobilization was investigated. Experiments revealed that immobilization in Ca-alginate or K-carrageenan gel or use of flocculating strains was effective for ethanol production at relatively high productivities. Two laboratory size reactors were designed and constructed. These were a compartmented multiple discshaft column and a tower fermentor. Results of this work supported other studies that established that growth and fermentation could be uncoupled. The data indicated that specific metabolic rates were dependent on the nature of the fermentation media. The addition of lactobacilli to Z. mobilis continuous fermentations had only a transient effect, and was unlikely to affect an immobilized Z. mobilis process. With 150 gl/sup -1/ glucose media and a Z. mobilis ZM4 immobilized cell reactor, a maximum volumetric ethanol productivity of 55 gl/sup -1/h/sup -1/ was obtained. The fermentation of sucrose media or sucrose-based raw materials (molasses, cane juice, synthetic mill liquor) by immobilized Z. mobilis ZM4 revealed a pattern of rapid sucrose hydrolysis, preferential glucose utilization and the conversion of fructose to the undesirable by-products levan and sorbitol.

  6. Sorbitol production using recombinant Zymomonas mobilis strain.

    Science.gov (United States)

    Liu, Changjun; Dong, Hongwei; Zhong, Jianjiang; Ryu, Dewey D Y; Bao, Jie

    2010-07-20

    A recombinant Zymomonas mobilis strain harboring the plasmid pHW20a-gfo for over-expression of glucose-fructose oxidoreductase (GFOR) was constructed. The specific activity of GFOR enzyme in the new recombinant strain was at least two folds greater than that in the wild strain. The maximum GFOR activity achieved in terms of the volumetric, and the cellular were 2.59 U ml(-1), and 0.70 U mg(-1), respectively, in the batch cultures. A significant improvement of the bioconversion process for the production of sorbitol and gluconic acid from glucose and fructose was made using divalent metal ions which drastically reduced the ethanol yield and significantly increased the yield of target product. Among several divalent metal ions evaluated, Zn(2+) was found to be most effective by inhibiting the Entner-Doudoroff pathway enzymes. The yield of the byproduct ethanol was reduced from 16.7 to 1.8 gl(-1) and the sorbitol yield was increased to almost 100% from 89%. The Ca(2+) enhanced the sorbitol yield and the formation of calcium gluconate salt made the separation of gluconate from the reaction system easier.

  7. Investigations of on-line process analysis in batchwise and continuous ethanol production using Zymomonas mobilis. Untersuchungen zur on-line Prozessanalyse bei der satzweisen und kontinuierlichen Ethanolproduktion mit Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, W.

    1985-01-01

    A fermentation unit was connected to a process computer for on-line data acquisition, process observation and SPC control. The continuous measurement of relevant process parameters was to enable off-line modelling of growth and product formation of the bacterium Zymomonas mobilis. A continuous analysis of substrate and product concentrations beyond the conventional instrumentation of bioreactors was made possible by using membrane separation processes with subsequent detection of components. A glucose detection method adaptable to glucose was developed. Exhaust gas, dissolved gas and volatile components were measured using a mass spectrometer convected to the reactor. Data acquisition, data analysis and system control were carried out using the process computer system CASFA (= Computer Automation System for Fermentation Systems on the Laboratory Scale).

  8. Le tecnologie mobili dell’apprendimento permanente, il progetto MOTILL

    Directory of Open Access Journals (Sweden)

    Marco Arrigo

    2013-03-01

    Full Text Available In questo articolo vengono presentati alcuni dei risultati del progetto MOTILL. MOTILL, ovvero «Le Tecnologie Mobili nell’apprendimento permanente: buone pratiche», è un progetto finanziato dalla Comunità Europea, nell’ambito del National Lifelong Learning Strategies (NLLS. Il progetto, durato un anno e terminato a Marzo 2010, si è focalizzato sull’uso delle tecnologie mobili in contesti di lifelong learning (LLL. L’articolo sarà dedicato a una breve introduzione del progetto, dei suoi obiettivi e delle azioni portate avanti, e a un rapido riassunto dei principali risultati ottenuti, i quali sono stati resi disponibili online alla comunità scientifica e diffusi ai policy makers impegnati nei programmi di apprendimento permanente.

  9. Transcriptome profiling of Zymomonas mobilis under ethanol stress

    Directory of Open Access Journals (Sweden)

    He Ming-xiong

    2012-10-01

    Full Text Available Abstract Background High tolerance to ethanol is a desirable characteristics for ethanologenic strains used in industrial ethanol fermentation. A deeper understanding of the molecular mechanisms underlying ethanologenic strains tolerance of ethanol stress may guide the design of rational strategies to increase process performance in industrial alcoholic production. Many extensive studies have been performed in Saccharomyces cerevisiae and Escherichia coli. However, the physiological basis and genetic mechanisms involved in ethanol tolerance for Zymomonas mobilis are poorly understood on genomic level. To identify the genes required for tolerance to ethanol, microarray technology was used to investigate the transcriptome profiling of the ethanologenic Z. mobilis in response to ethanol stress. Results We successfully identified 127 genes which were differentially expressed in response to ethanol. Ethanol up- or down-regulated genes related to cell wall/membrane biogenesis, metabolism, and transcription. These genes were classified as being involved in a wide range of cellular processes including carbohydrate metabolism, cell wall/membrane biogenesis, respiratory chain, terpenoid biosynthesis, DNA replication, DNA recombination, DNA repair, transport, transcriptional regulation, some universal stress response, etc. Conclusion In this study, genome-wide transcriptional responses to ethanol were investigated for the first time in Z. mobilis using microarray analysis.Our results revealed that ethanol had effects on multiple aspects of cellular metabolism at the transcriptional level and that membrane might play important roles in response to ethanol. Although the molecular mechanism involved in tolerance and adaptation of ethanologenic strains to ethanol is still unclear, this research has provided insights into molecular response to ethanol in Z. mobilis. These data will also be helpful to construct more ethanol resistant strains for cellulosic

  10. Effects of potassium chloride on ethanol production by an osmotolerant mutant of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.C.; Baratti, K. (Centre National de la Recherche Scientifique, Lab. de Chimie Bacterienne Universite de Provence, 13 - Marseille (France))

    1993-01-01

    The effect of increasing the KCl concentration in the culture medium of an alcoholic fermentation of glucose using the bacterium Zymomanas mobilis was investigated. Data obtained with the wild-type strain (ZM4, ATCC 31821) and with a newly isolated osmotolerant mutant (SBE15) were compared. It was observed that, at high salt concentration, inhibition of growth occurred (specific growth rate and biomass yield) while ethanol production (specific ethanol productivity and ethanol yield) was unaffected. In contrast, the specific rate of in-vitro ethanol production, using either cell-free extract or washed cells, was strongly inhibited by increasing the KCl concentration in the incubation mixture. Therefore, it was concluded that the intracellular concentration of KCl was maintained below the inhibitory concentration by an active transport system. In addition, the fermentation performances of the osmotolerant mutant strain were higher than those of the parent strain at all the KCl concentrations tested, suggesting the utility of the former to run ethanolic fermentations in crude industrial media with a high salt content. Furthermore, the fermentation data on media containing added KCl agreed well with those obtained on molasses media, suggesting that the inhibition observed on these media was due to their high osmolality. (orig.).

  11. Relatório de Estágio Curricular - Dealpoint Mobiliário, Lda.

    OpenAIRE

    Pinto, Sílvia

    2008-01-01

    O trabalho de estágio decorreu na empresa Dealpoint Mobiliário, empresa esta que se dedica á venda de mobiliário, através de uma loja on-line. Este estágio teve como objectivo a actualização do site e o tratamento de fotografia.

  12. Zymomonas mobilis as a Model System for Production of Biofuels and Biochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui; Fei, Qiang; Zhang, Yaoping; Contreras, Lydia M.; Utturkar, Sagar M.; Brown, Steven D.; Himmel, Michael E.; Zhang, Min

    2016-11-01

    Zymomonas mobilis is a natural ethanologen with many desirable industrial biocatalyst characteristics. In this review, we will discuss work to develop Z. mobilis as a model system for biofuel production from the perspectives of substrate utilization, development for industrial robustness, potential product spectrum, strain evaluation and fermentation strategies. This review also encompasses perspectives related to classical genetic tools and emerging technologies in this context.

  13. Joaquim Tenreiro: Mobiliário moderno artesanal

    Directory of Open Access Journals (Sweden)

    Marcia Campos Bleich

    2017-02-01

    Full Text Available Nascido em Portugal, Joaquim de Albuquerque Tenreiro, mudou-se definitivamente para o Brasil, no ano de 1928, após passar duas temporadas em terras brasileiras. De sua família herdou a profissão de marceneiro que, ligada à sua grande paixão pelas artes plásticas, possibilitou transformar seus móveis em peças diferenciadas, esculturas em marcenaria, palha e couro. Tenreiro estudou as madeiras brasileiras e introduziu no cenário nacional móveis esteticamente modernos, representados por peças dignas das mais importantes escolas de design da Europa. Em sua juventude, desejava ser arquiteto. Não teve a chance de se dedicar à formação acadêmica, mas, é reconhecido como um dos criadores do mobiliário moderno brasileiro. Embora distante dos movimentos de arquitetura e design do início do século XX, ele criou um mobiliário moderno, de formas limpas, em total sintonia com as ideias defendidas pelas escolas de arte que tiveram início na Europa no período entre guerras, principalmente a escola de Arte, design e arquitetura da República de Weimar, denominada Bauhaus. Tenreiro teve importante contribuição na criação do mobiliário brasileiro e, embora sua obra seja sempre estudada e apresentada como moderna, sua defesa do trabalho artesanal se apresenta como uma contradição pois, na visão dos idealizadores do modernismo europeu, os designers deveriam estar preparados para criar peças que seriam desenvolvidas em série e não de forma artesanal.

  14. Purification of the Pyruvate Dehydrogenase Multienzyme Complex of Zymomonas mobilis and Identification and Sequence Analysis of the Corresponding Genes

    Science.gov (United States)

    Neveling, Ute; Klasen, Ralf; Bringer-Meyer, Stephanie; Sahm, Hermann

    1998-01-01

    The pyruvate dehydrogenase (PDH) complex of the gram-negative bacterium Zymomonas mobilis was purified to homogeneity. From 250 g of cells, we isolated 1 mg of PDH complex with a specific activity of 12.6 U/mg of protein. Analysis of subunit composition revealed a PDH (E1) consisting of the two subunits E1α (38 kDa) and E1β (56 kDa), a dihydrolipoamide acetyltransferase (E2) of 48 kDa, and a lipoamide dehydrogenase (E3) of 50 kDa. The E2 core of the complex is arranged to form a pentagonal dodecahedron, as shown by electron microscopic images, resembling the quaternary structures of PDH complexes from gram-positive bacteria and eukaryotes. The PDH complex-encoding genes were identified by hybridization experiments and sequence analysis in two separate gene regions in the genome of Z. mobilis. The genes pdhAα (1,065 bp) and pdhAβ (1,389 bp), encoding the E1α and E1β subunits of the E1 component, were located downstream of the gene encoding enolase. The pdhB (1,323 bp) and lpd (1,401 bp) genes, encoding the E2 and E3 components, were identified in an unrelated gene region together with a 450-bp open reading frame (ORF) of unknown function in the order pdhB-ORF2-lpd. Highest similarities of the gene products of the pdhAα, pdhAβ, and pdhB genes were found with the corresponding enzymes of Saccharomyces cerevisiae and other eukaryotes. Like the dihydrolipoamide acetyltransferases of S. cerevisiae and numerous other organisms, the product of the pdhB gene contains a single lipoyl domain. The E1β subunit PDH was found to contain an amino-terminal lipoyl domain, a property which is unique among PDHs. PMID:9515924

  15. The effect of Zymomonas mobilis culture on experimental Schistosoma mansoni infection O efeito da cultura de Zymomonas mobilis na infecção experimental por Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Juliana de Fátima Macedo Santos

    2004-12-01

    Full Text Available C57Bl/10 male mice infected with Schistosoma mansoni were distributed into mixed, prophylactic and curative groups. A culture of Zymomonas mobilis was orally administered to mice. A 61% protection from the infection was observed in the curative group (p Camundongos C57Bl/10 do sexo masculino, infectados com Schistosoma mansoni foram distribuídos nos grupos misto, profilático e curativo. Cultura de Zymomonas mobilis foi administrada oralmente aos camundongos. Uma proteção de 61% foi observada no grupo curativo (p<0,05. Os estudos histopatológicos dos fígados e intestinos mostraram resultados similares.

  16. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis).

    Science.gov (United States)

    Etique, Marjorie; Jorand, Frédéric P A; Zegeye, Asfaw; Grégoire, Brian; Despas, Christelle; Ruby, Christian

    2014-04-01

    Green rusts (GRs) are mixed Fe(II)-Fe(III) hydroxides with a high reactivity toward organic and inorganic pollutants. GRs can be produced from ferric reducing or ferrous oxidizing bacterial activities. In this study, we investigated the capability of Klebsiella mobilis to produce iron minerals in the presence of nitrate and ferrous iron. This bacterium is well-known to reduce nitrate using an organic carbon source as electron donor but is unable to enzymatically oxidize Fe(II) species. During incubation, GR formation occurred as a secondary iron mineral precipitating on cell surfaces, resulting from Fe(II) oxidation by nitrite produced via bacterial respiration of nitrate. For the first time, we demonstrate GR formation by indirect microbial oxidation of Fe(II) (i.e., a combination of biotic/abiotic processes). These results therefore suggest that nitrate-reducing bacteria can potentially contribute to the formation of GR in natural environments. In addition, the chemical reduction of nitrite to ammonium by GR is observed, which gradually turns the GR into the end-product goethite. The nitrogen mass-balance clearly demonstrates that the total amount of ammonium produced corresponds to the quantity of bioreduced nitrate. These findings demonstrate how the activity of nitrate-reducing bacteria in ferrous environments may provide a direct link between the biogeochemical cycles of nitrogen and iron.

  17. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui [ORNL; Pelletier, Dale A [ORNL; Lu, Tse-Yuan [ORNL; Brown, Steven D [ORNL

    2010-01-01

    Zymomonas mobilis produces near theoretical yields of ethanol and recombinant strains are candidate industrial microorganisms. To date, few studies have examined its responses to various stresses at the gene level. Hfq is a conserved bacterial member of the Sm-like family of RNA-binding proteins, coordinating a broad array of responses including multiple stress responses. In a previous study, we observed Z. mobilis ZM4 gene ZMO0347 showed higher expression under anaerobic, stationary phase compared to that of aerobic, stationary conditions. We have shown the utility of the pKNOCK suicide plasmid for mutant construction in Z. mobilis, and constructed a Gateway compatible expression plasmid for use in Z. mobilis for the first time. We have also used genetics to show Z. mobilis Hfq and S. cerevisiae Lsm proteins play important roles in resisting multiple, important industrially relevant inhibitors. The conserved nature of this global regulator offers the potential to apply insights from these fundamental studies for further industrial strain development.

  18. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors

    Directory of Open Access Journals (Sweden)

    Lu Tse-Yuan S

    2010-05-01

    Full Text Available Abstract Background Zymomonas mobilis produces near theoretical yields of ethanol and recombinant strains are candidate industrial microorganisms. To date, few studies have examined its responses to various stresses at the gene level. Hfq is a conserved bacterial member of the Sm-like family of RNA-binding proteins, coordinating a broad array of responses including multiple stress responses. In a previous study, we observed Z. mobilis ZM4 gene ZMO0347 showed higher expression under anaerobic, stationary phase compared to that of aerobic, stationary conditions. Results We generated a Z. mobilis hfq insertion mutant AcRIM0347 in an acetate tolerant strain (AcR background and investigated its role in model lignocellulosic pretreatment inhibitors including acetate, vanillin, furfural and hydroxymethylfurfural (HMF. Saccharomyces cerevisiae Lsm protein (Hfq homologue mutants and Lsm protein overexpression strains were also assayed for their inhibitor phenotypes. Our results indicated that all the pretreatment inhibitors tested in this study had a detrimental effect on both Z. mobilis and S. cerevisiae, and vanillin had the most inhibitory effect followed by furfural and then HMF for both Z. mobilis and S. cerevisiae. AcRIM0347 was more sensitive than the parental strain to the inhibitors and had an increased lag phase duration and/or slower growth depending upon the conditions. The hfq mutation in AcRIM0347 was complemented partially by trans-acting hfq gene expression. We also assayed growth phenotypes for S. cerevisiae Lsm protein mutant and overexpression phenotypes. Lsm1, 6, and 7 mutants showed reduced tolerance to acetate and other pretreatment inhibitors. S. cerevisiae Lsm protein overexpression strains showed increased acetate and HMF resistance as compared to the wild-type, while the overexpression strains showed greater inhibition under vanillin stress conditions. Conclusions We have shown the utility of the pKNOCK suicide plasmid for

  19. Influence of ultrasound on sorbitol release by Zymomonas mobilis grown on high sucrose concentration

    OpenAIRE

    Márcio de Barros; Maria Antonia P. Colabone Celligoi; Josiane Alessandra Vignoli; Lucia Helena Mendonça Vargas

    2006-01-01

    This work investigated the effect of applying low intensity ultrasound on sorbitol release by Z.mobilis cultures grown on 200 g/L sucrose medium up to 48 h. The best sorbitol production was 36.09 g/L in 36 h culture. Ultrasound irradiation did not alter the sorbitol values detected after disrupting the cells with 20 minutes treatment.A bactéria Zymomonas mobilis produtora de etanol, produz também vários subprodutos quando crescida em meio de sacarose, entre esses o sorbitol. O sorbitol é prod...

  20. Acción inhibitoria de una cepa de Zymomonas mobilis mobilis aislada de caña de azúcar sobre Xanthomonas citri subsp. citri, agente causal de la cancrosis de los cítricos Inhibition of Xanthomonas citri subsp. citri, causal agent of citrus canker, by a strain of Zymomonas mobilis mobilis isolated from sugarcane

    OpenAIRE

    María E. Romero; C. Jacqueline Ramallo; L. Daniel Ploper

    2008-01-01

    Zymomonas mobilis mobilis (Zm) produce factores antimicrobianos que actúan sobre un amplio espectro de microorganismos patógenos para el hombre, animales y plantas. Un problema importante a resolver en los tratamientos con antimicrobianos, es el desarrollo de resistencia a compuestos empleados actualmente, no siendo las bacterias fitopatógenas una excepción. En el presente trabajo se realizaron ensayos de antagonismo con células (pruebas de estrías cruzadas) y sobrenadantes concentrados (Sc) ...

  1. Development of corn silk as a biocarrier for Zymomonas mobilis biofilms in ethanol production from rice straw.

    Science.gov (United States)

    Todhanakasem, Tatsaporn; Tiwari, Rashmi; Thanonkeo, Pornthap

    2016-01-01

    Z. mobilis cell immobilization has been proposed as an effective means of improving ethanol production. In this work, polystyrene and corn silk were used as biofilm developmental matrices for Z. mobilis ethanol production with rice straw hydrolysate as a substrate. Rice straw was hydrolyzed by dilute sulfuric acid (H2SO4) and enzymatic hydrolysis. The final hydrolysate contained furfural (271.95 ± 76.30 ppm), 5-hydroxymethyl furfural (0.07 ± 0.00 ppm), vanillin (1.81 ± 0.00 ppm), syringaldehyde (5.07 ± 0.83 ppm), 4-hydroxybenzaldehyde (4-HB) (2.39 ± 1.20 ppm) and acetic acid (0.26 ± 0.08%). Bacterial attachment or biofilm formation of Z. mobilis strain TISTR 551 on polystyrene and delignified corn silk carrier provided significant ethanol yields. Results showed up to 0.40 ± 0.15 g ethanol produced/g glucose consumed when Z. mobilis was immobilized on a polystyrene carrier and 0.51 ± 0.13 g ethanol produced/g glucose consumed when immobilized on delignified corn silk carrier under batch fermentation by Z. mobilis TISTR 551 biofilm. The higher ethanol yield from immobilized, rather than free living, Z. mobilis could possibly be explained by a higher cell density, better control of anaerobic conditions and higher toxic tolerance of Z. mobilis biofilms over free cells.

  2. Xylose utilizing zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    Science.gov (United States)

    Caimi, Perry G; Hitz, William D; Stieglitz, Barry; Viitanen, Paul V

    2013-07-02

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  3. Fermentasi Tepung Ganyong (Canna edulis Ker. untuk Produksi Etanol oleh Aspergillus niger dan Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    RATNA SETYANINGSIH

    2004-11-01

    Full Text Available The aims of this research were to know the concentration of arrowroot flour which produced the highest reducing sugar in saccharification process by A. niger, as well as to know the efficiency of ethanol production by Z. mobilis. The framework of this research was the increasing needs of ethanol; meanwhile ethanol could be obtained from the fermentation arrowroot. This research was carried out in two stages. In the saccharification stage, there are four concentrations, namely: 10%, 20%, 30% and 40%, and A. niger concentration of 10% (v/v for each arrowroot flour concentration with spores amount 3,3x106/mL. The parametric measurement includes: starch concentration in the starting day and the sixth day, while the reducing sugar concentration and pH was measured every 24 hours during 6 days. In the ethanol fermentation, Z. mobilis concentration have been used 10% (v/v with cells amount 5,1x107/mL and it was used in solution product of arrowroot starch saccharification and parametric measurement carried out during 72 hours includes: ethanol and reducing sugar concentration and the growth of Z. mobilis cells. The data resulted from parametric measurement. The result of the research showed that arrowroot flour concentration of 10% produced the highest reducing sugar in process of saccharification with reducing sugar concentration was 1,230 g/100 mL in four days and the efficiency of ethanol production by Z. mobilis during 72 hours was 83,03%.

  4. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin.

    Science.gov (United States)

    Wang, Haoyong; Cao, Shangzhi; Wang, William Tianshuo; Wang, Kaven Tianyv; Jia, Xianhui

    2016-06-01

    Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.

  5. "Fish-in-net", a novel method for cell immobilization of Zymomonas mobilis.

    Directory of Open Access Journals (Sweden)

    Xuedun Niu

    Full Text Available BACKGROUND: Inorganic mesoporous materials exhibit good biocompatibility and hydrothermal stability for cell immobilization. However, it is difficult to encapsulate living cells under mild conditions, and new strategies for cell immobilization are needed. We designed a "fish-in-net" approach for encapsulation of enzymes in ordered mesoporous silica under mild conditions. The main objective of this study is to demonstrate the potential of this approach in immobilization of living cells. METHODOLOGY/PRINCIPAL FINDINGS: Zymomonas mobilis cells were encapsulated in mesoporous silica-based materials under mild conditions by using a "fish-in-net" approach. During the encapsulation process, polyethyleneglycol was used as an additive to improve the immobilization efficiency. After encapsulation, the pore size, morphology and other features were characterized by various methods, including scanning electron microscopy, nitrogen adsorption-desorption analysis, transmission electron microscopy, fourier transform infrared spectroscopy, and elemental analysis. Furthermore, the capacity of ethanol production by immobilized Zymomonas mobilis and free Zymomonas mobilis was compared. CONCLUSIONS/SIGNIFICANCE: In this study, Zymomonas mobilis cells were successfully encapsulated in mesoporous silica-based materials under mild conditions by the "fish-in-net" approach. Encapsulated cells could perform normal metabolism and exhibited excellent reusability. The results presented here illustrate the enormous potential of the "fish-in-net" approach for immobilization of living cells.

  6. Ecophysiology and Comparative Genomics of Nitrosomonas mobilis Ms1 Isolated from Autotrophic Nitrifying Granules of Wastewater Treatment Bioreactor.

    Science.gov (United States)

    Thandar, Soe Myat; Ushiki, Norisuke; Fujitani, Hirotsugu; Sekiguchi, Yuji; Tsuneda, Satoshi

    2016-01-01

    Ammonia-oxidizing bacteria (AOB), which oxidize ammonia to nitrite in the first step of nitrification, play an important role in biological wastewater treatment systems. Nitrosomonas mobilis is an important and dominant AOB in various wastewater treatment systems. However, the detailed physiological and genomic properties of N. mobilis have not been thoroughly investigated because of limited success isolating pure cultures. This study investigated the key physiological characteristics of N. mobilis Ms1, which was previously isolated into pure culture from the nitrifying granules of wastewater treatment bioreactor. The pure culture of N. mobilis Ms1 was cultivated in liquid mineral medium with 30 mg-N L(-1) (2.14 mM) of ammonium at room temperature under dark conditions. The optimum growth of N. mobilis Ms1 occurred at 27°C and pH 8, with a maximum growth rate of 0.05-0.07 h(-1), which corresponded to a generation time of 10-14 h. The half saturation constant for ammonium uptake rate and the maximum ammonium uptake rate of N. mobilis Ms1 were 30.70 ± 0.51 μM NH4(+) and 0.01 ± 0.002 pmol NH4(+) cells(-1) h(-1), respectively. N. mobilis Ms1 had higher ammonia oxidation activity than N. europaea in this study. The oxygen uptake activity kinetics of N. mobilis Ms1 were Km(O2) = 21.74 ± 4.01 μM O2 and V max(O2) = 0.06 ± 0.02 pmol O2 cells(-1) h(-1). Ms1 grew well at ammonium and NaCl concentrations of up to 100 and 500 mM, respectively. The nitrite tolerance of N. mobilis Ms1 was extremely high (up to 300 mM) compared to AOB previously isolated from activated sludge and wastewater treatment plants. The average nucleotide identity between the genomes of N. mobilis Ms1 and other Nitrosomonas species indicated that N. mobilis Ms1 was distantly related to other Nitrosomonas species. The organization of the genes encoding protein inventory involved in ammonia oxidation and nitrifier denitrification processes were different from other Nitrosomonas species. The current

  7. Ecophysiology and Comparative Genomics of Nitrosomonas mobilis Ms1 Isolated from Autotrophic Nitrifying Granules of Wastewater Treatment Bioreactor

    Directory of Open Access Journals (Sweden)

    SoeMyat Thandar

    2016-11-01

    Full Text Available Ammonia-oxidizing bacteria (AOB, which oxidize ammonia to nitrite in the first step of nitrification, play an important role in biological wastewater treatment systems. Nitrosomonas mobilis is an important and dominant AOB in various wastewater treatment systems. However, the detailed physiological and genomic properties of N. mobilis have not been thoroughly investigated because of limited success isolating pure cultures. This study investigated the key physiological characteristics of N. mobilis Ms1, which was previously isolated into pure culture from the nitrifying granules of wastewater treatment bioreactor. The pure culture of N. mobilis Ms1 was cultivated in liquid mineral medium with 30 mg-N L-1 (2.14 mM of ammonium at room temperature under dark conditions. The optimum growth of N. mobilis Ms1 occurred at 27°C and pH 8, with a maximum growth rate of 0.05–0.07 h-1, which corresponded to a generation time of 10–14 h. The half saturation constant for ammonium uptake rate and the maximum ammonium uptake rate of N. mobilis Ms1 were 30.70±0.51 μM NH4+ and 0.01±0.002 pmol NH4+ cells-1 h-1, respectively. N. mobilis Ms1 had higher ammonia oxidation activity than N. europaea in this study. The oxygen uptake activity kinetics of N. mobilis Ms1 were K_(m(O_2= 21.74±4.01 μM O2 and V_(max⁡(O_2= 0.06±0.02 pmol O2 cells-1 h-1. Ms1 grew well at ammonium and NaCl concentrations of up to 100 mM and 500 mM, respectively. The nitrite tolerance of N. mobilis Ms1 was extremely high (up to 300 mM compared to AOB previously isolated from activated sludge and wastewater treatment plants. The average nucleotide identity between the genomes of N. mobilis Ms1 and other Nitrosomonas species indicated that N. mobilis Ms1 was distantly related to other Nitrosomonas species. The organization of the genes encoding protein inventory involved in ammonia oxidation and nitrifier denitrification processes were different from other Nitrosomonas species. The

  8. BIOINFORMATICS AND BIOSYNTHESIS ANALYSIS OF CELLULOSE SYNTHASE OPERON IN ZYMOMONAS MOBILIS ZM4

    Directory of Open Access Journals (Sweden)

    Sheik Abdul Kader Sheik Asraf, K. Narayanan Rajnish, and Paramasamy Gunasekaran

    2011-03-01

    Full Text Available Biosynthesis of cellulose has been reported in many species of bacteria. The genes encoding cellulose biosynthetic enzymes of Z. mobilis have not been studied so far. Preliminary sequence analysis of the Z. mobilis ZM4 genome revealed the presence of a cellulose synthase operon comprised of Open Reading Frames (ORFs ZMO01083 (bcsA, ZMO1084 (bcsB and ZMO1085 (bcsC. The first gene of the operon bcsA encodes the cellulose synthase catalytic subunit BcsA. The second gene of the operon bcsB encodes the cellulose synthase subunit B (BcsB, which shows the presence of BcsB multi-domain and is inferred to bind c-di-GMP, the regulator of cellulose biosynthesis. The third gene of the operon bcsC encodes the cellulose synthase operon C domain protein (BcsC, which belongs to super family of teratrico peptide repeat (TPR that are believed to mediate protein – protein interactions for the formation of cellulose. Multiple sequence alignment of the deduced amino acid sequences of BcsA and BcsC with other closely related homologs showed the presence of PVDPYE, HAKAGNLN, DCD motif and TPR motif, the characteristic motifs of bacterial cellulose synthases. Analysis of the nucleotide sequence of the ORF ZMO1085 and neighboring ORFs namely ZMO1083 and ZMO1084 indicated that all the ORFs are translationally linked and form an operon. Transcript analysis using Real-time PCR indicated the expression of the genes involved in cellulose synthase operon in Zymomonas mobilis ZM4. Z. mobilis colonies grown on RM-glucose containing Congo red displayed a characteristic bright red-brown colour. Z. mobilis colonies grown on RM-glucose medium supplemented with Calcoflour exhibited fluorescence. The arrangement of Calcofluor stained microfibrils can be seen in fluorescence microscopy which is an indicative for cellulose biosynthesis. AFM micrograph of the extracellular matrix of Z. mobilis shows a relatively dense matrix with bacterial cell residues. The presence of cellulose was

  9. Global occurrence and heterogeneity of the Roseobacter-clade species Ruegeria mobilis.

    Science.gov (United States)

    Sonnenschein, Eva C; Nielsen, Kristian F; D'Alvise, Paul; Porsby, Cisse H; Melchiorsen, Jette; Heilmann, Jens; Kalatzis, Panos G; López-Pérez, Mario; Bunk, Boyke; Spröer, Cathrin; Middelboe, Mathias; Gram, Lone

    2017-02-01

    Tropodithietic acid (TDA)-producing Ruegeria mobilis strains of the Roseobacter clade have primarily been isolated from marine aquaculture and have probiotic potential due to inhibition of fish pathogens. We hypothesized that TDA producers with additional novel features are present in the oceanic environment. We isolated 42 TDA-producing R. mobilis strains during a global marine research cruise. While highly similar on the 16S ribosomal RNA gene level (99-100% identity), the strains separated into four sub-clusters in a multilocus sequence analysis. They were further differentiated to the strain level by average nucleotide identity using pairwise genome comparison. The four sub-clusters could not be associated with a specific environmental niche, however, correlated with the pattern of sub-typing using co-isolated phages, the number of prophages in the genomes and the distribution in ocean provinces. Major genomic differences within the sub-clusters include prophages and toxin-antitoxin systems. In general, the genome of R. mobilis revealed adaptation to a particle-associated life style and querying TARA ocean data confirmed that R. mobilis is more abundant in the particle-associated fraction than in the free-living fraction occurring in 40% and 6% of the samples, respectively. Our data and the TARA data, although lacking sufficient data from the polar regions, demonstrate that R. mobilis is a globally distributed marine bacterial species found primarily in the upper open oceans. It has preserved key phenotypic behaviors such as the production of TDA, but contains diverse sub-clusters, which could provide new capabilities for utilization in aquaculture.

  10. OPTIMASI FERMENTASI BAGAS TEBU OLEH Zymomonas mobilis CP4 (NRRL B-14023 UNTUK PRODUKSI BIOETANOL (Optimization of Sugarcane Bagasse Fermentation by Zymomonas mobilis CP4 (NRRL B-14023 for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Atmiral Ernes

    2014-10-01

    (v/v. Berdasarkan hasil penelitian, kadar etanol optimal diperoleh sebesar 1,213% (v/v, yang menunjukkan hasil yang tidak berbeda jauh dengan prediksi model. Yield etanol yang diperoleh sebesar 0,479 dengan efi siensi fermentasi 93,9%. Hasil penelitian ini membuktikan bahwa strain bakteri Zymomonas mobilis CP4 memiliki potensi yang cukup menjanjikan sebagai mikroba penghasil etanol. Kata kunci: Bioetanol, bagas tebu, Zymomonas mobilis CP4, optimasi fermentasi

  11. Ecophysiology and Comparative Genomics of Nitrosomonas mobilis Ms1 Isolated from Autotrophic Nitrifying Granules of Wastewater Treatment Bioreactor

    OpenAIRE

    SoeMyat Thandar; Norisuke Ushiki; Hirotsugu Fujitani; Yuji Sekiguchi; Satoshi Tsuneda

    2016-01-01

    Ammonia-oxidizing bacteria (AOB), which oxidize ammonia to nitrite in the first step of nitrification, play an important role in biological wastewater treatment systems. Nitrosomonas mobilis is an important and dominant AOB in various wastewater treatment systems. However, the detailed physiological and genomic properties of N. mobilis have not been thoroughly investigated because of limited success isolating pure cultures. This study investigated the key physiological characteristics of N. m...

  12. Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland.

    Science.gov (United States)

    Susanti, Dwi; Johnson, Eric F; Lapidus, Alla; Han, James; Reddy, T B K; Pilay, Manoj; Ivanova, Natalia N; Markowitz, Victor M; Woyke, Tanja; Kyrpides, Nikos C; Mukhopadhyay, Biswarup

    2016-01-01

    This report presents the permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. D. mobilis utilizes peptides as carbon and energy sources and reduces elemental sulfur to H2S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H2 is produced during the growth of D. mobilis in the absence of sulfur. Interestingly, genes encoding glucose transport and utilization systems also exist in the D. mobilis genome though this archaeon does not utilize carbohydrate for growth. The draft genome of D. mobilis provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between D. mobilis and Desulfurococcus mucosus suggested that these two desulfurococci are two different strains of the same species.

  13. Mobiliųjų žiniatinklio paslaugų taikymo problematika

    OpenAIRE

    Bakanas, Jurgis

    2011-01-01

    Mobiliųjų žiniatinklio paslaugų projektavimas, kūrimas ir pateikimas vartotojams, vis dar yra atskiras iššūkis kūrėjams. Taip yra todėl, kad mobiliųjų prietaisų rinkoje, nėra vienodų standartų prietaisams. Tačiau yra bruožų, iš kurių šie standartai galėtų atsirasti. Šio darbo eigoje yra atskleidžiami šie bruožai ir pateikiamos rekomendacijos, kurios padėtų vartotojams pateikti patikimas, saugias ir nepriklausančias nuo vartojamo mobiliojo prietaiso, paslaugas. Darbo metu išanalizuota mobi...

  14. Functional characterization of a putative β-lactamase gene in the genome of Zymomonas mobilis.

    Science.gov (United States)

    Rajnish, K Narayanan; Asraf, Sheik Abdul Kader Sheik; Manju, Nagarajan; Gunasekaran, Paramasamy

    2011-12-01

    Zymomonas mobilis ZM4 is resistant to β-lactam antibiotics but there are no reports of a β-lactam resistance gene and its regulation. A putative β-lactamase gene sequence (ZMO0103) in the genome of Z. mobilis showed a 55% amino acid sequence identity with class C β-lactamase genes. qPCR analysis of the β-lactamase transcript indicated a higher level expression of the β-lactamase compared to the relative transcript quantities in antibiotic-susceptible bacteria. The putative β-lactamase gene was cloned, expressed in Escherichia coli BL21 and the product, AmpC, was purified to homogeneity. Its optimal activity was at pH 6 and 30 °C. Further, the β-lactamase had a higher affinity towards penicillins than cephalosporin antibiotics. © Springer Science+Business Media B.V. 2011

  15. Neutral red-mediated microbial electrosynthesis by Escherichia coli, Klebsiella pneumoniae, and Zymomonas mobilis.

    Science.gov (United States)

    Harrington, Timothy D; Mohamed, Abdelrhman; Tran, Vi N; Biria, Saeid; Gargouri, Mahmoud; Park, Jeong-Jin; Gang, David R; Beyenal, Haluk

    2015-11-01

    The aim of this work was to compare the effects of electrosynthesis on different bacterial species. The effects of neutral red-mediated electrosynthesis on the metabolite profiles of three microorganisms: Escherichia coli, Klebsiella pneumoniae, and Zymomonas mobilis, were measured and compared and contrasted. A statistically comprehensive analysis of neutral red-mediated electrosynthesis is presented using the analysis of end-product profiles, current delivered, and changes in cellular protein expression. K. pneumoniae displayed the most dramatic response to electrosynthesis of the three bacteria, producing 93% more ethanol and 76% more lactate vs. control fermentation with no neutral red and no electron delivery. Z. mobilis showed no response to electrosynthesis except elevated acetate titers. Stoichiometric comparison showed that NAD(+) reduction by neutral red could not account for changes in metabolites during electrosynthesis. Neutral red-mediated electrosynthesis was shown to have multifarious effects on the three species.

  16. Metabolic Engineering of Zymomonas mobilis for 2,3-Butanediol Production from Lignocellulosic Biomass Sugars

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui; Mohagheghi, Ali; Franden, Mary Ann; Chou, Yat-Chen; Chen, Xiaowen; Dowe, Nancy; Himmel, Michael E.; Zhang, Min

    2016-09-02

    To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks for high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. This study confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically.

  17. Sorbitol Production By Zymomonas Mobilis ATCC 29191 In Medium Of Sucrose Pre-Treated With Invertase

    Directory of Open Access Journals (Sweden)

    Maria Antonia Pedrine Colabone Celligoi

    2002-01-01

    Full Text Available Sorbitol production by Zymomonas mobilis ATCC 29191 in medium of sucrose pre-treated with invertase was studied. The best results were obtained when the medium was pre-treated with invertase as sorbitol production of 41,39 g/L and a productivity of 1,72 g/L.h-1 in 24 hours of fermentation. The invertase addition in the fermentation broth increased 72,17% in the sorbitol formation.

  18. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors.

    Science.gov (United States)

    Shui, Zong-Xia; Qin, Han; Wu, Bo; Ruan, Zhi-yong; Wang, Lu-shang; Tan, Fu-Rong; Wang, Jing-Li; Tang, Xiao-Yu; Dai, Li-Chun; Hu, Guo-Quan; He, Ming-Xiong

    2015-07-01

    Furfural and acetic acid from lignocellulosic hydrolysates are the prevalent inhibitors to Zymomonas mobilis during cellulosic ethanol production. Developing a strain tolerant to furfural or acetic acid inhibitors is difficul by using rational engineering strategies due to poor understanding of their underlying molecular mechanisms. In this study, strategy of adaptive laboratory evolution (ALE) was used for development of a furfural and acetic acid-tolerant strain. After three round evolution, four evolved mutants (ZMA7-2, ZMA7-3, ZMF3-2, and ZMF3-3) that showed higher growth capacity were successfully obtained via ALE method. Based on the results of profiling of cell growth, glucose utilization, ethanol yield, and activity of key enzymes, two desired strains, ZMA7-2 and ZMF3-3, were achieved, which showed higher tolerance under 7 g/l acetic acid and 3 g/l furfural stress condition. Especially, it is the first report of Z. mobilis strain that could tolerate higher furfural. The best strain, Z. mobilis ZMF3-3, has showed 94.84% theoretical ethanol yield under 3-g/l furfural stress condition, and the theoretical ethanol yield of ZM4 is only 9.89%. Our study also demonstrated that ALE method might also be used as a powerful metabolic engineering tool for metabolic engineering in Z. mobilis. Furthermore, the two best strains could be used as novel host for further metabolic engineering in cellulosic ethanol or future biorefinery. Importantly, the two strains may also be used as novel-tolerant model organisms for the genetic mechanism on the "omics" level, which will provide some useful information for inverse metabolic engineering.

  19. Experimental Study of Sorbitol Production by Zymomonas mobilis in High Sucrose Concentration

    OpenAIRE

    Rui Sérgio dos Santos Ferreira da Silva; João Batista Buzato; Maria Antonia Pedrine Colabone Celligoi; Marcos Roberto de Oliveira

    2004-01-01

    The sorbitol presents several industrial applications and its conventional production is of high cost and low yield. Sorbitol production by Zymomonas mobilis production has attracted attention as both production cost and environmental impact are low. The sorbitol plays an osmo-protective rule so that its production is promoted by high sugar concentrations. This work has evaluated the effect of high sucrose concentration in the sorbitol production. The raise of sucrose concentration from 100 t...

  20. The production of sorbitol by permeabilized and immobilized cells of Z. mobilis in sucrose

    OpenAIRE

    Josiane Alessandra Vignoli; Maria Antonia Colabone Celligoi; Rui Sérgio Ferreira da Silva; Márcio de Barros

    2006-01-01

    The production of sorbitol by permeabilized and immobilized cells of Zymomonas mobilis in Luffa cylindrica was investigated in sucrose medium. A full 2³ factorial design was used to verify the influence of each factor and its interactions. The cell permeabilization showed a significant and negative effect upon the production of sorbitol, while the time of cultivation and the immobilization process were significant and positive. The results demonstrated that the cell immobilization and the tim...

  1. Sorbitol Production By Zymomonas Mobilis ATCC 29191 In Medium Of Sucrose Pre-Treated With Invertase

    OpenAIRE

    Maria Antonia Pedrine Colabone Celligoi; Viviane Cristina Schiabel; João Batista Buzato; Josiane Alessandra Vignoli; Márcio de Barros

    2002-01-01

    Sorbitol production by Zymomonas mobilis ATCC 29191 in medium of sucrose pre-treated with invertase was studied. The best results were obtained when the medium was pre-treated with invertase as sorbitol production of 41,39 g/L and a productivity of 1,72 g/L.h-1 in 24 hours of fermentation. The invertase addition in the fermentation broth increased 72,17% in the sorbitol formation.

  2. Fermentasi Tepung Ganyong (Canna edulis Ker.) untuk Produksi Etanol oleh Aspergillus niger dan Zymomonas mobilis

    OpenAIRE

    RATNA SETYANINGSIH; ARI SUSILOWATI; SUSANTI ENI PURWANTARI

    2004-01-01

    The aims of this research were to know the concentration of arrowroot flour which produced the highest reducing sugar in saccharification process by A. niger, as well as to know the efficiency of ethanol production by Z. mobilis. The framework of this research was the increasing needs of ethanol; meanwhile ethanol could be obtained from the fermentation arrowroot. This research was carried out in two stages. In the saccharification stage, there are four concentra...

  3. Bioethanol Production from Iles-Iles (Amorphopallus campanulatus) Flour by Fermentation using Zymomonas mobilis

    OpenAIRE

    Kusmiyati Kusmiyati; H Hadiyanto; Indah Kusumadewi

    2016-01-01

    Due to the depletion of fossil oil sources, Indonesia attempts to search new source of bioenergy including bioethanol. One of this sources is Iles-iles tubers (Amorphophallus campanulatus), which is abundantly available in Java Indonesia. The carbohydrate content in Iles-Iles tuber flour was 77% and it can be converted to ethanol by three consecutive steps methods consist of liquefaction-saccharification using α and β-amylase, respectively and then followed by fermentation by using Z. mobilis...

  4. The production of sorbitol by permeabilized and immobilized cells of Z. mobilis in sucrose

    Directory of Open Access Journals (Sweden)

    Josiane Alessandra Vignoli

    2006-07-01

    Full Text Available The production of sorbitol by permeabilized and immobilized cells of Zymomonas mobilis in Luffa cylindrica was investigated in sucrose medium. A full 2³ factorial design was used to verify the influence of each factor and its interactions. The cell permeabilization showed a significant and negative effect upon the production of sorbitol, while the time of cultivation and the immobilization process were significant and positive. The results demonstrated that the cell immobilization and the time of cultivation of 36 h presented higher production of sorbitol.Foi investigado a produção de sorbitol em meio de sacarose por células de Z. mobilis permeabilizadas e imobilizadas em Luffa cylindrica. Este trabalho avaliou o efeito da permeabilização de células de Z. mobilis tratadas com cetilmetilamoniobrometo e imobilizadas em Luffa cylindrinca. Um planejamento fatorial completo 2³ foi utilizado para verificar a influência dos fatores e suas interações. A permeabilização da célula mostrou um efeito significante e negativo sobre a produção de sorbitol, enquanto o tempo de cultivo e o processo de imobilização foram significantes e positivos. Os resultados mostraram que a imobilização das células e o tempo de cultivo de 36h forneceram concentração mais elevadas de sorbitol.

  5. Influence of ultrasound on sorbitol release by Zymomonas mobilis grown on high sucrose concentration

    Directory of Open Access Journals (Sweden)

    Márcio de Barros

    2006-05-01

    Full Text Available This work investigated the effect of applying low intensity ultrasound on sorbitol release by Z.mobilis cultures grown on 200 g/L sucrose medium up to 48 h. The best sorbitol production was 36.09 g/L in 36 h culture. Ultrasound irradiation did not alter the sorbitol values detected after disrupting the cells with 20 minutes treatment.A bactéria Zymomonas mobilis produtora de etanol, produz também vários subprodutos quando crescida em meio de sacarose, entre esses o sorbitol. O sorbitol é produzido pela enzima glicose-frutose oxidorredutase (GFOR presente no periplasma da bactéria, a função fisiológica da enzima é estabelecer a regulação do equilíbrio osmótico, quando a célula é crescida em meio com altas concentrações de açucares. A enzima produz sorbitol e este é acumulado, como um soluto compatível à alta concentração de açúcar fora da célula. Este trabalho investigou efeito da aplicação de ultra-som de baixa intensidade na liberação de sorbitol de células de Zymomonas mobilis crescida em meio com sacarose a 200 g/L até 48 h de fermentação. A melhor produção de sorbitol foi de 36,09 g/L em 36 h de cultivo. A irradiação ultra-sônica não alterou os valores de sorbitol detectados e o ultra-som levou ao rompimento das células após 20 min de tratamento.

  6. Le mobilier domestique à Lille au XVIIe siècle

    Directory of Open Access Journals (Sweden)

    Odile Canneva-Tétu

    2012-04-01

    Full Text Available L'exposition « Lille au XVIIe siècle » présentée au musée des Beaux-Arts de Lille du 15 septembre au 27 décembre 2000 a fourni l'occasion de dresser un premier état des connaissances sur le mobilier civil lillois entre 1600 et 1715. Ce court essai s'appuie sur quelques exemples recensés dans les collections publiques lilloises.

  7. Protein extraction method for the proteomic study of Zymomonas mobilis during production of ethanol and levans.

    Science.gov (United States)

    Cavalcanti, D R; Malafaia, C B; Silva, T D; Santos, B S; Calazans, G M T; Silva, M V

    2015-11-19

    Zymomonas mobilis has aroused considerable interest owing to its rapid metabolism and efficiency in producing ethanol and by-products such as levans, sorbitol, and gluconic acid from simple sugars. We performed a proteomic analysis of Z. mobilis UFPEDA241 to provide a global profile of regulatory proteins. The choice of the methods of extraction and cell lysis are fundamental steps and of great importance for the detection and identification of intra- and extracellular proteins of a proteome. Strains were subjected to protein extraction methods using three different reagents: TRIzol, lysis buffer, and phenol. The optimum method was taken to be the one that produced the greatest quantity and quality of proteins in one dimension for further analysis in two dimensions during the production of ethanol and levans over 72 h. The results showed that the greatest amount of protein was obtained by the phenol method (1.44 ± 0.07 mg/mL), which was significantly different (P 0.05). Fermentation at 20°C produced the highest level of levans, and using two-dimensional electrophoresis and mass spectrometry it was possible to identify 34 differentially expressed spots.

  8. Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui [ORNL; Land, Miriam L [ORNL; Klingeman, Dawn Marie [ORNL; Pelletier, Dale A [ORNL; Lu, Tse-Yuan [ORNL; Martin, S L. [North Carolina State University; Guo, Hao-Bo [ORNL; Smith, Jeremy C [ORNL; Brown, Steven D [ORNL

    2010-01-01

    The application of systems biology tools holds promise for rational industrial microbial strain development. Here, we characterize a Zymomonas mobilis mutant (AcR) demonstrating sodium acetate tolerance that has potential importance in biofuel development. The genome changes associated with AcR are determined using microarray comparative genome sequencing (CGS) and 454-pyrosequencing. Sanger sequencing analysis is employed to validate genomic differences and to investigate CGS and 454-pyrosequencing limitations. Transcriptomics, genetic data and growth studies indicate that over-expression of the sodium-proton antiporter gene nhaA confers the elevated AcR sodium acetate tolerance phenotype. nhaA over-expression mostly confers enhanced sodium (Na{sup +}) tolerance and not acetate (Ac{sup -}) tolerance, unless both ions are present in sufficient quantities. NaAc is more inhibitory than potassium and ammonium acetate for Z. mobilis and the combination of elevated Na{sup +} and Ac{sup -} ions exerts a synergistic inhibitory effect for strain ZM4. A structural model for the NhaA sodium-proton antiporter is constructed to provide mechanistic insights. We demonstrate that Saccharomyces cerevisiae sodium-proton antiporter genes also contribute to sodium acetate, potassium acetate, and ammonium acetate tolerances. The present combination of classical and systems biology tools is a paradigm for accelerated industrial strain improvement and combines benefits of few a priori assumptions with detailed, rapid, mechanistic studies.

  9. A paradigm for strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui [ORNL; Land, Miriam L [ORNL; Klingeman, Dawn Marie [ORNL; Pelletier, Dale A [ORNL; Lu, Tse-Yuan [ORNL; Martin, S L. [North Carolina State University; Guo, Hao-Bo [ORNL; Smith, Jeremy C [ORNL; Brown, Steven D [ORNL

    2010-04-01

    The application of systems biology tools holds promise for rational industrial microbial strain development. Here, we characterize a Zymomonas mobilis mutant (AcR) demonstrating sodium acetate tolerance that has potential importance in biofuel development. The genome changes associated with AcR are determined using microarray comparative genome sequencing (CGS) and 454-pyrosequencing. Sanger sequencing analysis is employed to validate genomic differences and to investigate CGS and 454-pyrosequencing limitations. Transcriptomics, genetic data and growth studies indicate that over-expression of the sodium-proton antiporter gene nhaA confers the elevated AcR sodium acetate tolerance phenotype. nhaA over-expression mostly confers enhanced sodium (Na+) tolerance and not acetate (Ac-) tolerance, unless both ions are present in sufficient quantities. NaAc is more inhibitory than potassium and ammonium acetate for Z. mobilis and the combination of elevated Na+ and Ac- ions exerts a synergistic inhibitory effect for strain ZM4. A structural model for the NhaA sodium-proton antiporter is constructed to provide mechanistic insights. We demonstrate that Saccharomyces cerevisiae sodium-proton antiporter genes also contribute to sodium acetate, potassium acetate, and ammonium acetate tolerances. The present combination of classical and systems biology tools is a paradigm for accelerated industrial strain improvement and combines benefits of few a priori assumptions with detailed, rapid, mechanistic studies.

  10. Reduction of xylose to xylitol catalyzed by glucose-fructose oxidoreductase from Zymomonas mobilis.

    Science.gov (United States)

    Zhang, Xiaomei; Chen, Guanjun; Liu, Weifeng

    2009-04-01

    Genetic improvements of Zymomonas mobilis for pentose utilization have a huge potential in fuel ethanol production. The production of xylitol and the resulting growth inhibition by xylitol phosphate have been considered to be one of the important factors affecting the rates and yields from xylose metabolism by the recombinant Z. mobilis, but the mechanism of xylitol formation is largely unknown. Here, we reported that glucose-fructose oxidoreductase (GFOR), a periplasmic enzyme responsible for sorbitol production, catalyzed the reduction of xylose to xylitol in vitro, operating via a ping-pong mechanism similar to that in the formation of sorbitol. However, the specific activity of GFOR for sorbitol was higher than that for xylitol (68.39 vs. 1.102 micromol min(-1) mg(-1)), and an apparent substrate-induced positive cooperativity occurred during the catalyzed formation of xylitol, with the Hill coefficient being about 2. While a change of the potential acid-base catalyst Tyr269 to Phe almost completely abolished the activity toward xylose as well as fructose, mutant S116D, which has been shown to lose tight cofactor binding, displayed an even slower catalytic process against xylose.

  11. Effect of initial pH in levan production by Zymomonas mobilis immobilized in sodium alginate

    Directory of Open Access Journals (Sweden)

    Vidiany Aparecida Queiroz Santos

    2014-04-01

    Full Text Available Zymomonas mobilis was immobilized using a cell suspension fixed to 8.6 x 107 CFU mL-1 by spectrophotometry. This biomass was suspended in sodium alginate solution (3% that was dropped with a hypodermic syringe into 0.2 M calcium chloride solution. Was test two initial pH of fermentation medium (4 and 5 and different sucrose concentrations 15, 20, 25, 30 and 35% at 30˚C, without stirring for 24, 48, 72 and 96 hours. The levan production to pH 4 was high in sucrose 25% for 24 (16.51 g L-1 and 48 (15.31 g L-1 hours. The best values obtained to pH 5 was in sucrose 35% during 48 (22.39 g L-1 and 96 (23.5 g L-1 hours, respectively. The maximum levan yield was 40.8% and 22.47% in sucrose 15% to pH 4 and 5, respectively. Substrate consumption to pH 4 was bigger in sucrose 15 (56.4% and 20% (59.4% and to pH 5 was in 25 (68.85% and 35% (64.64%. In relation to immobilization efficiency, Zymomonas mobilis showed high adhesion and colonization in support, indicated by cell growth increased from 107 to 109 CFU mL-1 during fermentation time.

  12. Ethanol Production from Extruded Thermoplastic Maize Meal by High Gravity Fermentation with Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    Mayeli Peralta-Contreras

    2014-01-01

    Full Text Available A comparative study of extruded and ground maize meals as raw materials for the production of regular (12°P and high gravity (20°P worts was devised. Extruded water solubility index (WSI was higher (9.8 percentage units and crude fat was lower (2.64 percentage units compared to ground maize. Free-amino nitrogen compounds (FAN, pH, and glucose were evaluated in regular and high gravity worts produced from ground or extruded maize. Extrusion improved glucose content and ethanol yield. In 20°P mashes, extrusion is enhanced by 2.14% initial glucose compared with regular ground mashes. The 12°P and 20°P extruded treatments averaged 12.2% and 8.4% higher ethanol, respectively, compared to the uncooked counterpart. The 20°P worts fermented with Zymomonas mobilis produced 9.56% more ethanol than the 12°P counterpart. The results show that the combination of extrusion and fermentation of 20°P worts improved ethanol yield per kg flour until 20.93%. This pretreatment stimulates Z. mobilis fermentation efficiency.

  13. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein.

    Science.gov (United States)

    Tan, Fu-Rong; Dai, Li-Chun; Wu, Bo; Qin, Han; Shui, Zong-Xia; Wang, Jing-Li; Zhu, Qi-Li; Hu, Qi-Chun; Ruan, Zhi-Yong; He, Ming-Xiong

    2015-06-01

    Furfural from lignocellulosic hydrolysates is the key inhibitor for bio-ethanol fermentation. In this study, we report a strategy of improving the furfural tolerance in Zymomonas mobilis on the transcriptional level by engineering its global transcription sigma factor (σ(70), RpoD) protein. Three furfural tolerance RpoD mutants (ZM4-MF1, ZM4-MF2, and ZM4-MF3) were identified from error-prone PCR libraries. The best furfural-tolerance strain ZM4-MF2 reached to the maximal cell density (OD600) about 2.0 after approximately 30 h, while control strain ZM4-rpoD reached its highest cell density of about 1.3 under the same conditions. ZM4-MF2 also consumed glucose faster and yield higher ethanol; expression levels and key Entner-Doudoroff (ED) pathway enzymatic activities were also compared to control strain under furfural stress condition. Our results suggest that global transcription machinery engineering could potentially be used to improve stress tolerance and ethanol production in Z. mobilis.

  14. Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: a kinetic study.

    Science.gov (United States)

    Pedruzzi, Israel; da Silva, Eduardo A Borges; Rodrigues, Alírio E

    2011-07-10

    In this work, we have investigated the kinetics of the biotechnological production of lactobionic acid (LBA) and sorbitol by the catalytic action of glucose-fructose oxidoreductase (GFOR) and glucono-δ-lactonase (GL) enzymes. The cells of bacterium Zymomonas mobilis ATCC 29191 containing this enzymatic complex were submitted to permeabilization and reticulation procedures. The effect of the concentration of substrates on the rate of product formation using a mobilized cell system was investigated. The application of higher fructose concentration seems to not affect the initial rate of formation of the bionic acid. Under conditions of low initial concentration of lactose, the experimental kinetic data of the bi-substrate reaction were modelled by assuming a rate equation of the classical ping-pong mechanism. The found kinetic parameters displayed a low affinity of the GFOR enzyme for both substrates. The enzymatic system did not exhibit normal Michaelis-Menten kinetics in response to a change of concentration of lactose, when fructose was held constant, presenting a sigmoid relationship between initial velocity and substrate concentration. A rate equation based on Hill kinetics was used to describe the kinetic behaviour of this enzyme-substituted reaction at higher lactose concentrations. The results from batch experiments using immobilized cells within Ca-alginate beads revealed that there is no pronounced occurrence of mass transfer limitations on LBA production for beads with 1.2 mm in average diameter. This discussion aids for defining the best operating conditions to maximize the productivity for LBA and sorbitol in this bioconversion and also for reducing the complexity of downstream separation processes.

  15. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations

    Directory of Open Access Journals (Sweden)

    Palumbo Anthony V

    2009-01-01

    Full Text Available Abstract Background Zymomonas mobilis ZM4 (ZM4 produces near theoretical yields of ethanol with high specific productivity and recombinant strains are able to ferment both C-5 and C-6 sugars. Z. mobilis performs best under anaerobic conditions, but is an aerotolerant organism. However, the genetic and physiological basis of ZM4's response to various stresses is understood poorly. Results In this study, transcriptomic and metabolomic profiles for ZM4 aerobic and anaerobic fermentations were elucidated by microarray analysis and by high-performance liquid chromatography (HPLC, gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS analyses. In the absence of oxygen, ZM4 consumed glucose more rapidly, had a higher growth rate, and ethanol was the major end-product. Greater amounts of other end-products such as acetate, lactate, and acetoin were detected under aerobic conditions and at 26 h there was only 1.7% of the amount of ethanol present aerobically as there was anaerobically. In the early exponential growth phase, significant differences in gene expression were not observed between aerobic and anaerobic conditions via microarray analysis. HPLC and GC analyses revealed minor differences in extracellular metabolite profiles at the corresponding early exponential phase time point. Differences in extracellular metabolite profiles between conditions became greater as the fermentations progressed. GC-MS analysis of stationary phase intracellular metabolites indicated that ZM4 contained lower levels of amino acids such as alanine, valine and lysine, and other metabolites like lactate, ribitol, and 4-hydroxybutanoate under anaerobic conditions relative to aerobic conditions. Stationary phase microarray analysis revealed that 166 genes were significantly differentially expressed by more than two-fold. Transcripts for Entner-Doudoroff (ED pathway genes (glk, zwf, pgl, pgk, and eno and gene pdc, encoding a key enzyme leading to ethanol

  16. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shihui [ORNL; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Carroll, Sue L [ORNL; Martin, S L. [North Carolina State University; Davison, Brian H [ORNL; Palumbo, Anthony Vito [ORNL; Brown, Steven D [ORNL

    2009-01-01

    Zymomonas mobilis ZM4 (ZM4) produces near theoretical yields of ethanol with high specific productivity and recombinant strains are able to ferment both C-5 and C-6 sugars. Z. mobilis performs best under anaerobic conditions, but is an aerotolerant organism. However, the genetic and physiological basis of ZM4's response to various stresses is understood poorly. In this study, transcriptomic and metabolomic profiles for ZM4 aerobic and anaerobic fermentations were elucidated by microarray analysis and by high-performance liquid chromatography (HPLC), gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analyses. In the absence of oxygen, ZM4 consumed glucose more rapidly, had a higher growth rate, and ethanol was the major end-product. Greater amounts of other end-products such as acetate, lactate, and acetoin were detected under aerobic conditions and at 26 h there was only 1.7% of the amount of ethanol present aerobically as there was anaerobically. In the early exponential growth phase, significant differences in gene expression were not observed between aerobic and anaerobic conditions via microarray analysis. HPLC and GC analyses revealed minor differences in extracellular metabolite profiles at the corresponding early exponential phase time point. Differences in extracellular metabolite profiles between conditions became greater as the fermentations progressed. GC-MS analysis of stationary phase intracellular metabolites indicated that ZM4 contained lower levels of amino acids such as alanine, valine and lysine, and other metabolites like lactate, ribitol, and 4-hydroxybutanoate under anaerobic conditions relative to aerobic conditions. Stationary phase microarray analysis revealed that 166 genes were significantly differentially expressed by more than two-fold. Transcripts for Entner-Doudoroff (ED) pathway genes (glk, zwf, pgl, pgk, and eno) and gene pdc, encoding a key enzyme leading to ethanol production, were at least 30-fold more

  17. Cellulosic fuel ethanol: alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis.

    Science.gov (United States)

    Lawford, Hugh G; Rousseau, Joyce D

    2003-01-01

    Iogen (Canada) is a major manufacturer of industrial cellulase and hemicellulase enzymes for the textile, pulp and paper, and poultry feed industries. Iogen has recently constructed a 40 t/d biomass-to-ethanol demonstration plant adjacent to its enzyme production facility. The integration of enzyme and ethanol plants results in significant reduction in production costs and offers an alternative use for the sugars generated during biomass conversion. Iogen has partnered with the University of Toronto to test the fermentation performance characteristics of metabolically engineered Zymomonas mobilis created at the National Renewable Energy Laboratory. This study focused on strain AX101, a xylose- and arabinose-fermenting stable genomic integrant that lacks the selection marker gene for antibiotic resistance. The "Iogen Process" for biomass depolymerization consists of a dilute-sulpfuric acid-catalyzed steam explosion, followed by enzymatic hydrolysis. This work examined two process design options for fermentation, first, continuous cofermentation of C5 and C6 sugars by Zm AX101, and second, separate continuous fermentations of prehydrolysate by Zm AX101 and cellulose hydrolysate by either wildtype Z. mobilis ZM4 or an industrial yeast commonly used in the production of fuel ethanol from corn. Iogen uses a proprietary process for conditioning the prehydrolysate to reduce the level of inhibitory acetic acid to at least 2.5 g/L. The pH was controlled at 5.5 and 5.0 for Zymomonas and yeast fermentations, respectively. Neither 2.5 g/L of acetic acid nor the presence of pentose sugars (C6:C5 = 2:1) appreciably affected the high-performance glucose fermentation of wild-type Z. mobilis ZM4. By contrast, 2.5 g/L of acetic acid significantly reduced the rate of pentose fermentation by strain AX101. For single-stage continuous fermentation of pure sugar synthetic cellulose hydrolysate (60 g/L of glucose), wild-type Zymomonas exhibited a four-fold higher volumetric productivity

  18. Experimental Study of Sorbitol Production by Zymomonas mobilis in High Sucrose Concentration

    Directory of Open Access Journals (Sweden)

    Rui Sérgio dos Santos Ferreira da Silva

    2004-01-01

    Full Text Available The sorbitol presents several industrial applications and its conventional production is of high cost and low yield. Sorbitol production by Zymomonas mobilis production has attracted attention as both production cost and environmental impact are low. The sorbitol plays an osmo-protective rule so that its production is promoted by high sugar concentrations. This work has evaluated the effect of high sucrose concentration in the sorbitol production. The raise of sucrose concentration from 100 to 300g/ L caused an increase in the sorbitol production from 4,979 to 20,633g/l. Statistic analysis showed that 95,5% in the variation in sorbitol production can be explained.

  19. Le mobilier du XVIIe siècle dans la cathédrale de Cavaillon

    Directory of Open Access Journals (Sweden)

    Françoise Reynier

    2012-04-01

    Full Text Available De l'extérieur, rien ne laisse présager l'abondance et la richesse du mobilier conservé dans la cathédrale Saint-Véran. En effet, la majeure partie de l'édifice, du XIIe siècle, est noyée dans diverses adjonctions qui empêchent toute lisibilité immédiate. Nous ne sommes pas en face d'une construction homogène répondant à un programme alors que c'est précisément cette notion de programme qui peut s'appliquer à la plupart de ses décors intérieurs, notamment ceux de la seconde moitié du XVIIe si...

  20. Impact of expression of EMP enzymes on glucose metabolism in Zymomonas mobilis.

    Science.gov (United States)

    Chen, Rachel Ruizhen; Agrawal, Manoj; Mao, Zichao

    2013-06-01

    Zymomonas mobilis is the only known microorganism that utilizes the Entner-Doudoroff (ED) pathway anaerobically. In this work, we investigated whether the overexpression of a phosphofructokinase (PFK), the only missing Embden-Meyerhof-Parnas (EMP) pathway enzyme, could establish the pathway in this organism. Introduction of a pyrophosphate-dependent PFK, along with co-expression of homologous fructose-1,6-bisphosphate aldolase and triosephosphate isomerase, did not result in an EMP flux to any appreciable level. However, the metabolism of glucose was impacted significantly. Eight percent of glucose was metabolized to form a new metabolite, dihydroxyacetone. Reducing flux through the ED pathway by as much as 40 % through antisense of a key enzyme, ED aldolase, did not result in a fully functional EMP pathway, suggesting that the ED pathway, especially the lower arm, downstream from glyceraldehyde-3-phosphate, is very rigid, possibly due to redox balance.

  1. Acción inhibitoria de una cepa de Zymomonas mobilis mobilis aislada de caña de azúcar sobre Xanthomonas citri subsp. citri, agente causal de la cancrosis de los cítricos Inhibition of Xanthomonas citri subsp. citri, causal agent of citrus canker, by a strain of Zymomonas mobilis mobilis isolated from sugarcane

    Directory of Open Access Journals (Sweden)

    María E. Romero

    2008-06-01

    Full Text Available Zymomonas mobilis mobilis (Zm produce factores antimicrobianos que actúan sobre un amplio espectro de microorganismos patógenos para el hombre, animales y plantas. Un problema importante a resolver en los tratamientos con antimicrobianos, es el desarrollo de resistencia a compuestos empleados actualmente, no siendo las bacterias fitopatógenas una excepción. En el presente trabajo se realizaron ensayos de antagonismo con células (pruebas de estrías cruzadas y sobrenadantes concentrados (Sc (por difusión en agar preparados a partir de cultivos de Zm (aislada de jugo de caña de azúcar producido en Tucumán, frente a la bacteria causal de la cancrosis: Xanthomonas citri subsp. citri. Se evaluaron aislamientos de Xcc sensibles (Xc y resistentes (Xcr a compuestos a base de cobre. Los resultados obtenidos mostraron que la bacteria testigo fue inhibida totalmente por las células de Zm, ejerciendo un efecto bactericida. En los ensayos de difusión en el agar se observó que tanto Xc, como Xcr fueron sensibles al Sc de Zm. Se sabe, por estudios anteriores, que los metabolitos de Zymomonas tienen un efecto deletéreo en la membrana celular de E. coli AB1133, inhibiéndose la respiración de la bacteria inmediatamente de agregado Sc (60 UA. En el presente trabajo se observó el mismo efecto, inhibición total de la respiración en Xc, luego del agregado del Sc (60 UA. Por lo observado, se deduce que el blanco de acción de los metabolitos antimicrobianos de Sc en Xc, sería el mismo que el de E. coli AB1133. Con los resultados obtenidos se considera de interés encarar el estudio de los compuestos de Zm para ser empleados en el control de enfermedades que afectan los cultivos de valor económico de la región, como es el caso de la cancrosis, como así también profundizar acerca de la acción de dichos metabolitos en la membrana de Xanthomonas citri subsp. citri.Zymomonas mobilis mobilis (Zm produces antimicrobial factors, which have an effect on

  2. Crystal structure of cbbF from Zymomonas mobilis and its functional implication

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hyo-Jeong; Park, Suk-Youl; Kim, Jeong-Sun, E-mail: jsunkim@chonnam.ac.kr

    2014-02-28

    Highlights: • The crystal structure of one cbbF from Zymomonas mobilis was revealed. • Scores of residues form two secondary structures with a non-polar protruded residue. • It exists as a dimeric form in solution. - Abstract: A phosphate group at the C1-atom of inositol-monophosphate (IMP) and fructose-1,6-bisphosphate (FBP) is hydrolyzed by a phosphatase IMPase and FBPase in a metal-dependent way, respectively. The two enzymes are almost indiscernible from each other because of their highly similar sequences and structures. Metal ions are bound to residues on the β1- and β2-strands and one mobile loop. However, FBP has another phosphate and FBPases exist as a higher oligomeric state, which may discriminate FBPases from IMPases. There are three genes annotated as FBPases in Zymomonas mobilis, termed also cbbF (ZmcbbF). The revealed crystal structure of one ZmcbbF shows a globular structure formed by five stacked layers. Twenty-five residues in the middle of the sequence form an α-helix and a β-strand, which occupy one side of the catalytic site. A non-polar Leu residue among them is protruded to the active site, pointing out unfavorable access of a bulky charged group to this side. In vitro assays have shown its dimeric form in solution. Interestingly, two β-strands of β1 and β2 are disordered in the ZmcbbF structure. These data indicate that ZmcbbF might structurally belong to IMPase, and imply that its active site would be reorganized in a yet unreported way.

  3. Zymomonas mobilis Levan is Involved in Metalloproteinases Activation in Healing of Wounded and Burned Tissues

    Directory of Open Access Journals (Sweden)

    Cristina Sturzoiu

    2011-05-01

    Full Text Available Healing of burn tissue is a complete process involving reepitelization, granulation tissue formation and extracellular matrix remodeling. Thermal injury produces profound systemic changes, such as oligemic shock, anemia, renal failure and metabolic disorders. This causes direct tissue damages: inflammation and infection reactions. The tissue lesion also leads to increased oxidative stress in cells, as it has been observed by the low activity of endogenous antioxidant enzymatic and nonenzymatic systems. In this context, tissue matrix metalloproteinases (MMP plays a key role in normal physiology of conjunctive tissue during its development, morphogenesis or wound healing, having an irregular activity and being involved in the patho-physiological processes. The analysis of biological samples, MMP profiles contribute to the characterization of some processes involving tissue remodeling, processes related to wound or burn healing, possibly to the development of new therapies. In this context we studied the proliferative effect of levan, a polysaccharide produced by Gram negative bacteria, Zymomonas mobilis, a microorganism that plays an important role in modern biotechnology to produce substances of great interest in biotechnology, food industry or in biomedicine. Our studies focused on analysis of tissue MMPs profiles from Wistar rats with lesions caused by mechanic processes on skin (wounds and thermal (burn, treated by hallotherapy inCacica and Dej salt mines, before and after the treatment with levan. The results indicate that levan, a natural polysaccharide produced by wild type Z. mobilis NCIB 11163, as well as other bacterial strains, seems to have real value in the management of wounds and burns, applied individually or in combination with natural or artificial haloteraphy. The way that levan participates in the healing process is unknown, probably by activating the tissue metalloproteinases.

  4. Global occurrence and heterogeneity of the Roseobacter-clade species Ruegeria mobilis

    DEFF Research Database (Denmark)

    Sonnenschein, Eva; Nielsen, Kristian Fog; D'Alvise, Paul;

    2017-01-01

    Tropodithietic acid (TDA)-producing Ruegeria mobilis strains of the Roseobacter clade have primarily been isolated from marine aquaculture and have probiotic potential due to inhibition of fish pathogens. We hypothesized that TDA producers with additional novel features are present in the oceanic...... environment. We isolated 42 TDA-producing R. mobilis strains during a global marine research cruise. While highly similar on the 16S ribosomal RNA gene level (99–100% identity), the strains separated into four sub-clusters in a multilocus sequence analysis. They were further differentiated to the strain level...... phenotypic behaviors such as the production of TDA, but contains diverse sub-clusters, which could provide new capabilities for utilization in aquaculture.The ISME Journal advance online publication, 23 August 2016; doi:10.1038/ismej.2016.111....

  5. Aktivitas Zymomonas mobilis pada produk etanol dari buah semu jambu mete (Anacardium occidentale dengan variasi sumber nitrogen

    Directory of Open Access Journals (Sweden)

    AKHMAD MUSTOFA

    2010-05-01

    Full Text Available Mustofa A, Suranto. 2010. Aktivitas Zymomonas mobilis pada produk etanol daribuah semu jambu mete (Anacardium occidentale dengan variasi sumber nitrogen. Bioteknologi 7: 1-9. Penelitian ini bertujuan mengetahui kemampuan Zymomonas mobilis dalam memproduksi etanol melalui proses fermentasi batch (selama 24, 48 dan 72 jam, menggunakan sumber karbon sari buah jambu mete (varietas merah, hijau dan kuning dan sumber nitrogen berupa urea, ammonium sulfat, ekstrak kecambah kacang hijau dan ekstrak kacang koro (Mucuna pruriens. Hasil penelitian menunjukkan bahwa varietas buah jambu mete hijau dengan sumber nitrogen ammonium sulfat dan lama fermentasi 24 jam memberikan hasil etanol yang paling optimal. Pada perlakuan tersebut diperoleh nilai pH 5,87, kadar gula reduksi 7,64 g/100 mL (tingkat konsumsi 48,44%, jumlah bakteri 8,0x107 (µ = 0,154 dan etanol sebesar 33,02 g/L (Ye = 90,19%.

  6. Pre-treatment step with Leuconostoc mesenteroides or L. pseudomesenteroides strains removes furfural from Zymomonas mobilis ethanolic fermentation broth.

    Science.gov (United States)

    Hunter, William J; Manter, Daniel K

    2014-10-01

    Furfural is an inhibitor of growth and ethanol production by Zymomonas mobilis. This study used a naturally occurring (not GMO) biological pre-treatment to reduce that amount of furfural in a model fermentation broth. Pre-treatment involved inoculating and incubating the fermentation broth with strains of Leuconostoc mesenteroides or Leuconostoc pseudomesenteroides. The Leuconostoc strains converted furfural to furfuryl alcohol without consuming large amounts of dextrose in the process. Coupling this pre-treatment to ethanolic fermentation reduced furfural in the broth and improved growth, dextrose uptake and ethanol formation. Pre-treatment permitted ethanol formation in the presence of 5.2 g L(-1) furfural, which was otherwise inhibitive. The pre-treatment and presence of the Leuconostoc strains in the fermentation broth did not interfere with Z. mobilis ethanolic fermentation or the amounts of ethanol produced. The method suggests a possible technique for reducing the effect that furfural has on the production of ethanol for use as a biofuel.

  7. Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine-chemical production.

    Science.gov (United States)

    Li, Xuan Zhong; Webb, Jeremy S; Kjelleberg, Staffan; Rosche, Bettina

    2006-02-01

    Biotransformation plays an increasingly important role in the industrial production of fine chemicals due to its high product specificity and low energy requirement. One challenge in biotransformation is the toxicity of substrates and/or products to biocatalytic microorganisms and enzymes. Biofilms are known for their enhanced tolerance of hostile environments compared to planktonic free-living cells. Zymomonas mobilis was used in this study as a model organism to examine the potential of surface-associated biofilms for biotransformation of chemicals into value-added products. Z. mobilis formed a biofilm with a complex three-dimensional architecture comprised of microcolonies with an average thickness of 20 microm, interspersed with water channels. Microscopic analysis and metabolic activity studies revealed that Z. mobilis biofilm cells were more tolerant to the toxic substrate benzaldehyde than planktonic cells were. When exposed to 50 mM benzaldehyde for 1 h, biofilm cells exhibited an average of 45% residual metabolic activity, while planktonic cells were completely inactivated. Three hours of exposure to 30 mM benzaldehyde resulted in sixfold-higher residual metabolic activity in biofilm cells than in planktonic cells. Cells inactivated by benzaldehyde were evenly distributed throughout the biofilm, indicating that the resistance mechanism was different from mass transfer limitation. We also found that enhanced tolerance to benzaldehyde was not due to the conversion of benzaldehyde into less toxic compounds. In the presence of glucose, Z. mobilis biofilms in continuous cultures transformed 10 mM benzaldehyde into benzyl alcohol at a steady rate of 8.11 g (g dry weight)(-1) day(-1) with a 90% molar yield over a 45-h production period.

  8. Alcoholic fermentation of Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis in the presence of inhibitory compounds and seawater.

    Science.gov (United States)

    Gonçalves, Fabiano Avelino; dos Santos, Everaldo Silvino; de Macedo, Gorete Ribeiro

    2015-06-01

    Production of cellulosic ethanol and holocellulosic ethanol from vegetable or microbial biomass starts with a hydrolysate containing compounds which may produce negative effects in the enzymatic hydrolysis and fermentation stages due to the need of pretreatment of the materials. In this way, the simultaneous presence of hydroxymethylfurfural (HMF), furfural, acetic acid, levulinic acid, and formic acid in different concentrations was tested in the fermentation using Saccharomyces cerevisiae, Pichia stipitis, and Zymomonas mobilis. The substitution of freshwater by seawater in the culture medium was also analyzed. Thus, inhibitory effects were stronger in the fermentation using P. stipitis, followed by Z. mobilis and S. cerevisiae. Formic acid and acetic acid presented more significant effects among the inhibitory compounds, followed by HMF, furfural and levulinic acid. Fermentation performed in culture medium with seawater showed promising results, especially in the ethanol yield using S. cerevisiae (0.50 g ethanol/g glucose) and Z. mobilis (0.49 g ethanol/g glucose). Whereas the production of cellulosic ethanol and holocellulosic ethanol are in early stages of development on an industrial scale, and that the availability and use of freshwater may cause socio-environmental problems for expansion of ethanol production, the use of seawater appears as an alternative to mitigate this problem.

  9. Construction of a novel secretion expression system guided by native signal peptide of PhoD in Zymomonas mobilis.

    Science.gov (United States)

    Wu, Bo; He, Ming-Xiong; Feng, Hong; Shui, Zong-Xia; Tang, Xiao-Yu; Hu, Qi-Chun; Zhang, Yi-Zheng

    2014-01-01

    In the current study, three native signal peptides (SPs) from PhoC, PhoD, and ZMO0331were investigated and compared to construct novel secretion expression systems in Zymomonas mobilis. The secretion expression of target protein, α-amylase from Bacillus amyloliquefaciens (BAA), guided by PhoD's SP resulted in more hydrolysis of starch than that by the other two SPs. Extracellular and intracellular α-amylase activities of the strain containing PhoD's SP were also higher than the other two strains containing PhoC or ZMO0331's SP. In addition, the evidence by alcohol dehydrogenase activity assay further confirmed that the starch hydrolysis was resulted from the secretion expression of BAA rather than the breakage of cells. Our results indicated that the SP of PhoD is able to serve as a promising candidate to assist secretion expression of heterogeneous genes in Z. mobilis. This will contribute to development of engineered Z. mobilis strains converting starch into ethanol.

  10. Evaluation and optimization of ethanol production from carob pod extract by Zymomonas mobilis using response surface methodology.

    Science.gov (United States)

    Vaheed, Hossein; Shojaosadati, Seyed Abbas; Galip, Hasan

    2011-01-01

    In this research, ethanol production from carob pod extract (extract) using Zymomonas mobilis with medium optimized by Plackett-Burman (P-B) and response surface methodologies (RSM) was studied. Z. mobilis was recognized as useful for ethanol production from carob pod extract. The effects of initial concentrations of sugar, peptone, and yeast extract as well as agitation rate (rpm), pH, and culture time in nonhydrolyzed carob pod extract were investigated. Significantly affecting variables (P = 0.05) in the model obtained from RSM studies were: weights of bacterial inoculum, initial sugar, peptone, and yeast extract. Acid hydrolysis was useful to complete conversion of sugars to glucose and fructose. Nonhydrolyzed extract showed higher ethanol yield and residual sugar compared with hydrolyzed extract. Ethanol produced (g g(-1) initial sugar, as the response) was not significantly different (P = 0.05) when Z. mobilis performance was compared in hydrolyzed and nonhydrolyzed extract. The maximum ethanol of 0.34 ± 0.02 g g(-1) initial sugar was obtained at 30°C, initial pH 5.2, and 80 rpm, using concentrations (g per 50 mL culture media) of: inoculum bacterial dry weight, 0.017; initial sugar, 5.78; peptone, 0.43; yeast extract, 0.43; and culture time of 36 h.

  11. Evaluation of bioethanol production from carob pods by Zymomonas mobilis and Saccharomyces cerevisiae In solid submerged fermentation.

    Science.gov (United States)

    Saharkhiz, Saeed; Mazaheri, Davood; Shojaosadati, Seyed Abbas

    2013-01-01

    Bioethanol production from carob pods has attracted many researchers due to its high sugar content. Both Zymomonas mobilis and Saccharomyces cerevisiae have been used previously for this purpose in submerged and solid-state fermentation. Since extraction of sugars from the carob pod particles is a costly process, solid-state and solid submerged fermentations, which do not require the sugar extraction step, may be economical processes for bioethanol production. The aim of this study is to evaluate the bioethanol production in solid submerged fermentation from carob pods. The maximum ethanol production of 0.42 g g(-1) initial sugar was obtained for Z. mobilis at 30°C, initial pH 5.3, and inoculum size of 5% v/v, 9 g carob powder per 50 mL of culture media, agitation rate 0 rpm, and fermentation time of 40 hr. The maximum ethanol production for S. cerevisiae was 0.40 g g(-1) initial sugar under the same condition. The results obtained in this research are comparable to those of Z. mobilis and S. cerevisiae performance in other culture mediums from various agricultural sources. Accordingly, solid submerged fermentation has a potential to be an economical process for bioethanol production from carob pods.

  12. Biofilm formation and antibiotic production in Ruegeria mobilis are influenced by intracellular concentrations of cyclic dimeric guanosinmonophosphate.

    Science.gov (United States)

    D'Alvise, Paul W; Magdenoska, Olivera; Melchiorsen, Jette; Nielsen, Kristian F; Gram, Lone

    2014-05-01

    In many species of the marine Roseobacter clade, periods of attached life, in association with phytoplankton or particles, are interspersed with planktonic phases. The purpose of this study was to determine whether shifts between motile and sessile life in the globally abundant Roseobacter clade species Ruegeria mobilis are associated with intracellular concentrations of the signal compound cyclic dimeric guanosinmonophosphate (c-di-GMP), which in bacteria regulates transitions between motile and sessile life stages. Genes for diguanylate cyclases and phosphodiesterases, which are involved in c-di-GMP signalling, were found in the genome of R. mobilis strain F1926. Ion pair chromatography-tandem mass spectrometry revealed 20-fold higher c-di-GMP concentrations per cell in biofilm-containing cultures than in planktonic cells. An introduced diguanylate cyclase gene increased c-di-GMP and enhanced biofilm formation and production of the potent antibiotic tropodithietic acid (TDA). An introduced phosphodiesterase gene decreased c-di-GMP and reduced biofilm formation and TDA production. tdaC, a key gene for TDA biosynthesis, was expressed only in attached or biofilm-forming cells, and expression was induced immediately after initial attachment. In conclusion, c-di-GMP signalling controls biofilm formation and biofilm-associated traits in R. mobilis and, as suggested by presence of GGDEF and EAL domain protein genes, also in other Roseobacter clade species. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Production of ethanol from mesquite [Prosopis juliflora (SW) D.C.] pods mash by Zymomonas mobilis in submerged fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Celiane Gomes Maia da [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Ciencias Domesticas; Andrade, Samara Alvachian Cardoso; Schuler, Alexandre Ricardo Pereira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Engenharia Quimica; Souza, Evandro Leite de [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Nutricao; Stamford, Tania Lucia Montenegro [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Nutricao], E-mail: tlmstamford@yahoo.com.br

    2011-01-15

    Mesquite [Prosopis juliflora (SW) D.C.], a perennial tropical plant commonly found in Brazilian semi-arid region, is a viable raw material for fermentative processes because of its low cost and production of pods with high content of hydrolyzable sugars which generate many compounds, including ethanol. This study aimed to evaluate the use of mesquite pods as substrate for ethanol production by Z. mobilis UFPEDA- 205 in a submerged fermentation. The fermentation was assessed for rate of substrate yield to ethanol, rate of ethanol production and efficiency of fermentation. The very close theoretical (170 g L{sup -1}) and experimental (165 g L{sup -1}) maximum ethanol yields were achieved at 36 h of fermentation. The highest counts of Z. mobilis UFEPEDA-205 (both close to 6 Log cfu mL{sup -1}) were also noted at 36 h. Highest rates of substrate yield to ethanol (0.44 g ethanol g glucose{sup -1}), of ethanol production (4.69 g L{sup -1} h{sup -1}) and of efficiency of fermentation (86.81%) were found after 30 h. These findings suggest mesquite pods as an interesting substrate for ethanol production using submerged fermentation by Z. mobilis. (author)

  14. Influência da composição do meio para a produção de etanol, por Zymomonas mobilis = Influence of medium composition in the production of ethanol by Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    Fernanda Maria Pagane Guereschi Ernandes

    2010-01-01

    Full Text Available A bactéria Zymomonas mobilis tem despertado interesse pelo seu potencial na produção de etanol, produzindo cerca de 1,9 mol de etanol por mol de glicose, com velocidade três a quatro vezes maior que Saccharomyces cereviseae. A influência do pH, da temperatura, assim como a composição do meio de fermentação, são parâmetros que podem direcionar o metabolismo para a produção de etanol. O trabalho teve, como objetivo, avaliar a produção de etanol pela bactéria Zymomonas mobilis CCT 4494, por meio da variação do pH, da temperatura e das concentrações de KCl, K2SO4, MgSO4, CaCl2 e sacarose, seguindo planejamento fatorial do tipo 27-2, de acordo com o modelo proposto por Box et al. (1978. Foi utilizado, como única fonte de carbono, o caldo de cana-de-açúcar, por ser barato e defácil acesso na região de São José do Rio Preto, Estado de São Paulo. De acordo com o planejamento experimental, a bactéria Zymomonas mobilis CCT 4494 se adaptou no meio de fermentação que continha altas concentrações de sacarose, bem como suportou a variação do pH e da temperatura de fermentação. A maior produção de etanol foi de 8,89 mg mL-1 e, de todas as variáveis testadas, apenas K2SO4 afetou significativamente (p The production of ethanol using Zymomonas mobilis had been reportedto be three to four times larger than with Saccharomyces cereviseae. The influence of pH, temperature and composition of the means of fermentation are parameters that can direct the metabolism for the production of ethanol. The objective of this study was to evaluatethe production of ethanol by Zymomonas mobilis CCT 4494, by variations of the initial pH, temperature and concentrations KCl, K2SO4, MgSO4, CaCl2 and sucrose, by a factorial experimental design of type 27-2, according to the model proposed by Box et al. (1978. For this, the broth of sugar cane was used as sole carbon source, because it is cheap and easily accessible in the region of São José do

  15. Zymomonas mobilis as catalyst for the biotechnological production of sorbitol and gluconic acid.

    Science.gov (United States)

    Erzinger, Gilmar Sidney; Vitolo, Michele

    2006-03-01

    The conversion of glucose and fructose into gluconic acid (GA) and sorbitol (SOR) was conducted in a batch reactor with free (CTAB-treated or not) or immobilized cells of Zymomonas mobilis. High yields (more than 90%) of gluconic acid and sorbitol were attained at initial substrate concentration of 600 g/L (glucose plus fructose at 1:1 ratio), using cells with glucose-fructose-oxidoreductase activity of 75 U/L. The concentration of the products varied hyperbolically with time according to the equations (GA)=t(GA)(max)/(W(GA) +t), (SOR)=t (SOR)(max)/(W(Sor)+t), v(GA)=[W(GA) (GA)(max)]/(W(GA)+t)(2) and V(SOR)=[W(SOR) (SOR)(max)]/(W(SOR)+t)(2). Taking the test carried out with free CTAB-treated cells as an example, the constant parameters were (GA)(max)= 541 g/L, (SOR)(max)=552 g/L, W(GA)=4.8h, W(SOR)=4.9h, upsilon(GA)=112.7 g/L. and upsilon(SOR)=112.7 g/L.

  16. Cellulosic Ethanol Production by Recombinant Cellulolytic Bacteria Harbouring pdc and adh II Genes of Zymomonas mobilis.

    Science.gov (United States)

    Piriya, P Sobana; Vasan, P Thirumalai; Padma, V S; Vidhyadevi, U; Archana, K; Vennison, S John

    2012-01-01

    The ethanol fermenting genes such as pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adh II) were cloned from Zymomonas mobilis and transformed into three different cellulolytic bacteria, namely Enterobacter cloacae JV, Proteus mirabilis JV and Erwinia chrysanthemi and their cellulosic ethanol production capability was studied. Recombinant E. cloacae JV was found to produce 4.5% and 3.5% (v/v) ethanol, respectively, when CMC and 4% NaOH pretreated bagasse were used as substrates, whereas recombinant P. mirabilis and E. chrysanthemi with the same substrates could only produce 4%, 3.5%, 1%, and 1.5 % of ethanol, respectively. The recombinant E. cloacae strain produced twofold higher percentage of ethanol than the wild type. The recombinant E. cloacae strain could be improved further by increasing its ethanol tolerance capability through media optimization and also by combining multigene cellulase expression for enhancing ethanol production from various types of lignocellulosic biomass so that it can be used for industrial level ethanol production.

  17. Final Technical Report: Improvement of Zymomonas mobilis for Commercial Use in Corn-based Biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    Hitz, William D.

    2010-12-07

    Between 2007 and 2010 DuPont conducted a program under DOE award DE-FC36-07GO17056 to develop and improve Zymomonas mobilis as an ethanologen for commercial use in biorefineries to produce cellulosic ethanol. This program followed upon an earlier DOE funded program in which DuPont, in collaboration with the National Renewable Energy Laboratory (NREL) had developed a Zymomonas strain in conjunction with the development of an integrated cellulosic ethanol process. In the current project, we sought to maximize the utility of Zymomonas by adding the pathway to allow fermentation of the minor sugar arabinose, improve the utilization of xylose, improve tolerance to process hydrolysate and reduce the cost of producing the ethanologen. We undertook four major work streams to address these tasks, employing a range of approaches including genetic engineering, adaptation, metabolite and pathway analysis and fermentation process development. Through this project, we have developed a series of strains with improved characteristics versus the starting strain, and demonstrated robust scalability to at least the 200L scale. By a combination of improved ethanol fermentation yield and titer as well as reduced seed train costs, we have been able to reduce the capital investment and minimum ethanol selling price (MESP) by approximately 8.5% and 11% respectively vs. our starting point. Furthermore, the new strains we have developed, coupled with the learnings of this program, provide a platform for further strain improvements and advancement of cellulosic ethanol technology.

  18. Fermentation of glucose by Zymomonas mobilis CP4 utilising continuous transient technique

    Directory of Open Access Journals (Sweden)

    João Batista Buzato

    2003-01-01

    Full Text Available Ethanol production by Zymomonas mobilis CP4 under continuous transient operation has been investigated. The bacteria was grown under alternating glucose amplitudes of 2% and 5% (w/p and cycle time values of 2, 4 and 6 hours. The ethanol production was compared to data obtained in simple chemostat operation grown 3.5%(w/v glucose medium. The value of dilution rate was fixed as 0.2h-1 for both techniques. When cycle time value of 2 hours was used, values of biomass and ethanol kept constant. The appliance of cycle time of 4 hours produced smooth responses from the organisms. The values of biomass oscillated from 0.7 to 0.93 g/l. When cycle time of 6 hours was used the oscillations on biomass and ethanol were pronounced. The minimum and maximum values of biomass were respectively 0.61 and 1g/l. As far as conversion efficiency to ethanol is concerned the values of 84, 85 and 89% (corresponding to cycle time of 2, 4 and 6 hours were found whereas conversion efficiency was low as 50% when simple chemostat was used.

  19. Proteomic Analysis of Recombinant Escherichia coli Expressing Zymomonas mobilis pdc and adh Genes

    Institute of Scientific and Technical Information of China (English)

    Xiaoqin Wang; Xuefeng Li; Hui Wang; Mingfeng Yang; Xiushan Yang; Yikun He

    2012-01-01

    Pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) are efficient enzymes for ethanol production in Zymomonas mobilis.These two enzymes were over-expressed in Escherichia coli,which was a better candidate for industrial ethanol production,resulting in a recombinant Escherichia coli strain efficient for ethanol production.To investigate the underlying mechanism,2-DE and LC-MS/MS were preformed.More than 1000 protein spots were reproducibly detected in the gel by image analysis,and 99 protein spots showed significant changes in recombinant E.coli,in which 46 were down-regulated and 53 were up-regulated.These proteins were mainly involved in energy metabolism,small molecule biosynthesis and degradation,transport,and stress.Except for the expected significant upregulation of PDC and ADH,most proteins involved in energy metabolism,purine/pyrimidine ribonucleotide biosynthesis,amino acid biosynthesis,and transport were up-regulated.It suggested that in response to a significant up-regulation of foreign proteins,E.coli could readjust other pathways to reach a new balance in cells,and these up-regulated proteins and pathways cooperated in ethanol production efficiently.

  20. Cellulosic Ethanol Production by Recombinant Cellulolytic Bacteria Harbouring pdc and adh II Genes of Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    P. Sobana Piriya

    2012-01-01

    Full Text Available The ethanol fermenting genes such as pyruvate decarboxylase (pdc and alcohol dehydrogenase II (adh II were cloned from Zymomonas mobilis and transformed into three different cellulolytic bacteria, namely Enterobacter cloacae JV, Proteus mirabilis JV and Erwinia chrysanthemi and their cellulosic ethanol production capability was studied. Recombinant E. cloacae JV was found to produce 4.5% and 3.5% (v/v ethanol, respectively, when CMC and 4% NaOH pretreated bagasse were used as substrates, whereas recombinant P. mirabilis and E. chrysanthemi with the same substrates could only produce 4%, 3.5%, 1%, and 1.5 % of ethanol, respectively. The recombinant E. cloacae strain produced twofold higher percentage of ethanol than the wild type. The recombinant E. cloacae strain could be improved further by increasing its ethanol tolerance capability through media optimization and also by combining multigene cellulase expression for enhancing ethanol production from various types of lignocellulosic biomass so that it can be used for industrial level ethanol production.

  1. Construction of a novel cell-surface display system for heterologous gene expression in Escherichia coli by using an outer membrane protein of Zymomonas mobilis as anchor motif.

    Science.gov (United States)

    He, Ming-Xiong; Feng, Hong; Zhang, Yi-Zheng

    2008-12-01

    A novel bacterial cell-surface display system was developed in Escherichia coli using omp1, a hypothetical outer membrane protein of Zymomonas mobilis. By using this system, we successfully expressed beta-amylase gene of sweet potato in E. coli. The display of enzyme on the membrane surface was also confirmed. The recombinant beta-amylase showed to significantly increase hydrolytic activity toward soluble starch. Our results provide a basis for constructing an engineered Z. mobilis strain directly fermenting raw starch to produce ethanol.

  2. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    In contrast to higher eukaryotes, bacteria are haploid, i.e. they store their genetic information in a single chromosome, which is then duplicated during the cell cycle. If the growth rate is sufficiently low, the bacterium is born with only a single copy of the chromosome, which gets duplicated...... before the bacterium divides. Fast-growing bacteria have overlapping rounds of replication, and can contain DNA corresponding to more than four genome equivalents. However, the terminus region of the chromosome is still present in just one copy after division, and is not duplicated until right before...... the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...

  3. Single Bacterium Detection Using Sers

    Science.gov (United States)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  4. Influence of high osmotic pressure on sorbitol production by Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    Josiane Alessandra Vignoli

    2010-10-01

    Full Text Available The objective of the present work was to study the variation on the sorbitol production in relation to the concentration of sugars, (metabolizable or not and the cultivation time. A full factorial design was used considering the factors such as sucrose and maltose concentration and cultivation time. The addition of sugars caused increases on the sorbitol production up to the concentration of 300g/L however, decreases on the sorbitol production were observed when the concentration reached values above this. Increasing the time of fermentation was statistically significant to sorbitol production, however, little increase the production was noticed after 36h.Zymomonas mobilis produz o poliálcool sorbitol como principal subproduto. Sua formação é atribuída principalmente a sua função A produção de sorbitol foi avaliada através de um planejamento fatorial completo utilizando as variáveis concentração de sacarose, concentração de maltose e tempo de cultivo. A adição de açúcares causou um aumento na produção de sorbitol até a concentração de 300g/L, porém decréscimos na produção de sorbitol foram observados a concentrações superiores a esta. Aumento no tempo de fermentação foi estatisticamente significativo para aumentos da produção de sorbitol, porém pequeno aumento foi observado de 12 para 36 horas de cultivo.

  5. Les objets mobiliers des XIXe et XXe siècles : les sources

    Directory of Open Access Journals (Sweden)

    Laurence de Finance

    2009-11-01

    Full Text Available L’étude scientifique de tout objet ne peut se concevoir sans une recherche dans les sources documentaires. Qu’il s’agisse d’archives publiques ou privées, de legs faits à des musées ou autres institutions patrimoniales, la quête de renseignements est une nécessité pour suivre l’objet étudié depuis sa création jusqu’à son étude faite in Situ. De nos jours, de nombreuses ressources sont mises en ligne, notamment sur le site du ministère de la culture et de la communication ; accessibles à tous, elles rendent plus aisées la localisation des sources et la consultation de leur contenu. A titre d’exemple, afin de faciliter l’étude du mobilier religieux du XIXe siècle, dont la production est alors en pleine expansion, des pages illustrées de plusieurs catalogues de fabricants sont aujourd’hui consultables en ligne.The scientific study of any object requires research in documentary sources. Whether these are private or public archives, legacies left to museums or other heritage institutions, the search for information is a necessity for understanding the life of the object, from its creation to its study in situ. Today, many types of documentary source are available on line, in particular on the website of the French Ministry of Culture. These sources are available to all and easy to consult. The example presented here, concerning the study of religious furnishings of the 19th and 20th centuries, the production of which increased considerably during these centuries, are the pages taken from the catalogues of several manufacturers of these church furnishings, today accessible on line.

  6. Formation of ethanol and higher alcohols by immobilized zymomonas mobilis in continuous culture

    Energy Technology Data Exchange (ETDEWEB)

    Oaxaca, V.A.; Jones, L.P. (Texas Univ., El Paso (United States). Dept. of Biological Sciences)

    1991-01-01

    Cells of Zymomonas mobilis ATCC 10988 were immobilized in 1.5% calcium alginate and packed in a column bioreactor for a series of fermentations utilizing 10.0% glucose media with the addition of one of the following amino acids or keto acids: L-leucine, L-isoleucine, L-valine, {alpha}-ketoisocaproic acid, {alpha}-ketobutyric acid, or {alpha}-ketoisovaleric acid. This was done in order to study the rates of production of higher alcohols during ethanolic fermentations at varying dilution rates while under the influence of amino acids or keto acids. Results indicate that the EHRLICH mechanism is operative in Zymomonas sp. {alpha}-Ketobutyrate enhanced the production of n-propanol and act-amyl alcohol. {alpha}-Ketoisocaproic acid stimulated the production of isoamyl alcohol. {alpha}-Ketoisovaleric acid increased the levels of isobutanol. The amino acids also gave rise to their corresponding alcohols but to a far lesser degree than did the keto acids. During high glucose utilization, ethanol yields ranged from 87% to 94% of theoretical with productivity ranging from 60.08 g/l/h in one fermentation (at a dilution rate of 1.35 h{sup -1}) to 70.42 g/l/h in another (at a dilution rate of 1.58 h{sup -1}). At dilution rates of 1.58 h{sup -1}, higher alcohol productivity rose to as high as 4.313 mg/l/h in the presence of {alpha}-ketoisocaproic acid, 1,734.49 mg/l/h using {alpha}-ketoisovaleric acid, and 1,618.05 mg/l/h in {alpha}-ketobutyric acid. The concomitant production of ethanol and higher alcohols in all of the fermentations indicates that glucose is required for the production of the higher alcohols from their corresponding amino acids or keto acids. (orig.).

  7. Continuous production of gluconic acid and sorbitol from Jerusalem artichoke and glucose using an oxidoreductase of Zymomonas mobilis and inulinase.

    Science.gov (United States)

    Kim, D M; Kim, H S

    1992-02-01

    Gluconic acid and sorbitol were simultaneously produced from glucose and Jerusalem artichoke using a glucose-fructose oxidoreductase of Zymomonas mobilis and inulinase. Inulinase was immobilized on chitin by cross-linking with glutaraldehyde. Cells of Z. mobilis permeabilized with toluene were coimmobilized with chitin-immobilized inulinase in alginate beads. The optimum amounts of both chitin-immobilized inulinase and permeabilized cells for coimmobilization were determined, and operational conditions were optimized. In a continuous stirred tank reactor operation, the maximum productivities for gluconic acid and sorbitol were about 19.2 and 21.3 g/L/h, respectively, at the dilution rate of 0.23 h(-1) and the substrate concentration of 20%, but operational stability was low because of the abrasion of the beads. As an approach to increase the operational stability, a recycle packed-bed reactor (RPBR) was employed. In RPBR operation, the maximum productivities for gluconic acid and sorbitol were found to be 23.4 and 26.0 g/L/h, respectively, at the dilution rate of 0.35 h(-1) and the substrate concentration of 20% when the recirculation rate was fixed at 900 mL/h. Coimmobilized enzymes were stable for 250 h in a recycle packed-bed reactor without any loss of activity, while half-life in a continuous stirred tank reactor (CSTR) was observed to be about 150 h.

  8. Production of ethanol from starch by co-immobilized Zymomonas mobilis -- Glucoamylase in a fluidized-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, M.Y.; Davison, B.H.; Bienkowski, P.R. [Oak Ridge National Lab., TN (United States). Bioprocessing Research and Development Center]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical Engineering; Nghiem, N.P.; Webb, O. [Oak Ridge National Lab., TN (United States). Bioprocessing Research and Development Center

    1997-08-01

    The production of ethanol from starch was studied in a fluidized-bed reactor (FBR) using co-immobilized Zymomonas mobilis and glucoamylase. The FBR was a glass column of 2.54 cm in diameter and 120 cm in length. The Z. mobilis and glucoamylase were co-immobilized within small uniform beads (1.2 to 2.5 mm diameter) of {kappa}-carrageenan. The substrate for ethanol production was a soluble starch. Light steep water was used as the complex nutrient source. The experiments were performed at 35 C and pH range 4.0 to 5.5. The substrate concentrations ranged from 40 to 185 g/L and the feed rates from 10 to 37 mL/min. Under relaxed sterility conditions, the FBR was successfully operated for a period of 22 days, during which no contamination or structural failure of the biocatalyst beads was observed. Maximum volumetric productivity of 38 g ethanol/L-h, which was 76% of the theoretical value, was obtained. Typical ethanol volumetric productivity was in the range of 15 to 20 g/L-h. The average yield was 0.51 g ethanol/g substrate consumed, which was 90% of the theoretical yield. Very low levels of glucose were observed in the reactor, indicating that starch hydrolysis was the rate-limiting step.

  9. Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production.

    Science.gov (United States)

    Zachariou, M; Scopes, R K

    1986-09-01

    The enzymes responsible for sorbitol formation in Zymomonas mobilis were investigated. A previously undescribed enzyme catalyzes the intermolecular oxidation-reduction of glucose and fructose to form gluconolactone and sorbitol. This enzyme has been purified; it had a subunit size of 40,000 daltons and is probably tetrameric at low pH. It contained tightly bound NADP as the hydrogen carrier and did not require any added cofactor for activity. In addition, a gluconolactonase has been isolated, although not completely purified. Together these two enzymes were capable of completely converting a 54% (wt/vol) equimolar mixture of glucose and fructose to sorbitol and sodium gluconate at the optimum pH of close to 6.2. The oxidoreductase had low affinities for its substrates, but natural environmental conditions would expose it to high concentrations of sugars. The amount of the enzyme in Z. mobilis cells was sufficient to account for the rate of sorbitol formation in vivo. However, the enzyme was present in the highest amounts when the cells were grown on glucose alone, and it was repressed by the presence of fructose; this was not the case with the gluconolactonase.

  10. Improvement of ethanol productivity and energy efficiency by degradation of inhibitors using recombinant Zymomonas mobilis (pHW20a-fdh).

    Science.gov (United States)

    Dong, Hong-Wei; Fan, Li-Qiang; Luo, Zichen; Zhong, Jian-Jiang; Ryu, Dewey D Y; Bao, Jie

    2013-09-01

    Toxic compounds, such as formic acid, furfural, and hydroxymethylfurfural (HMF) generated during pretreatment of corn stover (CS) at high temperature and low pH, inhibit growth of Zymomonas mobilis and lower the conversion efficiency of CS to biofuel and other products. The inhibition of toxic compounds is considered as one of the major technical barriers in the lignocellulose bioconversion. In order to detoxify and/or degrade these toxic compounds by the model ethanologenic strain Z. mobilis itself in situ the fermentation medium, we constructed a recombinant Z. mobilis ZM4 (pHW20a-fdh) strain that is capable of degrading toxic inhibitor, formate. This is accomplished by cloning heterologous formate dehydrogenase gene (fdh) from Saccharomyces cerevisiae and by coupling this reaction of NADH regeneration reaction system with furfural and HMF degradation in the recombinant Z. mobilis strain. The NADH regeneration reaction also improved both the energy efficiency and cell physiological activity of the recombinant organism, which were definitely confirmed by the improved cell growth, ethanol yield, and ethanol productivity during fermentation with CS hydrolysate.

  11. Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) share the same nomenclatural type (ATCC 13048) on the Approved Lists and are homotypic synonyms, with consequences for the name Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980).

    Science.gov (United States)

    Tindall, B J; Sutton, G; Garrity, G M

    2016-10-13

    Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) were placed on the Approved Lists of Bacterial Names and were based on the same nomenclatural type, ATCC 13048. Consequently they are to be treated as homotypic synonyms. However, the names of homotypic synonyms at the rank of species normally are based on the same epithet. Examination of the Rules of the International Code of Nomenclature of Bacteria in force at the time indicates that the name the epithet mobilis in Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) was illegitimate at the time the Approved Lists were published and according to the Rules of the current International Code of Nomenclature of Prokaryotes continues to be illegitimate.

  12. Ethanol Production from Rice-Straw Hydrolysate Using Zymomonas Mobilis in a Continuous Fluidized-Bed Reactor (FBR)

    Energy Technology Data Exchange (ETDEWEB)

    deJesus, D.; Nghiem, N.P.

    2001-01-01

    Rice-straw hydrolysate obtained by the Arkenol's concentrated acid hydrolysis process was fermented to ethanol using a recombinant Zymomonas mobilis strain capable of utilizing both glucose and xylose in a continuous fluidized-bed reactor (FBR). The parameters studied included biocatalyst stability with and without antibiotic, feed composition, and retention time. Xylose utilization in the presence of tetracycline remained stable for at least 17 days. This was a significant improvement over the old strain, Z. mobilis CP4 (pZB5), which started to lose xylose utilization capability after seven days. In the absence of tetracycline, the xylose utilization rate started to decrease almost immediately. With tetracycline in the feed for the first six days, stability of xylose utilization was maintained for four days after the antibiotic was removed from the feed. The xylose utilization rate started to decrease on day 11. In the presence of tetracycline using the Arkenol's hydrolysate diluted to 48 g/L glucose and 13 g/L xylose at a retention time of 4.5 h, 95% xylose conversion and complete glucose conversion occurred. The ethanol concentration was 29 g/L, which gave a yield of 0.48 g/g sugar consumed or 94% of the theoretical yield. Using the Arkenol's hydrolysate diluted to 83 g/L glucose and 28 g/L xylose, 92% xylose conversion and complete glucose conversion were obtained. The ethanol concentration was 48 g/L, which gave a yield of 0.45 g/ g sugar consumed or 88% of the theoretical yield. Maximum productivity of 25.5 g/L-h was obtained at a retention time of 1.9 h. In this case, 84% xylose conversion was obtained.

  13. Defluviitoga tunisiensis gen. nov., sp. nov., a thermophilic bacterium isolated from a mesothermic and anaerobic whey digester.

    Science.gov (United States)

    Ben Hania, Wajdi; Godbane, Ramzi; Postec, Anne; Hamdi, Moktar; Ollivier, Bernard; Fardeau, Marie-Laure

    2012-06-01

    Strain SulfLac1(T), a thermophilic, anaerobic and slightly halophilic, rod-shaped bacterium with a sheath-like outer structure (toga), was isolated from a whey digester in Tunisia. The strain's non-motile cells measured 3-30×1 µm and appeared singly, in pairs or as long chains. The novel strain reduced thiosulfate and elemental sulfur, but not sulfate or sulfite, into sulfide. It grew at 37-65 °C (optimum 55 °C), at pH 6.5-7.9 (optimum pH 6.9) and with 0.2-3 % (w/v) NaCl (optimum 0.5 %). The G+C content of the strain's genomic DNA was 33.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SulfLac1(T) was most closely related to Petrotoga mobilis (91.4 % sequence similarity). Based on phenotypic, phylogenetic and chemotaxonomic evidence, strain SulfLac1(T) represents a novel species of a new genus within the order Thermotogales, for which the name Defluviitoga tunisiensis gen. nov., sp. nov. is proposed. The type strain of the type species is SulfLac1(T) ( = DSM 23805(T) = JCM 17210(T)).

  14. Hybrid neural network model for simulating sorbitol synthesis by glucose-fructose oxidoreductase in Zymomonas mobilis CP4

    Directory of Open Access Journals (Sweden)

    Bravo S.

    2004-01-01

    Full Text Available A hybrid neural network model for simulating the process of enzymatic reduction of fructose to sorbitol process catalyzed by glucose-fructose oxidoreductase in Zymomonas mobilis CP4 is presented. Data used to derive and validate the model was obtained from experiments carried out under different conditions of pH, temperature and concentrations of both substrates (glucose and fructose involved in the reaction. Sonicated and lyophilized cells were used as source of the enzyme. The optimal pH for sorbitol synthesis at 30º C is 6.5. For a value of pH of 6, the optimal temperature is 35º C. The neural network in the model computes the value of the kinetic relationship. The hybrid neural network model is able to simulate changes in the substrates and product concentrations during sorbitol synthesis under pH and temperature conditions ranging between 5 and 7.5 and 25 and 40º C, respectively. Under these conditions the rate of sorbitol synthesis shows important differences. Values computed using the hybrid neural network model have an average error of 1.7·10-3 mole.

  15. Application of fractional factorial design to levan production by Zymomonas mobilis Aplicação do planejamento fatorial fracionário para a produção de levana por Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    I.R. Melo

    2007-03-01

    Full Text Available Levan is a non-toxic, biologically active, extra cellular polysaccharide composed solely by fructose units. Optimization of levan production by Zymomonas mobilis strain ZAG-12 employing a 2(4-1 fractional factorial design was performed to analyze the influence of the temperature (20, 25 e 30ºC agitation (50, 75 e 100 rpm, and the initial concentrations of both sucrose (150, 200 e 250 g.L-1 and yeast extract (2.0, 3.5 e 5.0g.L-1 on final levan concentration. Aerobic fermentation was performed batchwise in 500mL Pyrex flasks for 72 hours. Biomass, ethanol, levan and sucrose were determined at beginning and also at end of the fermentations. The experiments showed that the final levan concentration depended on initial sucrose concentration, temperature and agitation velocity and that the initial concentration of yeast extract did not influence levan production. However, when the production of ethanol and biomass were considered, it became evident that yeast extract was a significant variable. The best conditions for levan production occurred at 100 rpm agitation, 20ºC and 250g.L-1 of initial sucrose resulting in 14.67g.L-1 of levan.Levana é um polissacarídeo extracelular, biologicamente ativo, não tóxico, contendo em sua estrutura apenas frutose. A maximização da produção de levana, por via fermentativa, pela linhagem de Zymomonas mobilis ZAG-12, foi estudada utilizando-se um planejamento fatorial de dois níveis 2(4-1, variando-se as concentrações iniciais de sacarose (150, 200 e 250 g.L-1 , extrato de levedura (2.0, 3.5 e 5.0 g.L-1, temperatura (20, 25 e 30ºC e agitação (50, 75 e 100 rpm. As fermentações foram desenvolvidas por processos descontínuos em frascos Pyrex roscados, de 500 mL, contendo 300 mL de meio a base de sacarose, por 72 horas. No início e ao final do processo, foram dosados: biomassa, etanol, levana e sacarose como açúcares redutores totais. A análise dos dados mostra que o aumento da produção de levana

  16. Normalização dos postos de trabalho na secção de pintura de uma empresa de mobiliário

    OpenAIRE

    Ribeiro, Luís Pedro Mendes Pereira

    2012-01-01

    Dissertação de mestrado integrado em Engenharia e Gestão Industrial A presente dissertação, inserida no âmbito do 5º ano do Mestrado Integrado em Engenharia e Gestão Industrial, descreve um projeto cujo objetivo principal foi a normalização dos postos de trabalho da área de pintura de uma empresa de mobiliário, a Swedwood Portugal, empresa pertencente ao grupo Swedwood, ramo industrial do IKEA. Na conjetura atual as empresas têm a necessidade de reduzir custos, mantendo a quali...

  17. L’inventaire des objets mobiliers religieux des XIXe et XXe siècles : méthodologie

    Directory of Open Access Journals (Sweden)

    Laurence de Finance

    2012-04-01

    Full Text Available Le mobilier et les objets religieux du XIXe siècle sont étudiés dans le cadre des enquêtes topographiques menées par les services de l’Inventaire général du patrimoine culturel. Des critères de sélection, établis dans les années 90, communs aux chercheurs des équipes patrimoniales du ministère de la Culture, ont permis de différencier ce qui méritait d’être sélectionné en tant qu’unicum par l’Inventaire, et donc éventuellement d’être protégé par les Monuments historiques, de ce qui relevait d’une simple étude documentaire (fiche minimale. Les mêmes critères restent-ils pertinents pour la production du XXe siècle, au-delà des années 1920 ? D’autres notions liées à la fragilité du matériau - rendant l’objet éphémère -, à sa création, à son esthétique sont sans doute à prendre en compte pour sélectionner les objets religieux de la seconde moitié du XXe siècle. Le contenu des notices de la base Palissy devrait aussi pouvoir refléter l’impact du concile Vatican II sur le patrimoine mobilier postérieur aux années 60/70.The religious furnishings and artefacts of the 19th century are studied in France in course of the topographical inquiries carried out by the general inventory services in the regions. Selection criteria established in the 1990s provide guidelines for the research teams as to what was worth selecting for documentation as unique objects, possibly worthy of statutory protection, and what could be simply documented using core data (fiche minimum. But the same criteria are not necessarily applicable to the religious furnishings and artefacts of the 20th century, and after 1920 in particular. New notions to do with the fragility of the material with which the work is made, making the objects ephemeral, the creation of the object and its particular aesthetics are perhaps to be taken into account where the religious objects of the second half of the 20th century are concerned

  18. Expression, purification and immobilization of the intracellular invertase INVA, from Zymomonas mobilis on crystalline cellulose and Nylon-6.

    Science.gov (United States)

    de Los Angeles Calixto-Romo, María; Santiago-Hernández, José Alejandro; Vallejo-Becerra, Vanessa; Amaya-Delgado, Lorena; del Carmen Montes-Horcasitas, María; Hidalgo-Lara, María Eugenia

    2008-11-01

    This paper presents two immobilization methods for the intracellular invertase (INVA), from Zymomonas mobilis. In the first method, a chimeric protein containing the invertase INVA, fused through its C-terminus to CBDCex from Cellulomonas fimi was expressed in Escherichia coli strain BL21 (DE3). INVA was purified and immobilized on crystalline cellulose (Avicel) by means of affinity, in a single step. No changes were detected in optimal pH and temperature when INVA-CBD was immobilized on Avicel, where values of 5.5 and 30 degrees C, respectively, were registered. The kinetic parameters of the INVA-CBD fusion protein were determined in both its free form and when immobilized on Avicel. Km and Vmax were affected with immobilization, since both showed an increase of up to threefold. Additionally, we found that subsequent to immobilization, the INVA-CBD fusion protein was 39% more susceptible to substrate inhibition than INVA-CBD in its free form. The second method of immobilization was achieved by the expression of a 6xHis-tagged invertase purified on Ni-NTA resin, which was then immobilized on Nylon-6 by covalent binding. An optimal pH of 5.5 and a temperature of 30 degrees C were maintained, subsequent to immobilization on Nylon-6 as well as with immobilization on crystalline cellulose. The kinetic parameters relating to Vmax increased up to 5.7-fold, following immobilization, whereas Km increased up to 1.7-fold. The two methods were compared showing that when invertase was immobilized on Nylon-6, its activity was 1.9 times that when immobilized on cellulose for substrate concentrations ranging from 30 to 390 mM of sucrose.

  19. Development of High-Productivity Continuous Ethanol Production using PVA-Immobilized Zymomonas mobilis in an Immobilized-Cells Fermenter

    Directory of Open Access Journals (Sweden)

    Nurhayati Nurhayati

    2015-07-01

    Full Text Available Ethanol as one of renewable energy was being considered an excellent alternative clean-burning fuel to replace gasoline. Continuous ethanol fermentation systems had offered important economic advantages compared to traditional systems. Fermentation rates were significantly improved, especially when continuous fermentation was integrated with cell immobilization techniques to enrich the cells concentration in fermentor. Growing cells of Zymomonas mobilis immobilized in polyvinyl alcohol (PVA gel beads were employed in an immobilized-cells fermentor for continuous ethanol fermentation from glucose. The glucose loading, dilution rate, and cells loading were varied in order to determine which best condition employed in obtaining both high ethanol production and low residual glucose with high dilution rate. In this study, 20 g/L, 100 g/L, 125 g/L and 150 g/L of glucose concentration and 20% (w/v, 40% (w/v and 50% (w/v of cells loading were employed with range of dilution rate at 0.25 to 1 h-1. The most stable production was obtained for 25 days by employing 100 g/L of glucose loading. Meanwhile, the results also exhibited that 125 g/L of glucose loading as well as 40% (w/v of cells loading yielded high ethanol concentration, high ethanol productivity, and acceptable residual glucose at 62.97 g/L, 15.74 g/L/h and 0.16 g/L, respectively. Furthermore, the dilution rate of 4 hour with 100 g/L and 40% (w/v of glucose and cells loading was considered as the optimum condition with ethanol production, ethanol productivity and residual glucose obtained were 49.89 g/L, 12.47 g/L/h, and 2.04 g/L, respectively. This recent study investigated ethanol inhibition as well. The present research had proved that high sugar concentration was successfully converted to ethanol. These achieved results were promising for further study.

  20. IDENTIFICATION OF THE BACTERIUM TOMATO STEM CANKER

    Directory of Open Access Journals (Sweden)

    Goner A. Shaker

    2014-01-01

    Full Text Available Diseased tomato samples were collected from green house was evaluated for isolation, pathogenicity and biochemical tests. The symptoms of the infected tomato plants were as sudden wilting after curled on leaves and necrotic streak regions developed at the crown and base of the stem and the cavities deepen and expand up and down, brown discoloration and necrosis occurring on xylem and phloem vasculer. All of ages of tomato plant were susceptible to bacteria when the weather condition favorable and immediately, seen collapse symptom on tomato plant at once fail and die. The bacterium was isolated from diseased plant in all regions on nutrient Agar; a yellow bacterium was isolated from infected tomato plant in green houses and fields in Abu-Ghraib, Rashiedia and Qanat Al-Geiaysh nurseries in Baghdad provinces of Iraq. The bacterium was found gram positive, rod-shaped, non-motile and capable an aerobic growth and based on the morphological and biochemical characteristics revealed that this bacterium belongs to: Clavibacter michiganensis subsp. michiganensis. (smith pathogenicity and hypersensitivity of the bacterium Cmm showed the disease index were 18.33, 6.66, 16.66, 5, 0% for tomato seedlings were inoculated treatments as the wounding roots, without wounding roots, crown of the stem, petiole and control respectively.

  1. Design netradičního sedacího prvku městského mobiliáře

    OpenAIRE

    Haltof, Vladimír

    2014-01-01

    Disertační práce se zabývá designem sedacího prvku městského mobiliáře (lavičky) sloučením pohledů dvou příbuzných oborů – průmyslového designu a architektury. Tvůrčí výstupy práce, které reagují na problémy městského mobiliáře v urbanistickém prostoru, byly od samého počátku cíleny jako design s ambicí reálné produkce. Proto je součástí práce několik ověřovacích kroků potvrzujících realizovatelnost navržených řešení. Prvním výstupem je design sedacího prvku inovativní koncepce s netradičním ...

  2. Fermentación de los fructanos del Agave tequilana Weber Azul por Zymomonas mobilis y Saccharomyces cerevisiae en la producción de bioetanol Fermentation of Agave tequilana Weber Azul fructans by Zymomonas mobilis and Sacchamomyces cerevisiae in the production of bioethanol

    OpenAIRE

    José L Montañez; Juan C Victoria; Rebeca Flores; María Á Vivar

    2011-01-01

    Fructanos contenidos en las bases de las hojas del agave fueron extraídos y utilizados como fuente de carbono a varias concentraciones para la producción de bioetanol. Se usaron dos microorganismos etanolgénicos: la levadura Saccharomyces cerevisiae CDBB-L-331 y la bacteria Zymomona mobilis CDBB-B-603. Las hojas del agave tequilero ( Agave tequilana Weber Azul) constituyen los residuos agrícolas del cultivo y a pesar de su alto contenido de azúcares reductores totales (ART) y a los grandes vo...

  3. Les patrimoines mobiliers scientifique et technique : spécificités de leur restauration, de leur conservation et de leur valorisation

    Directory of Open Access Journals (Sweden)

    Philippe Tomsin

    2007-10-01

    Full Text Available Le patrimoine mobilier scientifique et technique, de par ses matériaux et les pathologies particulières qu'il connaît, pose des problèmes spécifiques en matière de conservation et de restauration. L'auteur inventorie les aspects de cette problématique, y compris la question cruciale des lieux de conservation et de valorisation de ce patrimoine particulier. Il propose à la réflexion quelques règles déontologiques.The scientific and technical movable heritage, because of its materials and special pathologies, gives some specific problems of conservation and restoration. The author inventories the aspects of these problems, including the crucial question of the places of conservation and valorisation of this particular heritage. He proposes a thought about some deontological rules.

  4. Alcoholic fermentation of glucose and xylose by Pichia stipitis, Candida shehatae, Saccharomyces cerevisiae and Zymomonas mobilis: Oxygen requirement as a key factor

    Energy Technology Data Exchange (ETDEWEB)

    Laplace, J.M.; Delgenes, J.P.; Moletta, R. (Institut National de la Recherche Agronomique, 11 - Narbonne (France). Lab. de Biotechnologie de l' Environnement); Navarro, J.M. (Montpellier-2 Univ., 34 (France). Genie Biologique et Sciences des Aliments)

    1991-11-01

    To investigate simultaneous alcoholic fermentation of glucose and xylose derived from lignocellulosic material by separate or co-culture processes, the effect of oxygen transfer rate (OTR) on the fermentation of 50 g/l xylose by Pichia stipitis NRRL Y 7124 and Candida shehatae ATCC 22984, and the fermentation of 50 g/l glucose by Saccharomyces cerevisiae CBS 1200 and Zymomonas mobilis ATCC 10988 was carried out in batch cultures. The kinetic parameters of the xylose-fermenting yeasts were greatly dependent on the OTR. The optimum OTR values were found to be 3.9 and 1.75 mmol.l{sup -1}.h{sup -1} for C. shehatae and P. stipitis, respectively. By contrast the fermentative parameters of S. cerevisiae were poorly affected by the OTR range tested (0.0-3.5 mmol.l{sup -1}.h{sup -1}). Under these conditions the ethanol yields ranged from 0.41 g.g{sup -1} to 0.45 g.g{sup -1} and the specific ethanol productivity was around 0.70 g.g{sup -1}.h{sup -1}. Z. mobilis gave the highest fermentative performance under strictly anaerobic conditions (medium continually flushed with nitrogen): Under these conditions, the ethanol yield was 0.43 g.g{sup -1} and the average specific ethanol productivity was 2.3 g.g{sup -1}.h{sup -1}. Process considerations in relation to the effect of OTR on the fermentative performance of the tested strains are discussed. (orig.).

  5. Effect of the presence of initial ethanol on ethanol production in sugar cane juice fermented by Zymomonas mobilis Efeito da presença de etanol inicial na produção de etanol em caldo de cana-de-açúcar fermentado por Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    Marcia Sadae Tano

    2003-07-01

    Full Text Available Ethanol production in sugar cane juice in high initial sugar concentration, fermented by Z. mobilis in the presence and absence of ethanol, was evaluated. Ethanol production was low in both media. The presence of initial ethanol in the sugar cane juice reduced ethanol production by 48.8%, biomass production by 25.0% and the total sugar consumption by 28.3%. The presence of initial ethanol in the medium did not affect significantly levan production and biomass yield coefficient (g biomass/g sugar consumed.Foi avaliada a produção de etanol em caldo de cana-de-açúcar com alta concentração de açúcar inicial, fermentado por Z. mobilis, na presença e na ausência de etanol inicial. A produção de etanol nos dois meios foi baixa. A presença de etanol inicial no caldo de cana-de-açúcar causou uma redução de 48,8% na produção de etanol, de 25% na produção de biomassa e de 28,3% no consumo de açúcar total. A presença de etanol inicial ao meio não teve efeito significante para a produção de levana e no coeficiente de produtividade em biomassa (g biomassa/g açúcar consumido.

  6. Swimming Efficiency of Bacterium Escherichia Coli

    CERN Document Server

    Chattopadhyay, S; Wu, X L; Yeung, C; Chattopadhyay, Suddhashil; Moldovan, Radu; Yeung, Chuck

    2005-01-01

    We use in vivo measurements of swimming bacteria in an optical trap to determine fundamental properties of bacterial propulsion. In particular, we determine the propulsion matrix, which relates the angular velocity of the flagellum to the torques and forces propelling the bacterium. From the propulsion matrix dynamical properties such as forces, torques, swimming speed and power can be obtained from measurements of the angular velocity of the motor. We find significant heterogeneities among different individuals even though all bacteria started from a single colony. The propulsive efficiency, defined as the ratio of the propulsive power output to the rotary power input provided by the motors, is found to be 0.2%.

  7. Isolation of a Bacterium Strain Degraded Agar

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    One in 58 strains of bacteria isolated from the compost showed clear colonies after a few days of growth on the plates containing medium made of only agar and water.Water suspension contained only agar (2 and 8g·L -1 ) with two controls (normal saline,LB medium) was inoculated with the bacterium BR5-1 to see whether there was an increasement of the alive bacteria concentration after 48 h of the growth.The results showed that there was a significant rising of the alive bacteria concentration in the agar susp...

  8. Biodegradation of heavy oils by halophilic bacterium

    Institute of Scientific and Technical Information of China (English)

    Ruixia Hao; Anhuai Lu

    2009-01-01

    A halophilic bacterial strain TM-1 was isolated from the reservoir of the Shengli oil field in East China. Strain TM-1, which was found to be able to degrade crude oils, is a gram-positive non-motile bacterium with a coccus shape that can grow at temperatures of up to 58 ℃ and in 18% NaCl solution. Depending on the culture conditions, the organism may occur in tetrads. In addition, strain TM-1 pro-duced acid from glucose without gas formation and was catalase-negative. Furthermore, strain TM-I was found to be a facultative aer-obe capable of growth under anaerobic conditions. Moreover, it produced butylated hydroxytoluene, 1,2-benzenedicarboxylic acid-bis ester and dibutyl phthalate and could use different organic substrates. Laboratory studies indicated that strain TM-1 affected different heavy oils by degrading various components and by changing the chemical properties of the oils. In addition, growth of the bacterium in heavy oils resulted in the loss of aromatic hydrocarbons, resins and asphaltenes, and enrichment with light hydrocarbons and an overall redistribution of these hydrocarbons.

  9. Research Progress of Zymomonas mobilis on Biorefinery System%运动发酵单胞菌在生物炼制中的研究进展

    Institute of Scientific and Technical Information of China (English)

    何明雄; 吴波; 谭芙蓉; 王景丽; 税宗霞; 秦晗; 代立春; 胡启春

    2014-01-01

    Biorefinery technologies using lignocellulosic biomass as feedstock have become a hot topic and huge task in globle research and development,which are also an important goal of long-term biomass energy roadmap in both EU countries and the United States. However,the current overall level is still in pilot stage. China has abundant biomass resources, which has great potential in the production of biomass energy and bio-based chemicals,but also faces a lot of bottleneck problems to be solved in order to achieve commercial production. The lack of efficient fermentation strains simultaneously ferment cellulosic hydrolyzate, has become a key constraint in cellulosic biorefinery. Currently, Zymomonas mobilis has became a preferred host in cellulosic ethanol fermentation for its unique ED pathway. Z. mobilis also showed some advantages of higher specific rate of sugar uptake, etc.,which made it an ideal platform for commercial-scale production of desirable bio-products,such as sorbitol,gluconic acid, succinic acid and isobutanol. This paper reviewed the research history,molecular biology,strain improvement and its application in biorefinery system, and also put forwards that Z. mobilis could be considered as a noval important microbe platform of cellulosic biomass biorefinery system.%以木质纤维素生物质为原料的生物炼制技术已成为全球研发的热点和难点。欧盟国家和美国的中长期生物质能源发展路线图中均将木质纤维素生物炼制技术作为重要目标,但是目前整体水平尚处于中试阶段。我国的纤维素类生物质原料非常丰富,将其转化成燃料乙醇及生物基础化学品等具有较大的潜力,但当前要想实现商业化生产,还面临着很多瓶颈问题亟待解决。缺乏能够同时高效利用纤维素类水解物的发酵菌株,已成为纤维素生物质高效与高值转化的关键制约因素。运动发酵单胞菌是目前唯一一种通过ED途径兼性厌氧发酵

  10. Evaluation of supplementation of sucrose medium on the synthesis of Zymomonas mobilis bio-products - doi: 10.4025/actascibiolsci.v32i3.1519

    Directory of Open Access Journals (Sweden)

    Maria Antonia Pedrini Colabone Celligoi

    2010-09-01

    Full Text Available The effect of the variables pantothenic acid, yeast extract and sodium chloride, as well as the cell permeabilization technique, were investigated on the formation of levan, ethanol, sorbitol and biomass of Zymomonas mobilis, using a 24-1 fraction factorial design. Cell growth was determined by turbidimetry at 605 nm, relating it to a biomass with a dry weight calibration curve. Reducing sugars were quantified according to Somogyi and Nelson. Total sugars were quantified by the phenol-sulfuric acid method, sorbitol by HPLC and ethanol. The levan produced was precipitated by the addition of absolute ethanol and quantified in fructose units. In levan biosynthesis, the variable that had the largest contribution was cell condition. The results suggested that the factors that most affected biomass and ethanol formation were sodium chloride concentration and cell condition that affected negatively on production. For sorbitol, the variable that had a significant effect was permeabilization, which decreased its synthesis. Studies to amplify the range of established factors would be important.The effect of the variables pantothenic acid, yeast extract and sodium chloride, as well as the cell permeabilization technique, were investigated on the formation of levan, ethanol, sorbitol and biomass of Zymomonas mobilis, using a 24-1 fraction factorial design. Cell growth was determined by turbidimetry at 605 nm, relating it to a biomass with a dry weight calibration curve. Reducing sugars were quantified according to Somogyi and Nelson. Total sugars were quantified by the phenol-sulfuric acid method, sorbitol by HPLC and ethanol. The levan produced was precipitated by the addition of absolute ethanol and quantified in fructose units. In levan biosynthesis, the variable that had the largest contribution was cell condition. The results suggested that the factors that most affected biomass and ethanol formation were sodium chloride concentration and cell

  11. Fluctuation-Enhanced Sensing of Bacterium Odors

    CERN Document Server

    Chang, Hung-Chih; King, Maria D; Kwan, Chiman

    2009-01-01

    The goal of this paper is to explore the possibility to detect and identify bacteria by sensing their odor via fluctuation-enhanced sensing with commercial Taguchi sensors. The fluctuations of the electrical resistance during exposure to different bacterial odors, Escherichia coli and anthrax-surrogate Bacillus subtilis, have been measured and analyzed. In the present study, the simplest method, the measurement and analysis of power density spectra was used. The sensors were run in the normal heated and the sampling-and-hold working modes, respectively. The results indicate that Taguchi sensors used in these fluctuation-enhanced modes are effective tools of bacterium detection and identification even when they are utilizing only the power density spectrum of the stochastic sensor signal.

  12. Diffusion of magnetotactic bacterium in rotating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Cebers, A., E-mail: aceb@tesla.sal.l [Department of Physics, University of Latvia, Zellu 8, Ri-bar ga, LV-1002 (Latvia)

    2011-02-15

    Swimming trajectory of a magnetotactic bacterium in a rotating magnetic field is a circle. Random reversals of the direction of the bacterium motion induces a random walk of the curvature center of the trajectory. In assumption of the distribution of the switching events according to the Poisson process the diffusion coefficient is calculated in dependence on the frequency of the rotating field and the characteristic time between the switching events. It is confirmed by the numerical simulation of the random walk of the bacterium in the rotating magnetic field. - Research highlights: Random switching of the flagella leads to diffusion of a bacterium in the field. Mean square displacement of the curvature center is proportional to time. Diffusion coefficient depends on the period of a rotating field. At zero frequency diffusion coefficient is the same as for a tumbling bacterium.

  13. The chemical formula of a magnetotactic bacterium.

    Science.gov (United States)

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life.

  14. Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis using response surface methodology and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Bodhisatta; Shekhawat, Mitali; Srivastava, Pradeep [Banaras Hindu Univ., Varanasi (India). School of Biochemical Engineering; Rathore, Ankita [Nizam College, Hyderabad (India). Dept. of Biotechnology; Srivastava, Saurav [National Institute of Technology, Durgapur (India). Dept. of Biotechnology

    2011-04-15

    Ethanol is a potential energy source and its production from renewable biomass has gained lot of popularity. There has been worldwide research to produce ethanol from regional inexpensive substrates. The present study deals with the optimization of process parameters (viz. temperature, pH, initial total reducing sugar (TRS) concentration in sugar cane molasses and fermentation time) for ethanol production from sugar cane molasses by Zymomonas mobilis using Box-Behnken experimental design and genetic algorithm (GA). An empirical model was developed through response surface methodology to analyze the effects of the process parameters on ethanol production. The data obtained after performing the experiments based on statistical design was utilized for regression analysis and analysis of variance studies. The regression equation obtained after regression analysis was used as a fitness function for the genetic algorithm. The GA optimization technique predicted a maximum ethanol yield of 59.59 g/L at temperature 31 C, pH 5.13, initial TRS concentration 216 g/L and fermentation time 44 h. The maximum experimental ethanol yield obtained after applying GA was 58.4 g/L, which was in close agreement with the predicted value. (orig.)

  15. Estudio comparativo de la generación de CO2 en fermentaciones con células libres e inmovilizadas de zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    Luis Alfonso Caicedo M.

    2011-06-01

    Full Text Available La bacteria Zymomonas mobilis es estudiada actualmente como agente de la fermentación alcohólica gracias a las ventajas que presenta en relación con las levaduras, tales como, su alto factor de conversión sustrato a producto y la bala producción de células, entre otras. La inmovilización de microorganismos es una técnica que permite altas productividades y menores tiempos de fermentación. EI presente trabajo hace un estudio comparativo de la generación de C02, como medida indirecta de la formación de etanol en la fermentación alcohólica, cuando se emplean células libres e inmovilizadas en alginato de calcio y en procesos por lotes. Los resultados muestran que en las fermentaciones con células libres y en la primera fermentación con células inmovilizadas la fase lag puede llegar a 24 horas, pero la reutilización de las células inmovilizadas disminuye la duración de la fase lag llegando a valores de cero. Un periodo largo de almacenamiento, a balas temperaturas, puede llevar a una inactivación de las células aumentando ligeramente el tiempo de adaptación.

  16. AutoCAD 3D pour l'architecture et le design : conception d'une maison et de son mobilier

    CERN Document Server

    Riccio, Michel

    2010-01-01

    Module 3D d'AutoCAD, logiciel leader de dessin assisté par ordinateur, AutoCAD 3D est l'outil indispensable des architectes qui souhaitent présenter leurs travaux en trois dimensions. Voici donc un livre très pédagogique qui leur fera découvrir ses principales fonctionnalités (versions 2006 à 2010) à travers un projet de conception de maison contemporaine. Riche de 700 plans, schémas et dessins, il explique quels outils employer pour modéliser les façades d'une villa, sa piscine et sa terrasse, ainsi que son architecture intérieure et son mobilier. Dès les premières pages, le lecteur se retrouve ainsi plongé dans la pratique, voyant se construire au fil des 17 ateliers un édifice tridimensionnel complexe, qu'il aura la satisfaction d'avoir créé lui-même. A qui s'adresse ce livre ? Aux bureaux d'architectes qui souhaitent présenter leurs projets en 3D ; À tous les étudiants en écoles d'architecture ; Aux utilisateurs 2D d'AutoCAD qui désirent connaître les fonctions 3D de ce logiciel.

  17. Analysis of experimental errors in bioprocesses. 1. Production of lactobionic acid and sorbitol using the GFOR (glucose-fructose oxidoreductase) enzyme from permeabilized cells of Zymomonas mobilis.

    Science.gov (United States)

    Severo, João B; Pinto, José C; Ferraz, Helen C; Alves, Tito L M

    2011-09-01

    The proper determination of experimental errors in bioprocesses can be very important because experimental errors can exert a major impact on the analysis of experimental results. Despite this, the effect of experimental errors on the analysis of bioprocess data has been largely overlooked in the literature. For this reason, we performed detailed statistical analyses of experimental errors obtained during the production of lactobionic acid and sorbitol in a system utilizing as catalyst the GFOR (glucose-fructose oxidoreductase) enzyme from permeabilized cells of the bacteria Zymomonas mobilis. The magnitude of the experimental errors thus obtained were then correlated with the process operation conditions and with the composition of the culture media used for bacterial growth. It is shown that experimental errors can depend very significantly on the operation conditions and affect the interpretation of available experimental data. More specifically, in this study, experimental errors depended on the nutritional supplements added to the cultivation medium, the inoculation process, and the reaction time, which may be of fundamental importance for actual process development. The results obtained also indicate, for the first time, that GFOR activity can be affected by the composition of the medium in which cells are cultivated.

  18. Optimization of process parameters for ethanol production from sugar cane molasses by Zymomonas mobilis using response surface methodology and genetic algorithm.

    Science.gov (United States)

    Maiti, Bodhisatta; Rathore, Ankita; Srivastava, Saurav; Shekhawat, Mitali; Srivastava, Pradeep

    2011-04-01

    Ethanol is a potential energy source and its production from renewable biomass has gained lot of popularity. There has been worldwide research to produce ethanol from regional inexpensive substrates. The present study deals with the optimization of process parameters (viz. temperature, pH, initial total reducing sugar (TRS) concentration in sugar cane molasses and fermentation time) for ethanol production from sugar cane molasses by Zymomonas mobilis using Box-Behnken experimental design and genetic algorithm (GA). An empirical model was developed through response surface methodology to analyze the effects of the process parameters on ethanol production. The data obtained after performing the experiments based on statistical design was utilized for regression analysis and analysis of variance studies. The regression equation obtained after regression analysis was used as a fitness function for the genetic algorithm. The GA optimization technique predicted a maximum ethanol yield of 59.59 g/L at temperature 31 °C, pH 5.13, initial TRS concentration 216 g/L and fermentation time 44 h. The maximum experimental ethanol yield obtained after applying GA was 58.4 g/L, which was in close agreement with the predicted value.

  19. Experimental evolution of aging in a bacterium

    Directory of Open Access Journals (Sweden)

    Stearns Stephen C

    2007-07-01

    Full Text Available Abstract Background Aging refers to a decline in reproduction and survival with increasing age. According to evolutionary theory, aging evolves because selection late in life is weak and mutations exist whose deleterious effects manifest only late in life. Whether the assumptions behind this theory are fulfilled in all organisms, and whether all organisms age, has not been clear. We tested the generality of this theory by experimental evolution with Caulobacter crescentus, a bacterium whose asymmetric division allows mother and daughter to be distinguished. Results We evolved three populations for 2000 generations in the laboratory under conditions where selection was strong early in life, but very weak later in life. All populations evolved faster growth rates, mostly by decreasing the age at first division. Evolutionary changes in aging were inconsistent. The predominant response was the unexpected evolution of slower aging, revealing the limits of theoretical predictions if mutations have unanticipated phenotypic effects. However, we also observed the spread of a mutation causing earlier aging of mothers whose negative effect was reset in the daughters. Conclusion Our results confirm that late-acting deleterious mutations do occur in bacteria and that they can invade populations when selection late in life is weak. They suggest that very few organisms – perhaps none- can avoid the accumulation of such mutations over evolutionary time, and thus that aging is probably a fundamental property of all cellular organisms.

  20. Josep Goday e o mobiliário escolar espanhol na primeira metade do século 20 - Josep Goday and spanish school furniture during the first half of the 20th century

    Directory of Open Access Journals (Sweden)

    Jauri dos Santos Sá, Brasil

    2015-05-01

    Full Text Available Neste artigo estão sistematizadas reflexões sobre a história do mobiliário escolar espanhol, com foco nas propostas do arquiteto Josep Goday i Casals. Inserido no campo de estudo do patrimônio educativo, busca-se enxergar o mobiliário escolar como autêntica fonte de investigação da cultura material escolar. A base metodológica da análise situa-se no campo da pesquisa exploratória e o procedimento assume a forma de pesquisa bibliográfica. A coleta de dados realizou-se no acervo do Centro de Educação Infantil e Primária Ramon Llull e na obra Josep Goday Casals: arquitectura escolar a Barcelona dela Mancomunitata la república (2008. Nas conclusões, enfatiza-se o papel desempenhado pelo arquiteto como protagonista na configuração de um mobiliário que procura dignificar a sala aula para além dos aspectos arquitetônicos e estéticos.Palavras-chave: cultura material escolar, arquitetura escolar, mobiliário escolar.JOSEP GODAY AND SPANISH SCHOOL FURNITURE DURING THE FIRST HALF OF THE 20TH CENTURY AbstractThe present paper presents some systematic reflections on the history of Spanish school furniture, focusing on the proposals idealized by architect Josep Goday i Casals. Inserted in the field of study of educational patrimony, it seeks to see school furniture as an authentic source to investigate the material culture of the school. The methodological basis of the analysis is situated in the field of exploratory research, and is done in the form of research on literature. Data is obtained from the collection of the Ramon Llull Center of Infant and Elementary Education (Centro de Educação Infantil e Primária Ramon Llull and in the work Josep Goday Casals: arquitectura escolar a Barcelona dela Mancomunitata la república (2008. In the conclusions the role played by architect Goday is emphasized, as a protagonist in the configuration of furniture that tries to dignify the classroom, besides the architectural and esthetic aspects

  1. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  2. Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST and Zymomonas mobilis AX101 for cellulosic ethanol production

    Directory of Open Access Journals (Sweden)

    Dale Bruce E

    2010-05-01

    Full Text Available Abstract Background Fermentations using Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST, and Zymomonas mobilis AX101 are compared side-by-side on corn steep liquor (CSL media and the water extract and enzymatic hydrolysate from ammonia fiber expansion (AFEX-pretreated corn stover. Results The three ethanologens are able produce ethanol from a CSL-supplemented co-fermentation at a metabolic yield, final concentration and rate greater than 0.42 g/g consumed sugars, 40 g/L and 0.7 g/L/h (0-48 h, respectively. Xylose-only fermentation of the tested ethanologenic bacteria are five to eight times faster than 424A(LNH-ST in the CSL fermentation. All tested strains grow and co-ferment sugars at 15% w/v solids loading equivalent of ammonia fiber explosion (AFEX-pretreated corn stover water extract. However, both KO11 and 424A(LNH-ST exhibit higher growth robustness than AX101. In 18% w/w solids loading lignocellulosic hydrolysate from AFEX pretreatment, complete glucose fermentations can be achieved at a rate greater than 0.77 g/L/h. In contrast to results from fermentation in CSL, S. cerevisiae 424A(LNH-ST consumed xylose at the greatest extent and rate in the hydrolysate compared to the bacteria tested. Conclusions Our results confirm that glucose fermentations among the tested strains are effective even at high solids loading (18% by weight. However, xylose consumption in the lignocellulosic hydrolysate is the major bottleneck affecting overall yield, titer or rate of the process. In comparison, Saccharomyces cerevisiae 424A(LNH-ST is the most relevant strains for industrial production for its ability to ferment both glucose and xylose from undetoxified and unsupplemented hydrolysate from AFEX-pretreated corn stover at high yield.

  3. Pangenome Evolution in the Marine Bacterium Alteromonas.

    Science.gov (United States)

    López-Pérez, Mario; Rodriguez-Valera, Francisco

    2016-06-03

    We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7-83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9-5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed.

  4. Influence of carbon source and the fermentation process on levan production by Zymomonas mobilis analyzed by the surface response method Influência da fonte de carbono e do processo fermentativo na produção de levana por Zymomonas mobilis analisada pela metodologia de superfície de resposta

    Directory of Open Access Journals (Sweden)

    Raquel Renan Jorge Borsari

    2006-09-01

    Full Text Available The aim of this study is to assess sugar cane juice and sucrose as substrates, the batch and fed batch processes and their interaction in the levan production using a complete factorial design. Zymomonas mobilis was cultivated in different sugar cane juice and sucrose concentrations in two fermentation processes at 25 °C for 20 h. A complete factorial design (2³ was used to analyze the effects of the type and concentration of the substrate, as well as the batch and fed batch processes. A complete second factorial design (2² was used to observe the importance of sugar cane juice. The results indicated that the batch process improved the levan production reaching 40.14 g/L. The addition of sugar cane juice was not statistically significant for levan formation, however sugar cane juice stimulated biomass, sorbitol and ethanol production. The best medium for levan production was 150 g/L sucrose in batch.O presente estudo avaliou caldo de cana de açúcar e sacarose como substratos e os processos batelada e batelada alimentada e suas interações na produção de levana. Zymomonas mobilis foi cultivada em diferentes concentrações de caldo de cana de açúcar e sacarose nos dois processos fermentativos a 25 °C por 20 h. Foi utilizado um delineamento fatorial completo (23 para analisar os efeitos do tipo e concentração de substratos e processos batelada e batelada alimentada. Um segundo delineamento fatorial completo (22 foi usado para confirmar a importância do caldo de cana de açúcar. Os resultados indicam que o processo batelada foi o melhor para a produção de levana, atingindo 40,14 g/L em 150 g/L de sacarose. A adição de caldo de cana de açúcar não foi estatisticamente significativa para formação de levana, porém o caldo estimulou a produção de biomassa, sorbitol e etanol.

  5. Evaluation of supplementation of sucrose medium on the synthesis of Zymomonas mobilis bio-products = Avaliação da suplementação do meio de sacarose na formação de bio– produtos por Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    Raquel Renan Jorge Borsari

    2010-07-01

    Full Text Available The effect of the variables pantothenic acid, yeast extract and sodiumchloride, as well as the cell permeabilization technique, were investigated on the formation of levan, ethanol, sorbitol and biomass of Zymomonas mobilis, using a 24-1 fraction factorial design. Cell growth was determined by turbidimetry at 605 nm, relating it to a biomass with a dry weight calibration curve. Reducing sugars were quantified according to Somogyi and Nelson. Total sugars were quantified by the phenol-sulfuric acid method, sorbitol by HPLC and ethanol. The levan produced was precipitated by the addition of absolute ethanol and quantified in fructose units. In levan biosynthesis, the variable that had the largest contribution was cell condition. The results suggested that the factors that most affected biomass and ethanol formation were sodium chloride concentration and cell condition that affected negatively on production. For sorbitol, the variable that had a significant effect was permeabilization, which decreased its synthesis. Studies to amplify the range of established factors would be important.A influência das variáveis: ácido pantotênico, extrato de levedura, cloreto de sódio, e a técnica de permeabilização celular foram investigadas na formação de levana, sorbitol, etanol e biomassa de Zymomonas mobilis utilizando um delineamento estatístico fatorial fracionado 24-1. A biomassa foi determinada por turbidimetria, Os açúcares redutores foram quantificados por Somogy e Nelson, açúcartotal por Fenol Sulfúrico, sorbitol por HPLC e etanol por micro-destilação. A levana produzida foi precipitada com etanol absoluto e determinada como unidade de frutose. Na biossíntese de levana, a variável que mais contribuiu foi a condição celular. Os resultadossugerem que, para a formação da biomassa e etanol, os fatores que mais interferiram foram a concentração de cloreto de sódio e a condição celular que influencia negativamente a produ

  6. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  7. The physiology of the filamentous bacterium Microthrix parvicella

    NARCIS (Netherlands)

    Slijkhuis, H.

    1983-01-01

    A study has been made of the physiology of Microthrix parvicella. This filamentous bacterium often causes poor settleability of activated sludge in oxidation ditches supplied with domestic sewage. The organism was found to utilize only long chain fatty acids (preferably in esterified form) as carbon

  8. Genome of a mosquito-killing bacterium decoded

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Researchers with the CAS Wuhan Institute of Virology (WHIOV) recently completed the genome sequencing of a mosquitocidal bacterium Bacillus shaericus C3-41. The feat, first of its kind in China, is expected to further promote the bio-control studies of mosquitoes.

  9. Antagonistic bioactivity of an endophytic bacterium H-6

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... 2Yichun University, Yichun, Jiangxi 336000, People's Republic of China. Accepted 5 ... Mountain, China. ... endophytic bacteria is a way of controlling plant diseases ... the endophytic bacterium strain H-6 was identified through ... liquid medium at 28°C for 3 - 5 days with constant shaking. ..... interactions.

  10. The physiology of the filamentous bacterium Microthrix parvicella

    NARCIS (Netherlands)

    Slijkhuis, H.

    1983-01-01

    A study has been made of the physiology of Microthrix parvicella. This filamentous bacterium often causes poor settleability of activated sludge in oxidation ditches supplied with domestic sewage. The organism was found to utilize only long chain fatty acids (preferably in

  11. The Construction and Characteristic Evaluation of Xylose-utilizingRecombinant Zymomonas mobilis Strain%重组运动发酵单胞菌的构建及木糖利用特性研究

    Institute of Scientific and Technical Information of China (English)

    张颖; 马瑞强; 洪浩舟; 陆伟; 张维; 林敏; 陈明

    2009-01-01

    Two poerons encoding xylose assimilation and pentose phosphate pathway enzymes from Escherichia coli were constructed and transformed into Z. Mobilis. The recombination strain fermentation xylose to ethanol was achieved through a combination of the pentose phosphate pathway and Entner-Doudoroff pathways. PZM can utilize glucose and xylose. The productivity of ethanol from glucose was 81.2% of theory value and 63.1% from xylose.%将大肠杆菌(Escherichia coli)木糖代谢的关键酶基因.引入到运动发酵单胞菌中,获得能利用木糖发酵生产乙醇的重组工程菌株PZM.混合糖发酵过程中,重组菌利用葡萄糖和木糖生成乙醇的效率分别达到理论值的81.2%和63.1%.

  12. Marinobacter nitratireducens sp. nov., a halophilic and lipolytic bacterium isolated from coastal surface sea water

    Digital Repository Service at National Institute of Oceanography (India)

    Bhumika, V.; Ravinder, K.; Korpole, S.; Srinivas, T.N.R.; AnilKumar, P.

    GmbH, Germany (Marinobacter hydrocarbonoclasticus DSM 8798T). Strain AK21T was characterized simultaneously with M. mobilis JCM 15154T, M. xestospongiae JCM 17469T and M. hydrocarbonoclasticus DSM 8798T. Cell morphology studies of the strain AK21T... the reference strains by the absence or low or high amount of C18:1 ω7c, summed feature 3, C18:1 ω9c and C16:1 ω9c (Table 2). The low and high amounts of fatty acids summed feature 3, C18:1 ω9c and C16:1 ω9c were comparable with M. hydrocarbonoclasticus DSM...

  13. Le comportement symbolique dans la Préhistoire de la Roumanie: art mobilier au Paléolithique supérieur en Moldavie

    Directory of Open Access Journals (Sweden)

    Corneliu BELDIMAN

    2009-12-01

    Full Text Available RÉSUMÉ: Les approches récentes des collections anciennes aussi bien que les découvertes des derniers décennies ont permis des discussions détaillés (concernant le répertoire, la typologie, la technologie, les dates radiométriques, etc. sur les rares documents d’art mobilier (parure, objets décorés et dites “non utilitaires” appartenant au Paléolithique supérieur (Gravettien oriental, autour 23-13 kya BP et provenant de la Moldavie roumaine –région Est du pays, comprise entre les Carpates et la rivière Prut–. Les 29 artefacts signalés ont été découvertes en 6 sites de plein aire et dans un site en grotte. Les types identifiés sont: bâtons percés sur métatarse de cheval et sur bois de renne; pendeloques lithiques et en os; rondelle en bois de renne; dents percées; objets lithiques en quartzite et graphite; objets gravés et encochés lithiques et en os; harpon décoré; fragment de défense de mammouth ayant des traces de débitage et façonnage; coquilles fossiles appartenant à l’espèce Congeria?; coquilles percées appartenant à l’espèce Succinea oblonga? ou Lithoglyphus naticoides? La plupart des artéfacts ont une signification spéciale pour le phénomène de l’art et de la technologie préhistorique de la région envisagée: il s’agit des pendeloques de Mitoc, dép. de Botosani et de fragment d’os gravé d’une représentation de patte d’animal? de Piatra Neamt, dép. de Neamt. Une autre pièce exceptionnelle c’est le fragment de défense de mammouth de Lespezi, dép. de Bacau portant sur l’extrémité proximale des traces de débitage par entaillage et probablement par sciage à la ficelle; cela peut être le plus ancienne situation de cette sorte signalée dans cette partie de l’Europe. Tenant compte du fait que les objets en ivoire de mammouth sont apparitions extrêmement rares dans le Paléolithique supérieur de la Roumanie et les analogies on peut envisager la provenance de cet

  14. Rock Phosphate Solubilization Mechanisms of One Fungus and One Bacterium

    Institute of Scientific and Technical Information of China (English)

    LIN Qi-mei; ZHAO Xiao-rong; ZHAO Zi-juan; LI Bao-guo

    2002-01-01

    Many microorganisms can dissolve the insoluble phosphates like apatite. However, the mechanisms are still not clear. This study was an attempt to investigate the mechanisms of rock phosphate solubilization by an Aspergillus 2TCiF2 and an Arthrobacter1TCRi7. The results indicated that the fungus produced a large amount of organic acids, mainly oxalic acid. The total quantity of the organic acids produced by the fungus was 550 times higher than that by the bacterium. Different organic acids had completely different capacities to solubilize the rock. Oxalic acid and citric acid had stronger capacity to dissolve the rock than malic acid, tartaric acid, lactic acid, acetic acid, malonic acid and succinic acid. The fungus solubilized the rock through excreting both proton and organic acids. The rock solubilization of the bacterium depended on only proton.

  15. A Streamlined Strategy for Biohydrogen Production with an Alkaliphilic Bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A [ORNL; Wall, Judy D. [University of Missouri; Mormile, Dr. Melanie R. [Missouri University of Science and Technology; Begemann, Matthew B [University of Wisconsin, Madison

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, biohydrogen production remains inefficient and heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium strain sapolanicus, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. sapolanicus ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen and acetate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  16. Adhesion and Survival Tools of the Bacterium Deinococcus geothermalis

    OpenAIRE

    Liedert, Christina

    2014-01-01

    The known natural habitats of Deinococcus geothermalis are geothermal springs and deep ocean subsurfaces. The bacterium has also found its way to manmade environments, including paper machines and drinking water distribution systems, from which it is very difficult to remove due to its resistance towards industrial washing procedures, dehydration and even high doses of ionizing radiation. D. geothermalis attaches tightly on industrial, even microbially repellent, surfaces initiating slim...

  17. Biosorption of heavy metals by a marine bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Anita [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India); Mody, Kalpana [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)]. E-mail: khmody@csmcri.org; Jha, Bhavanath [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)

    2005-03-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here.

  18. The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas viridis

    Science.gov (United States)

    Deisenhofer, Johann; Michel, Hartmut

    1989-09-01

    The history and methods of membrane protein crystallization are described. The solution of the structure of the photosynthetic reaction center from the bacterium Rhodopseudomonas viridis is described, and the structure of this membrane protein complex is correlated with its function as a light-driven electron pump across the photosynthetic membrane. Conclusions about the structure of the photosystem II reaction center from plants are drawn, and aspects of membrane protein structure are discussed.

  19. Initiation of chromosomal replication in predatory bacterium Bdellovibrio bacteriovorus

    Directory of Open Access Journals (Sweden)

    Lukasz Makowski

    2016-11-01

    Full Text Available Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase and replicating cells (the intracellular-growth phase. The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication – DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box (5’-NN(A/TTCCACA-3’. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus. We compared the architecture of the DnaA–oriC complexes (orisomes in homologous (oriC and DnaA from B. bacteriovorus and heterologous (BdoriC and DnaA from prey, E. coli or P. aeruginosa systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium.

  20. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    OpenAIRE

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and c...

  1. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a

  2. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a re

  3. Influence of plaque-forming bacterium, Rhodobacteraceae sp. on the growth of Chlorella vulgaris.

    Science.gov (United States)

    Chen, Zhangran; Zhang, Jingyan; Lei, Xueqian; Zhang, Bangzhou; Cai, Guanjing; Zhang, Huajun; Li, Yi; Zheng, Wei; Tian, Yun; Xu, Hong; Zheng, Tianling

    2014-10-01

    Experiments were conducted to find out the molecular features, infection process of a special alga plaque-forming microorganism and its potential influence on the biomass of Chlorella vulgaris during the infection process. Direct contact between the algal cell and the bacterium may be the primary steps needed for the bacterium to lyse the alga. Addition of C. vulgaris cells into f/2 medium allowed us obtain the object bacterium. The 16S rRNA gene sequence comparisons results showed that the plaque-forming bacterium kept the closest relationship with Labrenzia aggregata IAM 12614(T) at 98.90%. The existence of the bacterium could influence both the dry weight and lipid content of C. vulgaris. This study demonstrated that direct cell wall disruption of C. vulgaris by the bacterium would be a potentially effective method to utilize the biomass of microalgae.

  4. Research Progress and Perspectives of Nitrogen Fixing Bacterium, Gluconacetobacter diazotrophicus, in Monocot Plants

    Directory of Open Access Journals (Sweden)

    N. Eskin

    2014-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a nitrogen fixing bacterium originally found in monocotyledon sugarcane plants in which the bacterium actively fixes atmosphere nitrogen and provides significant amounts of nitrogen to plants. This bacterium mainly colonizes intercellular spaces within the roots and stems of plants and does not require the formation of the complex root organ like nodule. The bacterium is less plant/crop specific and indeed G. diazotrophicus has been found in a number of unrelated plant species. Importantly, as the bacterium was of monocot plant origin, there exists a possibility that the nitrogen fixation feature of the bacterium may be used in many other monocot crops. This paper reviews and updates the research progress of G. diazotrophicus for the past 25 years but focuses on the recent research development.

  5. Liver abscess associated with an oral flora bacterium Streptococcus anginosus

    Directory of Open Access Journals (Sweden)

    Hava Yılmaz

    2012-03-01

    Full Text Available Viridans group Streptococcus, a bacterium of the oral flora has a low-virulence and rarely causes liver abscess. A 40-yearoldmale patient was admitted to the hospital complaining of high fever and malaise. A physical examination revealedpoor oral hygiene; there were caries on many teeth, and he had hepatomegaly. A hepatic abscess was identified inhis abdominal tomography. Streptococcus anginosus was isolated from the drainage material, and the bile ducts werenormal in his MRI cholangiography. An immunocompetent case of liver abscess caused by Streptococcus anginosusoriginated most probably from oral flora is presented here. J Microbiol Infect Dis 2012; 2(1:33-35

  6. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  7. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  8. Identification of phenolyl cobamide from the homoacetogenic bacterium Sporomusa ovata.

    Science.gov (United States)

    Stupperich, E; Eisinger, H J; Kräutler, B

    1989-12-22

    Phenolyl cobamide was isolated from cyanide extractions of the anaerobic eubacterium Sporomusa ovata. The proposed corrinoid structure [Co alpha,Co beta-(monocyano,monoaquo)-phenolyl cobamide] has been deduced from 1H NMR, fast-atom-bombardment mass spectroscopy and ultraviolet/visible spectroscopy data. The complete corrinoid resembled p-cresolyl cobamide [Co alpha,Co beta-(monocyano,monoaquo)-p-cresolyl cobamide], which recently has been obtained from cyanide extractions of the same bacterium. The structures and chemical properties of both cobamides with uncoordinated nucleotides differed significantly from those of vitamin B12 [Co alpha-[alpha-(5,6-dimethylbenzimidazolyl)]-Co beta-cyanocobamide]. Sporomusa synthesized coenzymes of phenolyl cobamide and p-cresolyl cobamide in considerable amounts of 400 nmol/g and 1700 nmol/g dry cells, respectively. More than 90% of the complete corrinoid pool of the homoacetogenic bacterium consisted of these two corrinoids, indicating that they are physiologically important coenzymes of the bacterial metabolism.

  9. Molybdate Reduction to Molybdenum Blue by an Antarctic Bacterium

    Directory of Open Access Journals (Sweden)

    S. A. Ahmad

    2013-01-01

    Full Text Available A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo6+ to molybdenum blue (Mo-blue. Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries.

  10. Molybdate reduction to molybdenum blue by an Antarctic bacterium.

    Science.gov (United States)

    Ahmad, S A; Shukor, M Y; Shamaan, N A; Mac Cormack, W P; Syed, M A

    2013-01-01

    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo⁶⁺ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries.

  11. Pathogenesis of helicobacter pylori infection: Bacterium and host relationship

    Directory of Open Access Journals (Sweden)

    Sokić-Milutinović Aleksandra

    2004-01-01

    Full Text Available Helicobacter pylori (H. pylori colonizes the gastric mucosa of a half of the mankind. Duodenal ulcer is found in 15-25%, t gastric ulcer in 13%, while gastric adenocarcinoma develops in 1% of all infected individuals. Pathogenesis of H. pylori infection is related to the virulence factors of the bacterium, environmental (dietary habits, hygiene, stress and host factors (age, sex, blood type. Colonization of the gastric mucosa is related to the motility of the bacterium, presence of lipopolysacharide (LPS and various bacterial enzymes. Gastric mucosal injury is the result of H. pylori LPS, vacuolization cytotoxin (vacA, cytotoxin associated protein (cagA, heat shock proteins and factors responsible for neutrophil chemotaxis and activity. H. pylori colonizes the gastric mucosa and zones of ectopic gastric epithelium. H. pylori infection is transmitted via oral-oral, fecal-oral and iatrogenic way (during endoscopy. Higher prevalence of the infection is associated with lower socioeconomic level, lack of drinking water, and living in a community. Acute H. pylori gastritis is superficial pangastritis progressing into the chronic phase after 7-10 days. Gastric mucosal atrophy and intestinal metaplasia can develop during the course of H. pylori infection. Clearly defined factors that influence the outcome of H. pylori infection include bacterial strain, distribution of gastritis, acid secretion and gastric mucosal atrophy.

  12. Population Structure of the Fish-Pathogenic Bacterium Flavobacterium psychrophilum▿

    Science.gov (United States)

    Nicolas, Pierre; Mondot, Stanislas; Achaz, Guillaume; Bouchenot, Catherine; Bernardet, Jean-François; Duchaud, Eric

    2008-01-01

    Flavobacterium psychrophilum is currently one of the main bacterial pathogens hampering the productivity of salmonid farming worldwide, and its control mainly relies on antibiotic treatments. To better understand the population structure of this bacterium and its mode of evolution, we have examined the nucleotide polymorphisms at 11 protein-coding loci of the core genome in a set of 50 isolates. These isolates were selected to represent the broadest possible diversity, originating from 10 different host fish species and four continents. The nucleotide diversity between pairs of sequences amounted to fewer than four differences per kilobase on average, corresponding to a particularly low level of diversity, possibly indicative of a small effective-population size. The recombination rate, however, seemed remarkably high, and as a consequence, most of the isolates harbored unique combinations of alleles (33 distinct sequence types were resolved). The analysis also showed the existence of several clonal complexes with worldwide geographic distribution but marked association with particular fish species. Such an association could reflect preferential routes of transmission and/or adaptive niche specialization. The analysis provided no clues that the initial range of the bacterium was originally limited to North America. Instead, the historical record of the expansion of the pathogen may reflect the spread of a few clonal complexes. As a resource for future epidemiological surveys, a multilocus sequence typing website based on seven highly informative loci is available. PMID:18424537

  13. Mobilie sociālie tīkli kā digitālā mārketinga rīki: Vine, Snapchat un Tinder

    OpenAIRE

    Kostikova, Anastasija

    2016-01-01

    Bakalaura darba “Mobilie sociālie tīkli kā digitālā mārketinga rīki: Vine, Snapchat un Tinder” mērķis ir noskaidrot vai un kā tīkli Vine, Snapchat un Tinder tiek izmantoti kā digitālā mārketinga rīki globālā un lokālā praksē. Teorētiskajā darba daļā ir iekļauta informācija par mārketingu un digitālo mārketingu kā jauno nozares virzienu, sociālajiem medijiem un mobilajiem sociālajiem tīkliem. Pētījumā izmantota gadījuma analīze, kontentanalīze un daļēji strukturētās intervijas, lai iegūtu inf...

  14. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    Science.gov (United States)

    Sparks, N. H. C.; Mann, S.; Bazylinski, D. A.; Lovley, D. R.; Jannasch, H. W.; Frankel, R. B.

    1990-04-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo¨ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 × 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of 110 faces which are capped and truncated by 111 end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization.

  15. Roseomonas gilardii subsp rosea, a pink bacterium associated with bacteremia: the first case in Thailand.

    Science.gov (United States)

    Srifuengfung, Somporn; Tharavichitkul, Prasit; Pumprueg, Satchana; Tribuddharat, Chanwit

    2007-09-01

    Roseomonas is a pink-pigmented, non-fermentative, gram-negative coccobacillus bacterium. Human infections caused by Roseomonas are very rare. We report the first case of bacteremia associated with Roseomonas gilardii subsp rosea in Thailand. The bacterium was isolated from blood culture and identified by cellular morphology, characteristics of colonies on blood agar, extensive biochemical tests and 16S ribosomal DNA sequencing.

  16. Dense populations of a giant sulfur bacterium in Namibian shelf sediments

    DEFF Research Database (Denmark)

    Schulz, HN; Brinkhoff, T.; Ferdelman, TG

    1999-01-01

    A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA seq...

  17. Genome Sequence of the Mycorrhizal Helper Bacterium Pseudomonas fluorescens BBc6R8

    OpenAIRE

    2014-01-01

    We report the draft genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens strain BBc6R8. This is the first genome of a mycorrhizal helper bacterium. The draft genome contains 6,952,353 bp and is predicted to encode 6,317 open reading frames. Comparative genomic analyses will help to identify helper traits.

  18. Genome Sequence of the Mycorrhizal Helper Bacterium Pseudomonas fluorescens BBc6R8.

    Science.gov (United States)

    Deveau, A; Gross, H; Morin, E; Karpinets, T; Utturkar, S; Mehnaz, S; Martin, F; Frey-Klett, P; Labbé, J

    2014-01-09

    We report the draft genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens strain BBc6R8. This is the first genome of a mycorrhizal helper bacterium. The draft genome contains 6,952,353 bp and is predicted to encode 6,317 open reading frames. Comparative genomic analyses will help to identify helper traits.

  19. Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Yasuo; Ishimi, Katsuhiro [Department of General Education, College of Science and Technology, Nihon University, Narashinodai, Chiba 274-8501 (Japan); Tokumoto, Masaru; Aihara, Yasuyuki; Oku, Masayo; Kohno, Hideki [Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Izumi-cho, Chiba 275-8575 (Japan); Wakayama, Tatsuki; Miyake, Jun [Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Nakoji, Amagasaki, Hyogo 661-0974 (Japan); Tomiyama, Masamitsu [Genetic Diversity Department, National Institute of Agrobiological Science, Tsukuba, Ibaraki 305-8602 (Japan)

    2006-09-15

    Hydrogen production with glucose by using co-immobilized cultures of a lactic acid bacterium, Lactobacillus delbrueckii NBRC13953, and a photosynthetic bacterium, Rhodobacter sphaeroides RV, in agar gels was studied. Glucose was converted to hydrogen gas in a yield of 7.1mol of hydrogen per mole of glucose at a maximum under illuminated conditions. (author)

  20. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene

    Energy Technology Data Exchange (ETDEWEB)

    Maymo-Gatell, X.; Chien, Yueh-tyng; Zinder, S.H. [Cornell Univ., Ithaca, NY (United States)] [and others

    1997-06-06

    Tetrachloroethene is a prominent groundwater pollutant that can be reductively dechlorinated by mixed anaerobic microbial populations to the nontoxic product ethene. Strain 195, a coccoid bacterium that dechlorinates tetrachlorethene to ethene, was isolated and characterized. Growth of strain 195 with H{sub 2} and tetrachloroethene as the electron donor and acceptor pair required extracts from mixed microbial cultures. Growth of strain 195 was resistant to ampicillin and vancomycin; its cell wall did not react with a peptidoglycan-specific lectin and its ultrastructure resembled S-layers of Archaea. Analysis of the 16S ribosomal DNA sequence of strain 195 indicated that it is a eubacterium without close affiliation to any known groups. 24 refs., 4 figs., 1 tab.

  1. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  2. Characterisation of an unusual bacterium isolated from genital ulcers.

    Science.gov (United States)

    Ursi, J P; van Dyck, E; Ballard, R C; Jacob, W; Piot, P; Meheus, A Z

    1982-02-01

    The preliminary characterisation of an unusual gram-negative bacillus isolated from genital ulcers in Swaziland is reported. Like Haemophilus ducreyi, it is an oxidase positive, nitrate-reductase-positive gram-negative rod that forms streptobacillary chains in some circumstances; it was therefore called the "ducreyi-like bacterium" (DLB). Distinguishing features of DLB are production of alpha-haemolysis on horse-blood agar, stimulation of growth by a microaerophilic atmosphere and by a factor produced by Staphylococcus aureus, a strongly positive porphyrin test, and a remarkable ability to undergo autolysis. DLB had a guanine + cytosine value of c. 50 mole% but it cannot be classified, even at the genus level, until more taxonomic data are obtained.

  3. The domestication of the probiotic bacterium Lactobacillus acidophilus.

    Science.gov (United States)

    Bull, Matthew J; Jolley, Keith A; Bray, James E; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C J; Marchesi, Julian R; Mahenthiralingam, Eshwar

    2014-11-26

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population.

  4. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. Copyright © 2016, American Association for the Advancement of Science.

  5. Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus.

    Science.gov (United States)

    Lonhienne, Thierry G A; Sagulenko, Evgeny; Webb, Richard I; Lee, Kuo-Chang; Franke, Josef; Devos, Damien P; Nouwens, Amanda; Carroll, Bernard J; Fuerst, John A

    2010-07-20

    Endocytosis is a process by which extracellular material such as macromolecules can be incorporated into cells via a membrane-trafficking system. Although universal among eukaryotes, endocytosis has not been identified in Bacteria or Archaea. However, intracellular membranes are known to compartmentalize cells of bacteria in the phylum Planctomycetes, suggesting the potential for endocytosis and membrane trafficking in members of this phylum. Here we show that cells of the planctomycete Gemmata obscuriglobus have the ability to uptake proteins present in the external milieu in an energy-dependent process analogous to eukaryotic endocytosis, and that internalized proteins are associated with vesicle membranes. Occurrence of such ability in a bacterium is consistent with autogenous evolution of endocytosis and the endomembrane system in an ancestral noneukaryote cell.

  6. Complete genome sequence of the photoautotrophic and bacteriochlorophyll e-synthesizing green sulfur bacterium Chlorobaculum limnaeum DSM 1677T

    DEFF Research Database (Denmark)

    Tank, Marcus; Liu, Zhenfeng; Frigaard, Niels-Ulrik

    2017-01-01

    Chlorobaculum limnaeum DSM 1677T is a mesophilic, brown-colored, chlorophototrophic green sulfur bacterium that produces bacteriochlorophyll e and the carotenoid isorenieratene as major pigments. This bacterium serves as a model organism in molecular research on photosynthesis, sulfur metabolism...

  7. Problemas posturais X mobiliário: uma investigação ergonômica junto aos usuários de microcomputadores de uma escola de enfermagem Posture problems X furniture: an ergonomic investigation with the personal computer users from a nursing school

    Directory of Open Access Journals (Sweden)

    Maria Helena Versiani Maciel

    1997-12-01

    Full Text Available A utilização de microcomputadores tem se tornado imprescindível atualmente e o pessoal de enfermagem, de encontro a esse avanço tecnológico vem incorporando o em sua prática, a qual é iniciada no curso de graduação. Como usuários da seção de informática de uma escola de enfermagem passamos a observar queixas de alunos em relação a adequação dos mobiliários utilizados. Interessou-nos então, desenvolver este estudo que teve por objetivo analisar os mobiliários da, sala de informática com vistas às recomendações ergonômicas e identificar as posturas corporais adotadas pelos alunos na realização da atividade de digitação. Os procedimentos utilizados foram executados em 3 fases, observação livre do ambiente físico e mensuração dos mobiliários, observação das posturas corporais e entrevistas. Os resultados apontaram que o mobiliário utilizado é inadequado no que se refere a: bancada fixa, sem apoio para os pés, sem porta documentos; as cadeiras não são reguláveis, tem largura, do encosto fora dos padrões recomendados, não possuem braços e rodas, só tem quatro pés e tem, revestimento escorregadio e duro. Apenas em 18,6% do período observado foi adotada a postura considerada ideal para atividade de digitação, ou seja, coluna vertebral ereta,, cotovelos na altura do nível da bancada, pernas fletidas e pés apoiados. Sugere-se o planejamento de postos de trabalho para digitação a partir de dados relativos as medidas antropométricas dos usuários e da utilização de mobiliários adequados, a fim de que se possa oh ter um conjunto harmonioso entre mobiliário, ambiente e usuário proporcionando conforto e evitando problemas de saúde.The computer usage has become essential nowadays and the Nursing staff meeting this technological improvement has been assimilating it in practice, which is started in Graduation course. As users of the computer division from a Nursing School we have observed students

  8. Electromicrobiology of Dissimilatory Sulfur Reducing Bacterium Desulfuromonas acetexigens

    KAUST Repository

    Bin Bandar, Khaled

    2014-12-01

    Bioelectrochmical systems (BES) are engineered electrochemical devices that harness hidden chemical energy of the wastewater in to the form of electricity or hydrogen. Unique microbial communities enrich in these systems for oxidation of organic matter as well as transfer of resulted electron to anode, known them as “electricigens” communities. Exploring novel electricigenesis microbial communities in the nature and understanding their electromicrobiology is one the important aspect for BES systems scale up. Herein, we report first time the electricigenesis property of an anaerobic, fresh water sediment, sulfur reducing bacterium Desulfuromona acetexigens. The electrochemical behavior of D. acetexigens biofilms grown on graphite-rod electrodes in batch-fed mode under an applied potential was investigated with traditional electroanalytical tools, and correlate the electron transfer from biofilms to electrode with a model electricigen Geobacter sulfurreducens electrochemical behavior. Research findings suggest that D. acetexigens has the ability to use electrode as electron acceptor in BES systems through establishing the direct contact with anode by expressing the membrane bound redox proteins, but not due to the secretion of soluble redox mediators. Preliminary results revealed that D. acetexigens express three distinct redox proteins in their membranes for turnover of the electrons from biofilm to electrode, and the 4 whole electricigenesis process observed to be unique in the D. acetexigens compared to that of well-studied model organism G. sulfurreducens.

  9. Pandoraea sp. RB-44, A Novel Quorum Sensing Soil Bacterium

    Directory of Open Access Journals (Sweden)

    Robson Ee Han-Jen

    2013-10-01

    Full Text Available Proteobacteria are known to communicate via signaling molecules and this process is known as quorum sensing. The most commonly studied quorum sensing molecules are N-acylhomoserine lactones (AHLs that consists of a homoserine lactone moiety and an N-acyl side chain with various chain lengths and degrees of saturation at the C-3 position. We have isolated a bacterium, RB-44, from a site which was formally a landfill dumping ground. Using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF mass spectrometry analysis, this isolate was identified as a Pandoraea sp.which was then screened for AHL production using biosensors which indicated its quorum sensing properties. To identify the AHL profile of Pandoraea sp. RB-44, we used high resolution tandem mass spectrometry confirming that this isolate produced N-octanoylhomoserine lactone (C8-HSL. To the best of our knowledge, this is the first report that showed quorum sensing activity exhibited by Pandoraea sp. Our data add Pandoraea sp. to the growing number of bacteria that possess QS systems.

  10. Tracing the run-flip motion of an individual bacterium

    Science.gov (United States)

    Liu, Bin; Morse, Michael; Tang, Jay; Powers, Thomas; Breuer, Kenneth S.

    2012-11-01

    We have developed a digital 3D tracking microscope in which the microscope stage follows the motion of an individual motile microorganism so that the target remains focused at the center of the view-field. The tracking mechanism is achieved by a high-speed feedback control through real-time image analysis and the trace of the microorganism is recorded with submicron accuracy. We apply this tracking microscope to a study of the motion of an individual Caulobacter crescentus, a bacterium that moves up to 100 microns (or 50 body lengths) per second and reverses its direction of motion occasionally by switching the rotation direction of its single helical flagellum. By tracking the motion of a single cell over many seconds, we show how a flip event occurs with submicron resolution and how the speed of a single cell varies over time and with the rotational rate of the flagellum. We also present statistics for the run-reverse dynamics of an ensemble of cells.

  11. Presence of an unusual methanogenic bacterium in coal gasification waste.

    Science.gov (United States)

    Tomei, F A; Rouse, D; Maki, J S; Mitchell, R

    1988-12-01

    Methanogenic bacteria growing on a pilot-scale, anaerobic filter processing coal gasification waste were enriched in a mineral salts medium containing hydrogen and acetate as potential energy sources. Transfer of the enrichments to methanol medium resulted in the initial growth of a strain of Methanosarcina barkeri, but eventually small cocci became dominant. The cocci growing on methanol produced methane and exhibited the typical fluorescence of methanogenic bacteria. They grew in the presence of the cell wall synthesis-inhibiting antibiotics d-cycloserine, fosfomycin, penicillin G, and vancomycin as well as in the presence of kanamycin, an inhibitor of protein synthesis in eubacteria. The optimal growth temperature was 37 degrees C, and the doubling time was 7.5 h. The strain lysed after reaching stationary phase. The bacterium grew poorly with hydrogen as the energy source and failed to grow on acetate. Morphologically, the coccus shared similarities with Methanosarcina sp. Cells were 1 mum wide, exhibited the typical thick cell wall and cross-wall formation, and formed tetrads. Packets and cysts were not formed.

  12. Fungal lysis by a soil bacterium fermenting cellulose.

    Science.gov (United States)

    Tolonen, Andrew C; Cerisy, Tristan; El-Sayyed, Hafez; Boutard, Magali; Salanoubat, Marcel; Church, George M

    2015-08-01

    Recycling of plant biomass by a community of bacteria and fungi is fundamental to carbon flow in terrestrial ecosystems. Here we report how the plant fermenting, soil bacterium Clostridium phytofermentans enhances growth on cellulose by simultaneously lysing and consuming model fungi from soil. We investigate the mechanism of fungal lysis to show that among the dozens of different glycoside hydrolases C. phytofermentans secretes on cellulose, the most highly expressed enzymes degrade fungi rather than plant substrates. These enzymes, the GH18 Cphy1799 and Cphy1800, synergize to hydrolyse chitin, a main component of the fungal cell wall. Purified enzymes inhibit fungal growth and mutants lacking either GH18 grow normally on cellulose and other plant substrates, but have a reduced ability to hydrolyse chitinous substrates and fungal hyphae. Thus, C. phytofermentans boosts growth on cellulose by lysing fungi with its most highly expressed hydrolases, highlighting the importance of fungal interactions to the ecology of cellulolytic bacteria. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. The lipopolysaccharide of a chloridazon-degrading bacterium.

    Science.gov (United States)

    Weisshaar, R; Lingens, F

    1983-12-01

    Lipopolysaccharide of a chloridazon-degrading bacterium was obtained by a two-stage extraction procedure with phenol/EDTA in a yield of 0.3% of dried bacteria. The carbohydrate moiety consisted of heptose, 3-deoxyoctulosonic acid and D-glucose in a molar ratio of 1:2:2 X 3. Lipid A was composed of 1 mol 2,3-diamino-2,3-dideoxy-D-glucose, 2 mol amide-bound and 2.6 mol ester-bound fatty acids/mol. Amide-bound fatty acids were 3-hydroxydodecanoic acid and 3-hydroxyhexadecanoic acid; dodecanoic acid and R-(-)-3-hydroxydodec-5-cis-enoic acid were found to be present in ester linkage. Under conditions of acidic hydrolysis, the latter was converted into the cis and trans isomers of 5-hexyltetrahydrofuran-2-acetic acid. Dodecanoic acid was demonstrated to be linked with the hydroxy groups of the amide-bound fatty acids. The taxonomic significance of these results, especially the demonstration of 2,3-diamino-2, 3-dideoxy-D-glucose, is discussed.

  14. Taxonomic status of the intracellular bacterium Wolbachia pipientis.

    Science.gov (United States)

    Lo, N; Paraskevopoulos, C; Bourtzis, K; O'Neill, S L; Werren, J H; Bordenstein, S R; Bandi, C

    2007-03-01

    Wolbachia pipientis is a maternally inherited, intracellular bacterium found in more than 20 % of all insects, as well as numerous other arthropods and filarial nematodes. It has been the subject of a growing number of studies in recent decades, because of the remarkable effects it has on its arthropod hosts, its potential as a tool for biological control of arthropods of agricultural and medical importance and its use as a target for treatment of filariasis. W. pipientis was originally discovered in cells of the mosquito Culex pipiens and is the only formally described member of the genus. Molecular sequence-based studies have revealed a number of phylogenetically diverse strains of W. pipientis. Owing to uncertainty about whether W. pipientis comprises more than one species, researchers in the field now commonly refer to W. pipientis simply as Wolbachia. In this note, we briefly review higher-level phylogenetic and recombination studies of W. pipientis and propose that all the intracellular symbionts known to cluster closely with the type strain of W. pipientis, including those in the currently recognized supergroups (A-H), are officially given this name.

  15. Yersinia ruckeri sp. nov., the redmouth (RM) bacterium

    Science.gov (United States)

    Ewing, W.H.; Ross, A.J.; Brenner, Don J.; Fanning, G. R.

    1978-01-01

    Cultures of the redmouth (RM) bacterium, one of the etiological agents of redmouth disease in rainbow trout (Salmo gairdneri) and certain other fishes, were characterized by means of their biochemical reactions, by deoxyribonucleic acid (DNA) hybridization, and by determination of guanine-plus-cytosine (G+C) ratios in DNA. The DNA relatedness studies confirmed the fact that the RM bacteria are members of the family Enterobacteriaceae and that they comprise a single species that is not closely related to any other species of Enterobacteriaceae. They are about 30% related to species of both Serratia and Yersinia. A comparison of the biochemical reactions of RM bacteria and serratiae indicated that there are many differences between these organisms and that biochemically the RM bacteria are most closely related to yersiniae. The G+C ratios of RM bacteria were approximated to be between 47.5 and 48.5% These values are similar to those of yersiniae but markedly different from those of serratiae. On the basis of their biochemical reactions and their G+C ratios, the RM bacteria are considered to be a new species of Yersinia, for which the name Yersinia ruckeri is proposed. Strain 2396-61 (= ATCC 29473) is designated the type strain of the species.

  16. Novel Trypanosomatid-Bacterium Association: Evolution of Endosymbiosis in Action

    Directory of Open Access Journals (Sweden)

    Alexei Y. Kostygov

    2016-03-01

    Full Text Available We describe a novel symbiotic association between a kinetoplastid protist, Novymonas esmeraldas gen. nov., sp. nov., and an intracytoplasmic bacterium, “Candidatus Pandoraea novymonadis” sp. nov., discovered as a result of a broad-scale survey of insect trypanosomatid biodiversity in Ecuador. We characterize this association by describing the morphology of both organisms, as well as their interactions, and by establishing their phylogenetic affinities. Importantly, neither partner is closely related to other known organisms previously implicated in eukaryote-bacterial symbiosis. This symbiotic association seems to be relatively recent, as the host does not exert a stringent control over the number of bacteria harbored in its cytoplasm. We argue that this unique relationship may represent a suitable model for studying the initial stages of establishment of endosymbiosis between a single-cellular eukaryote and a prokaryote. Based on phylogenetic analyses, Novymonas could be considered a proxy for the insect-only ancestor of the dixenous genus Leishmania and shed light on the origin of the two-host life cycle within the subfamily Leishmaniinae.

  17. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium

    Institute of Scientific and Technical Information of China (English)

    Haiyan Zheng; Ying Liu; Guangdong Sun; Xiyan Gao; Qingling Zhang; Zhipei Liu

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium,strain S1-1,was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system.Strain S1-1 was preliminarily identified as Psychrobacter sp.based on the analysis of its 16S rRNA gene sequence,which showed 100% sequence similarity to that of Psychrobacter sp.TSBY-70.Strain S 1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite,and the total nitrogen removal rates could reach to 46.48% and 31.89%,respectively.The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low leve 1 accumulation of nitrite,suggesting that the aerobic denitrification process of strain S l-1 occurred mainly in this phase.The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1.Finally,factors affecting the growth of strain Sl-1 and its aerobic denitrifying ability were also investigated.Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source,C/N ratio15,salinity 10 g/L NaCl,incubation temperature 20℃ and initial pH 6.5.

  18. IN SITU RT-PCR WITH A SULFATE-REDUCING BACTERIUM ISOLATED FROM SEAGRASS ROOTS

    Science.gov (United States)

    Bacteria considered to be obligate anaerobes internally colonize roots of the submerged macrophyte Halodule wrightii. A sulfate reducing bacterium, Summer lac 1, was isolated on lactate from H. wrightii roots. The isolate has physiological characteristics typical of Desulfovibri...

  19. The quantitative determination of the spectral distribution of phototactic sensitivity in the purple bacterium Rhodospirillum rubrum

    NARCIS (Netherlands)

    Milatz, J.M.W.; Manten, A.

    1953-01-01

    By using a compensation method, the action spectrum (spectral distribution of stimulating efficiency in a quantitative measure) of phototaxis in the purple bacterium Rhodospirillum rubrum (Esmarch) Molisch Strain 4 was determined. Two differently coloured adjacent small light fields were projected

  20. Effect of alginic acid decomposing bacterium on the growth of Laminaria japonica (Phaeophyceae)

    Institute of Scientific and Technical Information of China (English)

    WANG You; TANG Xue-xi; YANG Zhen; YU Zhi-ming

    2006-01-01

    We collected the diseased blades of Laminaria japonica from Yantai Sea Farm from October to December 2002, and the alginic acid decomposing bacterium on the diseased blade was isolated and purified, and was identified as Alteromonas espejiana. This bacterium was applied as the causative pathogen to infect the blades of L. japonica under laboratory conditions. The aim of the present study was to identify the effects of the bacterium on the growth of L. japonica, and to find the possibly effective mechanism. Results showed that: (1)The blades of L.japonica exhibited symptoms of lesion,bleaching and deterioration when infected by the bacterium,and their growth and photosynthesis were dramatically suppressed. At the same time, the reactive oxygen species (ROS) generation enhanced obviously, and the relative membrane permeability increased significantly. The contents of malonaldehyde (MDA) and free fatty acid in the microsomol membrane greatly elevated, but the phospholipid content decreased. Result suggested an obvious peroxidation and deesterrification in the blades of L. japonica when infected by the bacterium. (2) The simultaneous assay on the antioxidant enzyme activities demonstrated that superoxide dismutase (SOD) and catalase (CAT) increased greatly when infected by the bacterium, but glutathione peroxidase (Gpx) and ascorbate peroxidase (APX) did not exhibit active responses to the bacterium throughout the experiment. (3) The histomorphological observations gave a distinctive evidence of the severity of the lesions as well as the relative abundance in the bacterial population on the blades after infection. The bacterium firstly invaded into the endodermis of L. japonica and gathered around there, and then resulted in the membrane damage, cells corruption and ultimately, the death of L.japonica.

  1. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte.

    Science.gov (United States)

    Hoffman, Michele T; Gunatilaka, Malkanthi K; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions.

  2. Treatment of common warts with the immune stimulant Propionium bacterium parvum.

    Science.gov (United States)

    Nasser, Nilton

    2012-01-01

    Warts are epithelial proliferations in the skin and mucous membrane caused by various types of HPV. They can decrease spontaneously or increase in size and number according to the patient's immune status. The Propionium bacterium parvum is a strong immune stimulant and immune modulator and has important effects in the immune system and it is able to produce antibodies in the skin. To show the efficacy of the Propionium bacterium parvum in saline solution in the treatment of skin warts. A randomized double-blind study. Twenty patients with multiple warts were divided into two groups: one received 0,1 ml intradermal injection of placebo solution in just one of the warts and the other received 0,1 ml of saline solution of Propionium bacterium parvum, one dose a month, for 3 to 5 months. Among the 20 patients who participated in the study, ten received the placebo and ten received the saline solution with Propionium bacterium parvum. In 9 patients treated with the Propionium bacterium parvum solution the warts disappeared without scars and in 1 patient it decreased in size. In 9 patients who received the placebo no change to the warts was observed and in 1 it decreased in size. The immune modulator and immune stimulant Propionium bacterium parvum produced antibodies in the skin which destroyed the warts without scars, with statistically significant results (Pwarts.

  3. Phenotypic variation in the plant pathogenic bacterium Acidovorax citrulli.

    Directory of Open Access Journals (Sweden)

    Ram Kumar Shrestha

    Full Text Available Acidovorax citrulli causes bacterial fruit blotch (BFB of cucurbits, a disease that threatens the cucurbit industry worldwide. Despite the economic importance of BFB, little is known about pathogenicity and fitness strategies of the bacterium. We have observed the phenomenon of phenotypic variation in A. citrulli. Here we report the characterization of phenotypic variants (PVs of two strains, M6 and 7a1, isolated from melon and watermelon, respectively. Phenotypic variation was observed following growth in rich medium, as well as upon isolation of bacteria from inoculated plants or exposure to several stresses, including heat, salt and acidic conditions. When grown on nutrient agar, all PV colonies possessed a translucent appearance, in contrast to parental strain colonies that were opaque. After 72 h, PV colonies were bigger than parental colonies, and had a fuzzy appearance relative to parental strain colonies that are relatively smooth. A. citrulli colonies are generally surrounded by haloes detectable by the naked eye. These haloes are formed by type IV pilus (T4P-mediated twitching motility that occurs at the edge of the colony. No twitching haloes could be detected around colonies of both M6 and 7a1 PVs, and microscopy observations confirmed that indeed the PVs did not perform twitching motility. In agreement with these results, transmission electron microscopy revealed that M6 and 7a1 PVs do not produce T4P under tested conditions. PVs also differed from their parental strain in swimming motility and biofilm formation, and interestingly, all assessed variants were less virulent than their corresponding parental strains in seed transmission assays. Slight alterations could be detected in some DNA fingerprinting profiles of 7a1 variants relative to the parental strain, while no differences at all could be seen among M6 variants and parental strain, suggesting that, at least in the latter, phenotypic variation is mediated by slight genetic

  4. Bioreactor cultivation of a thermophilic bacterium capable of degrading BTEX

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Taylor, R.T. [Lawrence Livermore National Lab., CA (United States)

    1996-10-01

    The thermophillic bacterium, Thermus species ATCC 27978, which is capable iof degrading the fuel-spill contaminants benzene, toluene, ethylbenzene, and the xylenes (BTEX) was cultured in 5-L-bioreactors. The goal was to optimize the production of Thermus sp. cells possessing maximal degradative activity for their subsequent potential application in a thermally-enhanced in situ BTEX bioremediation process. The effects of two bioreactor cultivation modes, batch and fed batch, on the generation of BTEX-active biomass were investigated. More biomass and more thermophillic BTEX-degrading activity were produced in the fed-batch cultures than in the batch cultures. Catabolite inhibition or repression is the cause for the limited growth of Thermus sp. in batch reactors. However, the addition to the medium of O-cresol, a possible intermediate in BTEX metabolism, stabilized the cellular BTEX-degrading activity in such cultures. The fed-batch mode of cultivations yielded a biomass concentration of 2.5 g/L and a catalytic specific activities of 7.6 {+-} 1.3, 10.1 {+-} 1.9. 9.8 {+-} 2.1, 2.3 {+-} 0.5, and 4.6 {+-} 0.9 nmol of compound degraded/mg of dry cell wt-min at 60{degrees}C for benzene, toluene, ethylbenzene, m-xylene, and the o-plus p-xylenes (unresolved mixture), respectively. Although the formation of BTEX-degrading activity is growth associated, the prior rate of bioreactor growth affects the level of susequent washed, whole-cell BTEX-degrading activity. A slow to moderate specific growth rate (0.02-0.07 h{sup -1}) favors the formation of cellular BTEX-degrading activity, while a high specific growth rate ({approx}0.16 h{sup -1}) is detrimental to its production.

  5. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.

    Directory of Open Access Journals (Sweden)

    Rogier Braakman

    Full Text Available Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere.

  6. Avaliação e participação do fisioterapeuta na prescrição do mobiliário escolar utilizado por alunos com paralisia cerebral em escolas estaduais públicas da rede regular de ensino Evaluation and participation of physical therapists on the school furniture prescription for students with cerebral palsy in public schools of the regular school network

    Directory of Open Access Journals (Sweden)

    Luzia Lívia Oliveira Saraiva

    2011-08-01

    Full Text Available O estudo teve como objetivo avaliar as condições do mobiliário escolar disponibilizado aos alunos com paralisia cerebral nas escolas estaduais da cidade do Natal/RN em 2008 e a participação do fisioterapeuta na prescrição deste mobiliário. Os dados foram coletados através de um protocolo de avaliação junto a cinco alunos com paralisia cerebral e formulário aplicado aos diretores das instituições de ensino, sendo analisados por meio das categorias suscitadas. Os resultados apontaram a presença de mobiliário escolar que não atende as necessidades específicas de posicionamento dos alunos avaliados e a ausência do fisioterapeuta na prescrição desse mobiliário. Constata-se a necessidade dos órgãos gestores no âmbito da educação de Natal/RN em cumprir o que determina a lei e disponibilizar mobiliário escolar adequado aos alunos pesquisados. Assim, procurou-se garantir os recursos necessários para promover um ensino de qualidade para os educandos com paralisia cerebral no contexto da escola regular.The objective of this study was to evaluate the conditions of school furniture available for students with cerebral palsy in public schools in the city Natal, Rio Grande do Norte in 2008, looking at how physical therapists participated in the process of prescribing such furniture. The data was collected using an evaluation protocol with students with cerebral palsy and with school principals who filled out forms. The analysis was undertaken according to the categories that arose from the data. The results indicated that: 1 school furniture doesn’t meet the specific positioning needs of the students that were evaluated and 2 physical therapists do not participate in prescribing appropriate furniture. The study showed that in Natal, Rio Grande do Norte, educational administrators need to carry out the policies that have been determined by law in order to make proper school furniture available to students with cerebral palsy. The

  7. Characterization of an Endophytic Bacterium G062 Isolate with Beneficial Traits

    Directory of Open Access Journals (Sweden)

    ALINA AKHDIYA

    2014-12-01

    Full Text Available An endophytic bacterium isolate G062 was characterized base on its molecular genetic potents, morphology, physiology, and biochemistry reactions. Analysis of 16S rDNA sequences of G062 showed the highest similarity to Paracoccus halophilus (98%. Detection of the phlD and prnC genes occurrence indicated that the bacterium had this antibiotic-like genes of Diacethylphloroglucinol (DAPG and pyrrolnitrin. The cells are rod shaped (0.59-0.89 x 1.85-3.3 µm, aerobic, Gram negative, non motile, non spore forming, positive catalase, positive oxydase, could reduce NO3 to N2, nitrogen fixing, producing siderophore and plant growth hormones-like compounds (IAA, Gibberellin, and zeatin, and solubilizing phosphate. The G062 isolate could grow on media containing 2.5% NaCl. Range of the temperature and pH growth were 15-40 and 5.0-9.5 oC, respectively. The bacterium did not cause red blood cells lysis. There was no hypersensitive response when it was injected into tobacco leaves, and it was not pathogenic against potato plantlets. Moreover, the bacterium promoted the growth of the potato plant and had high colonization ability. These results suggested that the bacterium had beneficial and good traits as biological agent candidate to promote potato plant growth.

  8. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  9. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Mun Su [University of Florida, Gainesville; Moritz, Brelan E. [University of Florida, Gainesville; Xie, Gary [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Patel, Milind [University of Florida, Gainesville; Ou, Mark [University of Florida, Gainesville; Harbrucker, Roberta [University of Florida, Gainesville; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  10. Atopobacter phocae gen. nov., sp. nov., a novel bacterium isolated from common seals.

    Science.gov (United States)

    Lawson, P A; Foster, G; Falsen, E; Ohlén, M; Collins, M D

    2000-09-01

    Two strains of a Gram-positive, catalase-negative, facultatively anaerobic, rod-shaped bacterium isolated from common seals were characterized using phenotypic and molecular taxonomic methods. The two strains closely resembled each other based on their biochemical characteristics, and PAGE analysis of whole-cell protein patterns confirmed their close phenotypic affinity. 16S rRNA gene sequencing showed that the two strains were genetically highly related (99.8% sequence similarity) and that they constitute a new line of descent within the lactic acid group of bacteria. The nearest phylogenetic neighbours of the unknown bacterium were Granulicatella spp., with related taxa such as enterococci, carnobacteria, Desemzia incerta, Lactosphaera pasteurii, Melissococcus plutonius, tetragenococci and vagococci more distantly related. Based on phylogenetic and phenotypic evidence it is proposed that the unknown bacterium from seals be classified in a new genus as Atopobacter phocae gen. nov., sp. nov. The type strain of Atopobacter phocae is CCUG 42358T (= CIP 106392T).

  11. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5.

    Science.gov (United States)

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production.

  12. [Isolation of endophytic antagonistic bacterium from Amorphophallus konjac and research on its antibacterial metabolite].

    Science.gov (United States)

    Zhou, Ying; Chen, Lin; Chai, Xin-Li; Yu, Zi-Niu; Sun, Ming

    2007-12-01

    An endophytic antagonistic bacterium was isolated from Amorphophallus konjac calli. In order to identify this bacterium, 16S rDNA was amplified and partially sequenced. Sequence comparison showed that this sequence has the highest similarity to that in Bacillus subtilis, with 99.0% identities. That demonstrated this bacterium belongs to Bacillus subtili , named BSn5. The extracted extracellular protein from strain BSn5 had antibacterial activity against Erwinia carotovora subp. carotovora, which was unstable after heated, sensitive to proteinase K and resistant to trypsin. There was only a 31.6kDa protein component as by SDS-PAGE detection. Nondenaturing polyacrylaminde gel was used to purify this protein. The purified 31.6kDa protein exhibited inhibitory activity against Erwinia carotovora subp. carotovora. This protein is different from all known metabolites from Bacillus subtilis, suggesting that it may be a novel antibacterial protein.

  13. Studies on the pathogenic bacterium of ulcer disease in Epinephelus awoara

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Studies were conducted to determine the cause of the acute mortality of cage-cultured Epinephelus awoara in the Tong'an Bay of Xiamen, China during the summer of 2002. Predominant bacteria strain TS-628 was isolated from the diseased grouper. The virulence test confirmed that TS-628 was the pathogenic bacterium. Biochemical characteristics of the isolates were determined using the automatic bacterial identification system and standard tube tests. To further confirm the identification, a 1 121 bp 16S rRNA gene sequence of the isolate was amplified by PCR, which had been deposited into Genbank (accession number: AY747308). According to the biochemical characteristics and by comparing the 16S rRNA gene homology of the isolate, the pathogenic bacterium was identified as Vibrio harveyi. Drug sensitivity tests showed that this pathogenic bacterium was sensitive to 16 antibacterials, especially to chloramphenicol and actinospectacin, but completely resistant to antibacterials likes vancomycin, penicillin, lincomycin, and so on.

  14. Action of the Selenomorpholine Compounds on the Bacterium Growth by Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    李曦; 刘义; 等

    2002-01-01

    The action of β-(N-selenomorpholine) ethyl phenyl ketone hydrochloride and 4-(N-selenomorpholine)-2-butanone hydro-chloride on Escherichia coli and Staphylococcus aureus was studied by microcalorimetry,Differences in their capacities to affect the metabolism of this bacterium were observed.The kinetics shows that the selenomorpholine compounds had action on the metabolism process of Escherichia coli and Staphylococcus aureus.The rate constant (k) of the studied bacterium in the presence of the drugs are concentration-dependant.The growth rate constants decrease with an increase in the mass of the selenomorpholine compounds ,but their relationship is different.As deduced from the rate constant(k) of the studied bacterium(in log phase )and the half inhibitory concentration (IC50),the experimental results reveal that the studied selenomorpholine compounds all have good antibiotic activity and better antibacterial activity on Staphylcoccus aureus than on Escherichia coli.

  15. Action of the Selenomorpholine Compounds on the Bacterium Growth by Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    LI,Xi(李曦); LIU,Yi(刘义); WU,Jun(吴军); QU,Song-Sheng(屈松生)

    2002-01-01

    The action of β-(N-selenomorpholine) ethyl phenyl ketone hy drochloride and 4-(N-selenomorpholine)-2-butanone hydrochloride on Escherichia coli and Staphylococcus aureus was studied by microcalorimetry. Differences in their capacities to affect the metabolism of this bacterium were observed. The kinetics shows that the selenomorphline compounds had action on the metabolism process of Escherichia coli and Staphylococcus aureus. The rate constant (k) of the studied bacterium in the presence of the drugs are concentration-dependant. The growth rate constants decrease with an increase in the mass of the selenomorpholine compounds, but their relationship is different. As deduced from the rate constant (k) of the studied bacterium (in log phase) and the half inhibitory concentration (IC50), the experimental results reveal that the studied selenomorphline compounds all have good antibiotic activity and better antibacterial activity on Staphylococcus aureus than on Escherichia coli.

  16. The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythrocytes

    DEFF Research Database (Denmark)

    Belstrøm, Daniel; Holmstrup, Palle; Damgaard, Christian

    2011-01-01

    A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows the bacter......A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows...... the bacterium to adhere to human red blood cells (RBCs) and thereby evade attack by circulating phagocytes. On incubation with normal human serum, the P. gingivalis strain efficiently fixed complement component 3 (C3). Incubation of bacteria with washed whole blood cells suspended in autologous serum resulted....... gingivalis exploits RBCs as a transport vehicle, rendering it inaccessible to attack by phagocytes, and by doing so plays a role in the development of systemic diseases....

  17. Moritella viscosa, a pathogenic bacterium affecting the fillet quality in fish

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Nielsen, Michael Engelbrecht

    2011-01-01

    Moritella viscosa is a bacterium belonging to the family Moritellaceae and was formerly known as Vibrio viscosus. The name ‘viscosa’ originates from the slimy nature of the bacterium. M. viscosa is considered to be the main causative agent of the phenomenon ‘winter ulcer’ or ‘cold-water ulcer’ wh...... market price because of a quality downgrade caused by textural changes in the fillet....... cod (Gadus morhua), Atlantic halibut (Hippoglossus hippoglossus) and turbot (Scophthalmus maximus). In Norway, the disease is considered a major problem and is currently the main bacterial infection in Norwegian aquaculture (Bornø et al. 2010). Fish previously infected with M. viscosa obtain a lower...

  18. Ammonificins C and D, hydroxyethylamine chromene derivatives from a cultured marine hydrothermal vent bacterium, Thermovibrio ammonificans.

    Science.gov (United States)

    Andrianasolo, Eric H; Haramaty, Liti; Rosario-Passapera, Richard; Vetriani, Costantino; Falkowski, Paul; White, Eileen; Lutz, Richard

    2012-10-01

    Chemical and biological investigation of the cultured marine hydrothermal vent bacterium, Thermovibrio ammonifican led to the isolation of two hydroxyethylamine chromene derivatives, ammonificins C and D. Their structures were elucidated using combination of NMR and mass spectrometry. Absolute stereochemistry was ascertained by comparison of experimental and calculated CD spectra. Biological evaluation and assessment were determined using the patented ApopScreen cell-based screen for apoptosis-induction. Ammonificins C and D induce apoptosis in micromolar concentrations. To our knowledge, this finding is the first report of chemical compounds that induce apoptosis from the cultured deep-sea marine organism, hydrothermal vent bacterium, Thermovibrio ammonificans.

  19. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Mathrani, Indra M.; Ahring, Birgitte Kiær

    1995-01-01

    activity. The G + C content of the cellular DNA of strain 6A was 35.2 +/- 0.8 mol%. Complete 16S rDNA sequence analysis showed that strain 6A was phylogenetically related to Caldicellulosiruptor saccharolyticus. It is proposed that the isolated bacterium be named Caldicellulosiruptor lactoaceticus sp. nov....... and ethanol occurred as minor fermentation products. Only a restricted number of carbon sources (cellulose, xylan, starch, pectin, cellobiose, xylose, maltose and lactose) were used as substrates. During growth on Avicel, the bacterium produced free cellulases with carboxymethylcellulase and avicelase...

  20. Dense populations of a giant sulfur bacterium in Namibian shelf sediments.

    Science.gov (United States)

    Schulz, H N; Brinkhoff, T; Ferdelman, T G; Mariné, M H; Teske, A; Jorgensen, B B

    1999-04-16

    A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA sequence data, these bacteria are closely related to the marine filamentous sulfur bacteria Thioploca, abundant in the upwelling area off Chile and Peru. Similar to Thioploca, the giant bacteria oxidize sulfide with nitrate that is accumulated to

  1. Expression of the Bacillus thuringiensis mosquitocidal toxin Cry11Aa in the aquatic bacterium Asticcacaulis excentricus.

    Science.gov (United States)

    Armengol, Gemma; Guevara, Oscar Enrique; Orduz, Sergio; Crickmore, Neil

    2005-12-01

    A mosquitocidal aquatic bacterium has been developed by introducing an operon containing the cry11Aa, and p20 genes from Bacillus thuringiensis subsp. israelensis (Bti) into the gram-negative aquatic bacterium Asticcacaulis excentricus. After transformation, the cry11Aa gene was successfully expressed in recombinant A. excentricus under the tac promoter, at the level of 0.04 pg/cell. The recombinant bacteria were toxic to Aedes aegypti larvae with an LC(50) of 6.83 x 10(5) cells/mL. We believe that these bacteria may have potential as genetically engineered microorganisms for the control of mosquito larvae.

  2. Custo médio ponderado de capital: um estudo dos erros contidos em seu cálculo nas ofertas públicas de aquisições de ações registradas na comissão de valores mobiliários (CVM)

    OpenAIRE

    2013-01-01

    Este artigo tem como objetivo geral verificar se os Laudos de Avaliação das Ofertas Públicas de Aquisições de Ações (OPA), autorizadas pela Comissão de Valores Mobiliários do Brasil (CVM), possuem erros no cálculo do Custo Médio Ponderado de Capital (Weighted Average Cost of Capital - WACC), entre janeiro de 2005 e maio de 2010. Para alcançá-lo, realizou-se uma pesquisa bibliográfica e empírica. Essa última feita por meio do estudo de todos os Laudos de Avaliação das OPA registrados no sítio ...

  3. Draft Genome Sequence of Bacillus licheniformis Strain GB2, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium.

    Science.gov (United States)

    Gkorezis, Panagiotis; Van Hamme, Jonathan; Bottos, Eric; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Sillen, Wouter; Vangronsveld, Jaco

    2016-06-23

    We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations.

  4. Isolation from the Sorghum bicolor Mycorrhizosphere of a Bacterium Compatible with Arbuscular Mycorrhiza Development and Antagonistic towards Soilborne Fungal Pathogens

    Science.gov (United States)

    Budi, S. W.; van Tuinen, D.; Martinotti, G.; Gianinazzi, S.

    1999-01-01

    A gram-positive bacterium with antagonistic activity towards soilborne fungal pathogens has been isolated from the mycorrhizosphere of Sorghum bicolor inoculated with Glomus mosseae. It has been identified as Paenibacillus sp. strain B2 based on its analytical profile index and on 16S ribosomal DNA analysis. Besides having antagonistic activity, this bacterium stimulates mycorrhization. PMID:10543835

  5. Draft Genome Sequence of an Anaerobic and Extremophilic Bacterium, Caldanaerobacter yonseiensis, Isolated from a Geothermal Hot Stream

    OpenAIRE

    2013-01-01

    Caldanaerobacter yonseiensis is a strictly anaerobic, thermophilic, spore-forming bacterium, which was isolated from a geothermal hot stream in Indonesia. This bacterium utilizes xylose and produces a variety of proteases. Here, we report the draft genome sequence of C. yonseiensis, which reveals insights into the pentose phosphate pathway and protein degradation metabolism in thermophilic microorganisms.

  6. Pseudomonas chloritidismutans sp. nov., a non-denitrifying chlorate-reducing bacterium

    NARCIS (Netherlands)

    Wolterink, A.F.W.M.; Jonker, A.B.; Kengen, S.W.M.; Stams, A.J.M.

    2002-01-01

    A Gram-negative, facultatively anaerobic, rod-shaped, dissimilatory chlorate-reducing bacterium, strain AW-1(T), was isolated from biomass of an anaerobic chlorate-reducing bioreactor. Phylogenetic analysis of the 16S rDNA sequence showed 100␜equence similarity to Pseudomonas stutzeri DSM 50227 and

  7. Genome Sequence of the Acetogenic Bacterium Moorella mulderi DSM 14980T

    Science.gov (United States)

    Castillo Villamizar, Genis Andrés

    2016-01-01

    Here, we report the draft genome sequence of Moorella mulderi DSM 14980T, a thermophilic acetogenic bacterium, which is able to grow autotrophically on H2 plus CO2 using the Wood-Ljungdahl pathway. The genome consists of a circular chromosome (2.99 Mb). PMID:27231372

  8. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Majumder, Avishek; Cai, Liyang; Ejby, Morten

    2012-01-01

    Lactobacillus acidophilus NCFM (NCFM) is a well‐documented probiotic bacterium isolated from human gut. Detailed 2D gel‐based NCFM proteomics addressed the so‐called alkaline range, i.e., pH 6–11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D...

  9. Bacillus amyloliquefaciens: a mosquitocidal bacterium from mangrove forests of Andaman & Nicobar islands, India.

    Science.gov (United States)

    Geetha, I; Manonmani, A M; Prabakaran, G

    2011-12-01

    Samples collected from the mangrove forests of Andaman & Nicobar islands yielded a mosquitocidal bacterium, whose extracellular metabolite(s) exhibited mosquito larvicidal and pupicidal activity. The bacterium was isolated using standard microbiological methods and identified using classical biochemical tests and rpoB gene sequences. The mosquitocidal bacterium was identified as Bacillus amyloliquefaciens. Mosquitocidal metabolite(s) was separated from the culture supernatant of the bacterium and its efficacy against the larval and pupal stages of different species of mosquitoes was determined in terms of LC(50) and LC(90). Mosquito larvicidal activity in terms of LC(50) against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti was respectively, 26.4μg, 22.2μg and 20.5μg/ml and its pupicidal activity was 4.4μg, 8.2μg and 14.5μg/ml respectively. The mosquitocidal metabolite(s) was found to be a biosurfactant. This is the first report of the mosquitocidal activity of B. amyloliquefaciens and it is a new weapon which can be added to the array of microbial agents for use against mosquitoes. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium

    Science.gov (United States)

    Ho, Ying-Ning

    2015-01-01

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia. PMID:26564046

  11. Active efflux systems in the solvent-tolerant bacterium Pseudomonas putida S12

    NARCIS (Netherlands)

    Kieboom, J.

    2002-01-01

    The aim of the research presented in this thesis was to study the molecular mechanisms of organic solvent tolerance in Pseudomonas putida S12. This bacterium is capable of growth at saturated solvent concentrations, which are lethal to normal bacteria. Organic solve

  12. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium.

    Science.gov (United States)

    Ho, Ying-Ning; Huang, Chieh-Chen

    2015-11-12

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia.

  13. Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes

    OpenAIRE

    Ghazal, Shimaa; Oshone, Rediet; Simpson, Stephen,; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W. Kelley; Khalil, Kamal M.; Tisa, Louis S.

    2016-01-01

    Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes.

  14. Inactivation of Glutamine Synthetase by Ammonia Shock in the Gram-Positive Bacterium Streptomyces cattleya.

    Science.gov (United States)

    Wax, R; Synder, L; Kaplan, L

    1982-10-01

    In cultures of the gram-positive bacterium Streptomyces cattleya, a rapid inactivation of glutamine synthetase was seen after ammonia shock. pH activity curves for ammonia-shocked and control cultures are shown. A peak of glutamine synthetase activity was seen during fermentation for production of the antibiotic thienamycin.

  15. Amino Acid Transport by Membrane Vesicles of an Obligate Anaerobic Bacterium, Clostridium acetobutylicum

    NARCIS (Netherlands)

    Driessen, Arnold J.M.; Ubbink-Kok, Trees; Konings, Wilhelmus

    Membrane vesicles were isolated from the obligate anaerobic bacterium Clostridium acetobutylicum. Beef heart mitochondrial cytochrome c oxidase was inserted in these membrane vesicles by membrane fusion by using the freeze-thaw sonication technique to accommodate them with a functional proton motive

  16. Isolation and algae-lysing characteristics of the algicidal bacterium B5

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Water blooms have become a worldwide environmental problem. Recently, algicidal bacteria have attracted wide attention as possible agents for inhibiting algal water blooms. In this study, one strain of algicidal bacterium B5 was isolated from activated sludge. On the basis of analysis of its physiological characteristics and 16S rDNA gene sequence, it was identified as Bacillus fusiformis. Its algae-lysing characteristics on Microcystis aeruginosa, Chlorella and Scenedesmus were tested. The results showed that: (1) the algicidal bacterium B5 is a Gram-negative bacterium. The 16S rDNA nucleotide sequence homology of strain B5 with 2 strains of B. fusiformis reached 99.86%, so B5 was identified as B. fusiformis; (2) the algal-lysing effects of the algicidal bacterium B5 on M. aeruginosa, Chlorella and Scenedesmus were pronounced. The initial bacterial and algal cell densities strongly influence the removal rates of chlorophyll-a. The greater the initial bacterial cell density, the faster the degradation of chlorophyll-a. The greater the initial algal cell density, the slower the degradation of chlorophyll-a. When the bacterial cell density was 3.6 × 107 cells/ml, nearly 90% of chlorophyll-a was removed. When the chlorophyll-a concentration was less than 550 μg/L, about 70 % was removed; (3) the strain B5 lysed algae not directly but by secreting metabolites and these metabolites could bear heat treatment.

  17. Draft Genome Sequence of a Thermophilic Desulfurization Bacterium, Geobacillus thermoglucosidasius Strain W-2

    Science.gov (United States)

    Zhu, Lin; Li, Mingchang; Guo, Shuyi

    2016-01-01

    Geobacillus thermoglucosidasius strain W-2 is a thermophilic bacterium isolated from a deep-subsurface oil reservoir in northern China, which is capable of degrading organosulfur compounds. Here, we report the draft genome sequence of G. thermoglucosidasius strain W-2, which may help to elucidate the genetic basis of biodegradation of organosulfur pollutants under heated conditions. PMID:27491977

  18. Complete genome sequence of the cellulase-producing bacterium Clavibacter michiganensis PF008.

    Science.gov (United States)

    Bae, Chungyun; Oh, Eom-Ji; Lee, Han-Beoyl; Kim, Byung-Yong; Oh, Chang-Sik

    2015-11-20

    The Gram-positive Actinobacterium Clavibacter michiganensis strain PF008 produces a cellulase of biotechnological interest, which is used for degradation of cellulose, a major component of plant cell walls. Here we report the complete genome sequence of this bacterium for better understanding of cellulase production and its virulence mechanism. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Draft Genome Sequence of Desulfuromonas acetexigens Strain 2873, a Novel Anode-Respiring Bacterium

    KAUST Repository

    Katuri, Krishna

    2017-03-03

    Here, we report the draft genome sequence of Desulfuromonas acetexigens strain 2873, which was originally isolated from digester sludge from a sewage treatment plant in Germany. This bacterium is capable of anode respiration with high electrochemical activity in microbial electrochemical systems. The draft genome contains 3,376 predicted protein-coding genes and putative multiheme c-type cytochromes.

  20. Genome sequence of Citrobacter sp. strain A1, a dye-degrading bacterium.

    Science.gov (United States)

    Chan, Giek Far; Gan, Han Ming; Rashid, Noor Aini Abdul

    2012-10-01

    Citrobacter sp. strain A1, isolated from a sewage oxidation pond, is a facultative aerobe and mesophilic dye-degrading bacterium. This organism degrades azo dyes efficiently via azo reduction and desulfonation, followed by the successive biotransformation of dye intermediates under an aerobic environment. Here we report the draft genome sequence of Citrobacter sp. A1.

  1. Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus.

    Science.gov (United States)

    König, Claudia C; Scherlach, Kirstin; Schroeckh, Volker; Horn, Fabian; Nietzsche, Sandor; Brakhage, Axel A; Hertweck, Christian

    2013-05-27

    Stimulating encounter: The intimate, physical interaction between the soil-derived bacterium Streptomyces rapamycinicus and the human pathogenic fungus Aspergillus fumigatus led to the activation of an otherwise silent polyketide synthase (PKS) gene cluster coding for an unusual prenylated polyphenol (fumicycline A). The meroterpenoid pathway is regulated by a pathway-specific activator gene as well as by epigenetic factors.

  2. Purification and reconstitution of the glutamate carrier GltT of the thermophilic bacterium Bacillus stearothermophilus

    NARCIS (Netherlands)

    Gaillard, Isabelle; Slotboom, Dirk-Jan; Knol, Jan; Lolkema, Juke S.; Konings, Wil N.

    1996-01-01

    An affinity tag consisting of six adjacent histidine residues followed by an enterokinase cleavage site was genetically engineered at the N-terminus of the glutamate transport protein GltT of the thermophilic bacterium Bacillus stearothermophilus. The fusion protein was expressed in Escherichia coli

  3. Robinsoniella peoriensis: A model anaerobic commensal bacterium for acquisition of antibiotic resistance?

    Science.gov (United States)

    Background: R. peoriensis was characterized in our laboratories from swine manure and feces as a Gram-positive, anaerobic bacterium. Since then strains of this species have been identified from a variety of mammalian and other gastrointestinal (GI) tracts, suggesting it is a member of the commensal ...

  4. Genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens BBc6R8

    Energy Technology Data Exchange (ETDEWEB)

    Deveau, Aurelie [French National Insitute for Agricultural Research (INRA); Grob, Harald [University of Bonn, Germany; Morin, Emmanuelle [INRA, Nancy, France; Karpinets, Tatiana V [ORNL; Utturkar, Sagar M [ORNL; Mehnaz, Samina [University of the Punjab, Pakistan; Kurz, Sven [University of Bonn, Germany; Martin, Francis [INRA, Nancy, France; Frey-Klett, Pascale [INRA, Nancy, France; Labbe, Jessy L [ORNL

    2014-01-01

    We report the draft genome sequence of the mycorrhiza helper bacterium Pseudomonas fluorescens strain BBc6R8 . Several traits which could be involved in the mycorrhiza helper ability of the bacterial strain such as multiple secretion systems, auxin metabolism and phosphate mobilization were evidenced in the genome.

  5. Complete genome sequence of the xylan-degrading subseafloor bacterium Microcella alkaliphila JAM-AC0309.

    Science.gov (United States)

    Kurata, Atsushi; Hirose, Yuu; Misawa, Naomi; Wakazuki, Sachiko; Kishimoto, Noriaki; Kobayashi, Tohru

    2016-03-10

    Here we report the complete genome sequence of Microcella alkaliphila JAM-AC0309, which was newly isolated from the deep subseafloor core sediment from offshore of the Shimokita Peninsula of Japan. An array of genes related to utilization of xylan in this bacterium was identified by whole genome analysis.

  6. Inactivation of Glutamine Synthetase by Ammonia Shock in the Gram-Positive Bacterium Streptomyces cattleya

    OpenAIRE

    Wax, Richard; Synder, Linda; Kaplan, Louis

    1982-01-01

    In cultures of the gram-positive bacterium Streptomyces cattleya, a rapid inactivation of glutamine synthetase was seen after ammonia shock. pH activity curves for ammonia-shocked and control cultures are shown. A peak of glutamine synthetase activity was seen during fermentation for production of the antibiotic thienamycin.

  7. Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil

    NARCIS (Netherlands)

    Rice, Marlen C.; Norton, Jeanette M.; Valois, Frederica; Bollmann, Annette; Bottomley, Peter J.; Klotz, Martin G.; Laanbroek, Hendrikus J.; Suwa, Yuichi; Stein, Lisa Y.; Sayavedra-Soto, Luis; Woyke, Tanja; Shapiro, Nicole; Goodwin, Lynne A.; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Kyrpides, Nikos; Varghese, Neha; Mikhailova, Natalia; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Stamatis, Dimitrios; Reddy, T. B. K.; Ngan, Chew Yee; Daum, Chris

    2016-01-01

    Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosom

  8. Ercella succinigenes gen. nov., sp. nov., an anaerobic succinate-producing bacterium

    NARCIS (Netherlands)

    Gelder, van A.H.; Sousa, D.Z.; Rijpstra, W.I.; Damsté, J.S.; Stams, A.J.M.; Sanchez Andrea, I.

    2014-01-01

    A novel anaerobic succinate-producing bacterium, strain ZWBT, was isolated from sludge collected from a biogas desulfurization bioreactor (Eerbeek, the Netherlands). Cells were non-spore-forming, motile, slightly curved rods (0.4–0.5 µm in diameter and 2–3 µm in length), and stained Gram-negative.

  9. The construction of an engineered bacterium to remove cadmium from wastewater.

    Science.gov (United States)

    Chang, S; Shu, H

    2014-01-01

    The removal of cadmium (Cd) from wastewater before it is released from factories is important for protecting human health. Although some researchers have developed engineered bacteria, the resistance of these engineered bacteria to Cd have not been improved. In this study, two key genes involved in glutathione synthesis (gshA and gshB), a serine acetyltransferase gene (cysE), a Thlaspi caerulescens phytochelatin synthase gene (TcPCS1), and a heavy metal ATPase gene (TcHMA3) were transformed into Escherichia coli BL21. The resistance of the engineered bacterium to Cd was significantly greater than that of the initial bacterium and the Cd accumulation in the engineered bacterium was much higher than in the initial bacterium. In addition, the Cd resistance of the bacteria harboring gshB, gshA, cysE, and TcPCS1 was higher than that of the bacteria harboring gshA, cysE, and TcPCS1. This finding demonstrated that gshB played an important role in glutathione synthesis and that the reaction catalyzed by glutathione synthase was the limiting step for producing phytochelatins. Furthermore, TcPCS1 had a greater specificity and a higher capacity for removing Cd than SpPCS1, and TcHMA3 not only played a role in T. caerulescens but also functioned in E. coli.

  10. A thermostable serralysin inhibitor from marine bacterium Flavobacterium sp. YS-80-122

    Science.gov (United States)

    Liang, Pengjuan; Li, Shangyong; Wang, Kun; Wang, Fang; Xing, Mengxin; Hao, Jianhua; Sun, Mi

    2017-06-01

    Serralysin inhibitors have been proposed as potent drugs against many diseases and may help to prevent further development of antibiotic-resistant pathogenic bacteria. In this study, a novel serralysin inhibitor gene, lupI, was cloned from the marine bacterium Flavobacterium sp. YS-80-122 and expressed in Escherichia coli. The deduced serralysin inhibitor, LupI, shows infections.

  11. Modeling of Cd Uptake and Efflux Kinetics in Metal-Resistant Bacterium Cupriavidus metallidurans

    NARCIS (Netherlands)

    Hajdu, R.; Pinheiro, J.P.; Galceran, J.; Slaveykova, V.I.

    2010-01-01

    The Model of Uptake with Instantaneous Adsorption and Efflux, MUIAE, describing and predicting the overall Cd uptake by the metal-resistant bacterium Cupriavidus metallidurans CH34, is presented. MUIAE takes into account different processes at the bacteria-medium interface with specific emphasis on

  12. Fluoroacetate biosynthesis from the marine-derived bacterium Streptomyces xinghaiensis NRRL B-24674.

    Science.gov (United States)

    Huang, Sheng; Ma, Long; Tong, Ming Him; Yu, Yi; O'Hagan, David; Deng, Hai

    2014-07-21

    Genome sequencing identified a fluorinase gene in the marine bacterium Streptomyces xinghaiensis NRRL B-24674. Fermentation of the organism with inorganic fluoride (2 mM) demonstrated that the organism could biosynthesise fluoroacetate and that fluoroacetate production is sea-salt dependent. This is the first fluorometabolite producing microorganism identified from the marine environment.

  13. Active efflux systems in the solvent-tolerant bacterium Pseudomonas putida S12

    NARCIS (Netherlands)

    Kieboom, J.

    2002-01-01

    The aim of the research presented in this thesis was to study the molecular mechanisms of organic solvent tolerance in Pseudomonas putida S12. This bacterium is capable of growth at saturated solvent concentrations, which are lethal to normal bacteria. Organic

  14. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    NARCIS (Netherlands)

    Bielen, A.A.M.; Verhaart, M.R.A.; Oost, van der J.; Kengen, S.W.M.

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit fo

  15. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    Science.gov (United States)

    Yang, Yu; Yang, Jun; Jiang, Lei

    2016-08-19

    Yoshida et al (Report, 11 March 2016, p. 1196) reported that the bacterium Ideonella sakaiensis 201-F6 can degrade and assimilate poly(ethylene terephthalate) (PET). However, the authors exaggerated degradation efficiency using a low-crystallinity PET and presented no straightforward experiments to verify depolymerization and assimilation of PET. Thus, the authors' conclusions are rather misleading.

  16. Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes).

    Science.gov (United States)

    Thiel, Vera; Hamilton, Trinity L; Tomsho, Lynn P; Burhans, Richard; Gay, Scott E; Ramaley, Robert F; Schuster, Stephan C; Steinke, Laurey; Bryant, Donald A

    2014-08-28

    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons.

  17. Virginia Bioinformatics Institute scientists sequence genome of the nitrogen-fixing, soil-living bacterium

    OpenAIRE

    Bland, Susan

    2009-01-01

    A collaboration of researchers, which includes scientists at the Virginia Bioinformatics Institute and Virginia Tech, recently completed the genome sequence of Azotobacter vinelandii, uncovering important genetic information that will contribute to a more complete understanding of the biology of this versatile, soil-living bacterium.

  18. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response.

    Science.gov (United States)

    Van Puyvelde, Sandra; Cloots, Lore; Engelen, Kristof; Das, Frederik; Marchal, Kathleen; Vanderleyden, Jos; Spaepen, Stijn

    2011-05-01

    The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.

  19. Hydrogen Production by Co-cultures of Rhizopus oryzae and a Photosynthetic Bacterium, Rhodobacter sphaeroides RV

    Science.gov (United States)

    Asada, Yasuo; Ishimi, Katsuhiro; Nagata, Yoko; Wakayama, Tatsuki; Miyake, Jun; Kohno, Hideki

    Hydrogen production with glucose by using co-immobilized cultures of a fungus, Rhizopus oryzae NBRC5384, and a photosynthetic bacterium, Rhodobacter sphaeroides RV, in agar gels was studied. The co-immobilized cultures converted glucose to hydrogen via lactate in a high molar yield of about 8moles of hydrogen per glucose at a maximum under illuminated conditions.

  20. Draft Genome Sequence of the Iridescent Marine Bacterium Cellulophaga lytica CECT 8139.

    Science.gov (United States)

    Chapelais-Baron, Maylis; Goubet, Isabelle; Duchaud, Eric; Rosenfeld, Eric

    2017-09-07

    Some species of the genus Cellulophaga have been reported as having biotechnological interests and noteworthy physiological properties. We report here the draft genome sequence of Cellulophaga lytica CECT 8139, a bacterium that produces an intensely iridescent colony biofilm on agar surfaces. Copyright © 2017 Chapelais-Baron et al.

  1. Draft Genome Sequence of the Moderately Halophilic Bacterium Pseudoalteromonas ruthenica Strain CP76.

    Science.gov (United States)

    de la Haba, Rafael R; Sánchez-Porro, Cristina; León, María José; Papke, R Thane; Ventosa, Antonio

    2013-05-23

    Pseudoalteromonas ruthenica strain CP76, isolated from a saltern in Spain, is a moderately halophilic bacterium belonging to the Gammaproteobacteria. Here we report the draft genome sequence, which consists of a 4.0-Mb chromosome, of this strain, which is able to produce the extracellular enzyme haloprotease CPI.

  2. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery

    DEFF Research Database (Denmark)

    Martinez, Virginia; Herencias, Cristina; Jurkevitch, Edouard;

    2016-01-01

    This work examines the potential of the predatory bacterium Bdellovibrio bacteriovorus HD100, an obligate predator of other Gram-negative bacteria, as an external cell-lytic agent for recovering valuable intracellular bio-products produced by prey cultures. The bio-product targets to be recovered...

  3. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    Institute of Scientific and Technical Information of China (English)

    Yong Wang; Zhao-Ming Gao; Jiang-Tao Li; Salim Bougouffa; Ren Mao Tian; Vladimir B.Bajic; Pei-Yuan Qian

    2016-01-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum,of which the metabolic processes and ecological importance remain unclear.In the present study,we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method.Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments.Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla.The genome of TCS1 (at least 1.27 Mbp)contains a full set of genes encoding core metabolic pathways,including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate.The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat.Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism.The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood-Ljungdahl pathway were also found in the genome.Phylogenetic study of the essential genes for the Wood-Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens.Compared with genomes of acetogenic bacteria,Aerophobetes bacterium TCS 1 genome lacks the genes involved in nitrogen metabolism,sulfur metabolism,signal transduction and cell motility.The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2,hydrogen and sugars,and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps.

  4. A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola

    Directory of Open Access Journals (Sweden)

    Goryanin Igor

    2009-02-01

    Full Text Available Abstract Background In silico analyses provide valuable insight into the biology of obligately intracellular pathogens and symbionts with small genomes. There is a particular opportunity to apply systems-level tools developed for the model bacterium Escherichia coli to study the evolution and function of symbiotic bacteria which are metabolically specialised to overproduce specific nutrients for their host and, remarkably, have a gene complement that is a subset of the E. coli genome. Results We have reconstructed and analysed the metabolic network of the γ-proteobacterium Buchnera aphidicola (symbiont of the pea aphid as a model for using systems-level approaches to discover key traits of symbionts with small genomes. The metabolic network is extremely fragile with > 90% of the reactions essential for viability in silico; and it is structured so that the bacterium cannot grow without producing the essential amino acid, histidine, which is released to the insect host. Further, the amount of essential amino acid produced by the bacterium in silico can be controlled by host supply of carbon and nitrogen substrates. Conclusion This systems-level analysis predicts that the fragility of the bacterial metabolic network renders the symbiotic bacterium intolerant of drastic environmental fluctuations, whilst the coupling of histidine production to growth prevents the bacterium from exploiting host nutrients without reciprocating. These metabolic traits underpin the sustained nutritional contribution of B. aphidicola to the host and, together with the impact of host-derived substrates on the profile of nutrients released from the bacteria, point to a dominant role of the host in controlling the symbiosis.

  5. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    KAUST Repository

    Wang, Yong

    2016-07-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum, of which the metabolic processes and ecological importance remain unclear. In the present study, we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method. Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments. Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla. The genome of TCS1 (at least 1.27 Mbp) contains a full set of genes encoding core metabolic pathways, including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate. The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat. Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism. The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood–Ljungdahl pathway were also found in the genome. Phylogenetic study of the essential genes for the Wood–Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens. Compared with genomes of acetogenic bacteria, Aerophobetes bacterium TCS1 genome lacks the genes involved in nitrogen metabolism, sulfur metabolism, signal transduction and cell motility. The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2, hydrogen and sugars, and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps. © 2016, Science China Press and Springer-Verlag Berlin Heidelberg.

  6. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘ Candidatus Brocadia sapporoensis’

    KAUST Repository

    Narita, Yuko

    2017-08-18

    Anaerobic ammonium-oxidation (anammox) is recognized as an important microbial process in the global nitrogen cycle and wastewater treatment. In this study, we successfully enriched a novel anammox bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and the production of hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20 − 45°C with a maximum activity at 37°C. The maximum specific growth rate (μmax) was determined to be 0.0082h−1 at 37°C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5±2.5μM. The anammox activity was inhibited by nitrite with 11.6mM representing the 50% inhibitory concentration (IC50) but no significant inhibition was observed in the presence of formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). Comparative genome analysis revealed that the anammox bacterium enriched in present study shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The bacterium enriched in this study showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its rRNA gene sequences. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.

  7. Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest.

    Science.gov (United States)

    Shi, Jun-Feng; Sun, Chang-Qing

    2017-06-03

    Tomato is one of the most important vegetables in the world. Decay after harvest is a major issue in the development of tomato industry. Currently, the most effective method for controlling decay after harvest is storage of tomato at low temperature combined with usage of chemical bactericide; however, long-term usage of chemical bactericide not only causes pathogen resistance but also is harmful for human health and environment. Biocontrol method for the management of disease after tomato harvest has great practical significance. In this study, antagonistic bacterium B-6-1 strain was isolated from the surface of tomato and identified as Enterobacter cowanii based on morphological characteristics and physiological and biochemical features combined with sequence analysis of 16SrDNA and ropB gene and construction of dendrogram. Effects of different concentrations of antagonistic bacterium E. cowanii suspension on antifungal activity after tomato harvest were analyzed by mycelium growth rate method. Results revealed that antifungal activity was also enhanced with increasing concentrations of antagonistic bacterium; inhibitory rates of 1×10(5) colony-forming units (cfu)/mL antagonistic bacterial solution on Fusarium verticillioides, Alternaria tenuissima, and Botrytis cinerea were 46.31%, 67.48%, and 75.67%, respectively. By using in vivo inoculation method, it was further confirmed that antagonistic bacterium could effectively inhibit the occurrence of B. cinerae after tomato harvest, biocontrol effect of 1×10(9)cfu/mL zymotic fluid reached up to 95.24%, and antagonistic bacterium E. cowanii has biocontrol potential against B. cinerea after harvest of fruits and vegetables. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. A commensal symbiotic interrelationship for the growth of Symbiobacterium toebii with its partner bacterium, Geobacillus toebii

    Directory of Open Access Journals (Sweden)

    Masui Ryoji

    2011-10-01

    Full Text Available Abstract Background Symbiobacterium toebii is a commensal symbiotic thermophile that absolutely requires its partner bacterium Geobacillus toebii for growth. Despite development of an independent cultivation method using cell-free extracts, the growth of Symbiobacterium remains unknown due to our poor understanding of the symbiotic relationship with its partner bacterium. Here, we investigated the interrelationship between these two bacteria for growth of S. toebii using different cell-free extracts of G. toebii. Results Symbiobacterium toebii growth-supporting factors were constitutively produced through almost all growth phases and under different oxygen tensions in G. toebii, indicating that the factor may be essential components for growth of G. toebii as well as S. toebii. The growing conditions of G. toebii under different oxygen tension dramatically affected to the initial growth of S. toebii and the retarded lag phase was completely shortened by reducing agent, L-cysteine indicating an evidence of commensal interaction of microaerobic and anaerobic bacterium S. toebii with a facultative aerobic bacterium G. toebii. In addition, the growth curve of S. toebii showed a dependency on the protein concentration of cell-free extracts of G. toebii, demonstrating that the G. toebii-derived factors have nutrient-like characters but not quorum-sensing characters. Conclusions Not only the consistent existence of the factor in G. toebii during all growth stages and under different oxygen tensions but also the concentration dependency of the factor for proliferation and optimal growth of S. toebii, suggests that an important biosynthetic machinery lacks in S. toebii during evolution. The commensal symbiotic bacterium, S. toebii uptakes certain ubiquitous and essential compound for its growth from environment or neighboring bacteria that shares the equivalent compounds. Moreover, G. toebii grown under aerobic condition shortened the lag phase of S

  9. Regulation of glutamine synthetase activity by adenylylation in the Gram-positive bacterium Streptomyces cattleya.

    Science.gov (United States)

    Streicher, S L; Tyler, B

    1981-01-01

    The enzymatic activity of glutamine synthetase [GS; L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2] from the Gram-positive bacterium Streptomyces cattleya is regulated by covalent modification. In whole cells containing high levels of GS the addition of ammonium chloride leads to a rapid decline in GS activity. Crude extracts prepared from such ammonia-shocked cells had very low levels of GS activity as measured by biosynthetic and gamma-glutamyltransferase assays. Incubation of the crude extracts with snake venom phosphodiesterase restored GS activity. In cell extracts, GS was also inactivated by an ATP- and glutamine-dependent reaction. Radioactive labeling studies demonstrated the incorporation of an AmP moiety into GS protein upon modification. Our results suggest a covalent modification of GS in a Gram-positive bacterium. This modification appears to be adenylylation of the GS subunit similar to that found in the Gram-negative bacteria.

  10. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium

    Science.gov (United States)

    Tago, Damian; Meyer, Damien F.

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria. PMID:27610355

  11. Inflammasomes Coordinate Pyroptosis and Natural Killer Cell Cytotoxicity to Clear Infection by a Ubiquitous Environmental Bacterium.

    Science.gov (United States)

    Maltez, Vivien I; Tubbs, Alan L; Cook, Kevin D; Aachoui, Youssef; Falcone, E Liana; Holland, Steven M; Whitmire, Jason K; Miao, Edward A

    2015-11-17

    Defective neutrophils in patients with chronic granulomatous disease (CGD) cause susceptibility to extracellular and intracellular infections. Microbes must first be ejected from intracellular niches to expose them to neutrophil attack, so we hypothesized that inflammasomes detect certain CGD pathogens upstream of neutrophil killing. Here, we identified one such ubiquitous environmental bacterium, Chromobacterium violaceum, whose extreme virulence was fully counteracted by the NLRC4 inflammasome. Caspase-1 protected via two parallel pathways that eliminated intracellular replication niches. Pyroptosis was the primary bacterial clearance mechanism in the spleen, but both pyroptosis and interleukin-18 (IL-18)-driven natural killer (NK) cell responses were required for liver defense. NK cells cleared hepatocyte replication niches via perforin-dependent cytotoxicity, whereas interferon-γ was not required. These insights suggested a therapeutic approach: exogenous IL-18 restored perforin-dependent cytotoxicity during infection by the inflammasome-evasive bacterium Listeria monocytogenes. Therefore, inflammasomes can trigger complementary programmed cell death mechanisms, directing sterilizing immunity against intracellular bacterial pathogens.

  12. Framing in the Spanish press about the health crisis because of the E. coli bacterium

    Directory of Open Access Journals (Sweden)

    Paloma López Villafranca

    2013-12-01

    Full Text Available This research article analyses  the approach made by press media and other institutional advertising about the E. coli bacterium, most commonly known as cucumber crisis in Spain. While in the rest of Europe this crisis receives the same treatment as A Flu or mad cow disease in this country it is treated as a crisis that affects to the spanish economy and not to the health of the citizen. Economic interests prevail over public health and this is due to official information given. An analysis of contents of the most popular journals in Spain, according to OJD, is made to prove this hypothesis, El Pais, El Mundo and ABC, as well as a study of the main institutional advertising made about E. coli bacterium by official spanish organizations and the media.

  13. The bacterium Xenorhabdus nematophila inhibits phospholipases A2 from insect, prokaryote, and vertebrate sources

    Science.gov (United States)

    Park, Youngjin; Kim, Yonggyun; Stanley, David

    The bacterium, Xenorhabdus nematophila, is a virulent insect pathogen. Part of its pathogenicity is due to impairing cellular immunity by blocking biosynthesis of eicosanoids, the major recognized signal transduction system in insect cellular immunity. X. nematophila inhibits the first step in eicosanoid biosynthesis, phospholipase A2 (PLA2). Here we report that the bacterium inhibits PLA2 from two insect immune tissues, hemocytes and fat body, as well as PLA2s selected to represent a wide range of organisms, including prokaryotes, insects, reptiles, and mammals. Our finding on a bacterial inhibitor of PLA2 activity contributes new insight into the chemical ecology of microbe-host interactions, which usually involve actions rather than inhibitors of PLA2s.

  14. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization.

    Science.gov (United States)

    Banerjee, Aulie; Supakar, Subhrangshu; Banerjee, Raja

    2014-01-01

    Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state (13)C NMR), we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation.

  15. Ferredoxin-NADP reductase from the thermophilic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6.

    Science.gov (United States)

    Ikeda, Takeshi; Nakamura, Miyuki; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo

    2009-08-01

    The thermophilic, obligately chemolithoautotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, assimilates carbon dioxide via the reductive tricarboxylic acid cycle. Small iron-sulfur proteins, ferredoxins, play a central role as low-potential electron donors for this cycle. The fpr gene of this bacterium, encoding a putative ferredoxin-NADP(+) reductase (FNR, EC 1.18.1.2), was expressed in Escherichia coli, and the recombinant protein was purified to homogeneity. Unexpectedly, the monomeric Fpr protein contained one molecule of FMN as a prosthetic group, although FNRs from other organisms are known to contain FAD. The FMN-containing Fpr was shown to be a bona fide FNR that catalyzes a reversible redox reaction between NADP(+)/NADPH and ferredoxins.

  16. Effect of Sulfate Reduced Bacterium on Corrosion Behavior of 10CrMoAl Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; LIANG Cheng-hao

    2007-01-01

    The effects of sulfate reduced bacterium (SRB) on the corrosion behavior of 10CrMoAl steel in seawater were studied by chemical immersion, potentiodynamic polarization, electrochemical impedance spectroscopy measurement, and scanning electron microscope techniques. The results show that the content of element sulfur in the corrosion product of 10CrMoAl steel in seawater with SRB is up to 9.23%, which is higher than that of the same in sterile seawater. X-ray diffraction demonstrates that the main corrosion product is FeS. SRB increases the corrosion rate by anodic depolarization of the metabolized sulfide product. SEM observation indicates that the corrosion product is not distributed continuously; in addition, bacilliform sulfate-reduced bacterium accumulates on the local surface of 10CrMoAl steel. Hence, SRB enhances sensitivity to the localized corrosion of 10CrMoAl steel in seawater.

  17. Isolation and biological characteristics of aerobic marine magnetotactic bacterium YSC-1

    Institute of Scientific and Technical Information of China (English)

    GAO Jun; PAN Hongmiao; YUE Haidong; SONG Tao; ZHAO Yong; CHEN Guanjun; Wu Longfei; XIAO Tian

    2006-01-01

    Magnetotactic bacteria have become a hot spot of research in microbiology attracting intensive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fastidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in dimeter of 100nm, and consist of Fe and Co shown on energy dispersive X-ray spectrum. The biological and physiological characteristics of this bacterium were also described. The colour of YSC-1 colony is white in small rod. The gran stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.

  18. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    Science.gov (United States)

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  19. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium.

    Science.gov (United States)

    Begemann, Matthew B; Mormile, Melanie R; Sitton, Oliver C; Wall, Judy D; Elias, Dwayne A

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobiumhydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6-carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate, and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  20. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium

    Directory of Open Access Journals (Sweden)

    Matthew eBegemann

    2012-03-01

    Full Text Available Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium hydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  1. Exo- and surface proteomes of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Celebioglu, Hasan Ufuk; Svensson, Birte

    2017-01-01

    Lactobacillus acidophilus NCFM is a well-known probiotic bacterium extensively studied for its beneficial health effects. Exoproteome (proteins exported into culture medium) and surface proteome (proteins attached to S-layer) of this probiotic were identified by using 2DE followed by MALDI TOF MS......-classically secreted proteins. Identification of exo- and surface proteomes contributes describing potential protein-mediated probiotic-host interactions....

  2. Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium Actinokineospora sp. Strain EG49

    KAUST Repository

    Harjes, Janno

    2014-03-06

    The marine sponge-associated bacterium Actinokineospora sp. strain EG49 produces the antitrypanosomal angucycline-like compound actinosporin A. The draft genome of Actinokineospora sp. EG49 has a size of 7.5 megabases and a GC content of 72.8% and contains 6,629 protein-coding sequences (CDS). antiSMASH predicted 996 genes residing in 36 secondary metabolite gene clusters.

  3. Nobel lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis.

    OpenAIRE

    Deisenhofer, J.; Michel, H

    1989-01-01

    In our lectures we first describe the history and methods of membrane protein crystallization, before we show how the structure of the photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis was solved. Then the structure of this membrane protein complex is correlated with its function as a light-driven electron pump across the photosynthetic membrane. Finally we draw conclusions on the structure of the photosystem II reaction centre from plants and discuss the aspec...

  4. Complete genome sequence of Rufibacter tibetensis strain 1351, a radiation-resistant bacterium from Tibet plateau.

    Science.gov (United States)

    Zhang, Yi; Yu, Can; Zhou, Mengzhou; Tang, Jingfeng; Li, Xin; Wang, Zhi; Li, Zhijun; Yao, Juan; Li, Pei; Zheng, Guobin; Chen, Xiong; Dai, Jun

    2015-12-20

    Rufibacter tibetensis strain 1351, isolated from the soil of the Tibet plateau of China, belongs to the family of Cytophagaceae. It is a red-pigmented, gram-negative, strictly aerobic and rod-shaped bacterium and shows resistance to UV radiation. Here, we report its complete genome sequence, which can help us find the key genes of the carotenoid biosynthesis and resistance to UV radiation.

  5. Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent.

    Science.gov (United States)

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z; Nisar, Muhammad A; Zulfiqar, Soumble; Shakoori, Abdul R

    2016-12-01

    Cadmium resistant bacterium, isolated from industrial wastewater, was characterized as Salmonella enterica 43C on the basis of biochemical and 16S rRNA ribotyping. It is first ever reported S. enterica 43C bared extreme resistance against heavy metal consortia in order of Pb(2+)>Cd(2+)>As(3+)>Zn(2+)>Cr(6+)>Cu(2+)>Hg(2+). Cd(2+) stress altered growth pattern of the bacterium in time dependent manner. It could remove nearly 57 % Cd(2+) from the medium over a period of 8 days. Kinetic and thermodynamic studies based on various adsorption isotherm models (Langmuir and Freundlich) depicted the Cd(2+) biosorption as spontaneous, feasible and endothermic in nature. Interestingly, the bacterium followed pseudo first order kinetics, making it a good biosorbent for heavy metal ions. The S. enterica 43C Cd(2+) processivity was significantly influenced by temperature, pH, initial Cd(2+) concentration, biomass dosage and co-metal ions. FTIR analysis of the bacterium revealed the active participation of amide and carbonyl moieties in Cd(2+) adsorption confirmed by EDX analysis. Electron micrographs beckoned further surface adsorption and increased bacterial size due to intracellular Cd(2+) accumulation. An overwhelming increase in glutathione and other non-protein thiols levels played a significant role in thriving oxidative stress generated by metal cations. Presence of metallothionein clearly depicted the role of such proteins in bacterial metal resistance mechanism. The present study results clearly declare S. enterica 43C a suitable candidate for green chemistry to bioremediate environmental Cd(2+).

  6. Five new amicoumacins isolated from a marine-derived Bacterium bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2012-02-03

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. 2012 by the authors; licensee MDPI.

  7. Draft Genome Sequence of Uncultured SAR324 Bacterium lautmerah10, Binned from a Red Sea Metagenome

    KAUST Repository

    Haroon, Mohamed

    2016-02-11

    A draft genome of SAR324 bacterium lautmerah10 was assembled from a metagenome of a surface water sample from the Red Sea, Saudi Arabia. The genome is more complete and has a higher G+C content than that of previously sequenced SAR324 representatives. Its genomic information shows a versatile metabolism that confers an advantage to SAR324, which is reflected in its distribution throughout different depths of the marine water column.

  8. Identifying the assembly pathway of cyanophage inside the marine bacterium using electron cryo-tomography

    Directory of Open Access Journals (Sweden)

    Wei Dai

    2014-01-01

    Full Text Available Advances in electron cryo-tomography open up a new avenue to visualize the 3-D internal structure of a single bacterium before and after its infection by bacteriophages in its native environment, without using chemical fixatives, fluorescent dyes or negative stains. Such direct observation reveals the presence of assembly intermediates of the bacteriophage and thus allows us to map out the maturation pathway of the bacteriophage inside its host.

  9. Identifying the assembly pathway of cyanophage inside the marine bacterium using electron cryo-tomography.

    Science.gov (United States)

    Dai, Wei; Schmid, Michael F; King, Jonathan A; Chiu, Wah

    2014-06-01

    Advances in electron cryo-tomography open up a new avenue to visualize the 3-D internal structure of a single bacterium before and after its infection by bacteriophages in its native environment, without using chemical fixatives, fluorescent dyes or negative stains. Such direct observation reveals the presence of assembly intermediates of the bacteriophage and thus allows us to map out the maturation pathway of the bacteriophage inside its host.

  10. Identifying the assembly pathway of cyanophage inside the marine bacterium using electron cryo-tomography

    OpenAIRE

    Wei Dai; Schmid, Michael F.; King, Jonathan A.; Wah Chiu

    2014-01-01

    Advances in electron cryo-tomography open up a new avenue to visualize the 3-D internal structure of a single bacterium before and after its infection by bacteriophages in its native environment, without using chemical fixatives, fluorescent dyes or negative stains. Such direct observation reveals the presence of assembly intermediates of the bacteriophage and thus allows us to map out the maturation pathway of the bacteriophage inside its host.

  11. Degradation of p-nitrophenol by the phototrophic bacterium Rhodobacter capsulatus.

    Science.gov (United States)

    Roldán, M D; Blasco, R; Caballero, F J; Castillo, F

    1998-01-01

    The phototrophic bacterium Rhodobacter capsulatus detoxified p-nitrophenol and 4-nitrocatechol. The bacterium tolerated moderate concentrations of p-nitrophenol (up to 0.5 mM) and degraded it under light at an optimal O2 pressure of 20 kPa. The bacterium did not metabolize the xenobiotic in the dark or under strictly anoxic conditions or high O2 pressure. Bacterial growth with acetate in the presence of p-nitrophenol took place with the simultaneous release of nonstoichiometric amounts of 4-nitrocatechol, which can also be degraded by the bacterium. Crude extracts from R. capsulatus produced 4-nitrocatechol from p-nitrophenol upon the addition of NAD(P)H, although at a very low rate. A constitutive catechol 1, 2-dioxygenase activity yielding cis,cis-muconate was also detected in crude extracts of R. capsulatus. Further degradation of 4-nitrocatechol included both nitrite- and CO2-releasing steps since: (1) a strain of R. capsulatus (B10) unable to assimilate nitrate and nitrite released nitrite into the medium when grown with p-nitrophenol or 4-nitrocatechol, and the nitrite concentration was stoichiometric with the 4-nitrocatechol degraded, and (2) cultures of R. capsulatus growing microaerobically produced low amounts of 14CO2 from radiolabeled p-nitrophenol. The radioactivity was also incorporated into cellular compounds from cells grown with uniformly labeled 14C-p-nitrophenol. From these results we concluded that the xenobiotic is used as a carbon source by R. capsulatus, but that only the strain able to assimilate nitrite (E1F1) can use p-nitrophenol as a nitrogen source.

  12. Sexual transmission of a plant pathogenic bacterium, Candidatus Liberibacter asiaticus, between conspecific insect vectors during mating.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Candidatus Liberibacter asiaticus is a fastidious, phloem-inhabiting, gram-negative bacterium transmitted by Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae. The bacterium is the presumed causal agent of huanglongbing (HLB, one of the most destructive and economically important diseases of citrus. We investigated whether Las is transmitted between infected and uninfected D. citri adults during courtship. Our results indicate that Las was sexually transmitted from Las-infected male D. citri to uninfected females at a low rate (<4% during mating. Sexual transmission was not observed following mating of infected females and uninfected males or among adult pairs of the same sex. Las was detected in genitalia of both sexes and also in eggs of infected females. A latent period of 7 days or more was required to detect the bacterium in recipient females. Rod shaped as well as spherical structures resembling Las were observed in ovaries of Las-infected females with transmission electron microscopy, but were absent in ovaries from uninfected D. citri females. The size of the rod shaped structures varied from 0.39 to 0.67 µm in length and 0.19 to 0.39 µm in width. The spherical structures measured from 0.61 to 0.80 µm in diameter. This investigation provides convincing evidence that a plant pathogenic bacterium is sexually transmitted from male to female insects during courtship and established evidence that bacteria persist in reproductive organs. Moreover, these findings provide an alternative sexually horizontal mechanism for the spread of Las within populations of D. citri, even in the absence of infected host trees.

  13. Draft Genome Sequence of the Cyanide-Utilizing Bacterium Pseudomonas fluorescens Strain NCIMB 11764

    OpenAIRE

    2012-01-01

    We report here the 6.97-Mb draft genome sequence of Pseudomonas fluorescens strain NCIMB 11764, which is capable of growth on cyanide as the sole nitrogen source. The draft genome sequence allowed the discovery of several genes implicated in enzymatic cyanide turnover and provided additional information contributing to a better understanding of this organism's unique cyanotrophic ability. This is the first sequenced genome of a cyanide-assimilating bacterium.

  14. Draft genome sequence of the cyanide-utilizing bacterium Pseudomonas fluorescens strain NCIMB 11764.

    Science.gov (United States)

    Vilo, Claudia A; Benedik, Michael J; Kunz, Daniel A; Dong, Qunfeng

    2012-12-01

    We report here the 6.97-Mb draft genome sequence of Pseudomonas fluorescens strain NCIMB 11764, which is capable of growth on cyanide as the sole nitrogen source. The draft genome sequence allowed the discovery of several genes implicated in enzymatic cyanide turnover and provided additional information contributing to a better understanding of this organism's unique cyanotrophic ability. This is the first sequenced genome of a cyanide-assimilating bacterium.

  15. Two New Cholic Acid Derivatives from the Marine Ascidian-Associated Bacterium Hasllibacter halocynthiae

    Directory of Open Access Journals (Sweden)

    Sung Hun Kim

    2012-10-01

    Full Text Available The investigation of secondary metabolites in liquid cultures of a recently discovered marine bacterium, Hasllibacter halocynthiae strain KME 002T, led to the isolation of two new cholic acid derivatives. The structures of these compounds were determined to be 3,3,12-trihydroxy-7-ketocholanic acid (1 and 3,3,12-trihydroxy-7-deoxycholanic acid (2 through HRFABMS and NMR data analyses.

  16. Insights in Nanoparticle-Bacterium Interactions: New Frontiers to Bypass Bacterial Resistance to Antibiotics.

    Science.gov (United States)

    Diab, Roudayna; Khameneh, Bahman; Joubert, Olivier; Duval, Raphael

    2015-01-01

    Nanotechnology has been revealed as a fundamental approach for antibiotics delivery. In this paper, recent findings demonstrating the superiority of nanocarried-antibiotics over "naked" ones and the ways by which nanoparticles can help to overwhelm bacterial drug resistance are reviewed. The second part of this paper sheds light on nanoparticle-bacterium interaction patterns. Finally, key factors affecting the effectiveness of nanoparticles interactions with bacteria are discussed.

  17. Permanent draft genome of the malachite-green-tolerant bacterium Rhizobium sp. MGL06.

    Science.gov (United States)

    Liu, Yang; Wang, Runping; Zeng, Runying

    2014-12-01

    Rhizobium sp. MGL06, the first Rhizobium isolate from a marine environment, is a malachite-green-tolerant bacterium with a broader salinity tolerance (range: 0.5% to 9%) than other rhizobia. This study sequences and annotates the draft genome sequence of this strain. Genome sequence information provides a basis for analyzing the malachite green tolerance, broad salinity adaptation, nitrogen fixation properties, and taxonomic classification of the isolate.

  18. Draft Genome Sequence of Agarivorans albus Strain MKT 106T, an Agarolytic Marine Bacterium.

    Science.gov (United States)

    Yasuike, Motoshige; Nakamura, Yoji; Kai, Wataru; Fujiwara, Atushi; Fukui, Youhei; Satomi, Masataka; Sano, Motohiko

    2013-07-18

    Agarivorans albus is a Gram-negative, strictly aerobic, and agar-hydrolyzing marine bacterium. We present the draft genome sequence of the A. albus strain MKT 106(T), which is composed of 67 contigs (>500 bp) totaling 4,734,285 bp and containing 4,397 coding DNA sequences (CDSs), four rRNAs, and 64 tRNA sequences.

  19. Biological control and endophytism of the olive root bacterium Pseudomonas fluorescens PICF7

    OpenAIRE

    Maldonado González, Mercedes

    2015-01-01

    Olive (Olea europaea L.) has always been a fundamental crop in the Mediterranean Basin. Driven by the fact, among others, that an increasing number of scientific reports highlight the benefits that olive oil consumption has for human health, olive tree cultivation has spread worldwide to other regions with Mediterranean-type climate. Two relevant pathogens affecting olive trees are the hemibiotrophic soil-borne fungus Verticillium dahliae and the bacterium Pseudomonas savastano...

  20. Genome Sequence of Marine Bacterium Idiomarina sp. Strain 28-8, Isolated from Korean Ark Shells.

    Science.gov (United States)

    Kim, Woo-Jin; Kim, Young-Ok; Kim, Dong-Gyun; Nam, Bo-Hye; Kong, Hee Jeong; Jung, Hyungtaek; Lee, Sang-Jun; Kim, Dong-Wook; Kim, Dae-Soo; Chae, Sung-Hwa

    2013-10-03

    Idiomarina sp. strain 28-8 is an aerobic, Gram-negative, flagellar bacterium isolated from the bodies of ark shells (Scapharca broughtonii) collected from underwater sediments in Gangjin Bay, South Korea. Here, we present the draft genome sequence of Idiomarina sp. 28-8 (2,971,606 bp, with a G+C content of 46.9%), containing 2,795 putative coding sequences.

  1. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  2. Draft Genome Sequence of Sphingobium ummariense Strain RL-3, a Hexachlorocyclohexane-Degrading Bacterium.

    Science.gov (United States)

    Kohli, Puneet; Dua, Ankita; Sangwan, Naseer; Oldach, Phoebe; Khurana, J P; Lal, Rup

    2013-11-14

    Here, we report the draft genome sequence of the hexachlorocyclohexane (HCH)-degrading bacterium Sphingobium ummariense strain RL-3, which was isolated from the HCH dumpsite located in Lucknow, India (27°00'N and 81°09'E). The annotated draft genome sequence (4.75 Mb) of strain RL-3 consisted of 139 contigs, 4,645 coding sequences, and 65% G+C content.

  3. Bacillus marcorestinctum sp. nov., a Novel Soil Acylhomoserine Lactone Quorum-Sensing Signal Quenching Bacterium

    OpenAIRE

    Xianzhen Li; Bo Zhu; Nuo Li; Fang Chen; Yan Han

    2010-01-01

    A Gram-positive, facultatively anaerobic, endospore-forming and rod-shaped bacterium was isolated from soil samples and designated strain LQQ. This organism strongly quenches the acylhomoserine lactone quorum-sensing signal. The LQQ strain exhibits phenotypic characteristics consistent with its classification in the genus Bacillus. It is positive in catalase and no special growth factor is needed. It uses glucose as sole carbon source. The DNA G + C content is 39.8 mol %. The closest relative...

  4. Complete genome of Planococcus rifietoensis M8(T), a halotolerant and potentially plant growth promoting bacterium.

    Science.gov (United States)

    See-Too, Wah-Seng; Convey, Peter; Pearce, David A; Lim, Yan Lue; Ee, Robson; Yin, Wai-Fong; Chan, Kok-Gan

    2016-03-10

    Planococcus rifietoensis M8(T) (=DSM 15069(T)=ATCC BAA-790(T)) is a halotolerant bacterium with potential plant growth promoting properties isolated from an algal mat collected from a sulfurous spring in Campania (Italy). This paper presents the first complete genome of P. rifietoensis M8(T). Genes coding for various potentially plant growth promoting properties were identified within its genome. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping.

    Science.gov (United States)

    Johnson, Ethan T; Baron, Daniel B; Naranjo, Belén; Bond, Daniel R; Schmidt-Dannert, Claudia; Gralnick, Jeffrey A

    2010-07-01

    Microorganisms can use complex photosystems or light-dependent proton pumps to generate membrane potential and/or reduce electron carriers to support growth. The discovery that proteorhodopsin is a light-dependent proton pump that can be expressed readily in recombinant bacteria enables development of new strategies to probe microbial physiology and to engineer microbes with new light-driven properties. Here, we describe functional expression of proteorhodopsin and light-induced changes in membrane potential in the bacterium Shewanella oneidensis strain MR-1. We report that there were significant increases in electrical current generation during illumination of electrochemical chambers containing S. oneidensis expressing proteorhodopsin. We present evidence that an engineered strain is able to consume lactate at an increased rate when it is illuminated, which is consistent with the hypothesis that proteorhodopsin activity enhances lactate uptake by increasing the proton motive force. Our results demonstrate that there is coupling of a light-driven process to electricity generation in a nonphotosynthetic engineered bacterium. Expression of proteorhodopsin also preserved the viability of the bacterium under nutrient-limited conditions, providing evidence that fulfillment of basic energy needs of organisms may explain the widespread distribution of proteorhodopsin in marine environments.

  6. Antagonism and Molecular Identification of an Antibiotic Bacterium BS04 Against Phytopathogenic Fungi and Bacteria

    Institute of Scientific and Technical Information of China (English)

    Xie Jing(谢晶); Ge Shaorong; Tao Yong; Gao Ping; Liu Kun; Liu Shigui

    2004-01-01

    Through a modified agar well diffusion assay, antagonism of bacterium BS04 is tested. The data show that BS04 has antibiotic activity against phytopathogenic fungi and bacteria, including Phoma wasabiae Yokogi, Cochlibolus Heterostrophu, Exserohilum Turcicum, Curuvularia Lunata (Walk) Boed, Thantephorus cucumris, Fusarium graminearum, Xanthomonas axonopodis pv. Citri (Hasse) Dye and Xanthomonas zingiberi (Uyeda) Savulescu. The products of bacterium BS04 can endure the treatment of a wide range of pH, and maintain the antibiotic activity after treatment of 100℃ for 30 min. The result suggests that bacterium BS04 has the potential as a promising biocontrol agent. In order to determine the taxonomic placement, the molecular identification of BS04 is performed. The comparative analysis of 16s rDNA sequences indicates that the 16s rDNA sequence of BS04 is highly homologous with sequences of typical Paenibacillus bacteria from the RPD library (from 92% to 99%). And the constructed phylogenetic tree by using maximum-likelihood method with Bootstrap Trial 1000 proves that BS04 is subjected to Paenibacillus polymyxa.

  7. Programmed cell death in Laminaria japonica (Phaeophyta) tissues infected with alginic acid decomposing bacterium

    Institute of Scientific and Technical Information of China (English)

    WANG Gaoge; LIN Wei; ZHANG Lijing; YAN Xiaojun; DUAN Delin

    2004-01-01

    TdT-mediated dUTP-biotin nick end labeling (TUNEL) is a sensitive and valid method for detecting DNA cleavage in programmed cell death (PCD). Using this method, DNA cleavage was observed in Laminaria japonica sporophytic tissues, which were infected with alginic acid decomposing bacterium. It was found that DNA cleavage occurred 5 min after the infection, the fragments with 3′-OH groups of cleaved nuclear DNA increased with time of infection and spread from the infection site. Although no typical DNA ladder (200 bp/180 bp) was detected by routine agarose gel electrophoresis, the cleavage of nuclear DNA fragments of 97~48.5 kb could be detected by pulsed field gel electrophoresis (PFGE). By using CaspGLOWTM fluorescein active caspase-3 staining method, caspase-3 activity has been detected in response to the infection of alginic acid decomposing bacterium. Our results are similar to the observations in hypersensitive response (HR) of higher plant, suggesting that the rapid cell death of L. Japonica infected by alginic acid decomposing bacterium might be involved in PCD, and indicating that the occurrence of PCD is an active defense process against the pathogen's infection.

  8. Development of a markerless deletion system for the fish-pathogenic bacterium Flavobacterium psychrophilum.

    Science.gov (United States)

    Gómez, Esther; Álvarez, Beatriz; Duchaud, Eric; Guijarro, José A

    2015-01-01

    Flavobacterium psychrophilum is a Gram-negative fish pathogen that causes important economic losses in aquaculture worldwide. Although the genome of this bacterium has been determined, the function and relative importance of genes in relation to virulence remain to be established. To investigate their respective contribution to the bacterial pathogenesis, effective tools for gene inactivation are required. In the present study, a markerless gene deletion system has been successfully developed for the first time in this bacterium. Using this method, the F. psychrophilum fcpB gene, encoding a predicted cysteine protease homologous to Streptococcus pyogenes streptopain, was deleted. The developed system involved the construction of a conjugative plasmid that harbors the flanking sequences of the fcpB gene and an I-SceI meganuclease restriction site. Once this plasmid was integrated in the genome by homologous recombination, the merodiploid was resolved by the introduction of a plasmid expressing I-SceI under the control of the fpp2 F. psychrophilum inducible promoter. The resulting deleted fcpB mutant presented a decrease in extracellular proteolytic activity compared to the parental strain. However, there were not significant differences between their LD50 in an intramuscularly challenged rainbow trout infection model. The mutagenesis approach developed in this work represents an improvement over the gene inactivation tools existing hitherto for this "fastidious" bacterium. Unlike transposon mutagenesis and gene disruption, gene markerless deletion has less potential for polar effects and allows the mutation of virtually any non-essential gene or gene clusters.

  9. Development of a markerless deletion system for the fish-pathogenic bacterium Flavobacterium psychrophilum.

    Directory of Open Access Journals (Sweden)

    Esther Gómez

    Full Text Available Flavobacterium psychrophilum is a Gram-negative fish pathogen that causes important economic losses in aquaculture worldwide. Although the genome of this bacterium has been determined, the function and relative importance of genes in relation to virulence remain to be established. To investigate their respective contribution to the bacterial pathogenesis, effective tools for gene inactivation are required. In the present study, a markerless gene deletion system has been successfully developed for the first time in this bacterium. Using this method, the F. psychrophilum fcpB gene, encoding a predicted cysteine protease homologous to Streptococcus pyogenes streptopain, was deleted. The developed system involved the construction of a conjugative plasmid that harbors the flanking sequences of the fcpB gene and an I-SceI meganuclease restriction site. Once this plasmid was integrated in the genome by homologous recombination, the merodiploid was resolved by the introduction of a plasmid expressing I-SceI under the control of the fpp2 F. psychrophilum inducible promoter. The resulting deleted fcpB mutant presented a decrease in extracellular proteolytic activity compared to the parental strain. However, there were not significant differences between their LD50 in an intramuscularly challenged rainbow trout infection model. The mutagenesis approach developed in this work represents an improvement over the gene inactivation tools existing hitherto for this "fastidious" bacterium. Unlike transposon mutagenesis and gene disruption, gene markerless deletion has less potential for polar effects and allows the mutation of virtually any non-essential gene or gene clusters.

  10. Epidemiological analysis of acute diarrhea in children and inspection of pathogenic bacterium, viruses and other microorganisms

    Institute of Scientific and Technical Information of China (English)

    Li Hu; Yan Wang

    2016-01-01

    Objective:To investigate of epidemiological analysis of acute diarrhea in children, and to discuss the inspection of pathogenic bacterium, viruses and other microorganisms, in order to provide theoretical basis for the prevention and treatment of the disease.Methods: Five hundred and sixty-two cases of children with acute diarrhea treated in our center were selected as the research subjects, whose epidemiological data were analyzed. The fecal samples were collected for bacterial culture and identification, and the distribution characteristics of pathogenic bacteria were collected, then their relative characteristics were analyzed.Results:Children with acute diarrhea were more common in men aged 1-2 years old,and the incidence of time was more concentrated in June-August. There were four hundred and eighty-nine strains in the five hundred and sixty-two cases of children, among which the rate of viruses was the most, and the human rotavirus accounted for 30.67%, and the Shigella bacterium accounted for 20.65% in the total microorganisms, which was the highest detection rate of pathogenic bacterium. Rotavirus infection occured mainly in Winter, but the bacterial and goblet viral diarrhea was prevalent in summer.Conclusions:Children with acute diarrhea were more common in men aged 1-2 years old , and the rate of viruses in the detection of microorganisms is the highest, so targeted treatment should be taken according to the type of infection.

  11. Rhodococcus sp. Q5, a novel agarolytic bacterium isolated from printing and dyeing wastewater.

    Science.gov (United States)

    Feng, Zehua; Peng, Lin; Chen, Mei; Li, Mengying

    2012-09-01

    An agar-degrading bacterium, Rhodococcus sp. Q5, was isolated from printing and dyeing wastewater using a mineral salts agar plate containing agar as the sole carbon source. The bacterium grew from pH 4.0 to 9.0, from 15 to 35°C, and in NaCl concentrations of 0-5 %; optimal values were pH 6.0, 30°C, and 1 % NaCl. Maximal agarase production was observed at pH 6.0 and 30°C. The bacterium did not require NaCl for growth or agarase production. The agarase secreted by Q5 was inducible by agar and was repressed by all simple sugars tested except lactose. Strain Q5 could hydrolyze starch but not cellulose or carboxymethyl cellulose. Agarase activity could also be detected in the medium when lactose or starch was the sole source of carbon and energy. Strain Q5 could grow in nitrogen-free mineral media; an organic nitrogen source was more effective than inorganic carbon sources for growth and agarase production. Addition of more organic nitrogen (peptone) to the medium corresponded with reduced agarase activity.

  12. Genomic Analysis of a Marine Bacterium: Bioinformatics for Comparison, Evaluation, and Interpretation of DNA Sequences

    Directory of Open Access Journals (Sweden)

    Bhagwan N. Rekadwad

    2016-01-01

    Full Text Available A total of five highly related strains of an unidentified marine bacterium were analyzed through their short genome sequences (AM260709–AM260713. Genome-to-Genome Distance (GGDC showed high similarity to Pseudoalteromonas haloplanktis (X67024. The generated unique Quick Response (QR codes indicated no identity to other microbial species or gene sequences. Chaos Game Representation (CGR showed the number of bases concentrated in the area. Guanine residues were highest in number followed by cytosine. Frequency of Chaos Game Representation (FCGR indicated that CC and GG blocks have higher frequency in the sequence from the evaluated marine bacterium strains. Maximum GC content for the marine bacterium strains ranged 53-54%. The use of QR codes, CGR, FCGR, and GC dataset helped in identifying and interpreting short genome sequences from specific isolates. A phylogenetic tree was constructed with the bootstrap test (1000 replicates using MEGA6 software. Principal Component Analysis (PCA was carried out using EMBL-EBI MUSCLE program. Thus, generated genomic data are of great assistance for hierarchical classification in Bacterial Systematics which combined with phenotypic features represents a basic procedure for a polyphasic approach on unambiguous bacterial isolate taxonomic classification.

  13. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes--Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mary E. Lidstrom

    2003-12-26

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions.

  14. Antimicrobial activity and biosynthesis of nanoparticles by endophytic bacterium inhabiting Coffee arabica L.

    Directory of Open Access Journals (Sweden)

    Syed Baker

    2012-12-01

    Full Text Available The interface between endophytes and nanomaterials is a relatively new and unexplored area the present study evaluates screening of bacterial endophytes from surfaced sterilized leaf and stem segments of agro economical plant Coffee arabica L. towards synthesis of silver nanoparticles and antimicrobial metabolites. Among thirty two endophytes isolated nine isolates exhibited antimicrobial activity among which one bacterium was capable of extracellular synthesis of silver nanoparticles upon evaluation of supernatant with 1 mM of silver nitrate, biosynthesis of silver nanoparticles were assessed by UV-Visible Spectroscopy and the bacterium was capable of secreting antimicrobial secondary metabolites upon crude ethyl acetate extract evaluated for antimicrobial activity against panel of both gram positive and gram negative as well as phytopathogenic fungi. Partial characterization was carried out via bioautographic technique with Rf value 0.3 and 0.6 exhibiting antimicrobial activity against MRSA strain. Further studies in this area will be promising enough for molecular characterization of endophytic bacterium and chemical profiling of antimicrobial metabolites at the same time physiochemical characterization of nanoparticles will be valuable to reveal the size and shape. 

  15. Widespread association of a Rickettsiales-like bacterium with reef-building corals.

    Science.gov (United States)

    Casas, Veronica; Kline, David I; Wegley, Linda; Yu, Yanan; Breitbart, Mya; Rohwer, Forest

    2004-11-01

    White band disease type I (WBD I) has been a major cause of the dramatic decline of Acroporid coral populations throughout the Caribbean during the last two decades, yet the aetiological agent of this disease is unknown. In this study, the bacterial communities associated with both healthy and diseased Acropora species were compared by 16S rDNA analyses. The bacterial communities of both healthy and diseased Acropora spp. were dominated by a single ribotype with 90% identity to a bacterium in the order Rickettsiales. Screening by nested PCR specific to the coral-associated Rickettsiales 1 (CAR1) bacterium showed that this microbe was widespread in both healthy and diseased A. cervicornis and A. palmata corals from 'healthy' (i.e. low WBD I incidence) and 'stressed' reefs (i.e. high WBD I incidence). These results indicate that there were no dramatic changes in the composition of the microbial community associated with WBD I. CAR1 was also associated with non-Acroporid corals of the Caribbean, as well as with two Acroporid corals native to the Pacific. CAR1 was not present in the water column. This bacterium was also absent from preserved Caribbean Acroporid samples collected between 1937 and 1980 before the outbreak of WBD I. These results suggest CAR1 is a relatively new bacterial associate of Acroporids and that a non-bacterial pathogen might be the cause of WBD I.

  16. Anomalous magnetic orientations of magnetosome chains in a magnetotactic bacterium: Magnetovibrio blakemorei strain MV-1.

    Directory of Open Access Journals (Sweden)

    Samanbir S Kalirai

    Full Text Available There is a good deal of published evidence that indicates that all magnetosomes within a single cell of a magnetotactic bacterium are magnetically oriented in the same direction so that they form a single magnetic dipole believed to assist navigation of the cell to optimal environments for their growth and survival. Some cells of the cultured magnetotactic bacterium Magnetovibrio blakemorei strain MV-1 are known to have relatively wide gaps between groups of magnetosomes that do not seem to interfere with the larger, overall linear arrangement of the magnetosomes along the long axis of the cell. We determined the magnetic orientation of the magnetosomes in individual cells of this bacterium using Fe 2p X-ray magnetic circular dichroism (XMCD spectra measured with scanning transmission X-ray microscopy (STXM. We observed a significant number of cases in which there are sub-chains in a single cell, with spatial gaps between them, in which one or more sub-chains are magnetically polarized opposite to other sub-chains in the same cell. These occur with an estimated frequency of 4.0±0.2%, based on a sample size of 150 cells. We propose possible explanations for these anomalous cases which shed insight into the mechanisms of chain formation and magnetic alignment.

  17. An oleaginous bacterium that intrinsically accumulates long-chain free Fatty acids in its cytoplasm.

    Science.gov (United States)

    Katayama, Taiki; Kanno, Manabu; Morita, Naoki; Hori, Tomoyuki; Narihiro, Takashi; Mitani, Yasuo; Kamagata, Yoichi

    2014-02-01

    Medium- and long-chain fatty acids are present in organisms in esterified forms that serve as cell membrane constituents and storage compounds. A large number of organisms are known to accumulate lipophilic materials as a source of energy and carbon. We found a bacterium, designated GK12, that intrinsically accumulates free fatty acids (FFAs) as intracellular droplets without exhibiting cytotoxicity. GK12 is an obligatory anaerobic, mesophilic lactic acid bacterium that was isolated from a methanogenic reactor. Phylogenetic analysis based on 16S rRNA gene sequences showed that GK12 is affiliated with the family Erysipelotrichaceae in the phylum Firmicutes but is distantly related to type species in this family (less than 92% similarity in 16S rRNA gene sequence). Saturated fatty acids with carbon chain lengths of 14, 16, 18, and 20 were produced from glucose under stress conditions, including higher-than-optimum temperatures and the presence of organic solvents that affect cell membrane integrity. FFAs were produced at levels corresponding to up to 25% (wt/wt) of the dry cell mass. Our data suggest that FFA accumulation is a result of an imbalance between excess membrane fatty acid biosynthesis due to homeoviscous adaptation and limited β-oxidation activity due to anaerobic growth involving lactic acid fermentation. FFA droplets were not further utilized as an energy and carbon source, even under conditions of starvation. A naturally occurring bacterium that accumulates significant amounts of long-chain FFAs with noncytotoxicity would provide useful strategies for microbial biodiesel production.

  18. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    Science.gov (United States)

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production. PMID:24717418

  19. Evaluation of Arthrobacter aurescens Strain TC1 as Bioaugmentation Bacterium in Soils Contaminated with the Herbicidal Substance Terbuthylazine: e0144978

    National Research Council Canada - National Science Library

    Vera P Silva; Matilde Moreira-Santos; Carla Mateus; Tânia Teixeira; Rui Ribeiro; Cristina A Viegas

    2015-01-01

    .... The present study aimed at developing a bioaugmentation tool based on the soil bacterium Arthrobacter aurescens strain TC1 for the remediation of terbuthylazine contaminated soils and at examining...

  20. Evaluation of Arthrobacter aurescens Strain TC1 as Bioaugmentation Bacterium in Soils Contaminated with the Herbicidal Substance Terbuthylazine

    National Research Council Canada - National Science Library

    Silva, Vera P; Moreira-Santos, Matilde; Mateus, Carla; Teixeira, Tânia; Ribeiro, Rui; Viegas, Cristina A

    2015-01-01

    .... The present study aimed at developing a bioaugmentation tool based on the soil bacterium Arthrobacter aurescens strain TC1 for the remediation of terbuthylazine contaminated soils and at examining...

  1. Genome Sequence and Transcriptome Analysis of Meat-Spoilage-Associated Lactic Acid Bacterium Lactococcus piscium MKFS47

    National Research Council Canada - National Science Library

    Andreevskaya, Margarita; Johansson, Per; Laine, Pia; Smolander, Olli-Pekka; Sonck, Matti; Rahkila, Riitta; Jääskeläinen, Elina; Paulin, Lars; Auvinen, Petri; Björkroth, Johanna

    2015-01-01

    Lactococcus piscium is a psychrotrophic lactic acid bacterium and is known to be one of the predominant species within spoilage microbial communities in cold-stored packaged foods, particularly in meat products...

  2. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens

    OpenAIRE

    Jeong, Haeyoung; Jo, Sung Hee; Hong, Chi Eun; Park, Jeong Mee

    2016-01-01

    Bacillus thuringiensis is the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium Bacillus thuringiensis strain KB1, which exhibits antagonism against phytopathogens.

  3. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens.

    Science.gov (United States)

    Jeong, Haeyoung; Jo, Sung Hee; Hong, Chi Eun; Park, Jeong Mee

    2016-04-21

    ITALIC! Bacillus thuringiensisis the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium ITALIC! Bacillus thuringiensisstrain KB1, which exhibits antagonism against phytopathogens.

  4. Features of a Clostridium, strain CV-AA1, an obligatory anaerobic bacterium producing acetic acid from methanol.

    Science.gov (United States)

    Adamse, A D; Velzeboer, C T

    1982-01-01

    Isolation and characterization of a new, obligatory, anaerobic, methylotrophic, homoacetogenic bacterium is described. This bacterium is a mesophilic, motile, slightly curved rod that demonstrated a negative Gram reaction, formed spherical, (sub)terminal spores and performed a homoacetic fermentation with methanol, a CO2-2H2-gas mixture, glucose or fructose, respectively, as the substrate. The methanol fermentation proceeded only when a suitable amount of NaHCO3 was available in the nutrient solution supplied.

  5. Alcanivorax dieselolei, an alkane-degrading bacterium associated with the mucus of the zoanthid Palythoa caribaeorum (Cnidaria, Anthozoa

    Directory of Open Access Journals (Sweden)

    FF. Campos

    Full Text Available Analyses of 16S rDNA genes were used to identify the microbiota isolated from the mucus of the zoanthid Palythoa caribaeorum at Porto de Galinhas on the coast of Pernambuco State, Brazil. This study is important as the first report of this association, because of the potential biotechnological applications of the bacterium Alcanivorax dieselolei, and as evidence for the presence of a hydrocarbon degrading bacterium in a reef ecosystem such as Porto de Galinhas.

  6. Photoproduction of hydrogen by a non-sulphur bacterium isolated from root zones of water fern Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Srivastava, S.C.; Pandey, K.D. (Banaras Hindu Univ., Varanasi (IN). Centre of Advanced Study in Botany)

    1990-01-01

    A photosynthetic bacterium Rhodopseudomonas sp. BHU strain 1 was isolated from the root zone of water fern Azolla pinnata. The bacterium was found to produce hydrogen with potato starch under phototrophic conditions. The immobilized bacterial cells showed sustained hydrogen production with a more than 4-fold difference over free cell suspensions. The data have been discussed in the light of possible utilization of relatively cheaper raw materials by non-sulphur bacteria to evolve hydrogen. (author).

  7. Niizalactams A-C, Multicyclic Macrolactams Isolated from Combined Culture of Streptomyces with Mycolic Acid-Containing Bacterium.

    Science.gov (United States)

    Hoshino, Shotaro; Okada, Masahiro; Wakimoto, Toshiyuki; Zhang, Huiping; Hayashi, Fumiaki; Onaka, Hiroyasu; Abe, Ikuro

    2015-12-24

    A terrestrial bacterium, Streptomyces sp. NZ-6, produced niizalactams A-C (1-3), unprecedented di- and tricyclic macrolactams, by coculturing with the mycolic acid-containing bacterium Tsukamurella pulmonis TP-B0596. Their complete structures, including absolute configurations, were elucidated on the basis of spectroscopic data and chemical derivatization. Their unique skeletons are proposed to be biosynthesized from a common 26-membered macrolactam intermediate by SN2 cyclization or an intramolecular Diels-Alder reaction.

  8. Anaerobic, Nitrate-Dependent Oxidation of U(IV) Oxide Minerals by the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    Energy Technology Data Exchange (ETDEWEB)

    Beller, H R

    2004-06-25

    Under anaerobic conditions and at circumneutral pH, cells of the widely-distributed, obligate chemolithoautotrophic bacterium Thiobacillus denitrificans oxidatively dissolved synthetic and biogenic U(IV) oxides (uraninite) in nitrate-dependent fashion: U(IV) oxidation required the presence of nitrate and was strongly correlated to nitrate consumption. This is the first report of anaerobic U(IV) oxidation by an autotrophic bacterium.

  9. Effect of arsenite-oxidizing bacterium B. laterosporus on arsenite toxicity and arsenic translocation in rice seedlings.

    Science.gov (United States)

    Yang, Gui-Di; Xie, Wan-Ying; Zhu, Xi; Huang, Yi; Yang, Xiao-Jun; Qiu, Zong-Qing; Lv, Zhen-Mao; Wang, Wen-Na; Lin, Wen-Xiong

    2015-10-01

    Arsenite [As (III)] oxidation can be accelerated by bacterial catalysis, but the effects of the accelerated oxidation on arsenic toxicity and translocation in rice plants are poorly understood. Herein we investigated how an arsenite-oxidizing bacterium, namely Brevibacillus laterosporus, influences As (III) toxicity and translocation in rice plants. Rice seedlings of four cultivars, namely Guangyou Ming 118 (GM), Teyou Hang II (TH), Shanyou 63 (SY) and Minghui 63 (MH), inoculated with or without the bacterium were grown hydroponically with As (III) to investigate its effects on arsenic toxicity and translocation in the plants. Percentages of As (III) oxidation in the solutions with the bacterium (100%) were all significantly higher than those without (30-72%). The addition of the bacterium significantly decreased As (III) concentrations in SY root, GM root and shoot, while increased the As (III) concentrations in the shoot of SY, MH and TH and in the root of MH. Furthermore, the As (III) concentrations in the root and shoot of SY were both the lowest among the treatments with the bacterium. On the other hand, its addition significantly alleviated the As (III) toxicity on four rice cultivars. Among the treatments amended with B. laterosporus, the bacterium showed the best remediation on SY seedlings, with respect to the subdued As (III) toxicity and decreased As (III) concentration in its roots. These results indicated that As (III) oxidation accelerated by B. laterosporus could be an effective method to alleviate As (III) toxicity on rice seedlings.

  10. Contabilização de títulos e valores mobiliários: uma comparação entre as normas brasileiras, do FASB e do IASB Accounting treatment of debt and equity securities: a comparison among brazilian, FASB and IASB standards

    Directory of Open Access Journals (Sweden)

    Alceu Haruo Fuji

    2008-08-01

    Full Text Available Em 2001, o Banco Central do Brasil emitiu a Circular 3.068, determinando a utilização do valor de mercado para avaliar os títulos e valores mobiliários. A Circular 3.068/01 determina que os títulos e valores mobiliários devem ser classificados numa das seguintes categorias: negociação, disponíveis para venda e mantidos até o vencimento. Os títulos para negociação e os disponíveis para venda devem ser avaliados e registrados pelo seu valor de mercado e os mantidos até o vencimento devem ser registrados pelo seu custo histórico. O objetivo deste trabalho é estudar a forma de contabilização de títulos adotada no Brasil, especialmente as normas definidas para as instituições financeiras, em comparação com as normas do FASB e IASB. A comparação da forma de contabilização de títulos adotada no Brasil (Circular 3.068/01 com os pronunciamentos do FASB (SFAS 115 e IASB (IAS 39 mostrou que, nos aspectos relevantes, as regras estão em harmonia, embora algumas diferenças pequenas tenham sido identificadas.In 2001, the Brazilian Central Bank issued Circular letter 3.068, determining the use of market value to evaluate debt and equity securities. This letter states that debt and equity securities must be classified in one of the following categories: trading, available for sale and held to maturity. The securities for trading and available for sale have to be evaluated and reported by their market value and those held to maturity must be reported by historical cost. The purpose of this work is to study the accounting methods of securities adopted in Brazil, especially those rules stated to financial institutions, in comparison with the statement of FASB and IASB. The comparison of the accounting methods of securities adopted in Brazil (Circular 3.068/01 with the statements of FASB (SFAS 115 and IASB (IAS 39 showed that, in the main aspects, the rules are in harmony, although some minor differences have been identified.

  11. The completely annotated genome and comparative genomics of the Peptoniphilaceae bacterium str. ING2-D1G, a novel acidogenic bacterium isolated from a mesophilic biogas reactor.

    Science.gov (United States)

    Tomazetto, Geizecler; Hahnke, Sarah; Langer, Thomas; Wibberg, Daniel; Blom, Jochen; Maus, Irena; Pühler, Alfred; Klocke, Michael; Schlüter, Andreas

    2017-09-10

    The strictly anaerobic Peptoniphilaceae bacterium str. ING2-D1G (=DSM 28672=LMG 28300) was isolated from a mesophilic laboratory-scale completely stirred tank biogas reactor (CSTR) continuously co-digesting maize silage, pig and cattle manure. Based on 16S rRNA gene sequence comparison, the closest described relative to this strain is Peptoniphilus obesi ph1 showing 91.2% gene sequence identity. The most closely related species with a validly published name is Peptoniphilus indolicus DSM 20464(T) whose 16S rRNA gene sequence is 90.6% similar to the one of strain ING2-D1G. The genome of the novel strain was completely sequenced and manually annotated to reconstruct its metabolic potential regarding anaerobic digestion of biomass. The strain harbors a circular chromosome with a size of 1.6 Mb that contains 1466 coding sequences, 53 tRNA genes and 4 ribosomal RNA (rrn) operons. The genome carries a 28,261bp prophage insertion comprising 47 phage-related coding sequences. Reconstruction of fermentation pathways revealed that strain ING2-D1G encodes all enzymes for hydrogen, lactate and acetate production, corroborating that it is involved in the acido- and acetogenic phase of the biogas process. Comparative genome analyses of Peptoniphilaceae bacterium str. ING2-D1G and its closest relative Peptoniphilus obesi ph1 uncovered rearrangements, deletions and insertions within the chromosomes of both strains substantiating a divergent evolution. In addition to genomic analyses, a physiological and phenotypic characterization of the novel isolate was performed. Grown in Brain Heart Infusion Broth with added yeast extract, cells were spherical to ovoid, catalase- and oxidase-negative and stained Gram-positive. Optimal growth occurred between 35 and 37°C and at a pH value of 7.6. Fermentation products were acetate, butanoate and carbon dioxide. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio).

    Science.gov (United States)

    Knauf, Sascha; Barnett, Ulrike; Maciej, Peter; Klapproth, Matthias; Ndao, Ibrahima; Frischmann, Sieghard; Fischer, Julia; Zinner, Dietmar; Liu, Hsi

    2015-01-01

    The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum), yaws (ssp. pertenue), and endemic syphilis (ssp. endemicum) in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papio papio) at Parc National Niokolo Koba in south eastern Senegal for the presence of anti-T. pallidum antibodies. Since T. pallidum infection in this species was identified 50 years ago, and there has been no attempt to treat non-human primates for infection, it was hypothesized that a large number of West African baboons are still infected with simian strains of the yaws-bacterium. All animals were without clinical signs of treponematoses, but 18 of 20 (90%) baboons tested positive for antibodies against T. pallidum based on treponemal tests. Yet, Guinea baboons seem to develop no clinical symptoms, though it must be assumed that infection is chronic or comparable to the latent stage in human yaws infection. The non-active character is supported by the low anti-T. pallidum serum titers in Guinea baboons (median = 1:2,560) versus serum titers that are found in genital-ulcerated olive baboons with active infection in Tanzania (range of medians among the groups of initial, moderate, and severe infected animals = 1:15,360 to 1:2.097e+7). Our findings provide evidence for simian infection with T. pallidum in wild Senegalese baboons. Potentially, Guinea baboons in West Africa serve as a natural reservoir for human infection, as the West African simian strain has been shown to cause sustainable yaws infection when inoculated into humans. The present study pinpoints an area where further research is needed to support the currently on-going second WHO led yaws eradication campaign with

  13. Cloning and characterization of nif structural and regulatory genes in the purple sulfur bacterium, Halorhodospira halophila.

    Science.gov (United States)

    Tsuihiji, Hisayoshi; Yamazaki, Yoichi; Kamikubo, Hironari; Imamoto, Yasushi; Kataoka, Mikio

    2006-03-01

    Halorhodospira halophila is a halophilic photosynthetic bacterium classified as a purple sulfur bacterium. We found that H. halophila generates hydrogen gas during photoautotrophic growth as a byproduct of a nitrogenase reaction. In order to consider the applied possibilities of this photobiological hydrogen generation, we cloned and characterized the structural and regulatory genes encoding the nitrogenase, nifH, nifD and nifA, from H. halophila. This is the first description of the nif genes for a purple sulfur bacterium. The amino-acid sequences of NifH and NifD indicated that these proteins are an Fe protein and a part of a MoFe protein, respectively. The important residues are conserved completely. The sequence upstream from the nifH region and sequence similarities of nifH and nifD with those of the other organisms suggest that the regulatory system might be a NifL-NifA system; however, H. halophila lacks nifL. The amino-acid sequence of H. halophila NifA is closer to that of the NifA of the NifL-NifA system than to that of NifA without NifL. H. halophila NifA does not conserve either the residue that interacts with NifL or the important residues involved in NifL-independent regulation. These results suggest the existence of yet another regulatory system, and that the development of functional systems and their molecular counterparts are not necessarily correlated throughout evolution. All of these Nif proteins of H. halophila possess an excess of acidic residues, which acts as a salt-resistant mechanism.

  14. Evolution of a Biomass-Fermenting Bacterium To Resist Lignin Phenolics.

    Science.gov (United States)

    Cerisy, Tristan; Souterre, Tiffany; Torres-Romero, Ismael; Boutard, Magali; Dubois, Ivan; Patrouix, Julien; Labadie, Karine; Berrabah, Wahiba; Salanoubat, Marcel; Doring, Volker; Tolonen, Andrew C

    2017-06-01

    Increasing the resistance of plant-fermenting bacteria to lignocellulosic inhibitors is useful to understand microbial adaptation and to develop candidate strains for consolidated bioprocessing. Here, we study and improve inhibitor resistance in Clostridium phytofermentans (also called Lachnoclostridium phytofermentans), a model anaerobe that ferments lignocellulosic biomass. We survey the resistance of this bacterium to a panel of biomass inhibitors and then evolve strains that grow in increasing concentrations of the lignin phenolic, ferulic acid, by automated, long-term growth selection in an anaerobic GM3 automat. Ultimately, strains resist multiple inhibitors and grow robustly at the solubility limit of ferulate while retaining the ability to ferment cellulose. We analyze genome-wide transcription patterns during ferulate stress and genomic variants that arose along the ferulate growth selection, revealing how cells adapt to inhibitors through changes in gene dosage and regulation, membrane fatty acid structure, and the surface layer. Collectively, this study demonstrates an automated framework for in vivo directed evolution of anaerobes and gives insight into the genetic mechanisms by which bacteria survive exposure to chemical inhibitors.IMPORTANCE Fermentation of plant biomass is a key part of carbon cycling in diverse ecosystems. Further, industrial biomass fermentation may provide a renewable alternative to fossil fuels. Plants are primarily composed of lignocellulose, a matrix of polysaccharides and polyphenolic lignin. Thus, when microorganisms degrade lignocellulose to access sugars, they also release phenolic and acidic inhibitors. Here, we study how the plant-fermenting bacterium Clostridium phytofermentans resists plant inhibitors using the lignin phenolic, ferulic acid. We examine how the cell responds to abrupt ferulate stress by measuring changes in gene expression. We evolve increasingly resistant strains by automated, long-term cultivation at

  15. Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine

    Energy Technology Data Exchange (ETDEWEB)

    Bhupathiraju, V.K.; Sharma, P.K.; Tanner, R.S.; McInerney, M.J. [Univ. of Oklahoma, Norman, OK (United States). Dept. of Botany and Microbiology; Oren, A. [Hebrew Univ. of Jerusalem (Israel); Woese, C.R. [Univ. of Illinois, Urbana, IL (United States). Dept. of Microbiology

    1994-07-01

    A strictly anaerobic, moderately halophilic, gram-negative bacterium was isolated from a highly saline oil field brine. The bacterium was a non-spore-forming, nonmotile rod, appearing singly, in pairs, or occasionally as long chains, and measured 0.3 to 0.4 by 2.6 to 4 {micro}m. The bacterium had a specific requirement for NaCl and grew at NaCl concentrations of between 6 and 24%, with optimal growth at 9% NaCl. The isolate grew at temperatures of between 22 and 51 C and pH values of between 5.6 and 8.0. The doubling time in a complex medium containing 10% NaCl was 9 h. Growth was inhibited by chloramphenicol, tetracycline, and penicillin but not by cycloheximide or azide. Fermentable substrates were predominantly carbohydrates. The end products of glucose fermentation were acetate, ethanol, CO{sub 2}, and H{sub 2}. The major components of the cellular fatty acids were C{sub 14:0}, C{sub 16:0}, C{sub 16:1}, and C{sub 17:0 cyc} acids. The DNA base composition of the isolate was 34 mol% G+C. Oligonucleotide catalog and sequence analyses of the 16S rRNA showed that strain VS-752{sup T} was most closely related to Haloanaerobium praevalens GSL{sup T} (ATCC 33744), the sole member of the genus Haloanaerobium. The authors propose that strain VS-752 (ATCC 51327) by established as the type strain of a new species, Haloanaerobium salsugo, in the genus Haloanaerobium. 40 refs., 3 figs, 5 tabs.

  16. Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine.

    Science.gov (United States)

    Bhupathiraju, V K; Oren, A; Sharma, P K; Tanner, R S; Woese, C R; McInerney, M J

    1994-07-01

    A strictly anaerobic, moderately halophilic, gram-negative bacterium was isolated from a highly saline oil field brine. The bacterium was a non-spore-forming, nonmotile rod, appearing singly, in pairs, or occasionally as long chains, and measured 0.3 to 0.4 by 2.6 to 4 microns. The bacterium had a specific requirement for NaCl and grew at NaCl concentrations of between 6 and 24%, with optimal growth at 9% NaCl. The isolate grew at temperatures of between 22 and 51 degrees C and pH values of between 5.6 and 8.0. The doubling time in a complex medium containing 10% NaCl was 9 h. Growth was inhibited by chloramphenicol, tetracycline, and penicillin but not by cycloheximide or azide. Fermentable substrates were predominantly carbohydrates. The end products of glucose fermentation were acetate, ethanol, CO2, and H2. The major components of the cellular fatty acids were C14:0, C16:0, C16:1, and C17:0 cyc acids. The DNA base composition of the isolate was 34 mol% G+C. Oligonucleotide catalog and sequence analyses of the 16S rRNA showed that strain VS-752T was most closely related to Haloanaerobium praevalens GSLT (ATCC 33744), the sole member of the genus Haloanaerobium. We propose that strain VS-752 (ATCC 51327) be established as the type strain of a new species, Haloanaerobium salsugo, in the genus Haloanaerobium.

  17. Dynamic detection of a single bacterium: nonlinear rotation rate shifts of driven magnetic microsphere stages

    CERN Document Server

    McNaughton, B H; Kopelman, R; Agayan, Rodney R.; Kopelman, Raoul; Naughton, Brandon H. Mc

    2006-01-01

    We report on a new technique which was used to detect single Escherichia coli that is based on the changes in the nonlinear rotation of a magnetic microsphere driven by an external magnetic field. The presence of one Escherichia Coli bacterium on the surface of a 2.0 micron magnetic microsphere caused an easily measurable change in the drag of the system and, therefore, in the nonlinear rotation rate. The straight-forward measurement uses standard microscopy techniques and the observed average shift in the nonlinear rotation rate changed by a factor of ~3.8.

  18. Effect of lead, mercury and cadmium on a sulphate-reducing bacterium

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Sathe, V.; Chandramohan, D.

    Pollution 67 (1990) 361-374 Effect of Lead, Mercury and Cadmium on a Sulphate-Reducing Bacterium P. A. Loka Bharathi, V. Sathe & D. Chandramohan National Institute of Oceanography, Dona Paula, Goa-403004, India (Received 9 March 1990; revised version... oftoxicity to growth of these metal salts in a lactate-based medium at 50 J1g mr 1 concentrations was Cd> Pb> Hg and to respiration Pb> Cd> Hg. Inhibitory concentrations (viz. 100 J1g mr 1 ofHgCl z and200 J1g mr 1 ofPb(N0 3 )z) hada stimulatory effect when...

  19. Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax

    OpenAIRE

    2010-01-01

    Microbial degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) is the most promising way to clean up DDT residues found in the environment. In this paper, a bacterium designated as wax, which was capable of co-metabolizing DDT with other carbon sources, was isolated from a long-term DDT-contaminated soil sample by an enrichment culture technique. The new isolate was identified as a member of the Pseudoxanthomonas sp., based on its morphological, physiological and biochemical pro...

  20. Isolation and identification of a novel alginate-degrading bacterium, Ochrobactrum sp.

    Directory of Open Access Journals (Sweden)

    Xiao-wei Zhao

    2008-03-01

    Full Text Available An alginate-degrading bacterium, identified as Ochrobactrum sp. on the basis of 16S rDNA gene sequencing, was isolated from brown algal samples collected from the waters in close vicinity to the Dongtou Isles in the East China Sea. The strain, designated WZUH09-1, is a short rod, gram-negative, obligatory aerobic, grows under the following conditions: 5-40oC, pH 3-9, and 0-2 times of the seawater concentration, and is able to depolymerize alginates with higher enzyme activity than that of others reported so far.

  1. Uncoupling effect of fatty acids in halo- and alkalotolerant bacterium Bacillus pseudofirmus FTU.

    Science.gov (United States)

    Popova, I V; Bodrova, M E; Mokhova, E N; Muntyan, M S

    2004-10-01

    Natural uncouplers of oxidative phosphorylation, long-chain non-esterified fatty acids, cause uncoupling in the alkalo- and halotolerant bacterium Bacillus pseudofirmus FTU. The uncoupling effect in the bacterial cells was manifested as decrease of membrane potential and increase of respiratory activity. The membrane potential decrease was detected only in bacterial cells exhausted by their endogenous substrates. In proteoliposomes containing reconstituted bacterial cytochrome c oxidase, fatty acids caused a "mild" uncoupling effect by reducing membrane potential only at low rate of membrane potential generation. "Free respiration" induced by the "mild" uncouplers, the fatty acids, can be considered as possible mechanism responsible for adaptation of the bacteria to a constantly changed environment.

  2. Response to Comments on "A Bacterium That Can Grow Using Arsenic Instead of Phosphorus"

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2011-03-07

    Concerns have been raised about our recent study describing a bacterium that can grow using arsenic (As) instead of phosphorus (P). Our data suggested that As could act as a substitute for P in major biomolecules in this organism. Although the issues raised are of investigative interest, we contend that they do not invalidate our conclusions. We argue that while no single line of evidence we presented was sufficient to support our interpretation of the data, taken as an entire dataset we find no plausible alternative to our conclusions. Here we reply to the critiques and provide additional arguments supporting the assessment of the data we reported.

  3. A high-performance metal-free hydrogen-evolution reaction electrocatalyst from bacterium derived carbon

    OpenAIRE

    2015-01-01

    We report a sustainable approach to obtain carbon materials with nitrogen and phosphorus dual functionalities from a common bacterium strain (S. aureus) as a highly efficient hydrogen-evolution reaction (HER) catalyst. With mesoporous structure introduced by ZnCl2 salt and cathodic activation, it demonstrates an onset overpotential as low as 76 mV, a Tafel slope of 58.4 mV dec(-1) and a large normalized exchange current density of 1.72 x 10(-2) mA cm(-2), which are comparable to those of hith...

  4. Complete genome sequencing and analysis of Saprospira grandis str. Lewin, a predatory marine bacterium

    OpenAIRE

    Saw, Jimmy H. W.; Yuryev, Anton; Kanbe, Masaomi; Hou, Shaobin; Young, Aaron G; Aizawa, Shin-Ichi; Alam, Maqsudul

    2012-01-01

    Saprospira grandis is a coastal marine bacterium that can capture and prey upon other marine bacteria using a mechanism known as ‘ixotrophy’. Here, we present the complete genome sequence of Saprospira grandis str. Lewin isolated from La Jolla beach in San Diego, California. The complete genome sequence comprises a chromosome of 4.35 Mbp and a plasmid of 54.9 Kbp. Genome analysis revealed incomplete pathways for the biosynthesis of nine essential amino acids but presence of a large number of ...

  5. Whole genome shotgun sequence of Bacillus amyloliquefaciens TF28, a biocontrol entophytic bacterium

    OpenAIRE

    Zhang, Shumei; Jiang, Wei; Li, Jing; Meng, Liqiang; Cao, Xu; Hu, Jihua; Liu, Yushuai; Chen, Jingyu; Sha, Changqing

    2016-01-01

    Bacillus amyloliquefaciens TF28 is a biocontrol endophytic bacterium that is capable of inhibition of a broad range of plant pathogenic fungi. The strain has the potential to be developed into a biocontrol agent for use in agriculture. Here we report the whole-genome shotgun sequence of the strain. The genome size of B. amyloliquefaciens TF28 is 3,987,635?bp which consists of 3754 protein-coding genes, 65 tandem repeat sequences, 47 minisatellite DNA, 2 microsatellite DNA, 63 tRNA, 7rRNA, 6 s...

  6. Illuminating the landscape of host–pathogen interactions with the bacterium Listeria monocytogenes

    Science.gov (United States)

    Cossart, Pascale

    2011-01-01

    Listeria monocytogenes has, in 25 y, become a model in infection biology. Through the analysis of both its saprophytic life and infectious process, new concepts in microbiology, cell biology, and pathogenesis have been discovered. This review will update our knowledge on this intracellular pathogen and highlight the most recent breakthroughs. Promising areas of investigation such as the increasingly recognized relevance for the infectious process, of RNA-mediated regulations in the bacterium, and the role of bacterially controlled posttranslational and epigenetic modifications in the host will also be discussed. PMID:22114192

  7. Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil.

    OpenAIRE

    Vasilyeva, Lina V; Omelchenko, Marina V.; Berestovskaya, Yulia Y; Lysenko, Anatolii M; Abraham, Wolf-Rainer; Dedysh, Svetlana N.; Zavarzin, George A

    2006-01-01

    A Gram-negative, aerobic, heterotrophic, non-pigmented, dimorphic prosthecate bacterium was isolated from tundra wetland soil and designated strain Z-0023(T). Cells of this strain had a dimorphic life cycle and developed a non-adhesive stalk at a site not coincident with the centre of the cell pole, a characteristic typical of representatives of the genus Asticcacaulis. A highly distinctive feature of cells of strain Z-0023(T) was the presence of a conical, bell-shaped sheath when grown at lo...

  8. Whole genome shotgun sequence of Bacillus amyloliquefaciens TF28, a biocontrol entophytic bacterium.

    Science.gov (United States)

    Zhang, Shumei; Jiang, Wei; Li, Jing; Meng, Liqiang; Cao, Xu; Hu, Jihua; Liu, Yushuai; Chen, Jingyu; Sha, Changqing

    2016-01-01

    Bacillus amyloliquefaciens TF28 is a biocontrol endophytic bacterium that is capable of inhibition of a broad range of plant pathogenic fungi. The strain has the potential to be developed into a biocontrol agent for use in agriculture. Here we report the whole-genome shotgun sequence of the strain. The genome size of B. amyloliquefaciens TF28 is 3,987,635 bp which consists of 3754 protein-coding genes, 65 tandem repeat sequences, 47 minisatellite DNA, 2 microsatellite DNA, 63 tRNA, 7rRNA, 6 sRNA, 3 prophage and CRISPR domains.

  9. Exoelectrogenic bacterium phylogenetically related to Citrobacter freundii, isolated from anodic biofilm of a microbial fuel cell.

    Science.gov (United States)

    Huang, Jianjian; Zhu, Nengwu; Cao, Yanlan; Peng, Yue; Wu, Pingxiao; Dong, Wenhao

    2015-02-01

    An electrogenic bacterium, named Citrobacter freundii Z7, was isolated from the anodic biofilm of microbial fuel cell (MFC) inoculated with aerobic sewage sludge. Cyclic voltammetry (CV) analysis exhibited that the strain Z7 had relatively high electrochemical activity. When the strain Z7 was inoculated into MFC, the maximum power density can reach 204.5 mW/m(2) using citrate as electron donor. Series of substrates including glucose, glycerol, lactose, sucrose, and rhammose could be utilized to generate power. CV tests and the addition of anode solution as well as AQDS experiments indicated that the strain Z7 might transfer electrons indirectly via secreted mediators.

  10. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

    DEFF Research Database (Denmark)

    Clausen, Anders; Mikkelsen, Marie Just; Schrøder, I.

    2004-01-01

    The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence...... was found, but no single stranded intermediates, characteristic of rolling circle replication, were found on Southern blots. The larger plasmid, pBAL, was found to be a 8294 bp plasmid with a GC content of 39%. It revealed 17 ORFs, of which three showed similarity at the amino acid (aa) level to known...

  11. Selection of sulfur oxidizing bacterium for sulfide removal in sulfate rich wastewater to enhance biogas production

    OpenAIRE

    Kantachote,Duangporn; Charernjiratrakul,Wilawan; Noparatnaraporn, Napavarn; Oda, Kohei

    2008-01-01

    Sulfur oxidizing bacteria (SOB) were isolated and tested in order to remove sulfide from high sulfate wastewater to reduce the amount of hydrogen sulfide (H2S) in the produced biogas. A promising SOB isolate, designated as isolate T307, was selected due to its best sulfide removal (86.7%) in the effluent of a sulfate reduction reactor (SRR) over a 24 hrs incubation. The bacterium was able to grow better as a mixotroph (yeast extract as a carbon source) than as a chemolithoautotroph. In additi...

  12. Complete genome sequence of Enterobacter cloacae GGT036: a furfural tolerant soil bacterium.

    Science.gov (United States)

    Gong, Gyeongtaek; Um, Youngsoon; Park, Tai Hyun; Woo, Han Min

    2015-01-10

    Enterobacter cloacae is a facultative anaerobic bacterium to be an important cause of nosocomial infection. However, the isolated E. cloacae GGT036 showed higher furfural-tolerant cellular growth, compared to industrial relevant strains such as Escherichia coli and Corynebacterium glutamicum. Here, we report the complete genome sequence of E. cloacae GGT036 isolated from Mt. Gwanak, Seoul, Republic of Korea. The genomic DNA sequence of E. cloacae GGT036 will provide valuable genetic resources for engineering of industrially relevant strains being tolerant to cellular inhibitors present in lignocellulosic hydrolysates.

  13. A bacterium that can grow by using arsenic instead of phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2010-11-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus. Although these six elements make up nucleic acids, proteins and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, CA, which substitutes arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical significance.

  14. Aggregation of the rhizospheric bacterium Azospirillum brasilense in response to oxygen

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2016-04-01

    Azospirillum brasilense spp. have ecological, scientific and agricultural importance. As model plant growth promoting rhizobacteria they interact with a large variety of plants, including important food and cash crops. Azospirillum strains are known for their production of plant growth hormones that enhance root systems and for their ability to fix nitrogen. Azospirillum cells transform in response to environmental cues. The production of exopolysaccharides and cell aggregation during cellular transformation are important steps in the attachment of Azospirillum to roots. We investigate signals that induce cellular transformation and aggregation in the Azospirillum and report on the importance of oxygen to the process of aggregation in this rhizospheric bacterium.

  15. FACTORS LIMITING BACTERIAL GROWTH : III. CELL SIZE AND "PHYSIOLOGIC YOUTH" IN BACTERIUM COLI CULTURES.

    Science.gov (United States)

    Hershey, A D; Bronfenbrenner, J

    1938-07-20

    1. Measurements of the rate of oxygen uptake per cell in transplants of Bacterium coli from cultures of this organism in different phases of growth have given results in essential agreement with the observations of others. 2. Correlations of viable count, centrifugable nitrogen, and turbidity, with oxygen consumption, indicate that the increased metabolism during the early portion of the growth period is quantitatively referable to increased average size of cells. 3. Indirect evidence has suggested that the initial rate of growth of transplants is not related to the phase of growth of the parent culture.

  16. A bacterium that can grow by using arsenic instead of phosphorus.

    Science.gov (United States)

    Wolfe-Simon, Felisa; Switzer Blum, Jodi; Kulp, Thomas R; Gordon, Gwyneth W; Hoeft, Shelley E; Pett-Ridge, Jennifer; Stolz, John F; Webb, Samuel M; Weber, Peter K; Davies, Paul C W; Anbar, Ariel D; Oremland, Ronald S

    2011-06-03

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.

  17. Draft Genome Sequence of the Endophytic Strain Rhodococcus kyotonensis KB10, a Potential Biodegrading and Antibacterial Bacterium Isolated from Arabidopsis thaliana

    Science.gov (United States)

    Hong, Chi Eun; Jo, Sung Hee

    2016-01-01

    Rhodococcus kyotonensis KB10 is an endophytic bacterium isolated from Arabidopsis thaliana. The organism showed mild antibacterial activity against the phytopathogen Pseudomonas syringae pv. tomato DC3000. This study reports the genome sequence of R. kyotonensis KB10. This bacterium contains an ectoine biosynthesis gene cluster and has the potential to degrade nitroaromatic compounds. The identified bacterium may be a suitable biocontrol agent and degrader of environmental pollutants. PMID:27389269

  18. Possible Processes for Origin of First Chemoheterotrophic Microorganisms with Modeling of Physiological Processes of Bacterium Bacillus subtilis as a Model System in 2H2O

    National Research Council Canada - National Science Library

    Ignat Ignatov; Oleg Mosin

    2015-01-01

    We studied possible processes for origin of first chemoheterotrophic microorganisms with modeling of physiological processes of a Gram-positive chemoheterotrophic bacterium Bacillus subtilis, producer...

  19. Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum

    National Research Council Canada - National Science Library

    Niedzwiedzki, Dariusz M; Bina, David; Picken, Nichola; Honkanen, Suvi; Blankenship, Robert E; Holten, Dewey; Cogdell, Richard J

    2012-01-01

    Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized...

  20. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus

    Institute of Scientific and Technical Information of China (English)

    Swetha Sunkar; C Valli Nachiyar

    2012-01-01

    Objective:To synthesize the ecofriendly nanoparticles, which is viewed as an alternative to the chemical method which initiated the use of microbes like bacteria and fungi in their synthesis. Methods: The current study uses the endophytic bacterium Bacillus cereus isolated from the Garcinia xanthochymus to synthesize the silver nanoparticles (AgNPs). The AgNPs were synthesized by reduction of silver nitrate solution by the endophytic bacterium after incubation for 3-5 d at room temperature. The synthesis was initially observed by colour change from pale white to brown which was confirmed by UV-Vis spectroscopy. The AgNPs were further characterized using FTIR, SEM-EDX and TEM analyses. Results:The synthesized nanoparticles were found to be spherical with the size in the range of 20-40 nm which showed a slight aggregation. The energy-dispersive spectra of the nanoparticle dispersion confirmed the presence of elemental silver. The AgNPs were found to have antibacterial activity against a few pathogenic bacteria like Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Klebsiella pneumoniae. Conclusions:The endophytic bacteria identified as Bacillus cereus was able to synthesize silver nanoparticles with potential antibacterial activity.

  1. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans

    Directory of Open Access Journals (Sweden)

    Amable J. Rivas

    2013-09-01

    Full Text Available Photobacterium damselae subsp. damselae (formerly Vibrio damsela is a pathogen of a variety of marine animals including fish, crustaceans, molluscs and cetaceans. In humans, it can cause opportunistic infections that may evolve into necrotizing fasciitis with fatal outcome. Although the genetic basis of virulence in this bacterium is not completely elucidated, recent findings demonstrate that the phospholipase-D Dly (damselysin and the pore-forming toxins HlyApl and HlyAch play a main role in virulence for homeotherms and poikilotherms. The acquisition of the virulence plasmid pPHDD1 that encodes Dly and HlyApl has likely constituted a main driving force in the evolution of a highly hemolytic lineage within the subspecies. Interestingly, strains that naturally lack pPHDD1 show a strong pathogenic potential for a variety of fish species, indicating the existence of yet uncharacterized virulence factors. Future and deep analysis of the complete genome sequence of P. damselae subsp. damselae will surely provide a clearer picture of the virulence factors employed by this bacterium to cause disease in such a varied range of hosts.

  2. Non-specific immune response of bullfrog Rana catesbeiana to intraperitoneal injection of bacterium Aeromonas hydrophila

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Non-specific immune response of bullfrog Rana catesbeiana to pathogenic Aeromonas hydrophila was studied to 60 individuals in two groups. Each bullfrog in bacterium-injected group was injected intraperitoneally (i.p.) with 0.2 ml bacterial suspension at a density of 5.2 × 106 CFU/ml, while each one in control group injected i.p. with 0.2 ml sterile saline solution (0.85%, w/v). Three bullfrogs in both groups were sampled at 0, 1, 3, 7, 11, 15 and 20 days post-injection (dpi) for the evaluation of non-specific immune parameters. It was observed that intraperitoneal injection of A. hydrophila significantly increased the number of leucocytes and that of NBT-positive cells in peripheral blood. Significant increases in serum bactericidal activity and serum acid phosphatase activity were also observed in the bacterium-injected frogs when compared with those in the control group. However, a significant reduction was detected in vitro in phagocytosis activity of peripheral blood phagocytes. No significant difference in changes in the number of peripheral erythrocytes, serum superoxide dismutase (SOD) activity, and lysozyme activity was detected between the two groups. It is suggested that bullfrogs may produce a series of non-specific immune reactions in response to the A. hydrophila infection.

  3. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    Science.gov (United States)

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  4. Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium Kuenenia stuttgartiensis.

    Science.gov (United States)

    Neumann, Sarah; Wessels, Hans J C T; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S; Kartal, Boran; Jetten, Mike S M; van Niftrik, Laura

    2014-11-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost-effective and environment-friendly nitrogen removal system from wastewater. Anammox bacteria have a compartmentalized cell plan that consists of three separate compartments. Here we report the fractionation of the anammox bacterium Kuenenia stuttgartiensis in order to isolate and analyze the innermost cell compartment called the anammoxosome. The subcellular fractions were microscopically characterized and all membranes in the anammox cell were shown to contain ladderane lipids which are unique for anammox bacteria. Proteome analyses and activity assays with the isolated anammoxosomes showed that these organelles harbor the energy metabolism in anammox cells. Together the experimental data provide the first thorough characterization of a respiratory cell organelle from a bacterium and demonstrate the essential role of the anammoxosome in the production of a major portion of the nitrogen gas in our atmosphere.

  5. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization.

    Directory of Open Access Journals (Sweden)

    Aulie Banerjee

    Full Text Available Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state (13C NMR, we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation.

  6. Genome Sequence and Comparative Analysis of the Solvent-Producing Bacterium Clostridium acetobutylicum

    Science.gov (United States)

    Nölling, Jörk; Breton, Gary; Omelchenko, Marina V.; Makarova, Kira S.; Zeng, Qiandong; Gibson, Rene; Lee, Hong Mei; Dubois, JoAnn; Qiu, Dayong; Hitti, Joseph; Wolf, Yuri I.; Tatusov, Roman L.; Sabathe, Fabrice; Doucette-Stamm, Lynn; Soucaille, Philippe; Daly, Michael J.; Bennett, George N.; Koonin, Eugene V.; Smith, Douglas R.

    2001-01-01

    The genome sequence of the solvent-producing bacterium Clostridium acetobutylicum ATCC 824 has been determined by the shotgun approach. The genome consists of a 3.94-Mb chromosome and a 192-kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not been seen in comparisons of other genomes with similar, or, in some cases closer, phylogenetic proximity. This conservation allows the prediction of many previously undetected operons in both bacteria. However, the C. acetobutylicum genome also contains a significant number of predicted operons that are shared with distantly related bacteria and archaea but not with B. subtilis. Phylogenetic analysis is compatible with the dissemination of such operons by horizontal transfer. The enzymes of the solventogenesis pathway and of the cellulosome of C. acetobutylicum comprise a new set of metabolic capacities not previously represented in the collection of complete genomes. These enzymes show a complex pattern of evolutionary affinities, emphasizing the role of lateral gene exchange in the evolution of the unique metabolic profile of the bacterium. Many of the sporulation genes identified in B. subtilis are missing in C. acetobutylicum, which suggests major differences in the sporulation process. Thus, comparative analysis reveals both significant conservation of the genome organization and pronounced differences in many systems that reflect unique adaptive strategies of the two gram-positive bacteria. PMID:11466286

  7. Characterization of carbon dioxide concentrating chemolithotrophic bacterium Serratia sp. ISTD04 for production of biodiesel.

    Science.gov (United States)

    Kumar, Manish; Morya, Raj; Gnansounou, Edgard; Larroche, Christian; Thakur, Indu Shekhar

    2017-07-14

    Proteomics and metabolomics analysis has become a powerful tool for characterization of microbial ability for fixation of Carbon dioxide. Bacterial community of palaeoproterozoic metasediments was enriched in the shake flask culture in the presence of NaHCO3. One of the isolate showed resistance to NaHCO3 (100mM) and was identified as Serratia sp. ISTD04 by 16S rRNA sequence analysis. Carbon dioxide fixing ability of the bacterium was established by carbonic anhydrase enzyme assay along with proteomic analysis by LC-MS/MS. In proteomic analysis 96 proteins were identified out of these 6 protein involved in carbon dioxide fixation, 11 in fatty acid metabolism, indicating the carbon dioxide fixing potency of bacterium along with production of biofuel. GC-MS analysis revealed that hydrocarbons and FAMEs produced by bacteria within the range of C13-C24 and C11-C19 respectively. Presence of 59% saturated and 41% unsaturated organic compounds, make it a better fuel composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Influence of yeast and lactic acid bacterium on the constituent profile of soy sauce during fermentation.

    Science.gov (United States)

    Harada, Risa; Yuzuki, Masanobu; Ito, Kotaro; Shiga, Kazuki; Bamba, Takeshi; Fukusaki, Eiichiro

    2017-02-01

    Soy sauce is a Japanese traditional seasoning composed of various constituents that are produced by various microbes during a long-term fermentation process. Due to the complexity of the process, the investigation of the constituent profile during fermentation is difficult. Metabolomics, the comprehensive study of low molecular weight compounds in biological samples, is thought to be a promising strategy for deep understanding of the constituent contribution to food flavor characteristics. Therefore, metabolomics is suitable for the analysis of soy sauce fermentation. Unfortunately, only few and unrefined studies of soy sauce fermentation using metabolomics approach have been reported. Therefore, we investigated changes in low molecular weight hydrophilic and volatile compounds of soy sauce using gas chromatography/mass spectrometry (GC/MS)-based non-targeted metabolic profiling. The data were analyzed by statistical analysis to evaluate influences of yeast and lactic acid bacterium on the constituent profile. Consequently, our results suggested a novel finding that lactic acid bacterium affected the production of several constituents such as cyclotene, furfural, furfuryl alcohol and methional in the soy sauce fermentation process. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike

    2010-08-03

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  10. Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3.

    Directory of Open Access Journals (Sweden)

    Min Liu

    Full Text Available In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity.

  11. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    Directory of Open Access Journals (Sweden)

    Magali Boutard

    2014-11-01

    Full Text Available Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme assays, RNA sequencing (RNA-seq, and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  12. Production and characterization of bioemulsifier from a marine bacterium, Acinetobacter calcoaceticus subsp. anitratus SM7

    Directory of Open Access Journals (Sweden)

    Kulnaree Phetrong

    2008-05-01

    Full Text Available Marine bacterium strain SM7 was isolated as a bioemulsifier-producing bacterium from oil-spilled seawater in Songkhla lagoon, Thailand. It was identified as Acinetobacter calcoaceticus subsp. anitratus based on morphology, biochemicalcharacteristics and 16S rRNA sequence. A. calcoaceticus subsp. anitratus SM7 produced an extracellular emulsifying agent when grown in a minimal salt medium (pH 7.0 containing 0.3% (v/v n-heptadecane and 0.1% (w/v ammoniumhydrogen carbonate as carbon source and nitrogen source, respectively, at 30oC with agitation rate of 200 rpm. Crude bioemulsifier was recovered from the culture supernatant by ethanol precipitation with a yield of 2.94 g/l and had a criticalemulsifier concentration of 0.04 g/ml. The crude bioemulsifier was capable of emulsifying n-hexadecane in a broad pH range (6-12, temperatures (30-121oC and in the presence of NaCl up to 12% (w/v. The bioemulsifier was stable in saltsolution ranging from 0 to 0.1% (w/v of MgCl2 and CaCl2. The broad range of pH stability, thermostability and salt tolerance suggested that the bioemulsifier from A. calcoaceticus subsp. anitratus SM7 could be useful in environmentalapplication, especially bioremediation of oil-polluted seawater.

  13. Application of agglomerative clustering for analyzing phylogenetically on bacterium of saliva

    Science.gov (United States)

    Bustamam, A.; Fitria, I.; Umam, K.

    2017-07-01

    Analyzing population of Streptococcus bacteria is important since these species can cause dental caries, periodontal, halitosis (bad breath) and more problems. This paper will discuss the phylogenetically relation between the bacterium Streptococcus in saliva using a phylogenetic tree of agglomerative clustering methods. Starting with the bacterium Streptococcus DNA sequence obtained from the GenBank, then performed characteristic extraction of DNA sequences. The characteristic extraction result is matrix form, then performed normalization using min-max normalization and calculate genetic distance using Manhattan distance. Agglomerative clustering technique consisting of single linkage, complete linkage and average linkage. In this agglomerative algorithm number of group is started with the number of individual species. The most similar species is grouped until the similarity decreases and then formed a single group. Results of grouping is a phylogenetic tree and branches that join an established level of distance, that the smaller the distance the more the similarity of the larger species implementation is using R, an open source program.

  14. Chemical compounds effective against the citrus Huanglongbing bacterium 'Candidatus Liberibacter asiaticus' in planta.

    Science.gov (United States)

    Zhang, Muqing; Powell, Charles A; Zhou, Lijuan; He, Zhenli; Stover, Ed; Duan, Yongping

    2011-09-01

    Citrus Huanglongbing (HLB) is one of the most destructive diseases of citrus worldwide and is threatening the survival of the Floridian citrus industry. Currently, there is no established cure for this century-old and emerging disease. As a possible control strategy for citrus HLB, therapeutic compounds were screened using a propagation test system with 'Candidatus Liberibacter asiaticus'-infected periwinkle and citrus plants. The results demonstrated that the combination of penicillin and streptomycin (PS) was effective in eliminating or suppressing the 'Ca. L. asiaticus' bacterium and provided a therapeutically effective level of control for a much longer period of time than when administering either antibiotic separately. When treated with the PS, 'Ca. L. asiaticus'-infected periwinkle cuttings achieved 70% of regeneration rates versus <50% by other treatments. The 'Ca. L. asiaticus' bacterial titers in the infected periwinkle plants, as measured by quantitative real-time polymerase chain reaction, decreased significantly following root soaking or foliar spraying with PS. Application of the PS via trunk injection or root soaking also eliminated or suppressed the 'Ca. L. asiaticus' bacterium in the HLB-affected citrus plants. This may provide a useful tool for the management of citrus HLB and other Liberibacter-associated diseases.

  15. Marine bacterium strain screening and pyrethroid insecticide-degrading efficiency analysis

    Science.gov (United States)

    Sun, Aili; Liu, Jinghua; Shi, Xizhi; Li, Dexiang; Chen, Jiong; Tang, Daojun

    2014-09-01

    A pyrethroid insecticide-degrading bacterium, strain HS-24, was isolated from an offshore seawater environment. The strain, which can degrade cypermethrin (CYP) and deltamethrin (DEL), was identified as Methylophaga sp. The optimal culture and degradation conditions for CYP and DEL by strain HS-24 is pH 7 at 28°C. Under optimum culture conditions, strain HS-24 exhibited a broad degradation concentration range of 100, 200, 400, 600, and 800 mg/L for CYP and DEL. The metabolic intermediates were analyzed by NMR, which provided strong evidence that CYP and DEL removal occurred mainly because of a biological process. The toxicity of the degradation products of strain HS-24 was studied simultaneously by measuring the light output of the luminescence bacterium. This demonstrated that the biodegradation ability of strain HS-24 significantly decreased the toxicity of CYP- and DEL-contaminated aquaculture seawater. Finally, the findings of this paper indicate that strain HS-24 is thus revealed as a biological agent for the remediation of marine aquatic environments.

  16. Engineering of a psychrophilic bacterium for the bioremediation of aromatic compounds.

    Science.gov (United States)

    Parrilli, Ermengilda; Papa, Rosanna; Tutino, Maria Luisa; Sannia, Giovanni

    2010-01-01

    Microbial degradation of aromatic hydrocarbons has been studied with the aim of developing applications for the removal of toxic compounds. Efforts have been directed toward the genetic manipulation of mesophilic bacteria to improve their ability to degrade pollutants, even though many pollution problems occur in sea waters and in effluents of industrial processes which are characterized by low temperatures. From these considerations the idea of engineering a psychrophilic microorganism for the oxidation of aromatic compounds was developed.In a previous paper it was demonstrated that the recombinant Antarctic Pseudoalteromonas haloplanktis TAC125 (PhTAC/tou) expressing a toluene-o-xylene monooxygenase (ToMO) is able to convert several aromatic compounds into corresponding catechols. In our work we improved the metabolic capability of PhTAC/tou cells by combining action of recombinant ToMO enzyme with that of the endogenous P. haloplanktis TAC125 laccase-like protein. This strategy allowed conferring new and specific degradative capabilities to a bacterium isolated from an unpolluted environment; indeed engineered PhTAC/tou cells are able to grow on aromatic compounds as sole carbon and energy sources. Our approach demonstrates the possibility to use the engineered psychrophilic bacterium for the bioremediation of chemically contaminated marine environments and/or cold effluents.

  17. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers.

    Science.gov (United States)

    Mellbye, Brett L; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2015-09-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS.

  18. Isolation and characterization of the dcw cluster from the piezophilic deep-sea bacterium Shewanella violacea.

    Science.gov (United States)

    Ishii, Akihiro; Nakasone, Kaoru; Sato, Takako; Wachi, Masaaki; Sugai, Motoyuki; Nagai, Kazuo; Kato, Chiaki

    2002-08-01

    The dcw cluster of genes involved in cell division and cell wall synthesis from the piezophilic deep-sea bacterium Shewanella violacea was isolated and characterized. It comprises 15 open reading frames, of which the organization is mraZ-mraW-ftsL-ftsI-murE-murF-mraY-murD-ftsW-murG-murC-ftsQ-ftsA-ftsZ-envA, in that order. To analyze transcription upstream from the ftsZ gene, Northern blot and primer extension analyses were performed. The results showed that gene expression is not pressure dependent. Western blot analysis showed that the FtsZ protein is equally expressed under several pressure conditions in the range of atmospheric (0.1 MPa) to high (50 MPa) pressures. Using immunofluorescence microscopy, the FtsZ ring was observed in the center of cells at pressure conditions of 0.1 to 50 MPa. These results imply that the FtsZ protein function is not affected by elevated pressure in this piezophilic bacterium.

  19. Keratinolytic activity of Bacillus megaterium F7-1, a feather-degrading mesophilic bacterium.

    Science.gov (United States)

    Park, Geun-Tae; Son, Hong-Joo

    2009-01-01

    The aim of this study was to investigate environmental conditions affecting chicken feather degradation and keratinolytic enzyme production by Bacillus megaterium F7-1, a feather-degrading mesophilic bacterium. B. megaterium F7-1 degraded whole chicken feather completely within 7 days. The bacterium grew with an optimum at pH 7.0-11.0 and 25-40 degrees C, where maximum keratinolytic activity was also observed. The production of keratinolytic enzyme by B. megaterium F7-1 was inducible with feather. Keratinolytic enzyme production by B. megaterium F7-1 at 0.6% (w/v) skim milk was 468U/ml, which was about 9.4-fold higher than that without skim milk. The amount of keratinolytic enzyme production depended on feather concentrations. The degradation rate of autoclaved chicken feathers by cell-free culture supernatant was 26% after 24h of incubation, but the degradation of untreated chicken feathers was unsuccessful. B. megaterium F7-1 effectively degraded feather meal, duck feather and human nail, whereas human hair and sheep wool showed relatively low degradation rates. B. megaterium F7-1 presented high keratinolytic activity and was very effective in feather degradation, providing potential use for biotechnological processes of keratin hydrolysis.

  20. Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil.

    Science.gov (United States)

    Vasilyeva, Lina V; Omelchenko, Marina V; Berestovskaya, Yulia Y; Lysenko, Anatolii M; Abraham, Wolf-Rainer; Dedysh, Svetlana N; Zavarzin, George A

    2006-09-01

    A Gram-negative, aerobic, heterotrophic, non-pigmented, dimorphic prosthecate bacterium was isolated from tundra wetland soil and designated strain Z-0023(T). Cells of this strain had a dimorphic life cycle and developed a non-adhesive stalk at a site not coincident with the centre of the cell pole, a characteristic typical of representatives of the genus Asticcacaulis. A highly distinctive feature of cells of strain Z-0023(T) was the presence of a conical, bell-shaped sheath when grown at low temperature. This prosthecate bacterium was a psychrotolerant, moderately acidophilic organism capable of growth between 4 and 28 degrees Celsius (optimum 15-20 degrees Celsius) and between pH 4.5 and 8.0 (optimum 5.6-6.0). The major phospholipid fatty acid was 18 : 1omega7c and the major phospholipids were phosphatidylglycerols. The G+C content of the DNA was 60.4 mol%. On the basis of 16S rRNA gene sequence similarity, strain Z-0023(T) was most closely related to Asticcacaulis biprosthecium (98 % similarity), Asticcacaulis taihuensis (98 %) and Asticcacaulis excentricus (95 %). However, low levels of DNA-DNA relatedness to these organisms and a number of distinctive features of the tundra wetland isolate indicated that it represented a novel species of the genus Asticcacaulis, for which the name Asticcacaulis benevestitus sp. nov. is proposed. The type strain is Z-0023(T) (=DSM 16100(T)=ATCC BAA-896(T)).

  1. The Symbiotic Bacterium Fuels the Energy Metabolism of the Host Trypanosomatid Strigomonas culicis.

    Science.gov (United States)

    Loyola-Machado, Ana Carolina; Azevedo-Martins, Allan Cézar; Catta-Preta, Carolina Moura Costa; de Souza, Wanderley; Galina, Antonio; Motta, Maria Cristina M

    2017-02-28

    The mutualistic relationship between trypanosomatids and their respective endosymbiotic bacteria represents an excellent model for studying metabolic co-evolution since the symbiont completes essential biosynthetic routes of the host cell. In this work, we investigated the influence of the endosymbiont on the energy metabolism of Strigomonas culicis by comparing the wild strain with aposymbiotic protists. The bacterium maintains a frequent and close association with glycosomes, which are distributed around the prokaryote. Furthermore, 3D reconstructions revealed that the shape and distribution of glycosomes are different in symbiont-bearing protists compared to symbiont-free cells. Results of bioenergetic assays showed that the presence of the symbiont enhances the O2 consumption of the host cell. When the quantity of intracellular or released glycerol was evaluated, the aposymbiotic strain presented higher values when compared to symbiont-containing cells. Furthermore, inhibition of oxidative phosphorylation by potassium cyanide increased the rate of glycerol release and slightly diminished the ATP content in cells without the symbiont, indicating that the host trypanosomatid enhances its fermentative activity when the bacterium is lost.

  2. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    Science.gov (United States)

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment.

  3. Isolation and characterization of a novel, highly selective astaxanthin-producing marine bacterium.

    Science.gov (United States)

    Asker, Dalal

    2017-09-18

    A high throughput screening approach for astaxanthin-producing bacteria led to the discovery of a novel highly selective astaxanthin-producing marine bacterium (strain N-5). Phylogenetic analysis based on partial 16S rRNA gene and phenotypic metabolic testing indicated it belongs to the genus Brevundimonas. Therefore, it was designated as Brevundimonas sp. strain N-5. To identify and quantify carotenoids produced by strain N-5, HPLC-DAD and HPLC-MS methods were used. The culture conditions including media, shaking and time had significant effects on cell growth and carotenoids production including astaxanthin. The total carotenoids were ~601.2 µg g-1 dry cells including a remarkable amount (364.6 µg g-1 dry cells) of optically pure astaxanthin (3S, 3'S) isomer, with high selectivity (~60.6%) under medium aeration conditions. Notably, increasing the culture aeration enhanced astaxanthin production up to 85% of total carotenoids. This is the first report that describes a natural, highly selective astaxanthin-producing marine bacterium.

  4. Enzymatic properties of chitinase-producing antagonistic bacterium Paenibacillus chitinolyticus with various substrates.

    Science.gov (United States)

    Song, Yong-Su; Seo, Dong-Jun; Ju, Wan-Taek; Lee, Yong-Seong; Jung, Woo-Jin

    2015-12-01

    Various chitin substrates were used to investigate the properties of enzymes produced from the chitinase-producing bacterium Paenibacillus chitinolyticus MP-306 against phytopathogens. The MP-306 bacterium was incubated in nine culture media [crab shell powder chitin (CRS), chitin-protein complex powder (CPC), carboxymethyl-chitin powder (CMC), yeast extract only (YE), LB (Trypton, NaCl, and yeast extract), GT (Trypton, NaCl, and glucose), crab shell colloidal chitin (CSC), squid pen powder chitin (SPC), and cicada slough powder chitin (CSP)] at 30 °C for 3 days. Chitinase isozymes in CPC medium were expressed strongly as CN1, CN2, CN3, CN4, CN5, and CN6 bands on native-PAGE gels. Chitinase isozymes in CPC and CMC medium were expressed as 13 bands (CS1-CS13) on SDS-PAGE gels. Chitinase isozymes were expressed strongly on SDS-PAGE gels as two bands (CS6 and CS8) on YE and LB medium and 13 bands (CS1-CS13) on SPC medium. In crude enzyme, chitinase isozymes at pH 7 and pH 9 in chitin media appeared strongly on SDS-PAGE gels. Partial purified enzyme indicated high stability of enzyme activity at various temperatures and pHs in chitin medium, while these enzymes indicated low activity staining of enzyme on electrophoresis gels at various temperatures and pHs condition of chitin medium.

  5. Discovery of clostrubin, an exceptional polyphenolic polyketide antibiotic from a strictly anaerobic bacterium.

    Science.gov (United States)

    Pidot, Sacha; Ishida, Keishi; Cyrulies, Michael; Hertweck, Christian

    2014-07-21

    Genome mining of the strictly anaerobic bacterium Clostridium beijerinckii, an industrial producer of solvents, revealed the presence of several cryptic gene clusters for secondary metabolite biosynthesis. To unearth its metabolic potential, a C. beijerinckii strain was cultured under various conditions, which led to the discovery of a deep purple pigment. This novel metabolite, named clostrubin (1), was isolated and its structure was fully elucidated. The pentacyclic polyphenol features a benzo[a]tetraphene ring topology that is unprecedented for natural products. Stable-isotope labeling experiments showed that 1 is an aromatic polyketide that folds in a noncanonical manner to form the unusual perifused ring system. In addition to being the first reported polyketide from an anaerobic bacterium, 1 is a potent antibiotic with pronounced activity against various pathogenic bacteria, such as MRSA, VRE, and mycobacteria, with minimum inhibitory concentrations (MIC) of 0.12-0.97 μM. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6.

    Science.gov (United States)

    Shavandi, Mahmoud; Mohebali, Ghasemali; Haddadi, Azam; Shakarami, Heidar; Nuhi, Ashrafossadat

    2011-02-01

    An indigenous biosurfactant producing bacterium, Rhodococcus sp. strain TA6 was isolated from Iranian oil contaminated soil using an efficient enrichment and screening method. During growth on sucrose and several hydrocarbon substrates as sole carbon source, the bacterium could produce biosurfactants. As a result of biosurfactant synthesis, the surface tension of the growth medium was reduced from 68mNm(-1) to values below 30mNm(-1). The biosurfactant was capable of forming stable emulsions with various hydrocarbons ranging from pentane to light motor oil. Preliminary chemical characterization revealed that the TA6 biosurfactant consisted of extracellular lipids and glycolipids. The biosurfactant was stable during exposure to high salinity (10% NaCl), elevated temperatures (120°C for 15min) and within a wide pH range (4.0-10.0). The culture broth was effective in recovering up to 70% of the residual oil from oil-saturated sand packs which indicates the potential value of the biosurfactant in enhanced oil recovery. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque.

    Science.gov (United States)

    Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan

    2016-02-10

    Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium.

  8. Non-specific immune response of bullfrog Rana catesbeiana to intraperitoneal injection of bacterium Aeromonas hydrophila

    Science.gov (United States)

    Zhang, Junjie; Zou, Wenzheng; Yan, Qingpi

    2008-08-01

    Non-specific immune response of bullfrog Rana catesbeiana to pathogenic Aeromonas hydrophila was studied to 60 individuals in two groups. Each bullfrog in bacterium-injected group was injected intraperitoneally (i.p.) with 0.2 ml bacterial suspension at a density of 5.2 × 106 CFU/ml, while each one in control group injected i.p. with 0.2 ml sterile saline solution (0.85%, w/v). Three bullfrogs in both groups were sampled at 0, 1, 3, 7, 11, 15 and 20 days post-injection (dpi) for the evaluation of non-specific immune parameters. It was observed that intraperitoneal injection of A. hydrophila significantly increased the number of leucocytes and that of NBT-positive cells in peripheral blood. Significant increases in serum bactericidal activity and serum acid phosphatase activity were also observed in the bacterium-injected frogs when compared with those in the control group. However, a significant reduction was detected in vitro in phagocytosis activity of peripheral blood phagocytes. No significant difference in changes in the number of peripheral erythrocytes, serum superoxide dismutase (SOD) activity, and lysozyme activity was detected between the two groups. It is suggested that bullfrogs may produce a series of non-specific immune reactions in response to the A. hydrophila infection.

  9. Economic game theory to model the attenuation of virulence of an obligate intracellular bacterium

    Directory of Open Access Journals (Sweden)

    Damian Tago

    2016-08-01

    Full Text Available Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host’s defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g. with Ehrlichia ruminantium, there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  10. A serendipic legacy: Erwin Esmarch's isolation of the first photosynthetic bacterium in pure culture.

    Science.gov (United States)

    Gest, H

    1995-01-01

    During the 1880's, Erwin von Esmarch was a junior associate ('Assistent') of Robert Koch studying bacteria of medical significance. In 1887, he isolated the first example of spiral-shaped bacteria in pure culture, from the dry residue of a dead mouse that he had suspended sometime earlier in Berlin tap-water. Under certain conditions, colonies of the organism were the color of red wine, and this led Esmarch to name the bacterium Spirillum rubrum. Twenty years later, Hans Molisch demonstrated that S. rubrum, an apparent heterotroph, was in fact a non-oxygenic purple photosynthetic bacterium, and it was renamed Rhodospirillum rubrum. Esmarch was a careful investigator and his classic paper of 1887 details the serendipitous isolation and general characteristics of the first pure culture of an anoxyphototroph, which later played a prominent role as an experimental system for study of basic aspects of bacterial photosynthesis. This report includes an English translation of his original paper (in German), a commentary on the historical significance of 'Esmarch's spirillum', and a summary of Esmarch's career.

  11. Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036.

    Science.gov (United States)

    Choi, Sun Young; Gong, Gyeongtaek; Park, Hong-Sil; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2015-01-10

    Detoxification process of cellular inhibitors including furfural is essential for production of bio-based chemicals from lignocellulosic biomass. Here we isolated an extreme furfural-tolerant bacterium Enterobacter cloacae GGT036 from soil sample collected in Mt. Gwanak, Republic of Korea. Among isolated bacteria, only E. cloacae GGT036 showed cell growth with 35 mM furfural under aerobic culture. Compared to the maximal half inhibitory concentration (IC50) of well-known industrial strains Escherichia coli (24.9 mM furfural) and Corynebacterium glutamicum (10 mM furfural) based on the cell density, IC50 of E. cloacae GGT036 (47.7 mM) was significantly higher after 24 h, compared to E. coli and C. glutamicum. Since bacterial cell growth was exponentially inhibited depending on linearly increased furfural concentrations in the medium, we concluded that E. cloacae GGT036 is an extreme furfural-tolerant bacterium. Recently, the complete genome sequence of E. cloacae GGT036 was announced and this could provide an insight for engineering of E. cloacae GGT036 itself or other industrially relevant bacteria.

  12. Data supporting functional diversity of the marine bacterium Cobetia amphilecti KMM 296

    Directory of Open Access Journals (Sweden)

    Larissa Balabanova

    2016-09-01

    Full Text Available Data is presented in support of functionality of hyper-diverse protein families encoded by the Cobetia amphilecti KMM 296 (formerly Cobetia marina KMM 296 genome (“The genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853” [1] providing its nutritional versatility, adaptability and biocontrol that could be the basis of the marine bacterium evolutionary and application potential. Presented data include the information of growth and biofilm-forming properties of the food-associated isolates of Pseudomonas, Bacillus, Listeria, Salmonella and Staphylococcus under the conditions of their co-culturing with C. amphilecti KMM 296 to confirm its high inter-species communication and anti-microbial activity. Also included are the experiments on the crude petroleum consumption by C. amphilecti KMM 296 as the sole source of carbon in the presence of sulfate or nitrate to ensure its bioremediation capacity. The multifunctional C. amphilecti KMM 296 genome is a promising source for the beneficial psychrophilic enzymes and essential secondary metabolites.

  13. Enhanced Cadmium (Cd Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    Directory of Open Access Journals (Sweden)

    Kunchaya Setkit

    2014-01-01

    Full Text Available A cadmium (Cd-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also significantly increased Cd accumulation in the root and above-ground tissues of H. annuus L. compared to uninoculated control. Re-inoculation with Micrococcus sp. MU1in contaminated soil helped in promoting plant growth and Cd phytoextraction throughout the cultivation period. In addition, phytoextraction coefficient and translocation factor (TF of H. annuus L. inoculated with Micrococcus sp. MU1were higher than that of uninoculated control and TF continuously increased with time. Our results suggested that Micrococcus sp. MU1 has an ability to enhance plant growth and Cd uptake in H. annuus L. Synergistic interaction between Micrococcus sp. MU1 and H. annuus L. could be further applied for Cd phytoextraction in polluted areas.

  14. The algae-lytic ability of bacterium DC10 and the influence of environmental factors on the ability

    Institute of Scientific and Technical Information of China (English)

    SHI Shunyu; LIU Yongding; SHEN Yinwu; LI Genbao

    2005-01-01

    A lysing-bacterium DC10, isolated from Dianchi Lake of Yunnan Province, was characterized to be Pseudomonas sp. It was able to lyse some algae well, such as Microcystis viridis, Selenastrum capricornutum, and so on. In this study, it was shown that the bacterium lysed the algae by releasing a substance; the best lytic effects were achieved at Iow temperatures and in the dark. Different concentrations of CaCI2 and NaNO3 influenced the lytic effects;the ability to lyse algae decreased in the following order: pH 4 > pH 9 > pH 7 > pH 5.5. It was significant to develop a special technology with this kind of bacterium for controlling the bloomforming planktonic microalgae.

  15. Draft Genome Sequence of the Endophytic Bacterium Enterobacter spp. MR1, Isolated from Drought Tolerant Plant (Butea monosperma).

    Science.gov (United States)

    Parakhia, Manoj V; Tomar, Rukam S; Malaviya, Bipin J; Dhingani, Rashmin M; Rathod, Visha M; Thakkar, Jalpa R; Golakiya, B A

    2014-03-01

    Enterobacter sp. MR1 an endophytic plant growth promoting bacterium was isolated from the roots of Butea monosperma, a drought tolerant plant. Genome sequencing of Enterobacter spp. MR1 was carried out in Ion Torrent (PGM), Next Generation Sequencer. The data obtained revealed 640 contigs with genome size of 4.58 Mb and G+C content of 52.8 %. This bacterium may contain genes responsible for inducing drought tolerance in plant, including genes for phosphate solubilization, growth hormones and other useful genes for plant growth.

  16. Bacterium-like Particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications

    Directory of Open Access Journals (Sweden)

    Natalija eVan Braeckel-Budimir

    2013-09-01

    Full Text Available The successful development of a mucosal vaccine critically depends on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle derived from bacteria in mucosal subunit vaccines. The non-living particles, designated Bacterium-like Particles (BLPs are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine.

  17. Complete genome sequence of Photorhabdus temperata subsp. thracensis 39-8 T, an entomopathogenic bacterium for the improved commercial bioinsecticide.

    Science.gov (United States)

    Kwak, Yunyoung; Shin, Jae-Ho

    2015-11-20

    Photorhabdus temperata subsp. thracensis 39-8(T), a symbiotic bacterium from an entomopathogenic nematode Heterorhabditis bacteriophora, is a novel bacterium harboring insect pathogenicity. Herein, we present the complete genome sequence of strain 39-8(T), which consists of one circular chromosome of 5,147,098 bp with a GC content of 44.10%. This genetic information will provide insights into biotechnological applications of the genus Photorhabdus producing insecticidal toxins, leading to the enhanced commercial bioinsecticide in agricultural pest control. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio.

    Directory of Open Access Journals (Sweden)

    Sascha Knauf

    Full Text Available The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum, yaws (ssp. pertenue, and endemic syphilis (ssp. endemicum in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papio papio at Parc National Niokolo Koba in south eastern Senegal for the presence of anti-T. pallidum antibodies. Since T. pallidum infection in this species was identified 50 years ago, and there has been no attempt to treat non-human primates for infection, it was hypothesized that a large number of West African baboons are still infected with simian strains of the yaws-bacterium. All animals were without clinical signs of treponematoses, but 18 of 20 (90% baboons tested positive for antibodies against T. pallidum based on treponemal tests. Yet, Guinea baboons seem to develop no clinical symptoms, though it must be assumed that infection is chronic or comparable to the latent stage in human yaws infection. The non-active character is supported by the low anti-T. pallidum serum titers in Guinea baboons (median = 1:2,560 versus serum titers that are found in genital-ulcerated olive baboons with active infection in Tanzania (range of medians among the groups of initial, moderate, and severe infected animals = 1:15,360 to 1:2.097e+7. Our findings provide evidence for simian infection with T. pallidum in wild Senegalese baboons. Potentially, Guinea baboons in West Africa serve as a natural reservoir for human infection, as the West African simian strain has been shown to cause sustainable yaws infection when inoculated into humans. The present study pinpoints an area where further research is needed to support the currently on-going second WHO led yaws eradication

  19. Metabolism of 4-chloro-2-nitrophenol in a Gram-positive bacterium, Exiguobacterium sp. PMA

    Directory of Open Access Journals (Sweden)

    Arora Pankaj

    2012-11-01

    Full Text Available Abstract Background Chloronitrophenols (CNPs are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. Results A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography–mass spectrometry identified 4-chloro-2-aminophenol (4C2AP and 2-aminophenol (2AP as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Conclusions Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii the bioremediation of 4C2NP by any bacterium.

  20. Complete Genome Sequence of the Unclassified Iron-Oxidizing, Chemolithoautotrophic Burkholderiales Bacterium GJ-E10, Isolated from an Acidic River.

    Science.gov (United States)

    Fukushima, Jun; Tojo, Fuyumi; Asano, Ryoki; Kobayashi, Yayoi; Shimura, Yoichiro; Okano, Kunihiro; Miyata, Naoyuki

    2015-02-05

    Burkholderiales bacterium GJ-E10, isolated from the Tamagawa River in Akita Prefecture, Japan, is an unclassified, iron-oxidizing chemolithoautotrophic bacterium. Its single circular genome, consisting of 3,276,549 bp, was sequenced by using three types of next-generation sequencers and the sequences were then confirmed by PCR-based Sanger sequencing.

  1. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration

    NARCIS (Netherlands)

    Holliger, C; Hahn, D; Harmsen, H; Ludwig, W; Schumacher, W; Tindall, B; Vazquez, F; Weiss, N; Zehnder, AJB

    The highly enriched anaerobic bacterium that couples the reductive dechlorination of tetrachloroethene to growth, previously referred to as PER-K23, was obtained in pure culture and characterized. The bacterium, which does not form spores, is a small, gram-negative rod with one lateral flagellum. It

  2. Caçambas coletoras de resíduos da construção e demolição no contexto do mobiliário urbano: uma questão de saúde pública e ambiental Containers for construction and demolition waste as urban furnishing: an environmental and public health issue

    Directory of Open Access Journals (Sweden)

    Joyce Maria de Araujo

    2007-04-01

    Full Text Available A utilização de caçambas metálicas em áreas públicas para acondicionar resíduos da construção e demolição-RCD tem sido incrementada, em cidades brasileiras, a partir da década de 1990, contribuindo para o adensamento do mobiliário urbano e modificando a paisagem urbana. Este equipamento é utilizado para confinar os resíduos de modo a impedir sua dispersão no ambiente, facilitar sua coleta e transporte e evitar a exposição de moradores e transeuntes. A despeito dessas vantagens, as caçambas representam um perigo ao ambiente e à saúde pública. Com objetivo de verificar a interferência das caçambas nas ruas e calçadas e identificar situações de risco, foi realizado um estudo de campo envolvendo 58 caçambas estacionadas em 5 diferentes bairros da cidade de São Paulo. Aspectos como localização e disposição, identificação e uso de pintura reflexiva para prevenção de acidentes com veículos automotivos e conteúdo da caçamba foram observados. Os resultados indicaram a presença de não-conformidades, na maioria dos casos observados, como: localização inadequada, pintura reflexiva não existente ou apagada, quantidade excessiva de resíduos, presença de matéria orgânica ou resíduos perigosos, objetos cortantes ou pontiagudos extrapolando os limites da caçamba, dentre outros. Conclui-se que é necessário desenvolver uma abordagem integrada e ecossistêmica para estes elementos do mobiliário urbano, de modo a contemplar, além da questão de gerenciamento dos RCD, aspectos de saúde pública e ambiental e, ao mesmo tempo, preservar os valores estéticos e a paisagem urbana. Dessa forma, o emprego de caçambas coletoras de RCD pode trazer benefícios que contribuam para a qualidade de vida nas cidades brasileiras.The use of metallic waste containers in public areas for storage of construction and demolition wastes-C&D debris was introduced in Brazilian cities in the 1990's, becoming a piece of urban

  3. Molecular Mechanisms of Adaptation of the Moderately Halophilic Bacterium Halobacillis halophilus to Its Environment

    Science.gov (United States)

    Hänelt, Inga; Müller, Volker

    2013-01-01

    The capability of osmoadaptation is a prerequisite of organisms that live in an environment with changing salinities. Halobacillus halophilus is a moderately halophilic bacterium that grows between 0.4 and 3 M NaCl by accumulating both chloride and compatible solutes as osmolytes. Chloride is absolutely essential for growth and, moreover, was shown to modulate gene expression and activity of enzymes involved in osmoadaptation. The synthesis of different compatible solutes is strictly salinity- and growth phase-dependent. This unique hybrid strategy of H. halophilus will be reviewed here taking into account the recently published genome sequence. Based on identified genes we will speculate about possible scenarios of the synthesis of compatible solutes and the uptake of potassium ion which would complete our knowledge of the fine-tuned osmoregulation and intracellular osmolyte balance in H. halophilus. PMID:25371341

  4. Novel Poly[(R-3-Hydroxybutyrate]-Producing Bacterium Isolated from a Bolivian Hypersaline Lake

    Directory of Open Access Journals (Sweden)

    María Soledad Marqués-Calvo

    2013-01-01

    Full Text Available Poly[(R-3-hydroxybutyrate] (PHB constitutes a biopolymer synthesized from renewable resources by various microorganisms. This work focuses on finding a new PHB-producing bacterium capable of growing in conventional media used for industrial biopolymer production, its taxonomical identification, and characterization of its biopolymer. Thus, a bacterial isolation process was carried out from environmental samples of water and mud. Among the isolates, strain S29 was selected and used in a fed-batch fermentation to generate a biopolymer. This biopolymer was recovered and identified as PHB homopolymer. Surprisingly, it featured several fractions of different molecular masses, and thermal properties unusual for PHB. Hence, the microorganism S29, genetically identified as a new strain of Bacillus megaterium, proved to be interesting not only due to its growth and PHB accumulation kinetics under the investigated cultivation conditions, but also due to the thermal properties of the produced PHB.

  5. Activation and manipulation of host responses by a Gram-positive bacterium

    Science.gov (United States)

    Balaji, Vasudevan

    2008-01-01

    The interaction between tomato plants and Clavibacter michiganensis subsp. michiganensis (Cmm) represents a model pathosystem to study the interplay between the virulence determinants of a Gram-positive bacterium and the attempt of a crop plant to counteract pathogen invasion. To investigate plant responses activated during this compatible interaction, we recently analyzed gene expression profiles of tomato stems infected with Cmm. This analysis revealed activation of basal defense responses that are typically observed upon plant perception of pathogen-associated molecular patterns. In addition, Cmm infection upregulated the expression of host genes related to ethylene synthesis and response. Further analysis of tomato plants impaired in ethylene perception and production demonstrated an important role for ethylene in the development of disease symptoms. Here we discuss possible molecular strategies used by the plant to recognize Cmm infection and possible mechanisms employed by the pathogen to interfere with the activation of plant defense responses and promote disease. PMID:19704516

  6. Characterization of a halotolerant-psychroloterant bacterium from dry valley Antarctic soil.

    Science.gov (United States)

    Miller, K J; Leschine, S B; Huguenin, R L

    1983-01-01

    The saline soils of the ice free dry valleys of Victoria Land, Antarctica may provide the closest analog on Earth to Martian conditions. We have initiated a study aimed at examining microbial adaptations to the harsh environment of these dry valley soils. In this report we describe the characterization of one bacterium, strain A4a, isolated from Taylor Valley soil. Strain A4a was an obligately aerobic, orange-pigmented, Gram-positive coccus that grew over wide ranges of both temperature (0 degrees C-40 degrees C) and sodium chloride concentration (0-2.0M). The optimal temperature for growth at all NaCl concentrations was 25 degrees C. Phospholipid composition and guanine plus cytosine content of the DNA of the isolate indicate a close relation to the genus Planococcus.

  7. Isolation of Aureimonas altamirensis, a Brucella canis-like bacterium, from an edematous canine testicle.

    Science.gov (United States)

    Reilly, Thomas J; Calcutt, Michael J; Wennerdahl, Laura A; Williams, Fred; Evans, Tim J; Ganjam, Irene K; Bowman, Jesse W; Fales, William H

    2014-11-01

    Microbiological and histological analysis of a sample from a swollen testicle of a 2-year-old Border Collie dog revealed a mixed infection of the fungus Blastomyces dermatitidis and the Gram-negative bacterium Aureimonas altamirensis. When subjected to an automated microbial identification system, the latter isolate was provisionally identified as Psychrobacter phenylpyruvicus, but the organism shared several biochemical features with Brucella canis and exhibited agglutination, albeit weakly, with anti-B. canis antiserum. Unequivocal identification of the organism was only achieved by 16S ribosomal RNA gene sequencing, ultimately establishing the identity as A. altamirensis. Since its first description in 2006, this organism has been isolated infrequently from human clinical samples, but, to the authors' knowledge, has not been reported from a veterinary clinical sample. While of unknown clinical significance with respect to the pathology observed for the polymicrobial infection described herein, it highlights the critical importance to unambiguously identify the microbe for diagnostic, epidemiological, infection control, and public health purposes.

  8. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus.

    Science.gov (United States)

    Saravanan, V S; Madhaiyan, M; Thangaraju, M

    2007-01-01

    Gluconacetobacter diazotrophicus an endophytic diazotroph also encountered as rhizosphere bacterium is reported to possess different plant growth promoting characteristics. In this study, we assessed the zinc solubilizing potential of G. diazotrophicus under in vitro conditions with different Zn compounds using glucose or sucrose as carbon sources. G. diazotrophicus showed variations in their solubilization potential with the strains used and the Zn compounds tested. G. diazotrophicus PAl5 efficiently solubilized the Zn compounds tested and ZnO was effectively solubilized than ZnCO(3) or Zn(3)(PO(4))(2). The soluble Zn concentration was determined in the culture supernatant through Atomic Absorption Spectrophotometer. Gas chromatography coupled Mass Spectrometry analysis revealed 5-ketogluconic acid, a derivative of gluconic acid as the major organic acid produced by G. diazotrophicus PAl5 cultured with glucose as carbon source. This organic anion may be an important agent that helped in the solubilization of insoluble Zn compounds.

  9. Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16.

    Science.gov (United States)

    Pohlmann, Anne; Fricke, Wolfgang Florian; Reinecke, Frank; Kusian, Bernhard; Liesegang, Heiko; Cramm, Rainer; Eitinger, Thomas; Ewering, Christian; Pötter, Markus; Schwartz, Edward; Strittmatter, Axel; Voss, Ingo; Gottschalk, Gerhard; Steinbüchel, Alexander; Friedrich, Bärbel; Bowien, Botho

    2006-10-01

    The H(2)-oxidizing lithoautotrophic bacterium Ralstonia eutropha H16 is a metabolically versatile organism capable of subsisting, in the absence of organic growth substrates, on H(2) and CO(2) as its sole sources of energy and carbon. R. eutropha H16 first attracted biotechnological interest nearly 50 years ago with the realization that the organism's ability to produce and store large amounts of poly[R-(-)-3-hydroxybutyrate] and other polyesters could be harnessed to make biodegradable plastics. Here we report the complete genome sequence of the two chromosomes of R. eutropha H16. Together, chromosome 1 (4,052,032 base pairs (bp)) and chromosome 2 (2,912,490 bp) encode 6,116 putative genes. Analysis of the genome sequence offers the genetic basis for exploiting the biotechnological potential of this organism and provides insights into its remarkable metabolic versatility.

  10. The nucleotide sequence of Beneckea harveyi 5S rRNA. [bioluminescent marine bacterium

    Science.gov (United States)

    Luehrsen, K. R.; Fox, G. E.

    1981-01-01

    The primary sequence of the 5S ribosomal RNA isolated from the free-living bioluminescent marine bacterium Beneckea harveyi is reported and discussed in regard to indications of phylogenetic relationships with the bacteria Escherichia coli and Photobacterium phosphoreum. Sequences were determined for oligonucleotide products generated by digestion with ribonuclease T1, pancreatic ribonuclease and ribonuclease T2. The presence of heterogeneity is indicated for two sites. The B. harveyi sequence can be arranged into the same four helix secondary structures as E. coli and other prokaryotic 5S rRNAs. Examination of the 5S-RNS sequences of the three bacteria indicates that B. harveyi and P. phosphoreum are specifically related and share a common ancestor which diverged from an ancestor of E. coli at a somewhat earlier time, consistent with previous studies.

  11. Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL

    Institute of Scientific and Technical Information of China (English)

    TAYLOR Shauna M; HE Yiliang; ZHAO Bin; HUANG Jue

    2009-01-01

    Bacterium Providencia rettgeri YL was found to exhibit an unusual ability to heterotrophically nitrify and aerobically denitrify various concentrations of ammonium (NH4+-N). In order to further analyze its removal ability, several experiments were conducted to identify the growth and ammonium removal response in different carbon to nitrogen (C/N) mass ratios, shaking speeds, temperatures, ammonium concentrations and to qualitatively verify the production of nitrogen gas using gas chromatography techniques. Results showed that under optimum conditions (C/N 10, 30℃, 120 r/min), YL can significantly remove low and high concentrations of ammonium within 12 to 48 h of growth. The nitrification products hydroxylamine (NH2OH), nitrite (NO2-) and nitrate (NO3-) as well as the denitrification product, nitrogen gas (N2), were detected under completely aerobic conditions.

  12. Mathematical model of the Lux luminescence system in the terrestrial bacterium Photorhabdus luminescens.

    Science.gov (United States)

    Welham, Patricia A; Stekel, Dov J

    2009-01-01

    A mathematical model of the Lux luminescence system, governed by the operon luxCDABE in the terrestrial bacterium Photorhabdus luminescens, was constructed using a set of coupled ordinary differential equations. This model will have value in the interpretation of Lux data when used as a reporter in time-course gene expression experiments. The system was tested on time series and stationary data from published papers and the model is in good agreement with the published data. Metabolic control analysis demonstrates that control of the system lies mainly with the aldehyde recycling pathway (LuxE and LuxC). The rate at which light is produced in the steady state model shows a low sensitivity to changes in kinetic parameter values to those measured in other species of luminescent bacteria, demonstrating the robustness of the Lux system.

  13. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America.

    Science.gov (United States)

    Eads, David A; Biggins, Dean E

    2015-08-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research. © 2015 Society for Conservation Biology.

  14. Analysis of convergent gene transcripts in the obligate intracellular bacterium Rickettsia prowazekii.

    Directory of Open Access Journals (Sweden)

    Andrew Woodard

    Full Text Available Termination of transcription is an important component of bacterial gene expression. However, little is known concerning this process in the obligate intracellular pathogen and model for reductive evolution, Rickettsia prowazekii. To assess transcriptional termination in this bacterium, transcripts of convergent gene pairs, some containing predicted intrinsic terminators, were analyzed. These analyses revealed that, rather than terminating at a specific site within the intervening region between the convergent genes, most of the transcripts demonstrated either a lack of termination within this region, which generated antisense RNA, or a putative non-site-specific termination that occurred throughout the intervening sequence. Transcripts terminating at predicted intrinsic terminators, as well as at a putative Rho-dependant terminator, were also examined and found to vary based on the rickettsial host environment. These results suggest that transcriptional termination, or lack thereof, plays a role in rickettsial gene regulation.

  15. Complete genome sequencing and analysis of Saprospira grandis str. Lewin, a predatory marine bacterium.

    Science.gov (United States)

    Saw, Jimmy H W; Yuryev, Anton; Kanbe, Masaomi; Hou, Shaobin; Young, Aaron G; Aizawa, Shin-Ichi; Alam, Maqsudul

    2012-03-19

    Saprospira grandis is a coastal marine bacterium that can capture and prey upon other marine bacteria using a mechanism known as 'ixotrophy'. Here, we present the complete genome sequence of Saprospira grandis str. Lewin isolated from La Jolla beach in San Diego, California. The complete genome sequence comprises a chromosome of 4.35 Mbp and a plasmid of 54.9 Kbp. Genome analysis revealed incomplete pathways for the biosynthesis of nine essential amino acids but presence of a large number of peptidases. The genome encodes multiple copies of sensor globin-coupled rsbR genes thought to be essential for stress response and the presence of such sensor globins in Bacteroidetes is unprecedented. A total of 429 spacer sequences within the three CRISPR repeat regions were identified in the genome and this number is the largest among all the Bacteroidetes sequenced to date.

  16. Extraction and physicochemical characteristics of a red pigment produced by marine bacterium strain S-9801

    Institute of Scientific and Technical Information of China (English)

    田黎; 何培青; 刘晨临; 边际; 苗金来

    2002-01-01

    -- A red pigment that has better biological properties is produced by marine bacterium strain S- 9801. The extraction methods, physicochemical and toxicity of the pigment have been studied.Dissolubility of pigment in the five organic solvent has been tested, and ethanol is optimally chosen for extraction. Physicochemical characteristics of this pigment was stable. The absorbance of the pigment solution was no losing when put under natural light for 10 days or treated by UV for 30 minutes, color of the pigment unchanged after 100 ℃ hythere for 1 h or 80 ℃ xerother for 2 h. The median lethal dose (LD50) of the rat by celiac injection was 670.04 mg/kg and minimum lethal dose of oral was greater than 2 000 mg/kg.

  17. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E

    2004-01-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C....... tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma......-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants...

  18. Strain IMB-1, a novel bacterium for the removal of methyl bromide in fumigated agricultural soils

    Science.gov (United States)

    Connell, Hancock T.L.; Costello, A.M.; Lidstrom, M.E.; Oremland, R.S.

    1998-01-01

    A facultatively methylotrophic bacterium, strain IMB-1, that has been isolated from agricultural soil grows on methyl bromide (MeBr), methyl iodide, methyl chloride, and methylated amines, as well as on glucose, pyruvate, or acetate. Phylogenetic analysis of its 16S rRNA gene sequence indicates that strain IMB-1 classes in the alpha subgroup of the class Proteobacteria and is closely related to members of the genus Rhizobium. The ability of strain IMB-1 to oxidize MeBr to CO2 is constitutive in cells regardless of the growth substrate. Addition of cell suspensions of strain IMB-1 to soils greatly accelerates the oxidation of MeBr, as does pretreatment of soils with low concentrations of methyl iodide. These results suggest that soil treatment strategies can be devised whereby bacteria can effectively consume MeBr during field fumigations, which would diminish or eliminate the outward flux of MeBr to the atmosphere.

  19. [Expression of phosphofructokinase gene from Escherichia coli K-12 in obligately autotrophic bacterium Acidithiobacillus thiooxidans].

    Science.gov (United States)

    Tian, Keli; Lin, Jianqun; Liu, Xiangmei; Liu, Ying; Zhang, Changkai

    2003-10-01

    A plasmid pSDK-1 containing the Escherichia coli phosphofructokinase-1 (EC 2.7.1. 11) gene (pfkA) was constructed and transferred into Acidithiobacillus thiooxidans Tt-Z2 by conjugation. The transfer frequency of plasmid from E. coli to Tt-Z2 was 2.6 x 10(-6). More than 68% of Tt-Z2 cells carried the recombinant plasmids after being cultured for 50 generations without selective pressure, which showed that pSDK-1 was maintained consistently in Tt-Z2. The pfkA gene from E. coli could be expressed in this obligately autotrophic bacterium but the enzyme activity (14 U/g was lower than that in E. coli (K-12: 86 U/g; DF1010 carrying plasmid pSDK-1: 97 U/g). In th presence of glucose, the Tt-Z2 transconjugant consumed glucose leading to a better growth yield.

  20. Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil.

    Science.gov (United States)

    Rice, Marlen C; Norton, Jeanette M; Valois, Frederica; Bollmann, Annette; Bottomley, Peter J; Klotz, Martin G; Laanbroek, Hendrikus J; Suwa, Yuichi; Stein, Lisa Y; Sayavedra-Soto, Luis; Woyke, Tanja; Shapiro, Nicole; Goodwin, Lynne A; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Kyrpides, Nikos; Varghese, Neha; Mikhailova, Natalia; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Daum, Chris

    2016-01-01

    Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We identified 3073 gene models, 3018 of which are protein coding. The two-way average nucleotide identity between the chromosomes of Nitrosospira multiformis ATCC 25196 and Nitrosospira briensis C-128 was found to be 77.2 %. Multiple copies of modules encoding chemolithotrophic metabolism were identified in their genomic context. The gene inventory supports chemolithotrophic metabolism with implications for function in soil environments.

  1. A Mutant Strain of a Surfactant-Producing Bacterium with Increased Emulsification Activity

    Institute of Scientific and Technical Information of China (English)

    Liu Qingmei; Yao Jianming; Pan Renrui; Yu Zengliang

    2005-01-01

    As reported in this paper, a strain of oil-degrading bacterium Sp- 5- 3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery(MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2 × 10TM N+/cm2 of dose - the optimum condition, a mutant,S - 34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsification activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.

  2. Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium.

    Science.gov (United States)

    Schubert, Torsten; Maskow, Thomas; Benndorf, Dirk; Harms, Hauke; Breuer, Uta

    2007-05-01

    The compatible solute 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) acts in microorganisms as an osmotic counterweight against halostress and has attracted commercial attention as a protecting agent. Its production and application are restricted by the drawbacks of the discontinuous harvesting procedure involving salt shocks, which reduces volumetric yield, increases reactor corrosion, and complicates downstream processing. In order to synthesize ectoine continuously in less-aggressive media, we introduced the ectoine genes ectABC of the halophilic bacterium Chromohalobacter salexigens into an Escherichia coli strain using the expression vector pASK-IBA7. Under the control of a tet promoter, the transgenic E. coli synthesized 6 g liter-1 ectoine with a space-time yield of 40 mg liter-1 h-1, with the vast majority of the ectoine being excreted.

  3. [Isolation and characteristic of a moderately halophilic bacterium accumulated ectoine as main compatible solute].

    Science.gov (United States)

    He, Jian; Wang, Ting; Sun, Ji-Quan; Gu, Li-Feng; Li, Shun-Peng

    2005-12-01

    A moderately halophilic bacterium(designated strain I15) was isolated from lawn soil. Based on the analysis of 16S rDNA (GenBank accession number DQ010162), morphology, physiological and biochemical characteristics, strain I15 was identified as Virgibacillus marismortuii. This strain was capable of growing under 0% approximately 25% NaCl, and exhibited an optimum NaCl concentration of 10% and an optimum temperature of 30 degrees C and an optimum pH of 7.5 - 8.0 for its growth, respectively. Under hyperosmotic stress, strain 115 accumulated ectoine as the main compatible solute. Under 15% NaCl conditions the intracellar ectoine can reach to 1.608 mmol/(g x cdw), accounted for 89.6% of the total compatible solutes. The biosynthesis of ectoine was under the control of osmotic, and the accumulated ectoine synthesized intraceilularly can released under hypoosmotic shocks and resynthesis under hyperosmotic shock rapidly.

  4. The structure of ferricytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H

    Science.gov (United States)

    Harvilla, Paul B.; Wolcott, Holly N.

    2014-01-01

    Approximately 40% of all proteins are metalloproteins, and approximately 80% of Earth’s ecosystems are at temperatures ≤ 5 °C, including 90% of the global ocean. Thus, an essential aspect of marine metallobiochemistry is an understanding of the structure, dynamics, and mechanisms of cold adaptation of metalloproteins from marine microorganisms. Here, the molecular structure of the electron-transfer protein cytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H has been determined by X-ray crystallography (PDB: 4O1W). The structure is highly superimposable with that of the homologous cytochrome from the mesophile Marinobacter hydrocarbonoclasticus. Based on structural analysis and comparison of psychrophilic, psychrotolerant, and mesophilic sequences, a methionine-based ligand-substitution mechanism for psychrophilic protein stabilization is proposed. PMID:24727932

  5. Biosynthesis and characterization of polyhydroxyalkanoates in the polysaccharide-degrading marine bacterium Saccharophagus degradans ATCC 43961.

    Science.gov (United States)

    González-García, Yolanda; Nungaray, Jesús; Córdova, Jesús; González-Reynoso, Orfil; Koller, Martin; Atlic, Aid; Braunegg, Gerhart

    2008-06-01

    The marine bacterium Saccharophagus degradans was investigated for the synthesis of polyhydroxyalkanoates (PHAs), using glucose as the sole source of carbon in a two-step batch culture. In the first step the microorganism grew under nutrient balanced conditions; in the second step the cells were cultivated under limitation of nitrogen source. The biopolymer accumulated in S. degradans cells was detected by Nile red staining and FT-IR analysis. From GC-MS analysis, it was found that this strain produced a homopolymer of 3-hydroxybutyric acid. The cellular polymer concentration, its molecular mass, glass transition temperature, melting point and heat of fusion were 17.2+/-2.7% of dry cell weight, 54.2+/-0.6 kDa, 37.4+/-6.0 degrees C, 165.6+/-5.5 degrees C and 59.6+/-2.2 J g(-1), respectively. This work is the first report determining the capacity of S. degradans to synthesize PHAs.

  6. Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3.

    Science.gov (United States)

    Wang, Jing; Kim, Young Mi; Rhee, Hong Soon; Lee, Min Woo; Park, Jong Moon

    2013-05-01

    In this study a new bacterium capable of growing on brown seaweed Laminaria japonica, Enterobacter sp. JMP3 was isolated from the gut of turban shell, Batillus cornutus. In anaerobic condition, it produced high yields of ethanol (1.15 mol-EtOH mol-mannitol(-1)) as well as organic acids from mannitol, the major carbohydrate component of L. japonica. Based on carbon distribution and metabolic flux analysis, it was revealed that mannitol was more favorable than glucose for ethanol production due to their different redox states. This indicates that L. japonica is one of the promising feedstock for bioethanol production. Additionally, the mannitol dehydrogenation pathway in Enterobacter sp. JMP3 was examined and verified. Finally, an attempt was made to explore the possibility of controlling ethanol production by altering the redox potential via addition of external NADH in mannitol fermentation.

  7. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.

    Science.gov (United States)

    Lobley, Carina M C; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E; Nettleship, Joanne E; Brandao-Neto, Jose; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2012-12-01

    The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.

  8. Identification of a denitrifying bacterium and verification of its anaerobic ammonium oxidation ability

    Institute of Scientific and Technical Information of China (English)

    HU; Baolan; ZHENG; Ping; LI; Jinye; XU; Xiangyang; JIN; Rencun

    2006-01-01

    A strain D3 of denitrifying bacterium was isolated from an anammox reactor, and identified as Pseudomonas mendocina based on the morphological and physiological assay, Vitek test,Biolog test, (G+C) mol% content, and 16S rDNA phylogenetic analysis. As a typical denitrifying bactration of 88.5 mg N/L. The optimal pH and growth temperature were 7.84 and 34.9℃, respectively.Strain D3 was able to oxidize ammonia under anaerobic condition. The maximum nitrate and ammoof ammonia to nitrate was 1:1.91. Electron microscopic observation revealed peculiar cell inclusions in strain D3. Because of its relation to anammox activity, strain D3 was presumed to be anammoxosome.The present investigation proved that denitrifying bacteria have the anammox ability, and the results have engorged the range of anammox populations.

  9. Draft whole genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344.

    Science.gov (United States)

    Luque-Almagro, Víctor M; Acera, Felipe; Igeño, Ma Isabel; Wibberg, Daniel; Roldán, Ma Dolores; Sáez, Lara P; Hennig, Magdalena; Quesada, Alberto; Huertas, Ma José; Blom, Jochen; Merchán, Faustino; Escribano, Ma Paz; Jaenicke, Sebastian; Estepa, Jessica; Guijo, Ma Isabel; Martínez-Luque, Manuel; Macías, Daniel; Szczepanowski, Rafael; Becerra, Gracia; Ramirez, Silvia; Carmona, Ma Isabel; Gutiérrez, Oscar; Manso, Isabel; Pühler, Alfred; Castillo, Francisco; Moreno-Vivián, Conrado; Schlüter, Andreas; Blasco, Rafael

    2013-01-01

    Pseudomonas pseudoalcaligenes CECT5344 is a Gram-negative bacterium able to tolerate cyanide and to use it as the sole nitrogen source. We report here the first draft of the whole genome sequence of a P. pseudoalcaligenes strain that assimilates cyanide. Three aspects are specially emphasized in this manuscript. First, some generalities of the genome are shown and discussed in the context of other Pseudomonadaceae genomes, including genome size, G + C content, core genome and singletons among other features. Second, the genome is analysed in the context of cyanide metabolism, describing genes probably involved in cyanide assimilation, like those encoding nitrilases, and genes related to cyanide resistance, like the cio genes encoding the cyanide insensitive oxidases. Finally, the presence of genes probably involved in other processes with a great biotechnological potential like production of bioplastics and biodegradation of pollutants also is discussed.

  10. A Marine Sulfate-Reducing Bacterium Producing Multiple Antibiotics: Biological and Chemical Investigation

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2009-07-01

    Full Text Available A marine sulfate-reducing bacterium SRB-22 was isolated by means of the agar shake dilution method and identified as Desulfovibrio desulfuricans by morphological, physiological and biochemical characteristics and 16S rDNA analysis. In the bioassay, its extract showed broad-spectrum antimicrobial activity using the paper disc agar diffusion method. This isolate showed a different antimicrobial profile than either ampicillin or nystatin and was found to produce at least eight antimicrobial components by bioautography. Suitable fermentation conditions for production of the active constituents were determined to be 28 day cultivation at 25 °C to 30 °C with a 10% inoculation ratio. Under these conditions, the SRB-22 was fermented, extracted and chemically investigated. So far an antimicrobial compound, mono-n-butyl phthalate, and an inactive compound, thymine, have been isolated and characterized.

  11. [Electrooptical properties of soil nitrogen-fixing bacterium Azospirillum brasilense: effect of copper ions].

    Science.gov (United States)

    Ignatov, O V; Kamnev, A A; Markina, L N; Antoniuk, L P; Kolina, M; Ignatov, V V

    2001-01-01

    The effects of copper ions on the uptake of some essential metals in the biomass and the electrooptical properties of cell suspensions of the nitrogen-fixing soil bacterium Azospirillum brasilense sp. 245 were studied. Copper cations were shown to be effectively taken up by the cell biomass from the culture medium. The addition of copper ions increased the rate of uptake of some other metals present in the culture medium. This was accompanied by changes in the electrooptical characteristics of cell suspension as measured within the orienting electric field frequency range of 10 to 10,000 kHz. The effects observed during short-term incubation of A. brasilense in the presence of copper cations were less significant than during long-term incubation. These results can be used for rapid screening of microbial cultures for enhanced efficiency of sorption and uptake of metals.

  12. [Stearic acid methyl ether: a new extracellular metabolite of the obligate methylotrophic bacterium Methylophilus quaylei].

    Science.gov (United States)

    Terekhova, E A; Stepicheva, N A; Pshenichnikova, A B; Shvets, V I

    2010-01-01

    Methyl esters of fatty acids, free fatty acids, and hydrocarbons were found in the culture liquid and in the cellular lipids of the obligate methylotrophic bacterium Methylophilus quaylei under optimal growth conditions and osmotic stress. The main extracellular hydrophobic metabolite was methyl stearate. Exogenous free fatty acids C16-C18 and their methyl esters stimulated the M. quaylei growth and survivability, as well as production of exopolysaccharide under osmotic and oxidative stress, playing the role of growth factors and adaptogens. The order of hydrophobic supplements according to the ability to stimulate bacterial growth is C18 : 1 > C18 : 0 > C16 : 0 > methyl oleate > methyl stearate > no supplements > C14: 0 > C12 : 0. The mechanism underlying the protective action of fatty acids and their methyl esters is discussed.

  13. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638.

    Directory of Open Access Journals (Sweden)

    Safiyh Taghavi

    2010-05-01

    Full Text Available Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpaxdeltoides cv. H11-11, a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1. Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots, root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis, colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase, plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol, and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further

  14. Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax

    Directory of Open Access Journals (Sweden)

    Guangli Wang

    2010-06-01

    Full Text Available Microbial degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenylethane (DDT is the most promising way to clean up DDT residues found in the environment. In this paper, a bacterium designated as wax, which was capable of co-metabolizing DDT with other carbon sources, was isolated from a long-term DDT-contaminated soil sample by an enrichment culture technique. The new isolate was identified as a member of the Pseudoxanthomonas sp., based on its morphological, physiological and biochemical properties, as well as by 16S rRNA gene analysis. In the presence of 100 mg l-1 glucose, the wax strain could degrade over 95% of the total DDT, at a concentration of 20 mg l-1, in 72 hours, and could degrade over 60% of the total DDT, at a concentration of 100 mg l-1, in 144 hours. The wax strain had the highest degradation efficiency among all of the documented DDT-degrading bacteria. The wax strain could efficiently degrade DDT at temperatures ranging from 20 to 37ºC, and with initial pH values ranging from 7 to 9. The bacterium could also simultaneously co-metabolize 1,1-dichloro-2,2-bis(p-chlorophenylethane (DDD, 2,2-bis(p-chlorophenyl-1,1-dichlorethylene (DDE, and other organochlorine compounds. The wax strain could also completely remove 20 mg kg-1 of DDT from both sterile and non-sterile soils in 20 days. This study demonstrates the significant potential use of Pseudoxanthomonas sp. wax for the bioremediation of DDT in the environment.

  15. Geobacter luticola sp. nov., an Fe(III)-reducing bacterium isolated from lotus field mud.

    Science.gov (United States)

    Viulu, Samson; Nakamura, Kohei; Okada, Yurina; Saitou, Sakiko; Takamizawa, Kazuhiro

    2013-02-01

    A novel species of Fe(III)-reducing bacterium, designated strain OSK6(T), belonging to the genus Geobacter, was isolated from lotus field mud in Japan. Strain OSK6(T) was isolated using a solid medium containing acetate, Fe(III)-nitrilotriacetate (NTA) and gellan gum. The isolate is a strictly anaerobic, gram-negative, motile, straight rod-shaped bacterium, 0.6-1.9 µm long and 0.2-0.4 µm wide. The growth of the isolate occurred at 20-40 °C with optima of 30-37 °C and pH 6.5-7.5 in the presence of up to 0.5 g NaCl l(-1). The G+C content of the genomic DNA was determined by HPLC to be 59.7 mol%. The major respiratory quinone was MK-8. The major fatty acids were 16 : 1ω7c and 16 : 0. Strain OSK6(T) was able to grow with Fe(III)-NTA, ferric citrate, amorphous iron (III) hydroxide and nitrate, but not with fumarate, malate or sulfate as electron acceptors. Among examined substrates grown with Fe(III)-NTA, the isolate grew on acetate, lactate, pyruvate and succinate. Analysis of the near full-length 16S rRNA gene sequence revealed that strain OSK6(T) is closely related to Geobacter daltonii and Geobacter toluenoxydans with 95.6 % similarity to the type strains of these species. On the basis of phylogenetic analysis and physiological tests, strain OSK6(T) is described as a representative of a novel species, Geobacter luticola sp. nov.; the type strain is OSK6(T) ( = DSM 24905(T) = JCM 17780(T)).

  16. Bacillus flexus strain As-12, a new arsenic transformer bacterium isolated from contaminated water resources.

    Science.gov (United States)

    Jebeli, Mohammad Ahmadi; Maleki, Afshin; Amoozegar, Mohammad Ali; Kalantar, Enayatollah; Izanloo, Hassan; Gharibi, Fardin

    2017-02-01

    A total of 14 arsenic-resistant bacteria were isolated from an arsenic-contaminated travertine spring water in the central district of Qorveh county, Kurdistan Province, Iran. One of strains designated As-12 was selected for further investigation because of its ability to transform arsenic. The strain was identified by cultural, morphological and biochemical tests, and 16S rRNA gene sequencing. Finally, the growth characteristics of the isolate were investigated in a chemically defined medium which included varied ranges of environmental factors such as pH, temperature and salinity. Moreover, the resistance of this strain to some heavy metals was evaluated. The bacterium was a Gram-positive, endospore-forming with all other characteristics of the genus Bacillus. It revealed maximum similarity at the 16S rRNA gene level with Bacillus flexus. The optimum growth of the strain was observed at 38 °C, pH 9 and 2% salinity. This strain was resistant to heavy metals such as zinc, chromium, lead, nickel, copper, mercuric and cadmium at concentrations of 15 mM, 15.5 mM, 11.5 mM, 12 mM, 11 mM, 5.5 mM, and 1 mM, respectively. The isolated bacterium was able to reduce As (V) to As (III) (about 28%) and oxidize As (III) to As (V) (about 45%) after 48 h of incubation at 37 °C. In conclusion, Bacillus flexus strain As-12, was identified as an arsenic transformer, for the first time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor.

    Science.gov (United States)

    Nguyen, Kien T; Willey, Joanne M; Nguyen, Liem D; Nguyen, Lieu T; Viollier, Patrick H; Thompson, Charles J

    2002-12-01

    In the multicellular bacterium Streptomyces coelicolor, functions of developmental (bald) genes are required for the biosynthesis of SapB, a hydrophobic peptidic morphogen that facilitates aerial hyphae formation. Here, we show that aerial hyphal growth and SapB biosynthesis could be activated independently from the normal developmental cascade by providing unprogrammed expression of functionally interactive genes within the ram cluster. ramC, ramS and ramR were essential for normal growth of aerial hyphae, and ramR, a response regulator gene, was a key activator of development. The ramR gene restored growth of aerial hyphae and SapB formation in all bald strains tested (albeit only weakly in the bldC mutant), many of which are characterized by physiological defects. Disruption of the ramR gene abolished SapB biosynthesis and severely delayed growth of aerial hyphae. Transcription of ramR was developmentally controlled, and RamR function in vivo depended on its putative phosphorylation site (D53). We identified and mapped RamR targets immediately upstream of the region encoding ramC and ramS, a putative operon. Overexpression of ramR in the wild-type strain increased SapB levels and caused a distinctive wrinkled surface topology. Based on these results, we propose that phenotypes of bald mutations reflect an early stage in the Streptomyces developmental programme similar to the spo0 mutations in the unicellular bacterium Bacillus subtilis, and that RamR has analogies to Spo0A, the Bacillus response regulator that integrates physiological signals before triggering endospore formation.

  18. Enhanced carboxymethylcellulase production by a newly isolated marine bacterium, Cellulophaga lytica LBH-14, using rice bran.

    Science.gov (United States)

    Gao, Wa; Lee, Eun-Jung; Lee, Sang-Un; Li, Jianhong; Chung, Chung-Han; Lee, Jin-Woo

    2012-10-01

    The aim of this work was to establish the optimal conditions for production of carboxymethylcellulase (CMCase) by a newly isolated marine bacterium using response surface methodology (RSM). A microorganism producing CMCase, isolated from seawater, was identified as Cellulophaga lytica based 16S rDNA sequencing and the neighborjoining method. The optimal conditions of rice bran, ammonium chloride, and initial pH of the medium for cell growth were 100.0 g/l, 5.00 g/l, and 7.0, respectively, whereas those for production of CMCase were 79.9 g/l, 8.52 g/l, and 6.1. The optimal concentrations of K2HPO4, NaCl, MgSO4·7H2O, and (NH4)2SO4 for cell growth were 6.25, 0.62, 0.28, and 0.42 g/l, respectively, whereas those for production of CMCase were 3.72, 0.54, 0.70, and 0.34 g/l. The optimal temperature for cell growth and the CMCase production by C. lytica LBH-14 were 35 degrees C and 25 degrees C, respectively. The maximal production of CMCase under optimized condition for 3 days was 110.8 U/ml, which was 5.3 times higher than that before optimization. In this study, rice bran and ammonium chloride were developed as carbon and nitrogen sources for the production of CMCase by C. lytica LBH-14. The time for production of CMCase by a newly isolated marine bacterium with submerged fermentations reduced to 3 days, which resulted in enhanced productivity of CMCase and a decrease in its production cost.

  19. Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress.

    Science.gov (United States)

    Chen, Yanmei; Chao, Yuanqing; Li, Yaying; Lin, Qingqi; Bai, Jun; Tang, Lu; Wang, Shizhong; Ying, Rongrong; Qiu, Rongliang

    2016-01-04

    Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd(2+) MIC, >250 mg liter(-1)) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion.

  20. Genome Analysis of Thermosulfurimonas dismutans, the First Thermophilic Sulfur-Disproportionating Bacterium of the Phylum Thermodesulfobacteria

    Science.gov (United States)

    Mardanov, Andrey V.; Beletsky, Alexey V.; Kadnikov, Vitaly V.; Slobodkin, Alexander I.; Ravin, Nikolai V.

    2016-01-01

    Thermosulfurimonas dismutans S95T, isolated from a deep-sea hydrothermal vent is the first bacterium of the phylum Thermodesulfobacteria reported to grow by the disproportionation of elemental sulfur, sulfite, or thiosulfate with carbon dioxide as the sole carbon source. In contrast to its phylogenetically close relatives, which are dissimilatory sulfate-reducers, T. dismutans is unable to grow by sulfate respiration. The features of this organism and its 2,1 Mb draft genome sequence are described in this report. Genome analysis revealed that the T. dismutans genome contains the set of genes for dissimilatory sulfate reduction including ATP sulfurylase, the AprA and B subunits of adenosine-5′-phosphosulfate reductase, and dissimilatory sulfite reductase. The oxidation of elemental sulfur to sulfite could be enabled by APS reductase-associated electron transfer complex QmoABC and heterodisulfide reductase. The genome also contains several membrane-linked molybdopterin oxidoreductases that are thought to be involved in sulfur metabolism as subunits of thiosulfate, polysulfide, or tetrathionate reductases. Nitrate could be used as an electron acceptor and reduced to ammonium, as indicated by the presence of periplasmic nitrate and nitrite reductases. Autotrophic carbon fixation is enabled by the Wood–Ljungdahl pathway, and the complete set of genes that is required for nitrogen fixation is also present in T. dismutans. Overall, our results provide genomic insights into energy and carbon metabolism of chemolithoautotrophic sulfur-disproportionating bacterium that could be important primary producer in microbial communities of deep-sea hydrothermal vents. PMID:27379079

  1. Virus-bacterium coupling driven by both turbidity and hydrodynamics in an Amazonian floodplain lake.

    Science.gov (United States)

    Barros, Nathan; Farjalla, Vinicius F; Soares, Maria C; Melo, Rossana C N; Roland, Fábio

    2010-11-01

    The importance of viruses in aquatic ecosystem functioning has been widely described. However, few studies have examined tropical aquatic ecosystems. Here, we evaluated for the first time viruses and their relationship with other planktonic communities in an Amazonian freshwater ecosystem. Coupling between viruses and bacteria was studied, focusing both on hydrologic dynamics and anthropogenic forced turbidity in the system (Lake Batata). Samples were taken during four hydrologic seasons at both natural and impacted sites to count virus-like particles (VLP) and bacteria. In parallel, virus-infected bacteria were identified and quantified by transmission electron microscopy (TEM). Viral abundance ranged from 0.5 × 10⁷ ± 0.2 × 10⁷ VLP ml⁻¹ (high-water season, impacted site) to 1.7 × 10⁷ ± 0.4 × 10⁷ VLP ml⁻¹ (low-water season, natural site). These data were strongly correlated with the bacterial abundance (r² = 0.84; P < 0.05), which ranged from 1.0 × 10⁶ ± 0.5 × 10⁶ cells ml⁻¹ (high water, impacted site) to 3.4 × 10⁶ ± 0.7 × 10⁶ cells ml⁻¹ (low water, natural site). Moreover, the viral abundance was weakly correlated with chlorophyll a, suggesting that most viruses were bacteriophages. TEM quantitative analyses revealed that the frequency of visibly infected cells was 20%, with 10 ± 3 phages per cell section. In general, we found a low virus-bacterium ratio (<7). Both the close coupling between the viral and bacterial abundances and the low virus-bacterium ratio suggest that viral abundance tends to be driven by the reduction of hosts for viral infection. Our results demonstrate that viruses are controlled by biological substrates, whereas in addition to grazing, bacteria are regulated by physical processes caused by turbidity, which affect underwater light distribution and dissolved organic carbon availability.

  2. Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Borghese, Roberto, E-mail: roberto.borghese@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna (Italy); Baccolini, Chiara; Francia, Francesco [Department of Pharmacy and Biotechnology, University of Bologna (Italy); Sabatino, Piera [Department of Chemistry G. Ciamician, University of Bologna (Italy); Turner, Raymond J. [Department of Biological Sciences, University of Calgary, Calgary, Alberta (Canada); Zannoni, Davide, E-mail: davide.zannoni@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna (Italy)

    2014-03-01

    Graphical abstract: - Highlights: • R. capsulatus cells produce extracellular chalcogens nanoprecipitates when lawsone is present. • Lawsone acts as a redox mediator from reducing equivalents to tellurite and selenite. • Nanoprecipitates production depends on carbon source and requires metabolically active cells. • Te{sup 0} and Se{sup 0} nanoprecipitates are identified by X-ray diffraction (XRD) spectroscopy. - Abstract: The facultative photosynthetic bacterium Rhodobacter capsulatus is characterized in its interaction with the toxic oxyanions tellurite (Te{sup IV}) and selenite (Se{sup IV}) by a highly variable level of resistance that is dependent on the growth mode making this bacterium an ideal organism for the study of the microbial interaction with chalcogens. As we have reported in the past, while the oxyanion tellurite is taken up by R. capsulatus cells via acetate permease and it is reduced to Te{sup 0} in the cytoplasm in the form of splinter-like black intracellular deposits no clear mechanism was described for Se{sup 0} precipitation. Here, we present the first report on the biotransformation of tellurium and selenium oxyanions into extracellular Te{sup 0} and Se{sup 0}nanoprecipitates (NPs) by anaerobic photosynthetically growing cultures of R. capsulatus as a function of exogenously added redox-mediator lawsone, i.e. 2-hydroxy-1,4-naphthoquinone. The NPs formation was dependent on the carbon source used for the bacterial growth and the rate of chalcogen reduction was constant at different lawsone concentrations, in line with a catalytic role for the redox mediator. X-ray diffraction (XRD) analysis demonstrated the Te{sup 0} and Se{sup 0} nature of the nanoparticles.

  3. Metabolism of Kaempferia parviflora polymethoxyflavones by human intestinal bacterium Bautia sp. MRG-PMF1.

    Science.gov (United States)

    Kim, Mihyang; Kim, Nayoung; Han, Jaehong

    2014-12-24

    Poylmethoxyflavones (PMFs) are major bioactive flavonoids, which exhibit various biological activities, such as anticancer effects. The biotransformation of PMFs and characterization of a PMF-metabolizing human intestinal bacterium were studied herein for the first time. Hydrolysis of aryl methyl ether functional groups by human fecal samples was observed from the bioconversion of various PMFs. Activity-guided screening for PMF-metabolizing intestinal bacteria under anaerobic conditions resulted in the isolation of a strict anaerobic bacterium, which was identified as Blautia sp. MRG-PMF1. The isolated MRG-PMF1 was able to metabolize various PMFs to the corresponding demethylated flavones. The microbial conversion of bioactive 5,7-dimethoxyflavone (5,7-DMF) and 5,7,4'-trimethoxyflavone (5,7,4'-TMF) was studied in detail. 5,7-DMF and 5,7,4'-TMF were completely metabolized to 5,7-dihydroxyflavone (chrysin) and 5,7,4'-trihydroxyflavone (apigenin), respectively. From a kinetics study, the methoxy group on the flavone C-7 position was found to be preferentially hydrolyzed. 5-Methoxychrysin, the intermediate of 5,7-DMF metabolism by Blautia sp. MRG-PMF1, was isolated and characterized by nuclear magnetic resonance spectroscopy. Apigenin was produced from the sequential demethylation of 5,7,4'-TMF, via 5,4'-dimethoxy-7-hydroxyflavone and 7,4'-dihydroxy-5-methoxyflavone (thevetiaflavone). Not only demethylation activity but also deglycosylation activity was exhibited by Blautia sp. MRG-PMF1, and various flavonoids, including isoflavones, flavones, and flavanones, were found to be metabolized to the corresponding aglycones. The unprecedented PMF demethylation activity of Blautia sp. MRG-PMF1 will expand our understanding of flavonoid metabolism in the human intestine and lead to novel bioactive compounds.

  4. Draft Genome Sequence of the Soil Bacterium Burkholderia terrae Strain BS001, Which Interacts with Fungal Surface Structures

    DEFF Research Database (Denmark)

    Nazir, Rashid; Hansen, Martin A.; Sorensen, Soren

    2012-01-01

    Burkholderia terrae BS001 is a soil bacterium which was originally isolated from the mycosphere of the ectomycorrhizal fungus Laccaria proxima. It exhibits a range of fungus-interacting traits which reveal its propensity to actively interact at fungal interfaces. Here, we present the approximatel...

  5. Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca

    NARCIS (Netherlands)

    Schallmey, Anett; den Besten, Gijs; Teune, Ite G. P.; Kembaren, Roga F.; Janssen, Dick B.

    2011-01-01

    Cytochrome P450 monooxygenases are valuable biocatalysts due to their ability to hydroxylate unactivated carbon atoms using molecular oxygen. We have cloned the gene for a new cytochrome P450 monooxygenase, named CYP154H1, from the moderately thermophilic soil bacterium Thermobifida fusca. The enzym

  6. Methanol coneversion by a novel thermophilic homoacetogenic bacterium Moorella mulderi sp.nov. isolated from a bioreactor

    NARCIS (Netherlands)

    Balk, M.; Weijma, J.; Friedrich, M.W.; Stams, A.J.M.

    2003-01-01

    A thermophilic, anaerobic, spore-forming bacterium (strain TMS) was isolated from a thermophilic bioreactor operated at 65 degreesC with methanol as the energy source. Cells were gram-positive straight rods, 0.4-0.6 mum x 2-8 mum, growing as single cells or in pairs. The temperature range for growth

  7. Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81

    Science.gov (United States)

    Megaspheara elsdenii T81 grew on either DL-lactate or D-glucose at similar rates (0.85 per h), but displayed major differences in the fermentation of these substrates. Lactate was fermented at up to 210-mM concentration to yield acetic, propionic, butyric, and valeric acids. The bacterium was able t...

  8. Multiple, stochastic factors can determine acquisition success of the foregut-borne bacterium, Xylella fastidiosa, by a sharpshooter vector

    Science.gov (United States)

    Xylella fastidiosa is a phytopathogenic foregut-borne bacterium whose vectors are sharpshooter leafhoppers. Despite several decades of study, the mechanisms of transmission (acquisition and inoculation) of X. fastidiosa still are not fully understood. Studies of the inoculation mechanism depend upon...

  9. Extraction of DNA from orange juice and detection of bacterium Candidatus Liberibacter asiaticus by real-time PCR

    Science.gov (United States)

    Orange juice processed from Huanglongbing (HLB) affected fruit is often associated with bitter taste and/or off-flavor. HLB disease in Florida is associated with Candidatus Liberibacter asiaticus (CLas), a phloem limited bacterium. The current standard to confirm CLas for citrus trees is to take sam...

  10. Microbacter margulisiae gen. nov., sp. nov., a novel propionigenic bacterium isolated from sediments of an acid rock drainage pond

    NARCIS (Netherlands)

    Sanchez Andrea, I.; Luis Sanz, J.; Stams, A.J.M.

    2014-01-01

    A novel anaerobic propionigenic bacterium, strain ADRIT, was isolated from sediment of an acid rock drainage environment (Tinto River, Spain). Cells were small (0.4-0.6 x 1-1.7 µm), non-motile and non-spore forming rods. Cells possessed a Gram-negative cell wall structure and were vancomycin resista

  11. Desulfurella amilsii sp. nov., a novel acidotolerant sulfur-respiring bacterium isolated from sediments of the Tinto River

    NARCIS (Netherlands)

    Florentino de Souza Silva, Anna; Brienza, C.; Stams, A.J.M.; Sanchez Andrea, I.

    2016-01-01

    A novel acidotolerant and moderately thermophilic sulfur-reducing bacterium was isolated from sediments of the Tinto River (Spain), an extremely acidic environment. Strain TR1T stains Gram-negative, is obligately anaerobic, non-spore forming and motile. Cells are short rods (1.5-2 by 0.5-0.7 µm),app

  12. The use of fluorescent probes to assess viability of the plant pathogenic bacterium Clavibacter michiganensis subsp. michiganensis by flow cytometry

    NARCIS (Netherlands)

    Chitarra, L.G.; Breeuwer, P.; Abee, T.; Bulk, van den R.W.

    2006-01-01

    Determination of the viability of bacteria by the conventional plating technique is a time-consuming process. Methods based on enzyme activity or membrane integrity are much faster and may be good alternatives. Assessment of the viability of suspensions of the plant pathogenic bacterium Clavibacter

  13. Complete Genome of Enterobacteriaceae Bacterium Strain FGI 57, a Strain Associated with Leaf-Cutter Ant Fungus Gardens.

    Science.gov (United States)

    Aylward, Frank O; Tremmel, Daniel M; Bruce, David C; Chain, Patrick; Chen, Amy; Walston Davenport, Karen; Detter, Chris; Han, Cliff S; Han, James; Huntemann, Marcel; Ivanova, Natalia N; Kyrpides, Nikos C; Markowitz, Victor; Mavrommatis, Kostas; Nolan, Matt; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Deshpande, Shweta; Goodwin, Lynne; Woyke, Tanja; Currie, Cameron R

    2013-01-01

    The Enterobacteriaceae bacterium strain FGI 57 was isolated from a fungus garden of the leaf-cutter ant Atta colombica. Analysis of its single 4.76-Mbp chromosome will shed light on community dynamics and plant biomass degradation in ant fungus gardens.

  14. Life in the cold: a proteomic study of cold-repressed proteins in the antarctic bacterium pseudoalteromonas haloplanktis TAC125.

    Science.gov (United States)

    Piette, Florence; D'Amico, Salvino; Mazzucchelli, Gabriel; Danchin, Antoine; Leprince, Pierre; Feller, Georges

    2011-06-01

    The proteomes expressed at 4°C and 18°C by the psychrophilic Antarctic bacterium Pseudoalteromonas haloplanktis were compared using two-dimensional differential in-gel electrophoresis with special reference to proteins repressed by low temperatures. Remarkably, the major cold-repressed proteins, almost undetectable at 4°C, were heat shock proteins involved in folding assistance.

  15. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk.

    Science.gov (United States)

    Meneghel, Julie; Dugat-Bony, Eric; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine; Fonseca, Fernanda

    2016-03-03

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes.

  16. Draft Genome Sequence of Enterobacter sp. Sa187, an Endophytic Bacterium Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi

    2017-02-17

    Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth–promoting activity and environmental adaption.

  17. Lactobacillus diolivorans sp nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage

    NARCIS (Netherlands)

    Krooneman, J; Faber, F; Alderkamp, AC; Elferink, SJHWO; Driehuis, F; Cleenwerck, [No Value; Swings, J; Gottschal, JC; Vancanneyt, M

    2002-01-01

    Inoculation of maize silage with Lactobacillus buchneri (5 x 10(5) c.f.u. g(-1) of maize silage) prior to ensiling results in the formation of aerobically stable silage. After 9 months, lactic acid bacterium counts are approximately 10(10) c.f.u. g(-1) in these treated silages. An important subpopul

  18. 1H NMR of High-Potential Iron-Sulfur Protein from the Purple Non-Sulfur Bacterium Rhodoferax fermentans

    DEFF Research Database (Denmark)

    Ciurli, Stefano; Cremonini, Mauro Andrea; Kofod, Pauli

    1996-01-01

    Oxidized and reduced forms of high-potential iron-sulfur protein (HiPIP) from the purple non-sulfur photosynthetic bacterium Rhodoferux fermentans have been characterized using 1H-NMR spectroscopy. Pairwise and sequence-specific assignments of hyperfine-shifted 1H-NMR signals to protons of cysteine...

  19. Biosynthetic controls on the 13C-contents of organic components in the photoautotrophic bacterium Chloroflexus aurantiacus

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Meer, M.T.J. van der; Schouten, S.; Dongen, B.E. van; Rijpstra, W.I.C.; Fuchs, G.; Leeuw, J.W. de; Ward, D.M.

    2001-01-01

    To assess the effects related to known and proposed biosynthetic pathways on the 13C content of lipids and storage products of the photoautotrophic bacterium Chloroflexus aurantiacus, the isotopic compositions of bulk cell material, alkyl and isoprenoid lipids, and storage products such as glycogen

  20. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria.

    Science.gov (United States)

    da Silva, Fábio Daniel Florêncio; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Dall'Agnol, Leonardo Teixeira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Oliveira, Karol Guimarães; de Lima, Clayton Pereira Silva; Nunes, Márcio Roberto Teixeira; Vianez-Júnior, João Lídio Silva Gonçalves; Gonçalves, Evonnildo Costa

    2016-05-19

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here.

  1. Efficient bioremediation of radioactive iodine using biogenic gold nanomaterial-containing radiation-resistant bacterium, Deinococcus radiodurans R1.

    Science.gov (United States)

    Choi, Mi Hee; Jeong, Sun-Wook; Shim, Ha Eun; Yun, Seong-Jae; Mushtaq, Sajid; Choi, Dae Seong; Jang, Beom-Su; Yang, Jung Eun; Choi, Yong Jun; Jeon, Jongho

    2017-04-04

    We herein report a new bioremediation method using a radiation-resistant bacterium. Biogenic gold nanomaterial-containing Deinococcus radiodurans R1 showed excellent capability for the removal of radioactive iodine (>99%) in several aqueous solutions. These observations demonstrated that our remediation system would be efficiently applied to the treatment of radioactive wastes.

  2. Desulfotomaculum carboxydivorans sp.nov., a novel sulfate-reducing bacterium capable of growth at 100% CO

    NARCIS (Netherlands)

    Parshina, S.N.; Sipma, J.; Nakashimada, Y.; Henstra, A.M.; Smidt, H.; Lysenko, A.M.; Lens, P.N.L.; Lettinga, G.; Stams, A.J.M.

    2005-01-01

    A moderately thermophilic, anaerobic, chemolithoheterotrophic, sulfate-reducing bacterium, strain CO-1-SRBT, was isolated from sludge from an anaerobic bioreactor treating paper mill wastewater. Cells were Gram-positive, motile, spore-forming rods. The temperature range for growth was 30¿68 °C, with

  3. Genome Sequence of Klebsiella pneumoniae YZUSK-4, a Bacterium Proposed as a Starter Culture for Fermented Meat Products.

    Science.gov (United States)

    Yu, Hai; Yin, Yongqi; Xu, Lin; Yan, Ming; Fang, Weiming; Ge, Qingfeng

    2015-07-23

    Klebsiella pneumoniae strain YZUSK-4, isolated from Chinese RuGao ham, is an efficient branched-chain aminotransferase-producing bacterium that can be used widely in fermented meat products to enhance flavor. The draft genome sequence of strain YZUSK-4 may provide useful genetic information on branched-chain amino acid aminotransferase production and branched-chain amino acid metabolism.

  4. Thermoregulation of N-acyl homoserine lactone-based quorum sensing in the soft rot bacterium Pectobacterium atrosepticum.

    Science.gov (United States)

    Latour, Xavier; Diallo, Stéphanie; Chevalier, Sylvie; Morin, Danièle; Smadja, Bruno; Burini, Jean-François; Haras, Dominique; Orange, Nicole

    2007-06-01

    The psychrotolerant bacterium Pectobacterium atrosepticum produces four N-acyl homoserine lactones under a wide range of temperatures. Their thermoregulation differs from that of the exoenzyme production, described as being under quorum-sensing control. A mechanism involved in this thermoregulation consists of controlling N-acyl homoserine lactones synthase production at a transcriptional level.

  5. Growth and survival of the fish pathogenic bacterium, Flavobacterium columnare, in tilapia mucus and porcine gastric mucin

    Science.gov (United States)

    Flavobacterium columnare is an economically important gram negative bacterium that infects most freshwater farmed fish worldwide. Flavobacterium columnare colonizes the skin and gills of fish in the initial steps of pathogenesis. The fish’s surface is coated with mucus made up of high molecular we...

  6. Complete Genome Sequence of Nitrosomonas cryotolerans ATCC 49181, a Phylogenetically Distinct Ammonia-Oxidizing Bacterium Isolated from Arctic Waters.

    Science.gov (United States)

    Rice, Marlen C; Norton, Jeanette M; Stein, Lisa Y; Kozlowski, Jessica; Bollmann, Annette; Klotz, Martin G; Sayavedra-Soto, Luis; Shapiro, Nicole; Goodwin, Lynne A; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Varghese, Neha; Mikhailova, Natalia; Palaniappan, Krishna; Ivanova, Natalia; Mukherjee, Supratim; Reddy, T B K; Yee Ngan, Chew; Daum, Chris; Kyrpides, Nikos; Woyke, Tanja

    2017-03-16

    Nitrosomonas cryotolerans ATCC 49181 is a cold-tolerant marine ammonia-oxidizing bacterium isolated from seawater collected in the Gulf of Alaska. The high-quality complete genome contains a 2.87-Mbp chromosome and a 56.6-kbp plasmid. Chemolithoautotrophic modules encoding ammonia oxidation and CO2 fixation were identified.

  7. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    NARCIS (Netherlands)

    Bollmann, A.; Sedlacek, C.J.; Norton, J.; Laanbroek, H.J.; Suwa, Y.; Stein, L.Y.; Klotz, M.G.; Arp, D.; Sayavedra-Soto, L.; Lu, M.; Bruce, D.; Detter, C.; Tapia, R.; Han, J.; Woyke, T.; Lucas, S.; Pitluck, S.; Pennacchio, L.; Nolan, M.; Land, M.L.; Huntemann, M.; Deshpande, S.; Han, C.; Chen, A.; Kyrpides, N.; Mavromatis, K.; Markowitz, V.; Szeto, E.; Ivanova, N.; Mikhailova, N.; Pagani, I.; Pati, A.; Peters, L.; Ovchinnikova, G.; Goodwin, L.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production o

  8. Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches

    NARCIS (Netherlands)

    Wolff, Susanne; Antelmann, Haike; Albrecht, Dirk; Becher, Doerte; Bernhardt, Joerg; Bron, Sierd; Buettner, Knut; van Dijl, Jan Maarten; Eymann, Christine; Otto, Andreas; Tam, Le Thi; Hecker, Michael

    2007-01-01

    With the emergence of mass spectrometry in protein science and the availability of complete genome sequences, proteomics has gone through a rapid development. The soil bacterium Bacillus subtilis, as one of the first DNA sequenced species, represents a model for Gram-positive bacteria and its proteo

  9. Marinimicrobium haloxylanilyticum sp. nov., a new moderately halophilic, polysaccharide-degrading bacterium isolated from Great Salt Lake, Utah

    DEFF Research Database (Denmark)

    Fogh Møller, Mette; Kjeldsen, Kasper Urup; Ingvorsen, Kjeld

    2010-01-01

    A new moderately halophilic, strictly aerobic, Gram-negative bacterium, strain SX15T, was isolated from hypersaline surface sediment of the southern arm of Great Salt Lake (Utah, USA). The strain grew on a number of carbohydrates and carbohydrate polymers such as xylan, starch, carboxymethyl...

  10. Concentration and Transport of Nitrate by the Mat-Forming Sulfur Bacterium Thioploca Rid E-1821-2011

    DEFF Research Database (Denmark)

    FOSSING, H.; GALLARDO, VA; JØRGENSEN, BB

    1995-01-01

    , at between 40 and 280 m water depth. The metabolism of this marine bacterium(5,6) remained a mystery until long after its discovery(1,7). We report here that Thioploca cells are able to concentrate nitrate to up to 500 mM in a liquid vacuole that occupies >80% of the cell volume. Gliding filaments transport...

  11. Complete Genome Sequence of Streptococcus salivarius HSISS4, a Human Commensal Bacterium Highly Prevalent in the Digestive Tract.

    Science.gov (United States)

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-02-04

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides. Copyright © 2016 Mignolet et al.

  12. Complete genome sequence of Streptococcus salivarius HSISS4, a human commensal bacterium highly prevalent in the digestive tract

    NARCIS (Netherlands)

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-01-01

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular

  13. Complete genome sequence of Streptococcus salivarius HSISS4, a human commensal bacterium highly prevalent in the digestive tract

    OpenAIRE

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-01-01

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides.

  14. Complete Genome Sequence ofStreptococcus salivariusHSISS4, a Human Commensal Bacterium Highly Prevalent in the Digestive Tract

    OpenAIRE

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-01-01

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides.

  15. Draft Genome Sequence of Enterobacter sp. Sa187, an Endophytic Bacterium Isolated from the Desert Plant Indigofera argentea

    Science.gov (United States)

    Lafi, Feras F.; Alam, Intikhab; Geurts, Rene; Bisseling, Ton; Bajic, Vladimir B.

    2017-01-01

    ABSTRACT Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth–promoting activity and environmental adaption. PMID:28209831

  16. Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic

    DEFF Research Database (Denmark)

    Celebioglu, Hasan Ufuk; Hansen, Morten Ejby; Majumder, Avishek

    2016-01-01

    Whole cell and surface proteomes were analyzed together with adhesive properties of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) grown on the emerging prebiotic raffinose, exemplifying a synbiotic. Adhesion of NCFM to mucin and intestinal HT-29 cells increased three-fold after...

  17. High-Quality Genome Sequence of the Highly Resistant Bacterium Staphylococcus haemolyticus, Isolated from a Neonatal Bloodstream Infection.

    Science.gov (United States)

    Hosseinkhani, Farideh; Emaneini, Mohammad; van Leeuwen, Willem

    2017-07-20

    Using Illumina HiSeq and PacBio technologies, we sequenced the genome of the multidrug-resistant bacterium Staphylococcus haemolyticus, originating from a bloodstream infection in a neonate. The sequence data can be used as an accurate reference sequence. Copyright © 2017 Hosseinkhani et al.

  18. Complete Genome Sequence of Raoultella ornithinolytica Strain S12, a Lignin-Degrading Bacterium Isolated from Forest Soil.

    Science.gov (United States)

    Bao, Wenying; Zhou, Yun; Jiang, Jingwei; Xu, Zhihui; Hou, Liyuan; Leung, Frederick Chi-Ching

    2015-03-19

    We report the complete genome sequence of Raoultella ornithinolytica strain S12, isolated from a soil sample collected from areas bordering rotten wood and wet soil on Mt. Zijin, Nanjing. The complete genome of this bacterium may contribute toward the discovery of efficient lignin-degrading pathways.

  19. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air

    NARCIS (Netherlands)

    Khan, M. Tanweer; van Dijl, Jan Maarten; Harmsen, Hermie J M

    2014-01-01

    The beneficial human gut microbe Faecalibacterium prausnitzii is a 'probiotic of the future' since it produces high amounts of butyrate and anti-inflammatory compounds. However, this bacterium is highly oxygen-senstive, making it notoriously difficult to cultivate and preserve. This has so far precl

  20. Draft Genome Sequence of Bacillus pseudalcaliphilus PN-137T (DSM 8725), an Alkaliphilic Halotolerant Bacterium Isolated from Garden Soils.

    Science.gov (United States)

    Wang, Jie-Ping; Liu, Bo; Liu, Guo-Hong; Xiao, Rong-Feng; Zheng, Xue-Fang; Shi, Huai; Ge, Ci-Bin

    2015-01-01

    Bacillus pseudalcaliphilus PN-137(T) (DSM 8725) is a Gram-positive, spore-forming, alkaliphilic, and halotolerant bacterium. Here, we report the 4.49-Mb genome sequence of B. pseudalcaliphilus PN-137(T), which will accelerate the application of this alkaliphile and provide useful information for genomic taxonomy and phylogenomics of Bacillus-like bacteria.

  1. Lactobacillus diolivorans sp nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage

    NARCIS (Netherlands)

    Krooneman, J; Faber, F; Alderkamp, AC; Elferink, SJHWO; Driehuis, F; Cleenwerck, [No Value; Swings, J; Gottschal, JC; Vancanneyt, M

    Inoculation of maize silage with Lactobacillus buchneri (5 x 10(5) c.f.u. g(-1) of maize silage) prior to ensiling results in the formation of aerobically stable silage. After 9 months, lactic acid bacterium counts are approximately 10(10) c.f.u. g(-1) in these treated silages. An important

  2. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    NARCIS (Netherlands)

    Bollmann, A.; Sedlacek, C.J.; Norton, J.; Laanbroek, H.J.; Suwa, Y.; Stein, L.Y.; Klotz, M.G.; Arp, D.; Sayavedra-Soto, L.; Lu, M.; Bruce, D.; Detter, C.; Tapia, R.; Han, J.; Woyke, T.; Lucas, S.; Pitluck, S.; Pennacchio, L.; Nolan, M.; Land, M.L.; Huntemann, M.; Deshpande, S.; Han, C.; Chen, A.; Kyrpides, N.; Mavromatis, K.; Markowitz, V.; Szeto, E.; Ivanova, N.; Mikhailova, N.; Pagani, I.; Pati, A.; Peters, L.; Ovchinnikova, G.; Goodwin, L.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production

  3. Complete Genome Sequence of the Bacterium Aalborg_AAW-1, Representing a Novel Family within the Candidate Phylum SR1

    DEFF Research Database (Denmark)

    Dueholm, Morten Simonsen; Albertsen, Mads; Stokholm-Bjerregaard, Mikkel;

    2015-01-01

    Here, we present the complete genome sequence of the candidate phylum SR1 bacterium Aalborg_AAW-1. Its 16S rRNA gene is only 85.5% similar to that of the closest relative, RAAC1_SR1, and the genome of Aalborg_AAW-1 consequently represents the first of a novel family within the candidate phylum SR1....

  4. An Endohyphal Bacterium (Chitinophaga, Bacteroidetes) Alters Carbon Source Use by Fusarium keratoplasticum (F. solani Species Complex, Nectriaceae)

    Science.gov (United States)

    Shaffer, Justin P.; U'Ren, Jana M.; Gallery, Rachel E.; Baltrus, David A.; Arnold, A. Elizabeth

    2017-01-01

    Bacterial endosymbionts occur in diverse fungi, including members of many lineages of Ascomycota that inhabit living plants. These endosymbiotic bacteria (endohyphal bacteria, EHB) often can be removed from living fungi by antibiotic treatment, providing an opportunity to assess their effects on functional traits of their fungal hosts. We examined the effects of an endohyphal bacterium (Chitinophaga sp., Bacteroidetes) on substrate use by its host, a seed-associated strain of the fungus Fusarium keratoplasticum, by comparing growth between naturally infected and cured fungal strains across 95 carbon sources with a Biolog® phenotypic microarray. Across the majority of substrates (62%), the strain harboring the bacterium significantly outperformed the cured strain as measured by respiration and hyphal density. These substrates included many that are important for plant- and seed-fungus interactions, such as D-trehalose, myo-inositol, and sucrose, highlighting the potential influence of EHB on the breadth and efficiency of substrate use by an important Fusarium species. Cases in which the cured strain outperformed the strain harboring the bacterium were observed in only 5% of substrates. We propose that additive or synergistic substrate use by the fungus-bacterium pair enhances fungal growth in this association. More generally, alteration of the breadth or efficiency of substrate use by dispensable EHB may change fungal niches in short timeframes, potentially shaping fungal ecology and the outcomes of fungal-host interactions. PMID:28382021

  5. The biotechnological production of sorbitol.

    Science.gov (United States)

    Silveira, M M; Jonas, R

    2002-08-01

    Sorbitol, a polyol found in many fruits, is of increasing industrial interest as a sweetener, humectant, texturizer and softener. At present, it is produced chemically. The bacterium Zymomonas mobilis is able to produce sorbitol and gluconic acid from fructose and glucose, respectively. This is possible in a one-step reaction via a glucose-fructose oxidoreductase so far only known from Z. mobilis. The possibilities for the industrial production of sorbitol by Z. mobilis are discussed, and compared with the current chemical production method as well as other microbiological processes.

  6. Evidence of carbon fixation pathway in a bacterium from candidate phylum SBR1093 revealed with genomic analysis.

    Science.gov (United States)

    Wang, Zhiping; Guo, Feng; Liu, Lili; Zhang, Tong

    2014-01-01

    Autotrophic CO2 fixation is the most important biotransformation process in the biosphere. Research focusing on the diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the hydroxypropionate-hydroxybutyrate (HPHB) cycle, which was demonstrated in a previous work to be uniquely possessed by some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these enzymes share 30∼50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and 30∼80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution and importance of the HPHB cycle in the biosphere.

  7. Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium

    Directory of Open Access Journals (Sweden)

    Ma YF

    2013-06-01

    Full Text Available Yufan Ma,1 Zhao Wang,1,2 Wen Zhao,1 Tingli Lu,1 Rutao Wang,1,2 Qibing Mei,1 Tao Chen1–3 1Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China; 2Shaanxi Liposome Research Center, Xi'an, Shaanxi, People's Republic of China; 3Xi'an Libang Pharmaceuticals Co, Ltd, Xi'an, People's Republic of China Background: Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. Methods: The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE, and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG, 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS, 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA, nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. Results: It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the

  8. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    Energy Technology Data Exchange (ETDEWEB)

    Taghavi, S.; van der Lelie, D.; Hoffman, A.; Zhang, Y.-B.; Walla, M. D.; Vangronsveld, J.; Newman, L.; Monchy, S.

    2010-05-13

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa x deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  9. Computational prediction of essential genes in an unculturable endosymbiotic bacterium, Wolbachia of Brugia malayi

    Directory of Open Access Journals (Sweden)

    Carlow Clotilde KS

    2009-11-01

    Full Text Available Abstract Background Wolbachia (wBm is an obligate endosymbiotic bacterium of Brugia malayi, a parasitic filarial nematode of humans and one of the causative agents of lymphatic filariasis. There is a pressing need for new drugs against filarial parasites, such as B. malayi. As wBm is required for B. malayi development and fertility, targeting wBm is a promising approach. However, the lifecycle of neither B. malayi nor wBm can be maintained in vitro. To facilitate selection of potential drug targets we computationally ranked the wBm genome based on confidence that a particular gene is essential for the survival of the bacterium. Results wBm protein sequences were aligned using BLAST to the Database of Essential Genes (DEG version 5.2, a collection of 5,260 experimentally identified essential genes in 15 bacterial strains. A confidence score, the Multiple Hit Score (MHS, was developed to predict each wBm gene's essentiality based on the top alignments to essential genes in each bacterial strain. This method was validated using a jackknife methodology to test the ability to recover known essential genes in a control genome. A second estimation of essentiality, the Gene Conservation Score (GCS, was calculated on the basis of phyletic conservation of genes across Wolbachia's parent order Rickettsiales. Clusters of orthologous genes were predicted within the 27 currently available complete genomes. Druggability of wBm proteins was predicted by alignment to a database of protein targets of known compounds. Conclusion Ranking wBm genes by either MHS or GCS predicts and prioritizes potentially essential genes. Comparison of the MHS to GCS produces quadrants representing four types of predictions: those with high confidence of essentiality by both methods (245 genes, those highly conserved across Rickettsiales (299 genes, those similar to distant essential genes (8 genes, and those with low confidence of essentiality (253 genes. These data facilitate

  10. Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus

    Directory of Open Access Journals (Sweden)

    Larimer Frank W

    2011-06-01

    Full Text Available Abstract Background Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria. Methods The complete genomic sequence of Cfl. aurantiacus has been determined, analyzed and compared to the genomes of other photosynthetic bacteria. Results Abundant genomic evidence suggests that there have been numerous gene adaptations/replacements in Cfl. aurantiacus to facilitate life under both anaerobic and aerobic conditions, including duplicate genes and gene clusters for the alternative complex III (ACIII, auracyanin and NADH:quinone oxidoreductase; and several aerobic/anaerobic enzyme pairs in central carbon metabolism and tetrapyrroles and nucleic acids biosynthesis. Overall, genomic information is consistent with a high tolerance for oxygen that has been reported in the growth of Cfl. aurantiacus. Genes for the chimeric photosystem, photosynthetic electron transport chain, the 3-hydroxypropionate autotrophic carbon fixation cycle, CO2-anaplerotic pathways, glyoxylate cycle, and sulfur reduction pathway are present. The central carbon metabolism and sulfur assimilation pathways in Cfl. aurantiacus are discussed. Some features of the Cfl. aurantiacus genome are compared with those of the Roseiflexus castenholzii genome. Roseiflexus castenholzii is a recently characterized FAP bacterium and phylogenetically closely related to Cfl

  11. Bacillus halosaccharovorans sp. nov., a moderately halophilic bacterium from a hypersaline lake.

    Science.gov (United States)

    Mehrshad, Maliheh; Amoozegar, Mohammad Ali; Didari, Maryam; Bagheri, Maryam; Fazeli, Seyed Abolhassan Shahzadeh; Schumann, Peter; Spröer, Cathrin; Sánchez-Porro, Cristina; Ventosa, Antonio

    2013-08-01

    A novel Gram-stain-positive, moderately halophilic bacterium, designated strain E33(T), was isolated from water of the hypersaline lake Aran-Bidgol in Iran and characterized taxonomically using a polyphasic approach. Cells of strain E33(T) were motile rods and produced ellipsoidal endospores at a central or subterminal position in swollen sporangia. Strain E33(T) was a strictly aerobic bacterium, catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 0.5-25 % (w/v), with optimum growth occurring at 5-15 % (w/v) NaCl. The optimum temperature and pH for growth were 40 °C and pH 7.5-8.0, respectively. On the basis of 16S rRNA gene sequence analysis, strain E33(T) was shown to belong to the genus Bacillus within the phylum Firmicutes and showed the closest phylogenetic similarity with the species Bacillus niabensis 4T19(T) (99.2 %), Bacillus herbersteinensis D-1-5a(T) (97.3 %) and Bacillus litoralis SW-211(T) (97.2 %). The DNA G+C content of the type strain of the novel species was 42.6 mol%. The major cellular fatty acids of strain E33(T) were anteiso-C15 : 0 and iso-C15 : 0, and the polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, two unknown glycolipids, an unknown lipid and an unknown phospholipid. The isoprenoid quinones were MK-7 (97 %), MK-6 (2 %) and MK-8 (0.5 %). The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. All these features confirm the placement of isolate E33(T) within the genus Bacillus. DNA-DNA hybridization experiments revealed low levels of relatedness between strain E33(T) and Bacillus niabensis IBRC-M 10590(T) (22 %), Bacillus herbersteinensis CCM 7228(T) (38 %) and Bacillus litoralis DSM 16303(T) (19 %). On the basis of polyphasic evidence from this study, a novel species of the genus Bacillus, Bacillus halosaccharovorans sp. nov. is proposed, with strain E33(T) (= IBRC-M 10095(T) = DSM 25387(T)) as the type strain.

  12. Bacillus persicus sp. nov., a halophilic bacterium from a hypersaline lake.

    Science.gov (United States)

    Didari, Maryam; Amoozegar, Mohammad Ali; Bagheri, Maryam; Mehrshad, Maliheh; Schumann, Peter; Spröer, Cathrin; Sánchez-Porro, Cristina; Ventosa, Antonio

    2013-04-01

    A novel gram-positive, slightly halophilic bacterium, designated strain B48(T), was isolated from soil around the hypersaline lake Aran-Bidgol in Iran and characterized taxonomically using a polyphasic approach. Cells of strain B48(T) were non-motile rods and produced ellipsoidal endospores at a central or subterminal position in swollen sporangia. Strain B48(T) was a strictly aerobic bacterium, catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 0.5-10.0 % (w/v), with optimum growth occurring at 2.5 % (w/v) NaCl. The optimum temperature and pH for growth were 35 °C and pH 7.5-8.0, respectively. On the basis of 16S rRNA gene sequence analysis, strain B48(T) was shown to belong to the genus Bacillus within the phylum Firmicutes and showed the closest phylogenetic similarity to the species Bacillus foraminis CV53(T) (97.4 %) and Bacillus purgationiresistens DS22(T) (96.9 %). The DNA G+C content of this new isolate was 40.1 mol%. The major cellular fatty acids of strain B48(T) were iso-C15 : 0 and anteiso-C15 : 0, and its polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an aminophospholipid and two unknown phospholipids. The only quinone present was menaquinone 7 (MK-7). The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. All these features confirm the placement of isolate B48(T) within the genus Bacillus. DNA-DNA hybridization experiments revealed a low level of relatedness between strain B48(T) and Bacillus foraminis IBRC-M 10625(T) (8.1 %). On the basis of polyphasic evidence from this study, a new species of the genus Bacillus, Bacillus persicus sp. nov., is proposed, with strain B48(T) ( = IBRC-M 10115(T) = DSM 25386(T) = CECT 8001(T)) as the type strain.

  13. Production of polyhydroxybutyrate by the marine photosynthetic bacterium Rhodovulum sulfidophilum P5

    Institute of Scientific and Technical Information of China (English)

    CAI Jinling; WEI Ying; ZHAO Yupeng; PAN Guanghua; WANG Guangce

    2012-01-01

    The effects of different NaCl concentrations,nitrogen sources,carbon sources,and carbon to nitrogen molar ratios on biomass accumulation and polyhydroxybutyrate (PHB) production were studied in batch cultures of the marine photosynthetic bacterium Rhodovulum sulfidophilum P5 under aerobic-dark conditions.The results show that the accumulation of PHB in strain P5 is a growth-associated process.Strain P5 had maximum biomass and PHB accumulation at 2%-3% NaCl,suggesting that the bacterium can maintain growth and potentially produce PHB at natural seawater salinity.In the nitrogen source test,the maximum biomass accumulation (8.10±0.09 g/L) and PHB production (1.11±0.13 g/L and 14.62%±2.25%of the cell dry weight) were observed when peptone and ammonium chloride were used as the sole nitrogen source.NH+4-N was better for PHB production than other nitrogen sources.In the carbon source test,the maximum biomass concentration (7.65±0.05 g/L) was obtained with malic acid as the sole carbon source,whereas the maximum yield of PHB (5.03±0.18 g/L and 66.93%±1.69% of the cell dry weight) was obtained with sodium pyruvate as the sole carbon source.In the carbon to nitrogen ratios test,sodium pyruvate and ammonium chloride were selected as the carbon and nitrogen sources,respectively.The best carbon to nitrogen molar ratio for biomass accumulation (8.77±0.58 g/L) and PHB production (6.07±0.25 g/L and 69.25%±2.05% of the cell dry weight) was 25.The results provide valuable data on the production of PHB by R.sulfidophilum P5 and further studies are on-going for best cell growth and PHB yield.

  14. A Novel Treatment Protects Chlorella at Commercial Scale from the Predatory Bacterium Vampirovibrio chlorellavorus

    Science.gov (United States)

    Ganuza, Eneko; Sellers, Charles E.; Bennett, Braden W.; Lyons, Eric M.; Carney, Laura T.

    2016-01-01

    The predatory bacterium, Vampirovibrio chlorellavorus, can destroy a Chlorella culture in just a few days, rendering an otherwise robust algal crop into a discolored suspension of empty cell walls. Chlorella is used as a benchmark for open pond cultivation due to its fast growth. In nature, V. chlorellavorus plays an ecological role by controlling this widespread terrestrial and freshwater microalga, but it can have a devastating effect when it attacks large commercial ponds. We discovered that V. chlorellavorus was associated with the collapse of four pilot commercial-scale (130,000 L volume) open-pond reactors. Routine microscopy revealed the distinctive pattern of V. chlorellavorus attachment to the algal cells, followed by algal cell clumping, culture discoloration and ultimately, growth decline. The “crash” of the algal culture coincided with increasing proportions of 16s rRNA sequencing reads assigned to V. chlorellavorus. We designed a qPCR assay to predict an impending culture crash and developed a novel treatment to control the bacterium. We found that (1) Chlorella growth was not affected by a 15 min exposure to pH 3.5 in the presence of 0.5 g/L acetate, when titrated with hydrochloric acid and (2) this treatment had a bactericidal effect on the culture (2-log decrease in aerobic counts). Therefore, when qPCR results indicated a rise in V. chlorellavorus amplicons, we found that the pH-shock treatment prevented the culture crash and doubled the productive longevity of the culture. Furthermore, the treatment could be repeatedly applied to the same culture, at the beginning of at least two sequential batch cycles. In this case, the treatment was applied preventively, further increasing the longevity of the open pond culture. In summary, the treatment reversed the infection of V. chlorellavorus as confirmed by observations of bacterial attachment to Chlorella cells and by detection of V. chlorellavorus by 16s rRNA sequencing and qPCR assay. The p

  15. What drives the occurrence of the melioidosis bacterium Burkholderia pseudomallei in domestic gardens?

    Directory of Open Access Journals (Sweden)

    Mirjam Kaestli

    2015-03-01

    Full Text Available Melioidosis is an often fatal infectious disease affecting humans and animals in tropical regions and is caused by the saprophytic environmental bacterium Burkholderia pseudomallei. Domestic gardens are not only a common source of exposure to soil and thus to B. pseudomallei, but they also have been found to contain more B. pseudomallei than other environments. In this study we addressed whether anthropogenic manipulations common to gardens such as irrigation or fertilizers change the occurrence of B. pseudomallei. We conducted a soil microcosm experiment with a range of fertilizers and soil types as well as a longitudinal interventional study over three years on an experimental fertilized field site in an area naturally positive for B. pseudomallei. Irrigation was the only consistent treatment to increase B. pseudomallei occurrence over time. The effects of fertilizers upon these bacteria depended on soil texture, physicochemical soil properties and biotic factors. Nitrates and urea increased B. pseudomallei load in sand while phosphates had a positive effect in clay. The high buffering and cation exchange capacities of organic material found in a commercial potting mix led to a marked increase in soil salinity with no survival of B. pseudomallei after four weeks in the potting mix sampled. Imported grasses were also associated with B. pseudomallei occurrence in a multivariate model. With increasing population density in endemic areas these findings inform the identification of areas in the anthropogenic environment with increased risk of exposure to B. pseudomallei.

  16. What drives the occurrence of the melioidosis bacterium Burkholderia pseudomallei in domestic gardens?

    Science.gov (United States)

    Kaestli, Mirjam; Harrington, Glenda; Mayo, Mark; Chatfield, Mark D; Harrington, Ian; Hill, Audrey; Munksgaard, Niels; Gibb, Karen; Currie, Bart J

    2015-03-01

    Melioidosis is an often fatal infectious disease affecting humans and animals in tropical regions and is caused by the saprophytic environmental bacterium Burkholderia pseudomallei. Domestic gardens are not only a common source of exposure to soil and thus to B. pseudomallei, but they also have been found to contain more B. pseudomallei than other environments. In this study we addressed whether anthropogenic manipulations common to gardens such as irrigation or fertilizers change the occurrence of B. pseudomallei. We conducted a soil microcosm experiment with a range of fertilizers and soil types as well as a longitudinal interventional study over three years on an experimental fertilized field site in an area naturally positive for B. pseudomallei. Irrigation was the only consistent treatment to increase B. pseudomallei occurrence over time. The effects of fertilizers upon these bacteria depended on soil texture, physicochemical soil properties and biotic factors. Nitrates and urea increased B. pseudomallei load in sand while phosphates had a positive effect in clay. The high buffering and cation exchange capacities of organic material found in a commercial potting mix led to a marked increase in soil salinity with no survival of B. pseudomallei after four weeks in the potting mix sampled. Imported grasses were also associated with B. pseudomallei occurrence in a multivariate model. With increasing population density in endemic areas these findings inform the identification of areas in the anthropogenic environment with increased risk of exposure to B. pseudomallei.

  17. Bacillus nitroreducens sp. nov., a humus-reducing bacterium isolated from a compost.

    Science.gov (United States)

    Guo, Junhui; Wang, Yue Qiang; Yang, Guiqin; Chen, Yunqi; Zhou, Shungui; Zhao, Yong; Zhuang, Li

    2016-05-01

    A Gram-staining-positive, facultative anaerobic, motile and rod-shaped bacterium, designated GSS08(T), was isolated from a windrow compost pile and characterized by means of a polyphasic approach. Growth occurred with 0-4 % (w/v) NaCl (optimum 1 %), at pH 6.5-9.5 (optimum pH 7.5) and at 20-45 °C (optimum 37 °C). Anaerobic growth occurred with anthraquinone-2,6-disulphonate, fumarate and NO3 (-) as electron acceptor. The main respiratory quinone was MK-7. The predominant polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. The major fatty acids (>5 %) were iso-C15:0 (43.1 %), anteiso-C15:0 (27.4 %) and iso-C16:0 (8.3 %). The DNA G + C content was 39.6 mol%. The phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GSS08(T) formed a phyletic lineage with the type strain of Bacillus humi DSM 16318(T) with a high sequence similarity of 97.5 %, but it displayed low sequence similarity with other valid species in the genus Bacillus (Bacillus nitroreducens sp. nov. is proposed. The type strain is GSS08(T) (=KCTC 33699(T) = MCCC 1K01091(T)).

  18. Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a.

    Science.gov (United States)

    Ye, Rick W; Yao, Henry; Stead, Kristen; Wang, Tao; Tao, Luan; Cheng, Qiong; Sharpe, Pamela L; Suh, Wonchul; Nagel, Eva; Arcilla, Dennis; Dragotta, Dominic; Miller, Edward S

    2007-04-01

    Methylomonas sp. strain 16a is an obligate methanotrophic bacterium that uses methane or methanol as the sole carbon source. An effort was made to engineer this organism for astaxanthin production. Upon expressing the canthaxanthin gene cluster under the control of the native hps promoter in the chromosome, canthaxanthin was produced as the main carotenoid. Further conversion to astaxanthin was carried out by expressing different combinations of crtW and crtZ genes encoding the beta-carotenoid ketolase and hydroxylase. The carotenoid intermediate profile was influenced by the copy number of these two genes under the control of the hps promoter. Expression of two copies of crtZ and one copy of crtW led to the accumulation of a large amount of the mono-ketolated product adonixanthin. On the other hand, expression of two copies of crtW and one copy of crtZ resulted in the presence of non-hydroxylated carotenoid canthaxanthin and the mono-hydroxylated adonirubin. Production of astaxanthin as the predominant carotenoid was obtained in a strain containing two complete sets of carotenoid biosynthetic genes. This strain had an astaxanthin titer ranging from 1 to 2.4 mg g(-1) of dry cell biomass depending on the growth conditions. More than 90% of the total carotenoid was astaxanthin, of which the majority was in the form of E-isomer. This result indicates that it is possible to produce astaxanthin with desirable properties in methanotrophs through genetic engineering.

  19. Two genes encoding new carotenoid-modifying enzymes in the green sulfur bacterium Chlorobium tepidum.

    Science.gov (United States)

    Maresca, Julia A; Bryant, Donald A

    2006-09-01

    The green sulfur bacterium Chlorobium tepidum produces chlorobactene as its primary carotenoid. Small amounts of chlorobactene are hydroxylated by the enzyme CrtC and then glucosylated and acylated to produce chlorobactene glucoside laurate. The genes encoding the enzymes responsible for these modifications of chlorobactene, CT1987, and CT0967, have been identified by comparative genomics, and these genes were insertionally inactivated in C. tepidum to verify their predicted function. The gene encoding chlorobactene glucosyltransferase (CT1987) has been named cruC, and the gene encoding chlorobactene lauroyltransferase (CT0967) has been named cruD. Homologs of these genes are found in the genomes of all sequenced green sulfur bacteria and filamentous anoxygenic phototrophs as well as in the genomes of several nonphotosynthetic bacteria that produce similarly modified carotenoids. The other bacteria in which these genes are found are not closely related to green sulfur bacteria or to one another. This suggests that the ability to synthesize modified carotenoids has been a frequently transferred trait.

  20. Genes involved in the biosynthesis of photosynthetic pigments in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina.

    Science.gov (United States)

    Kovács, Akos T; Rákhely, Gábor; Kovács, Kornél L

    2003-06-01

    A pigment mutant strain of the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina BBS was isolated by plasposon mutagenesis. Nineteen open reading frame, most of which are thought to be genes involved in the biosynthesis of carotenoids, bacteriochlorophyll, and the photosynthetic reaction center, were identified surrounding the plasposon in a 22-kb-long chromosomal locus. The general arrangement of the photosynthetic genes was similar to that in other purple photosynthetic bacteria; however, the locations of a few genes occurring in this region were unusual. Most of the gene products showed the highest similarity to the corresponding proteins in Rubrivivax gelatinosus. The plasposon was inserted into the crtD gene, likely inactivating crtC as well, and the carotenoid composition of the mutant strain corresponded to the aborted spirilloxanthin pathway. Homologous and heterologous complementation experiments indicated a conserved function of CrtC and CrtD in the purple photosynthetic bacteria. The crtDC and crtE genes were shown to be regulated by oxygen, and a role of CrtJ in aerobic repression was suggested.