WorldWideScience

Sample records for bacterium erwinia chrysanthemi

  1. PecS Is a Global Regulator of the Symptomatic Phase in the Phytopathogenic Bacterium Erwinia chrysanthemi 3937▿ †

    OpenAIRE

    Hommais, Florence; Oger-Desfeux, Christine; Van Gijsegem, Frédérique; Castang, Sandra; Ligori, Sandrine; Expert, Dominique; Nasser, William; Reverchon, Sylvie

    2008-01-01

    Pathogenicity of the enterobacterium Erwinia chrysanthemi (Dickeya dadantii), the causative agent of soft-rot disease in many plants, is a complex process involving several factors whose production is subject to temporal regulation during infection. PecS is a transcriptional regulator that controls production of various virulence factors. Here, we used microarray analysis to define the PecS regulon and demonstrated that PecS notably regulates a wide range of genes that could be linked to path...

  2. PecS is a global regulator of the symptomatic phase in the phytopathogenic bacterium Erwinia chrysanthemi 3937.

    Science.gov (United States)

    Hommais, Florence; Oger-Desfeux, Christine; Van Gijsegem, Frédérique; Castang, Sandra; Ligori, Sandrine; Expert, Dominique; Nasser, William; Reverchon, Sylvie

    2008-11-01

    Pathogenicity of the enterobacterium Erwinia chrysanthemi (Dickeya dadantii), the causative agent of soft-rot disease in many plants, is a complex process involving several factors whose production is subject to temporal regulation during infection. PecS is a transcriptional regulator that controls production of various virulence factors. Here, we used microarray analysis to define the PecS regulon and demonstrated that PecS notably regulates a wide range of genes that could be linked to pathogenicity and to a group of genes concerned with evading host defenses. Among the targets are the genes encoding plant cell wall-degrading enzymes and secretion systems and the genes involved in flagellar biosynthesis, biosurfactant production, and the oxidative stress response, as well as genes encoding toxin-like factors such as NipE and hemolysin-coregulated proteins. In vitro experiments demonstrated that PecS interacts with the regulatory regions of five new targets: an oxidative stress response gene (ahpC), a biosurfactant synthesis gene (rhlA), and genes encoding exported proteins related to other plant-associated bacterial proteins (nipE, virK, and avrL). The pecS mutant provokes symptoms more rapidly and with more efficiency than the wild-type strain, indicating that PecS plays a critical role in the switch from the asymptomatic phase to the symptomatic phase. Based on this, we propose that the temporal regulation of the different groups of genes required for the asymptomatic phase and the symptomatic phase is, in part, the result of a gradual modulation of PecS activity triggered during infection in response to changes in environmental conditions emerging from the interaction between both partners.

  3. Erwinia chrysanthemi: pectolytic bacterium causing soft rot outbreaks of arracacha in Brazil Erwinia chrysanthemi: bactéria pectolítica envolvida na "mela" da mandioquinha-salsa no Brasil

    Directory of Open Access Journals (Sweden)

    Gilmar Paulo Henz

    2006-10-01

    Full Text Available The objetive of this work was to identify the pectolytic bacteria associated with soft rot of arracacha roots in Brazil. From 1998 to 2001, 227 isolates of Erwinia spp. were obtained from arracacha roots and identified by biochemical and physiological tests (pectolytic activity, lecithinase, a-methyl glucoside, phosphatase, erythromycin sensivity, growth at 37ºC. Of these isolates, 89.9% were identified as E. chrysanthemi (Ech, 9.7% as E. carotovora subsp. carotovora (Ecc and 0.5% as E. carotovora subsp. atroseptica. The identity of seventeen out of twenty representative isolates of Ech and Ecc was confirmed by PCR (primers '149f', 'L1r', 'ADE1', 'ADE2'.O objetivo deste trabalho foi identificar as bactérias pectolíticas envolvidas na podridão-mole de raízes de mandioquinha-salsa no Brasil. De 1998 a 2001, 227 isolados de Erwinia spp. foram obtidos de raízes de mandioquinha-salsa e identificados por testes bioquímicos e fisiológicos (atividade pectolítica, lecitinase, a-methyl glucosídeo, fosfatase, sensibilidade à eritromicina, crescimento a 37ºC. Destes isolados, 89,9% foram identificados como E. chrysanthemi (Ech, 9,7% como E. carotovora subsp. carotovora (Ecc e somente 0,5% como E. carotovora subsp. atroseptica. A identidade de 20 isolados representativos de Ech e Ecc foi confirmada por PCR (primers '149f', 'L1r', 'ADE1', 'ADE2', com exceção de dois isolados de Ech e um de Ecc.

  4. The Phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) Is a Pathogen of the Pea Aphid†

    OpenAIRE

    Grenier, Anne-Marie; Duport, Gabrielle; Pagès, Sylvie; Condemine, Guy; Rahbé, Yvan

    2006-01-01

    Dickeya dadantii (Erwinia chrysanthemi) is a phytopathogenic bacterium causing soft rot diseases on many crops. The sequencing of its genome identified four genes encoding homologues of the Cyt family of insecticidal toxins from Bacillus thuringiensis, which are not present in the close relative Pectobacterium carotovorum subsp. atrosepticum. The pathogenicity of D. dadantii was tested on the pea aphid Acyrthosiphon pisum, and the bacterium was shown to be highly virulent for this insect, eit...

  5. Erwinia chrysanthemi ook bij ploffers in Dahlia boosdoener

    NARCIS (Netherlands)

    Leeuwen, van P.J.; Trompert, J.P.T.

    2006-01-01

    Sinds een aantal jaren komt bij de stekproduktie van Dahlia veel uitval voor door ploffers. Na het verhogen van de kastemperatuur vallen de knollen natrot weg. Bovendien kan verdere besmetting snel om zich heen grijpen. Onderzoek heeft aangetoond dat de bacterie Erwinia chrysanthemi de veroorzaker

  6. High-throughput screening of Erwinia chrysanthemi pectin methylesterase variants using carbohydrate microarrays

    DEFF Research Database (Denmark)

    Øbro, Jens; Sørensen, Iben; Derkx, Patrick

    2009-01-01

    the activity of a series of variant enzymes based on the PME from the important pathogen Erwinia chrysanthemi. A library of 99 E. chrysanthemi PME mutants was created in which seven amino acids were altered by various different substitutions. Each mutant PME was incubated with a highly methyl esterified lime...

  7. The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid.

    Science.gov (United States)

    Grenier, Anne-Marie; Duport, Gabrielle; Pagès, Sylvie; Condemine, Guy; Rahbé, Yvan

    2006-03-01

    Dickeya dadantii (Erwinia chrysanthemi) is a phytopathogenic bacterium causing soft rot diseases on many crops. The sequencing of its genome identified four genes encoding homologues of the Cyt family of insecticidal toxins from Bacillus thuringiensis, which are not present in the close relative Pectobacterium carotovorum subsp. atrosepticum. The pathogenicity of D. dadantii was tested on the pea aphid Acyrthosiphon pisum, and the bacterium was shown to be highly virulent for this insect, either by septic injury or by oral infection. The lethal inoculum dose was calculated to be as low as 10 ingested bacterial cells. A D. dadantii mutant with the four cytotoxin genes deleted showed a reduced per os virulence for A. pisum, highlighting the potential role of at least one of these genes in pathogenicity. Since only one bacterial pathogen of aphids has been previously described (Erwinia aphidicola), other species from the same bacterial group were tested. The pathogenic trait for aphids was shown to be widespread, albeit variable, within the phytopathogens, with no link to phylogenetic positioning in the Enterobacteriaceae. Previously characterized gut symbionts from thrips (Erwinia/Pantoea group) were also highly pathogenic to the aphid, whereas the potent entomopathogen Photorhabdus luminescens was not. D. dadantii is not a generalist insect pathogen, since it has low pathogenicity for three other insect species (Drosophila melanogaster, Sitophilus oryzae, and Spodoptera littoralis). D. dadantii was one of the most virulent aphid pathogens in our screening, and it was active on most aphid instars, except for the first one, probably due to anatomical filtering. The observed difference in virulence toward apterous and winged aphids may have an ecological impact, and this deserves specific attention in future research.

  8. Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu.

    OpenAIRE

    He, S Y; Lindeberg, M; Chatterjee, A K; Collmer, A

    1991-01-01

    The out genes of the enterobacterial plant pathogen Erwinia chrysanthemi are responsible for the efficient extracellular secretion of multiple plant cell wall-degrading enzymes, including four isozymes of pectate lyase, exo-poly-alpha-D-galacturonosidase, pectin methylesterase, and cellulase. Out- mutants of Er. chrysanthemi are unable to export any of these proteins beyond the periplasm and are severely reduced in virulence. We have cloned out genes from Er. chrysanthemi in the stable, low-c...

  9. PaeX, a second pectin acetylesterase of Erwinia chrysanthemi 3937.

    Science.gov (United States)

    Shevchik, Vladimir E; Hugouvieux-Cotte-Pattat, Nicole

    2003-05-01

    Erwinia chrysanthemi causes soft-rot diseases of various plants by enzymatic degradation of the pectin in plant cell walls. Pectin is a complex polysaccharide. The main chain is constituted of galacturonate residues, and some of them are modified by methyl and/or acetyl esterification. Esterases are necessary to remove these modifications and, thus, to facilitate the further degradation of the polysaccharidic chain. In addition to PaeY, the first pectin acetylesterase identified in the E. chrysanthemi strain 3937, we showed that this bacterium produces a second pectin acetylesterase encoded by the gene paeX. The paeX open reading frame encodes a 322-residue precursor protein of 34,940 Da, including a 21-amino-acid signal peptide. Analysis of paeX transcription, by using gene fusions, revealed that it is induced by pectic catabolic products and affected by catabolite repression. The expression of paeX is regulated by the repressor KdgR, which controls all the steps of pectin catabolism; by the repressor PecS, which controls most of the pectinase genes; and by catabolite regulatory protein, the global activator of sugar catabolism. The paeX gene is situated in a cluster of genes involved in the catabolism and transport of pectic oligomers. In induced conditions, the two contiguous genes kdgM, encoding an oligogalacturonate-specific porin, and paeX are both transcribed as an operon from a promoter proximal to kdgM, but transcription of paeX can also be uncoupled from that of kdgM in noninduced conditions. PaeX is homologous to the C-terminal domain of the Butyrivibrio fibriosolvens xylanase XynB and to a few bacterial esterases. PaeX contains the typical box (GxSxG) corresponding to the active site of the large family of serine hydrolases. Purified PaeX releases acetate from various synthetic substrates and from sugar beet pectin. The PaeX activity increased after previous depolymerization and demethylation of pectin, indicating that its preferred substrates are

  10. Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity.

    Science.gov (United States)

    Reverchon, Sylvie; Rouanet, Carine; Expert, Dominique; Nasser, William

    2002-02-01

    In the plant-pathogenic bacterium Erwinia chrysanthemi production of pectate lyases, the main virulence determinant, is modulated by a complex network involving several regulatory proteins. One of these regulators, PecS, also controls the synthesis of a blue pigment identified as indigoidine. Since production of this pigment is cryptic in the wild-type strain, E. chrysanthemi ind mutants deficient in indigoidine synthesis were isolated by screening a library of Tn5-B21 insertions in a pecS mutant. These ind mutations were localized close to the regulatory pecS-pecM locus, immediately downstream of pecM. Sequence analysis of this DNA region revealed three open reading frames, indA, indB, and indC, involved in indigoidine biosynthesis. No specific function could be assigned to IndA. In contrast, IndB displays similarity to various phosphatases involved in antibiotic synthesis and IndC reveals significant homology with many nonribosomal peptide synthetases (NRPS). The IndC product contains an adenylation domain showing the signature sequence DAWCFGLI for glutamine recognition and an oxidation domain similar to that found in various thiazole-forming NRPS. These data suggest that glutamine is the precursor of indigoidine. We assume that indigoidine results from the condensation of two glutamine molecules that have been previously cyclized by intramolecular amide bond formation and then dehydrogenated. Expression of ind genes is strongly derepressed in the pecS background, indicating that PecS is the main regulator of this secondary metabolite synthesis. DNA band shift assays support a model whereby the PecS protein represses indA and indC expression by binding to indA and indC promoter regions. The regulatory link, via pecS, between indigoidine and virulence factor production led us to explore a potential role of indigoidine in E. chrysanthemi pathogenicity. Mutants impaired in indigoidine production were unable to cause systemic invasion of potted Saintpaulia ionantha

  11. Karakterisasi Erwinia Chrysanthemi Penyebab Penyakit Busuk Bakteri Pada Daun Lidah Buaya (Aloe Vera)

    OpenAIRE

    SUPRIADI,; IBRAHIM, NILDAR; TARYONO,

    2002-01-01

    Characteristics o/Envinia chysanthemi causing bacterial soft rot ofAloe (Aloe VeraJThe bacterial sot rot of aloe, caused by Erwinia chrysanthemi, was first identified in Caibbean Island in 1992. In early 2001, similar symptoms were found on the aloe plants grown in Semplak, Bogor, West Java. Based on its symptom and progressively spread, especially on the leaf and basal stem, it appeared that the disease was serious and therefore threatened the current development of die plants. This study wa...

  12. Kinetic Properties of α-Galactosidase and the Localization of Total Proteins in Erwinia chrysanthemi

    Directory of Open Access Journals (Sweden)

    John Morgan Brand

    2004-01-01

    Full Text Available Erwinia chrysanthemi is an enterobacterium that causes soft-rot in plants in general, resulting in enormous economic losses annually. For the pathogen to survive in the host plant, it has to use the readily assimilable compounds from the host fluids and degrade the host tissue. To accomplish this, E. chrysanthemi produces several extracellular and intracellular enzymes. Among the intracellular enzymes there is a special digestive class, the galactosidases, which can be either periplasmic or cytoplasmic. α-Galactosidase is known to degrade melibiose and raffinose into glucose and galactose, and into galactose and sucrose respectively. The aim of the present study was to investigate the kinetic properties of α-galactosidase in E. chrysanthemi, and the localization of total proteins, after culturing it in the presence of raffinose and melibiose. The α-galactosidase that degrades melibiose seems to be the same enzyme that is also responsible for the breakdown of raffinose in E. chrysanthemi. It is localized mainly in the cytoplasm with a fraction of between 2.4 and 5.4 % localized in the periplasm. The majority of E. chrysanthemi proteins have cytoplasmic localization.

  13. Application of amplified fragment length polymorphism fingerprinting for taxonomy and identification of the soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi.

    Science.gov (United States)

    Avrova, Anna O; Hyman, Lizbeth J; Toth, Rachel L; Toth, Ian K

    2002-04-01

    The soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi are important pathogens of potato and other crops. However, the taxonomy of these pathogens, particularly at subspecies level, is unclear. An investigation using amplified fragment length polymorphism (AFLP) fingerprinting was undertaken to determine the taxonomic relationships within this group based on their genetic relatedness. Following cluster analysis on the similarity matrices derived from the AFLP gels, four clusters (clusters 1 to 4) resulted. Cluster 1 contained Erwinia carotovora subsp. carotovora (subclusters 1a and 1b) and Erwinia carotovora subsp. odorifera (subcluster 1c) strains, while cluster 2 contained Erwinia carotovora subsp. atroseptica (subcluster 2a) and Erwinia carotovora subsp. betavasculorum (subcluster 2b) strains. Clusters 3 and 4 contained Erwinia carotovora subsp. wasabiae and E. chrysanthemi strains, respectively. While E. carotovora subsp. carotovora and E. chrysanthemi showed a high level of molecular diversity (23 to 38% mean similarity), E. carotovora subsp. odorifera, E. carotovora subsp. betavasculorum, E. carotovora subsp. atroseptica, and E. carotovora subsp. wasabiae showed considerably less (56 to 76% mean similarity), which may reflect their limited geographical distributions and/or host ranges. The species- and subspecies-specific banding profiles generated from the AFLPs allowed rapid identification of unknown isolates and the potential for future development of diagnostics. AFLP fingerprinting was also found to be more differentiating than other techniques for typing the soft rot erwinias and was applicable to all strain types, including different serogroups.

  14. Role of motility and chemotaxis in the pathogenesis of Dickeya dadantii 3937 (ex Erwinia chrysanthemi 3937).

    Science.gov (United States)

    Antúnez-Lamas, María; Cabrera-Ordóñez, Ezequiel; López-Solanilla, Emilia; Raposo, Rosa; Trelles-Salazar, Oswaldo; Rodríguez-Moreno, Andrés; Rodríguez-Palenzuela, Pablo

    2009-02-01

    Dickeya dadantii 3937 (ex Erwinia chrysanthemi), a member of the Enterobacteriaceae, causes soft rot in many economically important crops. A successful pathogen has to reach the interior of the plant in order to cause disease. To study the role of motility and chemotaxis in the pathogenicity of D. dadantii 3937, genes involved in the chemotactic signal transduction system (cheW, cheB, cheY and cheZ) and in the structure of the flagellar motor (motA) were mutagenized. All the mutant strains grew like the wild-type in culture media, and the production and secretion of pectolytic enzymes was not affected. As expected, the swimming ability of the mutant strains was reduced with respect to the wild-type: motA (94%), cheY (80%), cheW (74%), cheB (54%) and cheZ (48%). The virulence of the mutant strains was analysed in chicory, Saintpaulia and potato. The mutant strains were also tested for their capability to enter into Arabidopsis leaves. All the mutants showed a significant decrease of virulence in certain hosts; however, the degree of virulence reduction varied depending on the virulence assay. The ability to penetrate Arabidopsis leaves was impaired in all the mutants, whereas the capacity to colonize potato tubers after artificial inoculation was affected in only two mutant strains. In general, the virulence of the mutants could be ranked as motAbacterium.

  15. Application of Amplified Fragment Length Polymorphism Fingerprinting for Taxonomy and Identification of the Soft Rot Bacteria Erwinia carotovora and Erwinia chrysanthemi

    OpenAIRE

    Avrova, Anna O.; Hyman, Lizbeth J.; Toth, Rachel L.; Toth, Ian K.

    2002-01-01

    The soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi are important pathogens of potato and other crops. However, the taxonomy of these pathogens, particularly at subspecies level, is unclear. An investigation using amplified fragment length polymorphism (AFLP) fingerprinting was undertaken to determine the taxonomic relationships within this group based on their genetic relatedness. Following cluster analysis on the similarity matrices derived from the AFLP gels, four clusters (c...

  16. Cloned Erwinia chrysanthemi out genes enable Escherichia coli to selectively secrete a diverse family of heterologous proteins to its milieu.

    Science.gov (United States)

    He, S Y; Lindeberg, M; Chatterjee, A K; Collmer, A

    1991-02-01

    The out genes of the enterobacterial plant pathogen Erwinia chrysanthemi are responsible for the efficient extracellular secretion of multiple plant cell wall-degrading enzymes, including four isozymes of pectate lyase, exo-poly-alpha-D-galacturonosidase, pectin methylesterase, and cellulase. Out- mutants of Er. chrysanthemi are unable to export any of these proteins beyond the periplasm and are severely reduced in virulence. We have cloned out genes from Er. chrysanthemi in the stable, low-copy-number cosmid pCPP19 by complementing several transposon-induced mutations. The cloned out genes were clustered in a 12-kilobase chromosomal DNA region, complemented all existing out mutations in Er. chrysanthemi EC16, and enabled Escherichia coli strains to efficiently secrete the extracellular pectic enzymes produced from cloned Er. chrysanthemi genes, while retaining the periplasmic marker protein beta-lactamase. DNA sequencing of a 2.4-kilobase EcoRI fragment within the out cluster revealed four genes arranged colinearly and sharing substantial similarity with the Klebsiella pneumoniae genes pulH, pulI, pulJ, and pulK, which are necessary for pullulanase secretion. However, K. pneumoniae cells harboring the cloned Er. chrysanthemi pelE gene were unable to secrete the Erwinia pectate lyase. Furthermore, the Er. chrysanthemi Out system was unable to secrete an extracellular pectate lyase encoded by a gene from a closely related plant pathogen. Erwinia carotovora ssp. carotovora. The results suggest that these enterobacteria secrete polysaccharidases by a conserved mechanism whose protein-recognition capacities have diverged.

  17. Bacterial leaf rot of Aloe vera L., caused byErwinia chrysanthemi biovar 3

    NARCIS (Netherlands)

    Laat, de P.C.A.; Verhoeven, J.T.W.; Danse, J.D.

    1994-01-01

    A severe attack of the bacteriumErwinia chrysantemi biovar 3 on the succulentAloe vera on the Carribean island of Aruba is described. Biochemical and pathological characteristics of strains are presented, including results of successful inoculation experiments onAloe vera. This is the first report

  18. Analysis of the pelE promoter in Erwinia chrysanthemi EC16.

    Science.gov (United States)

    Gold, S; Nishio, S; Tsuyumu, S; Keen, N T

    1992-01-01

    The pelE gene of Erwinia chrysanthemi strain EC16 encodes an extracellular pectate lyase protein that is important in virulence on plants. Control of pelE expression is complex, because the gene is regulated by catabolite repression, substrate induction, and growth-phase inhibition. A Tn7-lux reporter gene system was employed to define DNA sequences comprising the pelE promoter. When EC16 cells were grown on medium containing sodium polypectate, pelE transcriptional start sites were observed only at 95 and 96 bases upstream of the translational start site. However, DNA sequences required for pelE expression were also shown by deletion analysis to reside between 196 and 215 base pairs upstream of the translational start site. In addition to these upstream elements, two putative operator sequences that interact with negative regulatory factors occurred downstream of the transcriptional start. Finally, deletion of three bases from a putative catabolite gene activator protein binding site in the pelE promoter eliminated activity. The data demonstrate that the pelE promoter is complex and suggest that it interacts with several regulatory proteins.

  19. Regulation of pelD and pelE, encoding major alkaline pectate lyases in Erwinia chrysanthemi: involvement of the main transcriptional factors.

    Science.gov (United States)

    Rouanet, C; Nomura, K; Tsuyumu, S; Nasser, W

    1999-10-01

    The main virulence factors of the phytopathogenic bacterium Erwinia chrysanthemi are pectinases which attack pectin, the major constituent of the plant cell wall. Of these enzymes, the alkaline isoenzyme named PelD in strain 3937 and PelE in strain EC16 has been described as being particularly important, based on virulence studies of plants. Expression of the pelD and pelE genes is tightly modulated by various regulators, including the KdgR repressor and the cyclic AMP-cyclic AMP receptor protein (CRP) activator complex. The use of a lacZ reporter gene allowed us to quantify the repression of E. chrysanthemi 3937 pelD expression exerted by PecS, another repressor of pectinase synthesis. In vitro DNA-protein interaction experiments, centered on the pelD and pelE wild-type or pelE mutated promoter regions, allowed us to define precisely the sequences involved in the binding of these three regulators and of RNA polymerase (RNAP). These studies revealed an unusual binding of the KdgR repressor and suggested the presence of a UP (upstream) element in the pelD and pelE genes. Investigation of the simultaneous binding of CRP, KdgR, PecS, and the RNAP to the regulatory region of the pelD and pelE genes showed that (i) CRP and RNAP bind cooperatively, (ii) PecS partially inhibits binding of the CRP activator and of the CRP-RNAP complex, and (iii) KdgR stabilizes the binding of PecS and prevents transcriptional initiation by RNAP. Taken together, our data suggest that PecS attenuates pelD and pelE expression rather than acting as a true repressor like KdgR. Overall, control of the pelD and pelE genes of E. chrysanthemi appears to be both complex and novel.

  20. Role of the PhoP-PhoQ system in the virulence of Erwinia chrysanthemi strain 3937: involvement in sensitivity to plant antimicrobial peptides, survival at acid Hh, and regulation of pectolytic enzymes.

    Science.gov (United States)

    Llama-Palacios, Arancha; López-Solanilla, Emilia; Rodríguez-Palenzuela, Pablo

    2005-03-01

    Erwinia chrysanthemi is a phytopathogenic bacterium that causes soft-rot diseases in a broad number of crops. The PhoP-PhoQ system is a key factor in pathogenicity of several bacteria and is involved in the bacterial resistance to different factors, including acid stress. Since E. chrysanthemi is confronted by acid pH during pathogenesis, we have studied the role of this system in the virulence of this bacterium. In this work, we have isolated and characterized the phoP and phoQ mutants of E. chrysanthemi strain 3937. It was found that: (i) they were not altered in their growth at acid pH; (ii) the phoQ mutant showed diminished ability to survive at acid pH; (iii) susceptibility to the antimicrobial peptide thionin was increased; (iv) the virulence of the phoQ mutant was diminished at low and high magnesium concentrations, whereas the virulence of the phoP was diminished only at low magnesium concentrations; (v) in planta Pel activity of both mutant strains was drastically reduced; and (vi) both mutants lagged behind the wild type in their capacity to change the apoplastic pH. These results suggest that the PhoP-PhoQ system plays a role in the virulence of this bacterium in plant tissues, although it does not contribute to bacterial growth at acid pH.

  1. Inhibition of Erwinia chrysanthemi growth to different concentrations of folic acid: possible use of folic acid as bacteriostatic agent and fortifying of Solanum tuberosum potato

    Directory of Open Access Journals (Sweden)

    Andrea Marcelo Correa

    2017-05-01

    Full Text Available Introduction:The enterobacteria of the Erwinia spp genus produce disease in potatoes, which is a tuber of mass consumption. The regulation of DNA methylation can regulate the proliferation of Erwinia in such a way that the concentrations of folic acid may have an effect on the microorganism pathogenic ability. On the other hand, the folic acid prevents the appearance of neural tube defects in humans. Objective: To evaluate folic acid as a bacteriostatic agent of Erwinia and, at the same time, as part of the fortification of mass consumption food such as the potatoes. Materials and methods: The biochemical characterization of the Erwinia chrysanthemi was carried out and its growth compared to different concentrations of folic acid was studied. Results: When increasing the concentrations of the vitamin from 0.3 µg/L up to 6.8 µg/L, the bacterial growth of Erwinia chrysanthemi is inhibited. The vitamin inhibits the growth in cultivation of Erwinia chrysanthemi and acts as a bacteriostatic agent. This aspect is of great importance given that, theoretically, if potatoes were fortified with micro-nutrient, this would act against the infectious agent and, at the same time, contribute to the adequate intake of the vitamin in the general population.

  2. Regulation of expression of pectate lyase genes pelA, pelD, and pelE in Erwinia chrysanthemi.

    Science.gov (United States)

    Reverchon, S; Robert-Baudouy, J

    1987-06-01

    The regulation of pelA, pelD, and pelE genes encoding three of the five major pectate lyase isoenzymes (PLa, PLd, and PLe) in Erwinia chrysanthemi B374 was analyzed by using genetic fusions to lacZ. These three genes are clustered on a 5-kilobase DNA fragment in the order pelD-pelE-pelA and constitute three independent transcriptional units. We localized the pelDEA cluster near the pro-1 marker on the genetic map of B374 by chromosomal mobilization with RP4::mini-Mu plasmid pULB110. Three classes of regulatory mutations responsible for constitutive pectate lyase synthesis have been described (kdgR, gpiR, and cri). We studied the effects of each mutation on pelE, pelD, and pelA expression independently. The mutations kdgR and gpiR mainly affect the expression of pelE and pelD, although PLa synthesis is slightly increased. The cri mutation results in a low level of constitutive expression of the three pel genes, but it is a pleiotropic mutation since other genes not involved in pectinolysis are also affected. In addition, we demonstrated that exuR, a negative regulatory gene governing the catabolism of hexuronates, does not modify the expression of pel genes. The frequency of gpiR or cri mutations (about 10(-8)) and the resulting constitutivity of pectate lyase synthesis suggest that these genes act as negative regulatory genes in addition to kdgR, which is already known to encode a repressor. Moreover, we found that expression of pel-lac fusions carried on pBR322 derivatives was higher in E. chrysanthemi than in Escherichia coli; this fact suggests the existence of positive regulation of pectate lyase synthesis in E. chrysanthemi.

  3. PecS and PecT coregulate the synthesis of HrpN and pectate lyases, two virulence determinants in Erwinia chrysanthemi 3937.

    Science.gov (United States)

    Nasser, William; Reverchon, Sylvie; Vedel, Regine; Boccara, Martine

    2005-11-01

    Erwinia chrysanthemi strain 3937 is a necrotrophic bacterial plant pathogen. Pectinolytic enzymes and, in particular, pectate lyases play a key role in soft rot symptoms; however, the efficient colonization of plants by E. chrysanthemi requires additional factors. These factors include HrpN (harpin), a heat-stable, glycine-rich hydrophilic protein, which is secreted by the type III secretion system. We investigated the expression of hrpN in E. chrysanthemi 3937 in various environmental conditions and different regulatory backgrounds. Using lacZ fusions, hrpN expression was markedly influenced by the carbon source, osmolarity, growth phase, and growth substrate. hrpN was repressed when pectinolysis started and negatively regulated by the repressors of pectate lyase synthesis, PecS and PecT. Primer extension data and in vitro DNA-protein interaction experiments support a model whereby PecS represses hrpN expression by binding to the hrpN regulatory region and inhibiting transcript elongation. The results suggest coordinated regulation of HrpN and pectate lyases by PecS and PecT. A putative model of the synthesis of these two virulence factors in E. chrysanthemi during pathogenesis is presented.

  4. Carboxymethyl-cellulase from Erwinia chrysanthemi. II. Purification and partial characterization of an endo-. beta. -1,4-glucanase

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, M.H.; Chambost, J.P.; Magnan, M.; Cattaneo, J.

    1984-01-01

    The extracellular carboxymethyl-cellulase of Erwinia chrysanthemi, strain 3665, had a marked tendency to form aggregates when concentration and/or storage time of culture supernatant were increased. In submitting an unconcentrated glycerol culture supernatant to ion exchange chromatography, one major endo-..beta..-1,4,-glucanase could be isolated with a high degree of purity and partially characterized. The molecular size was 45 kd. The pI was 4.3. The enzyme rapidly decreased the viscosity of carboxymethyl-cellulose with a slow increase in the reducing sugars produced. It displayed its highest activity towards carboxymethyl-cellulose at a pH between 6.2 and 7.5. It had a significant capacity to hydrolyze amorphous cellulose such as phosphoric acid-swollen cellulose. The major products of this degradation were cellobiose and cellotriose. It exhibited a very low activity on microcrystalline cellulose. Glucose and cellobiose did not affect significantly its activity against carboxymethyl-cellulose. 21 references.

  5. Effectieve kolonisatie van aardappelplanten door Dickeya-soorten (Erwinia chrysanthemi) : themanummer fytobacteriologie

    NARCIS (Netherlands)

    Wolf, van der J.M.; Czajkowski, R.L.; Velvis, H.

    2009-01-01

    De bacterieziekten zwartbenigheid en stengelnatrot, veroorzaakt door Pectobacterium en Dickeya (Erwinia)- soorten, berokkenen grote schade aan de pootaardappelteelt. Bij PRI en HZPC wordt onderzoek verricht naar de verspreiding van deze pathogenen tijdens teelt- en (na)oogst. Het was al bekend dat

  6. Novas ocorrências de Erwinia carotovora subsp. carotovora e de E. chrysanthemi

    Directory of Open Access Journals (Sweden)

    Irene M. G. Almeida

    1997-05-01

    Full Text Available Em continuidade a trabalhos de caracterização de bactérias pectinolíticas do gênero Eruia ocorrendo no Brasil, são relacionadas novas ocorrências dessas fitobactérias em plantios comerciais, que ocasionam podridão mole em cinco espécies de plantas ornamentais. Testes bioquímicas, fisiológicos, culturais e de patogenicidade permitiram comprovar a ocorrência de Erwinia carotovora subsp. carotovora em plantas de afelandra, amarílis e copo-de-leite, e de Erwiniachr santhemiemcordilineekalanchoe.

  7. Recombinant deamidated mutants of Erwinia chrysanthemi L-asparaginase have similar or increased activity compared to wild-type enzyme.

    Science.gov (United States)

    Gervais, David; Foote, Nicholas

    2014-10-01

    The enzyme Erwinia chrysanthemi L-asparaginase (ErA) is an important biopharmaceutical product used in the treatment of acute lymphoblastic leukaemia. Like all proteins, certain asparagine (Asn) residues of ErA are susceptible to deamidation to aspartic acid (Asp), which may be a concern with respect to enzyme activity and potentially to pharmaceutical efficacy. Recombinant ErA mutants containing Asn to Asp changes were expressed, purified and characterised. Two mutants with single deamidation sites (N41D and N281D) were found to have approximately the same specific activity (1,062 and 924 U/mg, respectively) as the wild-type (908 U/mg). However, a double mutant (N41D N281D) had an increased specific activity (1261 U/mg). The N41D mutation conferred a slight increase in the catalytic constant (k cat 657 s(-1)) when compared to the WT (k cat 565 s(-1)), which was further increased in the double mutant, with a k cat of 798 s(-1). Structural analyses showed that the slight changes caused by point mutation of Asn41 to Asp may have reduced the number of hydrogen bonds in this α-helical part of the protein structure, resulting in subtle changes in enzyme turnover, both structurally and catalytically. The increased α-helical content observed with the N41D mutation by circular dichroism spectroscopy correlates with the difference in k cat, but not K m. The N281D mutation resulted in a lower glutaminase activity compared with WT and the N41D mutant, however the N281D mutation also imparted less stability to the enzyme at elevated temperatures. Taken as a whole, these data suggest that ErA deamidation at the Asn41 and Asn281 sites does not affect enzyme activity and should not be a concern during processing, storage or clinical use. The production of recombinant deamidated variants has proven an effective and powerful means of studying the effect of these changes and may be a useful strategy for other biopharmaceutical products.

  8. Genetic analysis of the pelA-pelE cluster encoding the acidic and basic pectate lyases in Erwinia chrysanthemi EC16.

    Science.gov (United States)

    Barras, F; Chatterjee, A K

    1987-10-01

    In Erwinia chrysanthemi (EC16) the clustered pelA and pelE genes encode an acidic (pI 4.2) and a basic (pI 10.0) pectate lyase (Pel), respectively. The pelA gene has been isolated on a 1.2 kb restriction fragment and the direction of transcription determined. DNA hybridization analysis showed that the pelE sequence shares DNA homology with pelA but not with pelB or pelC, two genes encoding other Pel species in EC16. Since Pel A and Pel E enzymes showed little similarity in terms of catalytic properties, it is proposed that pelA and pelE are duplicates which have highly diverged.

  9. Nucleotide sequences of the Erwinia chrysanthemi ogl and pelE genes negatively regulated by the kdgR gene product.

    Science.gov (United States)

    Reverchon, S; Huang, Y; Bourson, C; Robert-Baudouy, J

    1989-12-21

    The nucleotide sequences of the coding and regulatory regions of the genes encoding oligoglacturonate lyase (OGL) and pectate lyase e isoenzyme (PLe) from Erwinia chrysanthemi 3937 were determined. The ogl sequence contains an open reading frame (ORF) of 1164 bp coding for a 388-amino acid (aa) polypeptide with a predicted Mr of 44,124. A possible transcriptional start signal showing homology with the Escherichia coli promoter consensus sequence was detected. In addition, a sequence 3' to the coding region was found to be able to form a secondary structure which may function as an Rho-independent transcriptional termination signal. For the pelE sequence, a long ORF of 1212 bp coding for a 404-aa polypeptide was detected. PLe is secreted into the external medium by E. chrysanthemi, and a potential signal peptide sequence was identified in the pelE gene. In the 5' upstream pelE coding region, a putative promoter resembling E. coli promoter consensus sequences was detected. Furthermore, the region immediately 3' to the pelE translational stop codon may function as an Rho-independent translational termination signal. In strain 3937, the synthesis of OGL and PLe, as well as the other enzymes involved in the pectin-degradative pathway (particularly the kdgT product), are known to be regulated by the KdgR repressor, which mediates galacturonate and polygalacturonate induction. Synthesis of these enzymes is also regulated by the CRP-cAMP complex which mediates catabolite repression. Analysis of the regulatory regions of ogl and pelE allowed us to identify possible CRP-binding sites for these two genes.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Analysis of Erwinia chrysanthemi EC16 pelE::uidA, pelL::uidA, and hrpN::uidA mutants reveals strain-specific atypical regulation of the Hrp type III secretion system.

    Science.gov (United States)

    Ham, Jong Hyun; Cui, Yaya; Alfano, James R; Rodríguez-Palenzuela, Pablo; Rojas, Clemencia M; Chatterjee, Arun K; Collmer, Alan

    2004-02-01

    The plant pathogen Erwinia chrysanthemi produces a variety of factors that have been implicated in its ability to cause soft-rot diseases in various hosts. These include HrpN, a harpin secreted by the Hrp type III secretion system; PelE, one of several major pectate lyase isozymes secreted by the type II system; and PelL, one of several secondary Pels secreted by the type II system. We investigated these factors in E. chrysanthemi EC16 with respect to the effects of medium composition and growth phase on gene expression (as determined with uidA fusions and Northern analyses) and effects on virulence. pelE was induced by polygalacturonic acid, but pelL was not, and hrpN was expressed unexpectedly in nutrient-rich King's medium B and in minimal salts medium at neutral pH. In contrast, the effect of medium composition on hrp expression in E. chrysanthemi CUCPB1237 and 3937 was like that of many other phytopathogenic bacteria in being repressed in complex media and induced in acidic pH minimal medium. Northern blot analysis of hrpN and hrpL expression by the wild-type and hrpL::omegaCmr and hrpS::omegaCmr mutants revealed that hrpN expression was dependent on the HrpL alternative sigma factor, whose expression, in turn, was dependent on the HrpS putative sigma54 enhancer binding protein. The expression of pelE and hrpN increased strongly in late logarithmic growth phase. To test the possible role of quorum sensing in this expression pattern, the expI/expR locus was cloned in Escherichia coli on the basis of its ability to direct production of acyl-homoserine lactone and then used to construct expI mutations in pelE::uidA, pelL::uidA, and hrpN::uidA Erwinia chrysanthemi strains. Mutation of expI had no apparent effect on the growth-phase-dependent expression of hrpN and pelE, or on the virulence of E. chrysanthemi in witloof chicory leaves. Overexpression of hrpN in E. chrysanthemi resulted in approximately 50% reduction of lesion size on chicory leaves without an

  11. Co-expression of an Erwinia chrysanthemi pectate lyase-encoding gene (pelE) and an E. carotovora polygalacturonase-encoding gene (peh1) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Laing, E; Pretorius, I S

    1993-05-01

    A pectate lyase (PL)-encoding gene (pelE) from Erwinia chrysanthemi and a polygalacturonase (PG)-encoding gene (peh1) from E. carotovora were each inserted between a novel yeast expression-secretion cassette and a yeast gene terminator, and cloned separately into a yeast-centromeric shuttle vector (YCp50), generating recombinant plasmids pAMS12 and pAMS13. Transcription initiation signals present in the expression-secretion cassette were derived from the yeast alcohol dehydrogenase gene promoter (ADC1P), whereas the transcription termination signals were derived from the yeast tryptophan synthase gene terminator (TRP5T). Secretion of PL and PG was directed by the signal sequence of the yeast mating pheromone alpha-factor (MF alpha 1s). A pectinase cassette comprising ADC1P-MF alpha 1s-pelE-TRP5T and ADC1P-MF alpha 1s-peh1-TRP5T was subcloned into YCp50, generating plasmid pAMS14. Subsequently, the dominant selectable Geneticin G418-resistance (GtR) marker, APH1, inserted between the yeast uridine diphosphoglucose 4-epimerase gene promoter (GAL10P) and yeast orotidine-5'-phosphate carboxylase gene terminator (URA3T), was cloned into pAMS14, resulting in plasmid pAMS15. Plasmids pAMS12, pAMS13 and pAMS14 were transformed into a laboratory strain of Saccharomyces cerevisiae, whereas pAMS15 was stably introduced into two commercial wine yeast strains. DNA-DNA and DNA-RNA hybridization analyses revealed the presence of these plasmids, and the pelE and peh1 transcripts in the yeast transformants, respectively. A polypectate agarose assay indicated the extracellular production of biologically active PL and PG by the S. cerevisiae transformants and confirmed that co-expression of the pelE and peh1 genes synergistically enhanced pectate degradation.

  12. Direct detection of the plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae in infected rice seedlings using matrix assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Kajiwara, Hideyuki

    2016-01-01

    The plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae were directly detected in extracts from infected rice seedlings by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method did not require culturing of the pathogens on artificial medium. In the MALDI-TOF MS analysis, peaks originating from bacteria were found in extracts from infected rice seedlings. The spectral peaks showed significantly high scores, in spite of minor differences in spectra. The spectral peaks originating from host plant tissues did not affect this direct MALDI-TOF MS analysis for the rapid identification of plant pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Is Erwinia te beheersen? Een literatuurstudie over rotproblemen in diverse gewassen om met deze kennis Erwinia in bolgewassen beter te kunnen aanpakken

    NARCIS (Netherlands)

    Doorn, van J.; Wolf, J.

    2005-01-01

    Het meeste onderzoek aan Erwinia-bacteriën is uitgevoerd bij aardappel. In dit gewas worden drie ziekteverwekkende Erwinia-soorten gevonden: Erwinia carotovora subsp. atroseptica (Eca), Erwinia chrysanthemi (Echr) en Erwinia carotovora subsp. carotovora (Ecc). Eca speelt in gematigde

  14. Nieuwe Erwinia-varianten vragen meer kennis en specifieke toetsen

    NARCIS (Netherlands)

    Wolf, van der J.M.

    2015-01-01

    Lange tijd kenden we in Nederland twee soorten Erwinia bacteriën namelijk Erwinia carotovora subsp. atroseptica en Erwinia chrysanthemi. Deze zijn/waren verantwoordelijk voor de aardappelziekten zwartbenigheid en stengelnatrot. De naamgeving van deze ziekteverwekkende bacteriën is echter op de schop

  15. Definition of a consensus DNA-binding site for PecS, a global regulator of virulence gene expression in Erwinia chrysanthemi and identification of new members of the PecS regulon.

    Science.gov (United States)

    Rouanet, Carine; Reverchon, Sylvie; Rodionov, Dmitry A; Nasser, William

    2004-07-16

    In Erwinia chrysanthemi, production of pectic enzymes is modulated by a complex network involving several regulators. One of them, PecS, which belongs to the MarR family, also controls the synthesis of various other virulence factors, such as cellulases and indigoidine. Here, the PecS consensus-binding site is defined by combining a systematic evolution of ligands by an exponential enrichment approach and mutational analyses. The consensus consists of a 23-base pair palindromic-like sequence (C(-11)G(-10)A(-9)N(-8)W(-7)T(-6)C(-5)G(-4)T(-3)A(-2))T(-1)A(0)T(1)(T(2)A(3)C(4)G(5)A(6)N(7)N(8)N(9)C(10)G(11)). Mutational experiments revealed that (i) the palindromic organization is required for the binding of PecS, (ii) the very conserved part of the consensus (-6 to 6) allows for a specific interaction with PecS, but the presence of the relatively degenerated bases located apart significantly increases PecS affinity, (iii) the four bases G, A, T, and C are required for efficient binding of PecS, and (iv) the presence of several binding sites on the same promoter increases the affinity of PecS. This consensus is detected in the regions involved in PecS binding on the previously characterized target genes. This variable consensus is in agreement with the observation that the members of the MarR family are able to bind various DNA targets as dimers by means of a winged helix DNA-binding motif. Binding of PecS on a promoter region containing the defined consensus results in a repression of gene transcription in vitro. Preliminary scanning of the E. chrysanthemi genome sequence with the consensus revealed the presence of strong PecS-binding sites in the intergenic region between fliE and fliFGHIJKLMNOPQR which encode proteins involved in the biogenesis of flagellum. Accordingly, PecS directly represses fliE expression. Thus, PecS seems to control the synthesis of virulence factors required for the key steps of plant infection.

  16. The Perfect Match: Simultaneous Strawberry Pollination and Bio-Sampling of the Plant Pathogenic Bacterium Erwinia pyrifoliae by Honey Bees Apis mellifera

    NARCIS (Netherlands)

    Steen, van der Sjef; Bergsma-Vlami, M.; Wenneker, M.

    2018-01-01

    In this study we show that honey bee colonies placed in a greenhouse for pollination of strawberry can simultaneously be used to indicate the presence of the plant pathogenic bacterium Erwinia pyrifoliae. This was demonstrated by using two methods of qualitative sacrificial and non-sacrificial bio

  17. Erwinia besmet de plant ook via de wortels

    NARCIS (Netherlands)

    Wolf, van der J.M.; Czajkowski, R.L.; Velvis, H.; Doorn, van J.

    2008-01-01

    Door een viertal Nederlandse wetenschappers is onlangs aanvullend onderzoek verricht naar besmettingen van Erwinia chrysanthemi in plantenwortels. Daaruit is gebleken dat de bacterie veel makkelijker de plant binnenkomt en zich in de plant verspreidt dan ooit gedacht. Binnen één dag kan de bacterie

  18. Carboxymethyl-cellulase from Erwina chrysanthemi. I. Production and regulation of extracellular carboxymethyl-cellulase

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, M.H.; Chambost, J.P.; Magnan, M.; Cattaneo, J.

    1984-01-01

    Erwinia chrysanthemi strain 3665 growing aerobically in a mineral salts medium containing various carbon sources constitutively secreted low levels of carboxymethyl-cellulase activity. Increased production of this activity was triggered by conditions which reduced the growth rate. The results obtained with continuous culture suggested that this production was controlled by a mechanism similar to catabolite repression. However, other factors might be implicated in the regulation of cellulase production.

  19. Whole-genome sequence of Pseudomonas fluorescens EK007-RG4, a promising biocontrol agent against a broad range of bacteria, including the fire blight bacterium Erwinia amylovora

    DEFF Research Database (Denmark)

    Habibi, Roghayeh; Tarighi, Saeed; Behravan, Javad

    2017-01-01

    Here, we report the first draft whole-genome sequence of Pseudomonas fluorescens strain EK007-RG4, which was isolated from the phylloplane of a pear tree. P. fluorescens EK007-RG4 displays strong antagonism against Erwinia amylovora, the causal agent for fire blight disease, in addition to several...

  20. Soft rot erwiniae: from genes to genomes.

    Science.gov (United States)

    Toth, Ian K; Bell, Kenneth S; Holeva, Maria C; Birch, Paul R J

    2003-01-01

    SUMMARY The soft rot erwiniae, Erwinia carotovora ssp. atroseptica (Eca), E. carotovora ssp. carotovora (Ecc) and E. chrysanthemi (Ech) are major bacterial pathogens of potato and other crops world-wide. We currently understand much about how these bacteria attack plants and protect themselves against plant defences. However, the processes underlying the establishment of infection, differences in host range and their ability to survive when not causing disease, largely remain a mystery. This review will focus on our current knowledge of pathogenesis in these organisms and discuss how modern genomic approaches, including complete genome sequencing of Eca and Ech, may open the door to a new understanding of the potential subtlety and complexity of soft rot erwiniae and their interactions with plants. The soft rot erwiniae are members of the Enterobacteriaceae, along with other plant pathogens such as Erwinia amylovora and human pathogens such as Escherichia coli, Salmonella spp. and Yersinia spp. Although the genus name Erwinia is most often used to describe the group, an alternative genus name Pectobacterium was recently proposed for the soft rot species. Ech mainly affects crops and other plants in tropical and subtropical regions and has a wide host range that includes potato and the important model host African violet (Saintpaulia ionantha). Ecc affects crops and other plants in subtropical and temperate regions and has probably the widest host range, which also includes potato. Eca, on the other hand, has a host range limited almost exclusively to potato in temperate regions only. Disease symptoms: Soft rot erwiniae cause general tissue maceration, termed soft rot disease, through the production of plant cell wall degrading enzymes. Environmental factors such as temperature, low oxygen concentration and free water play an essential role in disease development. On potato, and possibly other plants, disease symptoms may differ, e.g. blackleg disease is associated

  1. Members of the amylovora group of Erwinia are cellulolytic and possess genes homologous to the type II secretion pathway.

    Science.gov (United States)

    Riekki, R; Palomäki, T; Virtaharju, O; Kokko, H; Romantschuk, M; Saarilahti, H T

    2000-07-01

    A cellulase-producing clone was isolated from a genomic library of the Erwinia rhapontici (Millard) Burkholder strain NCPPB2989. The corresponding gene, named celA, encodes an endoglucanase (EC 3.2.1.4) with the extremely low pH optimum of 3.4 and a temperature optimum between 40 and 50 degrees C. A single ORF of 999 nt was found to be responsible for the Cel activity. The corresponding protein, named CelA, showed 67% identity to the endoglucanase Y of E. chrysanthemi and 51.5% identity to the endoglucanase of Cellulomonas uda, and thus belongs to the glycosyl hydrolase family 8. The celA gene, or its homologue, was found to be present in all E. rhapontici isolates analysed, in E. chrysanthemi, and in E. amylovora. The presence of plant cell wall-degrading enzymes in the amylovora group of Erwinia spp. had not previously been established. Furthermore, the DNA of both E. rhapontici and E. amylovora was found to exhibit homology to genes encoding the type II (GSP) secretion pathway, which is known to be responsible for extracellular targeting of cellulases and pectinases in Erwinia spp. that cause soft rotting, such as E. carotovora and E. chrysanthemi. Secretion of the CelA protein by E. rhapontici could not be verified. However, the CelA protein itself was found to include the information necessary for heterologous secretion by E. chrysanthemi.

  2. Draft Genome Sequences of 17 Isolates of the Plant Pathogenic Bacterium Dickeya

    OpenAIRE

    Pritchard, Leighton; Humphris, Sonia; Saddler, Gerry S.; Elphinstone, John G.; Pirhonen, Minna; Toth, Ian K.

    2013-01-01

    Dickeya (formerly Erwinia chrysanthemi) species cause diseases on a wide range of crops and ornamental plants worldwide. Here we present the draft sequences of 17 Dickeya isolates spanning four Dickeya species, including five isolates that are currently unassigned to a species.

  3. Draft genome sequences of 17 isolates of the plant pathogenic bacterium dickeya.

    Science.gov (United States)

    Pritchard, Leighton; Humphris, Sonia; Saddler, Gerry S; Elphinstone, John G; Pirhonen, Minna; Toth, Ian K

    2013-11-21

    Dickeya (formerly Erwinia chrysanthemi) species cause diseases on a wide range of crops and ornamental plants worldwide. Here we present the draft sequences of 17 Dickeya isolates spanning four Dickeya species, including five isolates that are currently unassigned to a species.

  4. Isolation and Identification of L-asparaginase producing Erwinia strains which isolated from Potato Farms

    Directory of Open Access Journals (Sweden)

    Arastoo Badoei-Dalfard

    2016-09-01

    Full Text Available Introduction: L-Asparaginase can be effectively used for the treatment of lymphoblastic leukemia. The rapid growth of cancer cells are needed for L-asparagine abundant storage. L-asparaginase catalyzes the hydrolysis of L-asparagine into L-aspartic acid and ammonia. The purpose of this study was to isolate and identify the L-asparaginase producing Erwinia strains from the potato farms of Jiroft. Materials and methods: Pectolytic Erwinia species isolated from crumbling potato in M9 medium. The desired L-asparaginase producing bacteria were isolated based on the color changes. Biochemical-microbial and the plant pathogenicity tests of these strains were also investigated with potato and geranium. The L-asparaginase production and molecular detection of these Erwinia strains were also investigated. Results: In this study, L-asparaginase producing Erwinia was isolated on the CVP and M9 mediums. The inoculation of Erwinia strains on the potato and geranium plants showed that Er8 and Er11 species have the ability to cause plant pathogenicity. Results showed that the maximum pathogenicity of Er8 and Er11 was observed after 48 and 15 h of inoculation in potato and geranium plants, respectively. 16S rDNA sequencing and phylogenetic analyses exhibited that Er8 and Er11 strains were similar to Erwinia chrysanthemi with 98% homology. Discussion and conclusion: Because of several applications of the Erwinia L-asparaginase in various fields, isolated Erwinia and their L-asparaginase can be suitable for applied utilization.

  5. Bacterieziekte Erwinia groeiend probleem

    NARCIS (Netherlands)

    Wolf, van der J.M.

    2012-01-01

    Het grootste probleem van Nederlandse pootgoedtelers is tegenwoordig de bacterieziekte Erwinia. Het is een sluipmoordenaar waar nog geen bestrijdingsmiddelen tegen bestaan. Maar onderzoekers komen steeds meer over de bacterie te weten.

  6. Monitoring of Erwinia amylovora in Montenegro

    Directory of Open Access Journals (Sweden)

    Dragana Radunović

    2015-09-01

    Full Text Available Recent studies of Erwinia amylovora in Montenegro, conducted from 2012 to 2014, indicated that the bacterium was widespread in the northern, continental part of the country, where the most important fruit-growing regions are situated. The presence of the bacterium was confirmed on quince, pear, apple, medlar and hawthorn. Pathogenic, cultural and biochemical characteristics of E. amylovora strains sampled from pome fruit species and indigenous flora in Montenegro had been studied previously. In the present study, serological tests were used for identification of E. amylovora strains originating from pome fruit trees and indigenous plants. Monitoring of E. amylovora and collection of samples with symptoms of bacterial fire blight from different hosts and locations were performed in Montenegro from 2012 to 2014. Isolation of the bacterium on nutrient medium produced a large number of isolates, whose pathogenicity was confirmed on immature pear fruits. Twenty-seven strains of the bacterium, originating from three pome fruit species (quince, pear and apple and one indigenous species (hawthorn were selected for serological analyses. Two applied serological methods, ELISA and IF test, enabled rapid detection of the bacterium and simultaneous examination of a large number of samples over a short period of time. Serological analyses showed high homogeneity in antigenic structure of the studied E. amylovora strains sampled from quince, pear, apple and hawthorn from nine locations in Montenegro.

  7. Erwinia carotovora extracellular proteases : characterization and role in soft rot

    OpenAIRE

    Kyöstiö, Sirkka R. M.

    1990-01-01

    Erwinia carotovora subsp. carotovora (Ecc) strain EC14, a Gram-negative bacterium, causes soft rot on several crops, including potato. Maceration of potato tuber tissue is caused by secreted pectolytic enzymes. Other cell-degrading enzymes may also have roles in pathogenesis, including cellulases, phospholipases, and protease(s). The objectives of this research were to (1) characterize Ecc extracellular protease (Prt) and (2) elucidate its role in potato soft rot. A gene enc...

  8. Dickeya dadantii, a plant pathogenic bacterium producing Cyt-like entomotoxins, causes septicemia in the pea aphid Acyrthosiphon pisum

    OpenAIRE

    Costechareyre, Denis; Balmand, Severine; Condemine, Guy; Rahbé, Yves

    2012-01-01

    International audience; Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the ...

  9. 'Preventie belangrijkste troef tegen Erwinia'

    NARCIS (Netherlands)

    Doorn, van J.

    2012-01-01

    De bollenteelt en -handel ondervindt aanzienlijke schade van de bacterieziekte Erwinia. Onderzoek wijst uit dat preventie het belangrijkste wapen is. Mogelijk bieden ook stofjes die de afweer van planten verbeteren een oplossing.

  10. UV-induced filamentation in bacteria of the generum Erwinia

    Energy Technology Data Exchange (ETDEWEB)

    Prokulevich, V A; Tomichev, Yu K

    1988-09-01

    It is experimentally shown that cells of 56 pectolytic Erwinia strains isolated at different tomus in different states from various natural sources are converted into filaments under UV-light effect in relatively low doses which allows one to refer them to natural Fil/sup +/ - organisms. Ability to filamentation in Erwinia bacterium correlates with secretion process to the environment of pectolytic enzymes. Bacteria of 9 E.herbicola strains investigated (without pectatlyase secretion) after irradiation do not form stretched cells. Based on the results obtained a conclusion is drawn that increased ENA49 E.chrysanthemic cell sensitivity to UV light results from its natural defect in the system, providing for cell division processes like the one revealed in E.CoLiB and Lon/sup -/ - mutants of E.Coli K-12.

  11. Nucleotide sequence, organization and expression of rdgA and rdgB genes that regulate pectin lyase production in the plant pathogenic bacterium Erwinia carotovora subsp. carotovora in response to DNA-damaging agents.

    Science.gov (United States)

    Liu, Y; Chatterjee, A; Chatterjee, A K

    1994-12-01

    In most soft-rotting Erwinia spp., including E. carotovora subsp. carotovora strain 71 (Ecc71), production of the plant cell wall degrading enzyme pectin lyase (Pnl) is activated by DNA-damaging agents such as mitomycin C (MC). Induction of Pnl production in Ecc71 requires a functional recA gene and the rdg locus. DNA sequencing and RNA analyses revealed that the rdg locus contains two regulatory genes, rdgA and rdgB, in separate transcriptional units. There is high homology between RdgA and repressors of lambdoid phages, specially phi 80. RdgB, however, has significant homology with transcriptional activators of Mu phage. Both RdgA and RdgB are also predicted to possess helix-turn-helix motifs. By replacing the rdgB promoter with the IPTG-inducible tac promoter, we have determined that rdgB by itself can activate Pnl production in Escherichia coli. However, deletion analysis of rdg+ DNA indicated that, when driven by their native promoters, functions of both rdgA and rdgB are required for the induction of pnlA expression by MC treatment. While rdgB transcription occurs only after MC treatment, a substantial level of rdgA mRNA is detected in the absence of MC treatment. Moreover, upon induction with MC, a new rdgA mRNA species, initiated from a different start site, is produced at a high level. Thus, the two closely linked rdgA and rdgB genes, required for the regulation of Pnl production, are expressed differently in Ecc71.

  12. Dickeya dadantii, a plant pathogenic bacterium producing Cyt-like entomotoxins, causes septicemia in the pea aphid Acyrthosiphon pisum.

    Science.gov (United States)

    Costechareyre, Denis; Balmand, Séverine; Condemine, Guy; Rahbé, Yvan

    2012-01-01

    Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 10(8) cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria.

  13. Dickeya dadantii, a plant pathogenic bacterium producing Cyt-like entomotoxins, causes septicemia in the pea aphid Acyrthosiphon pisum.

    Directory of Open Access Journals (Sweden)

    Denis Costechareyre

    Full Text Available Dickeya dadantii (syn. Erwinia chrysanthemi is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera. The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 10(8 cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria.

  14. Two Genomic Regions Involved in Catechol Siderophore Production by Erwinia carotovora

    Science.gov (United States)

    Bull, Carolee T.; Ishimaru, Carol A.; Loper, Joyce E.

    1994-01-01

    Two regions involved in catechol biosynthesis (cbs) of Erwinia carotovora W3C105 were cloned by functional complementation of Escherichia coli mutants that were deficient in the biosynthesis of the catechol siderophore enterobactin (ent). A 4.3-kb region of genomic DNA of E. carotovora complemented the entB402 mutation of E. coli. A second genomic region of 12.8 kb complemented entD, entC147, entE405, and entA403 mutations of E. coli. Although functions encoded by catechol biosynthesis genes (cbsA, cbsB, cbsC, cbsD, and cbsE) of E. carotovora were interchangeable with those encoded by corresponding enterobactin biosynthesis genes (entA, entB, entC, entD, and entE), only cbsE hybridized to its functional counterpart (entE) in E. coli. The cbsEA region of E. carotovora W3C105 hybridized to genomic DNA of 21 diverse strains of E. carotovora but did not hybridize to that of a chrysobactin-producing strain of Erwinia chrysanthemi. Strains of E. carotovora fell into nine groups on the basis of sizes of restriction fragments that hybridized to the cbsEA region, indicating that catechol biosynthesis genes were highly polymorphic among strains of E. carotovora. PMID:16349193

  15. Protocollering van toetsen op Erwinia

    NARCIS (Netherlands)

    Dees, R.H.L.; Martin, W.S.; Doorn, van J.

    2009-01-01

    De problemen in de bloembollenteelt zijn de laatste tien jaar sterk toegenomen. Voorheen was de aanwezigheid van Erwinia carotovora subsp. carotovora (Ecc, nu Pectobacterium caotovorum) als witsnot in vooral hyacint bekend, maar gaf vrijwel nooit grote uitval in de teelt. Er zijn momenteel geen

  16. FIRE BLIGHT SUSCEPTIBILITY OF SOME PEAR VARIETIES (ERWINIA AMYLOVORA, BURILL

    Directory of Open Access Journals (Sweden)

    Zsolt Jakab- Ilyefalv

    2012-01-01

    Full Text Available At Bistriţa Fruit Research and Development Station, in a pear collection, planted with 44 varieties, there has been studied the susceptibility to fire blight (Erwinia amylovora,Burill. During the vegetation period, phytosanitary treatments to control the disease have been applied using copper based products (copper sulfate, Champion, Funguran, Kocide. Erwinia amylovora infections have been influenced by the rainfall registered in April (70.9 mm and May (104.7 mm and the temperature fluctuations in April-May. The field observations on Erwinia amylvora attack demonstrate that the pear varieties have a different susceptibility to this dangerous bacterium. Evaluation of attack level in the pear collection was done using an evaluation scale with 9 scores using a reference resistance scale for : ‘Highly resistant’ , ‘Moderately resistant’, ‘Susceptible’, ‘Very susceptible’ cultivars . The most sensitive pear varieties in the collection were: ‘De Noiembrie’, ‘Abatele Fetel’, ’Daciana’, ’Triumf’, ’Williams Boway’, ’Margareta Marillat’, ’Beauty Tomme’, ‘Williams rosu’, ’Aromata de Bistrita’, ’Jeanne d`Arc’, ’Aramiu de Somes’, ’Belle des Arbres’, ’Zorka’ representing 13.64% of the total pear varieties. In several cultivars there have been observed increased symptoms, a very high susceptibility of infections leading to complete scorching of trees: Jeanne d`Arc’, Williams rosu’, ‘Triumf’, ‘Aromata de Bistrita’, ‘Zorka’. Strong attack symtoms were observed at the pear cultivars ‘Cure’, ‘Euras, ’Ciuda’ ‘Highland’, ‘Precoce Morettini’, ’Monica’, ’Cadillac’, ’Juliana’, ’Somesan’, ’Beurré Hardenpont’ these cultivars being susceptible to Erwinia amylovora , representing 40.91 % of total genotypes . Cultivars ‘Untoasa Geoagiu’, ‘Beurre Hardy’, ‘Trivale’ manifested a certain tolerance to Erwinia amylovora , no attack symptoms being

  17. [The analyses and identification of Flos rhododendri mollis and Flos chrysanthemi indici via infrared spectroscopy].

    Science.gov (United States)

    Jin, Zhe-Xiong; Wang, Yue; Zhou, Qun; Chen, Jian-Bo; Ma, Fang; Sun, Su-Qin

    2014-09-01

    In this study, major chemical components of Flos rhododendri mollis and Flos chrysanthemi indici were characterized using Fourier transform infrared spectroscopy (FTIR). For Flos rhododendri mollis, the bands at 1,648 and 1,543 cm(-1) were attributed to amide I and amide II , respectively, indicating that it contained proteins probably resulting in immunization. In case of Flos chrysanthemi indici, stretching vibration of C==O function group was responsible for the bands at 1,734 and 1,515 cm(-1), as a result of essential oils, lipids, etc. Since FTIR spectra of Flos rhododendri mollis and Flos chrysanthemi indici are almost identical and it is difficult to discriminate them, two-step identification was investigated via secondary derivative of the FTIR spectra. The bands at 1,656 and 1,515 cm(-1) corresponds to flavonoides in Flos rhododendri mollis and Flos chrysanthemi indici. In the secondary derivative of the FTIR spectrum of Flos chrysanthemi indici, characteristic bands of inulin were present at 1,163, 1,077, 1,026, 986 and 869 cm(-1), and therefore Flos chrysanthemi indici contained inulin as well. Tri-step identification was carried out for Flos rhododendri mollis and Flos chrysanthemi indici by means of comparing their 2D-IR correlation spectra in different wave number range. In the characteristic range of flavonoides (1,700-1,400 cm(-1)), Flos rhododendri mollis exhibited 3 obvious autopeaks, while 10 autopeaks were visualized in the 2D-IR correlation spectrum of Flos chrysanthemi indici Moreover, in the characteristic range of glucoside (1,250-900 cm(-1)), 10 and 9 autopeaks were present in the 2D-IR correlation spectra of Flos rhododendri mollis and Flos chrysanthemi indici, respectively. Therefore, the tri-step identification of FTIR is a time-saving; accurate, cost-saving and convenient method to effectively distinguish traditional Chinese medicines.

  18. First report of latent infection of Cyperus rotundus caused by a biovar 3 Dickeya sp. (Syn. Erwinia chrysanthemi) in Israel

    NARCIS (Netherlands)

    Tsror, L.; Lebiush, S.; Erlich, O.; Ben-Daniel, B.; Wolf, van der J.M.

    2010-01-01

    Recent outbreaks of potato blackleg in Israel, caused by Dickeya spp., on plants grown from seed tubers imported from Northern Europe, are of a great concern. The warm climatic conditions during the growing season favour disease expression, and may result in the establishment of the pathogen in the

  19. Assessment of recent outbreaks of Dickeya sp (syn. Erwinia chrysanthemi) slow wilt in potato crops in Israel

    NARCIS (Netherlands)

    Tsror, L.; Erlich, O.; Lebiush, S.; Hazanovsky, M.; Zig, U.; Slawiak, M.; Grabe, G.; Wolf, van der J.M.; Haar, van de J.J.

    2009-01-01

    Suspected Dickeya sp. strains were obtained from potato plants and tubers collected from commercial plots. The disease was observed on crops of various cultivars grown from seed tubers imported from the Netherlands during the spring seasons of 2004-2006, with disease incidence of 2-30% ( 10% in

  20. Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR(Ecc).

    Science.gov (United States)

    Andersson, R A; Eriksson, A R; Heikinheimo, R; Mäe, A; Pirhonen, M; Kõiv, V; Hyytiäinen, H; Tuikkala, A; Palva, E T

    2000-04-01

    The production of the main virulence determinants of the plant pathogen Erwinia carotovora subsp. carotovora, the extracellular cell wall-degrading enzymes, is partly controlled by the diffusible signal molecule N-(3-oxohexanoyl)-L-homoserine lactone (OHHL). OHHL is synthesized by the product of the expI/carI gene. Linked to expI we found a gene encoding a putative transcriptional regulator of the LuxR-family. This gene, expR(Ecc), is transcribed convergently to the expI gene and the two open reading frames are partially overlapping. The ExpR(Ecc) protein showed extensive amino acid sequence similarity to the repressor EsaR from Pantoea stewartii subsp. stewartii (formerly Erwinia stewartii subsp. stewartii) and to the ExpR(Ech) protein of Erwinia chrysanthemi. Inactivation of the E. carotovora subsp. carotovora expR(Ecc) gene caused no decrease in virulence or production of virulence determinants in vitro. In contrast, there was a slight increase in the maceration capacity of the mutant strain. The effects of ExpR(Ecc) were probably mediated by changes in OHHL levels. Inactivation of expR(Ecc) resulted in increased OHHL levels during early logarithmic growth. In addition, overexpression of expR(Ecc) caused a clear decrease in the production of virulence determinants and part of this effect was likely to be caused by OHHL binding to ExpR(Ecc). ExpR(Ecc) did not appear to exhibit transcriptional regulation of expI, but the effect on OHHL was apparently due to other mechanisms.

  1. Bacteria of the genus Erwinia found in the spermatheca of the laurel psyllid Trioza alacris.

    Science.gov (United States)

    Marchini, Daniela; Ciolfi, Silvia; Gottardo, Marco; Marri, Laura

    2014-12-01

    Psylloidea are economically important insects causing serious damage to plants by direct feeding and/or vectoring bacterial pathogens. Results reported here indicate the presence of extracellular bacteria in the spermatheca of egg-laying Trioza alacris females. One phylotype, sharing 99 % identity with the non-phytopathogenic bacterium Erwinia tasmaniensis, was identified regardless of methods applied or insect sampling year and location. This is the first study, achieved by ultrastructural, cultural, and 16S rRNA gene-based analysis, of an insect spermatheca microbiota.

  2. Op weg naar een Erwinia-vrije pootgoedteelt

    NARCIS (Netherlands)

    Velvis, H.; Haar, van der J.; Wolf, van der J.M.

    2006-01-01

    De laatste jaren zijn er toenemende problemen in de pootgoedteelt met de bacterieziekten zwartbenigheid en stengelnatrot, veroorzaakt door Erwinia's. Een dieptepunt was 2003, toen 15,8% van het areaal pootgoed door de NAK werd verlaagd vanwege bacterieziek (Erwinia), waarvan 4% afgekeurd. In 2005

  3. Overleving van Erwinia in grond en op materialen onderzocht : onderzoek : Erwinia

    NARCIS (Netherlands)

    Doorn, van J.; Kampen, van D.; Jollinger, van T.; Zouwen, van der P.S.; Speksnijder, A.G.C.L.; Wolf, van der J.M.

    2007-01-01

    In Nederland veroorzaken Erwiniabacteriën veel schade in bloembollen, aardappel, ui, witlof en bloemisterijgewassen. Er heerst nog steeds veel onduidelijkheid over de vraag waar deze Erwinia's vandaan komen. Ook is onduidelijk hoe lang deze kunnen overleven in grond, water of op materialen die in de

  4. Deltaplan Erwinia C : praktijkgericht (C-) onderzoek aan Erwinia-problemen in bloembolgewassen 2009-2013

    NARCIS (Netherlands)

    Doorn, van J.; Vreeburg, P.J.M.; Leeuwen, van P.J.; Martin, W.S.; Dees, R.H.L.

    2013-01-01

    Erwinia vormt een groot probleem in bloembolgewassen als hyacint, iris, Dahlia en Zantedeschia. Geschat wordt (precieze cijfers ontbreken) dat de economische schade door o.a. uitval van aangetaste bollen en kosten als gevolg van extra uitzoeken ongeveer 5- 8 miljoen euro op jaarbasis bedraagt. Daar

  5. New Erwinia-Like Organism Causing Cervical Lymphadenitis▿

    Science.gov (United States)

    Shin, Sang Yop; Lee, Mi Young; Song, Jae-Hoon; Ko, Kwan Soo

    2008-01-01

    The first case of cervical lymphadenitis due to infection by a new Erwinia-like organism is reported. The organism was identified initially as Pantoea sp. by a Vitek 2-based assessment but was finally identified as a member of the genus Erwinia by 16S rRNA gene sequence analysis. The isolate displayed 98.9% 16S rRNA gene sequence similarity to that of E. tasmaniensis and showed phenotypic characteristics that were different from other Erwinia species. PMID:18614665

  6. Population pharmacokinetics of intravenous Erwinia asparaginase in pediatric acute lymphoblastic leukemia patients

    NARCIS (Netherlands)

    Sassen, Sebastiaan D. T.; Mathôt, Ron A. A.; Pieters, Rob; Kloos, Robin Q. H.; de Haas, Valérie; Kaspers, Gertjan J. L.; van den Bos, Cor; Tissing, Wim J. E.; te Loo, Maroeska; Bierings, Marc B.; Kollen, Wouter J. W.; Zwaan, Christian M.; van der Sluis, Inge M.

    2017-01-01

    Erwinia asparaginase is an important component in the treatment of pediatric acute lymphoblastic leukemia. A large variability in serum concentrations has been observed after intravenous Erwinia asparaginase. Currently, Dutch Childhood Oncology Group protocols dose alterations are based on trough

  7. Population pharmacokinetics of intravenous Erwinia asparaginase in pediatric acute lymphoblastic leukemia patients

    NARCIS (Netherlands)

    Sassen, Sebastiaan D. T.; Mathot, Ron A. A.; Pieters, Rob; Kloos, Robin Q. H.; de Haas, Valerie; Kaspers, Gertjan J. L.; van den Bos, Cor; Tissing, Wim J. E.; te Loo, D. Maroeska W. M.; Bierings, Marc B.; Kollen, Wouter J. W.; Zwaan, Christian M.; van der Sluis, Inge M.

    Erwinia asparaginase is an important component in the treatment of pediatric acute lymphoblastic leukemia. A large variability in serum concentrations has been observed after intravenous Erwinia asparaginase. Currently, Dutch Childhood Oncology Group protocols dose alterations are based on trough

  8. Development of a method for testing the susceptibility of Salix alba to Erwinia salicis

    Energy Technology Data Exchange (ETDEWEB)

    Dingjan-Versteegh, A M; de Kam, M [Institute for Forestry and Urban Ecology, Wageningen (Netherlands)

    1990-01-01

    Salix is one of the faster growing tree species that has potential for biomass plantations in Europe. This potential, however, is limited by the occurrence of a vascular disease caused by the bacterium Erwinia salicis (Day) Chester. Selection and breeding of disease resistance is hampered by insufficient knowledge of the infection biology and ecology of the pathogen. The availability of specific antisera is of vital importance in the study of the infection biology and in monitoring bacterial populations inside the host. Therefore, one of the aims of the research was to improve the antisera. The composition of the soluble antigens of E. salicis was studied by enzyme-linked immunosorbent assay (ELISA), polyacrylamide gel electrophoresis (PAGE) and electro-immunoblotting. Antiserum prepared to whole cells of E. salicis mainly contains antibodies to bacterial surface antigens or to soluble antigens. ELISA demonstrated the presence of bacterial soluble antigens in leaves of diseased willow trees and also in leaves of willow shoots which were placed in a solution of bacterial soluble antigens. An inoculation experiment was carried out to ascertain if there is a statistically significant correlation between plant water potential and response to artificial inoculation with E. salicis. To elucidate the mechanisms involved in pathogenicity and virulence of E. salicis, attempts were made to isolate the plasmids of the bacterium, however, it appears that E. salicis does not have plasmids. In collaboration with Ch. Maceau (21), the E. salicis genome was isolated and a genomic library was constructed in E. coli. 28 refs., 10 figs., 4 tabs.

  9. Virulence Factors of Erwinia amylovora: A Review

    Directory of Open Access Journals (Sweden)

    Núria Piqué

    2015-06-01

    Full Text Available Erwinia amylovora, a Gram negative bacteria of the Enterobacteriaceae family, is the causal agent of fire blight, a devastating plant disease affecting a wide range of host species within Rosaceae and a major global threat to commercial apple and pear production. Among the limited number of control options currently available, prophylactic application of antibiotics during the bloom period appears the most effective. Pathogen cells enter plants through the nectarthodes of flowers and other natural openings, such as wounds, and are capable of rapid movement within plants and the establishment of systemic infections. Many virulence determinants of E. amylovora have been characterized, including the Type III secretion system (T3SS, the exopolysaccharide (EPS amylovoran, biofilm formation, and motility. To successfully establish an infection, E. amylovora uses a complex regulatory network to sense the relevant environmental signals and coordinate the expression of early and late stage virulence factors involving two component signal transduction systems, bis-(3′-5′-cyclic di-GMP (c-di-GMP and quorum sensing. The LPS biosynthetic gene cluster is one of the relatively few genetic differences observed between Rubus- and Spiraeoideae-infecting genotypes of E. amylovora. Other differential factors, such as the presence and composition of an integrative conjugative element associated with the Hrp T3SS (hrp genes encoding the T3SS apparatus, have been recently described. In the present review, we present the recent findings on virulence factors research, focusing on their role in bacterial pathogenesis and indicating other virulence factors that deserve future research to characterize them.

  10. Fysische, chemische en biologische bestrijding van pectinolytische Erwinia's

    NARCIS (Netherlands)

    Wolf, van der J.M.; Doorn, van J.

    2006-01-01

    Rotveroorzakende bacteriën, met name pectinolytische Erwinia spp., zijn verantwoordelijk voor veel schade in de diverse gewassen, vooral in de teelt van aardappelen en de bloembolgewassen hyacint, zantedeschia en iris. In deze literatuurstudie worden de beschikbare gegevens nog eens nader bekeken

  11. Resistance to Erwinia spp. in potato (Solanum tuberosum L.)

    NARCIS (Netherlands)

    Allefs, S.

    1995-01-01

    Blackleg is a disease of potato, Solanum tuberosum , which is caused by the bacteria Erwinia carotovora subsp. carotovora ( Ecc ), E.c. subsp. atroseptica ( Eca ) or

  12. Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages.

    Science.gov (United States)

    Esplin, Ian N D; Berg, Jordan A; Sharma, Ruchira; Allen, Robert C; Arens, Daniel K; Ashcroft, Cody R; Bairett, Shannon R; Beatty, Nolan J; Bickmore, Madeline; Bloomfield, Travis J; Brady, T Scott; Bybee, Rachel N; Carter, John L; Choi, Minsey C; Duncan, Steven; Fajardo, Christopher P; Foy, Brayden B; Fuhriman, David A; Gibby, Paul D; Grossarth, Savannah E; Harbaugh, Kala; Harris, Natalie; Hilton, Jared A; Hurst, Emily; Hyde, Jonathan R; Ingersoll, Kayleigh; Jacobson, Caitlin M; James, Brady D; Jarvis, Todd M; Jaen-Anieves, Daniella; Jensen, Garrett L; Knabe, Bradley K; Kruger, Jared L; Merrill, Bryan D; Pape, Jenny A; Payne Anderson, Ashley M; Payne, David E; Peck, Malia D; Pollock, Samuel V; Putnam, Micah J; Ransom, Ethan K; Ririe, Devin B; Robinson, David M; Rogers, Spencer L; Russell, Kerri A; Schoenhals, Jonathan E; Shurtleff, Christopher A; Simister, Austin R; Smith, Hunter G; Stephenson, Michael B; Staley, Lyndsay A; Stettler, Jason M; Stratton, Mallorie L; Tateoka, Olivia B; Tatlow, P J; Taylor, Alexander S; Thompson, Suzanne E; Townsend, Michelle H; Thurgood, Trever L; Usher, Brittian K; Whitley, Kiara V; Ward, Andrew T; Ward, Megan E H; Webb, Charles J; Wienclaw, Trevor M; Williamson, Taryn L; Wells, Michael J; Wright, Cole K; Breakwell, Donald P; Hope, Sandra; Grose, Julianne H

    2017-11-16

    Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the Rosaceae family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of E. amylovora bacteriophages. Copyright © 2017 Esplin et al.

  13. The Production, Purification and Properties of the Biopolymer Levan Produced by the Bacterium Erwinia Herbicola

    Science.gov (United States)

    1989-08-01

    after comparison with ATCC 11142 Acetobacter pasteurianus. ATCC 15953 Microbacterium 2 laevanlformans. and QMB 1624 Bacillus coagulans (B, gub^jlu...is produced by several bacteria, including Brwjnja herbicola. Streptococcus salivarius. Pseudomonas prunicola. Bacillus subtilis. and Actinomvcetes...J, i X I i rtfi ii i IT PTT-n T~^L^^^^ r1 •» ■ ■ 11 ■ ■ ■ i >■ 111 I’I I’.VIT fi-H-rtfi 1 -f ’ •■» i | i r , , , Levan from Bacillus

  14. Identification and characterization of Nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Mattinen, Laura; Tshuikina, Marina; Mäe, Andres; Pirhonen, Minna

    2004-12-01

    Erwinia carotovora subsp. carotovora is a gram-negative bacterium that causes soft rot disease of many cultivated crops. When a collection of E. carotovora subsp. carotovora isolates was analyzed on a Southern blot using the harpin-encoding gene hrpN as probe, several harpinless isolates were found. Regulation of virulence determinants in one of these, strain SCC3193, has been characterized extensively. It is fully virulent on potato and in Arabidopsis thaliana. An RpoS (SigmaS) mutant of SCC3193, producing elevated levels of secreted proteins, was found to cause lesions resembling the hypersensitive response when infiltrated into tobacco leaf tissue. This phenotype was evident only when bacterial cells had been cultivated on solid minimal medium at low pH and temperature. The protein causing'the cell death was purified and sequenced, and the corresponding gene was cloned. The deduced sequence of the necrosis-inducing protein (Nip) showed homology to necrosis- and ethylene-inducing elicitors of fungi and oomycetes. A mutant strain of E. carotovora subsp. carotovora lacking the nip gene showed reduced virulence in potato tuber assay but was unaffected in virulence in potato stem or on other tested host plants.

  15. Production of endo-pectate lyase by two stage cultivation of Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Fukuoka, Satoshi; Kobayashi, Yoshiaki

    1987-02-26

    The productivity of endo-pectate lyase from Erwinia carotovora GIR 1044 was found to be greatly improved by two stage cultivation: in the first stage the bacterium was grown with an inducing carbon source, e.g., pectin, and in the second stage it was cultivated with glycerol, xylose, or fructose with the addition of monosodium L-glutamate as nitrogen source. In the two stage cultivation using pectin or glycerol as the carbon source the enzyme activity reached 400 units/ml, almost 3 times as much as that of one stage cultivation in a 10 liter fermentor. Using two stage cultivation in the 200 liter fermentor improved enzyme productivity over that in the 10 liter fermentor, with 500 units/ml of activity. Compared with the cultivation in Erlenmeyer flasks, fermentor cultivation improved enzyme productivity. The optimum cultivating conditions were agitation of 480 rpm with aeration of 0.5 vvm at 28 /sup 0/C. (4 figs, 4 tabs, 14 refs)

  16. Erwinia carotovora contamination of Finnish seed potatoes and the prevalence of bacterial subspecies and serogroups

    Directory of Open Access Journals (Sweden)

    Pirkko Harju

    1993-07-01

    Full Text Available Symptomless contamination with the rot-inducing bacterium Erwinia carotovora was detectable by the tuber incubation method in 82% of the commercial seed potato stocks surveyed. E. carotovora subsp. atroseptica (Eca was more common than E. carotovora subsp. carotovora (Ecc among the tuber contaminants. In a four-year survey of ten meristem-based seed stocks, recontamination with both Eca and Ecc occurred typically during the second field generation, but three stocks remained free of detectable contamination throughout the survey period. The first blackleg symptoms occurred typically during the third field generation. The serogroup distribution of Finnish Eca isolates was different from that reported from other countries. The predominant serogroup, I, constituted only 74% of all Eca isolates, since serogroups XXXV and XLI occurred relatively frequently. Serogroup I was more common among isolates from diseased stems than among those from latently contaminated tubers. The results also suggest that serogroup I is more dominant in the southern than in the northern parts of the country.

  17. Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora

    OpenAIRE

    Sjöblom, Solveig

    2009-01-01

    Erwinia carotovora subsp. carotovora (Ecc) is a Gram-negative enterobacterium that causes soft-rot in potato and other crops. The main virulence determinants, the extracellular plant cell wall -degrading enzymes (PCWDEs), lead to plant tissue maceration. In order to establish a successful infection the production of PCWDEs are controlled by a complex regulatory network, including both specific and global activators and repressors. One of the most important virulence regulation systems in Ecc ...

  18. The Status of Erwinia amylovora in the Former Yugoslav Republics over the Past Two Decades

    Directory of Open Access Journals (Sweden)

    Mila Grahovac

    2013-01-01

    Full Text Available Erwinia amylovora, the causal agent of fire blight (FB on fruit trees and ornamentalplants, rapidly spread across eastern Mediterranean countries in the early 1980s. This quarantinebacterium probably arrived in the southern parts of the former Yugoslavia (nowFYR Macedonia from Greece. Based on symptoms, and isolation and identification data, itwas concluded that Erwinia amylovora was the causal agent of pear drying in Macedonia(1989. It was the first experimental confirmation of a presence of E. amylovora in the territoryof the former Yugoslavia. The presence of E. amylovora was also proved in Serbia thatsame year. In Bosnia and Herzegovina, FB was detected during 1990. Based on an officialreport filed with the Federal Ministry of Agriculture in Belgrade, the presence of E. amylovorain Yugoslavia was confirmed (EPPO – Reporting Service, 1991. Therefore, the presenceof the bacterium E. amylovora in the territory of Yugoslavia was officially confirmedin 1990. In Croatia, FB was first observed in villages near the border on Serbia in 1995.In Montenegro, FB was first detected in 1996. In Slovenia, FB appeared as late as in 2001.E. amylovora is now present on 10 hosts (pear, wild pear, apple, quince, medlar, mountainash,hawthorn, firethorn, cotoneaster and Japanese quince in the territory ofthe former Yugoslav republics. Based on literature data, losses caused by FB in theformer Yugoslav republics in the period 1989-1992 were estimated at about12,000,000 DEM (mostly in Macedonia and in the period 1992–1996 at 6,000,000 DEM.Total damage in a more recent epiphytotic year in Slovenia (2003 was estimated atabout 474,200 EUR.Conventional and up-to-date rapid methods (PCR, ELISA and IF, BIOLOG and API System,FAME and SDS-PAGE have been used to identify E. amylovora. Mainly preventive measures have been used to control E. amylovora in the former Yugoslav republics. Spraying withcopper products has been practiced during the dormant period and in early

  19. Goed om uitgangsmateriaal op Erwinia te testen (interview met Jan van der Wolf)

    NARCIS (Netherlands)

    Dwarswaard, A.; Bovenkamp, van den G.; Wolf, van der J.M.

    2012-01-01

    Bloembollen en aardappelen. Ze hebben in ieder geval één ziekte gemeen: bacterierot, veroorzaakt door Erwinia. In beide teelten zorgen deze bacterieziekten voor veel schade. In het Deltaplan Erwinia werken de bloembollen- en aardappelwereld samen op onderzoeksgebied. In twee artikelen staat de vraag

  20. Environmentally friendly ionic liquid-in-water microemulsions for extraction of hydrophilic and lipophilic components from Flos Chrysanthemi.

    Science.gov (United States)

    Chen, Jue; Cao, Jun; Gao, Wen; Qi, Lian-Wen; Li, Ping

    2013-10-21

    Ionic liquids (ILs) have numerous chemical applications as environmentally green solvents that are extending into microemulsion applications. In this work, a novel benign IL-in-water microemulsion system modified by an IL surfactant has been proposed for simultaneous extraction of hydrophilic and lipophilic constituents from Flos Chrysanthemi (Chrysanthemum morifolium). Constituents were analyzed by rapid-resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. A mixture-design approach was used to optimize the IL surfactant and the IL oil phase in the microemulsion system. Microemulsions consisting of 6.0% 1-dodecyl-3-methylimidazolium hydrogen sulfate, 0.1% 1-vinyl-3-methylimidazolium hexafluorophosphate and 93.9% water offered the acceptable extract efficiency that are comparable to or even better than conventional volatile organic solvents. This assay was fully validated with respect to the linearity of response (r(2) > 0.999 over two orders of magnitude), precision (intra-RSD < 0.49 and inter-day RSD < 2.21), and accuracy (recoveries ranging from 93.73% to 101.84%). The proposed IL-in-water microemulsion method provided an environmentally friendly alternative for efficient extraction of compounds from Flos Chrysanthemi and could be extended to complex environmental and pharmaceutical samples.

  1. Derivation of Mutants of Erwinia carotovora subsp. betavasculorum Deficient in Export of Pectolytic Enzymes with Potential for Biological Control of Potato Soft Rot

    Science.gov (United States)

    Costa, José M.; Loper, Joyce E.

    1994-01-01

    Erwinia carotovora subsp. betavasculorum Ecb168 produces an antibiotic(s) that suppresses growth of the related bacterium Erwinia carotovora subsp. carotovora in culture and in wounds of potato tubers. Strain Ecb168 also produces and secretes pectolytic enzymes and causes a vascular necrosis and root rot of sugar beet. Genes (out) involved in secretion of pectolytic enzymes by Ecb168 were localized to two HindIII fragments (8.5 and 10.5 kb) of Ecb168 genomic DNA by hybridization to the cloned out region of E. carotovora subsp. carotovora and by complementation of Out- mutants of E. carotovora subsp. carotovora. Out- mutants of Ecb168, which did not secrete pectate lyase into the culture medium, were obtained when deletions internal to either HindIII fragment were introduced into the genome of Ecb168 through marker exchange mutagenesis. Out- mutants of Ecb168 were complemented to the Out+ phenotype by introduction of the corresponding cloned HindIII fragment. Out- mutants of Ecb168 were less virulent than the Out+ parental strain on potato tubers. Strain Ecb168 and Out- derivatives inhibited the growth of E. carotovora subsp. carotovora in culture, indicating that the uncharacterized antibiotic(s) responsible for antagonism was exported through an out-independent mechanism. Strain Ecb168 and Out- derivatives reduced the establishment of large populations of E. carotovora subsp. carotovora in wounds of potato tubers and suppressed tuber soft rot caused by E. carotovora subsp. carotovora. PMID:16349316

  2. Erwinia teleogrylli sp. nov., a Bacterial Isolate Associated with a Chinese Cricket.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available A bacterial isolate (SCU-B244T was obtained in China from crickets (Teleogryllus occipitalis living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea. Analysis of multilocus sequence typing based on concatenated partial atpD, gyrB and infB gene sequences and physiological and biochemical characteristics indicated that the strain belonged to the genus Erwinia, as member of a new species as it was distinct from other known Erwinia species. Further analysis of the 16S rRNA gene showed SCU-B244T to have 94.71% identity to the closest species of that genus, Erwinia oleae (DSM 23398T, which is below the threshold of 97% used to discriminate bacterial species. DNA-DNA hybridization results (5.78±2.52% between SCU-B244T and Erwinia oleae (DSM 23398T confirmed that SCU-B244T and Erwinia oleae (DSM 23398T represent different species combined with average nucleotide identity values which range from 72.42% to 74.41. The DNA G+C content of SCU-B244T was 55.32 mol%, which also differs from that of Erwinia oleae (54.7 to 54.9 mol%. The polyphasic taxonomic approach used here confirmed that the strain belongs to the Erwinia group and represents a novel species. The name Erwinia teleogrylli sp. nov. is proposed for this novel taxon, for which the type strain is SCU-B244T (= CGMCC 1.12772T = DSM 28222T = KCTC 42022T.

  3. Bacterium oxidizing carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kistner, A

    1953-01-01

    Present-day knowledge of the microbiological oxidation of carbon monoxide is based on doubtful observations and imperfect experimental procedures. By making use of shake cultures in contact with gas mixtures containing high concentrations of CO and by employing liquid enrichment media with a low content of organic matter and solid media of the same composition with not more than 1.2% agar, it proved possible to isolate a co-oxidizing bacterium of the genus hydrogenomonas from sewage sludge. For the first time irrefutable proof has been given of the oxidation of carbon monoxide by a pure culture of a bacterium, both in growing cultures and in resting cell suspensions. 12 references.

  4. Optimization of extraction of linarin from Flos chrysanthemi indici by response surface methodology and artificial neural network.

    Science.gov (United States)

    Pan, Hongye; Zhang, Qing; Cui, Keke; Chen, Guoquan; Liu, Xuesong; Wang, Longhu

    2017-05-01

    The extraction of linarin from Flos chrysanthemi indici by ethanol was investigated. Two modeling techniques, response surface methodology and artificial neural network, were adopted to optimize the process parameters, such as, ethanol concentration, extraction period, extraction frequency, and solvent to material ratio. We showed that both methods provided good predictions, but artificial neural network provided a better and more accurate result. The optimum process parameters include, ethanol concentration of 74%, extraction period of 2 h, extraction three times, solvent to material ratio of 12 mL/g. The experiment yield of linarin was 90.5% that deviated less than 1.6% from that obtained by predicted result. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Erwinia iniecta sp. nov., isolated from Russian wheat aphid (Diuraphis noxia).

    Science.gov (United States)

    Campillo, Tony; Luna, Emily; Portier, Perrine; Fischer-Le Saux, Marion; Lapitan, Nora; Tisserat, Ned A; Leach, Jan E

    2015-10-01

    Short, Gram-negative-staining, rod-shaped bacteria were isolated from crushed bodies of Russian wheat aphid [Diuraphis noxia (Kurdjumov)] and artificial diets after Russian wheat aphid feeding. Based on multilocus sequence analysis involving the 16S rRNA, atpD, infB, gyrB and rpoB genes, these bacterial isolates constitute a novel clade in the genus Erwinia, and were most closely related to Erwinia toletana. Representative distinct strains within this clade were used for comparisons with related species of Erwinia. Phenotypic comparisons using four distinct strains and average nucleotide identity (ANI) measurements using two distinct draft genomes revealed that these strains form a novel species within the genus Erwinia. The name Erwinia iniecta sp. nov. is proposed, and strain B120T ( = CFBP 8182T = NCCB 100485T) was designated the type strain. Erwinia iniecta sp. nov. was not pathogenic to plants. However, virulence to the Russian wheat aphid was observed.

  6. Reduction in bacterial ooze formation on immature fruitlets after preventive treatments of Fosethyl-Al against fire blight Erwinia amylovora.

    Science.gov (United States)

    Deckers, T; Schoofs, H; Verjans, W; De Maeyer, L

    2010-01-01

    Fire blight, caused by the bacterium Erwinia amylovora (Burill Winslow et al.), is a very important bacterial disease on apple and pear orchards with devastating effects in some production area and in some years. Fire blight control consists in a whole strategy of measures that should start with control measures in and around the fruit tree nurseries. Only the use of Vacciplant (Laminarin), an inducer of the self-defence mechanism, is registered in Belgium since 2009. In other European countries Fosethyl-Al has been registered for fire blight control. Recently, research trials have been done at Pcfruit research station for several years on the activity of ALiette (fosethyl-Al) against fire blight. Fosethyl-Al, also a plant defence enhancing molecule, applied preventively 3 times at a dose of 3.75 kg/ha standard orchard (3 x 3000 g a.i./ha standard orchard), showed a reduction in the host susceptibility and decreased the disease development on artificial inoculated flower clusters and shoots. Also a clear reduction in the ooze droplet formation on artificially inoculated immature fruitlets has been observed with this molecule. This reduction in the bacterial ooze formation is considered as a very important factor in the spread of the disease in the orchard.

  7. Control of plant defense mechanisms and fire blight pathogenesis through the regulation of 6-thioguanine biosynthesis in Erwinia amylovora.

    Science.gov (United States)

    Coyne, Sébastien; Litomska, Agnieszka; Chizzali, Cornelia; Khalil, Mohammed N A; Richter, Klaus; Beerhues, Ludger; Hertweck, Christian

    2014-02-10

    Fire blight is a devastating disease of Rosaceae plants, such as apple and pear trees. It is characterized by necrosis of plant tissue, caused by the phytopathogenic bacterium Erwinia amylovora. The plant pathogen produces the well-known antimetabolite 6-thioguanine (6TG), which plays a key role in fire blight pathogenesis. Here we report that YcfR, a member of the LTTR family, is a major regulator of 6TG biosynthesis in E. amylovora. Inactivation of the regulator gene (ycfR) led to dramatically decreased 6TG production. Infection assays with apple plants (Malus domestica cultivar Holsteiner Cox) and cell cultures of Sorbus aucuparia (mountain ash, rowan) revealed abortive fire blight pathogenesis and reduced plant response (biphenyl and dibenzofuran phytoalexin production). In the presence of the ΔycfR mutant, apple trees were capable of activating the abscission machinery to remove infected tissue. In addition to unveiling the regulation of 6TG biosynthesis in a major plant pathogen, we demonstrate for the first time that this antimetabolite plays a pivotal role in dysregulating the plant response to infection. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Role of RpoS in virulence and stress tolerance of the plant pathogen Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Andersson, R A; Kõiv, V; Norman-Setterblad, C; Pirhonen, M

    1999-12-01

    The plant-pathogenic bacterium Erwinia carotovora subsp. carotovora causes plant disease mainly through a number of extracellular plant-cell-wall-degrading enzymes. In this study, the ability of an rpoS mutant of the Er. carotovora subsp. carotovora strain SCC3193 to infect plants and withstand environmental stress was characterized. This mutant was found to be sensitive to osmotic and oxidative stresses in vitro and to be deficient in glycogen accumulation. The production of extracellular enzymes in vitro was similar in the mutant and in the wild-type strains. However, the rpoS mutant caused more severe symptoms than the wild-type strain on tobacco plants and also produced more extracellular enzymes in planta, but did not grow to higher cell density in planta compared to the wild-type strain. When tested on plants with reduced catalase activities, which show higher levels of reactive oxygen species, the rpoS mutant was found to cause lower symptom levels and to have impaired growth. In addition, the mutant was unable to compete with the wild-type strain in planta and in vitro. These results suggest that a functional rpoS gene is needed mainly for survival in a competitive environment and during stress conditions, and not for effective infection of plants.

  9. Proteins from Erwinia asparaginase Erwinase ® and E. coli asparaginase 2 MEDAC ® for treatment of human leukemia, show a multitude of modifications for which the consequences are completely unclear.

    Science.gov (United States)

    Bae, Narkhyun; Pollak, Arnold; Lubec, Gert

    2011-07-01

    L-Asparaginase from Erwinia chrysanthemi (ASPG_ERWCH; UniProtKB accession number P06608 (Erwinase(®))) and L-asparaginase 2 from Escherichia coli (ASPG2_ECOLI; UniProtKB accession number P00805 (Medac(®))), both L-asparagine amidohydrolases, are widely used for the treatment of acute lymphoblastic leukemia. A series of serious side effects have been reported and this warrants studies into the protein chemistry of the medical products sold. Mass spectrometry (MS) data on ASPG_ERWCH and ASPG2_ECOLI have not been published so far and herein a gel-based proteomics study was performed to provide information about sequence and modifications of the commercially available medical products. ASPG_ERWCH and ASPG2_ECOLI were applied onto two-dimensional gel electrophoresis, spots were in-gel digested with several proteases and resulting peptides and protein modifications were analysed by nano-ESI-LC-MS/MS. Four spots were observed for ASPG_ERWCH, six spots were observed for ASPG2_ECOLI and the identified proteins showed high sequence coverage without sequence conflicts. Several protein modifications including technical and posttranslational modifications were demonstrated. Protein modifications are known to change physicochemical, immunochemical, biological and pharmacological properties and results from this work may challenge re-designing of the product including possible removal of the modifications by the manufacturer because it is not known whether they are contributing to the serious adverse effects of the protein drug. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structural Characterization of Core Region in Erwinia amylovora Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Angela Casillo

    2017-03-01

    Full Text Available Erwinia amylovora (E. amylovora is the first bacterial plant pathogen described and demonstrated to cause fire blight, a devastating plant disease affecting a wide range of species including a wide variety of Rosaceae. In this study, we reported the lipopolysaccharide (LPS core structure from E. amylovora strain CFBP1430, the first one for an E. amylovora highly pathogenic strain. The chemical characterization was performed on the mutants waaL (lacking only the O-antigen LPS with a complete LPS-core, wabH and wabG (outer-LPS core mutants. The LPSs were isolated from dry cells and analyzed by means of chemical and spectroscopic methods. In particular, they were subjected to a mild acid hydrolysis and/or a hydrazinolysis and investigated in detail by one and two dimensional Nuclear Magnetic Resonance (NMR spectroscopy and ElectroSpray Ionization Fourier Transform-Ion Cyclotron Resonance (ESI FT-ICR mass spectrometry.

  11. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora.

    Science.gov (United States)

    Pirhonen, M; Flego, D; Heikinheimo, R; Palva, E T

    1993-06-01

    Virulence of the plant pathogen Erwinia carotovora subsp. carotovora is dependent on the production and secretion of a complex arsenal of plant cell wall-degrading enzymes. Production of these exoenzymes is controlled by a global regulatory mechanism. A virulent mutants in one of the regulatory loci, expI, show a pleiotropic defect in the growth phase-dependent transcriptional activation of exoenzyme gene expression. The expI gene encodes a 26 kDa polypeptide that is structurally and functionally related to the luxI gene product of Vibrio fischeri. Functional similarity of expI and luxI has been demonstrated by reciprocal genetic complementation experiments. LuxI controls bioluminescence in V.fischeri in a growth phase-dependent manner by directing the synthesis of the diffusible autoinducer, N-(3-oxohexanoyl) homoserine lactone. E.c. subsp. carotovora expI+ strains or Escherichia coli harboring the cloned expI gene excrete a small diffusible signal molecule that complements the expI mutation of Erwinia as well as a luxI mutation of V.fischeri. This extracellular complementation can also be achieved by E.coli harboring the luxI gene from V.fischeri or by adding the synthetic V.fischeri autoinducer. Both the production of the plant tissue-macerating exoenzymes and the ability of the bacteria to propagate in planta are restored in expI mutants by autoinducer addition. These data suggest that the same signal molecule is employed in control of such diverse processes as virulence in a plant pathogen and bioluminescence in a marine bacterium, and may represent a general mechanism by which bacteria modulate gene expression in response to changing environmental conditions.

  12. [Determination of chlorogenic acid, caffeic acid and linarin in Flos Chrysanthemi Indici from different places by RP-hPLC].

    Science.gov (United States)

    Guo, Qiaosheng; Fang, Hailing; Shen, Haijin

    2010-05-01

    To evaluate the quality of Flos Chrysanthemi Indici which produced in twenty-two different producing places. Chlorogenic acid and caffeic acid were analyzed on a Shim-pack C8 colunm (4.6 mm x 250 mm, 5 microm) eluted with the mobile phase consisted of acetonitrile-0.5% phosphoric acid( 19:81). The detection wavelength was set at 326 nm. Linarin were eluted with the mobile phase consisted of methanol-water-acetic acid(26: 23: 1). The detection wavelength was set at 334 nm. The column temperature was 25 degrees C. The flow rate was 1.0 mL x min . The linear response ranged within 2.5-50 microg for chlorogenic acid (r = 0.998), 2.5-25 microg for caffeic acid (r = 0.998) and 4.97-41.47 microg for linarin (r = 0.999), respectively. Recoveries were 100.8% with RSD 2.1% for chlorogenic acid, 96.2% with RSD 2.3% for caffeic acid and 103.7% with RSD 1.8% for linarin. There was a significant difference in the content of chlorogenic acid, caffeic acid, linarin among the samples. The content of chlorogenic in the sample from Fengdou Chongqing city was the highest in those from other places. The content of caffeic acid in the all samples is very low. The content of linarin in the samples from Jiangsu province and Anhui province almost reached the national standard in pharmacopoeia.

  13. Fatty acid analysis of Erwinia amylovora from Serbia and Montenegro

    Directory of Open Access Journals (Sweden)

    Milan Ivanović

    2011-01-01

    Full Text Available Automated method of fatty acid analysis was used to identify and study heterogeneity of 41 Erwinia amylovora strains, originating from 8 plant species grown in 13 locations in Serbia and one in Montenegro. All strains contained 14:0 3OH fatty acid,characteristic for the “amylovora” group. According to fatty acid composition 39 strains were identified as E. amylovora as the first choice from the database. Due to their specific fatty acid composition, two strains were identified as E. amylovora, but as a second choice. Fatty acid analysis also showed that E. amylovora population from Serbia could be differentiated in three groups, designated in this study as α, β and γ. All strains originating from central or south Serbia, as well as four strains from north Serbia clustered into group α. Group β and γ contained only strains isolated in northern Serbia (Vojvodina. The results show that E. amylovora population in this area is heterogeneous and indicate pathogen introduction from different directions. Fatty acid analysis enabled identificationat species level, as well as new insights of heterogeneity of E. amylovora population.

  14. Differential Colonization Dynamics of Cucurbit Hosts by Erwinia tracheiphila.

    Science.gov (United States)

    Vrisman, Cláudio M; Deblais, Loïc; Rajashekara, Gireesh; Miller, Sally A

    2016-07-01

    Bacterial wilt is one of the most destructive diseases of cucurbits in the Midwestern and Northeastern United States. Although the disease has been studied since 1900, host colonization dynamics remain unclear. Cucumis- and Cucurbita-derived strains exhibit host preference for the cucurbit genus from which they were isolated. We constructed a bioluminescent strain of Erwinia tracheiphila (TedCu10-BL#9) and colonization of different cucurbit hosts was monitored. At the second-true-leaf stage, Cucumis melo plants were inoculated with TedCu10-BL#9 via wounded leaves, stems, and roots. Daily monitoring of colonization showed bioluminescent bacteria in the inoculated leaf and petiole beginning 1 day postinoculation (DPI). The bacteria spread to roots via the stem by 2 DPI, reached the plant extremities 4 DPI, and the plant wilted 6 DPI. However, Cucurbita plants inoculated with TedCu10-BL#9 did not wilt, even at 35 DPI. Bioluminescent bacteria were detected 6 DPI in the main stem of squash and pumpkin plants, which harbored approximately 10(4) and 10(1) CFU/g, respectively, of TedCu10-BL#9 without symptoms. Although significantly less systemic plant colonization was observed in nonpreferred host Cucurbita plants compared with preferred hosts, the mechanism of tolerance of Cucurbita plants to E. tracheiphila strains from Cucumis remains unknown.

  15. A complete structural characterization of the desferrioxamine E biosynthetic pathway from the fire blight pathogen Erwinia amylovora.

    Science.gov (United States)

    Salomone-Stagni, Marco; Bartho, Joseph D; Polsinelli, Ivan; Bellini, Dom; Walsh, Martin A; Demitri, Nicola; Benini, Stefano

    2018-02-08

    The Gram-negative bacterium Erwinia amylovora is the etiological agent of fire blight, a devastating disease which affects Rosaceae such as apple, pear and quince. The siderophore desferrioxamine E plays an important role in bacterial pathogenesis by scavenging iron from the host. DfoJ, DfoA and DfoC are the enzymes responsible for desferrioxamine production starting from lysine. We have determined the crystal structures of each enzyme in the desferrioxamine E pathway and demonstrate that the biosynthesis involves the concerted action of DfoJ, followed by DfoA and lastly DfoC. These data provide the first crystal structures of a Group II pyridoxal-dependent lysine decarboxylase, a cadaverine monooxygenase and a desferrioxamine synthetase. DfoJ is a homodimer made up of three domains. Each monomer contributes to the completion of the active site, which is positioned at the dimer interface. DfoA is the first structure of a cadaverine monooxygenase. It forms homotetramers whose subunits are built by two domains: one for FAD and one for NADP + binding, the latter of which is formed by two subdomains. We propose a model for substrate binding and the role of residues 43-47 as gate keepers for FAD binding and the role of Arg97 in cofactors turnover. DfoC is the first structure of a desferrioxamine synthetase and the first of a multi-enzyme siderophore synthetase coupling an acyltransferase domain with a Non-Ribosomal Peptide Synthetase (NRPS)-Independent Siderophore domain (NIS). Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Eerste jaar Erwinia-project legt topje van de ijsberg bloot

    NARCIS (Netherlands)

    Velvis, H.; Wolf, van der J.M.

    2006-01-01

    Over de herkomst van de Erwinia bacterie heerst nog altijd veel onduidelijkheid. Daarom is een onderzoek naar deze bacterie gestart. In vier jaar tijd worden diverse aardappelrassen onderzocht in de verschillende stadia van teelt en opslag. Op deze manier hoopt men te achterhalen waar de herkomst

  17. Besmetting en erwinia-vrij pootgoed uit diverse bronnen : een literatuuroverzicht

    NARCIS (Netherlands)

    Roozen, N.

    1990-01-01

    In dit verslag wordt het risico besproken van diverse potentiële besmettingsbronnen van erwinia-vrij pootgoed. Het doel hiervan is te achterhalen waar de kennis over het risico van de diverse besmettingsbronnen gebreken vertoont en aangevuld dient te worden middels onderzoek. Er zijn criteria

  18. Comparison of specificity and sensitivity of immunochemical and molecular techniques for reliable detection of Erwinia amylovora

    Czech Academy of Sciences Publication Activity Database

    Kokošková, B.; Mráz, Ivan; Hýblová, Jana

    2007-01-01

    Roč. 52, č. 2 (2007), s. 175-182 ISSN 0015-5632 R&D Projects: GA AV ČR(CZ) 1QS500510558 Institutional research plan: CEZ:AV0Z50510513 Keywords : Erwinia amylovora * detection Subject RIV: EE - Microbiology, Virology Impact factor: 0.989, year: 2007

  19. Genetic islands in pome fruit pathogenic and nonpathogenic Erwinia species and related plasmids

    Directory of Open Access Journals (Sweden)

    Pablo eLlop

    2015-08-01

    Full Text Available New pathogenic bacteria species belonging to the genus Erwinia associated with pome fruit trees (Erwinia pyrifoliae, E. piriflorinigrans, E. uzenensis have been increasingly described in the last years, and comparative analyses have found that all these species share several genetic characteristics. Studies at different level (whole genome comparison, virulence genes, plasmid content, etc. show a high intraspecies homogeneity (i.e. among E. amylovora strains and also abundant similarities appear between the different Erwinia species: presence of plasmids of similar size in the pathogenic species; high similarity in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes, in the chromosomes. Many genetic similarities have been observed also among some of the plasmids (and genomes from the pathogenic species and E. tasmaniensis or E. billingiae, two epiphytic species on the same hosts. The amount of genetic material shared in this genus varies from individual genes to clusters, genomic islands and genetic material that even may constitute a whole plasmid. Recent research on evolution of erwinias point out the horizontal transfer acquisition of some genomic islands that were subsequently lost in some species and several pathogenic traits that are still present. How this common material has been obtained and is efficiently maintained in different species belonging to the same genus sharing a common ecological niche provides an idea of the origin and evolution of the pathogenic Erwinia and the interaction with nonpathogenic species present in the same niche, and the role of the genes that are conserved in all of them.

  20. Erwinia gerundensis sp. nov., a cosmopolitan epiphyte originally isolated from pome fruit trees.

    Science.gov (United States)

    Rezzonico, Fabio; Smits, Theo H M; Born, Yannick; Blom, Jochen; Frey, Jürg E; Goesmann, Alexander; Cleenwerck, Ilse; de Vos, Paul; Bonaterra, Anna; Duffy, Brion; Montesinos, Emilio

    2016-03-01

    A survey to obtain potential antagonists of pome fruit tree diseases yielded two yellow epiphytic bacterial isolates morphologically similar to Pantoea agglomerans , but showing no biocontrol activity. Whole-cell MALDI-TOF mass spectrometry and analysis of 16S rRNA gene and gyrB sequences suggested the possibility of a novel species with a phylogenetic position in either the genus Pantoea or the genus Erwinia . Multi-locus sequence analysis (MLSA) placed the two strains in the genus Erwinia and supported their classification as a novel species. The strains showed general phenotypic characteristics typical of this genus and results of DNA-DNA hybridizations confirmed that they represent a single novel species. Both strains showed a DNA G+C content, as determined by HPLC, of 54.5 mol% and could be discriminated from phylogenetically related species of the genus Erwinia by their ability to utilize potassium gluconate, potassium 2-ketogluconate, maltose, melibiose and raffinose. Whole-genome sequencing of strain EM595 T revealed the presence of a chromosomal carotenoid biosynthesis gene cluster similar to those found in species of the genera Cronobacter and Pantoea that explains the pigmentation of the strain, which is atypical for the genus Erwinia . Additional strains belonging to the same species were recovered from different plant hosts in three different continents, revealing the cosmopolitan nature of this epiphyte. The name Erwinia gerundensis sp. nov. is proposed, with EM595 T ( = LMG 28990 T  = CCOS 903 T ) as the designated type strain.

  1. A prospective study on drug monitoring of PEGasparaginase and Erwinia asparaginase and asparaginase antibodies in pediatric acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Tong, Wing H.; Pieters, Rob; Kaspers, Gertjan J. L.; te Loo, D. Maroeska W. M.; Bierings, Marc B.; van den Bos, Cor; Kollen, Wouter J. W.; Hop, Wim C. J.; Lanvers-Kaminsky, Claudia; Relling, Mary V.; Tissing, Wim J. E.; van der Sluis, Inge M.

    2014-01-01

    This study prospectively analyzed the efficacy of very prolonged courses of pegylated Escherichia coli asparaginase (PEGasparaginase) and Erwinia asparaginase in pediatric acute lymphoblastic leukemia (ALL) patients. Patients received 15 PEGasparaginase infusions (2500 IU/m(2) every 2 weeks) in

  2. A prospective study on drug monitoring of PEGasparaginase and Erwinia asparaginase and asparaginase antibodies in pediatric acute lymphoblastic leukemia

    NARCIS (Netherlands)

    W.H. Tong (Wing); R. Pieters (Rob); G.J. Kaspers (Gertjan); D.M.W.M. Te Loo (D. Maroeska W.); M. Bierings (Marc); C. van den Bos (Cor); W.J.W. Kollen (Wouter); W.C.J. Hop (Wim); C. Lanvers-Kaminsky (Claudia); M.V. Relling (Mary); W.J.E. Tissing (Wim); I.M. van der Sluis (Inge)

    2014-01-01

    textabstractThis study prospectively analyzed the efficacy of very prolonged courses of pegylated Escherichia coli asparaginase (PEGasparaginase) and Erwinia asparaginase in pediatric acute lymphoblastic leukemia (ALL) patients. Patients received 15 PEGasparaginase infusions (2500 IU/m2 every 2

  3. Investigation of Viability of Pantoea agglomerans (Formerly Erwinia herbicola) After Aerosolization From Media Containing Enriching and Coating Chemicals

    Science.gov (United States)

    2008-02-01

    conducted. 14. ABSTRACT Percent viability of the sensitive bacteria Pantoea agglomerans (ATCC_33243, formerly Erwinia herbicola or Eh), is an important ...effect of several nitrogen and carbon sources on the growth of Eh (strain CPA-2). Synthetic yeast extract enhanced maximum growth and disaccharides...recently-evolved pathogens? Mol. Plant Pathology 2003; 20, pp 307-314. 4. Vanneste, J.L.; Yu, J.; Beer , S.V. Role of antibiotic production by Erwinia

  4. Effect of degradation of xylan constituent in Mitsumata (Edgeworthia papyrifera Sieb. et Zucc. ) bast on its pulping by pectinolytic enzymes form Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Hiroyuki; Matsuo, Ryukichi; Kobayashi, Yoshinari

    1988-01-01

    Pulping of mitsumata (Edgeworthia papyrifera Sieb. et Zucc.) bast by the crude enzyme from a bacterium Erwinia carotovora FERM P-7576, was more effective by a stepwise treatment at pH 6.5 and subsequently at pH 9.5 and eluted greater amount of xylose constituent than a constant pH treatment at pH 9.5 where only the maceration enzymes, endo-pectate lyase and endo-pectin lyase, among the crude enzyme are operative. The crude enzymes obtained from the cultivation of this bacterial strain on mitsumata bast fibers were more effective for the stepwise pH pulping method than those from the cultivation on soluble pectin. Xylanase activity in the mitsumata bast-induced enzyme at pH 6.5 was twice as high as that in the soluble pectin-induced one. The activities of other hemicellulases and cellulase were, high as that in the soluble pectin-induced one. The activities of other hemicellulases and cellulase were, however, independent on the inducing materials. Purified exo-type xylanase prepared from the crude enzyme acted comparably to the entire crude enzyme in the first step of the combination pulping, but the xylanase per se showed no maceration activity. These results suggests that the degradation of xylan constituent within the bast fibers effects the acceleration of the subsequent enzymatic pulping by the pectinolytic maceration enzymes. The maceration mechanism involving xylan degradation was also discussed.

  5. Carotenoid biosynthesis in bacteria: In vitro studies of a crt/bch transcription factor from Rhodobacter capsulatus and carotenoid enzymes from Erwinia herbicola

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, D.A.

    1992-11-01

    A putative transcription factor in Rhodobactor capsulatus which binds upstream of the crt and bch pigment biosynthesis operons and appears to play a role in the adaptation of the organism from the aerobic to the anaerobic-photosynthetic growth mode was characterized. Chapter 2 describes the identification of this factor through an in vitro mobility shift assay, as well as the determination of its binding properties and sequence specificity. Chapter 3 focuses on the isolation of this factor. Biochemistry of later carotenoid biosynthesis enzymes derived from the non-photosynthetic bacterium, Erwinia herbicola. Chapter 4 describes the separate overexpression and in vitro analysis of two enzymes involved in the main sequence of the carotenoid biosynthesis pathway, lycopene cyclase and 5-carotene hydroxylase. Chapter 5 examines the overexpression and enzymology of functionally active zeaxanthin glucosyltransferase, an enzyme which carries out a more unusual transformation, converting a carotenoid into its more hydrophilic mono- and diglucoside derivatives. In addition, amino acid homology with other glucosyltransferases suggests a putative binding site for the UDP-activated glucose substrate.

  6. The Cultivation of Antagonistic Bacteria in Irradiated Sludge for Biological Control of Soft Rot Erwinias : Screening of Antagonistic Bacteria for biological Control of Soft Rot Erwinias

    International Nuclear Information System (INIS)

    Sermkiattipong, Ng.; Sangsuk, L; Rattanapiriyakul, P; Dejsirilert, S.; Thaveechai, N.

    1998-01-01

    Pure cultures of 57 bacterial isolates for antagonistic activity screening were isolated from three areas of soft rot infested vegetable soil and 58 isolates were obtained from commercial seed compost and seed compost product of Division of Soil and Water Conservation, Department of Land Development. A total of 115 bacterial isolates were evaluated for antagonizing activity against Erwinia carotovora subsp. atroceptica in vitro. Out of them, 18 isolates were antagonists by showing zone of inhibition ranging from 1 to 17 mm by diameter. Most of antagonistic bacteria were identified as Bacillus spp. whereas only one isolate was Pseudomonas vesicularis

  7. PENGARUH SUMBER MINERAL TERHADAP PENEKANAN Erwinia carotovora OLEH PSEUDOMONAS PENDAR-FLUOR SECARA IN VITRO

    Directory of Open Access Journals (Sweden)

    Hardian Susilo Addy .

    2012-02-01

    Full Text Available Antimicrobial Stimulation of Fluorescent Pseudomonad to Inhibit Soft-rot Pathogen Caused by Erwinia carotovora subsp. Carotovora. This research was conducted to study effect of mineral sources on inhibition Erwinia carotovora by fluorescent pseudomonad. We used several mineral sources to stimulate antimicrobial substances from fluorescent pseudomonad that responsible to inhibit E. carotovora subsp. carotovora in vitro. The results showed that zinc 0,5 mM were the best to increase antagonistics of fluorescent psudomonad againts E. carotovora. Zinc were increased antimicrobial substances twohold compared with control without stimulant agent. Detection of antimicrobial substance using TLC showed that only one antimicrobial was detected with retention factor (Rf of 0,68 – 0,72. However, identification and characterization of that substance is still needed.

  8. Erwinia mallotivora sp., a New Pathogen of Papaya (Carica papaya in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Noriha Mat Amin

    2010-12-01

    Full Text Available Erwinia mallotivora was isolated from papaya infected with dieback disease showing the typical symptoms of greasy, water-soaked lesions and spots on leaves. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belonged to the genus Erwinia and was united in a monophyletic group with E. mallotivora DSM 4565 (AJ233414. Earlier studies had indicated that the causal agent for this disease was E. papayae. However, our current studies, through Koch’s postulate, have confirmed that papaya dieback disease is caused by E. mallotivora. To our knowledge, this is the first new discovery of E. mallotivora as a causal agent of papaya dieback disease in Peninsular Malaysia. Previous reports have suggested that E. mallotivora causes leaf spot in Mallotus japonicus. However, this research confirms it also to be pathogenic to Carica papaya.

  9. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...... milk products, is born with two complete non-replicating chromosomes. L. lactis therefore remain diploid throughout its entire life cycle....

  10. Improvement of DNA transfer frequency and transposon mutagenesis of Erwinia carotovora subsp. betavasculorum.

    OpenAIRE

    Rella, M; Axelrood, P E; Weinhold, A R; Schroth, M N

    1989-01-01

    The production of antibiotics and their role in microbial competition under natural conditions can be readily studied by the use of transposon mutants. Several antibiotic-producing strains of Erwinia carotovora subsp. betavasculorum were unable to accept foreign DNA. A plasmid delivery system was developed, using ethyl methanesulfonate mutagenesis, which entailed isolating E. carotovora subsp. betavasculorum mutants able to accept foreign DNA and transfer it to other strains. This enabled tra...

  11. Complete Genome Sequence of EtG, the First Phage Sequenced from Erwinia tracheiphila.

    Science.gov (United States)

    Andrade-Domínguez, Andrés; Kolter, Roberto; Shapiro, Lori R

    2018-02-22

    Erwinia tracheiphila is the causal agent of bacterial wilt of cucurbits. Here, we report the genome sequence of the temperate phage EtG, which was isolated from an E. tracheiphila -infected cucumber plant. Phage EtG has a linear 30,413-bp double-stranded DNA genome with cohesive ends and 45 predicted open reading frames. Copyright © 2018 Andrade-Domínguez et al.

  12. Regulatory network controlling extracellular proteins in Erwinia carotovora subsp. carotovora: FlhDC, the master regulator of flagellar genes, activates rsmB regulatory RNA production by affecting gacA and hexA (lrhA) expression.

    Science.gov (United States)

    Cui, Yaya; Chatterjee, Asita; Yang, Hailian; Chatterjee, Arun K

    2008-07-01

    Erwinia carotovora subsp. carotovora produces an array of extracellular proteins (i.e., exoproteins), including plant cell wall-degrading enzymes and Harpin, an effector responsible for eliciting hypersensitive reaction. Exoprotein genes are coregulated by the quorum-sensing signal, N-acyl homoserine lactone, plant signals, an assortment of transcriptional factors/regulators (GacS/A, ExpR1, ExpR2, KdgR, RpoS, HexA, and RsmC) and posttranscriptional regulators (RsmA, rsmB RNA). rsmB RNA production is positively regulated by GacS/A, a two-component system, and negatively regulated by HexA (PecT in Erwinia chrysanthemi; LrhA [LysR homolog A] in Escherichia coli) and RsmC, a putative transcriptional adaptor. While free RsmA, an RNA-binding protein, promotes decay of mRNAs of exoprotein genes, binding of RsmA with rsmB RNA neutralizes the RsmA effect. In the course of studies of GacA regulation, we discovered that a locus bearing strong homology to the flhDC operon of E. coli also controls extracellular enzyme production. A transposon insertion FlhDC(-) mutant produces very low levels of pectate lyase, polygalacturonase, cellulase, protease, and E. carotovora subsp. carotovora Harpin (Harpin(Ecc)) and is severely attenuated in its plant virulence. The production of these exoproteins is restored in the mutant carrying an FlhDC(+) plasmid. Sequence analysis and transcript assays disclosed that the flhD operon of E. carotovora subsp. carotovora, like those of other enterobacteria, consists of flhD and flhC. Complementation analysis revealed that the regulatory effect requires functions of both flhD and flhC products. The data presented here show that FlhDC positively regulates gacA, rsmC, and fliA and negatively regulates hexA (lrhA). Evidence shows that FlhDC controls extracellular protein production through cumulative effects on hexA and gacA. Reduced levels of GacA and elevated levels of HexA in the FlhDC(-) mutant are responsible for the inhibition of rsmB RNA

  13. Regulatory Network Controlling Extracellular Proteins in Erwinia carotovora subsp. carotovora: FlhDC, the Master Regulator of Flagellar Genes, Activates rsmB Regulatory RNA Production by Affecting gacA and hexA (lrhA) Expression▿

    Science.gov (United States)

    Cui, Yaya; Chatterjee, Asita; Yang, Hailian; Chatterjee, Arun K.

    2008-01-01

    Erwinia carotovora subsp. carotovora produces an array of extracellular proteins (i.e., exoproteins), including plant cell wall-degrading enzymes and Harpin, an effector responsible for eliciting hypersensitive reaction. Exoprotein genes are coregulated by the quorum-sensing signal, N-acyl homoserine lactone, plant signals, an assortment of transcriptional factors/regulators (GacS/A, ExpR1, ExpR2, KdgR, RpoS, HexA, and RsmC) and posttranscriptional regulators (RsmA, rsmB RNA). rsmB RNA production is positively regulated by GacS/A, a two-component system, and negatively regulated by HexA (PecT in Erwinia chrysanthemi; LrhA [LysR homolog A] in Escherichia coli) and RsmC, a putative transcriptional adaptor. While free RsmA, an RNA-binding protein, promotes decay of mRNAs of exoprotein genes, binding of RsmA with rsmB RNA neutralizes the RsmA effect. In the course of studies of GacA regulation, we discovered that a locus bearing strong homology to the flhDC operon of E. coli also controls extracellular enzyme production. A transposon insertion FlhDC− mutant produces very low levels of pectate lyase, polygalacturonase, cellulase, protease, and E. carotovora subsp. carotovora Harpin (HarpinEcc) and is severely attenuated in its plant virulence. The production of these exoproteins is restored in the mutant carrying an FlhDC+ plasmid. Sequence analysis and transcript assays disclosed that the flhD operon of E. carotovora subsp. carotovora, like those of other enterobacteria, consists of flhD and flhC. Complementation analysis revealed that the regulatory effect requires functions of both flhD and flhC products. The data presented here show that FlhDC positively regulates gacA, rsmC, and fliA and negatively regulates hexA (lrhA). Evidence shows that FlhDC controls extracellular protein production through cumulative effects on hexA and gacA. Reduced levels of GacA and elevated levels of HexA in the FlhDC− mutant are responsible for the inhibition of rsmB RNA production

  14. Plant Phenolics Extraction from Flos Chrysanthemi: Response Surface Methodology Based Optimization and the Correlation Between Extracts and Free Radical Scavenging Activity.

    Science.gov (United States)

    Wu, Yanfang; Wang, Xinsheng; Xue, Jintao; Fan, Enguo

    2017-11-01

    Huaiju is one of the most famous and widely used Flos Chrysanthemi (FC) for medicinal purposes in China. Although various investigations aimed at phenolics extraction from other FC have been reported, a thorough optimization of the phenolics extraction conditions from Huaiju has not been achieved. This work applied the widely used response surface methodology (RSM) to investigate the effects of 3 independent variables including ethanol concentration (%), extraction time (min), and solvent-to-material ratio (mL/g) on the ultrasound-assisted extraction (UAE) of phenolics from FC. The data suggested the optimal UAE condition was an ethanol concentration of 75.3% and extraction time of 43.5 min, whereas the ratio of solvent to material has no significant effect. When the free radical scavenging ability was used as an indicator for a successful extraction, a similar optimal extraction was achieved with an ethanol concentration of 72.8%, extraction time of 44.3 min, and the ratio of solvent to material was 29.5 mL/g. Furthermore, a moderate correlation between the antioxidant activity of TP extract and the content of extracted phenolic compounds was observed. Moreover, a well consistent of the experimental values under optimal conditions with those predicted values suggests RSM successfully optimized the UAE conditions for phenolics extraction from FC. The work of the research investigated the plant phenolics in Flos Chrysanthemi and antioxidant capacities. These results of this study can support the development of antioxidant additive and relative food. © 2017 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists.

  15. Met goede hygiëne en vochtbeheersing Erwinia in paprika te lijf (onderzoek van Jantineke Hofland-Zijlstra en Rozemarijn de Vries)

    NARCIS (Netherlands)

    Arkesteijn, M.; Hofland-Zijlstra, J.D.; Vries, de R.S.M.

    2012-01-01

    Zomer 2010 had een groot aantal paprikabedrijven verspreid over het hele land last van Erwinia vruchtrot. Waar komt Erwinia vandaan en wat is er tegen te doen? Met deze vragen gingen onderzoekers Jantineke Hofland- Zijlstra en Rozemarijn de Vries aan de slag. Hygiëne, een goede vochtbeheersing en

  16. Erwinia amylovora expresses fast and simultaneously hrp/dsp virulence genes during flower infection on apple trees.

    Directory of Open Access Journals (Sweden)

    Doris Pester

    Full Text Available BACKGROUND: Pathogen entry through host blossoms is the predominant infection pathway of the gram-negative bacterium Erwinia amylovora leading to manifestation of the disease fire blight. Like in other economically important plant pathogens, E. amylovora pathogenicity depends on a type III secretion system encoded by hrp genes. However, timing and transcriptional order of hrp gene expression during flower infections are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative real-time PCR analyses, we addressed the questions of how fast, strong and uniform key hrp virulence genes and the effector dspA/E are expressed when bacteria enter flowers provided with the full defense mechanism of the apple plant. In non-invasive bacterial inoculations of apple flowers still attached to the tree, E. amylovora activated expression of key type III secretion genes in a narrow time window, mounting in a single expression peak of all investigated hrp/dspA/E genes around 24-48 h post inoculation (hpi. This single expression peak coincided with a single depression in the plant PR-1 expression at 24 hpi indicating transient manipulation of the salicylic acid pathway as one target of E. amylovora type III effectors. Expression of hrp/dspA/E genes was highly correlated to expression of the regulator hrpL and relative transcript abundances followed the ratio: hrpA>hrpN>hrpL>dspA/E. Acidic conditions (pH 4 in flower infections led to reduced virulence/effector gene expression without the typical expression peak observed under natural conditions (pH 7. CONCLUSION/SIGNIFICANCE: The simultaneous expression of hrpL, hrpA, hrpN, and the effector dspA/E during early floral infection indicates that speed and immediate effector transmission is important for successful plant invasion. When this delicate balance is disturbed, e.g., by acidic pH during infection, virulence gene expression is reduced, thus partly explaining the efficacy of acidification in fire blight

  17. Quorum sensing controls the synthesis of virulence factors by modulating rsmA gene expression in Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Kõiv, V; Mäe, A

    2001-04-01

    The plant-pathogenic bacterium Erwinia carotovora subsp. carotovora (Ecc) causes disease mainly by means of a number of extracellular plant cell wall-degrading enzymes (PCWDEs), also referred to as virulence factors. The production of PCWDEs is coordinately activated by the diffusible signal molecule N-acyl-homoserine lactone (HSL) in a population density-dependent manner ("quorum sensing"). ExpI is the enzyme responsible for the synthesis of HSL. The Rsm system negatively regulates the production of PCWDEs. It includes three components: RsmA is an RNA-binding protein which promotes mRNA decay; rsmB is a unique regulator RNA, and RsmC regulates expression of rsmA positively and of rsmB negatively. We report here that in an expI knockout mutant of Ecc strain SCC3193, the levels of rsmA and rsmB RNA are remarkably enhanced in comparison to the wild-type strain, while the level of the rsmC transcript is not affected. The increase in transcription of rsmA in the expI strain represses production of PCWDEs, which in turn leads to the avirulent phenotype of this mutant. In the expI- mutant, addition of exogenous HSL caused repression of rsmA and rsmB transcription to the wild-type level, whereas the expression of rsmC was not affected. Taken together, these data suggest that HSL affects the expression of rsmA, and that this effect is not mediated by RsmC. This specific effect and the previous demonstration that HSL is required for PCWDE production in Ecc support the hypothesis that regulation by quorum sensing in Ecc, in contrast to most other systems already described, requires HSL to repress rsmA transcription, which in turn leads to the activation of PCWDE production. A model is presented that explains how HSL controls the production of PCWDEs by modulating the expression of rsmA.

  18. Anti-Erwinia asparaginase antibodies during treatment of childhood acute lymphoblastic leukemia and their relationship to outcome

    DEFF Research Database (Denmark)

    Albertsen, BK; Schmiegelow, Kjeld; Schrøder, Henrik

    2002-01-01

    PURPOSE: A case-control study was performed to determine whether patients who had been treated with Erwinia asparaginase as part of their treatment for childhood acute lymphoblastic leukemia (ALL) and who showed relapsed of their disease more often developed anti-asparaginase antibodies than...... (median follow-up 70 months). Anti- Erwinia asparaginase antibodies were measured (ELISA method) during maintenance therapy after asparaginase treatment (30,000 IU/m(2) daily for 10 days in all patients plus twice weekly for 2 weeks in intermediate-risk and high-risk ALL patients). RESULTS: The overall...... incidence of anti- Erwinia asparaginase antibodies was 8% (3 of 39 patients). There was no statistically significant difference in the incidence of antibody formation between patients who had suffered relapse (1 of 13) and those who had not (2 of 26). In two of the three patients who developed antibodies...

  19. EFEKTIFITAS DAYA HAMBAT BAKTERI Streptomyces sp TERHADAP Erwinia sp PENYEBAB PENYAKIT BUSUK REBAH PADA TANAMAN LIDAH BUAYA (Aloe barbadensis Mill

    Directory of Open Access Journals (Sweden)

    SARMILA TASNIM

    2013-05-01

    Full Text Available Streptomyces sp was conducted from December 2010 - June 2011 at the Laboratoryof Microbiology, Biology Department, Math and Science Faculty, UdayanaUniversity Bukit Jimbaran-Bali. Implementation stages of the research consisted ofisolation and testing of the antibiotic activity Streptomyces sp to inhibit growthbacterial pathogens Erwinia sp as a cause of disease in plants fallen foul (Soft rot ofAloe barbadensis Mill.The results of this study have eight isolates of Streptomyces spwith macroscopic and microscopic characters are varied. Furthermore, all isolateswere obtained and then tested against antibiotic activity to inhibit growth the bacteriaErwinia sp. Test results obtained by Streptomyces sp that has the most effective ininhibiting the ability of the bacteria Erwinia sp isolates are Streptomyces sp2for (45%.

  20. Molecular characterization and pathogenicity of Erwinia spp. associated with pineapple [Ananas comosus (L.) Merr.] and papaya (Carica papaya L.)

    OpenAIRE

    Ramachandran Kogeethavani; Manaf Uyub Abdul; Zakaria Latiffah

    2015-01-01

    The Erwinia species are well-known pathogens of economic importance in Malaysia causing serious damage to high-value fruit crops that include pineapple [Ananas comosus (L.) Merr.] and papaya (Carica papaya L.).The 16S rRNA sequence using eubacteria fD1 and rP2 primers, identified two bacteria species; Dickeya zeae from pineapple heart rot, and Erwinia mallotivora from papaya dieback. Phylogenetic analysis based on the neighbor-joining method indicated that all the bacterial isolates clustered...

  1. [The influence of colonizing methylobacteria on morphogenesis and resistance of sugar beet and white cabbage plants to Erwinia carotovora].

    Science.gov (United States)

    Pigoleva, S V; Zakharchenko, N S; Pigolev, A V; Trotsenko, Iu A; Bur'ianov, Ia I

    2009-01-01

    The influence of colonization of sugar beet (Beta vulgaris var. saccharifera (Alef) Krass) and white cabbage (Brassica oleracea var. capitata L.) plants by methylotrophic bacteria Methylovorus mays on the growth, rooting, and plant resistance to phytopathogen bacteria Erwinia carotovora was investigated. The colonization by methylobacteria led to their steady association with the plants which had increased growth speed, root formation and photosynthetic activity. The colonized plants had increased resistance to Erwinia carotovora phytopathogen and were better adapted to greenhouse conditions. The obtained results showed the perspectives for the practical implementation of methylobacteria in the ecologically clean microbiology substances used as the plant growth stimulators and for the plant protection from pathogens.

  2. Molecular identification of phosphate solubilizing bacterium ...

    African Journals Online (AJOL)

    A phosphate solubilizing bacterium was isolated from the rhizosphere soil of upland rice and identified by 16S rRNA gene sequencing. The gene sequence showed 99% homology with Alcaligenes faecalis. Based on the gene sequence homology, it was identified as A. faecalis. Interaction effect of this bacterium on growth ...

  3. Population pharmacokinetics of intravenous Erwinia asparaginase in pediatric acute lymphoblastic leukemia patients.

    Science.gov (United States)

    Sassen, Sebastiaan D T; Mathôt, Ron A A; Pieters, Rob; Kloos, Robin Q H; de Haas, Valérie; Kaspers, Gertjan J L; van den Bos, Cor; Tissing, Wim J E; Te Loo, Maroeska; Bierings, Marc B; Kollen, Wouter J W; Zwaan, Christian M; van der Sluis, Inge M

    2017-03-01

    Erwinia asparaginase is an important component in the treatment of pediatric acute lymphoblastic leukemia. A large variability in serum concentrations has been observed after intravenous Erwinia asparaginase. Currently, Dutch Childhood Oncology Group protocols dose alterations are based on trough concentrations to ensure adequate asparaginase activity (≥100 IU/L). The aim of this study was to describe the population pharmacokinetics of intravenous Erwinia asparaginase to quantify and gather insight into inter-individual and inter-occasion variability. The starting dose was evaluated on the basis of the derived population pharmacokinetic parameters. In a multicenter prospective observational study, a total of 714 blood samples were collected from 51 children (age 1-17 years) with acute lymphoblastic leukemia. The starting dose was 20,000 IU/m 2 three times a week and adjusted according to trough levels from week three onwards. A population pharmacokinetic model was developed using NONMEM ® A 2-compartment linear model with allometric scaling best described the data. Inter-individual and inter-occasion variability of clearance were 33% and 13%, respectively. Clearance in the first month of treatment was 14% higher ( P <0.01). Monte Carlo simulations with our pharmacokinetic model demonstrated that patients with a low weight might require higher doses to achieve similar concentrations compared to patients with high weight. The current starting dose of 20,000 IU/m 2 might result in inadequate concentrations, especially for smaller, lower weight patients, hence dose adjustments based on individual clearance are recommended. The protocols were approved by the institutional review boards. (Registered at NTR 3379 Dutch Trial Register; www.trialregister.nl). Copyright© Ferrata Storti Foundation.

  4. Biology of the fire blight pathogen Erwinia amylovora in oligotrophic environments: survival responses and virulence

    OpenAIRE

    Delgado Santander, Ricardo

    2016-01-01

    Erwinia amylovora es una bacteria fitopatógena de la familia Enterobacteriaceae, responsable del fuego bacteriano de las rosáceas. Los efectos destructivos de este patógeno sobre frutos, flores y prácticamente todos los órganos de las plantas hospedadoras afectadas constituyen una amenaza importante para la producción de pera y manzana, y suponen graves pérdidas económicas anuales en todo el mundo. E. amylovora está clasificada como un organismo de cuarentena en la Unión Europea y en otros pa...

  5. Surface survival and internalization of salmonella through natural cracks on developing cantaloupe fruits, alone or in the presence of the melon wilt pathogen Erwinia tracheiphila.

    Directory of Open Access Journals (Sweden)

    Dhiraj Gautam

    Full Text Available Outbreaks of foodborne illness attributed to the consumption of Salmonella-tainted cantaloupe have occurred repeatedly, but understanding of the ecology of Salmonella on cantaloupe fruit surfaces is limited. We investigated the interactions between Salmonella enterica Poona, the plant pathogenic bacterium Erwinia tracheiphila, and cantaloupe fruit. Fruit surfaces were inoculated at the natural cracking stage by spreading S. enterica and E. tracheiphila, 20 µl at 107 cfu/ml, independently or together, over a 2×2 cm rind area containing a crack. Microbial and microscopic analyses were performed at 0, 9 and 24 days post inoculation (DPI. Even at 24 DPI (fruit maturity S. enterica was detected on 14% and 40% of the fruit inoculated with S. enterica alone and the two-pathogen mixture, respectively. However, the population of S. enterica declined gradually after initial inoculation. E. tracheiphila, inoculated alone or together with Salmonella, caused watersoaked lesions on cantaloupe fruit; but we could not conclude in this study that S. enterica survival on the fruit surface was enhanced by the presence of those lesions. Of fruit inoculated with E. tracheiphila alone and sampled at 24 DPI, 61% had watersoaked lesions on the surface. In nearly half of those symptomatic fruits the watersoaking extended into the sub-rind mesocarp, and E. tracheiphila was recovered from that tissue in 50% of the symptomatic fruit. In this work, E. tracheiphila internalized through natural cracks on developing fruits. S. enterica was never detected in the fruit interior (ca. 2-3 mm below rind surface under the limited conditions of our experiments, but the possibility that it, or other human pathogens that contaminate fresh produce, might also do so should be investigated under a wider range of conditions and produce types.

  6. Reaction of arracacha genotypes to the root soft rot caused by Pectobacterium chrysanthemi Reação de genótipos de mandioquinha-salsa à podridão-mole das raízes causada por Pectobacterium chrysanthemi

    Directory of Open Access Journals (Sweden)

    Gilmar Paulo Henz

    2005-01-01

    Full Text Available The purpose of this paper was to screen thirty-two arracacha genotypes for their reaction to root soft rot. Twenty roots of each genotype were inoculated with two Pectobacterium chrysanthemi isolates in a randomized experiment (10 roots/isolate. After inoculation, roots were individually wrapped with PVC film and kept at 26ºC in closed plastic bags. Soft rot lesions were recorded after 36 hours and genotypes were grouped in four classes of susceptibility by cluster analysis: 10 were less susceptible, 16 intermediate, 3 susceptible and 3 very susceptible. All the tested arracacha genotypes showed only variation in the degree of susceptibility.O objetivo deste trabalho foi avaliar a reação de 32 genótipos de mandioquinha-salsa à podridão-mole das raízes. Vinte raízes de cada genótipo foram inoculadas com dois isolados de Pectobacterium chrysanthemi em um experimento casualizado (10 raízes/isolado. Após a inoculação, as raízes foram embaladas com filmes de PVC e mantidas a 26ºC em sacos de plástico. As lesões de podridão-mole foram avaliadas após 36 horas e os genótipos agrupados em quatro classes de suscetibilidade por análise de agrupamento: 10 foram menos suscetíveis, 16 intermediários, 3 suscetíveis e 3 muito suscetíveis. Todos os genótipos avaliados demonstraram apenas variação no grau de suscetibilidade.

  7. Signaling requirements for Erwinia amylovora-induced disease resistance, callose deposition, and cell growth in the nonhost Arabidopsis thaliana

    Science.gov (United States)

    Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The nonhost plant Arabidopsis serves as a powerful system to dissect mechanisms of resistance to E. amylovora. Although not yet known to mount gene-for-gene resistance to E. amylovora, we found ...

  8. Selective inhibition of Erwinia amylovora by the herbicidally active germination-arrest factor (GAF) produced by Pseudomonas bacteria.

    Science.gov (United States)

    Halgren, A; Azevedo, M; Mills, D; Armstrong, D; Thimmaiah, M; McPhail, K; Banowetz, G

    2011-10-01

     The germination-arrest factor (GAF) produced by Pseudomonas fluorescens WH6, and identified as 4-formylaminooxyvinylglycine, specifically inhibits the germination of a wide range of grassy weeds. This study was undertaken to determine whether GAF has antimicrobial activity in addition to its inhibitory effects on grass seed germination. Culture filtrate from Ps. fluorescens WH6 had little or no effect on 17 species of bacteria grown in Petri dish lawns, but the in vitro growth of Erwinia amylovora, the causal agent of the disease of orchard crops known as fire blight, was strongly inhibited by the filtrate. The anti-Erwinia activity of WH6 culture filtrate was shown to be due to its GAF content, and a commercially available oxyvinylglycine, 4-aminoethoxyvinylglycine (AVG), exhibited anti-Erwinia activity similar to that of GAF. The effects of GAF on Erwinia were reversed by particular amino acids. The biological properties of GAF include a rather specific antimicrobial activity against Erw. amylovora. This may be a general property of oxyvinylglycines as AVG exhibited similar activity. The ability of particular amino acids to reverse GAF inhibition is consistent with a potential effect of this compound on the activity of aminotransferases. The results presented here demonstrate a novel antimicrobial activity of oxyvinylglycines and suggest that GAF and/or GAF-producing bacteria may have potential for the control of fire blight. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology. No claim to US Government works.

  9. Conductimetric detection of Pseudomonas syringae pathover pisi in pea seeds and soft rot Erwinia spp. on potato tubers

    NARCIS (Netherlands)

    Fraaije, B.

    1996-01-01


    Pea bacterial blight and potato blackleg are diseases caused by Pseudomonas syringae pv. pisi ( Psp ) and soft rot Erwinia spp., respectively. The primary source of inoculum for these bacteria is

  10. Thermodependence of growth and enzymatic activities implicated in pathogenicity of two Erwinia carotovora subspecies (Pectobacterium spp.).

    Science.gov (United States)

    Smadja, Bruno; Latour, Xavier; Trigui, Sameh; Burini, Jean François; Chevalier, Sylvie; Orange, Nicole

    2004-01-01

    Erwinia carotovora subsp. atroseptica and Erwinia carotovora subsp. carotovora can cause substantial damage to economically important plant crops and stored products. The occurrence of the disease and the scale of the damage are temperature dependent. Disease development consists first of active multiplication of the bacteria in the infection area and then production of numerous extracellular enzymes. We investigated the effects of various temperatures on these two steps. We assayed the specific growth rate and the pectate lyase and protease activities for eight strains belonging to E. carotovora subsp. atroseptica and E. carotovora subsp. carotovora in vitro. The temperature effect on growth rate and on pectate lyase activity is different for the two subspecies, but protease activity appears to be similarly thermoregulated. Our results are in agreement with ecological data implicating E. carotovora subsp. atroseptica in disease when the temperature is below 20 degrees C. The optimal temperature for pathogenicity appears to be different from the optimal growth temperature but seems to be a compromise between this temperature and temperatures at which lytic activities are maximal.

  11. Role of Antibiosis in Competition of Erwinia Strains in Potato Infection Courts

    Science.gov (United States)

    Axelrood, Paige E.; Rella, Manuela; Schroth, Milton N.

    1988-01-01

    Erwinia carotovora subsp. betavasculorum strains produced a bactericidal antibiotic in vitro that inhibited a wide spectrum of gram-negative and gram-positive bacteria. The optimum temperature for production was 24°C, and the addition of glycerol to culture media enhanced antibiotic production. Antibiotic production by these strains in the infection court of potato was the principal determinant enabling it to gain ascendancy over competing antibiotic-sensitive Erwinia carotovora subsp. carotovora strains. There was a complete correlation between antibiotic production by E. carotovora subsp. betavasculorum in vitro and inhibition of competing E. carotovora subsp. carotovora strains in planta. Inhibition of the latter by the former was apparent after 10 h of incubation in potato tuber wounds. Population densities of sensitive E. carotovora subsp. carotovora strains in mixed potato tuber infections with E. carotovora subsp. betavasculorum were approximately 106-fold lower after 48 h of incubation than in corresponding single sensitive strain infections. E. carotovora subsp. carotovora were not inhibited in tuber infections that were incubated anaerobically. This correlated with the absence of antibiotic production during anaerobic incubation in vitro. Antibiotic-resistant strains of E. carotovora subsp. carotovora were not inhibited in planta or in vitro by E. carotovora subsp. betavasculorum. Moreover, isogenic antibiotic-negative (Ant−) mutant E. carotovora subsp. betavasculorum strains were not inhibitory to sensitive E. carotovora subsp. carotovora strains in tuber infections. PMID:16347633

  12. Molecular detection of Erwinia psidii in guava plants under greenhouse and field conditions

    Directory of Open Access Journals (Sweden)

    Claudênia Ferreira da Silva

    2016-09-01

    Full Text Available ABSTRACT: Erwinia psidii causes bacterial blight of guava ( Psidium guajava , an important disease of this crop in Brazil. The pathogen affects branches and twigs of guava trees, reducing yield significantly. Bacterial dissemination often occurs through contaminated but asymptomatic propagating plant material. The objectives of this research were to evaluate the use of BIO-PCR and conventional PCR to detect E. psidii in inoculated guava plants grown in a greenhouse and in symptomatic and asymptomatic trees from guava orchards. Erwinia psidii strain IBSBF 1576 was inoculated (107CFU mL-1 into young guava shoots and plant tissue was analysed at 0, 5, 10, and 15 days after inoculation. Symptoms were observed after 5 days and all inoculated shoots were PCR positive at all times, by both BIO-PCR and conventional PCR. Under natural infection conditions, 40 samples were tested by BIO-PCR from each of three guava orchards, 20 showing symptoms and 20 asymptomatic. PCR was positive for 58 out of 60 symptomatic samples (96.7% and for 6.7% of asymptomatic samples, showing that the method can be used to detect the pathogen at early stages of infection. This PCR method may be used as a diagnostic tool to assess bacterial survival, dissemination and disease outbreaks.

  13. Species-specific detection of Dickeya sp. (Pectobacterium ...

    African Journals Online (AJOL)

    use

    2011-11-23

    Nov 23, 2011 ... (Pectobacterium chrysanthemi) in infected banana tissues .... tetraacetic (EDTA) disodium salt pH 8.0, 100 mm NaCl and 1% .... lane 7, Erwinia carotovora subsp. carotovora; lane 8, Xanthomonas campestris pv.musacearum;.

  14. Genetic Characterization Of Syrian Erwinia Amylovora Strains By Amplified Fragment Length Polymorphism Technique

    International Nuclear Information System (INIS)

    Ammouneh, H.; Arabi, M.; Shoaib, A.

    2011-01-01

    Thirty Erwinia amylovora strains, collected from the main rosaceous crop-growing regions in Syria, were chosen as representatives of all major pathogenicity groups and were genetically studied by AFLP. Eight primer combinations were utilized and approximately 300 scorable bands in total were generated. Based on similarity coefficient, E. amylovora strains were placed into a main cluster containing two sub clusters, indicating very low genetic variations among the studied pathogen. The existence of two plasmids, pEA29 (present in nearly all E. amylovora isolates) and pEL60 (present mainly in Lebanese strains), was confirmed using multiplex PCR in all tested Syrian E. amylovora strains, indicating that Lebanese and Syrian isolates may share a common origin.(author)

  15. Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains.

    Science.gov (United States)

    Rodríguez, H; Gonzalez, T; Selman, G

    2001-11-30

    A genetic construction was carried out using the broad host range vector pKT230 and plasmid pMCG898, which encodes the Erwinia herbicola pyrroloquinoline quinone (PQQ) synthase, a gene involved in mineral phosphate solubilization (mps). The final construction was transformed and expressed in Escherichia coli MC1061, and the recombinant plasmids were transferred to Burkholderia cepacia IS-16 and Pseudomonas sp. PSS recipient cells by conjugation. Clones containing recombinant plasmids produced higher clearing halos in plates with insoluble phosphate as the unique (P) source, in comparison with those of strains without plasmids, demonstrating the heterologous expression of the E. herbicola gene in the recipient strains. This genetic manipulation allowed the increase in mps ability of both strains, enhancing their potentialities as growth promoters of agricultural crops. These results represent the first report on the application of the recombinant DNA methodology for the obtaining of improved phosphate solubilizing ability from rhizobacterial strains for biofertilization purposes.

  16. Improvement of DNA transfer frequency and transposon mutagenesis of Erwinia carotovora subsp. betavasculorum.

    Science.gov (United States)

    Rella, M; Axelrood, P E; Weinhold, A R; Schroth, M N

    1989-01-01

    The production of antibiotics and their role in microbial competition under natural conditions can be readily studied by the use of transposon mutants. Several antibiotic-producing strains of Erwinia carotovora subsp. betavasculorum were unable to accept foreign DNA. A plasmid delivery system was developed, using ethyl methanesulfonate mutagenesis, which entailed isolating E. carotovora subsp. betavasculorum mutants able to accept foreign DNA and transfer it to other strains. This enabled transposon mutagenesis of a wild-type antibiotic-producing strain of E. carotovora subsp. betavasculorum. Twelve antibiotic-negative mutants were isolated, and one of these showed a reduction in antibiotic production in vitro. Many of these mutants also showed a reduction in their ability to macerate potato tissue. The mutants were classified into four genetic groups on the basis of their genetic and phenotypic characteristics, indicating that several genes are involved in antibiotic biosynthesis by E. carotovora subsp. betavasculorum. PMID:2543291

  17. The suitability of Finnish climate for fire blight (Erwinia amylovora epidemics on apple

    Directory of Open Access Journals (Sweden)

    Mariela Marinova-Todorova

    2015-03-01

    Full Text Available Fire blight, which is an important disease of apples and pears, has never been detected in continental Finland. In this study the suitability of the Finnish climate for apple blossom blight infections by Erwinia amylovora was evaluated with the epidemiological model MaryblytTM. This was done in fourteen locations, and for two apple cultivars differing in flowering times. Climatic conditions were predicted to be suitable for blossom infections in 18 - 51% of the years, and the annual period of suitable conditions was predicted to last up to two to five days, depending on the location and apple cultivar. The suitable period was predicted to be longer in some locations in central Finland than in those in the southernmost parts of the country. Based on these results the official surveys that are carried out to confirm the absence of fire blight in Finland cannot be targeted only to some parts of the country.

  18. Detection of bacteriocins produced by plant pathogenic bacteria from the general Erwinia, Pseudomonas and Xanthomonas

    International Nuclear Information System (INIS)

    Biagi, C.M.R. de

    1992-01-01

    Detection of bacteriocin production was studied under distinct conditions using strains of plant pathogenic bacteria from the genera Erwinia, Pseudomonas and Xanthomonas. 58.06%, 79.31% and 40.00% of producing strains were found respectively in the three groups of bacteria using the 523 medium which was the best for the detection of bacteriocin production. Increasing agar concentrations added to the medium up to 1,5% improved the detection. The amount of medium added to the Petri dishes did not affect bacteriocin production. The longest incubation time (72 h.) improved the detection of haloes production. Ultra-violet irradiation in low dosages seems to improve the visualization of haloes production but this is dependent on the tested strains. (author)

  19. Podridão em cravo causada por Erwinia carotovora subsp. carotovora no Brasil.

    Directory of Open Access Journals (Sweden)

    Irene M. G. Almeida

    2000-05-01

    Full Text Available De fevereiro a abril de 1999, coletaram-se estacas e mudas de cravo (Dianthus caryophyllus em propriedades dos municípios paulistas de Atibaia e Santo Antônio de Posse. Esse material apresentava sintomas caracterizados por não-emissão de raízes ou por podridão de raízes, colo e folhas basais, diferindo daqueles da doença denominada "slow wilt" e dos de escurecimento de vasos e necrose na região do colo, haste e folhas, já relatados em cravo. A partir de material com tais sintomas, isolaram-se bactérias, caracterizadas, mediante testes bioquímicos, culturais, fisiológicos e de patogenicidade, como Erwinia carotovora subsp. carotovora. Trata-se do primeiro relato desse patógeno em cravo no Brasil.

  20. Novel receptor-like protein kinases induced by Erwinia carotovora and short oligogalacturonides in potato.

    Science.gov (United States)

    Montesano, M; Kõiv, V; Mäe, A; Palva, E T

    2001-11-01

    summary Identification of potato genes responsive to cell wall-degrading enzymes of Erwinia carotovora resulted in the isolation of cDNA clones for four related receptor-like protein kinases. One of the putative serine-threonine protein kinases might have arisen through alternative splicing. These potato receptor-like kinases (PRK1-4) were highly equivalent (91-99%), most likely constituting a family of related receptors. All PRKs and four other plant RLKs share in their extracellular domain a conserved bi-modular pattern of cysteine repeats distinct from that in previously characterized plant RLKs, suggesting that they represent a new class of receptors. The corresponding genes were rapidly induced by E. carotovora culture filtrate (CF), both in the leaves and tubers of potato. Furthermore, the genes were transiently induced by short oligogalacturonides. The structural identity of PRKs and their induction pattern suggested that they constitute part of the early response of potato to E. carotovora infection.

  1. The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations.

    Science.gov (United States)

    Whitehead, Neil A; Byers, Joseph T; Commander, Paul; Corbett, Mark J; Coulthurst, Sarah J; Everson, Lee; Harris, Abigail K P; Pemberton, Clare L; Simpson, Natalie J L; Slater, Holly; Smith, Debra S; Welch, Martin; Williamson, Neil; Salmond, George P C

    2002-08-01

    Erwinia carotovora is a Gram-negative bacterial phytopathogen that causes soft-rot disease and potato blackleg. The organism is environmentally widespread and exhibits an opportunistic plant pathogenesis. The ability to secrete multiple plant cell wall-degrading enzymes is a key virulence trait and exoenzyme production is responsive to multiple environmental and physiological cues. One important cue is the cell population density of the pathogen. Cell density is monitored via an acylated homoserine lactone (acyl HSL) signalling molecule, which is thought to diffuse between Erwinia cells in a process now commonly known as 'quorum sensing'. This molecule also acts as the chemical communication signal controlling production of a broad-spectrum beta-lactam antibiotic (1-carbapen-2-em-3-carboxylic acid; carbapenem) synthesised in concert with exoenzyme elaboration, possibly for niche defence. In antibiotic production control, quorum sensing acts at the level of transcriptional activation of the antibiotic biosynthetic cluster. This is achieved via a dedicated LuxR-type protein, CarR that is bound to the signalling molecule. The molecular relay connecting acyl HSL production and exoenzyme induction is not clear, despite the identification of a multitude of global regulatory genes, including those of the RsmA/rsmB system, impinging on enzyme synthesis. Quorum sensing control mediated by acyl HSLs is widespread in Gram-negative bacteria and is responsible for the regulation of diverse phenotypes. Although there is still a paucity of meaningful information on acyl HSL availability and in-situ biological function, there is growing evidence that such molecules play significant roles in microbial ecology.

  2. Molecular characterization and pathogenicity of Erwinia spp. associated with pineapple [Ananas comosus (L. Merr.] and papaya (Carica papaya L.

    Directory of Open Access Journals (Sweden)

    Ramachandran Kogeethavani

    2015-12-01

    Full Text Available The Erwinia species are well-known pathogens of economic importance in Malaysia causing serious damage to high-value fruit crops that include pineapple [Ananas comosus (L. Merr.] and papaya (Carica papaya L..The 16S rRNA sequence using eubacteria fD1 and rP2 primers, identified two bacteria species; Dickeya zeae from pineapple heart rot, and Erwinia mallotivora from papaya dieback. Phylogenetic analysis based on the neighbor-joining method indicated that all the bacterial isolates clustered in their own taxa and formed monophyletic clades. From the pathogenicity test, all isolates of D. zeae and E. mallotivora showed pathogenic reactions on their respective host plants. Genetic variability of these isolates was assessed using repetitive sequence-based PCR (rep-PCR fingerprinting. The results indicated interspecies, and intraspecies variation in both species’ isolates. There were more polymorphic bands shown by rep-PCR fingerprints than enterobacterial repetitive intergenic consensus (ERIC and BOX- PCRs, however both species’ isolates produced distinguishable banding patterns. Unweighted pair-group method with arithmetic averages (UPGMA cluster analysis indicated that all Dickeya and Erwinia isolates from the same species were grouped in the same main cluster. Similarity among the isolates ranged from 77 to 99%. Sequencing of 16S rRNA using eubacteria fD1 and rP2 primers, and rep-PCR fingerprinting revealed diversity among Dickeya and Erwinia isolates. But this method appears to be reliable for discriminating isolates from pineapple heart rot and papaya dieback.

  3. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  4. Microflora of urogenital tract in pregnancy with asymptomatic bacterium

    International Nuclear Information System (INIS)

    Abdullaeva, R.A.

    2006-01-01

    The article contains results of research interrelationship from colonization of vagina and urinary tract diseases. E.coli one of the main factors in development asymptomatic bacterium. Presented high effects of penicillin medicaments and nitrofurans in treatment of asymptomatic bacterium

  5. Engineering a wild fast-growing Mycoplasma bacterium to generate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-01-12

    Jan 12, 2018 ... The CCPP bacterium causes sick animals to experience severe symptoms ... because antibiotic treatment does not eliminate the responsible bacterium. ... To develop a fast growing CCPP vaccine for cheaper production and ...

  6. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics

    Science.gov (United States)

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L.; Huber, Steven C.; Zhao, Youfu

    2015-01-01

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence. PMID:23234799

  7. Purification, Characterization, and Effect of Thiol Compounds on Activity of the Erwinia carotovora L-Asparaginase

    Directory of Open Access Journals (Sweden)

    Suchita C. Warangkar

    2010-01-01

    Full Text Available L-asparaginase was extracted from Erwinia carotovora and purified by ammonium sulfate fractionation (60–70%, Sephadex G-100, CM cellulose, and DEAE sephadex chromatography. The apparent Mr of enzyme under nondenaturing and denaturing conditions was 150 kDa and 37±0.5 kDa, respectively. L-asparaginase activity was studied in presence of thiols, namely, L-cystine (Cys, L-methionine (Met, N-acetyl cysteine (NAC, and reduced glutathione (GSH. Kinetic parameters in presence of thiols (10–400 M showed an increase in Vmax values (2000, 2223, 2380, 2500, and control 1666.7 moles mg−1min−1 and a decrease in K values (0.086, 0.076, 0.062, 0.055 and control 0.098 mM indicating nonessential mode of activation. KA values displayed propensity to bind thiols. A decrease in Vmax/K ratio in concentration plots showed inverse relationship between free thiol groups (NAC and GSH and bound thiol group (Cys and Met. Enzyme activity was enhanced in presence of thiol protecting reagents like dithiothreitol (DTT, 2-mercaptoethanol (2-ME, and GSH, but inhibited by p-chloromercurybenzoate (PCMB and iodoacetamide (IA.

  8. Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Eriksson, A R; Andersson, R A; Pirhonen, M; Palva, E T

    1998-08-01

    Production of extracellular, plant cell wall degrading enzymes, the main virulence determinants of the plant pathogen Erwinia carotovora subsp. carotovora, is coordinately controlled by a complex regulatory network. Insertion mutants in the exp (extracellular enzyme production) loci exhibit pleiotropic defects in virulence and the growth-phase-dependent transcriptional activation of genes encoding extracellular enzymes. Two new exp mutations, designated expA and expS, were characterized. Introduction of the corresponding wild-type alleles to the mutants complemented both the lack of virulence and the impaired production of plant cell wall degrading enzymes. The expA gene was shown to encode a 24-kDa polypeptide that is structurally and functionally related to the uvrY gene product of Escherichia coli and the GacA response regulator of Pseudomonas fluorescens. Functional similarity of expA and uvrY was demonstrated by genetic complementation. The expA gene is organized in an operon together with a uvrC-like gene, identical to the organization of uvrY and uvrC in E. coli. The unlinked expS gene encodes a putative sensor kinase that shows 92% identity to the recently described rpfA gene product from another E. carotovora subsp. carotovora strain. Our data suggest that ExpS and ExpA are members of two-component sensor kinase and response regulator families, respectively. These two proteins might interact in controlling virulence gene expression in E. carotovora subsp. carotovora.

  9. Partitioning of the variance in the growth parameters of Erwinia carotovora on vegetable products.

    Science.gov (United States)

    Shorten, P R; Membré, J-M; Pleasants, A B; Kubaczka, M; Soboleva, T K

    2004-06-01

    The objective of this paper was to estimate and partition the variability in the microbial growth model parameters describing the growth of Erwinia carotovora on pasteurised and non-pasteurised vegetable juice from laboratory experiments performed under different temperature-varying conditions. We partitioned the model parameter variance and covariance components into effects due to temperature profile and replicate using a maximum likelihood technique. Temperature profile and replicate were treated as random effects and the food substrate was treated as a fixed effect. The replicate variance component was small indicating a high level of control in this experiment. Our analysis of the combined E. carotovora growth data sets used the Baranyi primary microbial growth model along with the Ratkowsky secondary growth model. The variability in the microbial growth parameters estimated from these microbial growth experiments is essential for predicting the mean and variance through time of the E. carotovora population size in a product supply chain and is the basis for microbiological risk assessment and food product shelf-life estimation. The variance partitioning made here also assists in the management of optimal product distribution networks by identifying elements of the supply chain contributing most to product variability. Copyright 2003 Elsevier B.V.

  10. Cloning and study of the pectate lyase gene of Erwinia carotovora

    International Nuclear Information System (INIS)

    Bukanov, N.O.; Fonshtein, M.Yu.; Evtushenkov, A.N.; Syarinskii, M.A.; Strel'chenko, P.P.; Yankovski, N.K.; Alikhanyan, S.I.; Fomichev, Yu.K.; Debabov, V.G.

    1986-01-01

    The cloning of the gene of a secretable protein of Erwinia carotovora, pectate lyase, in Escherichia coli was described. Primary cloning was conducted using the phage vector λ 47.1. In the gene library of E. carotovora obtained, eight phages carrying the gene sought were identified according to the appearance of enzymatic activity of the gene product, pectate lyase, in situ. The BamHI fragment of DNA, common to all these phages, was recloned on the plasmid pUC19. It was shown that the cloned pectate lyase gene is represented on the E. carotovora chromosome in one copy. Methods of production of representative gene libraries on phage vectors from no less than 1 μg of cloned DNA even for the genomes of eukaryotes have now been developed. Vectors have been created, for example, λ 47.1, permitting the selection only of hybrid molecules. A number of methods have been developed for the search for a required gene in the library, depending on whether the cloned gene can be expressed or not, and if it can, what properties it will impart to the hybrid clone containing it

  11. Variabilidade genética na região its do rDNA de isolados de trichoderma spp. (Biocontrolador e Fusarium oxysporum f. sp. Chrysanthemi Genetic variability in rDNA ITS region of Trichoderma spp. (biocontrole agent and Fusarium oxysporum f. sp. chrysanthemi isolates

    Directory of Open Access Journals (Sweden)

    Josiane Pacheco Menezes

    2010-02-01

    Full Text Available A análise de características morfológicas e culturais podem não ser suficientes para uma caracterização precisa das espécies de Trichoderma e Fusarium. Objetivou-se, neste trabalho, caracterizar a região do Espaço Interno Transcrito (ITS do rDNA dos isolados UFSMT15.1, UFSMT16 e UFSMT17 de Trichoderma spp. utilizados no biocontrole de Fusarium oxysporum f. sp. chrysanthemi (isolado UFSMF6. A extração de DNA de cada isolado foi realizada a partir de micélio produzido em meio líquido Batata-Dextrose. As amostras de DNA genômico foram submetidas à Reação em Cadeia da Polimerase (PCR com os oligonucleotídeos iniciadores universais ITS1 e ITS4 e o produto gerado foi sequenciado. Os fragmentos gerados pela amplificação da PCR foram tratados com as enzimas de restrição HaeIII, HinfI e MboI. As regiões ITS1, ITS2 e 5.8S do rDNA desses isolados fúngicos foram amplificadas com sucesso. A região ITS dos isolados UFSMT15.1, UFSMT16 e UFSMT17 de Trichoderma e o isolado UFSMF6 de Fusarium apresentaram uma banda simples com um fragmento de aproximadamente 600 pares de base (pb. As enzimas de restrição HaeIII, HinfI e MboI geraram polimorfismo de bandas entre os isolados. Com base nas análises da sequência de DNA, os isolados UFSMT15.1, UFSMT16, UFSMT17 e UFSMF6 apresentaram maior similaridade com as espécies Trichoderma koningiopsis, Hypocrea virens, Hypocrea lixii e Fusarium oxysporum, respectivamente.The analysis of morphological and cultural characteristics may not enough for the characterization of the species of Trichoderma and Fusarium. The aim of this work was to characterize the Internal Transcribed Spacer (ITS region of the rDNA of UFSMT15.1, UFSMT16 and UFSMT17 isolates of Trichoderma spp. used in the biocontrol of Fusarium oxysporum f. sp. chrysanthemi UFSMF6. DNA extraction of each isolate was accomplished starting from hyphae produced in liquid medium Potato-Dextrose-Agar. The samples of genomic DNA were submitted to

  12. Production of glucosyltransferase by Erwinia sp. using experimental design and response surface methodology Produção de glicosiltransferase por Erwinia sp. utilizando planejamento experimental e metodologia de superfície de resposta

    Directory of Open Access Journals (Sweden)

    Haroldo Yukio Kawaguti

    2005-09-01

    Full Text Available Glucosyltransferase produced by strain Erwinia sp. is an intracellular enzyme that catalyzes the formation of isomaltulose from sucrose. Isomaltulose is a non-cariogenic reducing dissacharide commercially used in foods. Response surface methodology and 2³-factorial central composite design were employed to optimize a fermentation medium for the production of glucosyltransferase by Erwinia sp. in shaken flasks at 200 rpm and 30ºC. The three variables involved in this study were sugar cane molasses (SCM, corn steep liquor (CSL and yeast extract Prodex Lac SD (YEP. The statistical analysis of the results showed that, in the range studied, all the factors had a significant effect on glucosyltransferase production and the optimum medium composition for enzyme production was (in g l-1 SCM-100, CSL-60 and YEP-8, which lead to a glucosyltransferase activity of 6.65 U mL-1.A glicosiltransferase obtida pela linhagem Erwinia sp. é uma enzima intracelular que catalisa a conversão de sacarose em isomaltulose. A isomaltulose é um dissacarídeo redutor, não cariogênico e comercialmente utilizado em alimentos como substituto da sacarose. A metodologia de superfície de resposta e planejamento fatorial composto central-2³ foram utilizados para otimizar o meio de cultivo para a produção de glicosiltransferase de Erwinia sp. em frascos sob agitação a 200 rpm e 30ºC. As três variáveis independentes envolvidas no estudo foram o melaço de cana de açúcar, a água de maceração de milho e o extrato de levedura Prodex Lac SD. As análises estatísticas dos resultados mostraram que, dentro da faixa estudada das concentrações dos componentes de meio de cultivo, todas as variáveis apresentaram efeito significativo na produção de glicosiltransferase. O meio de cultivo otimizado foi composto de 100 gL-1 de melaço de cana de açúcar, 60 gL-1 de água de maceração de milho e 8 gL-1 de extrato de levedura Prodex Lac SD, apresentando atividade de

  13. CONTROl.. DE ERWINIA UREDOVORA CON MICROORGANISMOS ANTAGÓNICOS EN CUI..TIVOS DE PYRUS SP~ (PERO)

    OpenAIRE

    De Rico, Myriam E.; Departamento de Microbiología Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá; Parra, Diana P.; Departamento de Microbiología Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá; Baquero, Sandra L.; Departamento de Microbiología Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá

    2013-01-01

    In order to dirninish the use of high doses of the chemical substances employed for the control of fire blight (Erwinia uredovora) in pear crops (Pyrus sp.), antagonistic microorganisms were isolated from the soil near healthy trees, from the rhizosphere, leaves, and stems of the sarne trees. To determine the antagonism in vitro, of these microorganisms against Erwinza uredovora, methods were used: channel, disk and strip. The best results were obtained with the disk method. The microorganism...

  14. Molecular cloning and characterization of an Erwinia carotovora subsp. carotovora pectin lyase gene that responds to DNA-damaging agents.

    OpenAIRE

    McEvoy, J L; Murata, H; Chatterjee, A K

    1990-01-01

    recA-mediated production of pectin lyase (PNL) and the bacteriocin carotovoricin occurs in Erwinia carotovora subsp. carotovora 71 when this organism is subjected to agents that damage or inhibit the synthesis of DNA. The structural gene pnlA was isolated from a strain 71 cosmid gene library following mobilization of the cosmids into a moderate PNL producer, strain 193. The cosmid complemented pnl::Tn5 but not ctv::Tn5 mutations. A constitutive level of PNL activity was detected in RecA+ and ...

  15. The effect of disinfectants on Clavibacter michiganensis subsp. sepedonicus and Erwinia carotovora subsp. atroseptica on different surface materials

    Directory of Open Access Journals (Sweden)

    Hilkka Koponen

    1992-12-01

    Full Text Available The effect of seven disinfectants on Clavibacter michiganensis subsp. sepedonicus and Erwinia carotovora subsp. atroseptica was tested on metal, plastic and wood surfaces in laboratory trials. lobac P was the most effective disinfectant in the control of E. carotovora on clean and dirty surfaces. Ipasept and Menno-Ter-forte were effective on plastic surfaces, but dirt reduced their efficacy. The least effective preparations were Deskem-1, Virkon S and Korsolin. lobac P, Korsolin and Virkon S were the most effective disinfectants against C. michiganensis. The efficacy of Ipasept and Menno-Ter-forte was reduced by dirt. The least effective preparation was Deskem-1.

  16. Crystallization and preliminary crystallographic analysis of l-asparaginase from Erwinia carotovora

    International Nuclear Information System (INIS)

    Wikman, Linnea E. K.; Krasotkina, Julya; Kuchumova, Anastasia; Sokolov, Nikolay N.; Papageorgiou, Anastassios C.

    2005-01-01

    Er. carotovoral-asparaginase, a potential antileukaemic agent, has been crystallized. Crystals diffract to 2.6 Å using a rotating-anode source and belong to space group P2 1 , with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. Bacterial l-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia for over 30 y. However, their use is limited owing to the glutaminase activity of the administered enzymes, which results in serious side effects. In contrast, l-asparaginase from Erwinia carotovora exhibits low glutaminase activity at physiological concentrations of l-asparagine and l-glutamine in the blood. Recombinant Er. carotovoral-asparaginase was crystallized in the presence of l-glutamate by the hanging-drop vapour-diffusion method using 10 mg ml −1 purified enzyme, 16–18%(w/v) PEG 3350 and 0.2 M NaF. X-ray diffraction data were collected to 2.6 Å at 293 K using an in-house rotating-anode generator. The crystals belong to the monoclinic P2 1 space group, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. A molecular-replacement solution has been found and refinement is currently in progress. The crystal structure may provide leads towards protein-engineering efforts aimed at safer asparaginase administration in leukaemia treatment

  17. Genetic and virulence variability among Erwinia tracheiphila strains recovered from different cucurbit hosts.

    Science.gov (United States)

    Rojas, E Saalau; Dixon, P M; Batzer, J C; Gleason, M L

    2013-09-01

    The causal agent of cucurbit bacterial wilt, Erwinia tracheiphila, has a wide host range in the family Cucurbitaceae, including economically important crops such as muskmelon (Cucumis melo), cucumber (C. sativus), and squash (Cucurbita spp.). Genetic variability of 69 E. tracheiphila strains was investigated by repetitive-element polymerase chain reaction (rep-PCR) using BOXA1R and ERIC1-2 primers. Fingerprint profiles revealed significant variability associated with crop host; strains isolated from Cucumis spp. were clearly distinguishable from Cucurbita spp.-isolated strains regardless of geographic origin. Twelve E. tracheiphila strains isolated from muskmelon, cucumber, or summer squash were inoculated onto muskmelon and summer squash seedlings, followed by incubation in a growth chamber. Wilt symptoms were assessed over 3 weeks, strains were reisolated, and rep-PCR profiles were compared with the inoculated strains. Wilting occurred significantly faster when seedlings were inoculated with strains that originated from the same crop host genus (P<0.001). In the first run of the experiment, cucumber and muskmelon strains caused wilting on muskmelon seedlings at a median of 7.8 and 5.6 days after inoculation (dai), respectively. Summer squash seedlings wilted 18.0, 15.7, and 5.7 dai when inoculated with muskmelon-, cucumber-, and squash-origin strains, respectively. In a second run of the experiment, cucumber and muskmelon strains caused wilting on muskmelon at 7.0 and 6.9 dai, respectively, whereas summer squash seedlings wilted at 23.6, 29.0 and 9.0 dai when inoculated with muskmelon-, cucumber-, and squash-origin strains, respectively. Our results provide the first evidence of genetic diversity within E. tracheiphila and suggest that strain specificity is associated with plant host. This advance is a first step toward understanding the genetic and population structure of E. tracheiphila.

  18. Crystallization and preliminary crystallographic analysis of l-asparaginase from Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Linnea E. K. [Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521 (Finland); Krasotkina, Julya; Kuchumova, Anastasia; Sokolov, Nikolay N. [Institute for Biomedical Chemistry, Russian Academy of Medical Sciences, 559-B, 10 Pogodinskay St, Moscow 119121 (Russian Federation); Papageorgiou, Anastassios C., E-mail: tassos.papageorgiou@btk.fi [Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521 (Finland)

    2005-04-01

    Er. carotovoral-asparaginase, a potential antileukaemic agent, has been crystallized. Crystals diffract to 2.6 Å using a rotating-anode source and belong to space group P2{sub 1}, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. Bacterial l-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia for over 30 y. However, their use is limited owing to the glutaminase activity of the administered enzymes, which results in serious side effects. In contrast, l-asparaginase from Erwinia carotovora exhibits low glutaminase activity at physiological concentrations of l-asparagine and l-glutamine in the blood. Recombinant Er. carotovoral-asparaginase was crystallized in the presence of l-glutamate by the hanging-drop vapour-diffusion method using 10 mg ml{sup −1} purified enzyme, 16–18%(w/v) PEG 3350 and 0.2 M NaF. X-ray diffraction data were collected to 2.6 Å at 293 K using an in-house rotating-anode generator. The crystals belong to the monoclinic P2{sub 1} space group, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. A molecular-replacement solution has been found and refinement is currently in progress. The crystal structure may provide leads towards protein-engineering efforts aimed at safer asparaginase administration in leukaemia treatment.

  19. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora

    DEFF Research Database (Denmark)

    Manefield, M.; Welch, M.; Givskov, Michael Christian

    2001-01-01

    The plant pathogen Erwinia carotovora regulates expression of virulence factors and antibiotic production via an N-3- oxohexanoyl-L-homoserine lactone (3-oxo-C6-HSL) dependent quorum sensing mechanism. The marine alga Delisea pulchra produces halogenated furanones known to antagonise 3-oxo-C6-HSL...

  20. Outcome of pediatric patients with acute lymphoblastic leukemia/lymphoblastic lymphoma with hypersensitivity to pegaspargase treated with PEGylated Erwinia asparaginase, pegcrisantaspase: A report from the Children's Oncology Group

    Science.gov (United States)

    Rau, Rachel E.; Dreyer, ZoAnn; Choi, Mi Rim; Liang, Wei; Skowronski, Roman; Allamneni, Krishna P.; Devidas, Meenakshi; Raetz, Elizabeth A.; Adamson, Peter C.; Blaney, Susan M.; Loh, Mignon L; Hunger, Stephen P.

    2018-01-01

    Background Erwinia asparaginase is a Food and Drug Administration approved agent for the treatment of acute lymphoblastic leukemia (ALL) for patients who develop hypersensitivity to Escherichia coli derived asparaginases. Erwinia asparaginase is efficacious, but has a short half-life, requiring six doses to replace one dose of the most commonly used first-line asparaginase, pegaspargase, a polyethylene glycol (PEG) conjugated E. coli asparaginase. Pegcristantaspase, a recombinant PEGylated Erwinia asparaginase with improved pharmacokinetics, was developed for patients with hypersensitivity to pegaspargase. Here, we report a series of patients treated on a pediatric phase 2 trial of pegcrisantaspase. Procedure Pediatric patients with ALL or lymphoblastic lymphoma and hypersensitivity to pegaspargase enrolled on Children's Oncology Group trial AALL1421 (Jazz 13-011) and received intravenous pegcrisantaspase. Serum asparaginase activity (SAA) was monitored before and after dosing; immunogenicity assays were performed for antiasparaginase and anti-PEG antibodies and complement activation was evaluated. Results Three of the four treated patients experienced hypersensitivity to pegcrisantaspase manifested as clinical hypersensitivity reactions or rapid clearance of SAA. Immunogenicity assays demonstrated the presence of anti-PEG immunoglobulin G antibodies in all three hypersensitive patients, indicating a PEG-mediated immune response. Conclusions This small series of patients, nonetheless, provides data, suggesting preexisting immunogenicity against the PEG moiety of pegaspargase and poses the question as to whether PEGylation may be an effective strategy to optimize Erwinia asparaginase administration. Further study of larger cohorts is needed to determine the incidence of preexisting antibodies against PEG-mediated hypersensitivity to pegaspargase. PMID:29090524

  1. Horizontal Gene Acquisitions, Mobile Element Proliferation, and Genome Decay in the Host-Restricted Plant Pathogen Erwinia Tracheiphila

    Science.gov (United States)

    Shapiro, Lori R.; Scully, Erin D.; Straub, Timothy J.; Park, Jihye; Stephenson, Andrew G.; Beattie, Gwyn A.; Gleason, Mark L.; Kolter, Roberto; Coelho, Miguel C.; De Moraes, Consuelo M.; Mescher, Mark C.; Zhaxybayeva, Olga

    2016-01-01

    Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains of the cucurbit bacterial wilt pathogen Erwinia tracheiphila (Enterobacteriaceae) isolated from infected squash plants in New York, Pennsylvania, Kentucky, and Michigan. These genomes exhibit a high proportion of recent horizontal gene acquisitions, invasion and remarkable amplification of mobile genetic elements, and pseudogenization of approximately 20% of the coding sequences. These genome attributes indicate that E. tracheiphila recently emerged as a host-restricted pathogen. Furthermore, chromosomal rearrangements associated with phage and transposable element proliferation contribute to substantial differences in gene content and genetic architecture between the six E. tracheiphila strains and other Erwinia species. Together, these data lead us to hypothesize that E. tracheiphila has undergone recent evolution through both genome decay (pseudogenization) and genome expansion (horizontal gene transfer and mobile element amplification). Despite evidence of dramatic genomic changes, the six strains are genetically monomorphic, suggesting a recent population bottleneck and emergence into E. tracheiphila’s current ecological niche. PMID:26992913

  2. Production of isomaltulose obtained by Erwinia sp. cells submitted to different treatments and immobilized in calcium alginate

    Directory of Open Access Journals (Sweden)

    Haroldo Yukio Kawaguti

    2011-03-01

    Full Text Available In recent decades, there has been an increase in the studies of isomaltulose obtainment, due to its physicochemical properties and physiological health benefits. These properties, which include low cariogenicity, low glycemic index and greater stability, allow the use of this sweetener as a substitute for sucrose in foods; besides the fact that it can be converted to isomalt, a dietary non-cariogenic sugar alcohol used in pharmaceuticals as well as in the food industry. Isomaltulose (6-O-α-D-glucopyronosyl-1-6-D-fructofuranose is a disaccharide reducer obtained by the enzymatic conversion of sucrose - the α-glucosyltransferase enzyme. Different treatments were performed for the preparation of whole cells; lysed cells; and crude enzyme extract of Erwinia sp. D12 strain immobilized in calcium alginate. The packed bed column of granules, containing Erwinia sp. cells sonicated and immobilized in calcium alginate (CSI, reached a maximum conversion of 53-59% sucrose into isomaltulose and it presented activity for 480 hours. The converted syrup was purified and the isomaltulose crystallization was performed through the lowering of temperature. The isomaltulose crystals presented purity of 96.5%.

  3. Functions and origin of plasmids in Erwinia species that are pathogenic to or epiphytically associated with pome fruit trees.

    Science.gov (United States)

    Llop, Pablo; Barbé, Silvia; López, María M

    The genus Erwinia includes plant-associated pathogenic and non-pathogenic species. Among them, all species pathogenic to pome fruit trees ( E. amylovora, E. pyrifoliae, E. piriflorinigrans, Erwinia sp. from Japan) cause similar symptoms, but differ in their degrees of aggressiveness, i.e. in symptoms, host range or both. The presence of plasmids of similar size, in the range of 30 kb, is a common characteristic that they possess. Besides, they share some genetic content with high homology in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes. Knowledge of the content of these plasmids and comparative genetic analyses may provide interesting new clues to understanding the origin and evolution of these pathogens and the level of symptoms they produce. Furthermore, genetic similarities observed among some of the plasmids (and genomes) from the above indicated pathogenic species and E. tasmaniensis or E. billingiae , which are epiphytic on the same hosts, may reveal associations that could expose the mechanisms of origin of pathogens. A summary of the current information on their plasmids and the relationships among them is presented here.

  4. A Sequential Statistical Approach towards an Optimized Production of a Broad Spectrum Bacteriocin Substance from a Soil Bacterium Bacillus sp. YAS 1 Strain

    Directory of Open Access Journals (Sweden)

    Amira M. Embaby

    2014-01-01

    Full Text Available Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken was employed to optimize bacteriocin (BAC YAS 1 production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v, incubation time (62 hrs, and agitation speed (207 rpm in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora. BAC YAS 1 showed activity over a wide range of pH (1–13 and temperature (45–80°C. A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium, the plant pathogen (E. amylovora, and the food spoiler (Listeria innocua was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri. Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries.

  5. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Bentancor Marcel

    2007-10-01

    Full Text Available Abstract Background Vascular plants respond to pathogens by activating a diverse array of defense mechanisms. Studies with these plants have provided a wealth of information on pathogen recognition, signal transduction and the activation of defense responses. However, very little is known about the infection and defense responses of the bryophyte, Physcomitrella patens, to well-studied phytopathogens. The purpose of this study was to determine: i whether two representative broad host range pathogens, Erwinia carotovora ssp. carotovora (E.c. carotovora and Botrytis cinerea (B. cinerea, could infect Physcomitrella, and ii whether B. cinerea, elicitors of a harpin (HrpN producing E.c. carotovora strain (SCC1 or a HrpN-negative strain (SCC3193, could cause disease symptoms and induce defense responses in Physcomitrella. Results B. cinerea and E.c. carotovora were found to readily infect Physcomitrella gametophytic tissues and cause disease symptoms. Treatments with B. cinerea spores or cell-free culture filtrates from E.c. carotovoraSCC1 (CF(SCC1, resulted in disease development with severe maceration of Physcomitrella tissues, while CF(SCC3193 produced only mild maceration. Although increased cell death was observed with either the CFs or B. cinerea, the occurrence of cytoplasmic shrinkage was only visible in Evans blue stained protonemal cells treated with CF(SCC1 or inoculated with B. cinerea. Most cells showing cytoplasmic shrinkage accumulated autofluorescent compounds and brown chloroplasts were evident in a high proportion of these cells. CF treatments and B. cinerea inoculation induced the expression of the defense-related genes: PR-1, PAL, CHS and LOX. Conclusion B. cinerea and E.c. carotovora elicitors induce a defense response in Physcomitrella, as evidenced by enhanced expression of conserved plant defense-related genes. Since cytoplasmic shrinkage is the most common morphological change observed in plant PCD, and that harpins and B

  6. Agrobacterium tumefaciens is a diazotrophic bacterium

    International Nuclear Information System (INIS)

    Kanvinde, L.; Sastry, G.R.K.

    1990-01-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate 15 N supplied as 15 N 2 . As with most other well-characterized diazotrophic bacteria, the presence of NH 4 + in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship

  7. Agrobacterium tumefaciens is a diazotrophic bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Kanvinde, L.; Sastry, G.R.K. (Univ. of Leeds (England))

    1990-07-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate {sup 15}N supplied as {sup 15}N{sub 2}. As with most other well-characterized diazotrophic bacteria, the presence of NH{sub 4}{sup +} in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.

  8. The chemical formula of a magnetotactic bacterium.

    Science.gov (United States)

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life. Copyright © 2011 Wiley Periodicals, Inc.

  9. Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity

    Directory of Open Access Journals (Sweden)

    Frey Jürg E

    2010-01-01

    Full Text Available Abstract Background Erwinia pyrifoliae is a newly described necrotrophic pathogen, which causes fire blight on Asian (Nashi pear and is geographically restricted to Eastern Asia. Relatively little is known about its genetics compared to the closely related main fire blight pathogen E. amylovora. Results The genome of the type strain of E. pyrifoliae strain DSM 12163T, was sequenced using both 454 and Solexa pyrosequencing and annotated. The genome contains a circular chromosome of 4.026 Mb and four small plasmids. Based on their respective role in virulence in E. amylovora or related organisms, we identified several putative virulence factors, including type III and type VI secretion systems and their effectors, flagellar genes, sorbitol metabolism, iron uptake determinants, and quorum-sensing components. A deletion in the rpoS gene covering the most conserved region of the protein was identified which may contribute to the difference in virulence/host-range compared to E. amylovora. Comparative genomics with the pome fruit epiphyte Erwinia tasmaniensis Et1/99 showed that both species are overall highly similar, although specific differences were identified, for example the presence of some phage gene-containing regions and a high number of putative genomic islands containing transposases in the E. pyrifoliae DSM 12163T genome. Conclusions The E. pyrifoliae genome is an important addition to the published genome of E. tasmaniensis and the unfinished genome of E. amylovora providing a foundation for re-sequencing additional strains that may shed light on the evolution of the host-range and virulence/pathogenicity of this important group of plant-associated bacteria.

  10. Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae

    Directory of Open Access Journals (Sweden)

    Kuhl Heiner

    2010-06-01

    Full Text Available Abstract Background The genus Erwinia includes plant-associated pathogenic and non-pathogenic Enterobacteria. Important pathogens such as Erwinia amylovora, the causative agent of fire blight and E. pyrifoliae causing bacterial shoot blight of pear in Asia belong to this genus. The species E. tasmaniensis and E. billingiae are epiphytic bacteria and may represent antagonists for biocontrol of fire blight. The presence of genes that are putatively involved in virulence in E. amylovora and E. pyrifoliae is of special interest for these species in consequence. Results Here we provide the complete genome sequences of the pathogenic E. pyrifoliae strain Ep1/96 with a size of 4.1 Mb and of the non-pathogenic species E. billingiae strain Eb661 with a size of 5.4 Mb, de novo determined by conventional Sanger sequencing and next generation sequencing techniques. Genome comparison reveals large inversions resulting from homologous recombination events. Furthermore, comparison of deduced proteins highlights a relation of E. billingiae strain Eb661 to E. tasmaniensis strain Et1/99 and a distance to E. pyrifoliae for the overall gene content as well as for the presence of encoded proteins representing virulence factors for the pathogenic species. Pathogenicity of E. pyrifoliae is supposed to have evolved by accumulation of potential virulence factors. E. pyrifoliae carries factors for type III secretion and cell invasion. Other genes described as virulence factors for E. amylovora are involved in the production of exopolysaccharides, the utilization of plant metabolites such as sorbitol and sucrose. Some virulence-associated genes of the pathogenic species are present in E. tasmaniensis but mostly absent in E. billingiae. Conclusion The data of the genome analyses correspond to the pathogenic lifestyle of E. pyrifoliae and underlines the epiphytic localization of E. tasmaniensis and E. billingiae as a saprophyte.

  11. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora.

    OpenAIRE

    Pirhonen, M; Flego, D; Heikinheimo, R; Palva, E T

    1993-01-01

    Virulence of the plant pathogen Erwinia carotovora subsp. carotovora is dependent on the production and secretion of a complex arsenal of plant cell wall-degrading enzymes. Production of these exoenzymes is controlled by a global regulatory mechanism. A virulent mutants in one of the regulatory loci, expI, show a pleiotropic defect in the growth phase-dependent transcriptional activation of exoenzyme gene expression. The expI gene encodes a 26 kDa polypeptide that is structurally and function...

  12. Requirement for two or more Erwinia carotovora subsp. carotovora pectolytic gene products for maceration of potato tuber tissue by Escherichia coli.

    OpenAIRE

    Roberts, D P; Berman, P M; Allen, C; Stromberg, V K; Lacy, G H; Mount, M S

    1986-01-01

    Several genes encoding enzymes capable of degrading plant cell wall components have been cloned from Erwinia carotovora subsp. carotovora EC14. Plasmids containing cloned EC14 DNA mediate the production of endo-pectate lyases, exo-pectate lyase, endo-polygalacturonase, and cellulase(s). Escherichia coli strains containing one of these plasmids or combinations of two plasmids were tested for their ability to macerate potato tuber slices. Only one E. coli strain, containing two plasmids that en...

  13. Ethanologenic potential of the bacterium Bacillus cereus NB-19 in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-01

    Dec 1, 2009 ... Ethanologenic bacterium was cultivated in a suspension of sugarcane ... bagasse is very useful for obtaining yields of the different products including cell mass and ethanol as ... the resources for the green fuel generation.

  14. Pantoea agglomerans: a marvelous bacterium of evil and good.Part I. Deleterious effects: Dust-borne endotoxins and allergens - focus on cotton dust.

    Science.gov (United States)

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Milanowski, Janusz

    2015-01-01

    The ubiquitous Gram-negative bacterium Pantoea agglomerans (synonyms: Enterobacter agglomerans, Erwinia herbicola) is known both as an epiphytic microbe developing on the surface of plants and as an endophytic organism living inside the plants. The bacterium occurs also abundantly in plant and animal products, in the body of arthropods and other animals, in water, soil, dust and air, and occasionally in humans. From the human viewpoint, the role of this organism is ambiguous, both deleterious and beneficial: on one side it causes disorders in people exposed to inhalation of organic dusts and diseases of crops, and on the other side it produces substances effective in the treatment of cancer and other diseases of humans and animals, suppresses the development of various plant pathogens, promotes plant growth, and appears as a potentially efficient biofertilizer and bioremediator. P. agglomerans was identified as a predominant bacterium on cotton plant grown all over the world, usually as an epiphyte, rarely as pathogen. It is particularly numerous on cotton bract after senescence. During processing of cotton in mills, bacteria and their products are released with cotton dust into air and are inhaled by workers, causing respiratory and general disorders, usually defined as byssinosis. The most adverse substance is endotoxin, a heteropolymer macromolecule present in the outermost part of the cell wall, consisting of lipopolysaccharide (LPS) as a major constituent, phospholipids and protein. The numerous experiments carried out in last quarter of XXth century on laboratory animals and human volunteers supported a convincing evidence that the inhaled endotoxin produced by P. agglomerans causes numerous pathologic effects similar to those elicited by cotton dust, such as influx of free lung cells into airways and activation of alveolar macrophages which secrete mediators (prostaglandins, platelet-activating factor, interleukin-1, tumor necrosis factor) that cause

  15. Pantoea agglomerans: a marvelous bacterium of evil and good.Part I. Deleterious effects: Dust-borne endotoxins and allergens – focus on cotton dust

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2015-12-01

    Full Text Available The ubiquitous Gram-negative bacterium Pantoea agglomerans (synonyms: Enterobacter agglomerans, Erwinia herbicola is known both as an epiphytic microbe developing on the surface of plants and as an endophytic organism living inside the plants. The bacterium occurs also abundantly in plant and animal products, in the body of arthropods and other animals, in water, soil, dust and air, and occasionally in humans. From the human viewpoint, the role of this organism is ambiguous, both deleterious and beneficial: on one side it causes disorders in people exposed to inhalation of organic dusts and diseases of crops, and on the other side it produces substances effective in the treatment of cancer and other diseases of humans and animals, suppresses the development of various plant pathogens, promotes plant growth, and appears as a potentially efficient biofertilizer and bioremediator. P. agglomerans was identified as a predominant bacterium on cotton plant grown all over the world, usually as an epiphyte, rarely as pathogen. It is particularly numerous on cotton bract after senescence. During processing of cotton in mills, bacteria and their products are released with cotton dust into air and are inhaled by workers, causing respiratory and general disorders, usually defined as byssinosis. The most adverse substance is endotoxin, a heteropolymer macromolecule present in the outermost part of the cell wall, consisting of lipopolysaccharide (LPS as a major constituent, phospholipids and protein. The numerous experiments carried out in last quarter of XXth century on laboratory animals and human volunteers supported a convincing evidence that the inhaled endotoxin produced by P. agglomerans causes numerous pathologic effects similar to those elicited by cotton dust, such as influx of free lung cells into airways and activation of alveolar macrophages which secrete mediators (prostaglandins, platelet-activating factor, interleukin-1, tumor necrosis factor

  16. Pantoea agglomerans : a marvelous bacterium of evil and good. Part I. Deleterious effects: Dust-borne endotoxins and allergens – focus on cotton dust

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2015-12-01

    Full Text Available The ubiquitous Gram-negative bacterium Pantoea agglomerans (synonyms: Enterobacter agglomerans , Erwinia herbicola is known both as an epiphytic microbe developing on the surface of plants and as an endophytic organism living inside the plants. The bacterium occurs also abundantly in plant and animal products, in the body of arthropods and other animals, in water, soil, dust and air, and occasionally in humans. From the human viewpoint, the role of this organism is ambiguous, both deleterious and beneficial: on one side it causes disorders in people exposed to inhalation of organic dusts and diseases of crops, and on the other side it produces substances effective in the treatment of cancer and other diseases of humans and animals, suppresses the development of various plant pathogens, promotes plant growth, and appears as a potentially efficient biofertilizer and bioremediator. P. agglomerans was identified as a predominant bacterium on cotton plant grown all over the world, usually as an epiphyte, rarely as pathogen. It is particularly numerous on cotton bract after senescence. During processing of cotton in mills, bacteria and their products are released with cotton dust into air and are inhaled by workers, causing respiratory and general disorders, usually defined as byssinosis. The most adverse substance is endotoxin, a heteropolymer macromolecule present in the outermost part of the cell wall, consisting of lipopolysaccharide (LPS as a major constituent, phospholipids and protein. The numerous experiments carried out in last quarter of XXth century on laboratory animals and human volunteers supported a convincing evidence that the inhaled endotoxin produced by P. agglomerans causes numerous pathologic effects similar to those elicited by cotton dust, such as influx of free lung cells into airways and activation of alveolar macrophages which secrete mediators (prostaglandins, platelet-activating factor, interleukin-1, tumor necrosis factor

  17. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  18. Diversity, evolution, and functionality of clustered regularly interspaced short palindromic repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora.

    Science.gov (United States)

    Rezzonico, Fabio; Smits, Theo H M; Duffy, Brion

    2011-06-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system confers acquired heritable immunity against mobile nucleic acid elements in prokaryotes, limiting phage infection and horizontal gene transfer of plasmids. In CRISPR arrays, characteristic repeats are interspersed with similarly sized nonrepetitive spacers derived from transmissible genetic elements and acquired when the cell is challenged with foreign DNA. New spacers are added sequentially and the number and type of CRISPR units can differ among strains, providing a record of phage/plasmid exposure within a species and giving a valuable typing tool. The aim of this work was to investigate CRISPR diversity in the highly homogeneous species Erwinia amylovora, the causal agent of fire blight. A total of 18 CRISPR genotypes were defined within a collection of 37 cosmopolitan strains. Strains from Spiraeoideae plants clustered in three major groups: groups II and III were composed exclusively of bacteria originating from the United States, whereas group I generally contained strains of more recent dissemination obtained in Europe, New Zealand, and the Middle East. Strains from Rosoideae and Indian hawthorn (Rhaphiolepis indica) clustered separately and displayed a higher intrinsic diversity than that of isolates from Spiraeoideae plants. Reciprocal exclusion was generally observed between plasmid content and cognate spacer sequences, supporting the role of the CRISPR/Cas system in protecting against foreign DNA elements. However, in several group III strains, retention of plasmid pEU30 is inconsistent with a functional CRISPR/Cas system.

  19. Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core.

    Directory of Open Access Journals (Sweden)

    Rachel A Mann

    Full Text Available The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus and strains infecting Rubus (raspberries and blackberries. Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains, the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1(Ea and a putative secondary metabolite pathway only present in Rubus-infecting strains.

  20. Expression of the dspA/E gene of Erwinia amylovora in non-host plant Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hasan Murat Aksoy

    2017-01-01

    Full Text Available In the Erwinia amylovora genome, the hrp gene cluster containing the dspA/E/EB/F operon plays a crucial role in mediating the pathogenicity and the hypersensitive response (HR in the host plant. The role of the dspA/E gene derived from E. amylovora was investigated by monitoring the expression of the β-glucuronidase (GUS reporter system in transgenic Arabidopsis thaliana cv. Pri-Gus seedlings. A mutant ΔdspA/E strain of E. amylovora was generated to contain a deletion of the dspA/E gene for the purpose of this study. Two-week-old seedlings of GUS transgenic Arabidopsis were vacuum-infiltrated with the wild-type and the mutant (ΔdspA/E E. amylovora strains. The Arabidopsis seedlings were fixed and stained for GUS activity after 3–5 days following infiltration. The appearance of dense spots with blue staining on the Arabidopsis leaves indicated the typical characteristic of GUS activity. This observation indicated that the wild-type E. amylovora strain had induced a successful and efficient infection on the A. thaliana Pri-Gus leaves. In contrast, there was no visible GUS expression on leaf tissues which were inoculated with the ΔdspA/E mutant E. amylovora strain. These results indicate that the dspA/E gene is required by the bacterial cells to induce HR in non-host plants.

  1. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora.

    Science.gov (United States)

    Norman-Setterblad, C; Vidal, S; Palva, E T

    2000-04-01

    We have characterized the role of salicylic acid (SA)-independent defense signaling in Arabidopsis thaliana in response to the plant pathogen Erwinia carotovora subsp. carotovora. Use of pathway-specific target genes as well as signal mutants allowed us to elucidate the role and interactions of ethylene, jasmonic acid (JA), and SA signal pathways in this response. Gene expression studies suggest a central role for both ethylene and JA pathways in the regulation of defense gene expression triggered by the pathogen or by plant cell wall-degrading enzymes (CF) secreted by the pathogen. Our results suggest that ethylene and JA act in concert in this regulation. In addition, CF triggers another, strictly JA-mediated response inhibited by ethylene and SA. SA does not appear to have a major role in activating defense gene expression in response to CF. However, SA may have a dual role in controlling CF-induced gene expression, by enhancing the expression of genes synergistically induced by ethylene and JA and repressing genes induced by JA alone.

  2. Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora.

    Science.gov (United States)

    Mäe, A; Montesano, M; Koiv, V; Palva, E T

    2001-09-01

    Bacterial pheromones, mainly different homoserine lactones, are central to a number of bacterial signaling processes, including those involved in plant pathogenicity. We previously demonstrated that N-oxoacyl-homoserine lactone (OHL) is essential for quorum sensing in the soft-rot phytopathogen Erwinia carotovora. In this pathogen, OHL controls the coordinate activation of genes encoding the main virulence determinants, extracellular plant cell wall degrading enzymes (PCWDEs), in a cell density-dependent manner. We suggest that E. carotovora employ quorum sensing to avoid the premature production of PCWDEs and subsequent activation of plant defense responses. To test whether modulating this sensory system would affect the outcome of a plant-pathogen interaction, we generated transgenic tobacco, producing OHL. This was accomplished by ectopic expression in tobacco of the E. carotovora gene expI, which is responsible for OHL biosynthesis. We show that expI-positive transgenic tobacco lines produced the active pheromone and partially complemented the avirulent phenotype of expI mutants. The OHL-producing tobacco lines exhibited enhanced resistance to infection by wild-type E. carotovora. The results were confirmed by exogenous addition of OHL to wild-type plants, which also resulted in increased resistance to E. carotovora.

  3. Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora.

    Science.gov (United States)

    Cellini, Antonio; Buriani, Giampaolo; Rocchi, Lorenzo; Rondelli, Elena; Savioli, Stefano; Rodriguez Estrada, Maria T; Cristescu, Simona M; Costa, Guglielmo; Spinelli, Francesco

    2018-01-01

    Volatile organic compounds emitted during the infection of apple (Malus pumila var. domestica) plants by Erwinia amylovora or Pseudomonas syringae pv. syringae were studied by gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry, and used to treat uninfected plants. Infected plants showed a disease-specific emission of volatile organic compounds, including several bio-active compounds, such as hexenal isomers and 2,3-butanediol. Leaf growth promotion and a higher resistance to the pathogen, expressed as a lower bacterial growth and migration in plant tissues, were detected in plants exposed to volatile compounds from E. amylovora-infected plants. Transcriptional analysis revealed the activation of salicylic acid synthesis and signal transduction in healthy plants exposed to volatiles produced by E. amylovora-infected neighbour plants. In contrast, in the same plants, salicylic acid-dependent responses were repressed after infection, whereas oxylipin metabolism was activated. These results clarify some metabolic and ecological aspects of the pathogenic adaptation of E. amylovora to its host. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  4. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  5. Oligogalacturonide-mediated induction of a gene involved in jasmonic acid synthesis in response to the cell-wall-degrading enzymes of the plant pathogen Erwinia carotovora.

    Science.gov (United States)

    Norman, C; Vidal, S; Palva, E T

    1999-07-01

    Identification of Arabidopsis thaliana genes responsive to plant cell-wall-degrading enzymes of Erwinia carotovora subsp. carotovora led to the isolation of a cDNA clone with high sequence homology to the gene for allene oxide synthase, an enzyme involved in the biosynthesis of jasmonates. Expression of the corresponding gene was induced by the extracellular enzymes from this pathogen as well as by treatment with methyl jasmonate and short oligogalacturonides (OGAs). This suggests that OGAs are involved in the induction of the jasmonate pathway during plant defense response to E. carotovora subsp. carotovora attack.

  6. Seca dos ponteiros da goiabeira causada por Erwinia psidii: níveis de incidência e aspectos epidemiológicos Guava bacterial blight due to Erwinia psidii: incidence levels and epidemiological aspects

    Directory of Open Access Journals (Sweden)

    Abi Soares Anjos Marques

    2007-01-01

    Full Text Available Um dos fatores limitantes ao cultivo da goiabeira no Brasil é a 'seca dos ponteiros', causada por Erwinia psidii, presente nas regiões Sudeste e Centro-Oeste, onde se concentram grandes áreas produtoras. Considerando a pequena disponibilidade de informações sobre a epidemiologia e níveis de incidência dessa bacteriose, este estudo teve como objetivos: confirmar a distribuição e verificar a dispersão da seca dos ponteiros da goiabeira no Distrito Federal; investigar o efeito da temperatura sobre a multiplicação in vitro de E. psidii; desenvolver um teste de patogenicidade prático e eficiente e avaliar a sobrevivência in vitro da bactéria em diferentes substratos. A doença foi identificada em 56% das propriedades produtoras avaliadas no DF, com 81,9% de correlação entre a presença de sintomas e o diagnóstico laboratorial. A melhor faixa de temperatura para multiplicação de E. psidii foi de 24 a 33 ºC, e a bactéria permaneceu viável por até 120 dias em suspensão em água. A inoculação da bactéria em folhas ou hastes destacadas levou ao aparecimento de sintomas a partir do sétimo dia e mostrou-se eficiente como um teste rápido para se avaliar a patogenicidade de isolados.A major disease that affects guava is 'bacterial blight', caused by Erwinia psidii, which has been reported in Southeastern and Central Regions of Brazil where the major producing areas are located. Considering the lack of information on epidemiology and incidence levels of this disease, the objectives of this study were to confirm the presence and to verify the spread of the disease in Distrito Federal (DF; to determine optimal temperature for in vitro multiplication of E. psidii; to develop a simple and effective method for pathogenicity testing and to evaluate in vitro bacterial survival on different substrates. The disease was detected in 56% of producing orchards evaluated in DF, with a correlation of 81, 9% between presence of symptoms and

  7. Antagonistic bioactivity of an endophytic bacterium isolated from ...

    African Journals Online (AJOL)

    Antagonistic bioactivity of an endophytic bacterium isolated from Epimedium brevicornu Maxim. R He, G Wang, X Liu, C Zhang, F Lin. Abstract. Endophytic bacteria are one of the most potential biological control agents in plant disease protection. The aim of this work was to evaluate the antimicrobial activities of a strain of ...

  8. The physiology of the filamentous bacterium Microthrix parvicella

    NARCIS (Netherlands)

    Slijkhuis, H.

    1983-01-01

    A study has been made of the physiology of Microthrix parvicella. This filamentous bacterium often causes poor settleability of activated sludge in oxidation ditches supplied with domestic sewage. The organism was found to utilize only long chain fatty acids (preferably in

  9. The Bacterium That Got Infected by a Cow! - Horizontal Gene

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 1. The Bacterium That Got Infected by a Cow! - Horizontal Gene Transfer and Evolution. Saurabh Dhawan Tomás John Ryan. General Article Volume 12 Issue 1 January 2007 pp 49-59 ...

  10. Monitoring of a novel bacterium, Lactobacillus thermotolerans , in ...

    African Journals Online (AJOL)

    Abstract. We successfully established fluorescence in situ hybridization (FISH) method for specific detection and enumeration of a novel bacterium, Lactobacillus thermotolerans, in chicken feces. The specific FISH probes were designed based on the L. thermotolerans 16S rRNA gene sequences, and these sequences were ...

  11. methoxyethanol by a new bacterium isolate Pseudomonas sp. Strain

    African Journals Online (AJOL)

    Michael Horsfall

    A 2-methoxyethanol degrading bacterium was isolated from anaerobic sludge of a municipal sewage from ... Stoichiometrically, the strain utilized one mole of oxygen per one mole of 2-methoxyethanol instead of ... physiological and biochemical characterization of the .... observed with acetate and the intact resting cells.

  12. Non-obligate predatory bacterium burkholderia casidaeand uses thereof

    OpenAIRE

    1998-01-01

    A novel predator bacterium Burkholderia casidae is disclosed. The invention is directed to the isolation and use of Burkholderia casidae to control microbial diseases of plants. The genetic, biochemical and physiological characteristics of Burkholderia casidae are described. Biocontrol compositions comprising Burkholderia casidae, and antimicrobial compounds and antimicrobial preparations prepared from Burkholderia casidae are also disclosed, as are methods for accomplishing all of the forego...

  13. Non-obligate predatory bacterium Burkholderia casidae and uses thereof

    OpenAIRE

    2001-01-01

    A novel predator bacterium Burkholderia casidae is disclosed. The invention is directed to the isolation and use of Burkholderia casidae to control microbial diseases of plants. The genetic, biochemical and physiological characteristics of Burkholderia casidae are described. Biocontrol compositions comprising Burkholderia casidae, and antimicrobial compounds and antimicrobial preparations prepared from Burkholderia casidae are also disclosed, as are methods for accomplishing all of the forego...

  14. The genome of the Erwinia amylovora phage PhiEaH1 reveals greater diversity and broadens the applicability of phages for the treatment of fire blight.

    Science.gov (United States)

    Meczker, Katalin; Dömötör, Dóra; Vass, János; Rákhely, Gábor; Schneider, György; Kovács, Tamás

    2014-01-01

    The enterobacterium Erwinia amylovora is the causal agent of fire blight. This study presents the analysis of the complete genome of phage PhiEaH1, isolated from the soil surrounding an E. amylovora-infected apple tree in Hungary. Its genome is 218 kb in size, containing 244 ORFs. PhiEaH1 is the second E. amylovora infecting phage from the Siphoviridae family whose complete genome sequence was determined. Beside PhiEaH2, PhiEaH1 is the other active component of Erwiphage, the first bacteriophage-based pesticide on the market against E. amylovora. Comparative genome analysis in this study has revealed that PhiEaH1 not only differs from the 10 formerly sequenced E. amylovora bacteriophages belonging to other phage families, but also from PhiEaH2. Sequencing of more Siphoviridae phage genomes might reveal further diversity, providing opportunities for the development of even more effective biological control agents, phage cocktails against Erwinia fire blight disease of commercial fruit crops.

  15. Biosorption of heavy metals by a marine bacterium

    International Nuclear Information System (INIS)

    Iyer, Anita; Mody, Kalpana; Jha, Bhavanath

    2005-01-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here

  16. Biosorption of heavy metals by a marine bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Anita [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India); Mody, Kalpana [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)]. E-mail: khmody@csmcri.org; Jha, Bhavanath [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)

    2005-03-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here.

  17. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    OpenAIRE

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and c...

  18. Antibacterial marine bacterium deter luminous vibriosis in shrimp larvae

    OpenAIRE

    Abraham, T.J.

    2004-01-01

    Inhibitory activity of a marine pigmented bacterium - Alteromonas sp. - isolated from Penaeus monodon Fabricius larva against pathogenic and environmental isolates of Vibrio harveyi was studied. All the isolates were inhibited to varying degrees by Alteromonas sp. in vitro. The antibacterial substance produced by the Alteromonas sp. was soluble in organic solvent and closely bound to the external surface of bacterial cells. The antibacterial Alteromonas sp., when allowed to colonize on shrimp...

  19. Initiation of chromosomal replication in predatory bacterium Bdellovibrio bacteriovorus

    Directory of Open Access Journals (Sweden)

    Lukasz Makowski

    2016-11-01

    Full Text Available Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase and replicating cells (the intracellular-growth phase. The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication – DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box (5’-NN(A/TTCCACA-3’. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus. We compared the architecture of the DnaA–oriC complexes (orisomes in homologous (oriC and DnaA from B. bacteriovorus and heterologous (BdoriC and DnaA from prey, E. coli or P. aeruginosa systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium.

  20. MODELING OF MIXED CHEMOSTAT CULTURES OF AN AEROBIC BACTERIUM, COMAMONAS-TESTOSTERONI, AND AN ANAEROBIC BACTERIUM, VEILLONELLA-ALCALESCENS - COMPARISON WITH EXPERIMENTAL-DATA

    NARCIS (Netherlands)

    GERRITSE, J; SCHUT, F; GOTTSCHAL, JC

    A mathematical model of mixed chemostat cultures of the obligately aerobic bacterium Comamonas testosteroni and the anaerobic bacterium Veillonella alcalescens grown under dual limitation Of L-lactate and oxygen was constructed. The model was based on Michaelis-Menten-type kinetics for the

  1. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a

  2. Water relations of Pseudomonas solanacearum

    African Journals Online (AJOL)

    GREGORY

    2010-08-30

    Aug 30, 2010 ... pathogens of plants, especially, Erwinia chrysanthemi. (Mildenhall et al., 1988; Prior et al., 1994; Gouesbet et al., 1995; Gouesbet et al., 1996). This helps to determine how they survive in dry soil for long periods as saprophytes. Experiments undertaken here on P. solanacearum give a glimpse of what may ...

  3. Optimization, purification and characterization of recombinant L ...

    African Journals Online (AJOL)

    We studied optimal L-asparaginase sequence from GenBank accession number X12746 encoding for Lasparaginase from Erwinia chrysanthemi NCPPB1125. The expression level of recombinant Lasparaginase was determined as 78% of the total proteins. The purified L-asparaginase had a molecular mass of 37 kDa with ...

  4. Dickeya species: an emerging problem for potato production in Europe

    NARCIS (Netherlands)

    Toth, I.K.; Wolf, van der J.M.; Saddler, G.; Lojkowska, E.; Hélias, V.; Pirhonen, M.; Tsror, L.; Elphinstone, J.G.

    2011-01-01

    Dickeya species (formerly Erwinia chrysanthemi) cause diseases on numerous crop and ornamental plants world-wide. Dickeya spp. (probably D. dianthicola) were first reported on potato in the Netherlands in the 1970s and have since been detected in many other European countries. However, since 2004–5

  5. Novel mutants of Erwinia carotovora subsp. carotovora defective in the production of plant cell wall degrading enzymes generated by Mu transpososome-mediated insertion mutagenesis.

    Science.gov (United States)

    Laasik, Eve; Ojarand, Merli; Pajunen, Maria; Savilahti, Harri; Mäe, Andres

    2005-02-01

    As in Erwinia carotovora subsp. carotovora the regulation details of the main virulence factors, encoding extracellular enzymes that degrade the plant cell wall, is only rudimentally understood, we performed a genetic screen to identify novel candidate genes involved in the process. Initially, we used Mu transpososome-mediated mutagenesis approach to generate a comprehensive transposon insertion mutant library of ca. 10000 clones and screened the clones for the loss of extracellular enzyme production. Extracellular enzymes production was abolished by mutations in the chromosomal helEcc, trkAEcc yheLEcc, glsEcc, igaAEcc and cysQEcc genes. The findings reported here demonstrate that we have isolated six new representatives that belong to the pool of genes modulating the production of virulence factors in E. carotovora.

  6. Systems level analysis of two-component signal transduction systems in Erwinia amylovora: Role in virulence, regulation of amylovoran biosynthesis and swarming motility

    Directory of Open Access Journals (Sweden)

    Sundin George W

    2009-05-01

    Full Text Available Abstract Background Two-component signal transduction systems (TCSTs, consisting of a histidine kinase (HK and a response regulator (RR, represent a major paradigm for signal transduction in prokaryotes. TCSTs play critical roles in sensing and responding to environmental conditions, and in bacterial pathogenesis. Most TCSTs in Erwinia amylovora have either not been identified or have not yet been studied. Results We used a systems approach to identify TCST and related signal transduction genes in the genome of E. amylovora. Comparative genomic analysis of TCSTs indicated that E. amylovora TCSTs were closely related to those of Erwinia tasmaniensis, a saprophytic enterobacterium isolated from apple flowers, and to other enterobacteria. Forty-six TCST genes in E. amylovora including 17 sensor kinases, three hybrid kinases, 20 DNA- or ligand-binding RRs, four RRs with enzymatic output domain (EAL-GGDEF proteins, and two kinases were characterized in this study. A systematic TCST gene-knockout experiment was conducted, generating a total of 59 single-, double-, and triple-mutants. Virulence assays revealed that five of these mutants were non-pathogenic on immature pear fruits. Results from phenotypic characterization and gene expression experiments indicated that several groups of TCST systems in E. amylovora control amylovoran biosynthesis, one of two major virulence factors in E. amylovora. Both negative and positive regulators of amylovoran biosynthesis were identified, indicating a complex network may control this important feature of pathogenesis. Positive (non-motile, EnvZ/OmpR, negative (hypermotile, GrrS/GrrA, and intermediate regulators for swarming motility in E. amylovora were also identified. Conclusion Our results demonstrated that TCSTs in E. amylovora played major roles in virulence on immature pear fruit and in regulating amylovoran biosynthesis and swarming motility. This suggested presence of regulatory networks governing

  7. Lon protease modulates virulence traits in Erwinia amylovora by direct monitoring of major regulators and indirectly through the Rcs and Gac-Csr regulatory systems.

    Science.gov (United States)

    Lee, Jae Hoon; Ancona, Veronica; Zhao, Youfu

    2018-04-01

    Lon, an ATP-dependent protease in bacteria, influences diverse cellular processes by degrading damaged, misfolded and short-lived regulatory proteins. In this study, we characterized the effects of lon mutation and determined the molecular mechanisms underlying Lon-mediated virulence regulation in Erwinia amylovora, an enterobacterial pathogen of apple. Erwinia amylovora depends on the type III secretion system (T3SS) and the exopolysaccharide (EPS) amylovoran to cause disease. Our results showed that mutation of the lon gene led to the overproduction of amylovoran, increased T3SS gene expression and the non-motile phenotype. Western blot analyses showed that mutation in lon directly affected the accumulation and stability of HrpS/HrpA and RcsA. Mutation in lon also indirectly influenced the expression of flhD, hrpS and csrB through the accumulation of the RcsA/RcsB proteins, which bind to the promoter of these genes. In addition, lon expression is under the control of CsrA, possibly at both the transcriptional and post-transcriptional levels. Although mutation in csrA abolished both T3SS and amylovoran production, deletion of the lon gene in the csrA mutant only rescued amylovoran production, but not T3SS. These results suggest that CsrA might positively control both T3SS and amylovoran production partly by suppressing Lon, whereas CsrA may also play a critical role in T3SS by affecting unknown targets. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  8. Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa.

    Science.gov (United States)

    Killiny, Nabil; Prado, Simone S; Almeida, Rodrigo P P

    2010-09-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.

  9. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    Science.gov (United States)

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain.

  10. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  11. Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins

    Directory of Open Access Journals (Sweden)

    De Maayer Pieter

    2011-11-01

    Full Text Available Abstract Background The Type VI secretion apparatus is assembled by a conserved set of proteins encoded within a distinct locus. The putative effector proteins Hcp and VgrG are also encoded within these loci. We have identified numerous distinct Type VI secretion system (T6SS loci in the genomes of several ecologically diverse Pantoea and Erwinia species and detected the presence of putative effector islands associated with the hcp and vgrG genes. Results Between two and four T6SS loci occur among the Pantoea and Erwinia species. While two of the loci (T6SS-1 and T6SS-2 are well conserved among the various strains, the third (T6SS-3 locus is not universally distributed. Additional orthologous loci are present in Pantoea sp. aB-valens and Erwinia billingiae Eb661. Comparative analysis of the T6SS-1 and T6SS-3 loci showed non-conserved islands associated with the vgrG and hcp, and vgrG genes, respectively. These regions had a G+C content far lower than the conserved portions of the loci. Many of the proteins encoded within the hcp and vgrG islands carry conserved domains, which suggests they may serve as effector proteins for the T6SS. A number of the proteins also show homology to the C-terminal extensions of evolved VgrG proteins. Conclusions Extensive diversity was observed in the number and content of the T6SS loci among the Pantoea and Erwinia species. Genomic islands could be observed within some of T6SS loci, which are associated with the hcp and vgrG proteins and carry putative effector domain proteins. We propose new hypotheses concerning a role for these islands in the acquisition of T6SS effectors and the development of novel evolved VgrG and Hcp proteins.

  12. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  13. Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Yasuo; Ishimi, Katsuhiro [Department of General Education, College of Science and Technology, Nihon University, Narashinodai, Chiba 274-8501 (Japan); Tokumoto, Masaru; Aihara, Yasuyuki; Oku, Masayo; Kohno, Hideki [Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Izumi-cho, Chiba 275-8575 (Japan); Wakayama, Tatsuki; Miyake, Jun [Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Nakoji, Amagasaki, Hyogo 661-0974 (Japan); Tomiyama, Masamitsu [Genetic Diversity Department, National Institute of Agrobiological Science, Tsukuba, Ibaraki 305-8602 (Japan)

    2006-09-15

    Hydrogen production with glucose by using co-immobilized cultures of a lactic acid bacterium, Lactobacillus delbrueckii NBRC13953, and a photosynthetic bacterium, Rhodobacter sphaeroides RV, in agar gels was studied. Glucose was converted to hydrogen gas in a yield of 7.1mol of hydrogen per mole of glucose at a maximum under illuminated conditions. (author)

  14. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Mathrani, Indra M.; Ahring, Birgitte Kiær

    1995-01-01

    An anaerobic, extremely thermophilic, cellulolytic, non-spore-forming bacterium, strain 6A, was isolated from an alkaline hot spring in Hverageroi, Iceland. The bacterium was non-motile, rod-shaped (1.5-3.5 x 0.7 mu m) and occurred singly, in pairs or in chains and stained gram-negative. The growth...

  15. Dense populations of a giant sulfur bacterium in Namibian shelf sediments

    DEFF Research Database (Denmark)

    Schulz, HN; Brinkhoff, T.; Ferdelman, TG

    1999-01-01

    A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA...

  16. Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii.

    Directory of Open Access Journals (Sweden)

    Konstantinos Mavromatis

    Full Text Available Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  17. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  18. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    Science.gov (United States)

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and contained cytochrome c3 and desulfoviridin. Except for furfural degradation, the characteristics of the furfural isolate were remarkably similar to those of the sulfate reducer Desulfovibrio gigas. The furfural isolate has been tentatively identified as Desulfovibrio sp. strain F-1. Images PMID:16346423

  19. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. Copyright © 2016, American Association for the Advancement of Science.

  20. The O-antigen structure of bacterium Comamonas aquatica CJG.

    Science.gov (United States)

    Wang, Xiqian; Kondakova, Anna N; Zhu, Yutong; Knirel, Yuriy A; Han, Aidong

    2017-11-01

    Genus Comamonas is a group of bacteria that are able to degrade a variety of environmental waste. Comamonas aquatica CJG (C. aquatica) in this genus is able to absorb low-density lipoprotein but not high-density lipoprotein of human serum. Using 1 H and 13 C NMR spectroscopy, we found that the O-polysaccharide (O-antigen) of this bacterium is comprised of a disaccharide repeat (O-unit) of d-glucose and 2-O-acetyl-l-rhamnose, which is shared by Serratia marcescens O6. The O-antigen gene cluster of C. aquatica, which is located between coaX and tnp4 genes, contains rhamnose synthesis genes, glycosyl and acetyl transferase genes, and ATP-binding cassette transporter genes, and therefore is consistent with the O-antigen structure determined here.

  1. The Immunogenicity of a Biological Simulant: Strategies for the Improvement of Antibody-Based Detection

    National Research Council Canada - National Science Library

    Grahame, David A; Gencic, Simonida; Bronk, Burt V

    2005-01-01

    .... The bacterium Pantoea agglomerans (formerly Erwinia herbicola, Eh) presently is used to simulate vegetative biological agents, however, anti-Eh antibodies of high affinity and specificity are needed...

  2. Complete genome sequence of the photoautotrophic and bacteriochlorophyll e-synthesizing green sulfur bacterium Chlorobaculum limnaeum DSM 1677T

    DEFF Research Database (Denmark)

    Tank, Marcus; Liu, Zhenfeng; Frigaard, Niels-Ulrik

    2017-01-01

    Chlorobaculum limnaeum DSM 1677T is a mesophilic, brown-colored, chlorophototrophic green sulfur bacterium that produces bacteriochlorophyll e and the carotenoid isorenieratene as major pigments. This bacterium serves as a model organism in molecular research on photosynthesis, sulfur metabolism...

  3. Produção de isomaltulose a partir da transformação enzimática da sacarose, utilizando-se Erwinia sp D12 imobilizada com alginato de cálcio Production of isomaltulose from enzymatic transformation of sucrose, using Erwinia sp D12 immobilized with calcium alginate

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Leite Moraes

    2005-03-01

    Full Text Available A glicosiltransferase de Erwinia sp D12 é capaz de converter a sacarose em isomaltulose (6-o-alfa-glicopiranosil D-frutofuranose, um açúcar alternativo que apresenta baixo potencial cariogênico, e que pode ser utilizado em chocolates, gomas de mascar e balas. A isomaltulose é também utilizada na produção de isomalte, uma mistura de açúcar álcool, de baixo valor calórico e baixo potencial cariogênico. No estudo da influência dos componentes do meio de cultivo, na produção de glicosiltransferase, em frascos agitados, foi obtido maior atividade da enzima (12,8 unidades de atividade/mL do meio de cultura em meio de cultura A constituído de melaço 12% (p/v de sólidos solúveis totais, peptona 4% (p/v e extrato de carne 0,4% (p/v. No estudo do efeito do tempo e da temperatura na fermentação da linhagem de Erwinia sp D12, em fermentador New Brunswick de 3L, contendo meio de cultura A, foi obtida maior atividade de glicosiltransferase (15,6 unidades de atividade/ mL de meio de cultura na fase exponencial de crescimento após 8 horas de fermentação a 30ºC. Na produção de isomaltulose a partir da sacarose utilizando-se células de Erwinia sp D12 imobilizadas em alginato de cálcio, estudou-se o efeito da temperatura (25 - 35ºC e da concentração de substrato (12,5 - 60% p/v. Foi obtido um rendimento em torno de 50% de isomaltulose, com soluções de sacarose entre 20-30% (p/v a 35ºC. Concentrações em excesso de sacarose (ao redor de 40% p/v afetaram a atividade da célula imobilizada, diminuindo a conversão de sacarose em isomaltulose. O xarope de isomaltulose foi purificado através de cromatografia de troca iônica e o eluato cristalizado por abaixamento de temperatura. Os cristais apresentaram 91,39% de isomaltulose.The glucosyltransferase of Erwinia sp D12 is able to convert sucrose into isomaltulose (6-0-alpha-D-glucopyranosyl-D-fructofuranose, an alternative sugar which presents low cariogenic potential, and can be

  4. T3SS-dependent differential modulations of the jasmonic acid pathway in susceptible and resistant genotypes of Malus spp. challenged with Erwinia amylovora.

    Science.gov (United States)

    Dugé De Bernonville, Thomas; Gaucher, Matthieu; Flors, Victor; Gaillard, Sylvain; Paulin, Jean-Pierre; Dat, James F; Brisset, Marie-Noëlle

    2012-06-01

    Fire blight is a bacterial disease of Maloideae caused by Erwinia amylovora (Ea). This necrogenic enterobacterium uses a type III secretion system (T3SS) to inject type III effectors into the plant cells to cause disease on its susceptible hosts, including economically important crops like apple and pear. The expressions of marker genes of the salicylic acid (SA) and jasmonic acid (JA) defense regulation pathways were monitored by RT-qPCR in leaves of two apple genotypes, one susceptible and one resistant, challenged with a wild type strain, a T3SS-deficient strain or water. The transcriptional data taken together with hormone level measurements indicated that the SA pathway was similarly induced in both apple genotypes during infection by Ea. On the contrary, the data clearly showed a strong T3SS-dependent down-regulation of the JA pathway in leaves of the susceptible genotype but not in those of the resistant one. Accordingly, methyl-jasmonate treated susceptible plants displayed an increased resistance to Ea. Bacterial mutant analysis indicated that JA manipulation by Ea mainly relies on the type III effector DspA/E. Taken together, our data suggest that the T3SS-dependent down-regulation of the JA pathway is a critical step in the infection process of Malus spp. by Ea. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Exploring new roles for the rpoS gene in the survival and virulence of the fire blight pathogen Erwinia amylovora.

    Science.gov (United States)

    Santander, Ricardo D; Monte-Serrano, Mercedes; Rodríguez-Herva, José J; López-Solanilla, Emilia; Rodríguez-Palenzuela, Pablo; Biosca, Elena G

    2014-12-01

    Erwinia amylovora causes fire blight in economically important plants of the family Rosaceae. This bacterial pathogen spends part of its life cycle coping with starvation and other fluctuating environmental conditions. In many Gram-negative bacteria, starvation and other stress responses are regulated by the sigma factor RpoS. We obtained an E. amylovora rpoS mutant to explore the role of this gene in starvation responses and its potential implication in other processes not yet studied in this pathogen. Results showed that E. amylovora needs rpoS to develop normal starvation survival and viable but nonculturable (VBNC) responses. Furthermore, this gene contributed to stationary phase cross-protection against oxidative, osmotic, and acid stresses and was essential for cross-protection against heat shock, but nonessential against acid shock. RpoS also mediated regulation of motility, exopolysaccharide synthesis, and virulence in immature loquats, but not in pear plantlets, and contributed to E. amylovora survival in nonhost tissues during incompatible interactions. Our results reveal some unique roles for the rpoS gene in E. amylovora and provide new knowledge on the regulation of different processes related to its ecology, including survival in different environments and virulence in immature fruits. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Drosophila larvae food intake cessation following exposure to Erwinia contaminated media requires odor perception, Trpa1 channel and evf virulence factor.

    Science.gov (United States)

    Keita, Seydou; Masuzzo, Ambra; Royet, Julien; Kurz, C Leopold

    2017-05-01

    When exposed to microorganisms, animals use several protective strategies. On one hand, as elegantly exemplified in Drosophila melanogaster, the innate immune system recognizes microbial compounds and triggers an antimicrobial response. On the other hand, behaviors preventing an extensive contact with the microbes and thus reducing the risk of infection have been described. However, these reactions ranging from microbes aversion to intestinal transit increase or food intake decrease have been rarely defined at the molecular level. In this study, we set up an experimental system that allowed us to rapidly identify and quantify food intake decreases in Drosophila larvae exposed to media contaminated with bacteria. Specifically, we report a robust dose-dependent food intake decrease following exposure to the bacteria Erwinia carotovora carotovora strain Ecc15. We demonstrate that this response does not require Imd innate immune pathway, but rather the olfactory neuronal circuitry, the Trpa1 receptor and the evf virulence factor. Finally, we show that Ecc15 induce the same behavior in the invasive pest insect Drosophila suzukii. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Phylogenetic analysis of PR genes in some pome fruit species with the emphasis on transcriptional analysis and ROS response under Erwinia amylovora inoculation in apple.

    Science.gov (United States)

    Hassani, Maryam; Salami, Seyed Alireza; Nasiri, Jaber; Abdollahi, Hamid; Ghahremani, Zahra

    2016-02-01

    Attempts were made to identify eight pathogenesis related (PR) genes (i.e., PR-1a, PR3-ch1, PR3-Ch2, PR3-Ch3, PR3-Ch4, PR3-Ch5, PR-5 and PR-8) from 27 genotypes of apple, quince and pear, which are induced in response to inoculation with the pathogen Erwinia amylovora, the causal agent of fire blight. Totally, 32 PR genes of different families were obtained, excepting PR3-Ch2 (amplified only in apple) and PR3-Ch4 (amplified only in apple and pear), the others were successfully amplified in all the genotypes of apple, quince and pear. Evolutionary, the genes of each family exhibited significant homology with each other, as the corresponded phylogenetic neighbor-joining-based dendrograms were taken into consideration. Meanwhile, according to the expression assay, it was deduced that the pathogen activity can significantly affect the expression levels of some selected PR genes of PR3-Ch2, PR3-Ch4, PR3-Ch5 and particularly Cat I in both resistant (MM-111) and semi-susceptible (MM-106) apple rootstocks. Lastly, it was concluded that the pathogen E. amylovora is able to stimulate ROS response, particularly using generation of hydrogen peroxide (H2O2) in both aforementioned apple rootstock.

  8. A two-component regulatory system, pehR-pehS, controls endopolygalacturonase production and virulence in the plant pathogen Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Flego, D; Marits, R; Eriksson, A R; Kõiv, V; Karlsson, M B; Heikinheimo, R; Palva, E T

    2000-04-01

    Genes coding for the main virulence determinants of the plant pathogen Erwinia carotovora subsp. carotovora, the plant cell wall-degrading enzymes, are under the coordinate control of global regulator systems including both positive and negative factors. In addition to this global control, some virulence determinants are subject to specific regulation. We have previously shown that mutations in the pehR locus result in reduced virulence and impaired production of one of these enzymes, an endopolygalacturonase (PehA). In contrast, these pehR strains produce essentially wild-type levels of other extracellular enzymes including pectate lyases and cellulases. In this work, we characterized the pehR locus and showed that the DNA sequence is composed of two genes, designated pehR and pehS, present in an operon. Mutations in either pehR or pehS caused a Peh-negative phenotype and resulted in reduced virulence on tobacco seedlings. Complementation experiments indicated that both genes are required for transcriptional activation of the endopolygalacturonase gene, pehA, as well as restoration of virulence. Structural characterization of the pehR-pehS operon demonstrated that the corresponding polypeptides are highly similar to the two-component transcriptional regulators PhoP-PhoQ of both Escherichia coli and Salmonella typhimurium. Functional similarity of PehR-PehS with PhoP-PhoQ of E. coli and S. typhimurium was demonstrated by genetic complementation.

  9. Requirement for two or more Erwinia carotovora subsp. carotovora pectolytic gene products for maceration of potato tuber tissue by Escherichia coli.

    Science.gov (United States)

    Roberts, D P; Berman, P M; Allen, C; Stromberg, V K; Lacy, G H; Mount, M S

    1986-07-01

    Several genes encoding enzymes capable of degrading plant cell wall components have been cloned from Erwinia carotovora subsp. carotovora EC14. Plasmids containing cloned EC14 DNA mediate the production of endo-pectate lyases, exo-pectate lyase, endo-polygalacturonase, and cellulase(s). Escherichia coli strains containing one of these plasmids or combinations of two plasmids were tested for their ability to macerate potato tuber slices. Only one E. coli strain, containing two plasmids that encode endo-pectate lyases, exo-pectate lyase, and endo-polygalacturonase, caused limited maceration. The pectolytic proteins associated with one of these plasmids, pDR1, have been described previously (D. P. Roberts, P. M. Berman, C. Allen, V. K. Stromberg, G. H. Lacy, and M. S. Mount, Can. J. Plant Pathol. 8:17-27, 1986) and include two secreted endo-pectate lyases. The second plasmid, pDR30, contains a 2.1-kilobase EC14 DNA insert that mediates the production of an exo-pectate lyase and an endo-polygalacturonase. These enzymes are similar in physicochemical properties to those produced by EC14. Our results suggest that the concerted activities of endo-pectate lyases with endo-polygalacturonase or exo-pectate lyase or both cause maceration.

  10. A novel plant ferredoxin-like protein and the regulator Hor are quorum-sensing targets in the plant pathogen Erwinia carotovora.

    Science.gov (United States)

    Sjöblom, Solveig; Harjunpää, Heidi; Brader, Günter; Palva, E Tapio

    2008-07-01

    Quorum sensing (QS), a population-density-sensing mechanism, controls the production of the main virulence determinants, the plant cell-wall-degrading enzymes (PCWDEs) of the soft-rot phytopathogen Erwinia carotovora subsp. carotovora. In this study, we used random transposon mutagenesis with a gusA reporter construct to identify two new QS-controlled genes encoding the regulator Hor and a plant ferredoxin-like protein, FerE. The QS control of the identified genes was executed by the QS regulators ExpR1 and ExpR2 and mediated by the global repressor RsmA. Hor was shown to contribute to bacterial virulence at least partly through its control of PCWDE production. Our results showed that FerE contributes to oxidative stress tolerance and in planta fitness of the bacteria and suggest that QS could be central to control of oxidative stress tolerance. The presence of the FerE protein appears to be rather unique in heterotrophic bacteria and suggests an acquisition of the corresponding gene from plant host by horizontal gene transfer.

  11. The response regulator expM is essential for the virulence of Erwinia carotovora subsp. carotovora and acts negatively on the sigma factor RpoS (sigma s).

    Science.gov (United States)

    Andersson, R A; Palva, E T; Pirhonen, M

    1999-07-01

    The main virulence factors of Erwinia carotovora subsp. carotovora, the secreted, extracellular cell-wall-degrading enzymes, are controlled by several regulatory mechanisms. We have isolated transposon mutants with reduced virulence on tobacco. One of these mutants, with a mutation in a gene designated expM, was characterized in this study. This mutant produces slightly reduced amounts of extracellular enzymes in vitro and the secretion of the enzymes is also affected. The expM wild-type allele was cloned together with an upstream gene, designated expL, that has an unknown function. The expM gene was sequenced and found to encode a protein with similarity to the RssB/SprE protein of Escherichia coli and the MviA protein of Salmonella typhimurium. These proteins belong to a new type of two-component response regulators that negatively regulate the stability of the Sigma factor RpoS (sigma s) at the protein level. The results of this study suggest that ExpM has a similar function in E. carotovora subsp. carotovora. We also provide evidence that the overproduction of RpoS in the expM mutant is an important factor for the reduced virulence phenotype and that it partly causes the observed phenotype seen in vitro. However, an expM/rpoS double mutant is still affected in secretion of extracellular enzymes, suggesting that ExpM in addition to RpoS also acts on other targets.

  12. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora.

    Science.gov (United States)

    Khokhani, Devanshi; Zhang, Chengfang; Li, Yan; Wang, Qi; Zeng, Quan; Yamazaki, Akihiro; Hutchins, William; Zhou, Shan-Shan; Chen, Xin; Yang, Ching-Hong

    2013-09-01

    Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.

  13. Characterization of the radioresistance in the radioresistant bacterium deinococcus radiodurans

    International Nuclear Information System (INIS)

    Kong Xiangrong; Du Zeji

    1999-01-01

    The radioresistance of wild type Deinococcus radiodurans KD8301 and the factors affecting the radioresistance were investigated. KH3111 which was a DNA repair mutant of KD8301 (Zeji Du, 1998) was used to be compared with KD8301. Deinococcus radiodurans was discovered by Anderson et al (1956) in X-ray sterilized canned meat that was found to have undergone spoilage. this bacterium and other species of this genus share extreme resistance to ionizing radiation and other agents that damage DNA. Wild type KD8301 and its sensitive mutant KH3111 were irradiated with 60 Co γ-ray at the dose range 0.5 ∼ 10 kGy. Dose-survival fraction curves were made and the radio resistances were determined by LD 99 . The relative contents of DNA in cells were measured by Fluorescence Spectrophotometry (Freedman and Bruce, 1971). The results indicated that wild type KD8301 possesses more radioresistant than its mutant KH3111, LD99 were 9.5 kGy and 2.4 kGy respectively. KD8301 grown at exponential phase showed a decreased resistance to radiation, and the LD99 was 5.1 kGy. No differences of DNA/protein in cells were found between the exponential phase and the stationary phase. The results could be concluded that wild type KD8301 possesses remarkable radioresistance, but this ability was decreased or disappeared after mutation (in KH3111). None DNA relative content other than the growth stages were determinant factors of radioresistance in Deinococcus radiodurans. This results were different from other report (Dickie N et al, 1990). The cellular mechanisms might be the deference's of the bacterium cell morphology between the exponential phase and the stationary phase. Recently, the mutation site of KH3111 which was mutated chemically from wild type KD8301 was identified (Zeji Du, 1998). One base pair changed in the novel gene pprA which was isolated from KD8301 genomic DNA. This point mutation was confirmed to be responsible for the sensitivity of KH3111 to γ-ray and other DNA

  14. Electromicrobiology of Dissimilatory Sulfur Reducing Bacterium Desulfuromonas acetexigens

    KAUST Repository

    Bin Bandar, Khaled

    2014-12-01

    Bioelectrochmical systems (BES) are engineered electrochemical devices that harness hidden chemical energy of the wastewater in to the form of electricity or hydrogen. Unique microbial communities enrich in these systems for oxidation of organic matter as well as transfer of resulted electron to anode, known them as “electricigens” communities. Exploring novel electricigenesis microbial communities in the nature and understanding their electromicrobiology is one the important aspect for BES systems scale up. Herein, we report first time the electricigenesis property of an anaerobic, fresh water sediment, sulfur reducing bacterium Desulfuromona acetexigens. The electrochemical behavior of D. acetexigens biofilms grown on graphite-rod electrodes in batch-fed mode under an applied potential was investigated with traditional electroanalytical tools, and correlate the electron transfer from biofilms to electrode with a model electricigen Geobacter sulfurreducens electrochemical behavior. Research findings suggest that D. acetexigens has the ability to use electrode as electron acceptor in BES systems through establishing the direct contact with anode by expressing the membrane bound redox proteins, but not due to the secretion of soluble redox mediators. Preliminary results revealed that D. acetexigens express three distinct redox proteins in their membranes for turnover of the electrons from biofilm to electrode, and the 4 whole electricigenesis process observed to be unique in the D. acetexigens compared to that of well-studied model organism G. sulfurreducens.

  15. Yersinia ruckeri sp. nov., the redmouth (RM) bacterium

    Science.gov (United States)

    Ewing, W.H.; Ross, A.J.; Brenner, Don J.; Fanning, G. R.

    1978-01-01

    Cultures of the redmouth (RM) bacterium, one of the etiological agents of redmouth disease in rainbow trout (Salmo gairdneri) and certain other fishes, were characterized by means of their biochemical reactions, by deoxyribonucleic acid (DNA) hybridization, and by determination of guanine-plus-cytosine (G+C) ratios in DNA. The DNA relatedness studies confirmed the fact that the RM bacteria are members of the family Enterobacteriaceae and that they comprise a single species that is not closely related to any other species of Enterobacteriaceae. They are about 30% related to species of both Serratia and Yersinia. A comparison of the biochemical reactions of RM bacteria and serratiae indicated that there are many differences between these organisms and that biochemically the RM bacteria are most closely related to yersiniae. The G+C ratios of RM bacteria were approximated to be between 47.5 and 48.5% These values are similar to those of yersiniae but markedly different from those of serratiae. On the basis of their biochemical reactions and their G+C ratios, the RM bacteria are considered to be a new species of Yersinia, for which the name Yersinia ruckeri is proposed. Strain 2396-61 (= ATCC 29473) is designated the type strain of the species.

  16. Characterization of a Neochlamydia-like Bacterium Associated with Epitheliocystis in Cultured Artic Char Salvelinus alpinus

    Science.gov (United States)

    Infections of branchial epithelium by intracellular gram-negative bacteria, termed epitheliocystis, have limited culture of Arctic char (Salvelinus alpinus). To characterize a bacterium associated with epitheliocystis in cultured char, gills were sampled for histopathologic examination, conventional...

  17. Echinicola shivajiensis sp. nov., a novel bacterium of the family "Cyclobacteriaceae" isolated from brackish water pond

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, T.N.R.; Tryambak, B.K.; AnilKumar, P.

    Strain AK12 sup(T), an orange pigmented Gramnegative, rod shaped, non-motile bacterium, was isolated fromamud sample collected froma brackishwater pond at Rampur of West Bengal, India. The strain was positive for oxidase, catalase and phosphatase...

  18. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium

    Czech Academy of Sciences Publication Activity Database

    Moon, C. D.; Pacheco, D. M.; Kelly, W. J.; Leahy, S. C.; Li, D.; Kopečný, Jan; Attwood, G. T.

    2008-01-01

    Roč. 58, - (2008), s. 2041-2045 ISSN 1466-5026 Institutional research plan: CEZ:AV0Z50450515 Keywords : Butyrivibrio * ruminal bacterium Subject RIV: EE - Microbiology, Virology Impact factor: 2.222, year: 2008

  19. Septicemia caused by the gram-negative bacterium CDC IV c-2 in an immunocompromised human.

    OpenAIRE

    Dan, M; Berger, S A; Aderka, D; Levo, Y

    1986-01-01

    A 37-year-old man with plasma cell leukemia developed nonfatal septicemia caused by the gram-negative bacterium CDC IV c-2. Recovery followed appropriate treatment with antibiotics. The biochemical features of this organism are reviewed.

  20. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences

    NARCIS (Netherlands)

    Vanfossen, A.L.; Verhaart, M.R.A.; Kengen, S.W.M.; Kelly, R.M.

    2009-01-01

    Co-utilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H2-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on

  1. Regulatory Network Controlling Extracellular Proteins in Erwinia carotovora subsp. carotovora: FlhDC, the Master Regulator of Flagellar Genes, Activates rsmB Regulatory RNA Production by Affecting gacA and hexA (lrhA) Expression▿

    OpenAIRE

    Cui, Yaya; Chatterjee, Asita; Yang, Hailian; Chatterjee, Arun K.

    2008-01-01

    Erwinia carotovora subsp. carotovora produces an array of extracellular proteins (i.e., exoproteins), including plant cell wall-degrading enzymes and Harpin, an effector responsible for eliciting hypersensitive reaction. Exoprotein genes are coregulated by the quorum-sensing signal, N-acyl homoserine lactone, plant signals, an assortment of transcriptional factors/regulators (GacS/A, ExpR1, ExpR2, KdgR, RpoS, HexA, and RsmC) and posttranscriptional regulators (RsmA, rsmB RNA). rsmB RNA produc...

  2. Complete genome of Martelella sp. AD-3, a moderately halophilic polycyclic aromatic hydrocarbons-degrading bacterium.

    Science.gov (United States)

    Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi

    2016-05-10

    Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte.

    Directory of Open Access Journals (Sweden)

    Michele T Hoffman

    Full Text Available Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA, often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales, but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales. Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions.

  4. Luciferase inactivation in the luminous marine bacterium Vibrio harveyi.

    Science.gov (United States)

    Reeve, C A; Baldwin, T O

    1981-06-01

    Luciferase was rapidly inactivated in stationary-phase cultures of the wild type of the luminous marine bacterium Vibrio harveyi, but was stable in stationary-phase cultures of mutants of V. harveyi that are nonluminous without exogenous aldehyde, termed the aldehyde-deficient mutants. The inactivation in the wild type was halted by cell lysis and was slowed or stopped by O2 deprivation or by addition of KCN and NaF or of chloramphenicol. If KCN and NaF or chloramphenicol were added to a culture before the onset of luciferase inactivation, then luciferase inactivation did not occur. However, if these inhibitors were added after the onset of luciferase inactivation, then luciferase inactivation continued for about 2 to 3 h before the inactivation process stopped. The onset of luciferase inactivation in early stationary-phase cultures of wild-type cell coincided with a slight drop in the intracellular adenosine 5'-triphosphate (ATP) level from a relatively constant log-phase value of 20 pmol of ATP per microgram of soluble cell protein. Addition of KCN and NaF to a culture shortly after this drop in ATP caused a rapid decrease in the ATP level to about 4 pmol of ATP per microgram whereas chloramphenicol added at this same time caused a transient increase in ATP level to about 25 pmol/microgram. The aldehyde-deficient mutant (M17) showed a relatively constant log-phase ATP level identical with that of the wild-type cells, but rather than decreasing in early stationary phase, the ATP level increased to a value twice that in log-phase cells. We suggest that the inactivation of luciferase is dependent on the synthesis of some factor which is produced during stationary phase and is itself unstable, and whose synthesis is blocked by chloramphenicol or cyanide plus fluoride.

  5. Criteria for efficient prevention of dissemination and successful eradication of Erwinia amylovora (the cause of fire blight in Aragón, Spain

    Directory of Open Access Journals (Sweden)

    Ana PALACIO-BIELSA

    2013-01-01

    Full Text Available Erwinia amylovora was detected on pome fruits in the Aragón region (North-Eastern Spain, in a ca. 5 km radius area located in the mid Jalón river (mid Ebro Valley in the province of Zaragoza, during 2000‒2003. Eight years have now passed since this pathogen was last detected, without new infections being reported in the same area. The bases for surveys and rapid eradication performed have been analyzed in detail to understand the reasons for the success in removing fireblight. The results demonstrate that intensive surveillance, risk assessment, plant analyses using accurate identification methods, and, especially, rapid total or selective eradication of infected trees in the plots have been very effective in preventing the generalized spread of fireblight and in delaying economic losses associated with this disease. Eradication and compensation to growers, estimated to cost approx. € 467,000, were clearly counterbalanced by the economic value of apple and pear production in the 2000‒2003 period (approx. € 368 million. Fire blight risk-assessment, using the MARYBLYT system, showed that climatic conditions in the studied area were favourable to infections during the analyzed period (1997‒2006. Molecular characterization of E. amylovora strains had revealed their homogeneity, suggesting that these fire blight episodes could have been caused by just one inoculum source, supporting the hypothesis that there was a unique introduction of E. amylovora in the studied area. Spatial spread of E. amylovora to trees was analyzed within six orchards, indicating an aggregated distribution model. This Spanish experience demonstrates the success of scientifically-based prevention methods that lead to the deployment of a fast and strict containment strategy, useful for other Mediterranean areas.

  6. Mechanistic deductions from kinetic isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: Erwinia herbicola and Citrobacter freundii tyrosine phenol-lyase

    International Nuclear Information System (INIS)

    Kiick, D.M.; Phillips, R.S.

    1988-01-01

    The pH dependence of the kinetic parameters and primary deuterium isotope effects have been determined for tyrosine phenol-lyase from both Erwinia herbicola and Citrobacter freundii. The primary deuterium isotope effects indicate that proton abstraction from the 2-position of the substrate is partially rate-limiting for both enzymes. The C. freundii enzyme primary deuterium isotope effects [DV = 3.5 and D(V/Ktyr) = 2.5] are pH independent, indicating that tyrosine is not sticky (i.e., does not dissociate slower than it reacts to give products). Since Vmax for both tyrosine and the alternate substrate S-methyl-L-cysteine is also pH independent, substrate binds only to the correctly protonated form of the enzyme. For the E. herbicola enzyme, both Vmax and V/K for tyrosine or S-methyl-L-cysteine are pH dependent, as well as both DV and D(V/Ktyr). Thus, while both the protonated and unprotonated enzyme can bind substrate, and may be interconverted directly, only the unprotonated Michaelis complex is catalytically competent. At pH 9.5, DV = 2.5 and D(V/Ktyr) = 1.5. However, at pH 6.4 the isotope effect on both parameters is equal to 4.1. From these data, the forward commitment factor (cf = 5.2) and catalytic ratio (cvf = 1.1) for tyrosine and S-methyl-L-cysteine (cf = 2.2, cvf = 24) are calculated. Also, the Michaelis complex partition ratio (cf/cvf) for substrate and products is calculated to be 4.7 for tyrosine and 0.1 for S-methyl-L-cysteine

  7. Control of fire blight (Erwinia amylovora on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes

    Directory of Open Access Journals (Sweden)

    Srđan G. Aćimović

    2015-02-01

    Full Text Available Management of fire blight is complicated by limitations on use of antibiotics in agriculture, antibiotic resistance development, and limited efficacy of alternative control agents. Even though successful in control, preventive antibiotic sprays also affect non-target bacteria, aiding the selection for resistance which could ultimately be transferred to the pathogen Erwinia amylovora. Trunk injection is a target-precise pesticide delivery method that utilizes tree xylem to distribute injected compounds. Trunk injection could decrease antibiotic usage in the open environment and increase the effectiveness of compounds in fire blight control. In field experiments, after 1-2 apple tree injections of either streptomycin, potassium phosphites (PH or acibenzolar-S-methyl (ASM, significant reduction of blossom and shoot blight symptoms was observed compared to water- or non-injected control trees. Overall disease suppression with streptomycin was lower than typically observed following spray applications to flowers. Trunk injection of oxytetracycline resulted in excellent control of shoot blight severity, suggesting that injection is a superior delivery method for this antibiotic. Injection of both ASM and PH resulted in the significant induction of PR-1, PR-2 and PR-8 protein genes in apple leaves indicating induction of systemic acquired resistance (SAR under field conditions. The time separating SAR induction and fire blight symptom suppression indicated that various defensive compounds within the SAR response were synthesized and accumulated in the canopy. ASM and PH suppressed fire blight even after cessation of induced gene expression. With the development of injectable formulations and optimization of doses and injection schedules, the injection of protective compounds could serve as an effective option for fire blight control.

  8. Portable hyperspectral fluorescence imaging system for detection of biofilms on stainless steel surfaces

    Science.gov (United States)

    Jun, Won; Lee, Kangjin; Millner, Patricia; Sharma, Manan; Chao, Kuanglin; Kim, Moon S.

    2008-04-01

    A rapid nondestructive technology is needed to detect bacterial contamination on the surfaces of food processing equipment to reduce public health risks. A portable hyperspectral fluorescence imaging system was used to evaluate potential detection of microbial biofilm on stainless steel typically used in the manufacture of food processing equipment. Stainless steel coupons were immersed in bacterium cultures, such as E. coli, Pseudomonas pertucinogena, Erwinia chrysanthemi, and Listeria innocula. Following a 1-week exposure, biofilm formations were assessed using fluorescence imaging. In addition, the effects on biofilm formation from both tryptic soy broth (TSB) and M9 medium with casamino acids (M9C) were examined. TSB grown cells enhance biofilm production compared with M9C-grown cells. Hyperspectral fluorescence images of the biofilm samples, in response to ultraviolet-A (320 to 400 nm) excitation, were acquired from approximately 416 to 700 nm. Visual evaluation of individual images at emission peak wavelengths in the blue revealed the most contrast between biofilms and stainless steel coupons. Two-band ratios compared with the single-band images increased the contrast between the biofilm forming area and stainless steel coupon surfaces. The 444/588 nm ratio images exhibited the greatest contrast between the biofilm formations and stainless coupon surfaces.

  9. A Genetic System for the Thermophilic Acetogenic Bacterium Thermoanaerobacter kivui.

    Science.gov (United States)

    Basen, Mirko; Geiger, Irina; Henke, Laura; Müller, Volker

    2018-02-01

    Thermoanaerobacter kivui is one of the very few thermophilic acetogenic microorganisms. It grows optimally at 66°C on sugars but also lithotrophically with H 2 + CO 2 or with CO, producing acetate as the major product. While a genome-derived model of acetogenesis has been developed, only a few physiological or biochemical experiments regarding the function of important enzymes in carbon and energy metabolism have been carried out. To address this issue, we developed a method for targeted markerless gene deletions and for integration of genes into the genome of T. kivui The strain naturally took up plasmid DNA in the exponential growth phase, with a transformation frequency of up to 3.9 × 10 -6 A nonreplicating plasmid and selection with 5-fluoroorotate was used to delete the gene encoding the orotate phosphoribosyltransferase ( pyrE ), resulting in a Δ pyrE uracil-auxotrophic strain, TKV002. Reintroduction of pyrE on a plasmid or insertion of pyrE into different loci within the genome restored growth without uracil. We subsequently studied fructose metabolism in T. kivui The gene fruK (TKV_c23150) encoding 1-phosphofructosekinase (1-PFK) was deleted, using pyrE as a selective marker via two single homologous recombination events. The resulting Δ fruK strain, TKV003, did not grow on fructose; however, growth on glucose (or on mannose) was unaffected. The combination of pyrE as a selective marker and the natural competence of the strain for DNA uptake will be the basis for future studies on CO 2 reduction and energy conservation and their regulation in this thermophilic acetogenic bacterium. IMPORTANCE Acetogenic bacteria are currently the focus of research toward biotechnological applications due to their potential for de novo synthesis of carbon compounds such as acetate, butyrate, or ethanol from H 2 + CO 2 or from synthesis gas. Based on available genome sequences and on biochemical experiments, acetogens differ in their energy metabolism. Thus, there is an

  10. Antibacterial Property of a Coral-Associated Bacterium Pseudoalteromonas luteoviolacea Against Shrimp Pathogenic Vibrio harveyi (In Vitro Study)

    OpenAIRE

    OCKY KARNA RADJASA; TORBEN MARTENS; HANS-PETER GROSSART; AGUS SABDONO; MEINHARD SIMON; TONNY BACHTIAR

    2005-01-01

    A coral-associated bacterium was successfully screened for secondary metabolites production based on PCR amplification of the nonribosomal peptide synthetase gene and was identified as closely related to Pseudoalteromonas luteoviolacea based on its 16S rDNA. The bacterium was found to inhibit the growth of shrimp pathogenic bacterium tested, Vibrio harveyi. To characterize the inhibiting metabolite, a 279 bp long DNA fragment was obtained and the deduced amino acid sequence showed conserved s...

  11. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Mun Su [University of Florida, Gainesville; Moritz, Brelan E. [University of Florida, Gainesville; Xie, Gary [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Patel, Milind [University of Florida, Gainesville; Ou, Mark [University of Florida, Gainesville; Harbrucker, Roberta [University of Florida, Gainesville; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  12. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  13. Moritella viscosa, a pathogenic bacterium affecting the fillet quality in fish

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Nielsen, Michael Engelbrecht

    2011-01-01

    Moritella viscosa is a bacterium belonging to the family Moritellaceae and was formerly known as Vibrio viscosus. The name ‘viscosa’ originates from the slimy nature of the bacterium. M. viscosa is considered to be the main causative agent of the phenomenon ‘winter ulcer’ or ‘cold-water ulcer......’ which affects various fish species in seawater during cold periods (Lunder et al. 1995). The bacterium is mainly a problem for farmed salmonid species, such as Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss), but has also been isolated from other fish species, including Atlantic...... market price because of a quality downgrade caused by textural changes in the fillet....

  14. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Science.gov (United States)

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  15. Studies on the pathogenic bacterium of ulcer disease in Epinephelus awoara

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Studies were conducted to determine the cause of the acute mortality of cage-cultured Epinephelus awoara in the Tong'an Bay of Xiamen, China during the summer of 2002. Predominant bacteria strain TS-628 was isolated from the diseased grouper. The virulence test confirmed that TS-628 was the pathogenic bacterium. Biochemical characteristics of the isolates were determined using the automatic bacterial identification system and standard tube tests. To further confirm the identification, a 1 121 bp 16S rRNA gene sequence of the isolate was amplified by PCR, which had been deposited into Genbank (accession number: AY747308). According to the biochemical characteristics and by comparing the 16S rRNA gene homology of the isolate, the pathogenic bacterium was identified as Vibrio harveyi. Drug sensitivity tests showed that this pathogenic bacterium was sensitive to 16 antibacterials, especially to chloramphenicol and actinospectacin, but completely resistant to antibacterials likes vancomycin, penicillin, lincomycin, and so on.

  16. Halomonas maura is a physiologically versatile bacterium of both ecological and biotechnological interest.

    Science.gov (United States)

    Llamas, Inmaculada; del Moral, Ana; Martínez-Checa, Fernando; Arco, Yolanda; Arias, Soledad; Quesada, Emilia

    2006-01-01

    Halomonas maura is a bacterium of great metabolic versatility. We summarise in this work some of the properties that make it a very interesting microorganism both from an ecological and biotechnological point of view. It plays an active role in the nitrogen cycle, is capable of anaerobic respiration in the presence of nitrate and has recently been identified as a diazotrophic bacterium. Of equal interest is mauran, the exopolysaccharide produced by H. maura, which contributes to the formation of biofilms and thus affords the bacterium advantages in the colonisation of its saline niches. Mauran is highly viscous, shows thixotropic and pseudoplastic behaviour, has the capacity to capture heavy metals and exerts a certain immunomodulator effect in medicine. All these attributes have prompted us to make further investigations into its molecular characteristics. To date we have described 15 open reading frames (ORF's) related to exopolysaccharide production, nitrogen fixation and nitrate reductase activity among others.

  17. Description of a bacterium associated with redmouth disease of rainbow trout (Salmo gairdneri)

    Science.gov (United States)

    Ross, A.J.; Rucker, R.R.; Ewing, W.H.

    1966-01-01

    A description was given of a gram-negative, peritrichously flagellated, fermentative bacterium that was isolated on numerous occasions from kidney tissues of rainbow trout (Salmo gairdneri) afflicted with redmouth disease. Although the bacteria apparently were members of the family Enterobacteriaceae, it was impossible to determine their taxonomic position within the family with certainty. Hence it was recommended that their taxonomic position remain sub judice for the present. As a temporary designation RM bacterium was used. Redmouth disease was transmitted from infected to normal fish through the medium of water.

  18. From Genome to Function: Systematic Analysis of the Soil Bacterium Bacillus Subtilis

    Science.gov (United States)

    Crawshaw, Samuel G.; Wipat, Anil

    2001-01-01

    Bacillus subtilis is a sporulating Gram-positive bacterium that lives primarily in the soil and associated water sources. Whilst this bacterium has been studied extensively in the laboratory, relatively few studies have been undertaken to study its activity in natural environments. The publication of the B. subtilis genome sequence and subsequent systematic functional analysis programme have provided an opportunity to develop tools for analysing the role and expression of Bacillus genes in situ. In this paper we discuss analytical approaches that are being developed to relate genes to function in environments such as the rhizosphere. PMID:18628943

  19. Genome Sequence of Lactobacillus delbrueckii subsp. lactis CNRZ327, a Dairy Bacterium with Anti-Inflammatory Properties.

    Science.gov (United States)

    El Kafsi, Hela; Binesse, Johan; Loux, Valentin; Buratti, Julien; Boudebbouze, Samira; Dervyn, Rozenn; Hammani, Amal; Maguin, Emmanuelle; van de Guchte, Maarten

    2014-07-17

    Lactobacillus delbrueckii subsp. lactis CNRZ327 is a dairy bacterium with anti-inflammatory properties both in vitro and in vivo. Here, we report the genome sequence of this bacterium, which appears to contain no less than 215 insertion sequence (IS) elements, an exceptionally high number regarding the small genome size of the strain. Copyright © 2014 El Kafsi et al.

  20. Deteksi dan Identifikasi Dickeya sp. sebagai Organisme Pengganggu Tumbuhan Karantina A2 pada Tanaman Kentang di Jawa

    Directory of Open Access Journals (Sweden)

    Haerani Haerani

    2015-09-01

    Full Text Available Erwinia chrysanthemi (currently Dickeya sp. is one of the A2 quarantine pest that must be concerned of its distribution on potato in Indonesia. The aim of this study is to detect and identify E. chrysanthemi from potato in Java. A total of 400 samples of potato plants showing symptoms of soft rot were obtained from several potato areas in Pangalengan and Garut (West Java, Dieng (Central Java, and Batu-Malang (East Java. Disease incidence was determined by indirect enzyme-linked immunosorbent assay (I-ELISA using polyclonal antiserum. E.chrysanthemi was isolated from plant samples with positive ELISA results. Furthermore, bacterial isolates were characterized by GEN III OmniLog ID System and PCR using specific primers Ec3F/Ec4R, as well as the universal 16S rRNA primer pair of 27F/1429R. The incidence of E. chrysanthemi based on ELISA was obtained. Based on physiological characters; Gram, catalase, oxidase, and oxidation-fermentation, there were 4 isolates similar to the genus of Erwinia. However, the results of Gen III OmniLog System, PCR, and nucleotide sequences analysis of 16S rRNA confirmed that none of the isolates were identified as E.chrysanthemi. Otherwise, those 4 isolates were identified as Pseudomonas oryzihabitans, Pantoea agglomerans, and Pseudomonas viridiflava. The result of this study indicated that the existence of E. chrysanthemi as an A2 quarantine pest on potato in Java can not be confirmed and remains as an A1 quarantine pest.

  1. Intestinimonas butyriciproducens gen. nov., sp. nov., a novel butyrate-producing bacterium from the mouse intestine

    NARCIS (Netherlands)

    Kläring, K.; Hanske, L.; Bui, T.P.N.; Charrier, C.; Blaut, M.; Haller, D.; Plugge, C.M.; Clavel, T.

    2013-01-01

    Whilst creating a bacterial collection of strains from the mouse intestine, we isolated a Gram-negative, spore-forming, non-motile and strictly anaerobic rod-shaped bacterium from the caecal content of a TNFdeltaARE mouse. The isolate, referred to as strain SRB-521-5-IT, was originally cultured on a

  2. Draft Genome Sequence of Desulfuromonas acetexigens Strain 2873, a Novel Anode-Respiring Bacterium

    KAUST Repository

    Katuri, Krishna

    2017-03-03

    Here, we report the draft genome sequence of Desulfuromonas acetexigens strain 2873, which was originally isolated from digester sludge from a sewage treatment plant in Germany. This bacterium is capable of anode respiration with high electrochemical activity in microbial electrochemical systems. The draft genome contains 3,376 predicted protein-coding genes and putative multiheme c-type cytochromes.

  3. Design of semi industrial radium separator by a new bacterium MGF-48

    International Nuclear Information System (INIS)

    Ghafourian, H.; Emami, M.R.; Farazmand, A.

    1998-01-01

    Following of a research work which has been recently published in AEOI scientific Bulletin no. 14, a semi industrial bioreactor has been designed for separation of radium using a new bacterium MGF-48. This bioreactor could be utilized for a high rate separation of radium in semi industrial scale. (author)

  4. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    Science.gov (United States)

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Thermaerobacter litoralis sp. nov., a strictly aerobic and thermophilic bacterium isolated from a coastal hydrothermal field

    DEFF Research Database (Denmark)

    Tanaka, Reiji; Kawaichi, Satoshi; Nishimura, Hiroshi

    2006-01-01

    A novel thermophilic bacterium, strain KW1T, was isolated from a coastal hydrothermal field on the Satsuma Peninsula, Kagoshima Prefecture, Japan. The variably Gram-stained cells were motile rods with flagella, did not form spores and proliferated at 52-78°C (optimum, 70°C), pH 5-8 (optimum, pH 7...

  6. Flavobacterium nitratireducens sp. nov., an amylolytic bacterium of the family Flavobacteriaceae isolated from coastal surface seawater

    Digital Repository Service at National Institute of Oceanography (India)

    Nupur; Bhumika, V.; Srinivas, T.N.R.; AnilKumar, P.

    A novel Gram-negative, rod-shaped, non-motile bacterium, designated strain N1 sup(T), was isolated from a marine water sample collected from the sea shore, Bay of Bengal, Visakhapatnam, India. The strain was positive for starch hydrolysis, nitrate...

  7. Marinobacter nitratireducens sp. nov., a halophilic and lipolytic bacterium isolated from coastal surface sea water

    Digital Repository Service at National Institute of Oceanography (India)

    Bhumika, V.; Ravinder, K.; Korpole, S.; Srinivas, T.N.R.; AnilKumar, P.

    A novel Gram-stain-negative, rod-shaped, motile bacterium, designated strain AK21T , was isolated from coastal surface sea water at Visakhapatnam, India. The strain was positive for oxidase, catalase, lipase, L-proline arylamidase...

  8. Aliidiomarina haloalkalitolerans sp. nov., a marine bacterium isolated from coastal surface seawater

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, T.N.R.; Nupur; AnilKumar, P.

    A novel Gram-negative, rod shaped, motile, non-sporing strictly aerobic bacterium, designated strain AK5 sup(T), was isolated from a sea water sample collected near Visakhapatnam coast, Bay of Bengal, India. Colonies on marine agar were circular, 3...

  9. Draft Genome Sequence of Advenella kashmirensis Strain W13003, a Polycyclic Aromatic Hydrocarbon-Degrading Bacterium

    Science.gov (United States)

    Jin, Decai; Zhou, Lisha; Wu, Liang; An, Wei; Zhao, Lin

    2014-01-01

    Advenella kashmirensis strain W13003 is a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium isolated from PAH-contaminated marine sediments. Here, we report the 4.8-Mb draft genome sequence of this strain, which will provide insights into the diversity of A. kashmirensis and the mechanism of PAH degradation in the marine environment. PMID:24482505

  10. Draft Genome Sequence of Desulfuromonas acetexigens Strain 2873, a Novel Anode-Respiring Bacterium

    KAUST Repository

    Katuri, Krishna; Albertsen, Mads; Saikaly, Pascal

    2017-01-01

    Here, we report the draft genome sequence of Desulfuromonas acetexigens strain 2873, which was originally isolated from digester sludge from a sewage treatment plant in Germany. This bacterium is capable of anode respiration with high electrochemical activity in microbial electrochemical systems. The draft genome contains 3,376 predicted protein-coding genes and putative multiheme c-type cytochromes.

  11. Draft Genome Sequence of Lactobacillus paracasei DmW181, a Bacterium Isolated from Wild Drosophila

    OpenAIRE

    Hammer, Austin J.; Walters, Amber; Carroll, Courtney; Newell, Peter D.; Chaston, John M.

    2017-01-01

    ABSTRACT The draft genome sequence of Lactobacillus paracasei DmW181, an anaerobic bacterium isolate from wild Drosophila flies, is reported here. Strain DmW181 possesses genes for sialic acid and mannose metabolism. The assembled genome is 3,201,429?bp, with 3,454 predicted genes.

  12. Draft Genome Sequence of Lactobacillus paracasei DmW181, a Bacterium Isolated from Wild Drosophila.

    Science.gov (United States)

    Hammer, Austin J; Walters, Amber; Carroll, Courtney; Newell, Peter D; Chaston, John M

    2017-07-06

    The draft genome sequence of Lactobacillus paracasei DmW181, an anaerobic bacterium isolate from wild Drosophila flies, is reported here. Strain DmW181 possesses genes for sialic acid and mannose metabolism. The assembled genome is 3,201,429 bp, with 3,454 predicted genes. Copyright © 2017 Hammer et al.

  13. Whole-Genome Sequence of the Purple Photosynthetic Bacterium Rhodovulum sulfidophilum Strain W4

    OpenAIRE

    Masuda, Shinji; Hori, Koichi; Maruyama, Fumito; Ren, Shukun; Sugimoto, Saori; Yamamoto, Nozomi; Mori, Hiroshi; Yamada, Takuji; Sato, Shusei; Tabata, Satoshi; Ohta, Hiroyuki; Kurokawa, Ken

    2013-01-01

    We report the draft genome sequence of the purple photosynthetic bacterium Rhodovulum sulfidophilum. The photosynthesis gene cluster comprises two segments?a unique feature among photosynthesis gene clusters of purple bacteria. The genome information will be useful for further analysis of bacterial photosynthesis.

  14. Draft Genome Sequence of the Efficient Bioflocculant-Producing Bacterium Paenibacillus sp. Strain A9

    Science.gov (United States)

    Liu, Jin-liang; Hu, Xiao-min

    2013-01-01

    Paenibacillus sp. strain A9 is an important bioflocculant-producing bacterium, isolated from a soil sample, and is pale pink-pigmented, aerobic, and Gram-positive. Here, we report the draft genome sequence and the initial findings from a preliminary analysis of strain A9, which is a novel species of Paenibacillus. PMID:23618713

  15. Draft Genome Sequence of Pontibacter sp. nov. BAB1700, a Halotolerant, Industrially Important Bacterium

    Science.gov (United States)

    Joshi, M. N.; Sharma, A. C.; Pandya, R. V.; Patel, R. P.; Saiyed, Z. M.; Saxena, A. K.

    2012-01-01

    Pontibacter sp. nov. BAB1700 is a halotolerant, Gram-negative, rod-shaped, pink-pigmented, menaquinone-7-producing bacterium isolated from sediments of a drilling well. The draft genome sequence of the strain, consisting of one chromosome of 4.5 Mb, revealed vital gene clusters involved in vitamin biosynthesis and resistance against various metals and antibiotics. PMID:23105068

  16. The 2015 Nobel Prize in Physiology or Medicine: A Soil Bacterium ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 4. The 2015 Nobel Prize in Physiology or Medicine: A Soil Bacterium and a Chinese Herb Steal the Show. Pundi N Rangarajan. General Article Volume 21 Issue 4 April 2016 pp 315-326 ...

  17. Exo- and surface proteomes of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Celebioglu, Hasan Ufuk; Svensson, Birte

    2017-01-01

    Lactobacillus acidophilus NCFM is a well-known probiotic bacterium extensively studied for its beneficial health effects. Exoproteome (proteins exported into culture medium) and surface proteome (proteins attached to S-layer) of this probiotic were identified by using 2DE followed by MALDI TOF MS...

  18. Isolation and Structure Elucidation of a Novel Yellow Pigment from the Marine Bacterium Pseudoalteromonas tunicata

    Directory of Open Access Journals (Sweden)

    N. Kumar

    2005-10-01

    Full Text Available The marine environment is a major source for many novel natural compounds. A new yellow pigment has been isolated from the marine bacterium P. tunicata and identified as a new member of the tambjamine class of compounds. The structural identification was achieved by a combination of 1D and 2D-NMR spectroscopy and high resolution mass spectrometry data.

  19. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater

    Science.gov (United States)

    A novel Gram-stain-negative, facultatively anaerobic, yellowish and agar-digesting marine bacterium, designated strain QM50**T, was isolated from coastal seawater in an aquaculture site near Qingdao, China. Phylogenetic analysis based on 16S rDNA sequences revealed that the novel isolate represented...

  20. Oceanospirillum nioense sp. nov., a marine bacterium isolated from sediment sample of Palk bay, India

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.K.; Bhumika, V.; Thomas, M.; AnilKumar, P.; Srinivas, T.N.R.

    A novel Gram-negative, spiral shaped, motile bacterium, designated strain NIO-S6T, was isolated from a sediment sample collected from Offshore Rameswaram, Tamilnadu, India. Strain NIO-S6 sup(T) was found to be positive for oxidase, DNase and lysine...

  1. Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments

    NARCIS (Netherlands)

    Sirota-Madi, A.; Olender, T.; Helman, Y.; Ingham, C.; Brainis, I.; Roth, D.; Hagi, E.; Brodsky, L.; Leshkowitz, D.; Galatenko, V.; Nikolaev, V.; Mugasimangalam, R.C.; Bransburg-Zabary, S.; Gutnick, D.L.; Lancet, D.; Ben-Jacob, E.

    2010-01-01

    Background: The pattern-forming bacterium Paenibacillus vortex is notable for its advanced social behavior, which is reflected in development of colonies with highly intricate architectures. Prior to this study, only two other Paenibacillus species (Paenibacillus sp. JDR-2 and Paenibacillus larvae)

  2. Removal of zinc from aqueous solution by metal resistant symbiotic bacterium Mesorhizobium amorphae

    DEFF Research Database (Denmark)

    Hao, Xiuli; Mohamad, Osama Abdalla; Xie, Pin

    2014-01-01

    Biosorption of zinc by living biomasses of metal resistant symbiotic bacterium Mesorhizobium amorphae CCNWGS0123 was investigated under optimal conditions at pH 5.0, initial metal concentrations of 100 mg L-1, and a dose of 1.0 g L-1. M. amorphae exhibited an efficient removal of Zn2+ from aqueous...

  3. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response.

    Science.gov (United States)

    Van Puyvelde, Sandra; Cloots, Lore; Engelen, Kristof; Das, Frederik; Marchal, Kathleen; Vanderleyden, Jos; Spaepen, Stijn

    2011-05-01

    The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.

  4. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Majumder, Avishek; Cai, Liyang; Ejby, Morten

    2012-01-01

    Lactobacillus acidophilus NCFM (NCFM) is a well‐documented probiotic bacterium isolated from human gut. Detailed 2D gel‐based NCFM proteomics addressed the so‐called alkaline range, i.e., pH 6–11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D...

  5. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol......TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...

  6. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘ Candidatus Brocadia sapporoensis’

    KAUST Repository

    Narita, Yuko; Zhang, Lei; Kimura, Zen-ichiro; Ali, Muhammad; Fujii, Takao; Okabe, Satoshi

    2017-01-01

    Anaerobic ammonium-oxidation (anammox) is recognized as an important microbial process in the global nitrogen cycle and wastewater treatment. In this study, we successfully enriched a novel anammox bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and the production of hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20 − 45°C with a maximum activity at 37°C. The maximum specific growth rate (μmax) was determined to be 0.0082h−1 at 37°C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5±2.5μM. The anammox activity was inhibited by nitrite with 11.6mM representing the 50% inhibitory concentration (IC50) but no significant inhibition was observed in the presence of formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). Comparative genome analysis revealed that the anammox bacterium enriched in present study shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The bacterium enriched in this study showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its rRNA gene sequences. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.

  7. Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest

    Directory of Open Access Journals (Sweden)

    Jun-Feng Shi

    Full Text Available ABSTRACT Tomato is one of the most important vegetables in the world. Decay after harvest is a major issue in the development of tomato industry. Currently, the most effective method for controlling decay after harvest is storage of tomato at low temperature combined with usage of chemical bactericide; however, long-term usage of chemical bactericide not only causes pathogen resistance but also is harmful for human health and environment. Biocontrol method for the management of disease after tomato harvest has great practical significance. In this study, antagonistic bacterium B-6-1 strain was isolated from the surface of tomato and identified as Enterobacter cowanii based on morphological characteristics and physiological and biochemical features combined with sequence analysis of 16SrDNA and ropB gene and construction of dendrogram. Effects of different concentrations of antagonistic bacterium E. cowanii suspension on antifungal activity after tomato harvest were analyzed by mycelium growth rate method. Results revealed that antifungal activity was also enhanced with increasing concentrations of antagonistic bacterium; inhibitory rates of 1 × 105 colony-forming units (cfu/mL antagonistic bacterial solution on Fusarium verticillioides, Alternaria tenuissima, and Botrytis cinerea were 46.31%, 67.48%, and 75.67%, respectively. By using in vivo inoculation method, it was further confirmed that antagonistic bacterium could effectively inhibit the occurrence of B. cinerae after tomato harvest, biocontrol effect of 1 × 109 cfu/mL zymotic fluid reached up to 95.24%, and antagonistic bacterium E. cowanii has biocontrol potential against B. cinerea after harvest of fruits and vegetables.

  8. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘ Candidatus Brocadia sapporoensis’

    KAUST Repository

    Narita, Yuko

    2017-08-18

    Anaerobic ammonium-oxidation (anammox) is recognized as an important microbial process in the global nitrogen cycle and wastewater treatment. In this study, we successfully enriched a novel anammox bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and the production of hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20 − 45°C with a maximum activity at 37°C. The maximum specific growth rate (μmax) was determined to be 0.0082h−1 at 37°C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5±2.5μM. The anammox activity was inhibited by nitrite with 11.6mM representing the 50% inhibitory concentration (IC50) but no significant inhibition was observed in the presence of formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). Comparative genome analysis revealed that the anammox bacterium enriched in present study shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The bacterium enriched in this study showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its rRNA gene sequences. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.

  9. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    KAUST Repository

    Wang, Yong

    2016-07-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum, of which the metabolic processes and ecological importance remain unclear. In the present study, we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method. Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments. Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla. The genome of TCS1 (at least 1.27 Mbp) contains a full set of genes encoding core metabolic pathways, including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate. The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat. Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism. The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood–Ljungdahl pathway were also found in the genome. Phylogenetic study of the essential genes for the Wood–Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens. Compared with genomes of acetogenic bacteria, Aerophobetes bacterium TCS1 genome lacks the genes involved in nitrogen metabolism, sulfur metabolism, signal transduction and cell motility. The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2, hydrogen and sugars, and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps. © 2016, Science China Press and Springer-Verlag Berlin Heidelberg.

  10. Erwinia amylovora Enfeksiyonu Sonrası Elma, Armut ve Ayva Çeşitlerinde Konukçu Protein Miktarlarının Belirlenmesi

    Directory of Open Access Journals (Sweden)

    Şerife Çetin

    2014-11-01

    Full Text Available Ateş yanıklığı hastalığına neden olan Erwinia amylovora, Rosaceae familyasından başta armut, elma ve ayvalarda zararlı bakteriyel bir patojendir. Bu çalışmada, E. amylovora’ nın 2 virülent izolatının (Ea234-1 ve Ea240-3 farklı elma (Braeburn, Fuji, Gala ve Golden Delicious, armut (Santa Maria ve Williams ve ayva (Eşme ve Ekmek çeşitlerinde enfeksiyonu sonucu zamana bağlı olarak toplam protein miktarlarının belirlenmesi amaçlanmıştır. E. amylovora (108 hücre ml-1 ile yaprak inokulasyonundan sonraki 24, 36 ve 72. saatlerde örnekler alınmıştır. Enfeksiyonların doğrulanması için, bakteri inokule edilen bitkilerden re-izolasyonlar yapılmış ve etmen biyokimyasal ve moleküler testlerle E. amylovora olarak tanılanmıştır. Toplam protein miktarlarının belirlenmesinde Bradford yöntemi ve SDS-PAGE analizleri için Laemmli yöntemleri kullanılmış, protein ekstraktlarının 595 nm’ de absorbans değerleri elde edilmiştir. Elde edilen bulgulara göre, elma çeşitlerinde E. amylovora enfeksiyonu sonrası kontrole kıyasla 24. saatte toplam protein miktarının arttığı, 36. ve 72. saatte miktarın azaldığı, Braeburn çeşidinin en yüksek protein miktarına sahip olduğu belirlenmiştir. Armut çeşitlerinde, 24. ve 36. saatlerde toplam protein miktarı artarken, 72. saatte protein miktarının azaldığı ve Santa Maria çeşidinin en yüksek protein miktarına sahip olduğu tespit edilmiştir. Ayva çeşitlerinde, toplam protein miktarının 72. saatte arttığı ve Eşme çeşidinin en yüksek protein miktarına sahip olduğu belirlenmiştir. SDS-PAGE analizi sonucunda, farklı molekül ağırlıklarına sahip protein fraksiyonları elde edilmiştir. Elma ve ayva çeşitlerinde sırasıyla yaklaşık 55-70 ve 35-55 kDa, armut çeşitlerinde ise yaklaşık 55-70 kDa molekül ağırlığında protein bantları belirlenmiştir.

  11. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    Science.gov (United States)

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  12. The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythrocytes

    DEFF Research Database (Denmark)

    Belstrøm, Daniel; Holmstrup, Palle; Damgaard, Christian

    2011-01-01

    A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows...... the bacterium to adhere to human red blood cells (RBCs) and thereby evade attack by circulating phagocytes. On incubation with normal human serum, the P. gingivalis strain efficiently fixed complement component 3 (C3). Incubation of bacteria with washed whole blood cells suspended in autologous serum resulted...... in a dose- and time-dependent adherence to RBCs. The adherence required functionally intact complement receptor 1 (CR1; also called CD35) on the RBCs and significantly inhibited the uptake of P. gingivalis by neutrophils and B cells within 1 min of incubation (by 64% and 51%, respectively...

  13. Framing in the Spanish press about the health crisis because of the E. coli bacterium

    Directory of Open Access Journals (Sweden)

    Paloma López Villafranca

    2013-12-01

    Full Text Available This research article analyses  the approach made by press media and other institutional advertising about the E. coli bacterium, most commonly known as cucumber crisis in Spain. While in the rest of Europe this crisis receives the same treatment as A Flu or mad cow disease in this country it is treated as a crisis that affects to the spanish economy and not to the health of the citizen. Economic interests prevail over public health and this is due to official information given. An analysis of contents of the most popular journals in Spain, according to OJD, is made to prove this hypothesis, El Pais, El Mundo and ABC, as well as a study of the main institutional advertising made about E. coli bacterium by official spanish organizations and the media.

  14. Mitigation of membrane biofouling by a quorum quenching bacterium for membrane bioreactors.

    Science.gov (United States)

    Ham, So-Young; Kim, Han-Shin; Cha, Eunji; Park, Jeong-Hoon; Park, Hee-Deung

    2018-06-01

    In this study, a quorum-quenching (QQ) bacterium named HEMM-1 was isolated at a membrane bioreactor (MBR) plant. HEMM-1 has diplococcal morphology and 99% sequence identity to Enterococcus species. The HEMM-1 cell-free supernatant (CFS) showed higher QQ activities than the CFS of other QQ bacteria, mostly by degrading N-acyl homoserine lactones (AHLs) with short acyl chains. Instrumental analyses revealed that HEMM-1 CFS degraded AHLs via lactonase activity. Under static, flow, and shear conditions, the HEMM-1 CFS was effective in reducing bacterial and activated-sludge biofilms formed on membrane surfaces. In conclusion, the HEMM-1 isolate is a QQ bacterium applicable to the control of biofouling in MBRs via inhibition of biofilm formation on membrane surfaces. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells

    International Nuclear Information System (INIS)

    Aguayo, S; Bozec, L; Donos, N; Spratt, D

    2015-01-01

    The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine. (topical review)

  16. Five new amicoumacins isolated from a marine-derived Bacterium bacillus subtilis

    KAUST Repository

    Li, Yongxin; Xu, Ying; Liu, Lingli; Han, Zhuang; Lai, Pok Yui; Guo, Xiangrong; Zhang, Xixiang; Lin, Wenhan; Qian, Pei-Yuan

    2012-01-01

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. 2012 by the authors; licensee MDPI.

  17. Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium Actinokineospora sp. Strain EG49

    KAUST Repository

    Harjes, Janno; Ryu, Tae Woo; Abdelmohsen, Usama Ramadan; Moitinho-Silva, Lucas; Horn, Hannes; Ravasi, Timothy; Hentschel, Ute

    2014-01-01

    The marine sponge-associated bacterium Actinokineospora sp. strain EG49 produces the antitrypanosomal angucycline-like compound actinosporin A. The draft genome of Actinokineospora sp. EG49 has a size of 7.5 megabases and a GC content of 72.8% and contains 6,629 protein-coding sequences (CDS). antiSMASH predicted 996 genes residing in 36 secondary metabolite gene clusters.

  18. Draft Genome Sequence of Uncultured SAR324 Bacterium lautmerah10, Binned from a Red Sea Metagenome

    KAUST Repository

    Haroon, Mohamed; Thompson, Luke R.; Stingl, Ulrich

    2016-01-01

    A draft genome of SAR324 bacterium lautmerah10 was assembled from a metagenome of a surface water sample from the Red Sea, Saudi Arabia. The genome is more complete and has a higher G+C content than that of previously sequenced SAR324 representatives. Its genomic information shows a versatile metabolism that confers an advantage to SAR324, which is reflected in its distribution throughout different depths of the marine water column.

  19. Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium Actinokineospora sp. Strain EG49

    KAUST Repository

    Harjes, Janno

    2014-03-06

    The marine sponge-associated bacterium Actinokineospora sp. strain EG49 produces the antitrypanosomal angucycline-like compound actinosporin A. The draft genome of Actinokineospora sp. EG49 has a size of 7.5 megabases and a GC content of 72.8% and contains 6,629 protein-coding sequences (CDS). antiSMASH predicted 996 genes residing in 36 secondary metabolite gene clusters.

  20. Draft Genome Sequence of Uncultured SAR324 Bacterium lautmerah10, Binned from a Red Sea Metagenome

    KAUST Repository

    Haroon, Mohamed

    2016-02-11

    A draft genome of SAR324 bacterium lautmerah10 was assembled from a metagenome of a surface water sample from the Red Sea, Saudi Arabia. The genome is more complete and has a higher G+C content than that of previously sequenced SAR324 representatives. Its genomic information shows a versatile metabolism that confers an advantage to SAR324, which is reflected in its distribution throughout different depths of the marine water column.

  1. Genomic Analysis of Caldithrix abyssi, the Thermophilic Anaerobic Bacterium of the Novel Bacterial Phylum Calditrichaeota

    OpenAIRE

    Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.; Lebedinsky, Alexander V.; Rinke, Christian; Kovaleva, Olga; Chernyh, Nikolai A.; Ivanova, Natalia; Daum, Chris; Reddy, T.B.K.; Klenk, Hans-Peter; Spring, Stefan; G?ker, Markus; Reva, Oleg N.; Miroshnichenko, Margarita L.

    2017-01-01

    © 2017 Kublanov, Sigalova, Gavrilov, Lebedinsky, Rinke, Kovaleva, Chernyh, Ivanova, Daum, Reddy, Klenk, Spring, Göker, Reva, Miroshnichenko, Kyrpides, Woyke, Gelfand, Bonch-Osmolovskaya. The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to impl...

  2. Permanent draft genome of the malachite-green-tolerant bacterium Rhizobium sp. MGL06.

    Science.gov (United States)

    Liu, Yang; Wang, Runping; Zeng, Runying

    2014-12-01

    Rhizobium sp. MGL06, the first Rhizobium isolate from a marine environment, is a malachite-green-tolerant bacterium with a broader salinity tolerance (range: 0.5% to 9%) than other rhizobia. This study sequences and annotates the draft genome sequence of this strain. Genome sequence information provides a basis for analyzing the malachite green tolerance, broad salinity adaptation, nitrogen fixation properties, and taxonomic classification of the isolate. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Five new amicoumacins isolated from a marine-derived Bacterium bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2012-02-03

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. 2012 by the authors; licensee MDPI.

  4. Alteration of the Canine Small-Intestinal Lactic Acid Bacterium Microbiota by Feeding of Potential Probiotics

    OpenAIRE

    Manninen, Titta J. K.; Rinkinen, Minna L.; Beasley, Shea S.; Saris, Per E. J.

    2006-01-01

    Five potentially probiotic canine fecal lactic acid bacterium (LAB) strains, Lactobacillus fermentum LAB8, Lactobacillus salivarius LAB9, Weissella confusa LAB10, Lactobacillus rhamnosus LAB11, and Lactobacillus mucosae LAB12, were fed to five permanently fistulated beagles for 7 days. The survival of the strains and their potential effects on the indigenous intestinal LAB microbiota were monitored for 17 days. Denaturing gradient gel electrophoresis (DGGE) demonstrated that the five fed LAB ...

  5. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    Science.gov (United States)

    Yang, Yu; Yang, Jun; Jiang, Lei

    2016-08-19

    Yoshida et al (Report, 11 March 2016, p. 1196) reported that the bacterium Ideonella sakaiensis 201-F6 can degrade and assimilate poly(ethylene terephthalate) (PET). However, the authors exaggerated degradation efficiency using a low-crystallinity PET and presented no straightforward experiments to verify depolymerization and assimilation of PET. Thus, the authors' conclusions are rather misleading. Copyright © 2016, American Association for the Advancement of Science.

  6. Two New Cholic Acid Derivatives from the Marine Ascidian-Associated Bacterium Hasllibacter halocynthiae

    Directory of Open Access Journals (Sweden)

    Sung Hun Kim

    2012-10-01

    Full Text Available The investigation of secondary metabolites in liquid cultures of a recently discovered marine bacterium, Hasllibacter halocynthiae strain KME 002T, led to the isolation of two new cholic acid derivatives. The structures of these compounds were determined to be 3,3,12-trihydroxy-7-ketocholanic acid (1 and 3,3,12-trihydroxy-7-deoxycholanic acid (2 through HRFABMS and NMR data analyses.

  7. Emergence of a New Population of Rathayibacter toxicus: An Ecologically Complex, Geographically Isolated Bacterium

    OpenAIRE

    Arif, Mohammad; Busot, Grethel Y.; Mann, Rachel; Rodoni, Brendan; Liu, Sanzhen; Stack, James P.

    2016-01-01

    Rathayibacter toxicus is a gram-positive bacterium that infects the floral parts of several Poaceae species in Australia. Bacterial ooze is often produced on the surface of infected plants and bacterial galls are produced in place of seed. R. toxicus is a regulated plant pathogen in the U.S. yet reliable detection and diagnostic tools are lacking. To better understand this geographically-isolated plant pathogen, genetic variation as a function of geographic location, host species, and date of...

  8. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium

    OpenAIRE

    Hoshi, Ayaka; Oshima, Kenro; Kakizawa, Shigeyuki; Ishii, Yoshiko; Ozeki, Johji; Hashimoto, Masayoshi; Komatsu, Ken; Kagiwada, Satoshi; Yamaji, Yasuyuki; Namba, Shigetou

    2009-01-01

    One of the most important themes in agricultural science is the identification of virulence factors involved in plant disease. Here, we show that a single virulence factor, tengu-su inducer (TENGU), induces witches' broom and dwarfism and is a small secreted protein of the plant-pathogenic bacterium, phytoplasma. When tengu was expressed in Nicotiana benthamiana plants, these plants showed symptoms of witches' broom and dwarfism, which are typical of phytoplasma infection. Transgenic Arabidop...

  9. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  10. The Purine-Utilizing Bacterium Clostridium acidurici 9a: A Genome-Guided Metabolic Reconsideration

    OpenAIRE

    Hartwich, Katrin; Poehlein, Anja; Daniel, Rolf

    2012-01-01

    Clostridium acidurici is an anaerobic, homoacetogenic bacterium, which is able to use purines such as uric acid as sole carbon, nitrogen, and energy source. Together with the two other known purinolytic clostridia C. cylindrosporum and C. purinilyticum, C. acidurici serves as a model organism for investigation of purine fermentation. Here, we present the first complete sequence and analysis of a genome derived from a purinolytic Clostridium. The genome of C. acidurici 9a consists ...

  11. Sexual transmission of a plant pathogenic bacterium, Candidatus Liberibacter asiaticus, between conspecific insect vectors during mating.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Candidatus Liberibacter asiaticus is a fastidious, phloem-inhabiting, gram-negative bacterium transmitted by Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae. The bacterium is the presumed causal agent of huanglongbing (HLB, one of the most destructive and economically important diseases of citrus. We investigated whether Las is transmitted between infected and uninfected D. citri adults during courtship. Our results indicate that Las was sexually transmitted from Las-infected male D. citri to uninfected females at a low rate (<4% during mating. Sexual transmission was not observed following mating of infected females and uninfected males or among adult pairs of the same sex. Las was detected in genitalia of both sexes and also in eggs of infected females. A latent period of 7 days or more was required to detect the bacterium in recipient females. Rod shaped as well as spherical structures resembling Las were observed in ovaries of Las-infected females with transmission electron microscopy, but were absent in ovaries from uninfected D. citri females. The size of the rod shaped structures varied from 0.39 to 0.67 µm in length and 0.19 to 0.39 µm in width. The spherical structures measured from 0.61 to 0.80 µm in diameter. This investigation provides convincing evidence that a plant pathogenic bacterium is sexually transmitted from male to female insects during courtship and established evidence that bacteria persist in reproductive organs. Moreover, these findings provide an alternative sexually horizontal mechanism for the spread of Las within populations of D. citri, even in the absence of infected host trees.

  12. DNA damage response in a radiation resistant bacterium Deinococcus radiodurans: a paradigm shift

    International Nuclear Information System (INIS)

    Misra, H.S.

    2015-01-01

    Deinococcusradiodurans is best known for its extraordinary resistance to gamma radiation with its D 10 12kGy, and several other DNA damaging agents including desiccation to less than 5% humidity and chemical xenotoxicants. An efficient DNA double strand break (DSB) repair and its ability to protect biomolecules from oxidative damage are a few mechanisms attributed to these phenotypes in this bacterium. Although it regulates its proteome and transcriptome in response to DNA damage for its growth and survival, it lacks LexA mediated classical SOS response mechanism. Since LexA mediated damages response mechanism is highly and perhaps only, characterized DNA damage response processes in prokaryotes, this bacterium keeps us guessing how it responds to extreme doses of DNA damage. Interestingly, this bacterium encodes a large number of eukaryotic type serine threonine/tyrosine protein kinases (eST/YPK), phosphatases and response regulators and roles of eST/YPKs in cellular response to DNA damage and cell cycle regulations are well established in eukaryotes. Here, we characterized an antioxidant and DNA damage inducible eST/YPK (RqkA) and established its role in extraordinary radioresistance and DSB repair in this bacterium. We identified native phosphoprotein substrates for this kinase and demonstrated the involvement of some of these proteins phosphorylation in the regulation of DSB repair and growth under radiation stress. Findings suggesting the possible existence of eST/YPK mediated DNA damage response mechanism as an alternate to classical SOS response in this prokaryote would be discussed. (author)

  13. Molecular adaptation of a plant-bacterium outer membrane protease towards plague virulence factor Pla

    Science.gov (United States)

    2011-01-01

    Background Omptins are a family of outer membrane proteases that have spread by horizontal gene transfer in Gram-negative bacteria that infect vertebrates or plants. Despite structural similarity, the molecular functions of omptins differ in a manner that reflects the life style of their host bacteria. To simulate the molecular adaptation of omptins, we applied site-specific mutagenesis to make Epo of the plant pathogenic Erwinia pyrifoliae exhibit virulence-associated functions of its close homolog, the plasminogen activator Pla of Yersinia pestis. We addressed three virulence-associated functions exhibited by Pla, i.e., proteolytic activation of plasminogen, proteolytic degradation of serine protease inhibitors, and invasion into human cells. Results Pla and Epo expressed in Escherichia coli are both functional endopeptidases and cleave human serine protease inhibitors, but Epo failed to activate plasminogen and to mediate invasion into a human endothelial-like cell line. Swapping of ten amino acid residues at two surface loops of Pla and Epo introduced plasminogen activation capacity in Epo and inactivated the function in Pla. We also compared the structure of Pla and the modeled structure of Epo to analyze the structural variations that could rationalize the different proteolytic activities. Epo-expressing bacteria managed to invade human cells only after all extramembranous residues that differ between Pla and Epo and the first transmembrane β-strand had been changed. Conclusions We describe molecular adaptation of a protease from an environmental setting towards a virulence factor detrimental for humans. Our results stress the evolvability of bacterial β-barrel surface structures and the environment as a source of progenitor virulence molecules of human pathogens. PMID:21310089

  14. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides.

    Science.gov (United States)

    Devendran, Saravanan; Abdel-Hamid, Ahmed M; Evans, Anton F; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I; Cann, Isaac

    2016-10-17

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.

  15. FtsZ from radiation resistant bacterium Deinococcus radiodurans is different from its characterized homologues

    International Nuclear Information System (INIS)

    Mehta, Kruti P.; Misra, H.S.

    2012-01-01

    Polymerization/depolymerization dynamics of FtsZ and its GTPase activity are interdependent and the regulation of these processes determines the growth rate in a bacterium. Deinococcus radiodurans R1 that is best known for its extraordinary radiation resistance and efficient DNA double strand break repair is a comparatively slow growing bacterium and its growth gets arrested in response to gamma radiation. Mechanisms of cell division and its regulation under gamma stressed growth condition would be worth investigating. Genome of this bacterium encodes at least all the known components of divisome. Recombinant FtsZ of D. radiodurans (drFtsZ) preferred Mg 2+ for its GTPase activity. Relatively a very low GTPase activity was observed in presence of Mn 2+ , Co 2+ and Ni 2+ while release of inorganic phosphate could not be detected in presence of other divalent ions including Ca 2+ . GTPase activity of drFtsZ was lower than E. coli but higher than Mycobacterium and it required both Mg 2+ and GTP for its polymerization. Its GTPase activity did not increase with increasing concentration of Mg 2+ and correlates with the bundling of protofilaments. Results obtained from transmission electron microscopy and sedimentation analysis supported the reciprocal correlation of polymerization/depolymerization with the levels of GTPase activity. Dynamic light scattering in presence of 5mM or higher concentration of Mg 2+ and Mn 2 showed a characteristic cyclic change in light scattering without addition of extra metal ion or GTP

  16. Antimicrobial polyketide furanoterpenoids from seaweed-associated heterotrophic bacterium Bacillus subtilis MTCC 10403.

    Science.gov (United States)

    Chakraborty, Kajal; Thilakan, Bini; Raola, Vamshi Krishna

    2017-10-01

    Brown seaweed Anthophycus longifolius (Turner) Kützing (family Sargassaceae) associated heterotrophic bacterium Bacillus subtilis MTCC 10403 was found to be a potent isolate with broad range of antibacterial activity against important perceptive food pathogens Vibrio parahaemolyticus, V. vulnificus, and Aeromonas hydrophila. This bacterium was positive for polyketide synthetase gene (KC589397), and therefore, was selected to bioprospect specialized metabolites bearing polyketide backbone. Bioactivity-guided chromatographic fractionation of the ethyl acetate extract of the seaweed-associated bacterium segregated four homologous polyketide furanoterpenoids with potential antibacterial activities against clinically important pathogens. The minimum inhibitory concentration (MIC) assay showed that the referral antibiotics tetracycline and ampicillin were active at 25 μg/mL against the test pathogens, whereas the previously undescribed (4E)-methyl 13-((16-(furan-2-yl) ethyl)-octahydro-7-hydroxy-4-((E)-23-methylbut-21-enyl)-2H-chromen-6-yl)-4-methylpent-4-enoate (compound 1) and methyl 3-(hexahydro-9-((E)-3-methylpent-1-enyl)-4H-furo[3,2-g]isochromen-6-yl) propanoate (compound 3) displayed antibacterial activities against the test pathogens at a lesser concentration (MIC subtilis MTCC 10403 demonstrated to represent a potential source of antimicrobial polyketides for pharmaceutical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes. Final Report

    International Nuclear Information System (INIS)

    Lidstrom, Mary E.

    2003-01-01

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions

  18. Purification and Characterization of Haloalkaline, Organic Solvent Stable Xylanase from Newly Isolated Halophilic Bacterium-OKH

    Science.gov (United States)

    Sanghvi, Gaurav; Jivrajani, Mehul; Patel, Nirav; Jivrajani, Heta; Bhaskara, Govinal Badiger; Patel, Shivani

    2014-01-01

    A novel, alkali-tolerant halophilic bacterium-OKH with an ability to produce extracellular halophilic, alkali-tolerant, organic solvent stable, and moderately thermostable xylanase was isolated from salt salterns of Mithapur region, Gujarat, India. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. Maximum xylanase production was achieved at pH 9.0 and 37°C temperature in the medium containing 15% NaCl and 1% (w/v) corn cobs. Sugarcane bagasse and wheat straw also induce xylanase production when used as carbon source. The enzyme was active over a range of 0–25% sodium chloride examined in culture broth. The optimum xylanase activity was observed at 5% sodium chloride. Xylanase was purified with 25.81%-fold purification and 17.1% yield. Kinetic properties such as Km and Vmax were 4.2 mg/mL and 0.31 μmol/min/mL, respectively. The enzyme was stable at pH 6.0 and 50°C with 60% activity after 8 hours of incubation. Enzyme activity was enhanced by Ca2+, Mn2+, and Mg2+ but strongly inhibited by heavy metals such as Hg2+, Fe3+, Ni2+, and Zn2+. Xylanase was found to be stable in organic solvents like glutaraldehyde and isopropanol. The purified enzyme hydrolysed lignocellulosic substrates. Xylanase, purified from the halophilic bacterium-OKH, has potential biotechnological applications. PMID:27350996

  19. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel

    International Nuclear Information System (INIS)

    Ashassi-Sorkhabi, H.; Moradi-Haghighi, M.; Zarrini, G.

    2012-01-01

    The present study investigated the role of manganese oxidizing bacterium (MOB), namely Pseudoxanthomonas sp. on the corrosion behavior of carbon steel. This bacterium was isolated from sewage treatment plants and identified by biochemical and molecular methods. The electrochemical techniques such as open circuit potentiometry, electrochemical impedance spectroscopy, potentiodynamic and cyclic polarization were used to measure the corrosion rate and observe the corrosion mechanism. Also, scanning electron microscopy and X-ray diffraction studies were applied to surface analysis. This study revealed the strong adhesion of the biofilm on the metal surface in the presence of Pseudoxanthomonas sp. that enhanced the corrosion of carbon steel. X-ray diffraction patterns identified a high content of MnO 2 deposition within these biofilms. This is the first report that discloses the involvement of Pseudoxanthomonas sp. as manganese oxidizing bacteria on the corrosion of carbon steel. - Highlights: ► A new type of manganese oxidizing bacteria, namely Pseudoxanthomonas sp. was indicated. ► This bacterium can create a biofilm on the part of metal surface and affect localized corrosion. ► In the presence of biofilm, the diffusion of oxygen vacancies and manganese ions has occurred.

  20. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    Science.gov (United States)

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production. PMID:24717418

  1. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin.

    Science.gov (United States)

    Svitil, A L; Chadhain, S; Moore, J A; Kirchman, D L

    1997-02-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products.

  2. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Ashassi-Sorkhabi, H., E-mail: habib_ashassi@yahoo.com [Electrochemistry Research Laboratory, Physical Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Moradi-Haghighi, M. [Electrochemistry Research Laboratory, Physical Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Zarrini, G. [Microbiology laboratory, Biology Department, Science Faculty, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2012-02-01

    The present study investigated the role of manganese oxidizing bacterium (MOB), namely Pseudoxanthomonas sp. on the corrosion behavior of carbon steel. This bacterium was isolated from sewage treatment plants and identified by biochemical and molecular methods. The electrochemical techniques such as open circuit potentiometry, electrochemical impedance spectroscopy, potentiodynamic and cyclic polarization were used to measure the corrosion rate and observe the corrosion mechanism. Also, scanning electron microscopy and X-ray diffraction studies were applied to surface analysis. This study revealed the strong adhesion of the biofilm on the metal surface in the presence of Pseudoxanthomonas sp. that enhanced the corrosion of carbon steel. X-ray diffraction patterns identified a high content of MnO{sub 2} deposition within these biofilms. This is the first report that discloses the involvement of Pseudoxanthomonas sp. as manganese oxidizing bacteria on the corrosion of carbon steel. - Highlights: Black-Right-Pointing-Pointer A new type of manganese oxidizing bacteria, namely Pseudoxanthomonas sp. was indicated. Black-Right-Pointing-Pointer This bacterium can create a biofilm on the part of metal surface and affect localized corrosion. Black-Right-Pointing-Pointer In the presence of biofilm, the diffusion of oxygen vacancies and manganese ions has occurred.

  3. Genomic Analysis of a Marine Bacterium: Bioinformatics for Comparison, Evaluation, and Interpretation of DNA Sequences

    Directory of Open Access Journals (Sweden)

    Bhagwan N. Rekadwad

    2016-01-01

    Full Text Available A total of five highly related strains of an unidentified marine bacterium were analyzed through their short genome sequences (AM260709–AM260713. Genome-to-Genome Distance (GGDC showed high similarity to Pseudoalteromonas haloplanktis (X67024. The generated unique Quick Response (QR codes indicated no identity to other microbial species or gene sequences. Chaos Game Representation (CGR showed the number of bases concentrated in the area. Guanine residues were highest in number followed by cytosine. Frequency of Chaos Game Representation (FCGR indicated that CC and GG blocks have higher frequency in the sequence from the evaluated marine bacterium strains. Maximum GC content for the marine bacterium strains ranged 53-54%. The use of QR codes, CGR, FCGR, and GC dataset helped in identifying and interpreting short genome sequences from specific isolates. A phylogenetic tree was constructed with the bootstrap test (1000 replicates using MEGA6 software. Principal Component Analysis (PCA was carried out using EMBL-EBI MUSCLE program. Thus, generated genomic data are of great assistance for hierarchical classification in Bacterial Systematics which combined with phenotypic features represents a basic procedure for a polyphasic approach on unambiguous bacterial isolate taxonomic classification.

  4. Photoproduction of hydrogen by a non-sulphur bacterium isolated from root zones of water fern Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Srivastava, S.C.; Pandey, K.D. (Banaras Hindu Univ., Varanasi (IN). Centre of Advanced Study in Botany)

    1990-01-01

    A photosynthetic bacterium Rhodopseudomonas sp. BHU strain 1 was isolated from the root zone of water fern Azolla pinnata. The bacterium was found to produce hydrogen with potato starch under phototrophic conditions. The immobilized bacterial cells showed sustained hydrogen production with a more than 4-fold difference over free cell suspensions. The data have been discussed in the light of possible utilization of relatively cheaper raw materials by non-sulphur bacteria to evolve hydrogen. (author).

  5. Thermophilic Anaerobic Degradation of Butyrate by a Butyrate-Utilizing Bacterium in Coculture and Triculture with Methanogenic Bacteria

    OpenAIRE

    Ahring, Birgitte K.; Westermann, Peter

    1987-01-01

    We studied syntrophic butyrate degradation in thermophilic mixed cultures containing a butyrate-degrading bacterium isolated in coculture with Methanobacterium thermoautotrophicum or in triculture with M. thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic bacterium. Butyrate was β-oxidized to acetate with protons as the electron acceptors. Acetate was used concurrently with its production in the triculture. We found a higher butyrate degradation rate in th...

  6. Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant-parasitic nematode host, Meloidogyne spp.

    Science.gov (United States)

    Davies, Keith G

    2009-01-01

    Pasteuria penetrans is an endospore-forming bacterium, which is a hyperparasite of root-knot nematodes Meloidogyne spp. that are economically important pests of a wide range of crops. The life cycle of the bacterium and nematode are described with emphasis on the bacterium's potential as a biocontrol agent. Two aspects that currently prohibit the commercial development of the bacterium as a biocontrol agent are the inability to culture it outside its host and its host specificity. Vegetative growth of the bacterium is possible in vitro; however, getting the vegetative stages of the bacterium to enter sporogenesis has been problematic. Insights from genomic survey sequences regarding the role of cation concentration and the phosphorylation of Spo0F have proved useful in inducing vegetative bacteria to sporulate. Similarly, genomic data have also proved useful in understanding the attachment of endospores to the cuticle of infective nematode juveniles, and a Velcro-like model of spore attachment is proposed that involves collagen-like fibres on the surface of the endospore interacting with mucins on the nematode cuticle. Ecological studies of the interactions between Daphnia and Pasteuria ramosa are examined and similarities are drawn between the co-evolution of virulence in the Daphnia system and that of plant-parasitic nematodes.

  7. Engineering of Bacteriophages Y2::dpoL1-C and Y2::luxAB for Efficient Control and Rapid Detection of the Fire Blight Pathogen, Erwinia amylovora.

    Science.gov (United States)

    Born, Yannick; Fieseler, Lars; Thöny, Valentin; Leimer, Nadja; Duffy, Brion; Loessner, Martin J

    2017-06-15

    Erwinia amylovora is the causative agent of fire blight, a devastating plant disease affecting members of the Rosaceae Alternatives to antibiotics for control of fire blight symptoms and outbreaks are highly desirable, due to increasing drug resistance and tight regulatory restrictions. Moreover, the available diagnostic methods either lack sensitivity, lack speed, or are unable to discriminate between live and dead bacteria. Owing to their extreme biological specificity, bacteriophages are promising alternatives for both aims. In this study, the virulent broad-host-range E. amylovora virus Y2 was engineered to enhance its killing activity and for use as a luciferase reporter phage, respectively. Toward these aims, a depolymerase gene of E. amylovora virus L1 ( dpoL1-C ) or a bacterial luxAB fusion was introduced into the genome of Y2 by homologous recombination. The genes were placed downstream of the major capsid protein orf68 , under the control of the native promoter. The modifications did not affect viability of infectivity of the recombinant viruses. Phage Y2:: dpoL1-C demonstrated synergistic activity between the depolymerase degrading the exopolysaccharide capsule and phage infection, which greatly enhanced bacterial killing. It also significantly reduced the ability of E. amylovora to colonize the surface of detached flowers. The reporter phage Y2:: luxAB transduced bacterial luciferase into host cells and induced synthesis of large amounts of a LuxAB luciferase fusion. After the addition of aldehyde substrate, bioluminescence could be readily monitored, and this enabled rapid and specific detection of low numbers of viable bacteria, without enrichment, both in vitro and in plant material. IMPORTANCE Fire blight, caused by Erwinia amylovora , is the major threat to global pome fruit production, with high economic losses every year. Bacteriophages represent promising alternatives to not only control the disease, but also for rapid diagnostics. To enhance

  8. Adhesive properties of a symbolic bacterium from a wood-boreing marine shipworm

    International Nuclear Information System (INIS)

    Imam, S.H.; Greene, R.V.; Griffin, H.L.

    1990-01-01

    Adhesive properties of cellulolytic, nitrogen-fixing bacterium isolated from a marine shipworm are described. 35 S-labeled cells of the shipworm bacterium bound preferentially Whatman no.1 cellulose filter paper, compared with its binding to other cellulose substrata or substrata lacking cellulose. The ability of the bacteria to bind to Whatman no. 1 filter paper was significantly reduced by glutaraldehyde or heat treatment of cells. Pretreatment of cells with azide, valinomycin, gramicidin-D, bis-hexafluoroacetylacetone (1799), or carbonyl cyanide-p-trifluoromethoxyphenylhydrazone inhibited adhesion activity. Cells pretreated with pronase or trypsin also exhibited reduced binding activity, but chymotrypsin and peptidase had no effect on adhesion activity. Cellodextrins and methyl cellulose 15 inhibited the adhesion of the shipworm bacteria to filter paper, whereas glucose, cellobiose, and soluble carboxymethyl cellulose had no significant effect. The divalent cation chelators EDTA and EGTA [ethylene hlycol-bis(β-aminoethyl ether)-N,N,N'N'-tetraacetic acid] had little or no effect on adhesive properties of shipworm bacteria. Also, preabsorbing the substratum with extracellular endoglucanase isolated from the ship worm bacterium or 1% bovine serum albumin had no apparent effect on bacterial binding. Low concentration (0.01%) of sodium dodecyl sulfate solubilized a fraction from whole cells, which appeared to be involved in cellular binding activity. After removal of sodium dodecyl, sulfate, several proteins in this fraction associated with intact cells. These cells exhibited up to 50% enhanced binding to filter paper in comparison to cells which had not been exposed to the sodium dodecyl sulfate-solubilized fraction

  9. ANALYSIS OF IMMUNE RESPONSES ON TRANSGENIC TIGER SHRIMP (Penaeus monodon AGAINST PATHOGENIC BACTERIUM Vibrio harveyi

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2014-06-01

    Full Text Available Vibriosis is one of main diseases of the black tiger shrimp Penaeus monodon infected by pathogenic bioluminous bacterium Vibrio harveyi that can cause mass mortalities in shrimp culture. The bacteria can also trigger the disease white spot syndrome virus (WSSV. An effort to produce shrimp disease-resistant strains has been done through transgenesis technology with antiviral gene transfection. By this technology, it is expected an increase in the immune response of shrimp in a variety of diseasecausing pathogens. This study aimed to determine the immune responses (total haemocytes, haemocyte differentiation, and phenoloxydase activity of transgenic tiger shrimp against pathogenic bacterium V. harveyi. Research using completely randomized design, which consists of two treatments and three replications. Test animals being used were transgenic and non-transgenic shrimp with size, weight 3.93±1.25 g and a total length of 7.59±0.87 cm. Treatments being tested were the injection of bacterium V. harveyi (density of 5x106 cfu/mL of 0.1 mL/individual on transgenic (A and non-transgenic shrimp (B. Immune response parameters such as total haemocytes, haemocyte differentiation, and phenoloxydase activity were observed on day 1, 3, and 6 days after challenging. Data were analyzed using t-test by SPSS software. The results showed that the total haemocyte of transgenic shrimp was not significantly different (P>0.05 from non-transgenic shrimp, but haemocyte differentiation and phenoloxydase activity were significantly different (P<0.05 especially on sixth days after being exposed to the bioluminescent bacteria. The study results implied that transgenic shrimp has a better immune response compared than non-transgenic shrimp.

  10. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

    DEFF Research Database (Denmark)

    Clausen, Anders; Mikkelsen, Marie Just; Schrøder, I.

    2004-01-01

    The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence re...... with highest similarity to DNA repair protein from Campylobacter jejuni (25% aa). Orf34 showed similarity to sigma factors with highest similarity (28% aa) to the sporulation specific Sigma factor, Sigma 28(K) from Bacillus thuringiensis....

  11. A marine bacterium, Micrococcus MCCB 104, antagonistic to vibrios in prawn larval rearing systems.

    Science.gov (United States)

    Jayaprakash, N S; Pai, S Somnath; Anas, A; Preetha, R; Philip, Rosamma; Singh, I S Bright

    2005-12-30

    A marine bacterium, Micrococcus MCCB 104, isolated from hatchery water, demonstrated extracellular antagonistic properties against Vibrio alginolyticus, V. parahaemolyticus, V. vulnificus, V. fluviallis, V. nereis, V. proteolyticus, V. mediterranei, V cholerae and Aeromonas sp., bacteria associated with Macrobrachium rosenbergii larval rearing systems. The isolate inhibited the growth of V. alginolyticus during co-culture. The antagonistic component of the extracellular product was heat-stable and insensitive to proteases, lipase, catalase and alpha-amylase. Micrococcus MCCB 104 was demonstrated to be non-pathogenic to M. rosenbergii larvae.

  12. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery

    DEFF Research Database (Denmark)

    Martinez, Virginia; Herencias, Cristina; Jurkevitch, Edouard

    2016-01-01

    This work examines the potential of the predatory bacterium Bdellovibrio bacteriovorus HD100, an obligate predator of other Gram-negative bacteria, as an external cell-lytic agent for recovering valuable intracellular bio-products produced by prey cultures. The bio-product targets to be recovered......% of that accumulated by the prey bacteria, even at high biomass concentrations. This innovative downstream process highlights how B. bacteriovorus can be used as a novel, biological lytic agent for the inexpensive, industrial scale recovery of intracellular products from different Gram-negative prey cultures....

  13. Complete genome sequence of the aerobically denitrifying thermophilic bacterium Chelatococcus daeguensis TAD1

    Directory of Open Access Journals (Sweden)

    Yunlong Yang

    Full Text Available ABSTRACT Chelatococcus daeguensis TAD1 is a themophilic bacterium isolated from a biotrickling filter used to treat NOx in Ruiming Power Plant, located in Guangzhou, China, which shows an excellent aerobic denitrification activity at high temperature. The complete genome sequence of this strain was reported in the present study. Genes related to the aerobic denitrification were identified through whole genome analysis. This work will facilitate the mechanism of aerobic denitrification and provide evidence for its potential application in the nitrogen removal.

  14. A bacterium that can grow by using arsenic instead of phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2010-11-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus. Although these six elements make up nucleic acids, proteins and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, CA, which substitutes arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical significance.

  15. A fatal endocarditis case due to an emerging bacterium: Moraxella nonliquefaciens

    Directory of Open Access Journals (Sweden)

    C. Duployez

    2017-01-01

    Full Text Available Moraxella nonliquefaciens is a Gram-negative coccobacillus considered as a commensal organism from the upper respiratory tract, with low pathogenic potential. The phenotypical conventional identification is difficult and the matrix-assisted laser desorption/ionization time-of-flight technology has increased the resolution of identification of this bacterium. We report a fatal case of endocarditis due to M. nonliquefaciens whose identification was confirmed by 16S rRNA, and we review the literature on this pathogen in endocarditis.

  16. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium

    International Nuclear Information System (INIS)

    Maurice, P.

    2004-01-01

    This project investigated the effects of an aerobic Pseudomonas mendocina bacterium on the dissolution of Fe(III)(hydr)oxides. The research is important because metals and radionuclides that adsorb to Fe(III)(hydr)oxides could potentially be remobilized by dissolving bacteria. We showed that P. mendocina is capable of dissolving Fe-bearing minerals by a variety of mechanisms, including production of siderophores, pH changes, and formation of reductants. The production of siderophores by P. mendocina was quantified under a variety of growth conditions. Finally, we demonstrated that microbial siderophores may adsorb to and enhance dissolution of clay minerals

  17. Isolation of an unidentified pink-pigmented bacterium in a clinical specimen.

    OpenAIRE

    Odugbemi, T; Nwofor, C; Joiner, K T

    1988-01-01

    An unidentified pink-pigmented bacterium isolated from a clinical specimen is reported. The organism was oxidase, urease, and catalase positive; it grew on Thayer-Martin and MacConkey media. The isolate is possibly similar to an unnamed taxon (G.L. Gilardi and Y.C. Faur, J. Clin. Microbiol. 20:626-629, 1984); however, it had unique characteristics of nonmotility with no flagellum detectable and was a gram-negative coccoid with a few rods in pairs and negative for starch hydrolysis.

  18. Isolation of an unidentified pink-pigmented bacterium in a clinical specimen.

    Science.gov (United States)

    Odugbemi, T; Nwofor, C; Joiner, K T

    1988-05-01

    An unidentified pink-pigmented bacterium isolated from a clinical specimen is reported. The organism was oxidase, urease, and catalase positive; it grew on Thayer-Martin and MacConkey media. The isolate is possibly similar to an unnamed taxon (G.L. Gilardi and Y.C. Faur, J. Clin. Microbiol. 20:626-629, 1984); however, it had unique characteristics of nonmotility with no flagellum detectable and was a gram-negative coccoid with a few rods in pairs and negative for starch hydrolysis.

  19. Illuminating the landscape of host–pathogen interactions with the bacterium Listeria monocytogenes

    Science.gov (United States)

    Cossart, Pascale

    2011-01-01

    Listeria monocytogenes has, in 25 y, become a model in infection biology. Through the analysis of both its saprophytic life and infectious process, new concepts in microbiology, cell biology, and pathogenesis have been discovered. This review will update our knowledge on this intracellular pathogen and highlight the most recent breakthroughs. Promising areas of investigation such as the increasingly recognized relevance for the infectious process, of RNA-mediated regulations in the bacterium, and the role of bacterially controlled posttranslational and epigenetic modifications in the host will also be discussed. PMID:22114192

  20. A bacterium that can grow by using arsenic instead of phosphorus.

    Science.gov (United States)

    Wolfe-Simon, Felisa; Switzer Blum, Jodi; Kulp, Thomas R; Gordon, Gwyneth W; Hoeft, Shelley E; Pett-Ridge, Jennifer; Stolz, John F; Webb, Samuel M; Weber, Peter K; Davies, Paul C W; Anbar, Ariel D; Oremland, Ronald S

    2011-06-03

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.

  1. Aggregation of the rhizospheric bacterium Azospirillum brasilense in response to oxygen

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2016-04-01

    Azospirillum brasilense spp. have ecological, scientific and agricultural importance. As model plant growth promoting rhizobacteria they interact with a large variety of plants, including important food and cash crops. Azospirillum strains are known for their production of plant growth hormones that enhance root systems and for their ability to fix nitrogen. Azospirillum cells transform in response to environmental cues. The production of exopolysaccharides and cell aggregation during cellular transformation are important steps in the attachment of Azospirillum to roots. We investigate signals that induce cellular transformation and aggregation in the Azospirillum and report on the importance of oxygen to the process of aggregation in this rhizospheric bacterium.

  2. Mutagenesis and reparation processes in the methylotrophic bacterium Pseudomonas methanolica after UV irradiation

    International Nuclear Information System (INIS)

    Naumov, G.N.; Bokhan, I.K.; Multykh, I.G.

    1986-01-01

    High resistance of cells of methylotrophic bacterium Pseudomonas methanolica to bactericidal and mutagenous effects of ultraviolet irradiation is shown as well as activity of reparation processes after UV irradiation. The presence of low photoreactivating activity in P. methanolica is shown as well. Observed recovery in innutritious medium and decrease of irradiated cells survival rates under effect of reparation inhibitors (coffeine and acriflavine) testify to activity of excision reparation and, perhaps, recombination branch of postreplicative reparation. No manifestation of inducible reparation system is discovered. It is concluded that increased resistance of P. methanolica cells to bactericidal and mutagenous effects of short-wave ultraviolet radiation is related to activity of exact reparation systems

  3. Efficacies of quorum sensing inhibitors, piericidin A and glucopiericidin A, produced by Streptomyces xanthocidicus KPP01532 for the control of potato soft rot caused by Erwinia carotovora subsp. atroseptica.

    Science.gov (United States)

    Kang, Ji Eun; Han, Jae Woo; Jeon, Byeong Jun; Kim, Beom Seok

    2016-03-01

    To discover potential inhibitors of the quorum sensing (QS) system, a library of microbial culture extracts was screened with Chromobacterium violaceumCV026 strain. The culture extract of Streptomyces xanthocidicus KPP01532 contained quorum-sensing inhibitors (QSIs) of the CV026 strain. The active constituents of the culture extract of strain KPP01532 were purified using a series of chromatographic procedures, and based on data from NMR and mass spectroscopy, piericidin A and glucopiericidin A were identified. Erwinia carotovora subsp. atroseptica (Eca) is a plant pathogen that causes blackleg and soft rot diseases on potato stems and tubers. The virulence factors of Eca are regulated by QS. The expression of virulence genes (pelC, pehA, celV and nip) under the control of QS was monitored using quantitative real-time PCR (qRT-PCR). The transcription levels of the four genes were significantly lower when Eca was exposed to piericidin A or glucopiericidin A. These two compounds displayed similar control efficacies against soft rot caused by Eca in potato slices as furanone C-30. Therefore, piericidin A and glucopiericidin A are potential QSIs that suppress the expression of the virulence genes of Eca, suggesting that they could have potential use as control agents of soft rot disease on potato tubers. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. The crystal structure of Erwinia amylovora AmyR, a member of the YbjN protein family, shows similarity to type III secretion chaperones but suggests different cellular functions.

    Science.gov (United States)

    Bartho, Joseph D; Bellini, Dom; Wuerges, Jochen; Demitri, Nicola; Toccafondi, Mirco; Schmitt, Armin O; Zhao, Youfu; Walsh, Martin A; Benini, Stefano

    2017-01-01

    AmyR is a stress and virulence associated protein from the plant pathogenic Enterobacteriaceae species Erwinia amylovora, and is a functionally conserved ortholog of YbjN from Escherichia coli. The crystal structure of E. amylovora AmyR reveals a class I type III secretion chaperone-like fold, despite the lack of sequence similarity between these two classes of protein and lacking any evidence of a secretion-associated role. The results indicate that AmyR, and YbjN proteins in general, function through protein-protein interactions without any enzymatic action. The YbjN proteins of Enterobacteriaceae show remarkably low sequence similarity with other members of the YbjN protein family in Eubacteria, yet a high level of structural conservation is observed. Across the YbjN protein family sequence conservation is limited to residues stabilising the protein core and dimerization interface, while interacting regions are only conserved between closely related species. This study presents the first structure of a YbjN protein from Enterobacteriaceae, the most highly divergent and well-studied subgroup of YbjN proteins, and an in-depth sequence and structural analysis of this important but poorly understood protein family.

  5. Global regulators ExpA (GacA) and KdgR modulate extracellular enzyme gene expression through the RsmA-rsmB system in Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Hyytiäinen, H; Montesano, M; Palva, E T

    2001-08-01

    The production of the main virulence determinants, the extracellular plant cell wall-degrading enzymes, and hence virulence of Erwinia carotovora subsp. carotovora is controlled by a complex regulatory network. One of the global regulators, the response regulator ExpA, a GacA homolog, is required for transcriptional activation of the extracellular enzyme genes of this soft-rot pathogen. To elucidate the mechanism of ExpA control as well as interactions with other regulatory systems, we isolated second-site transposon mutants that would suppress the enzyme-negative phenotype of an expA (gacA) mutant. Inactivation of kdgR resulted in partial restoration of extracellular enzyme production and virulence to the expA mutant, suggesting an interaction between the two regulatory pathways. This interaction was mediated by the RsmA-rsmB system. Northern analysis was used to show that the regulatory rsmB RNA was under positive control of ExpA. Conversely, the expression of rsmA encoding a global repressor was under negative control of ExpA and positive control of KdgR. This study indicates a central role for the RsmA-rsmB regulatory system during pathogenesis, integrating signals from the ExpA (GacA) and KdgR global regulators of extracellular enzyme production in E. carotovora subsp. carotovora.

  6. Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaerobius polysaccharolyticus.

    Science.gov (United States)

    Han, Yejun; Agarwal, Vinayak; Dodd, Dylan; Kim, Jason; Bae, Brian; Mackie, Roderick I; Nair, Satish K; Cann, Isaac K O

    2012-10-12

    Hemicellulose is the next most abundant plant cell wall component after cellulose. The abundance of hemicellulose such as xylan suggests that their hydrolysis and conversion to biofuels can improve the economics of bioenergy production. In an effort to understand xylan hydrolysis at high temperatures, we sequenced the genome of the thermophilic bacterium Caldanaerobius polysaccharolyticus. Analysis of the partial genome sequence revealed a gene cluster that contained both hydrolytic enzymes and also enzymes key to the pentose-phosphate pathway. The hydrolytic enzymes in the gene cluster were demonstrated to convert products from a large endoxylanase (Xyn10A) predicted to anchor to the surface of the bacterium. We further use structural and calorimetric studies to demonstrate that the end products of Xyn10A hydrolysis of xylan are recognized and bound by XBP1, a putative solute-binding protein, likely for transport into the cell. The XBP1 protein showed preference for xylo-oligosaccharides as follows: xylotriose > xylobiose > xylotetraose. To elucidate the structural basis for the oligosaccharide preference, we solved the co-crystal structure of XBP1 complexed with xylotriose to a 1.8-Å resolution. Analysis of the biochemical data in the context of the co-crystal structure reveals the molecular underpinnings of oligosaccharide length specificity.

  7. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike; Mehboob, Farrakh; van Gelder, Antonie H; Rijpstra, W Irene C; Damsté , Jaap S Sinninghe; Stams, Alfons J M

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  8. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike

    2010-08-03

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  9. Influence of yeast and lactic acid bacterium on the constituent profile of soy sauce during fermentation.

    Science.gov (United States)

    Harada, Risa; Yuzuki, Masanobu; Ito, Kotaro; Shiga, Kazuki; Bamba, Takeshi; Fukusaki, Eiichiro

    2017-02-01

    Soy sauce is a Japanese traditional seasoning composed of various constituents that are produced by various microbes during a long-term fermentation process. Due to the complexity of the process, the investigation of the constituent profile during fermentation is difficult. Metabolomics, the comprehensive study of low molecular weight compounds in biological samples, is thought to be a promising strategy for deep understanding of the constituent contribution to food flavor characteristics. Therefore, metabolomics is suitable for the analysis of soy sauce fermentation. Unfortunately, only few and unrefined studies of soy sauce fermentation using metabolomics approach have been reported. Therefore, we investigated changes in low molecular weight hydrophilic and volatile compounds of soy sauce using gas chromatography/mass spectrometry (GC/MS)-based non-targeted metabolic profiling. The data were analyzed by statistical analysis to evaluate influences of yeast and lactic acid bacterium on the constituent profile. Consequently, our results suggested a novel finding that lactic acid bacterium affected the production of several constituents such as cyclotene, furfural, furfuryl alcohol and methional in the soy sauce fermentation process. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. A highly infective plant-associated bacterium influences reproductive rates in pea aphids.

    Science.gov (United States)

    Hendry, Tory A; Clark, Kelley J; Baltrus, David A

    2016-02-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction.

  11. Reduction of nitric oxide catalyzed by hydroxylamine oxidoreductase from an anammox bacterium.

    Science.gov (United States)

    Irisa, Tatsuya; Hira, Daisuke; Furukawa, Kenji; Fujii, Takao

    2014-12-01

    The hydroxylamine oxidoreductase (HAO) from the anammox bacterium, Candidatus Kuenenia stuttgartiensis has been reported to catalyze the oxidation of hydroxylamine (NH2OH) to nitric oxide (NO) by using bovine cytochrome c as an oxidant. In contrast, we investigated whether the HAO from anammox bacterium strain KSU-1 could catalyze the reduction of NO with reduced benzyl viologen (BVred) and the NO-releasing reagent, NOC 7. The reduction proceeded, resulting in the formation of NH2OH as a product. The oxidation rate of BVred was proportional to the concentration of BVred itself for a short period in each experiment, a situation that was termed quasi-steady state. The analyses of the states at various concentrations of HAO allowed us to determine the rate constant for the catalytic reaction, (2.85 ± 0.19) × 10(5) M(-1) s(-1), governing NO reduction by BVred and HAO, which was comparable to that reported for the HAO from the ammonium oxidizer, Nitrosomonas with reduced methyl viologen. These results suggest that the anammox HAO functions to adjust anammox by inter-conversion of NO and NH2OH depending on the redox potential of the physiological electron transfer protein in anammox bacteria. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium.

    Science.gov (United States)

    Kao, An-Chieh; Chu, Yu-Ju; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2013-12-01

    Arsenic (As) contamination of groundwater is a significant public health concern. In this study, the removal of arsenic from groundwater using biological processes was investigated. The efficiency of arsenite (As(III)) bacterial oxidation and subsequent arsenate (As(V)) removal from contaminated groundwater using bacterial biomass was examined. A novel As(III)-oxidizing bacterium (As7325) was isolated from the aquifer in the blackfoot disease (BFD) endemic area in Taiwan. As7325 oxidized 2300μg/l As(III) using in situ As(III)-contaminated groundwater under aerobic conditions within 1d. After the oxidation of As(III) to As(V), As(V) removal was further examined using As7325 cell pellets. The results showed that As(V) could be adsorbed efficiently by lyophilized As7325 cell pellets, the efficiency of which was related to lyophilized cell pellet concentration. Our study conducted the examination of an alternative technology for the removal of As(III) and As(V) from groundwater, indicating that the oxidation of As(III)-contaminated groundwater by native isolated bacterium, followed by As(V) removal using bacterial biomass is a potentially effective technology for the treatment of As(III)-contaminated groundwater. © 2013.

  13. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    Science.gov (United States)

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Expression and surface display of Cellulomonas endoglucanase in the ethanologenic bacterium Zymobacter palmae

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Motoki; Akahoshi, Tomohiro; Okamoto, Kenji; Yanase, Hideshi [Tottori Univ. (Japan). Dept. of Chemistry and Biotechnology

    2012-11-15

    In order to reduce the cost of bioethanol production from lignocellulosic biomass, we developed a tool for cell surface display of cellulolytic enzymes on the ethanologenic bacterium Zymobacter palmae. Z. palmae is a novel ethanol-fermenting bacterium capable of utilizing a broad range of sugar substrates, but not cellulose. Therefore, to express and display heterologous cellulolytic enzymes on the Z. palmae cell surface, we utilized the cell-surface display motif of the Pseudomonas ice nucleation protein Ina. The gene encoding Ina from Pseudomonas syringae IFO3310 was cloned, and its product was comprised of three functional domains: an N-terminal domain, a central domain with repeated amino acid residues, and a C-terminal domain. The N-terminal domain of Ina was shown to function as the anchoring motif for a green fluorescence protein fusion protein in Escherichia coli. To express a heterologous cellulolytic enzyme extracellularly in Z. palmae, we fused the N-terminal coding sequence of Ina to the coding sequence of an N-terminal-truncated Cellulomonas endoglucanase. Z. palmae cells carrying the fusion endoglucanase gene were shown to degrade carboxymethyl cellulose. Although a portion of the expressed fusion endoglucanase was released from Z. palmae cells into the culture broth, we confirmed the display of the protein on the cell surface by immunofluorescence microscopy. The results indicate that the N-terminal anchoring motif of Ina from P. syringae enabled the translocation and display of the heterologous cellulase on the cell surface of Z. palmae. (orig.)

  15. Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036.

    Science.gov (United States)

    Choi, Sun Young; Gong, Gyeongtaek; Park, Hong-Sil; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2015-01-10

    Detoxification process of cellular inhibitors including furfural is essential for production of bio-based chemicals from lignocellulosic biomass. Here we isolated an extreme furfural-tolerant bacterium Enterobacter cloacae GGT036 from soil sample collected in Mt. Gwanak, Republic of Korea. Among isolated bacteria, only E. cloacae GGT036 showed cell growth with 35 mM furfural under aerobic culture. Compared to the maximal half inhibitory concentration (IC50) of well-known industrial strains Escherichia coli (24.9 mM furfural) and Corynebacterium glutamicum (10 mM furfural) based on the cell density, IC50 of E. cloacae GGT036 (47.7 mM) was significantly higher after 24 h, compared to E. coli and C. glutamicum. Since bacterial cell growth was exponentially inhibited depending on linearly increased furfural concentrations in the medium, we concluded that E. cloacae GGT036 is an extreme furfural-tolerant bacterium. Recently, the complete genome sequence of E. cloacae GGT036 was announced and this could provide an insight for engineering of E. cloacae GGT036 itself or other industrially relevant bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Nematode-bacterium symbioses--cooperation and conflict revealed in the "omics" age.

    Science.gov (United States)

    Murfin, Kristen E; Dillman, Adler R; Foster, Jeremy M; Bulgheresi, Silvia; Slatko, Barton E; Sternberg, Paul W; Goodrich-Blair, Heidi

    2012-08-01

    Nematodes are ubiquitous organisms that have a significant global impact on ecosystems, economies, agriculture, and human health. The applied importance of nematodes and the experimental tractability of many species have promoted their use as models in various research areas, including developmental biology, evolutionary biology, ecology, and animal-bacterium interactions. Nematodes are particularly well suited for the investigation of host associations with bacteria because all nematodes have interacted with bacteria during their evolutionary history and engage in a variety of association types. Interactions between nematodes and bacteria can be positive (mutualistic) or negative (pathogenic/parasitic) and may be transient or stably maintained (symbiotic). Furthermore, since many mechanistic aspects of nematode-bacterium interactions are conserved, their study can provide broader insights into other types of associations, including those relevant to human diseases. Recently, genome-scale studies have been applied to diverse nematode-bacterial interactions and have helped reveal mechanisms of communication and exchange between the associated partners. In addition to providing specific information about the system under investigation, these studies also have helped inform our understanding of genome evolution, mutualism, and innate immunity. In this review we discuss the importance and diversity of nematodes, "omics"' studies in nematode-bacterial systems, and the wider implications of the findings.

  17. A highly infective plant-associated bacterium influences reproductive rates in pea aphids

    Science.gov (United States)

    Hendry, Tory A.; Clark, Kelley J.; Baltrus, David A.

    2016-01-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321

  18. Application of agglomerative clustering for analyzing phylogenetically on bacterium of saliva

    Science.gov (United States)

    Bustamam, A.; Fitria, I.; Umam, K.

    2017-07-01

    Analyzing population of Streptococcus bacteria is important since these species can cause dental caries, periodontal, halitosis (bad breath) and more problems. This paper will discuss the phylogenetically relation between the bacterium Streptococcus in saliva using a phylogenetic tree of agglomerative clustering methods. Starting with the bacterium Streptococcus DNA sequence obtained from the GenBank, then performed characteristic extraction of DNA sequences. The characteristic extraction result is matrix form, then performed normalization using min-max normalization and calculate genetic distance using Manhattan distance. Agglomerative clustering technique consisting of single linkage, complete linkage and average linkage. In this agglomerative algorithm number of group is started with the number of individual species. The most similar species is grouped until the similarity decreases and then formed a single group. Results of grouping is a phylogenetic tree and branches that join an established level of distance, that the smaller the distance the more the similarity of the larger species implementation is using R, an open source program.

  19. Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata.

    Science.gov (United States)

    Eslami, Maryam; Amoozegar, Mohammad Ali; Asad, Sedigheh

    2016-04-01

    Azo dyes are a major class of colorants used in various industries including textile, paper and food. These dyes are regarded as pollutant since they are not readily reduced under aerobic conditions. Halomonas elongata, a halophilic bacterium, has the ability to decolorize different mono and di-azo dyes in anoxic conditions. In this study the putative azoreductase gene of H. elongata, formerly annotated as acp, was isolated, heterologously expressed in Escherichia coli, purified and characterized. The gene product, AzoH, was found to have a molecular mass of 22 kDa. The enzyme requires NADH, as an electron donor for its activity. The apparent Km was 63 μM for NADH and 12 μM for methyl red as a mono-azo dye substrate. The specific activity for methyl red was 0.27 μmol min(-1)mg(-1). The optimum enzyme activity was achieved in 50mM sodium phosphate buffer at pH 6. Although increased salinity resulted in reduced activity, AzoH could decolorize azo dye at NaCl concentrations up to 15% (w/v). The enzyme was also shown to be able to decolorize remazol black B as a representative of di-azo dyes. This is the first report describing the sequence and activity of an azo-reducing enzyme from a halophilic bacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque.

    Science.gov (United States)

    Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan

    2016-02-10

    Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium.

  1. Enhanced Cadmium (Cd Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    Directory of Open Access Journals (Sweden)

    Kunchaya Setkit

    2014-01-01

    Full Text Available A cadmium (Cd-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also significantly increased Cd accumulation in the root and above-ground tissues of H. annuus L. compared to uninoculated control. Re-inoculation with Micrococcus sp. MU1in contaminated soil helped in promoting plant growth and Cd phytoextraction throughout the cultivation period. In addition, phytoextraction coefficient and translocation factor (TF of H. annuus L. inoculated with Micrococcus sp. MU1were higher than that of uninoculated control and TF continuously increased with time. Our results suggested that Micrococcus sp. MU1 has an ability to enhance plant growth and Cd uptake in H. annuus L. Synergistic interaction between Micrococcus sp. MU1 and H. annuus L. could be further applied for Cd phytoextraction in polluted areas.

  2. Biofilm and capsule formation of the diatom Achnanthidium minutissimum are affected by a bacterium.

    Science.gov (United States)

    Windler, Miriam; Leinweber, Katrin; Bartulos, Carolina Rio; Philipp, Bodo; Kroth, Peter G

    2015-04-01

    Photoautotrophic biofilms play an important role in various aquatic habitats and are composed of prokaryotic and/or eukaryotic organisms embedded in extracellular polymeric substances (EPS). We have isolated diatoms as well as bacteria from freshwater biofilms to study organismal interactions between representative isolates. We found that bacteria have a strong impact on the biofilm formation of the pennate diatom Achnanthidium minutissimum. This alga produces extracellular capsules of insoluble EPS, mostly carbohydrates (CHO), only in the presence of bacteria (xenic culture). The EPS themselves also have a strong impact on the aggregation and attachment of the algae. In the absence of bacteria (axenic culture), A. minutissimum did not form capsules and the cells grew completely suspended. Fractionation and quantification of CHO revealed that the diatom in axenic culture produces large amounts of soluble CHO, whereas in the xenic culture mainly insoluble CHO were detected. For investigation of biofilm formation by A. minutissimum, a bioassay was established using a diatom satellite Bacteroidetes bacterium that had been shown to induce capsule formation of A. minutissimum. Interestingly, capsule and biofilm induction can be achieved by addition of bacterial spent medium, indicating that soluble hydrophobic molecules produced by the bacterium may mediate the diatom/bacteria interaction. With the designed bioassay, a reliable tool is now available to study the chemical interactions between diatoms and bacteria with consequences for biofilm formation. © 2015 Phycological Society of America.

  3. Characterization of carbon dioxide concentrating chemolithotrophic bacterium Serratia sp. ISTD04 for production of biodiesel.

    Science.gov (United States)

    Kumar, Manish; Morya, Raj; Gnansounou, Edgard; Larroche, Christian; Thakur, Indu Shekhar

    2017-11-01

    Proteomics and metabolomics analysis has become a powerful tool for characterization of microbial ability for fixation of Carbon dioxide. Bacterial community of palaeoproterozoic metasediments was enriched in the shake flask culture in the presence of NaHCO 3 . One of the isolate showed resistance to NaHCO 3 (100mM) and was identified as Serratia sp. ISTD04 by 16S rRNA sequence analysis. Carbon dioxide fixing ability of the bacterium was established by carbonic anhydrase enzyme assay along with proteomic analysis by LC-MS/MS. In proteomic analysis 96 proteins were identified out of these 6 protein involved in carbon dioxide fixation, 11 in fatty acid metabolism, indicating the carbon dioxide fixing potency of bacterium along with production of biofuel. GC-MS analysis revealed that hydrocarbons and FAMEs produced by bacteria within the range of C 13 -C 24 and C 11 -C 19 respectively. Presence of 59% saturated and 41% unsaturated organic compounds, make it a better fuel composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23.

    Science.gov (United States)

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-09-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23. Algal culture medium was optimized by applying a Placket-Burman design to obtain a high cell concentration of NP23. Three minerals (i.e., 0.6% KNO3, 0.001% MnSO4·H2O, and 0.3% K2HPO4) were found to be independent factors critical for obtaining the highest cell concentration of 10(13) CFU/mL, which was 10(4) times that of the control. In the algae-lysing experiment, the strain exhibited a high lysis rate for the 4 algae test species, namely, Chlorella vulgari, Scenedesmus, Microcystis wesenbergii, and Chlorella pyrenoidosa. Acute toxicity and mutagenicity tests showed that the bacterium NP23 had no toxic and mutagenic effects on fish, even in large doses such as 10(7) or 10(9) CFU/mL. Thus, Enterobacter sp. strain NP23 has strong potential application in the microbial algae-lysing project.

  5. Adopt a Bacterium - an active and collaborative learning experience in microbiology based on social media.

    Science.gov (United States)

    Piantola, Marco Aurélio Floriano; Moreno, Ana Carolina Ramos; Matielo, Heloísa Alonso; Taschner, Natalia Pasternak; Cavalcante, Rafael Ciro Marques; Khan, Samia; Ferreira, Rita de Cássia Café

    2018-04-24

    The "Adopt a Bacterium" project is based on the use of social network as a tool in Microbiology undergraduate education, improving student learning and encouraging students to participate in collaborative learning. The approach involves active participation of both students and teachers, emphasizing knowledge exchange, based on widely used social media. Students were organized in groups and asked to adopt a specific bacterial genus and, subsequently, submit posts about "adopted genus". The formative assessment is based on posting information on Facebook®, and the summative assessment involves presentation of seminars about the adopted theme. To evaluate the project, students filled out three anonymous and voluntary surveys. Most of the students enjoyed the activities and positively evaluated the experience. A large amount of students declared a change in their attitude towards the way they processed information, especially regarding the use of scientific sources. Finally, we evaluated knowledge retention six months after the end of the course and students were able to recall relevant Microbiology concepts. Our results suggest that the "Adopt a Bacterium" project represents a useful strategy in Microbiology learning and may be applied to other academic fields. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass.

    Science.gov (United States)

    Boutard, Magali; Cerisy, Tristan; Nogue, Pierre-Yves; Alberti, Adriana; Weissenbach, Jean; Salanoubat, Marcel; Tolonen, Andrew C

    2014-11-01

    Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.

  7. Production and characterization of bioemulsifier from a marine bacterium, Acinetobacter calcoaceticus subsp. anitratus SM7

    Directory of Open Access Journals (Sweden)

    Kulnaree Phetrong

    2008-05-01

    Full Text Available Marine bacterium strain SM7 was isolated as a bioemulsifier-producing bacterium from oil-spilled seawater in Songkhla lagoon, Thailand. It was identified as Acinetobacter calcoaceticus subsp. anitratus based on morphology, biochemicalcharacteristics and 16S rRNA sequence. A. calcoaceticus subsp. anitratus SM7 produced an extracellular emulsifying agent when grown in a minimal salt medium (pH 7.0 containing 0.3% (v/v n-heptadecane and 0.1% (w/v ammoniumhydrogen carbonate as carbon source and nitrogen source, respectively, at 30oC with agitation rate of 200 rpm. Crude bioemulsifier was recovered from the culture supernatant by ethanol precipitation with a yield of 2.94 g/l and had a criticalemulsifier concentration of 0.04 g/ml. The crude bioemulsifier was capable of emulsifying n-hexadecane in a broad pH range (6-12, temperatures (30-121oC and in the presence of NaCl up to 12% (w/v. The bioemulsifier was stable in saltsolution ranging from 0 to 0.1% (w/v of MgCl2 and CaCl2. The broad range of pH stability, thermostability and salt tolerance suggested that the bioemulsifier from A. calcoaceticus subsp. anitratus SM7 could be useful in environmentalapplication, especially bioremediation of oil-polluted seawater.

  8. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization.

    Directory of Open Access Journals (Sweden)

    Aulie Banerjee

    Full Text Available Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state (13C NMR, we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation.

  9. [Identification and function test of an alkali-tolerant denitrifying bacterium].

    Science.gov (United States)

    Wang, Ru; Zheng, Ping; Li, Wei; Chen, Hui; Chen, Tingting; Ghulam, Abbas

    2013-04-04

    We obtained an alkali-tolerant denitrifying bacterium, and determined its denitrifying activity and alkali-tolerance. An alkali-tolerant denitrifying bacterial strain was obtained by isolation and purification. We identified the bacterial strain by morphological observation, physiological test and 16S rRNA analysis. We determined the denitrifying activity and alkali-tolerance by effects of initial nitrate concentration and initial pH on denitrification. An alkali-tolerant denitrifier strain R9 was isolated from the lab-scale high-rate denitrifying reactor, and it was identified as Diaphorobater nitroreducens. The strain R9 grew heterotrophically with methanol as the electron donor and nitrate as the electron acceptor. The nitrate conversion was 93.25% when strain R9 was cultivated for 288 h with initial nitrate concentration 50 mg/L and initial pH 9.0. The denitrification activity could be inhibited at high nitrate concentration with a half inhibition constant of 202.73 mg N/L. Strain R9 showed a good alkali tolerance with the nitrate removal rate at pH 11.0 remained 86% of that at pH 9.0. Strain R9 was identified as Diaphorobater nitroreducens, and it was an alkali-tolerant denitrifying bacterium with optimum pH value of 9.0.

  10. Antibacterial Property of a Coral-Associated Bacterium Pseudoalteromonas luteoviolacea Against Shrimp Pathogenic Vibrio harveyi (In Vitro Study

    Directory of Open Access Journals (Sweden)

    OCKY KARNA RADJASA

    2005-06-01

    Full Text Available A coral-associated bacterium was successfully screened for secondary metabolites production based on PCR amplification of the nonribosomal peptide synthetase gene and was identified as closely related to Pseudoalteromonas luteoviolacea based on its 16S rDNA. The bacterium was found to inhibit the growth of shrimp pathogenic bacterium tested, Vibrio harveyi. To characterize the inhibiting metabolite, a 279 bp long DNA fragment was obtained and the deduced amino acid sequence showed conserved signature regions for peptide synthetases and revealed a high similarity to NosD (40% identity, a multifunctional peptide synthetase from Nostoc sp. GSV224, and NdaB (44% identity, a peptide synthetase module of Nodularia spumigena

  11. Antibacterial Property of a Coral-Associated Bacterium Pseudoalteromonas luteoviolacea Against Shrimp Pathogenic Vibrio harveyi (In Vitro Study

    Directory of Open Access Journals (Sweden)

    OCKY KARNA RADJASA

    2005-06-01

    Full Text Available A coral-associated bacterium was successfully screened for secondary metabolites production based on PCR amplification of the nonribosomal peptide synthetase gene and was identified as closely related to Pseudoalteromonas luteoviolacea based on its 16S rDNA.The bacterium was found to inhibit the growth of shrimp pathogenic bacterium tested, Vibrio harveyi. To characterize the inhibiting metabolite, a 279 bp long DNA fragment was obtained and the deduced amino acid sequence showed conserved signature regions for peptide synthetases and revealed a high similarity to NosD (40% identity, a multifunctional peptide synthetase from Nostoc sp. GSV224, and NdaB (44% identity, a peptide synthetase module of Nodularia spumigena.

  12. Bacterium-like Particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications

    Directory of Open Access Journals (Sweden)

    Natalija eVan Braeckel-Budimir

    2013-09-01

    Full Text Available The successful development of a mucosal vaccine critically depends on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle derived from bacteria in mucosal subunit vaccines. The non-living particles, designated Bacterium-like Particles (BLPs are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine.

  13. The impact of a pathogenic bacterium on a social carnivore population.

    Science.gov (United States)

    Höner, Oliver P; Wachter, Bettina; Goller, Katja V; Hofer, Heribert; Runyoro, Victor; Thierer, Dagmar; Fyumagwa, Robert D; Müller, Thomas; East, Marion L

    2012-01-01

    1. The long-term ecological impact of pathogens on group-living, large mammal populations is largely unknown. We evaluated the impact of a pathogenic bacterium, Streptococcus equi ruminatorum, and other key ecological factors on the dynamics of the spotted hyena Crocuta crocuta population in the Ngorongoro Crater, Tanzania. 2. We compared key demographic parameters during two years when external signs of bacterial infection were prevalent ('outbreak') and periods of five years before and after the outbreak when such signs were absent or rare. We also tested for density dependence and calculated the basic reproductive rate R(0) of the bacterium. 3. During the five pre-outbreak years, the mean annual hyena mortality rate was 0.088, and annual population growth was relatively high (13.6%). During the outbreak, mortality increased by 78% to a rate of 0.156, resulting in an annual population decline of 4.3%. After the outbreak, population size increased moderately (5.1%) during the first three post-outbreak years before resuming a growth similar to pre-outbreak levels (13.9%). We found no evidence that these demographic changes were driven by density dependence or other ecological factors. 4. Most hyenas showed signs of infection when prey abundance in their territory was low. During the outbreak, mortality increased among adult males and yearlings, but not among adult females - the socially dominant group members. These results suggest that infection and mortality were modulated by factors linked to low social status and poor nutrition. During the outbreak, we estimated R(0) for the bacterium to be 2.7, indicating relatively fast transmission. 5. Our results suggest that the short-term 'top-down' impact of S. equi ruminatorum during the outbreak was driven by 'bottom-up' effects on nutritionally disadvantaged age-sex classes, whereas the longer-term post-outbreak reduction in population growth was caused by poor survival of juveniles during the outbreak and subsequent

  14. A pathway closely related to the (D)-tagatose pathway of gram-negative enterobacteria identified in the gram-positive bacterium Bacillus licheniformis.

    Science.gov (United States)

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M; Galleni, Moreno; Joris, Bernard

    2013-06-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  15. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    Science.gov (United States)

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  16. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    OpenAIRE

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  17. Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL

    Institute of Scientific and Technical Information of China (English)

    TAYLOR Shauna M; HE Yiliang; ZHAO Bin; HUANG Jue

    2009-01-01

    Bacterium Providencia rettgeri YL was found to exhibit an unusual ability to heterotrophically nitrify and aerobically denitrify various concentrations of ammonium (NH4+-N). In order to further analyze its removal ability, several experiments were conducted to identify the growth and ammonium removal response in different carbon to nitrogen (C/N) mass ratios, shaking speeds, temperatures, ammonium concentrations and to qualitatively verify the production of nitrogen gas using gas chromatography techniques. Results showed that under optimum conditions (C/N 10, 30℃, 120 r/min), YL can significantly remove low and high concentrations of ammonium within 12 to 48 h of growth. The nitrification products hydroxylamine (NH2OH), nitrite (NO2-) and nitrate (NO3-) as well as the denitrification product, nitrogen gas (N2), were detected under completely aerobic conditions.

  18. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.

    Science.gov (United States)

    Lobley, Carina M C; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E; Nettleship, Joanne E; Brandao-Neto, Jose; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2012-12-01

    The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.

  19. Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3.

    Science.gov (United States)

    Wang, Jing; Kim, Young Mi; Rhee, Hong Soon; Lee, Min Woo; Park, Jong Moon

    2013-05-01

    In this study a new bacterium capable of growing on brown seaweed Laminaria japonica, Enterobacter sp. JMP3 was isolated from the gut of turban shell, Batillus cornutus. In anaerobic condition, it produced high yields of ethanol (1.15 mol-EtOH mol-mannitol(-1)) as well as organic acids from mannitol, the major carbohydrate component of L. japonica. Based on carbon distribution and metabolic flux analysis, it was revealed that mannitol was more favorable than glucose for ethanol production due to their different redox states. This indicates that L. japonica is one of the promising feedstock for bioethanol production. Additionally, the mannitol dehydrogenation pathway in Enterobacter sp. JMP3 was examined and verified. Finally, an attempt was made to explore the possibility of controlling ethanol production by altering the redox potential via addition of external NADH in mannitol fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.

    2015-01-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research.

  1. Polymicrobial infection and bacterium-mediated epigenetic modification of DNA tumor viruses contribute to pathogenesis.

    Science.gov (United States)

    Doolittle, J M; Webster-Cyriaque, J

    2014-04-29

    ABSTRACT The human body plays host to a wide variety of microbes, commensal and pathogenic. In addition to interacting with their host, different microbes, such as bacteria and viruses, interact with each other, sometimes in ways that exacerbate disease. In particular, gene expression of a number of viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV), and human immunodeficiency virus (HIV), is known to be regulated by epigenetic modifications induced by bacteria. These viruses establish latent infection in their host cells and can be reactivated by bacterial products. Viral reactivation has been suggested to contribute to periodontal disease and AIDS. In addition, bacterium-virus interactions may play a role in cancers, such as Kaposi's sarcoma, gastric cancer, and head and neck cancer. It is important to consider the effects of coexisting bacterial infections when studying viral diseases in vivo.

  2. Molecular Mechanisms of Adaptation of the Moderately Halophilic Bacterium Halobacillis halophilus to Its Environment

    Directory of Open Access Journals (Sweden)

    Inga Hänelt

    2013-02-01

    Full Text Available The capability of osmoadaptation is a prerequisite of organisms that live in an environment with changing salinities. Halobacillus halophilus is a moderately halophilic bacterium that grows between 0.4 and 3 M NaCl by accumulating both chloride and compatible solutes as osmolytes. Chloride is absolutely essential for growth and, moreover, was shown to modulate gene expression and activity of enzymes involved in osmoadaptation. The synthesis of different compatible solutes is strictly salinity- and growth phase-dependent. This unique hybrid strategy of H. halophilus will be reviewed here taking into account the recently published genome sequence. Based on identified genes we will speculate about possible scenarios of the synthesis of compatible solutes and the uptake of potassium ion which would complete our knowledge of the fine-tuned osmoregulation and intracellular osmolyte balance in H. halophilus.

  3. A Marine Sulfate-Reducing Bacterium Producing Multiple Antibiotics: Biological and Chemical Investigation

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2009-07-01

    Full Text Available A marine sulfate-reducing bacterium SRB-22 was isolated by means of the agar shake dilution method and identified as Desulfovibrio desulfuricans by morphological, physiological and biochemical characteristics and 16S rDNA analysis. In the bioassay, its extract showed broad-spectrum antimicrobial activity using the paper disc agar diffusion method. This isolate showed a different antimicrobial profile than either ampicillin or nystatin and was found to produce at least eight antimicrobial components by bioautography. Suitable fermentation conditions for production of the active constituents were determined to be 28 day cultivation at 25 °C to 30 °C with a 10% inoculation ratio. Under these conditions, the SRB-22 was fermented, extracted and chemically investigated. So far an antimicrobial compound, mono-n-butyl phthalate, and an inactive compound, thymine, have been isolated and characterized.

  4. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America.

    Science.gov (United States)

    Eads, David A; Biggins, Dean E

    2015-08-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research. © 2015 Society for Conservation Biology.

  5. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Sha; Tian Jintao [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Chen Shougang, E-mail: sgchen@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Lei Yanhua; Chang Xueting; Liu Tao [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Yin Yansheng, E-mail: yys2006@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2009-04-30

    The microbially influenced corrosion of stainless steel (SS) by marine bacterium Vibrio natriegens (V. natriegens) was investigated using surface analysis (atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA)) and electrochemical techniques (the open circuit potential, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization curves ). AFM images corroborated the results from the EIS models which show biofilm attachment and subsequent detachment over time. The SEM images revealed the occurrence of micro-pitting corrosion underneath the biofilms on the metal surface after the biofilm removal. The presence of carbon, oxygen, phosphor and sulfur obtained from EDXA proved the formation of biofilm. The electrochemical results showed that the corrosion of SS was accelerated in the presence of V. natriegens based on the decrease in the resistance of the charge transfer resistance (R{sub ct}) obtained from EIS and the increase in corrosion current densities obtained from potentiodynamic polarization curves.

  6. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118

    International Nuclear Information System (INIS)

    Lobley, Carina M. C.; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E.; Nettleship, Joanne E.; Brandao-Neto, Jose; Owens, Raymond J.; O’Toole, Paul W.; Walsh, Martin A.

    2012-01-01

    The crystal structure of ribose 5-phosphate isomerase has been determined to 1.72 Å resolution and is presented with a brief comparison to other known ribose 5-phosphate isomerase A structures. The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β d-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography

  7. UV-induced variability of the amylolytic thermophilic bacterium Bacillus diastaticus

    International Nuclear Information System (INIS)

    Murygina, V.P.

    1978-01-01

    UV-induced variability of a thermophilic bacterium Bacillus diastaticus 13 by amylase formation has been studied. It has been shown, that variability limits in amylase biosynthesis vary from 2.2 to 158.7% under UV irradiation. At 41.8x10 2 erg/mm 2 UV dose a ''plus-variant'' designated as the UV1 mutant has been prepared. Its subsequent selection without using mutagene permitted to select the UV 1-25 variant, exceeding the initial strain in amylase biosynthesis by 43.3%. Under UV irradiation two low-active in biosynthesis amylases of the mutant were prepared. Demands for growth factors of some mutant have been studied as well

  8. UV-induced variability of the amylolytic thermophilic bacterium Bacillus diastaticus

    Energy Technology Data Exchange (ETDEWEB)

    Murygina, V P

    1978-03-01

    Ultroviolet-radioinduced variability in analyase biosynthesis of a thermophilic bacterium Bacillus diastaticus 13, has been studied. It has been shown that amylase biosynthesis varies from 2.2 to 158.7% under UV irradiation. At 41.8x10/sup 2/ erg/mm/sup 2/ UV dose, a ''plus-variant'' designated as the UV1 mutant has been prepared. Its subsequent selection without using mutagene permitted to select the UV 1-25 variant, exceeding the initial strain in amylase biosynthesis by 43.3%. Under UV irradiation, two mutants with reduced amylose biosynthesis activity were prepared. Demands for growth factors by some mutants have been studied as well.

  9. Pathogenic bacteriumVibrio harveyi: an endosymbiont in the marine parasitic ciliate protozoan Cryptocaryon irritans

    Institute of Scientific and Technical Information of China (English)

    QIAO Ying; WANG Jun; MAO Yong; LIU Min; CHEN Ruanni; SU Yongquan; KE Qiaozhen; HAN Kunhuang; ZHENG Weiqiang

    2017-01-01

    Vibrio harveyi, known as a pathogenic bacterium caused severe secondary bacterial infections of the large yellow croaker Larimichthys crocea, was identified as an endosymbiont in the marine parasitic ciliate protozoan Cryptocaryon irritans. Meta 16S sequencing method was used to identify the bacterial flora in C. irritans, and V. harveyi was isolated via culture-dependent method.Vibrio harveyi was observed in cytoplasm of C. irritans at the stage of tomont both by transmission electron microscopy and by Fluorescencein situ hybridization; no signal, however, was detected in nucleus area. The relationship betweenV. harveyi and C. irritans and the role of endosymbioticV. harveyi inC. irritans merit further investigation.

  10. Analysis of convergent gene transcripts in the obligate intracellular bacterium Rickettsia prowazekii.

    Directory of Open Access Journals (Sweden)

    Andrew Woodard

    2011-01-01

    Full Text Available Termination of transcription is an important component of bacterial gene expression. However, little is known concerning this process in the obligate intracellular pathogen and model for reductive evolution, Rickettsia prowazekii. To assess transcriptional termination in this bacterium, transcripts of convergent gene pairs, some containing predicted intrinsic terminators, were analyzed. These analyses revealed that, rather than terminating at a specific site within the intervening region between the convergent genes, most of the transcripts demonstrated either a lack of termination within this region, which generated antisense RNA, or a putative non-site-specific termination that occurred throughout the intervening sequence. Transcripts terminating at predicted intrinsic terminators, as well as at a putative Rho-dependant terminator, were also examined and found to vary based on the rickettsial host environment. These results suggest that transcriptional termination, or lack thereof, plays a role in rickettsial gene regulation.

  11. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium

    Science.gov (United States)

    Hoshi, Ayaka; Oshima, Kenro; Kakizawa, Shigeyuki; Ishii, Yoshiko; Ozeki, Johji; Hashimoto, Masayoshi; Komatsu, Ken; Kagiwada, Satoshi; Yamaji, Yasuyuki; Namba, Shigetou

    2009-01-01

    One of the most important themes in agricultural science is the identification of virulence factors involved in plant disease. Here, we show that a single virulence factor, tengu-su inducer (TENGU), induces witches' broom and dwarfism and is a small secreted protein of the plant-pathogenic bacterium, phytoplasma. When tengu was expressed in Nicotiana benthamiana plants, these plants showed symptoms of witches' broom and dwarfism, which are typical of phytoplasma infection. Transgenic Arabidopsis thaliana lines expressing tengu exhibited similar symptoms, confirming the effects of tengu expression on plants. Although the localization of phytoplasma was restricted to the phloem, TENGU protein was detected in apical buds by immunohistochemical analysis, suggesting that TENGU was transported from the phloem to other cells. Microarray analyses showed that auxin-responsive genes were significantly down-regulated in the tengu-transgenic plants compared with GUS-transgenic control plants. These results suggest that TENGU inhibits auxin-related pathways, thereby affecting plant development. PMID:19329488

  12. Novel Poly[(R-3-Hydroxybutyrate]-Producing Bacterium Isolated from a Bolivian Hypersaline Lake

    Directory of Open Access Journals (Sweden)

    María Soledad Marqués-Calvo

    2013-01-01

    Full Text Available Poly[(R-3-hydroxybutyrate] (PHB constitutes a biopolymer synthesized from renewable resources by various microorganisms. This work focuses on finding a new PHB-producing bacterium capable of growing in conventional media used for industrial biopolymer production, its taxonomical identification, and characterization of its biopolymer. Thus, a bacterial isolation process was carried out from environmental samples of water and mud. Among the isolates, strain S29 was selected and used in a fed-batch fermentation to generate a biopolymer. This biopolymer was recovered and identified as PHB homopolymer. Surprisingly, it featured several fractions of different molecular masses, and thermal properties unusual for PHB. Hence, the microorganism S29, genetically identified as a new strain of Bacillus megaterium, proved to be interesting not only due to its growth and PHB accumulation kinetics under the investigated cultivation conditions, but also due to the thermal properties of the produced PHB.

  13. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca

    Science.gov (United States)

    Fossing, H.; Gallardo, V. A.; Jørgensen, B. B.; Hüttel, M.; Nielsen, L. P.; Schulz, H.; Canfield, D. E.; Forster, S.; Glud, R. N.; Gundersen, J. K.; Küver, J.; Ramsing, N. B.; Teske, A.; Thamdrup, B.; Ulloa, O.

    1995-04-01

    MARINE species of Thioploca occur over 3,000 km along the continental shelf off Southern Peru and North and Central Chile1-4. These filamentous bacteria live in bundles surrounded by a common sheath and form thick mats on the sea floor under the oxygen-minimum zone in the upwelling region, at between 40 and 280 m water depth. The metabolism of this marine bacterium5,6 remained a mystery until long after its discovery1,7. We report here that Thioploca cells are able to concentrate nitrate to up to 500 mM in a liquid vacuole that occupies >80% of the cell volume. Gliding filaments transport this nitrate 5-10 cm down into the sediment and reduce it, with concomitant oxidation of hydrogen sulphide, thereby coupling the nitrogen and sulphur cycles in the sediment.

  14. Proteomic Profiling of the Dioxin-Degrading Bacterium Sphingomonas wittichii RW1

    Directory of Open Access Journals (Sweden)

    David R. Colquhoun

    2012-01-01

    Full Text Available Sphingomonas wittichii RW1 is a bacterium of interest due to its ability to degrade polychlorinated dioxins, which represent priority pollutants in the USA and worldwide. Although its genome has been fully sequenced, many questions exist regarding changes in protein expression of S. wittichii RW1 in response to dioxin metabolism. We used difference gel electrophoresis (DIGE and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS to identify proteomic changes induced by growth on dibenzofuran, a surrogate for dioxin, as compared to acetate. Approximately 10% of the entire putative proteome of RW1 could be observed. Several components of the dioxin and dibenzofuran degradation pathway were shown to be upregulated, thereby highlighting the utility of using proteomic analyses for studying bioremediation agents. This is the first global protein analysis of a microorganism capable of utilizing the carbon backbone of both polychlorinated dioxins and dibenzofurans as the sole source for carbon and energy.

  15. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E

    2004-01-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C....... tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma......-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants...

  16. Isolation and characterization of a new hydrogen-utilizing bacterium from the rumen.

    Science.gov (United States)

    Rieu-Lesme, F; Fonty, G; Doré, J

    1995-01-01

    A new H2/CO2-utilizing acetogenic bacterium was isolated from the rumen of a mature deer. This is the first report of a spore-forming Gram-negative bacterial species from the rumen. The organism was a strictly anaerobic, motile rod and was able to grow autotrophically on hydrogen and carbon dioxide. Acetate was the major product detected. Glucose, fructose and lactate were also fermented heterotrophically. The optimum pH for growth was 7.0-7.5, and the optimum temperature was 37-42 degrees C. Yeast extract was required for growth and rumen fluid was highly stimulatory. The DNA base ratio was 52.9 +/- 0.5 mol% G+C. On the basis of these characteristics and fermentation products, the isolate was considered to be different from acetogenic bacteria described previously.

  17. BOG: R-package for Bacterium and virus analysis of Orthologous Groups

    Directory of Open Access Journals (Sweden)

    Jincheol Park

    2015-01-01

    Full Text Available BOG (Bacterium and virus analysis of Orthologous Groups is a package for identifying groups of differentially regulated genes in the light of gene functions for various virus and bacteria genomes. It is designed to identify Clusters of Orthologous Groups (COGs that are enriched among genes that have gone through significant changes under different conditions. This would contribute to the detection of pathogens, an important scientific research area of relevance in uncovering bioterrorism, among others. Particular statistical analyses include hypergeometric, Mann–Whitney rank sum, and gene set enrichment. Results from the analyses are organized and presented in tabular and graphical forms for ease of understanding and dissemination of results. BOG is implemented as an R-package, which is available from CRAN or can be downloaded from http://www.stat.osu.edu/~statgen/SOFTWARE/BOG/.

  18. Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress.

    Science.gov (United States)

    Chen, Yanmei; Chao, Yuanqing; Li, Yaying; Lin, Qingqi; Bai, Jun; Tang, Lu; Wang, Shizhong; Ying, Rongrong; Qiu, Rongliang

    2016-01-04

    Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd(2+) MIC, >250 mg liter(-1)) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    Science.gov (United States)

    Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Walla, Michael D.; Vangronsveld, Jaco; Newman, Lee; Monchy, Sébastien

    2010-01-01

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa×deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT–PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  20. Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Borghese, Roberto, E-mail: roberto.borghese@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna (Italy); Baccolini, Chiara; Francia, Francesco [Department of Pharmacy and Biotechnology, University of Bologna (Italy); Sabatino, Piera [Department of Chemistry G. Ciamician, University of Bologna (Italy); Turner, Raymond J. [Department of Biological Sciences, University of Calgary, Calgary, Alberta (Canada); Zannoni, Davide, E-mail: davide.zannoni@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna (Italy)

    2014-03-01

    Graphical abstract: - Highlights: • R. capsulatus cells produce extracellular chalcogens nanoprecipitates when lawsone is present. • Lawsone acts as a redox mediator from reducing equivalents to tellurite and selenite. • Nanoprecipitates production depends on carbon source and requires metabolically active cells. • Te{sup 0} and Se{sup 0} nanoprecipitates are identified by X-ray diffraction (XRD) spectroscopy. - Abstract: The facultative photosynthetic bacterium Rhodobacter capsulatus is characterized in its interaction with the toxic oxyanions tellurite (Te{sup IV}) and selenite (Se{sup IV}) by a highly variable level of resistance that is dependent on the growth mode making this bacterium an ideal organism for the study of the microbial interaction with chalcogens. As we have reported in the past, while the oxyanion tellurite is taken up by R. capsulatus cells via acetate permease and it is reduced to Te{sup 0} in the cytoplasm in the form of splinter-like black intracellular deposits no clear mechanism was described for Se{sup 0} precipitation. Here, we present the first report on the biotransformation of tellurium and selenium oxyanions into extracellular Te{sup 0} and Se{sup 0}nanoprecipitates (NPs) by anaerobic photosynthetically growing cultures of R. capsulatus as a function of exogenously added redox-mediator lawsone, i.e. 2-hydroxy-1,4-naphthoquinone. The NPs formation was dependent on the carbon source used for the bacterial growth and the rate of chalcogen reduction was constant at different lawsone concentrations, in line with a catalytic role for the redox mediator. X-ray diffraction (XRD) analysis demonstrated the Te{sup 0} and Se{sup 0} nature of the nanoparticles.

  1. Curiously modern DNA for a "250 million-year-old" bacterium.

    Science.gov (United States)

    Nickle, David C; Learn, Gerald H; Rain, Matthew W; Mullins, James I; Mittler, John E

    2002-01-01

    Studies of ancient DNA have attracted considerable attention in scientific journals and the popular press. Several of the more extreme claims for ancient DNA have been questioned on biochemical grounds (i.e., DNA surviving longer than expected) and evolutionary grounds (i.e., nucleotide substitution patterns not matching theoretical expectations for ancient DNA). A recent letter to Nature from Vreeland et al. (2000), however, tops all others with respect to age and condition of the specimen. These researchers extracted and cultured a bacterium from an inclusion body from what they claim is a 250 million-year (Myr)-old salt crystal. If substantiated, this observation could fundamentally alter views about bacterial physiology, ecology and evolution. Here we report on molecular evolutionary analyses of the 16S rDNA from this specimen. We find that 2-9-3 differs from a modern halophile, Salibacillus marismortui, by just 3 unambiguous bp in 16S rDNA, versus the approximately 59 bp that would be expected if these bacteria evolved at the same rate as other bacteria. We show, using a Poisson distribution, that unless it can be shown that S. marismortui evolves 5 to 10 times more slowly than other bacteria for which 16S rDNA substitution rates have been established, Vreeland et al.'s claim would be rejected at the 0.05 level. Also, a molecular clock test and a relative rates test fail to substantiate Vreeland et al.'s claim that strain 2-9-3 is a 250-Myr-old bacterium. The report of Vreeland et al. thus falls into a long series of suspect ancient DNA studies.

  2. Transcriptional changes underlying elemental stoichiometry shifts in a marine heterotrophic bacterium

    Directory of Open Access Journals (Sweden)

    Leong-Keat eChan

    2012-05-01

    Full Text Available Marine bacteria drive the biogeochemical processing of oceanic dissolved organic carbon (DOC, a 750-Tg C reservoir that is a critical component of the global C cycle. Catabolism of DOC is thought to be regulated by the biomass composition of heterotrophic bacteria, as cells maintain a C:N:P ratio of ~50:10:1 during DOC processing. Yet a complicating factor in stoichiometry-based analyses is that bacteria can change the C:N:P ratio of their biomass in response to resource composition. We investigated the physiological mechanisms of resource-driven shifts in biomass stoichiometry in continuous cultures of the marine heterotrophic bacterium Ruegeria pomeroyi (a member of the Roseobacter clade under four element limitation regimes (C, N, P, and S. Microarray analysis indicated that the bacterium scavenged for alternate sources of the scarce element when cells were C-, N-, or P-limited; reworked the ratios of biomolecules when C- and P- limited; and exerted tighter control over import/export and cytoplasmic pools when N-limited. Under S-limitation, a scenario not existing naturally for surface ocean microbes, stress responses dominated transcriptional changes. Resource-driven changes in C:N ratios of up to 2.5-fold and in C:P ratios of up to 6-fold were measured in R. pomeroyi biomass. These changes were best explained if the C and P content of the cells was flexible in the face of shifting resources but N content was not, achieved through the net balance of different transcriptional strategies. The cellular-level metabolic trade-offs that govern biomass stoichiometery in R. pomeroyi may have implications for global carbon cycling. Strong homeostatic responses to N limitation by heterotrophic marine bacteria would intensify competition with autotrophs. Modification of cellular inventories in C- and P-limited heterotrophs would vary the elemental ratio of particulate organic matter sequestered in the deep ocean.

  3. Extracellular polymer substance synthesized by a halophilic bacterium Chromohalobacter canadensis 28.

    Science.gov (United States)

    Radchenkova, Nadja; Boyadzhieva, Ivanka; Atanasova, Nikolina; Poli, Annarita; Finore, Ilaria; Di Donato, Paola; Nicolaus, Barbara; Panchev, Ivan; Kuncheva, Margarita; Kambourova, Margarita

    2018-04-03

    Halophilic microorganisms are producers of a lot of new compounds whose properties suggest promising perspectives for their biotechnological exploration. Moderate halophilic bacterium Chromohalobacter canadensis 28 was isolated from Pomorie salterns as an extracellular polymer substance (EP) producer. The best carbon source for extracellular polymer production was found to be lactose, a sugar received as a by-product from the dairy industry. After optimization of the culture medium and physicochemical conditions for cultivation, polymer biosynthesis increased more than 2-fold. The highest level of extracellular polymer synthesis by C. canadensis 28 was observed in an unusually high NaCl concentration (15% w/v). Chemical analysis of the purified polymer revealed the presence of an exopolysaccharide (EPS) fraction (14.3% w/w) and protein fraction (72% w/w). HPLC analysis of the protein fraction showed the main presence of polyglutamic acid (PGA) (75.7% w/w). EPS fraction analysis revealed the following sugar composition (% w/w): glucosamine 36.7, glucose 32.3, rhamnose 25.4, xylose 1.7, and not identified sugar 3.9. The hydrogel formed by PGA and EPS fractions showed high swelling behavior, very good emulsifying and stabilizing properties, and good foaming ability. This is the first report for halophilic bacterium able to synthesize a polymer containing PGA fraction. The synthesized biopolymer shows an extremely high hydrophilicity, due to the simultaneous presence of PGA and EPS. The analysis of its functional properties and the presence of glucosamine in the highest proportion in EPS fraction clearly determine the potential of EP synthesized by C. canadensis 28 for application in the cosmetics industry.

  4. Osmoregulation in the Halophilic Bacterium Halomonas elongata: A Case Study for Integrative Systems Biology.

    Science.gov (United States)

    Kindzierski, Viktoria; Raschke, Silvia; Knabe, Nicole; Siedler, Frank; Scheffer, Beatrix; Pflüger-Grau, Katharina; Pfeiffer, Friedhelm; Oesterhelt, Dieter; Marin-Sanguino, Alberto; Kunte, Hans-Jörg

    2017-01-01

    Halophilic bacteria use a variety of osmoregulatory methods, such as the accumulation of one or more compatible solutes. The wide diversity of compounds that can act as compatible solute complicates the task of understanding the different strategies that halophilic bacteria use to cope with salt. This is specially challenging when attempting to go beyond the pathway that produces a certain compatible solute towards an understanding of how the metabolic network as a whole addresses the problem. Metabolic reconstruction based on genomic data together with Flux Balance Analysis (FBA) is a promising tool to gain insight into this problem. However, as more of these reconstructions become available, it becomes clear that processes predicted by genome annotation may not reflect the processes that are active in vivo. As a case in point, E. coli is unable to grow aerobically on citrate in spite of having all the necessary genes to do it. It has also been shown that the realization of this genetic potential into an actual capability to metabolize citrate is an extremely unlikely event under normal evolutionary conditions. Moreover, many marine bacteria seem to have the same pathways to metabolize glucose but each species uses a different one. In this work, a metabolic network inferred from genomic annotation of the halophilic bacterium Halomonas elongata and proteomic profiling experiments are used as a starting point to motivate targeted experiments in order to find out some of the defining features of the osmoregulatory strategies of this bacterium. This new information is then used to refine the network in order to describe the actual capabilities of H. elongata, rather than its genetic potential.

  5. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress.

    Science.gov (United States)

    Ma, Ying; Rajkumar, Mani; Moreno, António; Zhang, Chang; Freitas, Helena

    2017-10-01

    This study evaluates the potential of serpentine endophytic bacterium to foster phytoremediation efficiency of Trifolium arvense grown on multi-metal (Cu, Zn and Ni) contaminated soils under drought stress. A drought resistant endophytic bacterial strain ASS1 isolated from the leaves of Alyssum serpyllifolium grown in serpentine soils was identified as Pseudomonas azotoformans based on biochemical tests and partial 16S rRNA gene sequencing. P. azotoformans ASS1 possessed abiotic stress resistance (heavy metals, drought, salinity, antibiotics and extreme temperature) and plant growth promoting (PGP) properties (phosphate solubilization, nitrogen fixation, production of 1-aminocyclopropane-1-carboxylate deaminase, siderophore and ammonia). Inoculation of T. arvense with ASS1 considerably increased the plant biomass and leaf relative water content in both roll towel assay and pot experiments in the absence and presence of drought stress (DS). In the pot experiments, ASS1 greatly enhanced chlorophyll content, catalase, peroxidase, superoxide dismutase activities, and proline content (only in the absence of drought) in plant leaves, whereas they decreased the concentrations of malondialdehyde. Irrespective of water stress, ASS1 significantly improved accumulation, total removal, bio-concentration factor and biological accumulation coefficient of metals (Cu, Zn and Ni), while decreased translocation factors of Cu. The effective colonization and survival in the rhizosphere and tissue interior assured improved plant growth and successful metal phytoremediation under DS. These results demonstrate the potential of serpentine endophytic bacterium ASS1 for protecting plants against abiotic stresses and helping plants to thrive in semiarid ecosystems and accelerate phytoremediation process in metal polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Isolation and characterization of a radiation resistant thermophilic bacterium from radon hot spring

    International Nuclear Information System (INIS)

    Liang Xinle; Yang Long; Zhang Hong; Zhang Lei

    2011-01-01

    A radiation resistant and thermophilic bacterium strain R4-33 was isolated from radon hot spring water samples, pretreated with 60 Co γ-rays and UV irradiation. Tests on morphological, physiological and biochemical characters, fatty acid compositions, (G + C) mol% contents, and 16S rDNA sequencing were conducted. The results showed that strain R4-33 was of rod-shape, Gram-negative, atrichous, and endospore-forming. The optimum growth temperature and pH were 60 ℃ and 7.5, respectively. The strain utilized glucose, maltose and trehalose as carbon sources, and hydrolyzed casein and starch. Its catalase positive. The strain was sensitive to penicillin, neomycin, erythromycin, vancomycin, streptomycin, gentamycin, amikacin and ampicillin. The major cellular fatty acids were C 14:1 (48.8%) and C 15:1 (15.2%). The (G + C) mol% content of DNA was 58.2%. Phylogenetic tree based on 16S rDNA sequence showed R4-33 shared highly similarity to those of species in genus Anoxybacillus, especially to that of Anoxybacillus gonensis (99.5%). Based on the above, the strain R4-33 was proposed to the evolution branch of Anoxybacillus and designated as Anoxybacillu sp. R4-33. The UV and γ-radiation tests showed that the strain R4-33 had an ability of resistance to UV of 396 J/m 2 and 60 Co γ-rays irradiation of 14.0 kGy, indicating that the strain was a radiation resistant and thermophilic bacterium. (authors)

  7. Reduction of Mo(VI) by the bacterium Serratia sp. strain DRY5.

    Science.gov (United States)

    Rahman, M F A; Shukor, M Y; Suhaili, Z; Mustafa, S; Shamaan, N A; Syed, M A

    2009-01-01

    The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.

  8. A soluble fatty acyl-acyl carrier protein synthetase from the bioluminescent bacterium Vibrio harveyi.

    Science.gov (United States)

    Byers, D M; Holmes, C G

    1990-01-01

    An enzyme catalyzing the ligation of long chain fatty acids to bacterial acyl carrier protein (ACP) has been detected and partially characterized in cell extracts of the bioluminescent bacterium Vibrio harveyi. Acyl-ACP synthetase activity (optimal pH 7.5-8.0) required millimolar concentrations of ATP and Mg2+ and was slightly activated by Ca2+, but was inhibited at high ionic strength and by Triton X-100. ACP from either Escherichia coli (apparent Km = 20 microM) or V. harveyi was used as a substrate. Of the [14C]fatty acids tested as substrates (8-18 carbons), a preference for fatty acids less than or equal to 14 carbons in length was observed. Vibrio harveyi acyl-ACP synthetase appears to be a soluble hydrophilic enzyme on the basis of subcellular fractionation and Triton X-114 phase partition assay. The enzyme was not coinduced with luciferase activity or light emission in vivo during the late exponential growth phase in liquid culture. Acyl-ACP synthetase activity was also detected in extracts from the luminescent bacterium Vibrio fischeri, but not Photobacterium phosphoreum. The cytosolic nature and enzymatic properties of V. harveyi acyl-ACP synthetase indicate that it may have a different physiological role than the membrane-bound activity of E. coli, which has been implicated in phosphatidylethanolamine turnover. Acyl-ACP synthetase activity in V. harveyi could be involved in the intracellular activation and elongation of exogenous fatty acids that occurs in this species or in the reactivation of free myristic acid generated by luciferase.

  9. Virus-Bacterium Interactions in Water and Sediment of West African Inland Aquatic Systems

    Science.gov (United States)

    Bettarel, Yvan; Bouvy, Marc; Dumont, Claire; Sime-Ngando, Télesphore

    2006-01-01

    The ecology of virioplankton in tropical aquatic ecosystems is poorly documented, and in particular, there are no references concerning African continental waters in the literature. In this study, we examined virus-bacterium interactions in the pelagic and benthic zones of seven contrasting shallow inland waters in Senegal, including one hypersaline lake. SYBR Gold-stained samples revealed that in the surface layers of the sites, the numbers of viruses were in the same range as the numbers of viruses reported previously for productive temperate systems. Despite high bacterial production rates, the percentages of visibly infected cells (as determined by transmission electron microscopy) were similar to the lowest percentages (range, 0.3 to 1.1%; mean, 0.5%) found previously at pelagic freshwater or marine sites, presumably because of the local environmental and climatic conditions. Since the percentages of lysogenic bacteria were consistently less than 8% for pelagic and benthic samples, lysogeny did not appear to be a dominant strategy for virus propagation at these sites. In the benthic samples, viruses were highly concentrated, but paradoxically, no bacteria were visibly infected. This suggests that sediment provides good conditions for virus preservation but ironically is an unfavorable environment for proliferation. In addition, given the comparable size distributions of viruses in the water and sediment samples, our results support the paradigm that aquatic viruses are ubiquitous and may have moved between the two compartments of the shallow systems examined. Overall, this study provides additional information about the relevance of viruses in tropical areas and indicates that the intensity of virus-bacterium interactions in benthic habitats may lower than the intensity in the adjacent bodies of water. PMID:16885276

  10. Crassaminicella profunda gen. nov., sp. nov., an anaerobic marine bacterium isolated from deep-sea sediments.

    Science.gov (United States)

    Lakhal, Raja; Pradel, Nathalie; Postec, Anne; Ollivier, Bernard; Cayol, Jean-Luc; Godfroy, Anne; Fardeau, Marie-Laure; Galés, Grégoire

    2015-09-01

    A novel, anaerobic, chemo-organotrophic bacterium, designated strain Ra1766H(T), was isolated from sediments of the Guaymas basin (Gulf of California, Mexico) taken from a depth of 2002  m. Cells were thin, motile, Gram-stain-positive, flexible rods forming terminal endospores. Strain Ra1766H(T) grew at temperatures of 25-45 °C (optimum 30 °C), pH 6.7-8.1 (optimum 7.5) and in a salinity of 5-60 g l(-1) NaCl (optimum 30 g l(-1)). It was an obligate heterotrophic bacterium fermenting carbohydrates (glucose and mannose) and organic acids (pyruvate and succinate). Casamino acids and amino acids (glutamate, aspartate and glycine) were also fermented. The main end products from glucose fermentation were acetate, butyrate, ethanol, H2 and CO2. Sulfate, sulfite, thiosulfate, elemental sulfur, fumarate, nitrate, nitrite and Fe(III) were not used as terminal electron acceptors. The predominant cellular fatty acids were C14  : 0, C16 : 1ω7, C16 : 1ω7 DMA and C16 : 0. The main polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phospholipids. The G+C content of the genomic DNA was 33.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Ra1766H(T) was affiliated to cluster XI of the order Clostridiales, phylum Firmicutes. The closest phylogenetic relative of Ra1766H(T) was Geosporobacter subterraneus (94.2% 16S rRNA gene sequence similarity). On the basis of phylogenetic inference and phenotypic properties, strain Ra1766H(T) ( = DSM 27501(T) = JCM 19377(T)) is proposed to be the type strain of a novel species of a novel genus, named Crassaminicella profunda.

  11. Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax

    Directory of Open Access Journals (Sweden)

    Guangli Wang

    2010-06-01

    Full Text Available Microbial degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenylethane (DDT is the most promising way to clean up DDT residues found in the environment. In this paper, a bacterium designated as wax, which was capable of co-metabolizing DDT with other carbon sources, was isolated from a long-term DDT-contaminated soil sample by an enrichment culture technique. The new isolate was identified as a member of the Pseudoxanthomonas sp., based on its morphological, physiological and biochemical properties, as well as by 16S rRNA gene analysis. In the presence of 100 mg l-1 glucose, the wax strain could degrade over 95% of the total DDT, at a concentration of 20 mg l-1, in 72 hours, and could degrade over 60% of the total DDT, at a concentration of 100 mg l-1, in 144 hours. The wax strain had the highest degradation efficiency among all of the documented DDT-degrading bacteria. The wax strain could efficiently degrade DDT at temperatures ranging from 20 to 37ºC, and with initial pH values ranging from 7 to 9. The bacterium could also simultaneously co-metabolize 1,1-dichloro-2,2-bis(p-chlorophenylethane (DDD, 2,2-bis(p-chlorophenyl-1,1-dichlorethylene (DDE, and other organochlorine compounds. The wax strain could also completely remove 20 mg kg-1 of DDT from both sterile and non-sterile soils in 20 days. This study demonstrates the significant potential use of Pseudoxanthomonas sp. wax for the bioremediation of DDT in the environment.

  12. Lethal Effect on Bacterium of Decay of Incorporated Radioactive Atoms (3H, 14C, 32P)

    International Nuclear Information System (INIS)

    Apelgot, Sonia

    1968-01-01

    The biological effect of decay of 3 H, 14 C and 32 P incorporated into a bacterium depends on the nature of the organic molecule labelled, on the position of the isotope within it and on the isotope itself. In sum, results obtained to date show that: The decay of 3 H atoms incorporated into certain macromolecules of a bacterium causes sterilization through ionization by the ß - particle emitted; transmutation is of negligible importance. This self-irradiation is comparable in effect with X-rays and is affected in a similar manner by the same factors: temperature, presence of a radioprotector, radiosensitivity of the strain. Decay of 14 C or 32 P atoms incorporated into bacterial DNA is lethal because of the transmutation effect; ionizations produced by emitted ß - particles may be disregarded. Survival curves for 32 P transmutations depend on the experimental conditions. Some of the results obtained with 32 P are similar to those obtained with X-rays, e.g. effects of temperature, radical capture and oxygen, while others are similar to those of u.v. light, e.g., effect of growth conditions. Comparative tests made with 32 P indicate that the recoil energy of transmutation is not the phenomenon responsible for the lethal effect observed. Comparison of the results obtained after X-irradiation or decay of 3 H or 32 P incorporated into the DNA of bacteria of the same strain of E. coli shows that the efficiency of a 32 P transmutation is about four times greater than that of an ionization produced at random within the same DNA. (author) [fr

  13. Draft Genome Sequence of Enterobacter sp. Sa187, an Endophytic Bacterium Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi; Alam, Intikhab; Geurts, Rene; Bisseling, Ton; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged

    2017-01-01

    Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth–promoting activity and environmental adaption.

  14. Draft genome sequence of Enterobacter sp. Sa187, an endophytic bacterium isolated from the desert plant Indigofera argentea

    NARCIS (Netherlands)

    Lafi, Feras F.; Alam, Intikhab; Geurts, Rene; Bisseling, Ton; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged M.

    2017-01-01

    Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth-promoting activity and

  15. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    Science.gov (United States)

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  16. First Insights into the Genome Sequence of Clostridium thermopalmarium DSM 5974, a Butyrate-Producing Bacterium Isolated from Palm Wine.

    Science.gov (United States)

    Poehlein, Anja; Hettwer, Eva; Mohnike, Lennart; Daniel, Rolf

    2018-04-26

    Clostridium thermopalmarium is a moderate thermophilic, rod-shaped, and endospore-forming bacterium, which was isolated from palm wine in Senegal. Butyrate is produced from a broad variety of sugar substrates. Here, we present the draft genome sequence of C. thermopalmarium DSM 5974 (2.822 Mb) containing 2,665 predicted protein-encoding genes. Copyright © 2018 Poehlein et al.

  17. ‘Lactobacillus raoultii’ sp. nov., a new bacterium isolated from the vaginal flora of a woman with bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    B. Nicaise

    2018-01-01

    Full Text Available We report the isolation of a new bacterium species, ‘Lactobacillus raoultii’ strain Marseille P4006 (CSUR P4006, isolated from a vaginal sample of a 45-year-old woman with bacterial vaginosis. Keywords: Bacterial vaginosis, culturomics, emerging bacteria, human microbiota, Lactobacillus raoultii, vaginal microbiota

  18. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air

    NARCIS (Netherlands)

    Khan, M. Tanweer; van Dijl, Jan Maarten; Harmsen, Hermie J M

    2014-01-01

    The beneficial human gut microbe Faecalibacterium prausnitzii is a 'probiotic of the future' since it produces high amounts of butyrate and anti-inflammatory compounds. However, this bacterium is highly oxygen-senstive, making it notoriously difficult to cultivate and preserve. This has so far

  19. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk

    OpenAIRE

    Meneghel, Julie; Dugat-Bony, Eric; Irlinger, Fran?oise; Loux, Valentin; Vidal, Marie; Passot, St?phanie; B?al, Catherine; Layec, S?verine; Fonseca, Fernanda

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes.

  20. Phosphorus uptake of an arbuscular mycorrhizal fungus is not effected by the biocontrol bacterium ¤Burkholderia cepacia¤

    DEFF Research Database (Denmark)

    Ravnskov, S.; Larsen, J.; Jakobsen, I.

    2002-01-01

    The biocontrol bacterium Burkholderia cepacia is known to suppress a broad range of root pathogenic fungi, while its impact on other beneficial non-target organisms such as arbuscular mycorrhizal (AM) fungi is unknown. Direct interactions between five B. cepacia strains and the AM fungus, Glomus ...

  1. Microbacter margulisiae gen. nov., sp. nov., a novel propionigenic bacterium isolated from sediments of an acid rock drainage pond

    NARCIS (Netherlands)

    Sanchez Andrea, I.; Luis Sanz, J.; Stams, A.J.M.

    2014-01-01

    A novel anaerobic propionigenic bacterium, strain ADRIT, was isolated from sediment of an acid rock drainage environment (Tinto River, Spain). Cells were small (0.4-0.6 x 1-1.7 µm), non-motile and non-spore forming rods. Cells possessed a Gram-negative cell wall structure and were vancomycin

  2. Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic

    DEFF Research Database (Denmark)

    Celebioglu, Hasan Ufuk; Hansen, Morten Ejby; Majumder, Avishek

    2016-01-01

    Whole cell and surface proteomes were analyzed together with adhesive properties of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) grown on the emerging prebiotic raffinose, exemplifying a synbiotic. Adhesion of NCFM to mucin and intestinal HT-29 cells increased three-fold after...

  3. Complete genome sequences of two strains of the meat spoilage bacterium Brochothrix thermosphacta isolated from ground chicken

    Science.gov (United States)

    Brochothrix thermosphacta is an important meat spoilage bacterium. Here we report the genome sequences of two strains of B. thermosphacta isolated from ground chicken. The genome sequences were determined using long-read PacBio single-molecule real-time (SMRT©) technology and are the first complete ...

  4. Locked chromophore analogs reveal that photoactive yellow protein regulates biofilm formation in the deep sea bacterium Idiomarina loihiensis

    NARCIS (Netherlands)

    van der Horst, M.A.; Stalcup, T.P.; Kaledhonkar, S.; Kumauchi, M.; Hara, M.; Xie, A.; Hellingwerf, K.J.; Hoff, W.D.

    2009-01-01

    Idiomarina loihiensis is a heterotrophic deep sea bacterium with no known photobiology. We show that light suppresses biofilm formation in this organism. The genome of I. loihiensis encodes a single photoreceptor protein: a homologue of photoactive yellow protein (PYP), a blue light receptor with

  5. Lactobacillus diolivorans sp nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage

    NARCIS (Netherlands)

    Krooneman, J; Faber, F; Alderkamp, AC; Elferink, SJHWO; Driehuis, F; Cleenwerck, [No Value; Swings, J; Gottschal, JC; Vancanneyt, M

    Inoculation of maize silage with Lactobacillus buchneri (5 x 10(5) c.f.u. g(-1) of maize silage) prior to ensiling results in the formation of aerobically stable silage. After 9 months, lactic acid bacterium counts are approximately 10(10) c.f.u. g(-1) in these treated silages. An important

  6. Thermotoga lettingae sp. nov. : a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor

    NARCIS (Netherlands)

    Balk, M.; Weijma, J.; Stams, A.J.M.

    2002-01-01

    A novel, anaerobic, non-spore-forming, mobile, Gram-negative, thermophilic bacterium, strain TMO(T), was isolated from a thermophilic sulfate-reducing bioreactor operated at 65 degrees C with methanol as the sole substrate. The G C content of the DNA of strain TMO(T) was 39.2 molÐThe optimum pH,

  7. Whole-Genome Shotgun Sequence of the Keratinolytic Bacterium Lysobacter sp. A03, Isolated from the Antarctic Environment

    OpenAIRE

    Pereira, Jamile Queiroz; Ambrosini, Adriana; Sant?Anna, Fernando Hayashi; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, F?bio Oliveira; Souza, Emanuel Maltempi; Brandelli, Adriano; Passaglia, Luciane M. P.

    2015-01-01

    Lysobacter sp. strain A03 is a protease-producing bacterium isolated from decomposing-penguin feathers collected in the Antarctic environment. This strain has the ability to degrade keratin at low temperatures. The A03 genome sequence provides the possibility of finding new genes with biotechnological potential to better understand its cold-adaptation mechanism and survival in cold environments.

  8. Genome Sequence of the Enterobacter mori Type Strain, LMG 25706, a Pathogenic Bacterium of Morus alba L. ▿

    Science.gov (United States)

    Zhu, Bo; Zhang, Guo-Qing; Lou, Miao-Miao; Tian, Wen-Xiao; Li, Bin; Zhou, Xue-Ping; Wang, Guo-Feng; Liu, He; Xie, Guan-Lin; Jin, Gu-Lei

    2011-01-01

    Enterobacter mori is a plant-pathogenic enterobacterium responsible for the bacterial wilt of Morus alba L. Here we present the draft genome sequence of the type strain, LMG 25706. To the best of our knowledge, this is the first genome sequence of a plant-pathogenic bacterium in the genus Enterobacter. PMID:21602328

  9. Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca

    NARCIS (Netherlands)

    Schallmey, Anett; den Besten, Gijs; Teune, Ite G. P.; Kembaren, Roga F.; Janssen, Dick B.

    Cytochrome P450 monooxygenases are valuable biocatalysts due to their ability to hydroxylate unactivated carbon atoms using molecular oxygen. We have cloned the gene for a new cytochrome P450 monooxygenase, named CYP154H1, from the moderately thermophilic soil bacterium Thermobifida fusca. The

  10. Draft Genome Sequence of Enterobacter sp. Sa187, an Endophytic Bacterium Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi

    2017-02-17

    Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth–promoting activity and environmental adaption.

  11. Complete genome of Pandoraea pnomenusa RB-38, an oxalotrophic bacterium isolated from municipal solid waste landfill site.

    Science.gov (United States)

    Lim, Yan-Lue; Ee, Robson; Yong, Delicia; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2015-11-20

    Pandoraea pnomenusa RB-38 is a bacterium isolated from a former sanitary landfill site. Here, we present the complete genome of P. pnomenusa RB38 in which an oxalate utilization pathway was identified. The genome analysis suggested the potential of this strain as an effective biocontrol agent against oxalate-producing phytopathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Draft Genome Sequence of Caenibacillus caldisaponilyticus B157T, a Thermophilic and Phospholipase-Producing Bacterium Isolated from Acidulocompost

    Science.gov (United States)

    Tsujimoto, Yoshiyuki; Saito, Ryo; Sahara, Takehiko; Kimura, Nobutada; Tsuruoka, Naoki; Shigeri, Yasushi

    2017-01-01

    ABSTRACT Caenibacillus caldisaponilyticus B157T (= NBRC 111400T = DSM 101100T), in the family Sporolactobacillaceae, was isolated from acidulocompost as a thermophilic and phospholipid-degrading bacterium. Here, we report the 3.36-Mb draft genome sequence, with a G+C content of 51.8%, to provide the genetic information coding for phospholipases. PMID:28360164

  13. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria.

    Science.gov (United States)

    da Silva, Fábio Daniel Florêncio; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Dall'Agnol, Leonardo Teixeira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Oliveira, Karol Guimarães; de Lima, Clayton Pereira Silva; Nunes, Márcio Roberto Teixeira; Vianez-Júnior, João Lídio Silva Gonçalves; Gonçalves, Evonnildo Costa

    2016-05-19

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here. Copyright © 2016 da Silva et al.

  14. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria

    OpenAIRE

    da Silva, F?bio Daniel Flor?ncio; Lima, Alex Ranieri Jer?nimo; Moraes, Pablo Henrique Gon?alves; Siqueira, Andrei Santos; Dall?Agnol, Leonardo Teixeira; Bara?na, Anna Rafaella Ferreira; Martins, Luisa Car?cio; Oliveira, Karol Guimar?es; de Lima, Clayton Pereira Silva; Nunes, M?rcio Roberto Teixeira; Vianez-J?nior, Jo?o L?dio Silva Gon?alves; Gon?alves, Evonnildo Costa

    2016-01-01

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here.

  15. Nonlinear effect of irradiance on photoheterotrophic activity and growth of the aerobic anoxygenic phototrophic bacterium Dinoroseobacter shibae

    Czech Academy of Sciences Publication Activity Database

    Piwosz, Kasia; Kaftan, David; Dean, Jason; Šetlík, Jiří; Koblížek, Michal

    2018-01-01

    Roč. 20, č. 2 (2018), s. 724-733 ISSN 1758-2229 R&D Projects: GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 Keywords : PHOTOSYNTHETIC BACTERIUM * LEUCINE INCORPORATION * SOLAR-RADIATION Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.363, year: 2016

  16. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    NARCIS (Netherlands)

    Bollmann, A.; Sedlacek, C.J.; Norton, J.; Laanbroek, H.J.; Suwa, Y.; Stein, L.Y.; Klotz, M.G.; Arp, D.; Sayavedra-Soto, L.; Lu, M.; Bruce, D.; Detter, C.; Tapia, R.; Han, J.; Woyke, T.; Lucas, S.; Pitluck, S.; Pennacchio, L.; Nolan, M.; Land, M.L.; Huntemann, M.; Deshpande, S.; Han, C.; Chen, A.; Kyrpides, N.; Mavromatis, K.; Markowitz, V.; Szeto, E.; Ivanova, N.; Mikhailova, N.; Pagani, I.; Pati, A.; Peters, L.; Ovchinnikova, G.; Goodwin, L.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production

  17. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk.

    Science.gov (United States)

    Meneghel, Julie; Dugat-Bony, Eric; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine; Fonseca, Fernanda

    2016-03-03

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes. Copyright © 2016 Meneghel et al.

  18. ["Candidatus contubernalis alkalaceticum," an obligately syntrophic alkaliphilic bacterium capable of anaerobic acetate oxidation in a coculture with Desulfonatronum cooperativum].

    Science.gov (United States)

    Zhilina, T N; Zavarzina, D G; Kolganova, T V; Turova, T P; Zavarzin, G A

    2005-01-01

    From the silty sediments of the Khadyn soda lake (Tuva), a binary sulfidogenic bacterial association capable of syntrophic acetate oxidation at pH 10.0 was isolated. An obligately syntrophic, gram-positive, spore-forming alkaliphilic rod-shaped bacterium performs acetate oxidation in a syntrophic association with a hydrogenotrophic, alkaliphilic sulfate-reducing bacterium; the latter organism was previously isolated and characterized as the new species Desulfonatronum cooperativum. Other sulfate-reducing bacteria of the genera Desulfonatronum and Desulfonatronovibrio can also act as the hydrogenotrophic partner. Apart from acetate, the syntrophic culture can oxidize ethanol, propanol, isopropanol, serine, fructose, and isobutyric acid. Selective amplification of 16S rRNA gene fragments of the acetate-utilizing syntrophic component of the binary culture was performed; it was found to cluster with clones of uncultured gram-positive bacteria within the family Syntrophomonadaceae. The acetate-oxidizing bacterium is thus the first representative of this cluster obtained in a laboratory culture. Based on its phylogenetic position, the new acetate-oxidizing syntrophic bacterium is proposed to be assigned, in a Candidate status, to a new genus and species: "Candidatus Contubernalis alkalaceticum."

  19. Draft Genome Sequence of the Soil Bacterium Burkholderia terrae Strain BS001, Which Interacts with Fungal Surface Structures

    DEFF Research Database (Denmark)

    Nazir, Rashid; Hansen, Martin A.; Sorensen, Soren

    2012-01-01

    Burkholderia terrae BS001 is a soil bacterium which was originally isolated from the mycosphere of the ectomycorrhizal fungus Laccaria proxima. It exhibits a range of fungus-interacting traits which reveal its propensity to actively interact at fungal interfaces. Here, we present the approximately...

  20. Successful split thickness skin grafting in the presence of heavy colonisation with rare bacterium Aeromonas hydrophila: A case report

    Directory of Open Access Journals (Sweden)

    S. Koschel

    2017-09-01

    Discussion: Contemporary literature is yet to make the distinction between colonisation and infection of this bacterium, with clinicians relying solely on the presence of infective stigmata and serum analysis. However, this is a critically important distinction when ascertaining the likelihood of success of wound healing.

  1. Evidence of carbon fixation pathway in a bacterium from candidate phylum SBR1093 revealed with genomic analysis.

    Directory of Open Access Journals (Sweden)

    Zhiping Wang

    Full Text Available Autotrophic CO2 fixation is the most important biotransformation process in the biosphere. Research focusing on the diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the hydroxypropionate-hydroxybutyrate (HPHB cycle, which was demonstrated in a previous work to be uniquely possessed by some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these enzymes share 30∼50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and 30∼80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution and importance of the HPHB cycle in the biosphere.

  2. Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium

    Directory of Open Access Journals (Sweden)

    Ma YF

    2013-06-01

    Full Text Available Yufan Ma,1 Zhao Wang,1,2 Wen Zhao,1 Tingli Lu,1 Rutao Wang,1,2 Qibing Mei,1 Tao Chen1–3 1Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China; 2Shaanxi Liposome Research Center, Xi'an, Shaanxi, People's Republic of China; 3Xi'an Libang Pharmaceuticals Co, Ltd, Xi'an, People's Republic of China Background: Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. Methods: The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE, and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG, 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS, 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA, nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. Results: It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the

  3. Sphaerotilus natans, a neutrophilic iron-related filamentous bacterium : mechanisms of uranium scavenging

    International Nuclear Information System (INIS)

    Seder-Colomina, Marina

    2014-01-01

    Heavy metals and radionuclides are present in some ecosystems worldwide due to natural contaminations or anthropogenic activities. The use of microorganisms to restore those polluted ecosystems, a process known as bioremediation, is of increasing interest, especially under near-neutral pH conditions. Iron minerals encrusting neutrophilic iron-related bacteria, especially Bacterio-genic Iron Oxides (BIOS), have a poorly crystalline structure, which in addition to their large surface area and reactivity make them excellent scavengers for inorganic pollutants. In this PhD work we studied the different mechanisms of uranium scavenging by the neutrophilic bacterium Sphaerotilus natans, chosen as a model bacterium for iron-related sheath-forming filamentous microorganisms. S. natans can grow as single cells and filaments. The latter were used to investigate U(VI) bio-sorption and U(VI) sorption onto BIOS. In addition, uranium sorption onto the abiotic analogues of such iron minerals was assessed. In order to use S. natans filaments for U(VI) scavenging, it was necessary to identify factors inducing S. natans filamentation. The influence of oxygen was ascertained by using molecular biology techniques and our results revealed that while saturated oxygen conditions resulted in single cell growth, a moderate oxygen depletion to ∼ 3 mg O 2 .L -1 led to the desired filamentous growth of S. natans. BIOS attached to S. natans filaments as well as the abiotic analogues were analysed by XAS at Fe K-edge. Both materials were identified as amorphous iron(III) phosphates with a small component of Fe(II), with a high reactivity towards scavenging of inorganic pollutants. In addition, EXAFS at the U LIII-edge revealed a common structure for the O shells, while those for P, Fe and C were different for each sorbent. An integrated approach combining experimental techniques and speciation calculations made it possible to describe U(VI) adsorption isotherms by using a surface complexation

  4. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina

    International Nuclear Information System (INIS)

    Simpson, Philippa J.L.; Codd, Rachel

    2011-01-01

    Highlights: ► Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. ► Protein homology model of NapA from S. gelidimarina and mesophilic homologue. ► Six amino acid residues identified as lead candidates governing NapA cold adaptation. ► Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo–MGD) cofactor and one [4Fe–4S] iron–sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap Sgel ) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap Sput ) was examined at varied temperature. Irreversible deactivation of Nap Sgel and Nap Sput occurred at 54.5 and 65 °C, respectively. When Nap Sgel was preincubated at 21–70 °C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 °C, which suggested that Nap Sgel was poised for optimal catalysis at modest temperatures and, unlike Nap Sput , did not benefit from thermally-induced refolding. At 20 °C, Nap Sgel reduced selenate at 16% of the rate of nitrate reduction. Nap Sput did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap Sgel that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap Sgel cold-adapted phenotype. Protein homology modeling of Nap Sgel using a mesophilic template with 66% amino acid identity showed the majority of substitutions occurred at the protein surface distal to the Mo–MGD cofactor. Two mesophilic ↔ psychrophilic

  5. Evaluation of dna extraction methods of the Salmonella sp. bacterium in artificially infected chickens eggs

    Directory of Open Access Journals (Sweden)

    Ana Cristina dos Reis Ferreira

    2015-06-01

    Full Text Available ABSTRACT. Ferreira A.C.dosR. & dos Santos B.M. [Evaluation of dna extraction methods of the Salmonella sp. bacterium in artificially infected chickens eggs.] Avaliação de três métodos de extração de DNA de Salmonella sp. em ovos de galinhas contaminados artificialmente. Revista Brasileira de Medicina Veterinária, 37(2:115-119, 2015. Departamento de Veterinária, Universidade Federal de Viçosa, Campus Universitário, Av. Peter Henry Rolfs, s/n, Viçosa, MG 36571-000, Brasil. E-mail: bmsantos@ufv.br The present study evaluated the efficiency of different protocols for the genomic DNA extraction of Salmonella bacteria in chicken eggs free of specific pathogens – SPF. Seventy-five eggs were used and divided into five groups with fifteen eggs each. Three of the five groups of eggs were inoculated with enteric Salmonella cultures. One of the five groups was inoculated with Escherichia coli bacterium culture. And another group of eggs was the negative control that received saline solution 0.85% infertile. The eggs were incubated on a temperature that varied from 20 to 25°C during 24, 48 and 72 hours. Five yolks of each group were collected every 24 hours. These yolks were homogenized and centrifuged during 10 minutes. The supernatant was rejected. After the discard, PBS ph 7.2 was added and centrifuged again. The sediment obtained of each group was used for the extraction of bacterial genomic DNA. Silica particles and a commercial kit were utilized as the extraction methods. The extracted DNA was kept on a temperature of 20°C until the evaluation through PCR. The primers utilized were related with the invA gene and they were the following: 5’ GTA AAA TTA TCG CCA CGT TCG GGC AA 3’ and 5’ TCA TCG CAC CGT CAA AGG AAC C 3’. The amplification products were visualized in transilluminator with ultraviolet light. The obtained results through the bacterial DNA extractions demonstrated that the extraction method utilizing silica particles was

  6. Pectinolytic bacteria and their secreted pectate lyases: agents for the maceration and solubilization of phytomass for fuels production

    Energy Technology Data Exchange (ETDEWEB)

    Preston, J.F. III; Rice, J.D.; Chow, M.C. (Florida Univ., Gainesville, FL (United States). Dept. of Microbiology and Cell Science)

    1993-01-01

    The objectives of this research have been to identify the pectinolytic enzymes secreted by bacteria and apply these towards the enhanced maceration and solubilization of plant material, focusing on the pectate lyases secreted by the phytopathogenic strains of Erwinia chrysanthemi, the ruminant resident Lachnospira multiparus, and the wood digestor isolate, Clostridium populeti. An HPLC approach has been developed that permits the kinetic analysis of each enzyme with respect to the formation of individual products during the pectate depolymerization process. This approach has demonstrated that each of these organisms secretes a nonrandom trimer-generating pectate lyase with a combination of endolytic and exolytic depolymerizing mechanisms. Two different strains of E. chrysanthemi secrete a battery of pectate lyases that include random endolytic as well as nonrandom dimer - and nonrandom trimer-generating endolytic/exolytic mechanisms. (author)

  7. Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8.

    Science.gov (United States)

    Iakiviak, Michael; Mackie, Roderick I; Cann, Isaac K O

    2011-11-01

    Ruminococcus albus 8 is a fibrolytic ruminal bacterium capable of utilization of various plant cell wall polysaccharides. A bioinformatic analysis of a partial genome sequence of R. albus revealed several putative enzymes likely to hydrolyze glucans, including lichenin, a mixed-linkage polysaccharide of glucose linked together in β-1,3 and β-1,4 glycosidic bonds. In the present study, we demonstrate the capacity of four glycoside hydrolases (GHs), derived from R. albus, to hydrolyze lichenin. Two of the genes encoded GH family 5 enzymes (Ra0453 and Ra2830), one gene encoded a GH family 16 enzyme (Ra0505), and the last gene encoded a GH family 3 enzyme (Ra1595). Each gene was expressed in Escherichia coli, and the recombinant protein was purified to near homogeneity. Upon screening on a wide range of substrates, Ra0453, Ra2830, and Ra0505 displayed different hydrolytic properties, as they released unique product profiles. The Ra1595 protein, predicted to function as a β-glucosidase, preferred cleavage of a nonreducing end glucose when linked by a β-1,3 glycosidic bond to the next glucose residue. The major product of Ra0505 hydrolysis of lichenin was predicted to be a glucotriose that was degraded only by Ra0453 to glucose and cellobiose. Most importantly, the four enzymes functioned synergistically to hydrolyze lichenin to glucose, cellobiose, and cellotriose. This lichenin-degrading enzyme mix should be of utility as an additive to feeds administered to monogastric animals, especially those high in fiber.

  8. Two new xylanases with different substrate specificities from the human gut bacterium Bacteroides intestinalis DSM 17393.

    Science.gov (United States)

    Hong, Pei-Ying; Iakiviak, Michael; Dodd, Dylan; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac

    2014-04-01

    Xylan is an abundant plant cell wall polysaccharide and is a dominant component of dietary fiber. Bacteria in the distal human gastrointestinal tract produce xylanase enzymes to initiate the degradation of this complex heteropolymer. These xylanases typically derive from glycoside hydrolase (GH) families 10 and 11; however, analysis of the genome sequence of the xylan-degrading human gut bacterium Bacteroides intestinalis DSM 17393 revealed the presence of two putative GH8 xylanases. In the current study, we demonstrate that the two genes encode enzymes that differ in activity. The xyn8A gene encodes an endoxylanase (Xyn8A), and rex8A encodes a reducing-end xylose-releasing exo-oligoxylanase (Rex8A). Xyn8A hydrolyzed both xylopentaose (X5) and xylohexaose (X6) to a mixture of xylobiose (X2) and xylotriose (X3), while Rex8A hydrolyzed X3 through X6 to a mixture of xylose (X1) and X2. Moreover, rex8A is located downstream of a GH3 gene (xyl3A) that was demonstrated to exhibit β-xylosidase activity and would be able to further hydrolyze X2 to X1. Mutational analyses of putative active site residues of both Xyn8A and Rex8A confirm their importance in catalysis by these enzymes. Recent genome sequences of gut bacteria reveal an increase in GH8 Rex enzymes, especially among the Bacteroidetes, indicating that these genes contribute to xylan utilization in the human gut.

  9. [Isolation and identification of Mn oxidizing bacterium Aminobacter sp. H1 and its oxidation mechanism].

    Science.gov (United States)

    Yan, Ping; Jiang, Li-Ying; Chen, Jian-Meng; He, Zhi-Min; Xiao, Shao-Dan; Jiang, Yi-Feng

    2014-04-01

    A bacterium with high manganese oxidizing activity was isolated from a biological manganese removal filter and named as H1. Based on its characteristics and the analysis of 16S rDNA sequence, the strain H1 belonged to the genus Aminobacter sp. and its manganese oxidizing ability had never been reported. In this paper, the microbiologic properties of the strain H1, the manganese oxidation mechanisms and characteristics of biogenic manganese oxides were investigated. The results showed that the maximal tolerant Mn concentration of strain H1 was 50 mmol x L(-1), and Mn(II) could be completely removed by strain H1 when the concentration was lower than 10 mmol x L(-1). Strain H1 could oxidize Mn2+ by both the production of manganese oxidizing activity factor and alkaline metabolites during growth, which were synthesized in the cell and then secreted into extracellular culture medium. During the oxidation process, the intermediate of soluble Mn(III) was detected. SEM showed that the biogenic manganese oxides were amorphous and poorly-crystalline, and it closely combined with bacteria. The components of the biogenic manganese oxides produced by strain H1 were identified as MnCO3, MnOOH, Mn3O4 and MnO2 by XRD, XPS and SEM-EDX.

  10. Novel heterotrophic nitrogen removal and assimilation characteristic of the newly isolated bacterium Pseudomonas stutzeri AD-1.

    Science.gov (United States)

    Qing, Hui; Donde, Oscar Omondi; Tian, Cuicui; Wang, Chunbo; Wu, Xingqiang; Feng, Shanshan; Liu, Yao; Xiao, Bangding

    2018-04-18

    AD-1, an aerobic denitrifier, was isolated from activated sludge and identified as Pseudomonas stutzeri. AD-1 completely removed NO 3 - or NO 2 - and removed 99.5% of NH 4 + during individual culturing in a broth medium with an initial nitrogen concentration of approximately 50 mg L -1 . Results showed that larger amounts of nitrogen were removed through assimilation by the bacteria. And when NH 4 + was used as the sole nitrogen source in the culture medium, neither NO 2 - nor NO 3 - was detected, thus indicating that AD-1 may not be a heterotrophic nitrifier. Only trace amount of N 2 O was detected during the denitrification process. Single factor experiments indicated that the optimal culture conditions for AD-1 were: a carbon-nitrogen ratio (C/N) of 15, a temperature of 25°C and sodium succinate or glucose as a carbon source. In conclusion, due to the ability of AD-1 to utilize nitrogen of different forms with high efficiencies for its growth while producing only trace emissions of N 2 O, the bacterium had outstanding potential to use in the bioremediation of high-nitrogen-containing wastewaters. Meanwhile, it may also be a proper candidate for biotreatment of high concentration organic wastewater. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Enterobacter siamensis sp. nov., a transglutaminase-producing bacterium isolated from seafood processing wastewater in Thailand.

    Science.gov (United States)

    Khunthongpan, Suwannee; Bourneow, Chaiwut; H-Kittikun, Aran; Tanasupawat, Somboon; Benjakul, Soottawat; Sumpavapol, Punnanee

    2013-01-01

    A novel strain of Enterobacter, C2361(T), a Gram-negative, non-spore-forming, rod-shaped and facultative anaerobic bacterium with the capability to produce transglutaminase, was isolated from seafood processing wastewater collected from a treatment pond of a seafood factory in Songkhla Province, Thailand. Phylogenetic analyses and phenotypic characteristics, including chemotaxonomic characteristics, showed that the strain was a member of the genus Enterobacter. The 16S rRNA gene sequence similarities between strain C2361(T) and Enterobacter cloacae subsp. cloacae ATCC 13047(T) and Enterobacter cloacae subsp. dissolvens LMG 2683(T) were 97.5 and 97.5%, respectively. Strain C2361(T) showed a low DNA-DNA relatedness with the above-mentioned species. The major fatty acids were C16:0, C17:0cyclo and C14:0. The DNA G+C content was 53.0 mol%. On the basis of the polyphasic evidence gathered in this study, it should be classified as a novel species of the genus Enterobacter for which the name Enterobacter siamensis sp. nov. is proposed. The type strain is C2361(T) (= KCTC 23282(T) = NBRC 107138(T)).

  12. A novel radio-tolerant astaxanthin-producing bacterium reveals a new astaxanthin derivative: astaxanthin dirhamnoside.

    Science.gov (United States)

    Asker, Dalal; Awad, Tarek S; Beppu, Teruhiko; Ueda, Kenji

    2012-01-01

    Astaxanthin is a red ketocarotenoid that exhibits extraordinary health-promoting activities such as antioxidant, anti-inflammatory, antitumor, and immune booster. The recent discovery of the beneficial roles of astaxanthin against many degenerative diseases such as cancers, heart diseases, and exercise-induced fatigue has raised its market demand as a nutraceutical and medicinal ingredient in aquaculture, food, and pharmaceutical industries. To satisfy the growing demand for this high-value nutraceuticals ingredient and consumer interest in natural products, many research efforts are being made to discover novel microbial producers with effective biotechnological production of astaxanthin. Using a rapid screening method based on 16S rRNA gene, and effective HPLC-Diodearray-MS methods for carotenoids analysis, we succeeded to isolate a unique astaxanthin-producing bacterium (strain TDMA-17(T)) that belongs to the family Sphingomonadaceae (Asker et al., Appl Microbiol Biotechnol 77: 383-392, 2007). In this chapter, we provide a detailed description of effective HPLC-Diodearray-MS methods for rapid analysis and identification of the carotenoids produced by strain TDMA-17(T). We also describe the methods of isolation and identification for a novel bacterial carotenoid (astaxanthin derivative), a major carotenoid that is produced by strain TDMA-17(T). Finally, we describe the polyphasic taxonomic analysis of strain TDMA-17(T) and the description of a novel species belonging to genus Sphingomonas.

  13. Sorption of ferrous iron by EPS from the acidophilic bacterium Acidiphilium Sp.: A mechanism proposal

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, J.M.; MuNoz, J.; Gonzlez, F.; Blazquez, M.L.; Ballester, A.

    2016-07-01

    The aim of this work was to assess the uptake of Fe(II) by extracellular polymeric substances (EPS) from the acidophilic bacterium Acidiphillium 3.2Sup(5). These EPS were extracted using EDTA. EPS of A. 3.2Sup(5) loaded in sorption tests with Fe(II), were characterized using the following experimental techniques: scanning electron microscopy (SEM) with energy dispersive X-ray microanalysis (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental results indicate that EPS adsorb ferrous iron according to Freundlich model with a metal sorption uptake of K = 1.14 mg1−1/n L1/n g−1 and a sorption intensity of 1/n = 1.26. In addition, ferrous iron sorption by EPS took place by preferential interaction with the carboxyl group which promotes the formation of ferrous iron oxalates (FeC2O4). Since the interaction reaction was reversible (Log K = 0.77 ± 0.33), that means that the cation sorption can be reversed at convenience. (Author)

  14. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4.

    Directory of Open Access Journals (Sweden)

    Jin Duan

    Full Text Available The plant growth-promoting bacterium (PGPB Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated "housekeeping" genes (16S rRNA, gyrB, rpoB and rpoD of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.

  15. Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Alvaro Banderas

    2013-08-01

    Full Text Available The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS, we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process.

  16. Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Banderas, Alvaro; Guiliani, Nicolas

    2013-01-01

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process. PMID:23959118

  17. Two New Xylanases with Different Substrate Specificities from the Human Gut Bacterium Bacteroides intestinalis DSM 17393

    KAUST Repository

    Hong, Pei-Ying

    2014-01-24

    Xylan is an abundant plant cell wall polysaccharide and is a dominant component of dietary fiber. Bacteria in the distal human gastrointestinal tract produce xylanase enzymes to initiate the degradation of this complex heteropolymer. These xylanases typically derive from glycoside hydrolase (GH) families 10 and 11; however, analysis of the genome sequence of the xylan-degrading human gut bacterium Bacteroides intestinalis DSM 17393 revealed the presence of two putative GH8 xylanases. In the current study, we demonstrate that the two genes encode enzymes that differ in activity. The xyn8A gene encodes an endoxylanase (Xyn8A), and rex8A encodes a reducing-end xylose-releasing exo-oligoxylanase (Rex8A). Xyn8A hydrolyzed both xylopentaose (X5) and xylohexaose (X6) to a mixture of xylobiose (X2) and xylotriose (X3), while Rex8A hydrolyzed X3 through X6 to a mixture of xylose (X1) and X2. Moreover, rex8A is located downstream of a GH3 gene (xyl3A) that was demonstrated to exhibit β-xylosidase activity and would be able to further hydrolyze X2 to X1. Mutational analyses of putative active site residues of both Xyn8A and Rex8A confirm their importance in catalysis by these enzymes. Recent genome sequences of gut bacteria reveal an increase in GH8 Rex enzymes, especially among the Bacteroidetes, indicating that these genes contribute to xylan utilization in the human gut.

  18. Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila.

    Science.gov (United States)

    Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li

    2016-01-01

    Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to ethanol. Defluviitalea phaphyphila Alg1 is the first characterized thermophilic bacterium capable of direct utilization of brown algae. Defluviitalea phaphyphila Alg1 can simultaneously utilize mannitol, glucose, and alginate to produce ethanol, and high ethanol yields of 0.47 g/g-mannitol, 0.44 g/g-glucose, and 0.3 g/g-alginate were obtained. A rational redox balance system under obligate anaerobic condition in fermenting brown algae was revealed in D. phaphyphila Alg1 through genome and redox analysis. The excess reducing equivalents produced from mannitol metabolism were equilibrated by oxidizing forces from alginate assimilation. Furthermore, D. phaphyphila Alg1 can directly utilize unpretreated kelp powder, and 10 g/L of ethanol was accumulated within 72 h with an ethanol yield of 0.25 g/g-kelp. Microscopic observation further demonstrated the deconstruction process of brown algae cell by D. phaphyphila Alg1. The integrated biomass deconstruction system of D. phaphyphila Alg1, as well as its high ethanol yield, provided us an excellent alternative for brown algae bioconversion at elevated temperature.

  19. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    Science.gov (United States)

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  20. Identification and characterization of a core fucosidase from the bacterium Elizabethkingia meningoseptica.

    Science.gov (United States)

    Li, Tiansheng; Li, Mengjie; Hou, Linlin; Guo, Yameng; Wang, Lei; Sun, Guiqin; Chen, Li

    2018-01-26

    All reported α-l-fucosidases catalyze the removal of nonreducing terminal l-fucoses from oligosaccharides or their conjugates, while having no capacity to hydrolyze core fucoses in glycoproteins directly. Here, we identified an α-fucosidase from the bacterium Elizabethkingia meningoseptica with catalytic activity against core α-1,3-fucosylated substrates, and we named it core fucosidase I (cFase I). Using site-specific mutational analysis, we found that three acidic residues (Asp-242, Glu-302, and Glu-315) in the predicted active pocket are critical for cFase I activity, with Asp-242 and Glu-315 acting as a pair of classic nucleophile and acid/base residues and Glu-302 acting in an as yet undefined role. These findings suggest a catalytic mechanism for cFase I that is different from known α-fucosidase catalytic models. In summary, cFase I exhibits glycosidase activity that removes core α-1,3-fucoses from substrates, suggesting cFase I as a new tool for glycobiology, especially for studies of proteins with core fucosylation. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Purification and Characterization of Catalase from Marine Bacterium Acinetobacter sp. YS0810

    Directory of Open Access Journals (Sweden)

    Xinhua Fu

    2014-01-01

    Full Text Available The catalase from marine bacterium Acinetobacter sp. YS0810 (YS0810CAT was purified and characterized. Consecutive steps were used to achieve the purified enzyme as follows: ethanol precipitation, DEAE Sepharose ion exchange, Superdex 200 gel filtration, and Resource Q ion exchange. The active enzyme consisted of four identical subunits of 57.256 kDa. It showed a Soret peak at 405 nm, indicating the presence of iron protoporphyrin IX. The catalase was not apparently reduced by sodium dithionite but was inhibited by 3-amino-1,2,4-triazole, hydroxylamine hydrochloride, and sodium azide. Peroxidase-like activity was not found with the substrate o-phenylenediamine. So the catalase was determined to be a monofunctional catalase. N-terminal amino acid of the catalase analysis gave the sequence SQDPKKCPVTHLTTE, which showed high degree of homology with those of known catalases from bacteria. The analysis of amino acid sequence of the purified catalase by matrix-assisted laser desorption ionization time-of-flight mass spectrometry showed that it was a new catalase, in spite of its high homology with those of known catalases from other bacteria. The catalase showed high alkali stability and thermostability.

  2. Experimental Infection and Detection of Necrotizing Hepatopancreatitis Bacterium in the American Lobster Homarus americanus

    Directory of Open Access Journals (Sweden)

    Luz A. Avila-Villa

    2012-01-01

    Full Text Available Necrotizing hepatopancreatitis bacterium (NHPB is an obligated intracellular bacteria causing severe hepatopancreatic damages and mass mortalities in penaeid shrimp. The worldwide distribution of penaeid shrimp as alien species threatens the life cycle of other crustacean species. The aim of the experiment was to evaluate the possibility of experimentally infecting the American lobster (Homarus americanus with NHPB extracted from shrimp hepatopancreas. Homogenates from infected shrimp were fed by force to lobsters. Other group of lobsters was fed with homogenates of NHPB-free hepatopancreas. After the 15th day from initial inoculation, the presence of NHPB was detected by polymerase chain reaction in feces and hepatopancreas from lobsters inoculated with infected homogenates. Necrotized spots were observed in the surface of lobster hepatopancreas. In contrast, lobsters fed on NHPB-free homogenates resulted negative for NHPB. Evidence suggests the plasticity of NHPB which can infect crustacean from different species and inhabiting diverse latitudes. Considering the results, the American lobster could be a good candidate to maintain available NHPB in vivo.

  3. Experimental Infection and Detection of Necrotizing Hepatopancreatitis Bacterium in the American Lobster Homarus americanus

    Science.gov (United States)

    Avila-Villa, Luz A.; Gollas-Galván, Teresa; Martínez-Porchas, Marcel; Mendoza-Cano, Fernando; Hernández-López, Jorge

    2012-01-01

    Necrotizing hepatopancreatitis bacterium (NHPB) is an obligated intracellular bacteria causing severe hepatopancreatic damages and mass mortalities in penaeid shrimp. The worldwide distribution of penaeid shrimp as alien species threatens the life cycle of other crustacean species. The aim of the experiment was to evaluate the possibility of experimentally infecting the American lobster (Homarus americanus) with NHPB extracted from shrimp hepatopancreas. Homogenates from infected shrimp were fed by force to lobsters. Other group of lobsters was fed with homogenates of NHPB-free hepatopancreas. After the 15th day from initial inoculation, the presence of NHPB was detected by polymerase chain reaction in feces and hepatopancreas from lobsters inoculated with infected homogenates. Necrotized spots were observed in the surface of lobster hepatopancreas. In contrast, lobsters fed on NHPB-free homogenates resulted negative for NHPB. Evidence suggests the plasticity of NHPB which can infect crustacean from different species and inhabiting diverse latitudes. Considering the results, the American lobster could be a good candidate to maintain available NHPB in vivo. PMID:22645497

  4. Bidirectional gene sequences with similar homology to functional proteins of alkane degrading bacterium pseudomonas fredriksbergensis DNA

    International Nuclear Information System (INIS)

    Megeed, A.A.

    2011-01-01

    The potential for two overlapping fragments of DNA from a clone of newly isolated alkanes degrading bacterium Pseudomonas frederiksbergensis encoding sequences with similar homology to two parts of functional proteins is described. One strand contains a sequence with high homology to alkanes monooxygenase (alkB), a member of the alkanes hydroxylase family, and the other strand contains a sequence with some homology to alcohol dehydrogenase gene (alkJ). Overlapping of the genes on opposite strands has been reported in eukaryotic species, and is now reported in a bacterial species. The sequence comparisons and ORFS results revealed that the regulation and the genes organization involved in alkane oxidation represented in Pseudomonas frederiksberghensis varies among the different known alkane degrading bacteria. The alk gene cluster containing homologues to the known alkane monooxygenase (alkB), and rubredoxin (alkG) are oriented in the same direction, whereas alcohol dehydrogenase (alkJ) is oriented in the opposite direction. Such genomes encode messages on both strands of the DNA, or in an overlapping but different reading frames, of the same strand of DNA. The possibility of creating novel genes from pre-existing sequences, known as overprinting, which is a widespread phenomenon in small viruses. Here, the origin and evolution of the gene overlap to bacteriophages belonging to the family Microviridae have been investigated. Such a phenomenon is most widely described in extremely small genomes such as those of viruses or small plasmids, yet here is a unique phenomenon. (author)

  5. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4

    Science.gov (United States)

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Glick, Bernard R.

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  6. Colwellia polaris sp. nov., a psychrotolerant bacterium isolated from Arctic sea ice.

    Science.gov (United States)

    Zhang, De-Chao; Yu, Yong; Xin, Yu-Hua; Liu, Hong-Can; Zhou, Pei-Jin; Zhou, Yu-Guang

    2008-08-01

    A novel psychrotolerant, Gram-negative, aerobic bacterium, designated strain 537T, was isolated from sea-ice samples from the Arctic. Strain 537T was able to grow at 4-26 degrees C, with optimum growth occurring at 20-21 degrees C. Strain 537T had Q-8 as the major respiratory quinone and contained iso-C15:0 2-OH and/or C16:1 omega7c (22.95 %), C15:1 (17.64 %) and C17:1 omega8c (13.74 %) as the predominant cellular fatty acids. The genomic DNA G+C content was 38.9 mol%. A phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 537T formed a coherent cluster within the genus Colwellia. The highest level of 16S rRNA gene sequence similarity (97.5 %) exhibited by strain 537T was obtained with respect to the type strain of Colwellia aestuarii. On the basis of phenotypic, chemotaxonomic and phylogenetic properties and DNA-DNA relatedness data, strain 537T represents a novel species of the genus Colwellia, for which the name Colwellia polaris sp. nov. is proposed. The type strain is 537T (=CGMCC 1.6132T =JCM 13952T).

  7. Pseudomonas aestus sp. nov., a plant growth-promoting bacterium isolated from mangrove sediments.

    Science.gov (United States)

    Vasconcellos, Rafael L F; Santos, Suikinai Nobre; Zucchi, Tiago Domingues; Silva, Fábio Sérgio Paulino; Souza, Danilo Tosta; Melo, Itamar Soares

    2017-10-01

    Strain CMAA 1215 T , a Gram-reaction-negative, aerobic, catalase positive, polarly flagellated, motile, rod-shaped (0.5-0.8 × 1.3-1.9 µm) bacterium, was isolated from mangrove sediments, Cananéia Island, Brazil. Analysis of the 16S rRNA gene sequences showed that strain CMAA 1215 T forms a distinct phyletic line within the Pseudomonas putida subclade, being closely related to P. plecoglossicida ATCC 700383 T , P. monteilii NBRC 103158 T , and P. taiwanensis BCRC 17751 T of sequence similarity of 98.86, 98.73, and 98.71%, respectively. Genomic comparisons of the strain CMAA 1215 T with its closest phylogenetic type strains using average nucleotide index (ANI) and DNA:DNA relatedness approaches revealed 84.3-85.3% and 56.0-63.0%, respectively. A multilocus sequence analysis (MLSA) performed concatenating 16S rRNA, gyrB and rpoB gene sequences from the novel species was related with Pseudomonas putida subcluster and formed a new phylogenetic lineage. The phenotypic, physiological, biochemical, and genetic characteristics support the assignment of CMAA 1215 T to the genus Pseudomonas, representing a novel species. The name Pseudomonas aestus sp.nov. is proposed, with CMAA 1215 T (=NRRL B-653100 T  = CBMAI 1962 T ) as the type strain.

  8. Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus.

    Science.gov (United States)

    Osipiuk, J; Joachimiak, A

    1997-09-12

    We propose that the dnaK operon of Thermus thermophilus HB8 is composed of three functionally linked genes: dnaK, grpE, and dnaJ. The dnaK and dnaJ gene products are most closely related to their cyanobacterial homologs. The DnaK protein sequence places T. thermophilus in the plastid Hsp70 subfamily. In contrast, the grpE translated sequence is most similar to GrpE from Clostridium acetobutylicum, a Gram-positive anaerobic bacterium. A single promoter region, with homology to the Escherichia coli consensus promoter sequences recognized by the sigma70 and sigma32 transcription factors, precedes the postulated operon. This promoter is heat-shock inducible. The dnaK mRNA level increased more than 30 times upon 10 min of heat shock (from 70 degrees C to 85 degrees C). A strong transcription terminating sequence was found between the dnaK and grpE genes. The individual genes were cloned into pET expression vectors and the thermophilic proteins were overproduced at high levels in E. coli and purified to homogeneity. The recombinant T. thermophilus DnaK protein was shown to have a weak ATP-hydrolytic activity, with an optimum at 90 degrees C. The ATPase was stimulated by the presence of GrpE and DnaJ. Another open reading frame, coding for ClpB heat-shock protein, was found downstream of the dnaK operon.

  9. Robustness encoded across essential and accessory replicons of the ecologically versatile bacterium Sinorhizobium meliloti

    Science.gov (United States)

    Walker, Graham C.; Finan, Turlough M.; Mengoni, Alessio; Griffitts, Joel S.

    2018-01-01

    Bacterial genome evolution is characterized by gains, losses, and rearrangements of functional genetic segments. The extent to which large-scale genomic alterations influence genotype-phenotype relationships has not been investigated in a high-throughput manner. In the symbiotic soil bacterium Sinorhizobium meliloti, the genome is composed of a chromosome and two large extrachromosomal replicons (pSymA and pSymB, which together constitute 45% of the genome). Massively parallel transposon insertion sequencing (Tn-seq) was employed to evaluate the contributions of chromosomal genes to growth fitness in both the presence and absence of these extrachromosomal replicons. Ten percent of chromosomal genes from diverse functional categories are shown to genetically interact with pSymA and pSymB. These results demonstrate the pervasive robustness provided by the extrachromosomal replicons, which is further supported by constraint-based metabolic modeling. A comprehensive picture of core S. meliloti metabolism was generated through a Tn-seq-guided in silico metabolic network reconstruction, producing a core network encompassing 726 genes. This integrated approach facilitated functional assignments for previously uncharacterized genes, while also revealing that Tn-seq alone missed over a quarter of wild-type metabolism. This work highlights the many functional dependencies and epistatic relationships that may arise between bacterial replicons and across a genome, while also demonstrating how Tn-seq and metabolic modeling can be used together to yield insights not obtainable by either method alone. PMID:29672509

  10. Physiological role of vitamin B12 in a methanol-utilizing bacterium, Protaminobacter ruber

    International Nuclear Information System (INIS)

    Shimizu, S.; Ueda, S.; Sato, K.

    1984-01-01

    The methanol-utilizing bacterium Protaminobacter ruber is able to produce a relatively large amount of vitamin B 12 . The present study aims at the physiological role of vitamin B 12 in P. ruber. P. ruber was found to contain the two sequential reactions of glutamate mutase with β-methylaspartase and propionyl-CoA carboxylase with methylmalonyl-CoA mutase. Considering the presence of these enzyme systems and the reaction from mesaconyl-CoA to glyoxylate and propionyl-CoA, it could be considered that the formation of glutamate from α-ketoglutarate, the conversion of glutamate to mesaconate via β-methylaspartate, the activation of mesaconate with CoA to form mesaconyl-CoA, the cleavage of mesaconyl-CoA to glyoxylate and propionyl-CoA, the carboxylation of propionyl-CoA to methylmalonyl-CoA, and the isomerization of methylmalonyl-CoA to succinyl-CoA require cobalamine as a cofactor. 29 refs., 2 figs., 2 tabs

  11. Microdiversity of an Abundant Terrestrial Bacterium Encompasses Extensive Variation in Ecologically Relevant Traits

    Directory of Open Access Journals (Sweden)

    Alexander B. Chase

    2017-11-01

    Full Text Available Much genetic diversity within a bacterial community is likely obscured by microdiversity within operational taxonomic units (OTUs defined by 16S rRNA gene sequences. However, it is unclear how variation within this microdiversity influences ecologically relevant traits. Here, we employ a multifaceted approach to investigate microdiversity within the dominant leaf litter bacterium, Curtobacterium, which comprises 7.8% of the bacterial community at a grassland site undergoing global change manipulations. We use cultured bacterial isolates to interpret metagenomic data, collected in situ over 2 years, together with lab-based physiological assays to determine the extent of trait variation within this abundant OTU. The response of Curtobacterium to seasonal variability and the global change manipulations, specifically an increase in relative abundance under decreased water availability, appeared to be conserved across six Curtobacterium lineages identified at this site. Genomic and physiological analyses in the lab revealed that degradation of abundant polymeric carbohydrates within leaf litter, cellulose and xylan, is nearly universal across the genus, which may contribute to its high abundance in grassland leaf litter. However, the degree of carbohydrate utilization and temperature preference for this degradation varied greatly among clades. Overall, we find that traits within Curtobacterium are conserved at different phylogenetic depths. We speculate that similar to bacteria in marine systems, diverse microbes within this taxon may be structured in distinct ecotypes that are key to understanding Curtobacterium abundance and distribution in the environment.

  12. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae

    International Nuclear Information System (INIS)

    Konishi, Y.; Tsukiyama, T.; Tachimi, T.; Saitoh, N.; Nomura, T.; Nagamine, S.

    2007-01-01

    Microbial reduction and deposition of gold nanoparticles was achieved at 25 deg. C over the pH range 2.0-7.0 using the mesophilic bacterium Shewanella algae in the presence of H 2 as the electron donor. The reductive deposition of gold by the resting cells of S. algae was a fast process: 1 mM AuCl 4 - ions were completely reduced to elemental gold within 30 min. At a solution pH of 7, gold nanoparticles 10-20 nm in size were deposited in the periplasmic space of S. algae cells. At pH 2.8, gold nanoparticles 15-200 nm in size were deposited on the bacterial cells, and the biogenic nanoparticles exhibited a variety of shapes that included nanotriangles: in particular, single crystalline gold nanotriangles 100-200 nm in size were microbially deposited. At a solution pH of 2.0, gold nanoparticles about 20 nm in size were deposited intracellularly, and larger gold particles approximately 350 nm in size were deposited extracellularly. The solution pH was an important factor in controlling the morphology of the biogenic gold particles and the location of gold deposition. Microbial deposition of gold nanoparticles is potentially attractive as an environmentally friendly alternative to conventional methods

  13. Interactions of protamine with the marine bacterium, Pseudoalteromonas sp. NCIMB 2021.

    Science.gov (United States)

    Pustam, A; Smith, C; Deering, C; Grosicki, K M T; Leng, T Y; Lin, S; Yang, J; Pink, D; Gill, T; Graham, L; Derksen, D; Bishop, C; Demont, M E; Wyeth, R C; Smith-Palmer, T

    2014-03-01

    Pseudoalteromonas sp. NCIMB 2021 (NCIMB 2021) was grown in synthetic seawater (SSW) containing pyruvate, in the presence (SSW(++) ) and absence (SSW(-) ) of divalent cations. Cultures contained single cells. Addition of the cationic antibacterial peptide (CAP), protamine, did not inhibit, but rather increased, the growth of NCIMB 2021 in SSW(++) and caused the bacteria to grow in chains. Bacterial growth was assessed using turbidity, cell counts and the sodium salt of resazurin. In SSW(-) , NCIMB 2021 was no longer resistant to protamine. The minimum inhibitory concentration (MIC) was 5 mg ml(-1) . Protamine is a cationic antimicrobial peptide (CAP), which is active against a variety of bacteria. This is the first in-depth study of the interaction of protamine with a marine bacterium, Pseudoalteromonas sp. NCIMB 2021. Our results show that protamine is only active in seawater in the absence of divalent cations. In the presence of the divalent cations, Mg(2+) and Ca(2+) , protamine enhances the growth of Pseudoalteromonas sp. NCIMB 2021 and produces chains rather than individual cells. These are important considerations when deciding on applications for protamine and in terms of understanding its mechanism of action. © 2013 The Society for Applied Microbiology.

  14. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    Directory of Open Access Journals (Sweden)

    Servé W. M. Kengen

    2013-01-01

    Full Text Available Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the research on C. saccharolyticus with respect to the hydrolytic capability, sugar metabolism, hydrogen formation, mechanisms involved in hydrogen inhibition, and the regulation of the redox and carbon metabolism. Analysis of currently available fermentation data reveal decreased hydrogen yields under non-ideal cultivation conditions, which are mainly associated with the accumulation of hydrogen in the liquid phase. Thermodynamic considerations concerning the reactions involved in hydrogen formation are discussed with respect to the dissolved hydrogen concentration. Novel cultivation data demonstrate the sensitivity of C. saccharolyticus to increased hydrogen levels regarding substrate load and nitrogen limitation. In addition, special attention is given to the rhamnose metabolism, which represents an unusual type of redox balancing. Finally, several approaches are suggested to improve biohydrogen production by C. saccharolyticus.

  15. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium.

    Science.gov (United States)

    Santos, Anderson F; Valle, Roberta S; Pacheco, Clarissa A; Alvarez, Vanessa M; Seldin, Lucy; Santos, André L S

    2013-12-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties.

  16. Gracilibacillus aidingensis sp. nov., a novel moderately halophilic bacterium isolated from Aiding salt lake.

    Science.gov (United States)

    Guan, Tong-Wei; Tian, Lei; Li, En-Yuan; Tang, Shu-Kun; Zhang, Xiao-Ping

    2017-11-01

    A novel Gram-positive, aerobe, moderately halophilic bacterium was isolated from saline soil of Aiding lake in Xinjiang, north-west of China, designated strain YIM 98001 T . Cells were rod-shaped, motile and grew at 5-20% (w/v) NaCl (optimum 10%), pH 6-10 (optimum pH 7.0) and 4-45 °C (optimum 37 °C). The major cellular fatty acids were anteiso C 15:0 , anteiso C 17:0 , iso C 15:0 . The predominant respiratory quinone was MK-7. Diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid were the major polar lipids. Meso-diaminopimelic acid was the diagnostic diamino acid of the cell-wall peptidoglycan. The G+C content was 36.46 mol%. 16S rRNA gene sequence analysis showed that the strain belongs to the family Bacillaceae, with the highest sequence similarity to the type strain Gracilibacillus thailandensis TP2-8 T (96.84%), followed by Gracilibacillus saliphilus YIM 91119 T (96.78%) and Gracilibacillus ureilyticus MF38 T (96.57%), thus confirming the affiliation of strain YIM 98001 T to the genus Gracilibacillus. The polyphasic approach indicates that strain YIM 98001 T represents a novel species of the genus Gracilibacillus, for which the name Gracilibacillus aidingensis is proposed. The type strain is YIM 98001 T (=KCTC 42683 T  = DSMZ 104330 T ).

  17. Purification and characterization of an extreme halothermophilic protease from a halophilic bacterium Chromohalobacter sp. TVSP101

    Directory of Open Access Journals (Sweden)

    Malashetty Vidyasagar

    2009-03-01

    Full Text Available An extreme halophilic bacterium was isolated from solar saltern samples and identified based on biochemical tests and 16S r RNA sequencing as Chromohalobacter sp. strain TVSP101. The halophilic protease was purified using ultrafiltration, ethanol precipitation, hydrophobic interaction column chromatography and gel permeation chromatography to 180 fold with 22% yield. The molecular mass of the protease determined by SDS PAGE was 66 kDa. The purified enzyme was salt dependent for its activity and stability with an optimum of 4.5 M NaCl. The optimum temperature for maximum protease activity was 75°C. The protease was optimally active at pH 8 and retained more than 80% of its activity in the range of pH 7-10. Sucrose and glycine at 10% (w/v were the most effective osmolytes, retained 100% activity in the absence of NaCl. The activity was completely inhibited by ZnCl2 (2 mM, 0.1% SDS and PMSF (1mM. The enzyme was not inhibited by 1mM of pepstatin, EDTA and PCMB. The protease was active and retained 100% it activity in 10% (v/v DMSO, DMF, ethanol and acetone.

  18. New crystal forms of NTPDase1 from the bacterium Legionella pneumophila

    International Nuclear Information System (INIS)

    Zebisch, Matthias; Schäfer, Petra; Lauble, Peter; Sträter, Norbert

    2013-01-01

    The soluble NTPDase1 from L. pneumophila was crystallized in six crystal forms and the structure was solved using a sulfur SAD approach. Nucleoside triphosphate diphosphohydrolases (NTPDases) are a large class of nucleotidases that hydrolyze the (γ/β)- and (β/α)-anhydride bonds of nucleoside triphosphates and diphosphates, respectively. NTPDases are found throughout the eukaryotic domain. In addition, a very small number of members can be found in bacteria, most of which live as parasites of eukaryotic hosts. NTPDases of intracellular and extracellular parasites are emerging as important regulators for the survival of the parasite. To deepen the knowledge of the structure and function of this enzyme class, recombinant production of the NTPDase1 from the bacterium Legionella pneumophila has been established. The protein could be crystallized in six crystal forms, of which one has been described previously. The crystals diffracted to resolutions of between 1.4 and 2.5 Å. Experimental phases determined by a sulfur SAD experiment using an orthorhombic crystal form produced an interpretable electron-density map

  19. Thymidine uptake, thymidine incorporation, and thymidine kinase activity in marine bacterium isolates

    International Nuclear Information System (INIS)

    Jeffrey, W.H.; Paul, J.H.

    1990-01-01

    One assumption made in bacterial production estimates from [ 3 H]thymidine incorporation is that all heterotrophic bacteria can incorporate exogenous thymidine into DNA. Heterotrophic marine bacterium isolates from Tampa Bay, Fla., Chesapeake Bay, Md., and a coral surface microlayer were examined for thymidine uptake (transport), thymidine incorporation, the presence of thymidine kinase genes, and thymidine kinase enzyme activity. Of the 41 isolates tested, 37 were capable of thymidine incorporation into DNA. The four organisms that could not incorporate thymidine also transported the thymidine poorly and lacked thymidine kinase activity. Attempts to detect thymidine kinase genes in the marine isolates by molecular probing with gene probes made from Escherichia coli and herpes simplex virus thymidine kinase genes proved unsuccessful. To determine if the inability to incorporate thymidine was due to the lack of thymidine kinase, one organism, Vibro sp. strain DI9, was transformed with a plasmid (pGQ3) that contained an E. coli thymidine kinase gene. Although enzyme assays indicated high levels of thymidine kinase activity in transformants, these cells still failed to incorporate exogenous thymidine into DNA or to transport thymidine into cells. These results indicate that the inability of certain marine bacteria to incorporate thymidine may not be solely due to the lack of thymidine kinase activity but may also be due to the absence of thymidine transport systems

  20. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal

    Science.gov (United States)

    Vreeland, Russell H.; Rosenzweig, William D.; Powers, Dennis W.

    2000-10-01

    Bacteria have been found associated with a variety of ancient samples, however few studies are generally accepted due to questions about sample quality and contamination. When Cano and Borucki isolated a strain of Bacillus sphaericus from an extinct bee trapped in 25-30 million-year-old amber, careful sample selection and stringent sterilization techniques were the keys to acceptance. Here we report the isolation and growth of a previously unrecognized spore-forming bacterium (Bacillus species, designated 2-9-3) from a brine inclusion within a 250million-year-old salt crystal from the Permian Salado Formation. Complete gene sequences of the 16S ribosomal DNA show that the organism is part of the lineage of Bacillus marismortui and Virgibacillus pantothenticus. Delicate crystal structures and sedimentary features indicate the salt has not recrystallized since formation. Samples were rejected if brine inclusions showed physical signs of possible contamination. Surfaces of salt crystal samples were sterilized with strong alkali and acid before extracting brines from inclusions. Sterilization procedures reduce the probability of contamination to less than 1 in 10 9.

  1. Low-temperature chemotaxis, halotaxis and chemohalotaxis by the psychrophilic marine bacterium Colwellia psychrerythraea 34H.

    Science.gov (United States)

    Showalter, G M; Deming, J W

    2018-02-01

    A variety of ecologically important processes are driven by bacterial motility and taxis, yet these basic bacterial behaviours remain understudied in cold habitats. Here, we present a series of experiments designed to test the chemotactic ability of the model marine psychrophilic bacterium Colwellia psychrerythraea 34H, when grown at optimal temperature and salinity (8°C, 35 ppt) or its original isolation conditions (-1°C, 35 ppt), towards serine and mannose at temperatures from -8°C to 27°C (above its upper growth temperature of 18°C), and at salinities of 15, 35 and 55 ppt (at 8°C and -1°C). Results indicate that C. psychrerythraea 34H is capable of chemotaxis at all temperatures tested, with strongest chemotaxis at the temperature at which it was first grown, whether 8°C or -1°C. This model marine psychrophile also showed significant halotaxis towards 15 and 55 ppt solutions, as well as strong substrate-specific chemohalotaxis. We suggest that such patterns of taxis may enable bacteria to colonize sea ice, position themselves optimally within its extremely cold, hypersaline and temporally fluctuating microenvironments, and respond to various chemical signals therein. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and JohnWiley & Sons Ltd.

  2. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge

    KAUST Repository

    Tian, Renmao

    2014-08-29

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. A thermostable serralysin inhibitor from marine bacterium Flavobacterium sp. YS-80-122

    Science.gov (United States)

    Liang, Pengjuan; Li, Shangyong; Wang, Kun; Wang, Fang; Xing, Mengxin; Hao, Jianhua; Sun, Mi

    2018-03-01

    Serralysin inhibitors have been proposed as potent drugs against many diseases and may help to prevent further development of antibiotic-resistant pathogenic bacteria. In this study, a novel serralysin inhibitor gene, lupI, was cloned from the marine bacterium Flavobacterium sp. YS-80-122 and expressed in Escherichia coli. The deduced serralysin inhibitor, LupI, shows <40% amino acid identity to other reported serralysin inhibitors. Multiple sequence alignment and phylogenetic analysis of LupI with other serralysin inhibitors indicated that LupI was a novel type of serralysin inhibitor. The inhibitory constant for LupI towards its target metalloprotease was 0.64 μmol/L. LupI was thermostable at high temperature, in which 35.6%-90.7% of its inhibitory activity was recovered after treatment at 100°C for 1-60 min followed by incubation at 0°C. This novel inhibitor may represent a candidate drug for the treatment of serralysin-related infections.

  4. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Guowu Bian

    2010-04-01

    Full Text Available Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement.

  5. Exopolysaccharides play a role in the swarming of the benthic bacterium Pseudoalteromonas sp. SM9913

    Directory of Open Access Journals (Sweden)

    Ang eLiu

    2016-04-01

    Full Text Available Most marine bacteria secrete exopolysaccharide (EPS, which is important for bacterial survival in the marine environment. However, it is still unclear whether the self-secreted EPS is involved in marine bacterial motility. Here we studied the role of EPS in the lateral flagella-driven swarming motility of benthic bacterium Pseudoalteromonas sp. SM9913 (SM9913 by a comparison of wild SM9913 and ΔepsT, an EPS synthesis defective mutant. Reduction of EPS production in ΔepsT did not affect the growth rate or the swimming motility, but significantly decreased the swarming motility on a swarming plate, suggesting that the EPS may play a role in SM9913 swarming. However, the expression and assembly of lateral flagella in ΔepsT were not affected. Instead, ΔepsT had a different swarming behavior from wild SM9913. The swarming of ΔepsT did not have an obvious rapid swarming period, and its rate became much lower than that of wild SM9913 after 35 h incubation. An addition of surfactin or SM9913 EPS on the surface of the swarming plate could rescue the swarming level. These results indicate that the self-secreted EPS is required for the swarming of SM9913. This study widens our understanding of the function of the EPS of benthic bacteria.

  6. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Jimmy H [Los Alamos National Laboratory; Mountain, Bruce W [NEW ZEALAND; Feng, Lu [NANKAI UNIV; Omelchenko, Marina V [NCBI/NLM/NIH; Hou, Shaobin [UNIV OF HAWAII; Saito, Jennifer A [UNIV OF HAWAII; Stott, Matthew B [NEW ZEALAND; Li, Dan [NANKAI UNIV; Zhao, Guang [NANKAI UNIV; Wu, Junli [NANKAI UNIV; Galperin, Michael Y [NCBI/NLM/NIH; Koonin, Eugene V [NCBI/NLM/NIH; Makarova, Kira S [NCBI/NLM/NIH; Wolf, Yuri I [NCBI/NLM/NIH; Rigden, Daniel J [UNIV OF LIVERPOOL; Dunfield, Peter F [UNIV OF CALGARY; Wang, Lei [NANKAI UNIV; Alam, Maqsudul [UNIV OF HAWAII

    2008-01-01

    Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.

  7. Jeotgalibacillus soli sp. nov., a Gram-stain-positive bacterium isolated from soil.

    Science.gov (United States)

    Cunha, Sofia; Tiago, Igor; Paiva, Gabriel; Nobre, Fernanda; da Costa, Milton S; Veríssimo, António

    2012-03-01

    A Gram-staining-positive, motile, rod-shaped, spore-forming bacterium, designated P9(T), was isolated from soil in Portugal. This organism was aerobic and catalase- and oxidase-positive. It had an optimum growth temperature of about 35 °C and an optimum growth pH of about 8.0-8.5, and grew in medium with 0-9% (w/v) NaCl. The cell-wall peptidoglycan was of the A1α type, with L-lysine as the diagnostic diamino acid. The major respiratory quinone was menaquinone 7 (MK-7) and the major fatty acids were anteiso-C(15:0) (45.4%), iso-C(15:0) (22.0%) and anteiso-C(17:0) (11.2%). The genomic DNA G+C content was about 39.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain P9(T) was most closely related to Jeotgalibacillus campisalis DSM 18983(T) (96.8%) and Jeotgalibacillus marinus DSM 1297(T) (96.5%). These two recognized species formed a coherent cluster with strain P9(T) that was supported by a bootstrap value of 99%. On the basis of the phylogenetic analysis and physiological and biochemical characteristics, strain P9(T) (=DSM 23228(T)=LMG 25523(T)) represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus soli sp. nov. is proposed.

  8. A self-lysis pathway that enhances the virulence of a pathogenic bacterium.

    Science.gov (United States)

    McFarland, Kirsty A; Dolben, Emily L; LeRoux, Michele; Kambara, Tracy K; Ramsey, Kathryn M; Kirkpatrick, Robin L; Mougous, Joseph D; Hogan, Deborah A; Dove, Simon L

    2015-07-07

    In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of the alpA gene, which encodes a positive regulator that activates expression of the alpBCDE lysis cassette. Although this is lethal to the individual cell in which it occurs, we find it benefits the population as a whole during infection of a mammalian host. Thus, host and pathogen each may use PCD as a survival-promoting strategy. We suggest that activation of the Alp cell lysis pathway is a disease-enhancing response to bacterial DNA damage inflicted by the host immune system.

  9. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori

    International Nuclear Information System (INIS)

    Han Cong; Wang Qi; Dong Lei; Sun Haifang; Peng Shuying; Chen Jing; Yang Yiming; Yue Jianmin; Shen Xu; Jiang Hualiang

    2004-01-01

    Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K cat of 3.4 s -1 , K m of 1.7 mM, and K cat /K m of 2000 M -1 s -1 . HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 deg. C. The enzyme activity of Co 2+ -containing HpPDF is apparently higher than that of Zn 2+ -containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori

  10. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori.

    Science.gov (United States)

    Han, Cong; Wang, Qi; Dong, Lei; Sun, Haifang; Peng, Shuying; Chen, Jing; Yang, Yiming; Yue, Jianmin; Shen, Xu; Jiang, Hualiang

    2004-07-09

    Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K(cat) of 3.4s(-1), K(m) of 1.7 mM, and K(cat) / K(m) of 2000M(-1)s(-1). HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 degrees C. The enzyme activity of Co(2+)-containing HpPDF is apparently higher than that of Zn(2+)-containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori.

  11. Biomimetic Synthesis of Silver Nanoparticles Using Endosymbiotic Bacterium Inhabiting Euphorbia hirta L. and Their Bactericidal Potential

    Directory of Open Access Journals (Sweden)

    Baker Syed

    2016-01-01

    Full Text Available The present investigation aims to evaluate biomimetic synthesis of silver nanoparticles using endophytic bacterium EH 419 inhabiting Euphorbia hirta L. The synthesized nanoparticles were initially confirmed with change in color from the reaction mixture to brown indicating the synthesis of nanoparticles. Further confirmation was achieved with the characteristic absorption peak at 440 nm using UV-Visible spectroscopy. The synthesized silver nanoparticles were subjected to biophysical characterization using hyphenated techniques. The possible role of biomolecules in mediating the synthesis was depicted with FTIR analysis. Further crystalline nature of synthesized nanoparticles was confirmed using X-ray diffraction (XRD with prominent diffraction peaks at 2θ which can be indexed to the (111, (200, (220, and (311 reflections of face centered cubic structure (fcc of metallic silver. Transmission electron microscopy (TEM revealed morphological characteristics of synthesized silver nanoparticles to be polydisperse in nature with size ranging from 10 to 60 nm and different morphological characteristics such as spherical, oval, hexagonal, and cubic shapes. Further silver nanoparticles exhibited bactericidal activity against panel of significant pathogenic bacteria among which Pseudomonas aeruginosa was most sensitive compared to other pathogens. To the best of our knowledge, present study forms first report of bacterial endophyte inhabiting Euphorbia hirta L. in mediating synthesizing silver nanoparticles.

  12. Interactions between the pathogenic bacterium Vibrio parahaemolyticus and red-tide dinoflagellates

    Science.gov (United States)

    Seong, Kyeong Ah; Jeong, Hae Jin

    2011-06-01

    Vibrio parahaemolyticus is a common pathogenic bacterium in marine and estuarine waters. To investigate interactions between V. parahaemolyticus and co-occurring redtide dinoflagellates, we monitored the daily abundance of 5 common red tide dinoflagellates in laboratory culture; Amphidinium carterae, Cochlodinium ploykrikoides, Gymnodinium impudicum, Prorocentrum micans, and P. minimum. Additionally, we measured the ingestion rate of each dinoflagellate on V. parahaemolyticus as a function of prey concentration. Each of the dinoflagellates responded differently to the abundance of V. parahaemolyticus. The abundances of A. carterae and P. micans were not lowered by V. parahaemolyticus, whereas that of C. polykrikodes was lowered considerably. The harmful effect depended on bacterial concentration and incubation time. Most C. polykrikoides cells died after 1 hour incubation when the V. parahaemolyticus concentration was 1.4×107 cells ml-1, while cells died within 2 days of incubation when the bacterial concentration was 1.5×106 cells ml-1. With increasing V. parahaemolyticus concentration, ingestion rates of P. micans, P. minimum, and A. carterae on the prey increased, whereas that on C. polykrikoides decreased. The maximum or highest ingestion rates of P. micans, P. minimum, and A. carterae on V. parahaemolyticus were 55, 5, and 2 cells alga-1 h-1, respectively. The results of the present study suggest that V. parahaemolyticus can be both the killer and prey for some red tide dinoflagellates.

  13. Spatio-temporal remodeling of functional membrane microdomains organizes the signaling networks of a bacterium.

    Directory of Open Access Journals (Sweden)

    Johannes Schneider

    2015-04-01

    Full Text Available Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium.

  14. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis.

    Science.gov (United States)

    Hasegawa, Momoko; Yamane, Daisuke; Funato, Kouichi; Yoshida, Atsushi; Sambongi, Yoshihiro

    2018-03-01

    Dates are commercially consumed as semi-dried fruit or processed into juice and puree for further food production. However, the date residue after juice and puree production is not used, although it appears to be nutrient enriched. Here, date residue was fermented by a lactic acid bacterium, Lactobacillus brevis, which has been generally recognized as safe. Through degradation of sodium glutamate added to the residue during the fermentation, γ-aminobutyric acid (GABA), which reduces neuronal excitability, was produced at the conversion rate of 80-90% from glutamate. In order to achieve this GABA production level, pretreatment of the date residue with carbohydrate-degrading enzymes, i.e., cellulase and pectinase, was necessary. All ingredients used for this GABA fermentation were known as being edible. These results provide us with a solution for the increasing commercial demand for GABA in food industry with the use of date residue that has been often discarded. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals.

    Science.gov (United States)

    Sneed, Jennifer M; Sharp, Koty H; Ritchie, Kimberly B; Paul, Valerie J

    2014-07-07

    Microbial biofilms induce larval settlement for some invertebrates, including corals; however, the chemical cues involved have rarely been identified. Here, we demonstrate the role of microbial biofilms in inducing larval settlement with the Caribbean coral Porites astreoides and report the first instance of a chemical cue isolated from a marine biofilm bacterium that induces complete settlement (attachment and metamorphosis) of Caribbean coral larvae. Larvae settled in response to natural biofilms, and the response was eliminated when biofilms were treated with antibiotics. A similar settlement response was elicited by monospecific biofilms of a single bacterial strain, Pseudoalteromonas sp. PS5, isolated from the surface biofilm of a crustose coralline alga. The activity of Pseudoalteromonas sp. PS5 was attributed to the production of a single compound, tetrabromopyrrole (TBP), which has been shown previously to induce metamorphosis without attachment in Pacific acroporid corals. In addition to inducing settlement of brooded larvae (P. astreoides), TBP also induced larval settlement for two broadcast-spawning species, Orbicella (formerly Montastraea) franksi and Acropora palmata, indicating that this compound may have widespread importance among Caribbean coral species. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Cesiribacter roseus sp. nov., a pink-pigmented bacterium isolated from desert sand.

    Science.gov (United States)

    Liu, Ming; Qi, Huan; Luo, Xuesong; Dai, Jun; Peng, Fang; Fang, Chengxiang

    2012-01-01

    A pink-pigmented, Gram-negative, rod-shaped, motile, strictly aerobic bacterium, designated strain 311(T), was isolated from desert sand in Xinjiang, China. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain 311(T) was related closely to Cesiribacter andamanensis AMV16(T) (94.6% similarity). The DNA G+C content of strain 311(T) was 47.1 mol% and the major respiratory quinone was menaquinone 7 (MK-7). The main cellular fatty acids were C(16:1)ω5c (29.9%), iso-C(15:0) (21.9%), iso-C(17:0) 3-OH (13.3%) and summed feature 4 (iso-C(17:1) I and/or anteiso-C(17:1) B; 13.0%). Based on phenotypic and chemotaxonomic data and phylogenetic analysis, strain 311(T) is considered to represent a novel species of the genus Cesiribacter, for which the name Cesiribacter roseus sp. nov. is proposed. The type strain is 311(T) (=CCTCC AB 207142(T) =KACC 15456(T)).

  17. Roseimarinus sediminis gen. nov., sp. nov., a facultatively anaerobic bacterium isolated from coastal sediment.

    Science.gov (United States)

    Wu, Wen-Jie; Liu, Qian-Qian; Chen, Guan-Jun; Du, Zong-Jun

    2015-07-01

    A Gram-stain-negative, facultatively anaerobic, non-motile and pink-pigmented bacterium, designated strain HF08(T), was isolated from marine sediment of the coast of Weihai, China. Cells were rod-shaped, and oxidase- and catalase-positive. The isolate grew optimally at 33 °C, at pH 7.5-8.0 and with 2-3% (w/v) NaCl. The dominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C14 : 0. Menaquinone 7 (MK-7) was the major respiratory quinone and the DNA G+C content was 44.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was a member of the class Bacteroidia, and shared 88-90% sequence similarity with the closest genera Sunxiuqinia, Prolixibacter, Draconibacterium, Mariniphaga and Meniscus. Based on the phylogenetic and phenotypic evidence presented, a novel species in a new genus of the family Prolixibacteraceae is proposed, with the name Roseimarinus sediminis gen. nov., sp. nov. The type strain of Roseimarinus sediminis is HF08(T) ( = KCTC 42261(T) = CICC 10901(T)).

  18. Partial characterization of an extracellular polysaccharide produced by the moderately halophilic bacterium Halomonas xianhensis SUR308.

    Science.gov (United States)

    Biswas, Jhuma; Ganguly, J; Paul, A K

    2015-01-01

    A moderately halophilic bacterium, Halomonas xianhensis SUR308 (Genbank Accession No. KJ933394) was isolated from a multi-pond solar saltern at Surala, Ganjam district, Odisha, India. The isolate produced a significant amount (7.87 g l(-1)) of extracellular polysaccharides (EPS) when grown in malt extract-yeast extract medium supplemented with 2.5% NaCl, 0.5% casein hydrolysate and 3% glucose. The EPS was isolated and purified following the conventional method of precipitation and dialysis. Chromatographic analysis (paper, GC and GC-MS) of the hydrolyzed EPS confirmed its heteropolymeric nature and showed that it is composed mainly of glucose (45.74 mol%), galactose (33.67 mol %) and mannose (17.83 mol%). Fourier-transform infrared spectroscopy indicated the presence of methylene and carboxyl groups as characteristic functional groups. In addition, its proton nuclear magnetic resonance spectrum revealed functional groups specific for extracellular polysaccharides. X-ray diffraction analysis revealed the amorphous nature (CIxrd, 0.56) of the EPS. It was thermostable up to 250 °C and displayed pseudoplastic rheology and remarkable stability against pH and salts. These unique properties of the EPS produced by H. xianhensis indicate its potential to act as an agent for detoxification, emulsification and diverse biological activities.

  19. Isolation of Aureimonas altamirensis, a Brucella canis-like bacterium, from an edematous canine testicle.

    Science.gov (United States)

    Reilly, Thomas J; Calcutt, Michael J; Wennerdahl, Laura A; Williams, Fred; Evans, Tim J; Ganjam, Irene K; Bowman, Jesse W; Fales, William H

    2014-11-01

    Microbiological and histological analysis of a sample from a swollen testicle of a 2-year-old Border Collie dog revealed a mixed infection of the fungus Blastomyces dermatitidis and the Gram-negative bacterium Aureimonas altamirensis. When subjected to an automated microbial identification system, the latter isolate was provisionally identified as Psychrobacter phenylpyruvicus, but the organism shared several biochemical features with Brucella canis and exhibited agglutination, albeit weakly, with anti-B. canis antiserum. Unequivocal identification of the organism was only achieved by 16S ribosomal RNA gene sequencing, ultimately establishing the identity as A. altamirensis. Since its first description in 2006, this organism has been isolated infrequently from human clinical samples, but, to the authors' knowledge, has not been reported from a veterinary clinical sample. While of unknown clinical significance with respect to the pathology observed for the polymicrobial infection described herein, it highlights the critical importance to unambiguously identify the microbe for diagnostic, epidemiological, infection control, and public health purposes. © 2014 The Author(s).

  20. Purification and characterization of an endoglucanase from a newly isolated thermophilic anaerobic bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Creuzet, N; Frixon, C [Laboratoire de Chimie Bacterienne, C.N.R.S., 13 - Marseille (France)

    1983-02-01

    An endoglucanase (1,4-..beta..-D-glucan glucanohydrolase, EC 3.2.1.4) from a new cellulotytic thermophilic bacterium was purified to apparent homogeneity after being separated from a xylanase. Little carbohydrate was associated with the endoglucanase. A molecular weight of 91,000 and 99,000 was determined by SDS-polyacrylamide gel electrophoresis and by gel filtration of the native enzyme on Ultrogel ACA 34. The optimal pH was approximately 6.4 and the enzyme was isoelectric at pH 3.85. The enzyme was found highly thermostable: it retained 50% of its activity after 1 hour at 85/sup 0/C. Hydrolysis of CMC took place with a rapid decrease in viscosity but a slow liberation of reducing sugars, indicating to hydrolyze highly ordered cellulose. Cellobiose inhibited the activity of the endoglucanase. None of the metal ions tested stimulated the activity. The enzyme was completely inactivated by 1 mM Hg/sup 2 +/ and was inhibited by thiol reagents.