WorldWideScience

Sample records for bacterium erwinia chrysanthemi

  1. Asparaginase Erwinia chrysanthemi

    Science.gov (United States)

    Asparaginase Erwinia chrysanthemi is used with other chemotherapy medications to treat acute lymphocytic leukemia (ALL; a type of cancer ... of allergic reactions to medications similar to asparaginase Erwinia chrysanthemi such as (asparaginase [Elspar] or pegaspargase [Oncaspar]). ...

  2. Ziek en Zeer : Erwinia chrysanthemi in Amaryllidaceae

    NARCIS (Netherlands)

    Vink, P.

    2011-01-01

    In dit artikel een verslag van het onderzoek naar de gevoeligheid van narcissen voor de bacterie Erwinia chrysanthemi (tegenwoordig Dickeya dadantii). Uit een infectieproef is gebleken dat deze bacterie tijdens een reguliere bollenteelt in Lisse niet in staat was om narcisbollen aan te tasten. Toch

  3. Erwinia chrysanthemi: pectolytic bacterium causing soft rot outbreaks of arracacha in Brazil Erwinia chrysanthemi: bactéria pectolítica envolvida na "mela" da mandioquinha-salsa no Brasil

    Directory of Open Access Journals (Sweden)

    Gilmar Paulo Henz

    2006-10-01

    Full Text Available The objetive of this work was to identify the pectolytic bacteria associated with soft rot of arracacha roots in Brazil. From 1998 to 2001, 227 isolates of Erwinia spp. were obtained from arracacha roots and identified by biochemical and physiological tests (pectolytic activity, lecithinase, a-methyl glucoside, phosphatase, erythromycin sensivity, growth at 37ºC. Of these isolates, 89.9% were identified as E. chrysanthemi (Ech, 9.7% as E. carotovora subsp. carotovora (Ecc and 0.5% as E. carotovora subsp. atroseptica. The identity of seventeen out of twenty representative isolates of Ech and Ecc was confirmed by PCR (primers '149f', 'L1r', 'ADE1', 'ADE2'.O objetivo deste trabalho foi identificar as bactérias pectolíticas envolvidas na podridão-mole de raízes de mandioquinha-salsa no Brasil. De 1998 a 2001, 227 isolados de Erwinia spp. foram obtidos de raízes de mandioquinha-salsa e identificados por testes bioquímicos e fisiológicos (atividade pectolítica, lecitinase, a-methyl glucosídeo, fosfatase, sensibilidade à eritromicina, crescimento a 37ºC. Destes isolados, 89,9% foram identificados como E. chrysanthemi (Ech, 9,7% como E. carotovora subsp. carotovora (Ecc e somente 0,5% como E. carotovora subsp. atroseptica. A identidade de 20 isolados representativos de Ech e Ecc foi confirmada por PCR (primers '149f', 'L1r', 'ADE1', 'ADE2', com exceção de dois isolados de Ech e um de Ecc.

  4. Extracellular polysaccharide of Erwinia chrysanthemi A350 and ribotyping of Erwinia chrysanthemi spp.

    Science.gov (United States)

    Gray, J S; Yang, B Y; Montgomery, R

    2000-03-10

    Erwinia chrysanthemi spp. are gram-negative bacterial phytopathogens causing soft rots in a number of plants. The structure of the extracellular polysaccharide (EPS) produced by the E. chrysanthemi strain A350, which is a lacZ- mutant of the wild type strain 3937, pathogenic to Saintpaulia, has been determined using a combination of chemical and physical techniques including methylation analysis, low-pressure gel-filtration and anion-exchange chromatography, high-pH anion-exchange chromatography, partial acid hydrolysis, mass spectrometry and 1- and 2D NMR spectroscopy. In contrast to the structures of the EPS reported for other strains of E. chrysanthemi, the EPS from strain A350 contains D-GalA, together with L-Rhap and D-Galp in a 1:4:1 ratio. Evidence is presented for the following hexasaccharide repeat unit: [structure: see text] All the Erwinia chrysanthemi spp. studied to date have been analyzed by ribotyping and collated into families, which are consistent with the related structures of their EPS. PMID:10744334

  5. The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi.

    Science.gov (United States)

    Reverchon, S; Expert, D; Robert-Baudouy, J; Nasser, W

    1997-06-01

    The main virulence factors of the phytopathogenic bacterium Erwinia chrysanthemi are pectinases that cleave pectin, a major constituent of the plant cell wall. Although physiological studies suggested that pectinase production in Erwinia species is subjected to catabolite repression, the direct implication of the cyclic AMP receptor protein (CRP) in this regulation has never been demonstrated. To investigate the role of CRP in pectin catabolism, we cloned the E. chrysanthemi crp gene by complementation of an Escherichia coli crp mutation and then constructed E. chrysanthemi crp mutants by reverse genetics. The carbohydrate fermentation phenotype of the E. chrysanthemi crp mutants is similar to that of an E. coli crp mutant. Furthermore, these mutants are unable to grow on pectin or polygalacturonate as the sole carbon source. Analysis of the nucleotide sequence of the E. chrysanthemi crp gene revealed the presence of a 630-bp open reading frame (ORF) that codes for a protein highly similar to the CRP of E. coli. Using a crp::uidA transcriptional fusion, we demonstrated that the E. chrysanthemi CRP represses its own expression, probably via a mechanism similar to that described for the E. coli crp gene. Moreover, in the E. chrysanthemi crp mutants, expression of pectinase genes (pemA, pelB, pelC, pelD, and pelE) and of genes of the intracellular part of the pectin degradation pathway (ogl, kduI, and kdgT), which are important for inducer formation and transport, is dramatically reduced in induced conditions. In contrast, expression of pelA, which encodes a pectate lyase important for E. chrysanthemi pathogenicity, seems to be negatively regulated by CRP. The E. chrysanthemi crp mutants have greatly decreased maceration capacity in potato tubers, chicory leaves, and celery petioles as well as highly diminished virulence on saintpaulia plants. These findings demonstrate that CRP plays a crucial role in expression of the pectinolysis genes and in the pathogenicity of E

  6. Erwinia chrysanthemi ook bij ploffers in Dahlia boosdoener

    NARCIS (Netherlands)

    Leeuwen, van P.J.; Trompert, J.P.T.

    2006-01-01

    Sinds een aantal jaren komt bij de stekproduktie van Dahlia veel uitval voor door ploffers. Na het verhogen van de kastemperatuur vallen de knollen natrot weg. Bovendien kan verdere besmetting snel om zich heen grijpen. Onderzoek heeft aangetoond dat de bacterie Erwinia chrysanthemi de veroorzaker i

  7. High-throughput screening of Erwinia chrysanthemi pectin methylesterase variants using carbohydrate microarrays

    DEFF Research Database (Denmark)

    Øbro, Jens; Sørensen, Iben; Derkx, Patrick;

    2009-01-01

    the activity of a series of variant enzymes based on the PME from the important pathogen Erwinia chrysanthemi. A library of 99 E. chrysanthemi PME mutants was created in which seven amino acids were altered by various different substitutions. Each mutant PME was incubated with a highly methyl esterified lime...

  8. Regulation and role in pathogenicity of Erwinia chrysanthemi 3937 pectin methylesterase.

    Science.gov (United States)

    Boccara, M; Chatain, V

    1989-07-01

    The gene pem, encoding the pectin methylesterase (PME) of Erwinia chrysanthemi 3937, was cloned and mutagenized by mini-Mu transposable elements. A second gene, pecY, which could act as a negative regulator of PME was found 5' to the pem gene. A PME-E. chrysanthemi derivative inoculate onto Saintpaulia plants was shown to be clearly noninvasive, demonstrating the important role of this enzyme in soft rot disease. PMID:2738029

  9. Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity.

    Science.gov (United States)

    Reverchon, Sylvie; Rouanet, Carine; Expert, Dominique; Nasser, William

    2002-02-01

    In the plant-pathogenic bacterium Erwinia chrysanthemi production of pectate lyases, the main virulence determinant, is modulated by a complex network involving several regulatory proteins. One of these regulators, PecS, also controls the synthesis of a blue pigment identified as indigoidine. Since production of this pigment is cryptic in the wild-type strain, E. chrysanthemi ind mutants deficient in indigoidine synthesis were isolated by screening a library of Tn5-B21 insertions in a pecS mutant. These ind mutations were localized close to the regulatory pecS-pecM locus, immediately downstream of pecM. Sequence analysis of this DNA region revealed three open reading frames, indA, indB, and indC, involved in indigoidine biosynthesis. No specific function could be assigned to IndA. In contrast, IndB displays similarity to various phosphatases involved in antibiotic synthesis and IndC reveals significant homology with many nonribosomal peptide synthetases (NRPS). The IndC product contains an adenylation domain showing the signature sequence DAWCFGLI for glutamine recognition and an oxidation domain similar to that found in various thiazole-forming NRPS. These data suggest that glutamine is the precursor of indigoidine. We assume that indigoidine results from the condensation of two glutamine molecules that have been previously cyclized by intramolecular amide bond formation and then dehydrogenated. Expression of ind genes is strongly derepressed in the pecS background, indicating that PecS is the main regulator of this secondary metabolite synthesis. DNA band shift assays support a model whereby the PecS protein represses indA and indC expression by binding to indA and indC promoter regions. The regulatory link, via pecS, between indigoidine and virulence factor production led us to explore a potential role of indigoidine in E. chrysanthemi pathogenicity. Mutants impaired in indigoidine production were unable to cause systemic invasion of potted Saintpaulia ionantha

  10. Bacteriocin-resistant mutants of Erwinia chrysanthemi: possible involvement of iron acquisition in phytopathogenicity.

    Science.gov (United States)

    Expert, D; Toussaint, A

    1985-07-01

    A series of bacteriocin-resistant mutants of Erwinia chrysanthemi 3937JRH were unable to elicit soft-rot symptoms on saintpaulia plants. The loss of pathogenicity was correlated with the disappearance of one to three outer membrane polypeptides (molecular weights, about 80,000 to 90,000) whose production in wild-type strains was greatly enhanced under iron-limited growth conditions. The mutants did not exhibit altered extracellular pectinolytic or cellulolytic activities. PMID:4008442

  11. Role of motility and chemotaxis in the pathogenesis of Dickeya dadantii 3937 (ex Erwinia chrysanthemi 3937).

    Science.gov (United States)

    Antúnez-Lamas, María; Cabrera-Ordóñez, Ezequiel; López-Solanilla, Emilia; Raposo, Rosa; Trelles-Salazar, Oswaldo; Rodríguez-Moreno, Andrés; Rodríguez-Palenzuela, Pablo

    2009-02-01

    Dickeya dadantii 3937 (ex Erwinia chrysanthemi), a member of the Enterobacteriaceae, causes soft rot in many economically important crops. A successful pathogen has to reach the interior of the plant in order to cause disease. To study the role of motility and chemotaxis in the pathogenicity of D. dadantii 3937, genes involved in the chemotactic signal transduction system (cheW, cheB, cheY and cheZ) and in the structure of the flagellar motor (motA) were mutagenized. All the mutant strains grew like the wild-type in culture media, and the production and secretion of pectolytic enzymes was not affected. As expected, the swimming ability of the mutant strains was reduced with respect to the wild-type: motA (94%), cheY (80%), cheW (74%), cheB (54%) and cheZ (48%). The virulence of the mutant strains was analysed in chicory, Saintpaulia and potato. The mutant strains were also tested for their capability to enter into Arabidopsis leaves. All the mutants showed a significant decrease of virulence in certain hosts; however, the degree of virulence reduction varied depending on the virulence assay. The ability to penetrate Arabidopsis leaves was impaired in all the mutants, whereas the capacity to colonize potato tubers after artificial inoculation was affected in only two mutant strains. In general, the virulence of the mutants could be ranked as motAbacterium. PMID:19202091

  12. Reactive oxygen species activity in the interaction of rice with Erwinia chrysanthemi pv. zeae

    Institute of Scientific and Technical Information of China (English)

    Qiongguang LIU; Landi HE; Jingyi ZHANG; Yutao WANG; Zhenzhong WANG

    2008-01-01

    Activities of reactive oxygen species (ROS) were investigated in the interaction between rice and Erwinia chrysanthemi pv. zeae. Results showed that variety (128) had higher increases in activity compared to those in the susceptible variety (Texian 13) 24 hours after bacteria inoculation. The activities of superoxide dismutase (SOD) increased in 128 and Texian 13 twenty-four hours after inoculation and then decreased, but the SOD activity in 128 was found to be usually lower than that in Texian 13. The CAT activity in Texian 13 had two peaks at 24 h and 96 h after inoculation, while little change was seen in 128. In conclusion, ROS and its related enzymes could be correlated to rice resistance against E. chrysanthemi pv. zeae.

  13. Role of endoglucanases in Erwinia chrysanthemi 3937 virulence on Saintpaulia ionantha.

    Science.gov (United States)

    Boccara, M; Aymeric, J L; Camus, C

    1994-03-01

    The role of endoglucanases (endoglucanases Z and Y) in Erwinia chrysanthemi pathogenicity on Saintpaulia ionantha was assessed by mutagenizing cloned cel genes (celZ and celY) and recombining them with the chromosomal alleles. Strains with an omega interposon in celZ, a deletion in celY, or a double cel mutant were as virulent as the wild-type strain. However, in the strain with a deletion in celY, a delay in the appearance of symptoms was observed, and then maceration progressed as in plants infected with the wild-type strain, suggesting that E. chrysanthemi endoglucanases play a minor role in soft rot disease development. PMID:8113196

  14. Flavohaemoglobin HmpX: a new pathogenicity determinant in Erwinia chrysanthemi strain 3937.

    Science.gov (United States)

    Favey, S; Labesse, G; Vouille, V; Boccara, M

    1995-04-01

    Unlike wild-type Erwinia chrysanthemi strain 3937, which fully macerates inoculated Saintpaulia plants, HmpX- mutants produce necrotic lesions or no symptoms. The hmpX gene was sequenced and the corresponding protein sequence analysed. We show that HmpX belongs to a family of flavohaemoproteins (HMP), previously identified in two yeasts and in Escherichia coli. Comparisons of protein sequences at the secondary structure level by hydrophobic cluster analysis have shown that HmpX possesses two functional regions, a haemoglobin domain in its N-terminal part and a flavin reductase domain in its C-terminal part. In an HmpX- strain, the synthesis of pectate lyases, which are pathogenicity determinants in E. chrysanthemi, was reduced in conditions of low oxygen tension. Using gus fusion in hmpX, it was shown that hmpX transcription was induced in coculture with tobacco cells. A putative function for HmpX is discussed. PMID:7773389

  15. Characterization of a tonB mutation in Erwinia chrysanthemi 3937: TonB(Ech) is a member of the enterobacterial TonB family.

    Science.gov (United States)

    Enard, C; Expert, D

    2000-08-01

    The pectinolytic enterobacterium Erwinia chrysanthemi 3937 causes a systemic disease in its natural host, the African violet (Saintpaulia: ionantha). It produces two structurally unrelated siderophores, chrysobactin and achromobactin. Chrysobactin makes a large contribution to invasive growth of the bacterium in its host. Insertion mutants of a chrysobactin-defective strain were constructed and screened on the universal CAS-agar medium used for siderophore detection. A set of mutants affected in the production of achromobactin were identified. This paper describes a mutant affected in the transport of all the ferrisiderophores used by the bacterium as iron sources. Molecular analysis revealed that the insertion mutation disrupts the tonB gene. The predicted Er. chrysanthemi TonB protein has a molecular mass of 27600 Da and shares 20-58% identity with the TonB proteins from 20 other bacterial species. The pathogenicity of the tonB mutant was assessed by inoculation of African violets. The impairment in the spread of symptoms was similar in the tonB mutant to that in chrysobactin-defective mutants. However, the pectinolytic activity, the major pathogenicity determinant in Er. chrysanthemi, appeared to be stimulated twofold in the tonB mutant. PMID:10931909

  16. The PecT repressor coregulates synthesis of exopolysaccharides and virulence factors in Erwinia chrysanthemi.

    Science.gov (United States)

    Condemine, G; Castillo, A; Passeri, F; Enard, C

    1999-01-01

    Erwinia chrysanthemi 3937 synthesizes an exopolysaccharide (EPS) composed of rhamnose, galactose, and galacturonic acid. Fourteen transcriptional fusions in genes required for EPS synthesis, named eps, were obtained by Tn5-B21 mutagenesis. Eleven of them are clustered on the chromosome and are repressed by PecT, a regulator of pectate lyase synthesis. In addition, expression of these fusions is repressed by the catabolite regulatory protein, CRP, and induced in low osmolarity medium. The three other mutations are located in genes that are not regulated by pecT. A 13-kb DNA fragment containing pecT-regulated eps genes has been cloned. All the genes identified on this fragment are transcribed in the same orientation and could form a large operon. The promoter region of this operon has been sequenced. It contains a JUMP-start sequence, a sequence required for the expression of polysaccharide-associated operons. E. chrysanthemi 3937 produces a systemic soft rot on its host Saintpaulia ionantha. An eps mutant was less efficient than the wild-type strain in initiating a maceration symptom, suggesting that production of EPS is required for the full expression of the E. chrysanthemi virulence. PMID:9885192

  17. Pectate lyase PelI of Erwinia chrysanthemi 3937 belongs to a new family.

    Science.gov (United States)

    Shevchik, V E; Robert-Baudouy, J; Hugouvieux-Cotte-Pattat, N

    1997-12-01

    Erwinia chrysanthemi 3937 secretes five major isoenzymes of pectate lyases encoded by the pel4, pelB, pelC, pelD, and pelE genes and a set of secondary pectate lyases, two of which, pelL and pelZ, have been already identified. We cloned the pelI gene, encoding a ninth pectate lyase of E. chrysanthemi 3937. The pelI reading frame is 1,035 bases long, corresponding to a protein of 344 amino acids including a typical amino-terminal signal sequence of 19 amino acids. The purified mature PelI protein has an isoelectric point of about 9 and an apparent molecular mass of 34 kDa. PelI has a preference for partially methyl esterified pectin and presents an endo-cleaving activity with an alkaline pH optimum and an absolute requirement for Ca2+ ions. PelI is an extracellular protein secreted by the Out secretory pathway of E. chrysanthemi. The PelI protein is very active in the maceration of plant tissues. A pelI mutant displayed reduced pathogenicity on chicory leaves, but its virulence did not appear to be affected on potato tubers or Saintpaulia ionantha plants. The pelI gene constitutes an independent transcriptional unit. As shown for the other pel genes, the transcription of pelI is dependent on various environmental conditions. It is induced by pectic catabolic products and affected by growth phase, oxygen limitation, temperature, nitrogen starvation, and catabolite repression. Regulation of pelI expression appeared to be dependent on the three repressors of pectinase synthesis, KdgR, PecS, and PecT, and on the global activator of sugar catabolism, cyclic AMP receptor protein. A functional KdgR binding site was identified close to the putative pelI promoter. Analysis of the amino acid sequence of PelI revealed high homology with a pectate lyase from Erwinia carotovora subsp. carotovora (65% identity) and low homology with pectate lyases of the phytopathogenic fungus Nectria haematococca (Fusarium solani). This finding indicates that PelI belongs to pectate lyase class

  18. Characterization of the exopolygalacturonate lyase PelX of Erwinia chrysanthemi 3937.

    Science.gov (United States)

    Shevchik, V E; Kester, H C; Benen, J A; Visser, J; Robert-Baudouy, J; Hugouvieux-Cotte-Pattat, N

    1999-03-01

    Erwinia chrysanthemi 3937 secretes several pectinolytic enzymes, among which eight isoenzymes of pectate lyases with an endo-cleaving mode (PelA, PelB, PelC, PelD, PelE, PelI, PelL, and PelZ) have been identified. Two exo-cleaving enzymes, the exopolygalacturonate lyase, PelX, and an exo-poly-alpha-D-galacturonosidase, PehX, have been previously identified in other E. chrysanthemi strains. Using a genomic bank of a 3937 mutant with the major pel genes deleted, we cloned a pectinase gene identified as pelX, encoding the exopolygalacturonate lyase. The deduced amino acid sequence of the 3937 PelX is very similar to the PelX of another E. chrysanthemi strain, EC16, except in the 43 C-terminal amino acids. PelX also has homology to the endo-pectate lyase PelL of E. chrysanthemi but has a N-terminal extension of 324 residues. The transcription of pelX, analyzed by gene fusions, is dependent on several environmental conditions. It is induced by pectic catabolic products and affected by growth phase, oxygen limitation, nitrogen starvation, and catabolite repression. Regulation of pelX expression is dependent on the KdgR repressor, which controls almost all the steps of pectin catabolism, and on the global activator of sugar catabolism, cyclic AMP receptor protein. In contrast, PecS and PecT, two repressors of the transcription of most pectate lyase genes, are not involved in pelX expression. The pelX mutant displayed reduced pathogenicity on chicory leaves, but its virulence on potato tubers or Saintpaulia ionantha plants did not appear to be affected. The purified PelX protein has no maceration activity on plant tissues. Tetragalacturonate is the best substrate of PelX, but PelX also has good activity on longer oligomers. Therefore, the estimated number of binding subsites for PelX is 4, extending from subsites -2 to +2. PelX and PehX were shown to be localized in the periplasm of E. chrysanthemi 3937. PelX catalyzed the formation of unsaturated digalacturonates by

  19. Bacterial leaf rot of Aloe vera L., caused byErwinia chrysanthemi biovar 3

    NARCIS (Netherlands)

    Laat, de P.C.A.; Verhoeven, J.T.W.; Danse, J.D.

    1994-01-01

    A severe attack of the bacteriumErwinia chrysantemi biovar 3 on the succulentAloe vera on the Carribean island of Aruba is described. Biochemical and pathological characteristics of strains are presented, including results of successful inoculation experiments onAloe vera. This is the first report o

  20. Systemic virulence of Erwinia chrysanthemi 3937 requires a functional iron assimilation system.

    Science.gov (United States)

    Enard, C; Diolez, A; Expert, D

    1988-06-01

    In Erwinia chrysanthemi, conditions of iron starvation initiate production of a catechol-type siderophore and enhance production of three outer membrane polypeptides. Twenty-two mutants affected in the different stages of this iron assimilation system were isolated by mini-Mu insertion mutagenesis. All of them failed to induce systemic soft rot on axenically grown Saintpaulia plants. From the siderophore auxotrophs and the iron uptake mutants, clones having recovered the missing function(s) were isolated by using the in vivo cloning vector pULB113 (RP4::mini-Mu). An R-prime plasmid containing a ca. 35.5-kilobase-pair DNA insert was identified. Restoration of the iron functions restored partially, if not completely, the virulence of the parental strain. PMID:3372473

  1. Iron Deficiency Induced by Chrysobactin in Saintpaulia Leaves Inoculated with Erwinia chrysanthemi.

    Science.gov (United States)

    Neema, C.; Laulhere, J. P.; Expert, D.

    1993-07-01

    In this communication, we examine the fate of iron during soft rot pathogenesis caused by Erwinia chrysanthemi on its host, Saintpaulia ionantha. The spread of soft rot caused by this enterobacterium was previously shown to depend on a functional genetic locus encoding a high-affinity iron assimilation system involving the catechol-type siderophore chrysobactin. Leaf intercellular fluid from healthy plants was analyzed with regard to the iron content and its availability for bacterial growth. It was compared to the fluid from diseased plants for the presence of strong iron ligands, using a new approach based on the iron-binding property of an ion-exchange resin. Further characterization allowed the identification of chrysobactin in diseased tissues, thus providing the first evidence for the external release of a microbial siderophore during pathogenesis. Competition for nutritional iron was also studied through a plant-bacterial cell system: iron incorporated into plant ferritin appeared to be considerably reduced in bacteria-treated suspension soybean cells. The same effect was visualized during treatment of soybean cells with axenic leaf intercellular fluid from E. chrysanthemi-inoculated saintpaulia leaves or with chrysobactin. PMID:12231882

  2. Characterization of the Erwinia chrysanthemi Gan locus, involved in galactan catabolism.

    Science.gov (United States)

    Delangle, Aurélie; Prouvost, Anne-France; Cogez, Virginie; Bohin, Jean-Pierre; Lacroix, Jean-Marie; Cotte-Pattat, Nicole Hugouvieux

    2007-10-01

    beta-1,4-Galactan is a major component of the ramified regions of pectin. Analysis of the genome of the plant pathogenic bacteria Erwinia chrysanthemi revealed the presence of a cluster of eight genes encoding proteins potentially involved in galactan utilization. The predicted transport system would comprise a specific porin GanL and an ABC transporter made of four proteins, GanFGK(2). Degradation of galactans would be catalyzed by the periplasmic 1,4-beta-endogalactanase GanA, which released oligogalactans from trimer to hexamer. After their transport through the inner membrane, oligogalactans would be degraded into galactose by the cytoplasmic 1,4-beta-exogalactanase GanB. Mutants affected for the porin or endogalactanase were unable to grow on galactans, but they grew on galactose and on a mixture of galactotriose, galactotetraose, galactopentaose, and galactohexaose. Mutants affected for the periplasmic galactan binding protein, the transporter ATPase, or the exogalactanase were only able to grow on galactose. Thus, the phenotypes of these mutants confirmed the functionality of the gan locus in transport and catabolism of galactans. These mutations did not affect the virulence of E. chrysanthemi on chicory leaves, potato tubers, or Saintpaulia ionantha, suggesting an accessory role of galactan utilization in the bacterial pathogeny. PMID:17644603

  3. Characterization of the Erwinia chrysanthemi gan Locus, Involved in Galactan Catabolism▿ †

    Science.gov (United States)

    Delangle, Aurélie; Prouvost, Anne-France; Cogez, Virginie; Bohin, Jean-Pierre; Lacroix, Jean-Marie; Cotte-Pattat, Nicole Hugouvieux

    2007-01-01

    β-1,4-Galactan is a major component of the ramified regions of pectin. Analysis of the genome of the plant pathogenic bacteria Erwinia chrysanthemi revealed the presence of a cluster of eight genes encoding proteins potentially involved in galactan utilization. The predicted transport system would comprise a specific porin GanL and an ABC transporter made of four proteins, GanFGK2. Degradation of galactans would be catalyzed by the periplasmic 1,4-β-endogalactanase GanA, which released oligogalactans from trimer to hexamer. After their transport through the inner membrane, oligogalactans would be degraded into galactose by the cytoplasmic 1,4-β-exogalactanase GanB. Mutants affected for the porin or endogalactanase were unable to grow on galactans, but they grew on galactose and on a mixture of galactotriose, galactotetraose, galactopentaose, and galactohexaose. Mutants affected for the periplasmic galactan binding protein, the transporter ATPase, or the exogalactanase were only able to grow on galactose. Thus, the phenotypes of these mutants confirmed the functionality of the gan locus in transport and catabolism of galactans. These mutations did not affect the virulence of E. chrysanthemi on chicory leaves, potato tubers, or Saintpaulia ionantha, suggesting an accessory role of galactan utilization in the bacterial pathogeny. PMID:17644603

  4. Characterization and virulence properties of Erwinia chrysanthemi lipopolysaccharide-defective, phi EC2-resistant mutants.

    Science.gov (United States)

    Schoonejans, E; Expert, D; Toussaint, A

    1987-09-01

    Outer membrane alterations were characterized in spontaneous mutants of the Erwinia chrysanthemi 3937jRH, which were selected for resistance to bacteriophage phi EC2. All but one of the mutants analyzed were affected in their lipopolysaccharide (LPS) structure, lacking the entire heterogeneous region of apparent high molecular weight present in the wild-type E. chrysanthemi LPS. At least two 3937jRH mutants, one selected as phi EC2 resistant (RH6065) and the other previously selected (D. Expert and A. Toussaint, J. Bacteriol. 163:221-227, 1985) as bacteriocin resistant (R1456), were cross-resistant to bacteriophage Mu and had rough LPSs with an altered core structure. Two phi EC2r mutants (RH6053 and RH6065) were most severely affected in their outer membrane integrity and also lost their virulence on saintpaulia plants, although they still possessed normal extracellular levels of pectinolytic and cellulolytic activities. The two Mur mutants RH6065 and R1456 were also able to induce systemic resistance in the challenged plant. All the other phi EC2r mutants retained the virulence of 393jRH. PMID:3624200

  5. Characterization of the pelL gene encoding a novel pectate lyase of Erwinia chrysanthemi 3937.

    Science.gov (United States)

    Lojkowska, E; Masclaux, C; Boccara, M; Robert-Baudouy, J; Hugouvieux-Cotte-Pattat, N

    1995-06-01

    Erwinia chrysanthemi 3937 secretes five major isoenzymes of pectate lyases encoded by the pelA, pelB, pelC, pelD and pelE genes. Recently, a new set of pectate lyases was identified in E. chrysanthemi mutants deleted of those pel genes. We cloned the pelL gene, encoding one of these secondary pectate lyases of E. chrysanthemi 3937, from a genomic bank of a strain deleted of the five major pel genes. The nucleotide sequence of the region containing the pelL gene was determined. The pelL reading frame is 1275 bases long, corresponding to a protein of 425 amino acids including a typical amino-terminal signal sequence of 25 amino acids. Comparison of the amino acid sequences of PelL and the exo-pectate lyase PelX of E. chrysanthemi EC16 revealed a low homology, limited to 220 residues of the central part of the proteins. No homology was detected with other bacterial pectinolytic enzymes. Regulation of pelL transcription was analysed using gene fusion. As shown for the other pel genes, the transcription of pelL is dependent on various environmental conditions. It is induced by pectic catabolic products and affected by growth phase, temperature, iron starvation, osmolarity, anaerobiosis, nitrogen starvation and catabolite repression. Regulation of pelL expression appeared to be independent of the KdgR repressor, which controls all the steps of pectin catabolism. In contrast, the pecS gene, which is involved in regulation of the synthesis of the major pectate lyases and of cellulase, also appeared to be involved in pelL expression. The PelL protein is able to macerate plant tissue. This enzyme has a basic isoelectric point, presents an endo-cleaving activity on polygalacturonate or partially methylated pectin, with a basic pH optimum and an absolute requirement for Ca2+. The pelL mutant displayed a reduced virulence on potato tubers and Saintpaulia ionantha plants, demonstrating the important role of this enzyme in soft-rot disease. PMID:8577252

  6. 菊欧文氏菌分子检测技术的研究%Molecular detection of Erwinia chrysanthemi

    Institute of Scientific and Technical Information of China (English)

    刘鹏; 黄国明; 刘勇; 崔铁军

    2007-01-01

    蝴蝶兰细菌性软腐病对蝴蝶兰的生长危害严重,Erwinia chrysanthemi(菊欧文氏菌)、Erwinia carotovora subsp.carotovora(胡萝卜软腐欧文氏菌胡萝卜软腐亚种)是引起蝴蝶兰软腐病的主要病原细菌,其中E. chrysanthemi被列入我国三类检疫性有害生物.本文对菊欧文氏菌分子检测技术进行了研究,设计出针对该病原细菌的特异性引物,应用实时荧光PCR方法检测样品中存在的菊欧文氏菌,检测灵敏度达到102 cfu/mL.

  7. Identification of a bacterial pectin acetyl esterase in Erwinia chrysanthemi 3937.

    Science.gov (United States)

    Shevchik, V E; Hugouvieux-Cotte-Pattat, N

    1997-06-01

    Erwinia chrysanthemi causes soft-rot diseases of various plants by enzymatic degradation of the pectin in plant cell walls. The structural complexity of pectin requires the combined action of several pectinases for its efficient breakdown. Three types of pectinases have so far been identified in E. chrysanthemi: two pectin methyl esterases (PemA, PemB), a polygalacturonase (PehX), and eight pectate lyases (PelA, PelB, PelC, PelD, PelE, PelL, PelZ, PelX). We report in this paper the analysis of a novel enzyme, the pectin acetyl esterase encoded by the paeY gene. No bacterial form of pectin acetyl esterases has been described previously, while plant tissues and some pectinolytic fungi were found to produce similar enzymes. The paeY gene is present in a cluster of five pectinase-encoding genes, pelA-pelE-pelD-paeY-pemA. The paeY open reading frame is 1650 bases long and encodes a 551-residue precursor protein of 60704Da, including a 25-amino-acid signal peptide. PaeY shares one region of homology with a rhamnogalacturonan acetyl esterase of Aspergillus aculeatus. To characterize the enzyme, the paeY gene was overexpressed and its protein product was purified. PaeY releases acetate from sugar-beet pectin and from various synthetic substrates. Moreover, the enzyme was shown to act in synergy with other pectinases. The de-esterification rate by PaeY increased after previous demethylation of the pectins by PemA and after depolymerization of the pectin by pectate lyases. In addition, the degradation of sugar-beet pectin by pectate lyases is favoured after the removal of methyl and acetyl groups by PemA and PaeY, respectively. The paeY gene was first identified on the basis of its regulation, which shares several characteristics with that of other pectinases. Analysis of the paeY transcription, using gene fusions, revealed that it is induced by pectic catabolic products and is affected by growth phase, oxygen limitation and catabolite repression. Regulation of pae

  8. Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937.

    Science.gov (United States)

    Yang, Shihui; Zhang, Qiu; Guo, Jianhua; Charkowski, Amy O; Glick, Bernard R; Ibekwe, A Mark; Cooksey, Donald A; Yang, Ching-Hong

    2007-02-01

    Production of the plant hormone indole-3-acetic acid (IAA) is widespread among plant-associated microorganisms. The non-gall-forming phytopathogen Erwinia chrysanthemi 3937 (strain Ech3937) possesses iaaM (ASAP16562) and iaaH (ASAP16563) gene homologues. In this work, the null knockout iaaM mutant strain Ech138 was constructed. The IAA production by Ech138 was reduced in M9 minimal medium supplemented with l-tryptophan. Compared with wild-type Ech3937, Ech138 exhibited reduced ability to produce local maceration, but its multiplication in Saintpaulia ionantha was unaffected. The pectate lyase production of Ech138 was diminished. Compared with wild-type Ech3937, the expression levels of an oligogalacturonate lyase gene, ogl, and three endopectate lyase genes, pelD, pelI, and pelL, were reduced in Ech138 as determined by a green fluorescent protein-based fluorescence-activated cell sorting promoter activity assay. In addition, the transcription of type III secretion system (T3SS) genes, dspE (a putative T3SS effector) and hrpN (T3SS harpin), was found to be diminished in the iaaM mutant Ech138. Compared with Ech3937, reduced expression of hrpL (a T3SS alternative sigma factor) and gacA but increased expression of rsmA in Ech138 was also observed, suggesting that the regulation of T3SS and pectate lyase genes by IAA biosynthesis might be partially due to the posttranscriptional regulation of the Gac-Rsm regulatory pathway. PMID:17189441

  9. SecG is required for antibiotic activities of Pseudomonas sp. YL23 against Erwinia amylovora and Dickeya chrysanthemi.

    Science.gov (United States)

    Liu, Youzhou; Baird, Sonya M; Qiao, Junqing; Du, Yan; Lu, Shi-En

    2015-05-01

    Strain YL23 was isolated from soybean root tips and identified to be Pseudomonas sp. This strain showed broad-spectrum antibacterial activity against bacterial pathogens that are economically important in agriculture. To characterize the genes dedicated to antibacterial activities against microbial phytopathogens, a Tn5-mutation library of YL23 was constructed. Plate bioassays revealed that the mutant YL23-93 lost its antibacterial activities against Erwinia amylovora and Dickeya chrysanthemi as compared with its wild type strain. Genetic and sequencing analyses localized the transposon in a homolog of the secG gene in the mutant YL23-93. Constitutive expression plasmid pUCP26-secG was constructed and electroporated into the mutant YL23-93. Introduction of the plasmid pUCP26-secG restored antibacterial activities of the mutant YL23-93 to E. amylovora and D. chrysanthemi. As expected, empty plasmid pUCP26 could not complement the phenotype of the antibacterial activity in the mutant. Thus the secG gene, belonging to the Sec protein translocation system, is required for antibacterial activity of strain YL23 against E. amylovora and D. chrysanthemi.

  10. Tol-Pal proteins are critical cell envelope components of Erwinia chrysanthemi affecting cell morphology and virulence.

    Science.gov (United States)

    Dubuisson, Jean-François; Vianney, Anne; Hugouvieux-Cotte-Pattat, Nicole; Lazzaroni, Jean Claude

    2005-10-01

    The tol-pal genes are necessary for maintaining the outer-membrane integrity of Gram-negative bacteria. These genes were first described in Escherichia coli, and more recently in several other species. They are involved in the pathogenesis of E. coli, Haemophilus ducreyi, Vibrio cholerae and Salmonella enterica. The role of the tol-pal genes in bacterial pathogenesis was investigated in the phytopathogenic enterobacterium Erwinia chrysanthemi, assuming that this organism might be a good model for such a study. The whole Er. chrysanthemi tol-pal region was characterized. Tol-Pal proteins, except TolA, showed high identity scores with their E. coli homologues. Er. chrysanthemi mutants were constructed by introducing a uidA-kan cassette in the ybgC, tolQ, tolA, tolB, pal and ybgF genes. All the mutants were hypersensitive to bile salts. Mutations in tolQ, tolA, tolB and pal were deleterious for the bacteria, which required high concentrations of sugars or osmoprotectants for their viability. Consistent with this observation, they were greatly impaired in their cell morphology and division, which was evidenced by observations of cell filaments, spherical forms, membrane blebbing and mislocalized bacterial septa. Moreover, tol-pal mutants showed a reduced virulence in a potato tuber model and on chicory leaves. This could be explained by a combination of impaired phenotypes in the tol-pal mutants, such as reduced growth and motility and a decreased production of pectate lyases, the major virulence factor of Er. chrysanthemi.

  11. Asparaginase Erwinia chrysanthemi (Erwinaze®): a guide to its use in acute lymphoblastic leukemia in the USA.

    Science.gov (United States)

    Keating, Gillian M

    2013-08-01

    Asparaginase Erwinia chrysanthemi (Erwinaze®) is approved in the USA for use in patients with acute lymphoblastic leukemia (ALL) who have developed hypersensitivity to Escherichia coli-derived asparaginase. The approved regimen of intramuscular Erwinaze® was associated with sustained, clinically meaningful asparaginase activity in patients with ALL who had to discontinue treatment with pegaspargase (a pegylated formulation of E. coli asparaginase) because of hypersensitivity. Another study revealed that development of E. coli-derived asparaginase allergy and a switch to Erwinaze® maintained event-free survival in pediatric patients with newly diagnosed ALL. In a multicenter, compassionate-use trial, Erwinaze® was generally well tolerated, with the most commonly occurring adverse events including hypersensitivity, pancreatitis, fever, hyperglycemia, and increased transaminase levels. Subclinical hypersensitivity may result in the inactivation of asparaginase and affect treatment outcome; monitoring of serum asparaginase levels may be used to identify subclinical hypersensitivity.

  12. Utilization of a thermosensitive episome bearing transposon TN10 to isolate Hfr donor strains of Erwinia carotovora subsp. chrysanthemi.

    Science.gov (United States)

    Kotoujansky, A; Lemattre, M; Boistard, P

    1982-04-01

    A thermosensitive episome bearing the transposon Tn10, F(Ts)::Tn10 Lac+, has been successfully transferred from Escherichia coli to several wild strains of the enterobacteria Erwinia carotovora subsp. chrysanthemi, which are pathogenic on Saintpaulia ionantha. In one of these strains, all of the characters controlled by this episome (Lac+, Tetr, Tra+) were expressed, and its replication was stopped at 40 degrees C and above. At 30 degrees C, the episome was easily transferred between strains derived from E. carotovora subsp. chrysanthemi 3937j and to E coli. Hfr donor strains were obtained from a F' strain of 3937j by selecting clones which grew at 40 degrees C on plates containing tetracycline. One of these strains, Hfrq, was examined in more detail: the characters Lac+ and Tetr were stabilized and did not segregate higher than its parental F' strain. The mating was most efficient at 37 degrees C on a membrane. Hfrq transferred its chromosome to recipient strains at high frequency and in a polarized fashion, as evidenced by the gradient of transfer frequencies, the kinetics of marker entry (in interrupted mating experiments), and the analysis of linkage between different markers. The chromosome of Hfrq was most probably transferred in the following sequence: origin...met...xyl...arg...ile...leu...thr...cys...pan...ura...gal...trp...his. ..pur... Moreover, this genetic transfer system proved to be efficient in strain construction. PMID:6277860

  13. Global Effect of Indole-3-Acetic Acid Biosynthesis on Multiple Virulence Factors of Erwinia chrysanthemi 3937▿

    Science.gov (United States)

    Yang, Shihui; Zhang, Qiu; Guo, Jianhua; Charkowski, Amy O.; Glick, Bernard R.; Ibekwe, A. Mark; Cooksey, Donald A.; Yang, Ching-Hong

    2007-01-01

    Production of the plant hormone indole-3-acetic acid (IAA) is widespread among plant-associated microorganisms. The non-gall-forming phytopathogen Erwinia chrysanthemi 3937 (strain Ech3937) possesses iaaM (ASAP16562) and iaaH (ASAP16563) gene homologues. In this work, the null knockout iaaM mutant strain Ech138 was constructed. The IAA production by Ech138 was reduced in M9 minimal medium supplemented with l-tryptophan. Compared with wild-type Ech3937, Ech138 exhibited reduced ability to produce local maceration, but its multiplication in Saintpaulia ionantha was unaffected. The pectate lyase production of Ech138 was diminished. Compared with wild-type Ech3937, the expression levels of an oligogalacturonate lyase gene, ogl, and three endopectate lyase genes, pelD, pelI, and pelL, were reduced in Ech138 as determined by a green fluorescent protein-based fluorescence-activated cell sorting promoter activity assay. In addition, the transcription of type III secretion system (T3SS) genes, dspE (a putative T3SS effector) and hrpN (T3SS harpin), was found to be diminished in the iaaM mutant Ech138. Compared with Ech3937, reduced expression of hrpL (a T3SS alternative sigma factor) and gacA but increased expression of rsmA in Ech138 was also observed, suggesting that the regulation of T3SS and pectate lyase genes by IAA biosynthesis might be partially due to the posttranscriptional regulation of the Gac-Rsm regulatory pathway. PMID:17189441

  14. Analysis of the LacI family regulators of Erwinia chrysanthemi 3937, involvement in the bacterial phytopathogenicity.

    Science.gov (United States)

    Van Gijsegem, Frédérique; Wlodarczyk, Aleksandra; Cornu, Amandine; Reverchon, Sylvie; Hugouvieux-Cotte-Pattat, Nicole

    2008-11-01

    Analysis of the regulators of the LacI family was performed in order to identify those potentially involved in pathogenicity of Erwinia chrysanthemi (Dickeya dadantii). Among the 18 members of the LacI family, the function of 11 members is either known or predicted and only 7 members have, as yet, no proposed function. Inactivation of these seven genes, called lfaR, lfbR, lfcR, lfdR, lfeR, lffR, and lfgR, demonstrated that four of them are important for plant infection. The lfaR and lfcR mutants showed a reduced virulence on chicory, Saintpaulia sp., and Arabidopsis. The lfeR mutant showed a reduced virulence on Arabidopsis. The lfdR mutant was more efficient than the wild-type strain in initiating maceration on Saintpaulia sp. The genetic environment of each regulator was examined to detect adjacent genes potentially involved in a common function. Construction of transcriptional fusions in these neighboring genes demonstrated that five regulators, LfaR, LfcR, LfeR, LffR, and LfgR, act as repressors of adjacent genes. Analysis of these fusions also indicated that the genes controlled by LfaR, LfcR, LfgR, and LffR are expressed during plant infection. Moreover, addition of crude plant extracts to culture medium demonstrated that the expression of the LfaR- and LfgR-controlled genes is specifically induced by plant components. PMID:18842096

  15. Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing Erwinia chrysanthemi to adapt to hostile conditions.

    Science.gov (United States)

    Rincon-Enriquez, Gabriel; Crété, Patrice; Barras, Frédéric; Py, Béatrice

    2008-03-01

    The Erwinia chrysanthemi genome is predicted to encode three systems, Nif, Isc and Suf, known to assist Fe/S cluster biogenesis and the CsdAE cysteine desulphurase. Single iscU, hscA and fdx mutants were found sensitive to paraquat and exhibited reduced virulence on both chicory leaves and Arabidopsis thaliana. Depletion of the whole Isc system led to a pleiotropic phenotype, including sensitivity to both paraquat and 2,2'-dipyridyl, auxotrophies for branched-chain amino acids, thiamine, nicotinic acid, and drastic alteration in virulence. IscR was able to suppress all of the phenotypes listed above in a sufC-dependent manner while depletion of the Isc system led to IscR-dependent activation of the suf operon. No virulence defects were found associated with csdA or nifS mutations. Surprisingly, we found that the sufC mutant was virulent against A. thaliana, whereas its virulence had been found altered in Saintpaulia. Collectively, these results lead us to propose that E. chrysanthemi possess the Fe/S biogenesis strategy suited to the physico-chemical conditions encountered in its host upon infection. In this view, the IscR regulator, which controls both Isc and Suf, is predicted to play a major role in the ability of E. chrysanthemi to colonize a wide array of different plants. PMID:18284573

  16. Dynamic regulation of GacA in type III secretion, pectinase gene expression, pellicle formation, and pathogenicity of Dickeya dadantii (Erwinia chrysanthemi 3937).

    Science.gov (United States)

    Yang, Shihui; Peng, Quan; Zhang, Qiu; Yi, Xuan; Choi, Chang Jae; Reedy, Ralph M; Charkowski, Amy O; Yang, Ching-Hong

    2008-01-01

    Dickeya dadantii (Erwinia chrysanthemi 3937) secretes exoenzymes, including pectin-degrading enzymes, leading to the loss of structural integrity of plant cell walls. A type III secretion system (T3SS) is essential for full virulence of this bacterium within plant hosts. The GacS/GacA two-component signal transduction system participates in important biological roles in several gram-negative bacteria. In this study, a gacA deletion mutant (Ech137) of D. dadantii was constructed to investigate the effect of this mutation on pathogenesis and other phenotypes. Compared with wild-type D. dadantii, Ech137 had a delayed biofilm-pellicle formation. The production of pectate lyase (Pel), protease, and cellulase was diminished in Ech137 compared with the wild-type cells. Reduced transcription of two endo-Pel genes, pelD and pelL, was found in Ech137 using a green fluorescence protein-based fluorescence-activated cell sorter promoter activity assay. In addition, the transcription of T3SS genes dspE (an effector), hrpA (a structural protein of the T3SS pilus), and hrpN (a T3SS harpin) was reduced in Ech137. A lower amount of rsmB regulatory RNA was found in gacA mutant Ech137 compared with the wild-type bacterium by quantitative reverse-transcription polymerase chain reaction. Compared with wild-type D. dadantii, a lower amount of hrpL mRNA was observed in Ech137 at 12 h grown in medium. Although the role of RsmA, rsmB, and RsmC in D. dadantii is not clear, from the regulatory pathway revealed in E. carotovora, the lower expression of dspE, hrpA, and hrpN in Ech137 may be due to a post-transcriptional regulation of hrpL through the Gac-Rsm regulatory pathway. Consequently, the reduced exoenzyme production and Pel gene expression in the mutant may be sue partially to the regulatory role of rsmB-RsmA on exoenzyme expression. Similar to in vitro results, a lower expression of T3SS and pectinase genes of Ech137 also was observed in bacterial cells inoculated into Saintpaulia

  17. The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia.

    Science.gov (United States)

    Kube, Michael; Migdoll, Alexander Michael; Müller, Ines; Kuhl, Heiner; Beck, Alfred; Reinhardt, Richard; Geider, Klaus

    2008-09-01

    The complete genome of the bacterium Erwinia tasmaniensis strain Et1/99 consisting of a 3.9 Mb circular chromosome and five plasmids was sequenced. Strain Et1/99 represents an epiphytic plant bacterium related to Erwinia amylovora and E. pyrifoliae, which are responsible for the important plant diseases fire blight and Asian pear shoot blight, respectively. Strain Et1/99 is a non-pathogenic bacterium and is thought to compete with these and other bacteria when occupying the same habitat during initial colonization. Genome analysis revealed tools for colonization, cellular communication and defence modulation, as well as genes coding for the synthesis of levan and a not detected capsular exopolysaccharide. Strain Et1/99 may secrete indole-3-acetic acid to increase availability of nutrients provided on plant surfaces. These nutrients are subsequently accessed and metabolized. Secretion systems include the hypersensitive response type III pathway present in many pathogens. Differences or missing parts within the virulence-related factors distinguish strain Et1/99 from pathogens such as Pectobacterium atrosepticum and the related Erwinia spp. Strain Et1/99 completely lacks the sorbitol operon, which may also affect its inability to invade fire blight host plants. Erwinia amylovora in contrast depends for virulence on utilization of sorbitol, the dominant carbohydrate in rosaceous plants. The presence of other virulence-associated factors in strain Et1/99 indicates the ancestral genomic background of many plant-associated bacteria.

  18. Flavohaemoglobin HmpX from Erwinia chrysanthemi confers nitrosative stress tolerance and affects the plant hypersensitive reaction by intercepting nitric oxide produced by the host.

    Science.gov (United States)

    Boccara, Martine; Mills, Catherine E; Zeier, Jürgen; Anzi, Chiara; Lamb, Chris; Poole, Robert K; Delledonne, Massimo

    2005-07-01

    Host cells respond to infection by generating nitric oxide (NO) as a cytotoxic weapon to facilitate killing of invading microbes. Bacterial flavohaemoglobins are well-known scavengers of NO and play a crucial role in protecting animal pathogens from nitrosative stress during infection. Erwinia chrysanthemi, which causes macerating diseases in a wide variety of plants, possesses a flavohaemoglobin (HmpX) whose function in plant pathogens has remained unclear. Here we show that HmpX consumes NO and prevents inhibition by NO of cell respiration, indicating a role in protection from nitrosative stress. Furthermore, infection of Saintpaulia ionantha plants with an HmpX-deficient mutant of E. chrysanthemi revealed that the lack of NO scavenging activity causes the accumulation of unusually high levels of NO in host tissue and triggers hypersensitive cell death. Introduction of the wild-type hmpX gene in an incompatible strain of Pseudomonas syringae had a dramatic effect on the hypersensitive cell death in soya bean cell suspensions, and markedly reduced the development of macroscopic symptoms in Arabidopsis thaliana plants. These observations indicate that HmpX not only protects against nitrosative stress but also attenuates host hypersensitive reaction during infection by intercepting NO produced by the plant for the execution of the hypersensitive cell death programme. PMID:15998309

  19. The minimal gene set member msrA, encoding peptide methionine sulfoxide reductase, is a virulence determinant of the plant pathogen Erwinia chrysanthemi.

    Science.gov (United States)

    Hassouni, M E; Chambost, J P; Expert, D; Van Gijsegem, F; Barras, F

    1999-02-01

    Peptide methionine sulfoxide reductase (MsrA), which repairs oxidized proteins, is present in most living organisms, and the cognate structural gene belongs to the so-called minimum gene set [Mushegian, A. R. & Koonin, E. V., (1996) Proc. Natl. Acad. Sci. USA 93, 10268-10273]. In this work, we report that MsrA is required for full virulence of the plant pathogen Erwinia chrysanthemi. The following differences were observed between the wild-type and a MsrA- mutant: (i) the MsrA- mutant was more sensitive to oxidative stress; (ii) the MsrA- mutant was less motile on solid surface; (iii) the MsrA- mutant exhibited reduced virulence on chicory leaves; and (iv) no systemic invasion was observed when the MsrA- mutant was inoculated into whole Saintpaulia ionantha plants. These results suggest that plants respond to virulent pathogens by producing active oxygen species, and that enzymes repairing oxidative damage allow virulent pathogens to survive the host environment, thereby supporting the theory that active oxygen species play a key role in plant defense. PMID:9927663

  20. Reinfection and latent infection of Erwinia chrysanthemi pv.zeae in rice%水稻细菌性基腐病菌再侵染和潜伏侵染

    Institute of Scientific and Technical Information of China (English)

    刘琼光; 王振中; 陈玉托; 区伟明; 区肇康

    2003-01-01

    @@ 水稻细菌性基腐病(Erwinia chrysanthemi pv.zeae)近年来在我国局部地区发病加重.有关病菌生物学特性和侵染规律有过一些研究和报道,但病害后期表现症状及病菌的再侵染和潜伏侵染现象等,均未见报道,笔者对此进行了研究.

  1. SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase.

    Science.gov (United States)

    Nachin, L; El Hassouni, M; Loiseau, L; Expert, D; Barras, F

    2001-02-01

    Erwinia chrysanthemi causes soft-rot disease in a great variety of plants. In addition to the depolymerizing activity of plant cell wall-degrading enzymes, iron acquisition and resistance to oxidative stress contribute greatly to the virulence of this pathogen. Here, we studied the pin10 locus originally thought to encode new virulence factors. The sequence analysis revealed six open reading frames that were homologous to the Escherichia coli sufA, sufB, sufC, sufD, sufS and sufE genes. Sequence similarity searching predicted that (i) SufA, SufB, SufD, SufS and SufE proteins are involved in iron metabolism and possibly in Fe-S cluster assembly; and (ii) SufC is an ATPase of an ABC transporter. The reverse transcription-polymerase chain reaction procedure showed that the sufABCDSE genes constitute an operon. Expression of a sufB:uidA fusion was found to be induced in iron-deficient growth conditions and to be repressed by the iron-sensing Fur repressor. Each of the six suf genes was inactivated by the insertion of a cassette generating a non-polar mutation. The intracellular iron level in the sufA, sufB, sufC, sufS and sufE mutants was higher than in the wild type, as assessed by increased sensitivity to the iron-activated antibiotic streptonigrin. In addition, inactivation of sufC and sufD led to increased sensitivity to paraquat. Virulence tests showed that sufA and sufC mutants exhibited reduced ability to cause maceration of chicory leaves, whereas a functional sufC gene was necessary for the bacteria to cause systemic invasion of Saintpaulia ionantha. The E. coli sufC homologue was inactivated by reverse genetic. This mutation was found to modify the soxR-dependent induction of soxS gene expression. We discuss the possibility that SufC is a versatile ATPase that can associate either with the other Suf proteins to form a Fe-S cluster-assembling machinery or with membrane proteins encoded elsewhere in the chromosome to form an Fe-S ABC exporter. Overall, these

  2. Erwinia chrysanthemi分离株CSCL006 hrpN基因的克隆与高效表达%Molecular Characterization and Overexpression of Erwinia chrysanthemi Strain CSCL006 hrpNCSCL006 Gene, which Encodes An Elicitor of the Hyperdensitive Reaction

    Institute of Scientific and Technical Information of China (English)

    汤承; 崔亚亚; 吴伯骥; 李名扬

    2006-01-01

    通过构建Erwinia chrysanthemi分离株CSCL006的DNA文库,克隆出hrpN CSCL006基因,测序结果显示该基因编码区长1 020 bp;推导的harpinCSCL006与Erwinia chrysanthemi ECl6和3937编码的harpin蛋白同源性高,但与其它软腐菌的harpin蛋白同源性较低;在大肠杆菌中(Escherichia coli)高效表达了hrpN CSCL006基因,重组harpinCSCL006蛋白分子量为34kD.以抗harpinEOC的抗体为探针,Western blot证实该蛋白确为harpin;纯化的harpinCSCL006,能引起烟叶的过敏反应.

  3. 玉米细菌性茎腐病的发生为害调查%Surveys of the occurrence and damage of corn bacterial stalk rots (Erwinia chrysanthemi pv.zeae)

    Institute of Scientific and Technical Information of China (English)

    李巧芝; 高明; 王自伟; 高清珍; 罗秦岳

    2002-01-01

    系统调查表明,玉米细菌性茎腐病由玉米细菌性茎腐病菌 (Erwinia chrysanthemi pv.zeae)所致,在玉米植株中部叶鞘和茎秆上发生水渍状腐烂,引起组织软化.病菌随病残组织在田间、地边越冬.夏季暴雨多、空气湿度大、虫害发生重等对病害发生有利.提出及时清除病残体、防治虫害、适时施药的防治措施.

  4. An Endophytic Erwinia chrysanthemi Strain Antagonistic against Banana Fusarium Wilt Disease%一株对香蕉枯萎病菌具有良好拮抗作用的菊欧氏杆菌

    Institute of Scientific and Technical Information of China (English)

    殷晓敏; 陈弟; 吴红萍; 郑服丛

    2009-01-01

    在香蕉枯萎病重病园区,从生长正常香蕉假茎内分离获得一株细菌E353菌株.经对峙培养、孢子萌发抑制测定,E353对香蕉枯萎病菌菌丝生长、孢子萌发具有良好抑制效果.盆栽试验表明,E353活菌培养液(750ml/株)浸根处理,对香蕉枯萎病的防效为60.67%.经形态学、生理生化和16S rDNA序列比对,将E353鉴定为菊欧氏杆菌Erwinia chrysanthemi.

  5. Pathogenicity and Biological Characters of Erwinia chrysanthemi pv. zeae in Guangdong Province%广东水稻细菌性基腐病的致病性及生物学特性研究

    Institute of Scientific and Technical Information of China (English)

    刘琼光; 曾宪铭

    1999-01-01

    通过一系列的细菌学性状和致病性试验,鉴定出广东省水稻一种新病害--水稻细菌性基腐病的病原为菊欧氏杆菌玉米致病变种Erwinia chrysanthemi pv. zeae,并对该病原菌的生物学特性进行了进一步的研究.结果表明:病菌生长的最低温度为12 ℃,适宜温度范围28~36 ℃,其中以32 ℃最适,最高温度41 ℃,致死温度53 ℃、10 min.该病菌生长的pH值范围为pH 5~11,其中pH7最适宜.

  6. Is Erwinia te beheersen? Een literatuurstudie over rotproblemen in diverse gewassen om met deze kennis Erwinia in bolgewassen beter te kunnen aanpakken

    NARCIS (Netherlands)

    Doorn, van J.; Wolf, J.

    2005-01-01

    Het meeste onderzoek aan Erwinia-bacteriën is uitgevoerd bij aardappel. In dit gewas worden drie ziekteverwekkende Erwinia-soorten gevonden: Erwinia carotovora subsp. atroseptica (Eca), Erwinia chrysanthemi (Echr) en Erwinia carotovora subsp. carotovora (Ecc). Eca speelt in gematigde klimaatsgebiede

  7. 'Candidatus Erwinia dacicola', a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin).

    Science.gov (United States)

    Capuzzo, Caterina; Firrao, Giuseppe; Mazzon, Luca; Squartini, Andrea; Girolami, Vincenzo

    2005-07-01

    The taxonomic identity of the hereditary prokaryotic symbiont of the olive fly Bactrocera oleae (Diptera: Tephritidae) was investigated. In order to avoid superficial microbial contaminants and loosely associated saprophytic biota, flies were surface-sterilized at the larval stage and reared under aseptic conditions until adult emergence. B. oleae flies originating from different geographical locations and collected at different times of the year were tested. Bacterial isolation was undertaken from the cephalic oesophageal bulb, which is known to be a specific site of accumulation for the hosted microsymbionts in the adult insect. Despite evidence of multiplication cycles taking place within the insect, attempts at cultivation of the isolated bacteria ex situ were not productive at any stage, leading to the choice of unculturable status definition. PCR amplification and nucleotide sequencing of the entire 16S rRNA gene consistently yielded a single sequence that displayed marked similarity with enterobacterial lineages, with closest matches (97%) to Erwinia persicina and Erwinia rhapontici. The novel taxon differs from common intestinal bacterial species of fruit flies and from instances of culturable bacteria previously described in B. oleae raised without sterility precautions, which we also observed as minority occupants or occasional contaminants. The symbiont's identity is also distinct from Pseudomonas savastanoi. In all observations, the numerically dominant inhabitant of the olive fly oesophageal organ was the same unculturable organism, whose presence at later stages was also regularly observed in the midgut. A novel species is proposed, by virtue of its unique properties, under the designation 'Candidatus Erwinia dacicola'.

  8. Erwinia tasmaniensis sp. nov., a non-phytopathogenic bacterium from apple and pear trees.

    Science.gov (United States)

    Geider, Klaus; Auling, Georg; Du, Zhiqiang; Jakovljevic, Vladimir; Jock, Susanne; Völksch, Beate

    2006-12-01

    Bacteria were isolated from flowers and bark of apple and pear trees at three places in Australia. In Victoria, Tasmania and Queensland, strains with white colonies on nutrient agar were screened for dome-shaped colony morphology on agar with sucrose and were found to be closely related by several criteria. The isolates were not pathogenic on apples or pears. They were characterized by a polyphasic approach including microbiological and API assays as well as fatty acid methyl ester analysis, DNA-DNA hybridization and DNA sequencing. For molecular classification, the 16S rRNA cistron and the conserved genes gpd and recA of these bacteria were investigated. Together with other taxonomic criteria, the results of these studies indicate that the bacteria belong to a novel separate species, which we propose to name Erwinia tasmaniensis sp. nov., with the type strain Et1/99(T) (=DSM 17950(T)=NCPPB 4357(T)). From DNA-DNA hybridization kinetics, microbiological characteristics and nucleotide sequence analyses, this species is related to pathogenic Erwinia species, but also to the epiphytic species Erwinia billingiae.

  9. Physiology and biochemistry of a lignin degrading bacterium Erwinia sp. Cu 3614

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, J.S.

    1992-01-01

    Previous researchers have reported the isolation of a diphenylether cleaving organism, Erwinia sp., using an enrichment medium containing lignin. A copper and dinitrophenol resistant mutant of this organism, Erwinia sp. Cu3614, has also been reported. To assess the effect of copper on the growth and biochemistry of this organism, continuous cultivation was used employing an apparently optimized medium containing ethanol as carbon source. Upon increasing the concentration of copper sulfate in the medium from 5 [mu]g/ml to 10 [mu]g/ml increases in maximum specific growth rate and growth yield were seen. Also decrease in the values for doubling time and the coefficient for maintenance energy were seen. At higher levels of copper sulfate a [open quotes]non competitive[close quotes] inhibition of growth was seen as indicated by the values calculated for substrate affinity constant, and inhibition constant. To assess this organism's ligninolytic ability, an assay for residual lignin was developed. The assay measured a reaction between diazotized sulfanilic acid and lignin in alkaline solution by spectrophotometric monitoring of the resulting adduct. Use of this technique indicated that Erwinia sp. Cu3614 could degrade up to 80% of lignin in batch cultures. Further evidence about the ligninolytic ability of this organism was provided by examination of electron micrographs of lignocellulosic substrates incubated with cell suspensions. An assay for monitoring diphenylether cleaving abilities was also developed using resazurin, a redox dye. In vivo assays with cells obtained from continuous culture studies indicated a linear relationship between the rates of reaction with resazurin and the amount of copper associated with cells. In vitro assays, employing cell free extracts and resazurin, were used to obtain a fraction enriched in diphenylether cleaving activity by a heat treatment procedure.

  10. Toets op Erwinia in hyacint bijna praktijkklaar

    NARCIS (Netherlands)

    Dwarswaard, A.; PPO Bomen-bollen,

    2008-01-01

    Erwinia chrysanthemi houdt al enkele jaren de gemoederen in hyacint flink bezig. PPO en BKD werken in een van de onderzoeksprojecten naar deze bacterie samen aan de ontwikkeling van een toetsmethode voor de praktijk. PPO-onderzoeker Joop van Doorn en Hoofd laboratorium Ton van Schadewijk van de BKD

  11. Isolation and characterization of aniline degradation slightly halophilic bacterium, Erwinia sp. Strain HSA 6.

    Science.gov (United States)

    Li, Junmin; Jin, Zexin; Yu, Binbin

    2010-07-20

    The isolated strain HSA6 is classified as Erwinia amylovora based on 16S rDNA sequence and the morphological and physiological properties. Strain HSA6 is the first reported E. amylovora in pure culture growing with aniline as sole electron donor and carbon source. The suitable pH for strain HSA6 is wide (from 5 to 11). Strain HSA6 is slightly halophilic with growth occurring at 0-10% (v/v) NaCl, and the suitable NaCl concentration for strain HSA6 is from 0% to 6%. The number of bacteria appeared to decrease with an increase in aniline concentration. The number of bacteria appeared to be constant as the wastewater concentration increased from 0% to 20%. However, the number of cells decreased with an increase in wastewater concentration from 30% to 50% and grew very slowly at 50%. The degradation rate of aniline was 100% at 0.5% aniline concentration after 24 h culture. The degradation rate of aniline was found to descend as the concentration of aniline increased from 0.5% to 3% and rose as the culture time increased. Strain HSA6 contains a plasmid with molecular weight higher than 42 kDA. Plasmid curing test and quantitative degradation test showed that strain requires the plasmid for aniline degradation. The gene cluster degrading aniline was determined in the plasmid by PCR amplification.

  12. Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment.

    Science.gov (United States)

    Waleron, Małgorzata; Waleron, Krzysztof; Podhajska, Anna J; Lojkowska, Ewa

    2002-02-01

    Genotypic characterization, based on the analysis of restriction fragment length polymorphism of the recA gene fragment PCR product (recA PCR-RFLP), was performed on members of the former Erwinia genus. PCR primers deduced from published recA gene sequences of Erwinia carotovora allowed the amplification of an approximately 730 bp DNA fragment from each of the 19 Erwinia species tested. Amplified recA fragments were compared using RFLP analysis with four endonucleases (AluI, HinfI, TasI and Tru1I), allowing the detection of characteristic patterns of RFLP products for most of the Erwinia species. Between one and three specific RFLP groups were identified among most of the species tested (Erwinia amylovora, Erwinia ananas, Erwinia cacticida, Erwinia cypripedii, Erwinia herbicola, Erwinia mallotivora, Erwinia milletiae, Erwinia nigrifluens, Erwinia persicina, Erwinia psidii, Erwinia quercina, Erwinia rhapontici, Erwinia rubrifaciens, Erwinia salicis, Erwinia stewartii, Erwinia tracheiphila, Erwinia uredovora, Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. betavasculorum, Erwinia carotovora subsp. odorifera and Erwinia carotovora subsp. wasabiae). However, in two cases, Erwinia chrysanthemi and Erwinia carotovora subsp. carotovora, 15 and 18 specific RFLP groups were detected, respectively. The variability of genetic patterns within these bacteria could be explained in terms of their geographic origin and/or wide host-range. The results indicated that PCR-RFLP analysis of the recA gene fragment is a useful tool for identification of species and subspecies belonging to the former Erwinia genus, as well as for differentiation of strains within E. carotovora subsp. carotovora and E. chrysanthemi. PMID:11832521

  13. The antimicrobial activity of chitosan on the pathogen (Erwinia chrysanthemi pv.Zeae) of bacterial stalk rot of corn determined by colorimetry%比色法测定壳聚糖对玉米细菌性茎腐病菌的抑制作用

    Institute of Scientific and Technical Information of China (English)

    彭晓江; 刘晓津; 邱道寿; 曾粮斌

    2004-01-01

    通过选择合适的波长建立了玉米细菌性茎腐病菌(Erwinia chrysanthemi pv.zeae)悬浮液浓度与吸光值间的标准曲线,在LB液体培养基中分别设置6种壳聚糖浓度(0、0.5、1.0、2.0、3.5、5.5 mg/mL),用比色分析法测定了各浓度下玉米茎腐病菌的生长状况,并建立生长曲线.通过生长曲线分析表明壳聚糖对玉米茎腐病菌具有显著的抑制作用,且作用强度随壳聚糖浓度的提高而增强.

  14. Characterization and properties of intracellular proteins after cold acclimation of the ice-nucleating bacterium Pantoea agglomerans (Erwinia herbicola) IFO12686.

    Science.gov (United States)

    Koda, N; Aoki, M; Kawahara, H; Yamade, K; Obata, H

    2000-11-01

    The ice-nucleating bacterium Pantoea agglomerans (Erwinia herbicola) IFO12686 (INA(+)) responds to a decrease in temperature by the induction of proteins. The pattern of protein bands from strain IFO12686 following a shift in temperature from 30 to 12 degrees C could be divided into four major groups: (1) increasing protein bands, (2) decreasing protein bands, (3) increasing--decreasing protein bands, and (4) almost constant protein bands. We identified a cryoprotective function in the increasing protein band found in strain IFO12686. The increasing protein bands that followed a reduction in temperature were considered to have an important role in cold acclimation or adaptation. We showed that these proteins possessed cryoprotective activity when tested against the freeze-labile enzyme lactate dehydrogenase. The strain IFO12686 had greater cryotolerance than Pa. agglomerans IAM1595 (INA(-)), and the degree of cryotolerance was increased by cold acclimation. PMID:11161552

  15. Acceptance by Erwinia spp. of R Plasmid R68.45 and Its Ability to Mobilize the Chromosome of Erwinia chrysanthemi†

    OpenAIRE

    Chatterjee, Arun K.

    1980-01-01

    R plasmid R68.45 was transferred in broth matings from Escherichia coli to strains of Erwinia amylovora, E. carotovora subsp. atroseptica, E. chrysanthemi, and E. herbicola (Enterobacter agglomerans); the frequency of transfer ranged from 2 × 10−8 to 5 × 10−4 per input donor cell depending on the bacterial species. The drug resistance markers tet+, amp+, and kan+ were stable in these Erwinia species. Transconjugants of Erwinia spp., but not of the wild-type parent Erwinia strains, acquired le...

  16. Gut colonization by an ice nucleation active bacterium, Erwinia (Pantoea) ananas reduces the cold hardiness of mulberry pyralid larvae.

    Science.gov (United States)

    Watanabe, K; Sato, M

    1999-06-01

    To evaluate the suitability of using ice nucleation active (INA) bacteria for the biological control of insect pests, the supercooling point (SCP) of larvae of mulberry pyralid, Glyphodes duplicalis, and silkworm, Bombyx mori, ingesting INA strains of Erwinia (Pantoea) ananas and Pseudomonas syringae was determined. Mean SCP of the guts of silkworm larvae ingesting INA strains of E. ananas ranged from -2.5 to -2.8 degrees C, being 5 degrees C higher than that in control treatments. Similarly, mean SCP of mulberry pyralid larvae ingesting INA strain of E. ananas, which can grow well in the gut, was -4.7 degrees C at 3 days after treatment, being 6.5 degrees C higher than that in control treatments. On the other hand, mean SCP of the larvae-ingesting INA strain of P. syringae, which cannot grow in the gut, was -9.0 degrees C at 3 days after treatment, rising by only 2.5 degrees C higher than that in the control treatments. In addition, more than 80% of the larvae of mulberry pyralid ingesting the INA strain of E. ananas froze and eventually died when exposed to -6 degrees C for 18 h, while only 36% of the larvae ingesting the INA strain of P. syringae, or approximately 20% of the control larvae, froze and died. Thus, the gut colonization by INA strains of E. ananas reduced remarkably the cold hardiness of the insects. These findings suggest that INA strains of E. ananas could be effective as a potential biological control agent of insect pests. PMID:10413571

  17. Role of antibiotic production by Erwinia herbicola Eh252 in biological control of Erwinia amylovora.

    OpenAIRE

    Vanneste, J L; Yu, J.; Beer, S V

    1992-01-01

    Erwinia herbicola Eh252 is a nonpathogenic epiphytic bacterium that reduces fire blight incidence when sprayed onto apple blossoms before inoculation with Erwinia amylovora, the causal agent of fire blight. Eh252 was found to produce on minimal medium an antibiotic that inhibited the growth of E. amylovora. This antibiotic was inactivated by histidine but not by Fe(II), was sensitive to proteolytic enzymes, and showed a narrow host range of activity. To determine the role of this antibiotic i...

  18. CLONIG AND CHARACTERIZATION OF A NEW ICE NUCLEATION ACTIVEGENE FROM ICE NUCLEATION ACTIVE BACTERIUM ERWINIA ANANAS 110%冰核细菌(Erwinia ananas 110)冰核基因克隆和序列分析

    Institute of Scientific and Technical Information of China (English)

    唐朝荣; 孙福在; 赵廷昌; 李瑞峰

    2002-01-01

    从作者自行分离的冰核细菌(Erwinia ananas110)中克隆到我国第1个细菌冰核基因,并完成其序列测定和分析.所克隆基因编码区全长3921bp,编码1306aa,氨基酸序列明显分为3个区即N-端(161aa)、C-端(41aa)的单一序列区和中部的高度重复序列R区(1104aa),以16氨基酸为重复单元的R区占整个编码序列的84.5%.序列分析表明我们所克隆的基因为一个新冰核基因,将其命名为iceA,该基因已在GenBank上登录,登录号为:AF387802.

  19. Expression of Exogenous Gene in Bacterium Erwinia uredovora%外源基因在噬夏孢欧文氏菌中的表达

    Institute of Scientific and Technical Information of China (English)

    汪靖超; 赵驰; 王波; 杨宏; 李荣贵

    2005-01-01

    用CaCl2法制备噬夏孢欧文氏菌(Erwinia uredovora)感受态细胞,热激处理可使质粒pACYC184转入噬夏孢欧文氏菌细胞,转化率为656 cfu/μg DNA,转入的质粒可以在细胞中稳定存在,并随着细胞分裂而复制,质粒上的氯霉素抗性基因在其启动子的控制下能够高效表达,氯霉素乙酰转移酶可达噬夏孢欧文氏菌菌体总蛋白的30.26%.噬夏孢欧文氏菌可以作为一种新的原核表达系统.

  20. Identification of Erwinia stewartii by a ligase chain reaction assay.

    OpenAIRE

    Wilson, W.J.; Wiedmann, M; Dillard, H. R.; Batt, C A

    1994-01-01

    A PCR-coupled ligase chain reaction (LCR) assay was developed to distinguish the plant pathogenic bacterium Erwinia stewartii from other erwiniae. This new technique allows discrimination to the species level on the basis of a single-base-pair difference in the 16S rRNA gene which is unique to E. stewartii. Portions of the 16S rRNA genes of E. stewartii and the closely related Erwinia herbicola were sequenced. From comparison of the two 16S rRNA gene regions, two primer pairs were constructed...

  1. Isolation and Identification of L-asparaginase producing Erwinia strains which isolated from Potato Farms

    Directory of Open Access Journals (Sweden)

    Arastoo Badoei-Dalfard

    2016-09-01

    Full Text Available Introduction: L-Asparaginase can be effectively used for the treatment of lymphoblastic leukemia. The rapid growth of cancer cells are needed for L-asparagine abundant storage. L-asparaginase catalyzes the hydrolysis of L-asparagine into L-aspartic acid and ammonia. The purpose of this study was to isolate and identify the L-asparaginase producing Erwinia strains from the potato farms of Jiroft. Materials and methods: Pectolytic Erwinia species isolated from crumbling potato in M9 medium. The desired L-asparaginase producing bacteria were isolated based on the color changes. Biochemical-microbial and the plant pathogenicity tests of these strains were also investigated with potato and geranium. The L-asparaginase production and molecular detection of these Erwinia strains were also investigated. Results: In this study, L-asparaginase producing Erwinia was isolated on the CVP and M9 mediums. The inoculation of Erwinia strains on the potato and geranium plants showed that Er8 and Er11 species have the ability to cause plant pathogenicity. Results showed that the maximum pathogenicity of Er8 and Er11 was observed after 48 and 15 h of inoculation in potato and geranium plants, respectively. 16S rDNA sequencing and phylogenetic analyses exhibited that Er8 and Er11 strains were similar to Erwinia chrysanthemi with 98% homology. Discussion and conclusion: Because of several applications of the Erwinia L-asparaginase in various fields, isolated Erwinia and their L-asparaginase can be suitable for applied utilization.

  2. Screening the Antimicrobial Bacterium Strain of Erwinia sp .5-8 From Guangxi Mangrove and Optimazing its Fermentation Conditions%广西钦州湾红树林抗菌活性菌株 Erwinia sp .5-8的筛选及发酵条件的优化

    Institute of Scientific and Technical Information of China (English)

    孟令洋; 姜伟; 张培玉; 林学政

    2015-01-01

    以金黄色葡萄球菌为指示菌,采用琼脂扩散法从国家海洋局海洋生物活性物质重点实验室广西钦州湾红树林微生物资源库中筛选获得一株具有明显抑菌效果的菌株5‐8,对该菌株进行了分子鉴定与系统发育分析。结果表明,此菌为欧文氏菌属(Erw inia)。通过单因子试验对其发酵条件进行了优化,优化后发酵条件为:最佳氮源为蛋白胨,最佳碳源为葡萄糖,发酵培养基初始pH值为8.0,发酵温度为25℃,盐度为1.5,摇瓶装液量30%,接种量为1%(V种子液∶V培养液=1∶100)。%In this study ,an antimicrobial bacterium strain ,named 5‐8 ,was screened and isolated from man‐grove of Guang Xi by the method of agar diffusion using Staphylococcus aureu as the indicator strain .The results of molecular identification and phylogenetic analysis showed that this strain belonged to genera of Erwinia .The single factor experiments on the fermentation conditions were conducted and the optimized parameters were as follows :the best nitrogen source is peptone ,the best carbon source is glucose ,the starting pH of medium was 8 .0 ,fermentation temperature was 25℃ ,salinity was 1 .5% ,liquid volume in erlenmeyer flask was 30% and inoculation amount was 1% (Vseed liquid/Vnutrient solutio =1∶100) .

  3. RpoS (Sigma-S) Controls Expression of rsmA, a Global Regulator of Secondary Metabolites, Harpin, and Extracellular Proteins in Erwinia carotovora†

    OpenAIRE

    Mukherjee, Asita; Cui, Yaya; Ma, Weilei; Liu, Yang; Ishihama, Akira; Eisenstark, Abraham; Chatterjee, Arun K.

    1998-01-01

    RpoS (sigma-S or sigma-38) controls a large array of genes that are expressed during stationary phase and under various stress conditions in Escherichia coli and other bacteria. We document here that plant pathogenic and epiphytic Erwinia species, such as E. amylovora; E. carotovora subsp. atroseptica, betavasculorum, and carotovora; E. chrysanthemi; E. herbicola; E. rhapontici; and E. stewartii, possess rpoS genes and produce the alternate sigma factor. We show that rpoS transcription in E. ...

  4. Hypersensitive response and acyl-homoserine lactone production of the fire blight antagonists Erwinia tasmaniensis and Erwinia billingiae.

    Science.gov (United States)

    Jakovljevic, Vladimir; Jock, Susanne; Du, Zhiqiang; Geider, Klaus

    2008-09-01

    Fire blight caused by the Gram-negative bacterium Erwinia amylovora can be controlled by antagonistic microorganisms. We characterized epiphytic bacteria isolated from healthy apple and pear trees in Australia, named Erwinia tasmaniensis, and the epiphytic bacterium Erwinia billingiae from England for physiological properties, interaction with plants and interference with growth of E. amylovora. They reduced symptom formation by the fire blight pathogen on immature pears and the colonization of apple flowers. In contrast to E. billingiae, E. tasmaniensis strains induced a hypersensitive response in tobacco leaves and synthesized levan in the presence of sucrose. With consensus primers deduced from lsc as well as hrpL, hrcC and hrcR of the hrp region of E. amylovora and of related bacteria, these genes were successfully amplified from E. tasmaniensis DNA and alignment of the encoded proteins to other Erwinia species supported a role for environmental fitness of the epiphytic bacterium. Unlike E. tasmaniensis, the epiphytic bacterium E. billingiae produced an acyl-homoserine lactone for bacterial cell-to-cell communication. Their competition with the growth of E. amylovora may be involved in controlling fire blight.

  5. Bacterieziekte Erwinia groeiend probleem

    NARCIS (Netherlands)

    Wolf, van der J.M.

    2012-01-01

    Het grootste probleem van Nederlandse pootgoedtelers is tegenwoordig de bacterieziekte Erwinia. Het is een sluipmoordenaar waar nog geen bestrijdingsmiddelen tegen bestaan. Maar onderzoekers komen steeds meer over de bacterie te weten.

  6. L-asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase

    Science.gov (United States)

    Pieters, Rob; Hunger, Stephen P; Boos, Joachim; Rizzari, Carmelo; Silverman, Lewis; Baruchel, Andre; Goekbuget, Nicola; Schrappe, Martin; Pui, Ching-Hon

    2010-01-01

    Asparaginases are a cornerstone of treatment protocols for acute lymphoblastic leukemia (ALL) and are used for remission induction and intensification treatment in all pediatric regimens and in the majority of adult protocols. Extensive clinical data have shown that intensive asparaginase treatment improves clinical outcomes in childhood ALL. Three asparaginase preparations are available; the native asparaginase derived from Escherichia coli (E. coli-asparaginase), a pegylated form of this enzyme (PEG-asparaginase) and a product isolated from Erwinia chrysanthemi, i.e. Erwinia asparaginase. Clinical hypersensitivity reactions and silent inactivation due to antibodies against E.coli-asparaginase, lead to inactivation of E-Coli asparaginase in up to 60% of cases. Current treatment protocols include E. coli-asparaginase or PEG-asparaginase for first-line treatment of ALL. Typically, patients exhibiting sensitivity to one formulation of asparaginase are switched to another product to ensure they receive the most efficacious treatment regimen possible. Erwinia asparaginase is used as a second- or third-line treatment in European and US protocols. Despite the universal inclusion of asparaginase in such treatment protocols, there is much debate regarding the optimal formulation and dosage of these agents. This manuscript provides an overview of available evidence to make recommendations for optimal use of Erwinia asparaginase in the treatment of ALL. PMID:20824725

  7. L-asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase.

    Science.gov (United States)

    Pieters, Rob; Hunger, Stephen P; Boos, Joachim; Rizzari, Carmelo; Silverman, Lewis; Baruchel, Andre; Goekbuget, Nicola; Schrappe, Martin; Pui, Ching-Hon

    2011-01-15

    Asparaginases are a cornerstone of treatment protocols for acute lymphoblastic leukemia (ALL) and are used for remission induction and intensification treatment in all pediatric regimens and in the majority of adult treatment protocols. Extensive clinical data have shown that intensive asparaginase treatment improves clinical outcomes in childhood ALL. Three asparaginase preparations are available: the native asparaginase derived from Escherichia coli (E. coli asparaginase), a pegylated form of this enzyme (PEG-asparaginase), and a product isolated from Erwinia chrysanthemi, ie, Erwinia asparaginase. Clinical hypersensitivity reactions and silent inactivation due to antibodies against E. coli asparaginase, lead to inactivation of E. coli asparaginase in up to 60% of cases. Current treatment protocols include E. coli asparaginase or PEG-asparaginase for first-line treatment of ALL. Typically, patients exhibiting sensitivity to one formulation of asparaginase are switched to another to ensure they receive the most efficacious treatment regimen possible. Erwinia asparaginase is used as a second- or third-line treatment in European and US protocols. Despite the universal inclusion of asparaginase in such treatment protocols, debate on the optimal formulation and dosage of these agents continues. This article provides an overview of available evidence for optimal use of Erwinia asparaginase in the treatment of ALL.

  8. Fructan from Erwinia herbicola.

    OpenAIRE

    Blake, J D; Clarke, M L; Jansson, P E; McNeil, K E

    1982-01-01

    Levan production by strains of Erwinia herbicola is common, and this property has some taxonomic significance for species differentiation within the "herbicola" group. The extracellular polysaccharide elaborated by strain 403 was characterized by nuclear magnetic resonance spectroscopy and methylation analysis. Results showed it to be a typical bacterial levan.

  9. Monitoring of Erwinia amylovora in Montenegro

    Directory of Open Access Journals (Sweden)

    Dragana Radunović

    2015-09-01

    Full Text Available Recent studies of Erwinia amylovora in Montenegro, conducted from 2012 to 2014, indicated that the bacterium was widespread in the northern, continental part of the country, where the most important fruit-growing regions are situated. The presence of the bacterium was confirmed on quince, pear, apple, medlar and hawthorn. Pathogenic, cultural and biochemical characteristics of E. amylovora strains sampled from pome fruit species and indigenous flora in Montenegro had been studied previously. In the present study, serological tests were used for identification of E. amylovora strains originating from pome fruit trees and indigenous plants. Monitoring of E. amylovora and collection of samples with symptoms of bacterial fire blight from different hosts and locations were performed in Montenegro from 2012 to 2014. Isolation of the bacterium on nutrient medium produced a large number of isolates, whose pathogenicity was confirmed on immature pear fruits. Twenty-seven strains of the bacterium, originating from three pome fruit species (quince, pear and apple and one indigenous species (hawthorn were selected for serological analyses. Two applied serological methods, ELISA and IF test, enabled rapid detection of the bacterium and simultaneous examination of a large number of samples over a short period of time. Serological analyses showed high homogeneity in antigenic structure of the studied E. amylovora strains sampled from quince, pear, apple and hawthorn from nine locations in Montenegro.

  10. 'Preventie belangrijkste troef tegen Erwinia'

    NARCIS (Netherlands)

    Doorn, van J.

    2012-01-01

    De bollenteelt en -handel ondervindt aanzienlijke schade van de bacterieziekte Erwinia. Onderzoek wijst uit dat preventie het belangrijkste wapen is. Mogelijk bieden ook stofjes die de afweer van planten verbeteren een oplossing.

  11. UV-induced filamentation in bacteria of the generum Erwinia

    International Nuclear Information System (INIS)

    It is experimentally shown that cells of 56 pectolytic Erwinia strains isolated at different tomus in different states from various natural sources are converted into filaments under UV-light effect in relatively low doses which allows one to refer them to natural Fil+ - organisms. Ability to filamentation in Erwinia bacterium correlates with secretion process to the environment of pectolytic enzymes. Bacteria of 9 E.herbicola strains investigated (without pectatlyase secretion) after irradiation do not form stretched cells. Based on the results obtained a conclusion is drawn that increased ENA49 E.chrysanthemic cell sensitivity to UV light results from its natural defect in the system, providing for cell division processes like the one revealed in E.CoLiB and Lon- - mutants of E.Coli K-12

  12. Dickeya dadantii, a plant pathogenic bacterium producing Cyt-like entomotoxins, causes septicemia in the pea aphid Acyrthosiphon pisum.

    Directory of Open Access Journals (Sweden)

    Denis Costechareyre

    Full Text Available Dickeya dadantii (syn. Erwinia chrysanthemi is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera. The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 10(8 cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria.

  13. Toetsen om Erwinia in bloembollen aan te tonen : onderzoek Erwinia

    NARCIS (Netherlands)

    Doorn, van J.; Hollinger, T.C.; Kampen, van D.; Vreeburg, P.J.M.; Leeuwen, van P.J.; Wolf, van der J.M.

    2007-01-01

    Binnen het Erwiniaproject is een aantal toetsen ontwikkeld en zijn andere nog in ontwikkeling. Deze toetsen moeten liefst ook latent aanwezige Erwiniastammen kunnen aantonen. Dit lukt door monsters in een voedingsbodem voor Erwinia te brengen en na kweek deze bacteriën aan te tonen met serologische

  14. Molecular characterization of global regulatory RNA species that control pathogenicity factors in Erwinia amylovora and Erwinia herbicola pv. gypsophilae.

    Science.gov (United States)

    Ma, W; Cui, Y; Liu, Y; Dumenyo, C K; Mukherjee, A; Chatterjee, A K

    2001-03-01

    rsmB(Ecc) specifies a nontranslatable RNA regulator that controls exoprotein production and pathogenicity in soft rot-causing Erwinia carotovora subsp. carotovora. This effect of rsmB(Ecc) RNA is mediated mostly by neutralizing the function of RsmA(Ecc), an RNA-binding protein of E. carotovora subsp. carotovora, which acts as a global negative regulator. To determine the occurrence of functional homologs of rsmB(Ecc) in non-soft-rot-causing Erwinia species, we cloned the rsmB genes of E. amylovora (rsmB(Ea)) and E. herbicola pv. gypsophilae (rsmB(Ehg)). We show that rsmB(Ea) in E. amylovora positively regulates extracellular polysaccharide (EPS) production, motility, and pathogenicity. In E. herbicola pv. gypsophilae, rsmB(Ehg) elevates the levels of transcripts of a cytokinin (etz) gene and stimulates the production of EPS and yellow pigment as well as motility. RsmA(Ea) and RsmA(Ehg) have more than 93% identity to RsmA(Ecc) and, like the latter, function as negative regulators by affecting the transcript stability of the target gene. The rsmB genes reverse the negative effects of RsmA(Ea), RsmA(Ehg), and RsmA(Ecc), but the extent of reversal is highest with homologous combinations of rsm genes. These observations and findings that rsmB(Ea) and rsmB(Ehg) RNA bind RsmA(Ecc) indicate that the rsmB effect is channeled via RsmA. Additional support for this conclusion comes from the observation that the rsmB genes are much more effective as positive regulators in a RsmA(+) strain of E. carotovora subsp. carotovora than in its RsmA(-) derivative. E. herbicola pv. gypsophilae produces a 290-base rsmB transcript that is not subject to processing. By contrast, E. amylovora produces 430- and 300-base rsmB transcripts, the latter presumably derived by processing of the primary transcript as previously noted with the transcripts of rsmB(Ecc). Southern blot hybridizations revealed the presence of rsmB homologs in E. carotovora, E. chrysanthemi, E. amylovora, E. herbicola, E

  15. Functional expression of zeaxanthin glucosyltransferase from Erwinia herbicola and a proposed uridine diphosphate binding site.

    OpenAIRE

    Hundle, B S; O'Brien, D A; Alberti, M; Beyer, P; Hearst, J E

    1992-01-01

    Erwinia herbicola, a nonphotosynthetic bacterium, is yellow colored due to the accumulation of unusually polar carotenoids, primarily mono- and diglucosides of zeaxanthin. We have cloned and expressed the gene for the enzyme that catalyzes the glucosylation of zeaxanthin. The enzyme has an apparent molecular mass of 45 kDa on an SDS/polyacrylamide gel, which is consistent with its calculated molecular mass. In vitro enzymatic activity was demonstrated using UDP-[14C]glucose and zeaxanthin as ...

  16. [The analyses and identification of Flos rhododendri mollis and Flos chrysanthemi indici via infrared spectroscopy].

    Science.gov (United States)

    Jin, Zhe-Xiong; Wang, Yue; Zhou, Qun; Chen, Jian-Bo; Ma, Fang; Sun, Su-Qin

    2014-09-01

    In this study, major chemical components of Flos rhododendri mollis and Flos chrysanthemi indici were characterized using Fourier transform infrared spectroscopy (FTIR). For Flos rhododendri mollis, the bands at 1,648 and 1,543 cm(-1) were attributed to amide I and amide II , respectively, indicating that it contained proteins probably resulting in immunization. In case of Flos chrysanthemi indici, stretching vibration of C==O function group was responsible for the bands at 1,734 and 1,515 cm(-1), as a result of essential oils, lipids, etc. Since FTIR spectra of Flos rhododendri mollis and Flos chrysanthemi indici are almost identical and it is difficult to discriminate them, two-step identification was investigated via secondary derivative of the FTIR spectra. The bands at 1,656 and 1,515 cm(-1) corresponds to flavonoides in Flos rhododendri mollis and Flos chrysanthemi indici. In the secondary derivative of the FTIR spectrum of Flos chrysanthemi indici, characteristic bands of inulin were present at 1,163, 1,077, 1,026, 986 and 869 cm(-1), and therefore Flos chrysanthemi indici contained inulin as well. Tri-step identification was carried out for Flos rhododendri mollis and Flos chrysanthemi indici by means of comparing their 2D-IR correlation spectra in different wave number range. In the characteristic range of flavonoides (1,700-1,400 cm(-1)), Flos rhododendri mollis exhibited 3 obvious autopeaks, while 10 autopeaks were visualized in the 2D-IR correlation spectrum of Flos chrysanthemi indici Moreover, in the characteristic range of glucoside (1,250-900 cm(-1)), 10 and 9 autopeaks were present in the 2D-IR correlation spectra of Flos rhododendri mollis and Flos chrysanthemi indici, respectively. Therefore, the tri-step identification of FTIR is a time-saving; accurate, cost-saving and convenient method to effectively distinguish traditional Chinese medicines. PMID:25532340

  17. Predictive modelling of the combined effect of temperature and water activity on the in vitro growth of Erwinia spp. infecting potato tubers in Belgium

    Directory of Open Access Journals (Sweden)

    Moh, AA.

    2011-01-01

    Full Text Available Erwinia carotovora ssp. atroseptica (Eca, Erwinia carotovora ssp. carotovora (Ecc and Erwinia chrysanthemi (Ech, are the main cause of potato tuber decay (soft rot in storage and stem rot in the field (blackleg. The bacteria are characterized by the production of several extracellular pectic enzymes among them Pectate Lyase (PEL activity is the most important key of pathogenesis. It has been reported that ecological parameters such as humidity and temperature, greatly influence the disease development. The objective of this work was to determine the in vitro effect of water activity (0.960, 0.980, 0.997 and temperature (10, 15 and 20°C and their interactions on the growth parameters of Eca, Ecc and Ech using optical density (OD measurement. The maximum specific growth rate (µmax was calculated under each aw-temperature combinations for the three Erwinia species. Statistical analysis showed a significant effect of aw and temperature on µmax. We noticed that Eca and Ecc grow faster than Ech in our condition. A second aim of this work was to monitor the PEL specific activity under the combined effect of these two factors (aw-temperature. Our results showed an increase of PEL specific activity with the temperature whatever are the bacterial strains. But contrary to growth, this research did not show an increase of PEL specific activity with aw except the treatment at 15 and 20°C for all bacteria strains. According to our obtained results on growth and PEL production we concluded that Eca 03034/1 and Ecc 030033 had the same ecological behavior comparatively to Ech 03/016/1 in the range of the values of the two factors (aw and temperature investigated here. To our knowledge, this research is the first publication which pointed out the combined in vitro effect of aw and temperature on the growth of Erwinia genius according to literature data.

  18. Simplified Extraction and Cleanup for Multiresidue Determination of Pyrethroid Insecticides in Chrysanthemi

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A simplified method for determining 4 pyrethroid insecticides (Fenpropathrin,Cypermethrin,Fenvalirate,and Deltamethrin)in Chrysanthemi is described.Standards were fortified in to Chrysanthemi (5g)with two levels,)0.1-1ppm the pyrethroid pesticides are extracted with petroleum ether and cleaned up by natural aluminum oxide.The extracts are analyzed by gas chromatography equipped with electron capture detector (ECD).Analysis of fortified Chrysanthemi(n=3)shows recovery range from 99-102% at 1 ppm level and 93-104% at 0.1 ppm level. The coefficient of variation of the method at 1st level was 0.12 and 0.14 for 2ed level.The detection limits of the method ranged from 0.04ppb to 28ppb.The method is repid,sample,and sensitive and is applicable to the determination of Fenpropathrin,Cypermethrin,Fenvalirate,and Deltamethrin in Chrysanthemi.

  19. Reclassification of non-pigmented Erwinia herbicola strains from trees as Erwinia billingiae sp. nov.

    Science.gov (United States)

    Mergaert, J; Hauben, L; Cnockaert, M C; Swings, J

    1999-04-01

    Twenty-two Erwinia-like strains, isolated from trees since the late fifties and belonging to a distinct phenotypic group with resemblance to Pantoea agglomerans, were further characterized by conventional biochemical tests, the BIOLOG metabolic fingerprinting system and fatty acid analysis. Their phylogenetic positions were determined by comparing the 16S rRNA gene sequence of a representative strain to available sequences of Erwinia, Pantoea, Pectobacterium and Brenneria species. The strains were shown to belong to the genus Erwinia, with Erwinia rhapontici and Erwinia persicina as the closest phylogenetic relatives. The name Erwinia billingiae sp. nov. is proposed (type strain LMG 2613T) and a description of the species is given. PMID:10319458

  20. Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR(Ecc).

    Science.gov (United States)

    Andersson, R A; Eriksson, A R; Heikinheimo, R; Mäe, A; Pirhonen, M; Kõiv, V; Hyytiäinen, H; Tuikkala, A; Palva, E T

    2000-04-01

    The production of the main virulence determinants of the plant pathogen Erwinia carotovora subsp. carotovora, the extracellular cell wall-degrading enzymes, is partly controlled by the diffusible signal molecule N-(3-oxohexanoyl)-L-homoserine lactone (OHHL). OHHL is synthesized by the product of the expI/carI gene. Linked to expI we found a gene encoding a putative transcriptional regulator of the LuxR-family. This gene, expR(Ecc), is transcribed convergently to the expI gene and the two open reading frames are partially overlapping. The ExpR(Ecc) protein showed extensive amino acid sequence similarity to the repressor EsaR from Pantoea stewartii subsp. stewartii (formerly Erwinia stewartii subsp. stewartii) and to the ExpR(Ech) protein of Erwinia chrysanthemi. Inactivation of the E. carotovora subsp. carotovora expR(Ecc) gene caused no decrease in virulence or production of virulence determinants in vitro. In contrast, there was a slight increase in the maceration capacity of the mutant strain. The effects of ExpR(Ecc) were probably mediated by changes in OHHL levels. Inactivation of expR(Ecc) resulted in increased OHHL levels during early logarithmic growth. In addition, overexpression of expR(Ecc) caused a clear decrease in the production of virulence determinants and part of this effect was likely to be caused by OHHL binding to ExpR(Ecc). ExpR(Ecc) did not appear to exhibit transcriptional regulation of expI, but the effect on OHHL was apparently due to other mechanisms. PMID:10755301

  1. Erwinia berokkent pootgoedsector vele miljoenen schade

    NARCIS (Netherlands)

    Prins, H.; Breukers, A.

    2008-01-01

    De besmetting met Erwinia ontwikkelt zich de laatste jaren tot een serieus probleem in de pootgoedsector. Voor telers ontstaat inkomensderving door lagere opbrengstprijzen en onbruikbare pootgoedvoorraden. Handelshuizen lijden schade door margedaling en reclameringen. Een aantasting van het imago va

  2. Cloning and sequencing of an ice nucleation active gene of Erwinia uredovora.

    Science.gov (United States)

    Michigami, Y; Watabe, S; Abe, K; Obata, H; Arai, S

    1994-04-01

    An ice nucleation activity gene, named inaU, of the bacterium Erwinia uredovora KUIN-3 has been sequenced. This gene encodes a protein of 1034 amino acid residues, and its expression product, inaU protein, has an 832-amino acid residue segment consisting of 52 repeats of closely related 16-amino acid motifs (R-domain), flanked by N- and C-terminal sequences (N- and C-domains, respectively). The primary structure of the inaU protein is similar to those of the inaA, inaW, and inaZ gene products of Erwinia ananas, Pseudomonas fluorescens, and Pseudomonas syringae, respectively, but is smaller than any of these products in terms of the size of the R-domain. PMID:7764866

  3. The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae: characterization and role in gall formation.

    OpenAIRE

    Lichter, A; Barash, I; Valinsky, L.; Manulis, S

    1995-01-01

    A locus conferring cytokinin production was previously isolated from the gall-forming bacterium Erwinia herbicola pv. gypsophilae. This locus resided in a cluster with the genes specifying indole-3-acetic acid production on the pathogenicity-associated plasmid pPATH (A. Lichter, S. Manulis, O. Sagee, Y. Gafni, J. Gray, R. Meilen, R. O. Morris, and I. Barash, Mol. Plant Microbe Interact., 8:114-121, 1995). Sequence analysis of this locus indicated the presence of a cytokinin biosynthesis gene ...

  4. The influence of plant extracts on growth of Erwinia amylovora - the causal agent of fire blight

    Directory of Open Access Journals (Sweden)

    Grzegorz Krupiński

    2013-12-01

    Full Text Available Ethanol and water extracts obtained on Soxhlet apparatus from various organs and parts (leaves, flowers, shoots, onion, bark, fruit of 30 herbal and woody plants species were tested for growth inhibition of Erwinia amylovora using agar diffusion method. Active extracts were found in 23 plant species but in 13 ofthem it was found for the first time. The highest diameter of growth inhibition zone of this bacterium was caused by extracts from Aloe arborescens, Juglans regia, Rhus typhina, Salvia offici nalis and Satureja hortensis. In almost all cases ethanol appeared to be a better solvent of active plant substances against E.amylovora than water.

  5. Bacteria of the genus Erwinia found in the spermatheca of the laurel psyllid Trioza alacris.

    Science.gov (United States)

    Marchini, Daniela; Ciolfi, Silvia; Gottardo, Marco; Marri, Laura

    2014-12-01

    Psylloidea are economically important insects causing serious damage to plants by direct feeding and/or vectoring bacterial pathogens. Results reported here indicate the presence of extracellular bacteria in the spermatheca of egg-laying Trioza alacris females. One phylotype, sharing 99 % identity with the non-phytopathogenic bacterium Erwinia tasmaniensis, was identified regardless of methods applied or insect sampling year and location. This is the first study, achieved by ultrastructural, cultural, and 16S rRNA gene-based analysis, of an insect spermatheca microbiota.

  6. Carbohydrate and ethane release with Erwinia carotovora subspecies betavasculorum--induced necrosis.

    Science.gov (United States)

    Kuykendall, L David; Hunter, William J

    2008-02-01

    Erwinia carotovora subspecies betavasculorum, also known as E. betavasculorum and Pectobacterium betavasculorum, is a soil bacterium that has the capacity to cause root rot necrosis of sugarbeets. The qualitatively different pathogenicity exhibited by the virulent E. carotovora strain and two avirulent strains, a Citrobacter sp. and an Enterobacter cloacae, was examined using digital analysis of photographic evidence of necrosis as well as for carbohydrate, ethane, and ethylene release compared with uninoculated potato tuber slices. Visual scoring of necrosis was superior to digital analysis of photographs. The release of carbohydrates and ethane from potato tuber slices inoculated with the soft rot necrosis-causing Erwinia was significantly greater than that of potato tuber slices that had not been inoculated or that had been inoculated with the nonpathogenic E. cloacae and Citrobacter sp. strains. Interestingly, ethylene production from potato slices left uninoculated or inoculated with the nonpathogenic Citrobacter strain was 5- to 10-fold higher than with potato slices inoculated with the pathogenic Erwinia strain. These findings suggest that (1) carbohydrate release might be a useful measure of the degree of pathogenesis, or relative virulence; and that (2) bacterial suppression of ethylene formation may be a critical step in root rot disease formation.

  7. Bacteriocin Serratine-P as a biological tool in the control of fire blight Erwinia amylovora.

    Science.gov (United States)

    Schoofs, H; Vandebroek, K; Pierrard, A; Thonart, P; Lepoivre, P; Beaudry, T; Deckers, T

    2002-01-01

    Fire blight, caused by the bacterium Erwinia amylovora (Burill Winslow et al.), is the most important bacterial disease in European pear growing. It can cause a lot of damage in some countries on apple and on pear trees in orchards and also in the fruit tree nurseries. In Belgium, the disease is present since 1972. Control of fire blight in Belgian fruit orchards is made on a broad basis of measurements in and around the fruit trees. The use of an antibiotic is allowed for application only during the primary blossom period under strict controlled regulations. The use of antobiotics in agriculture is strongly discussed on the European level today and will probably disappear in the near future. Therefore, the research on fire blight control concentrates on the possibilities of biological control with antagonistic bacteria such as Pantoea agglomerans (Erwinia herbicola), Bacillus subtilis or Pseudomonas syringae strain A 506. The use of Serratine-P, a phage tail-like bacteriocin, produced by Serratia plymiticum, shows an interesting antibacterial activity against Erwinia amylovora. Its mode of action consists in the perforation of the cytoplasmic membrane of the target cell, inducing perturbations in cellular exchanges and a final lysis of the bacterial cell. In this paper some trials are discussed on the use of Serratine-P at different doses and on different infection types on pear trees. The results indicate interesting protection possibilities on blossom- and fruit infections. PMID:12701444

  8. Export of the HR eliciting protein, Harpin(Es), of the maize pathogen Erwinia stewartii is species-specific but is independent of the growth temperature.

    Science.gov (United States)

    Ahmad, Musharaf; Alam, Syed Sartaj; Alam, Shah; Usman, Amjad; Coplin, David L

    2007-01-01

    The extra-cellular export of the HR-eliciting protein, Harpin(Es) of the maize pathogen Erwinia stewartii was studied to find out if the protein needs any species-specific signal for its export and to determine if the export of the protein to the medium is affected in any way by the growth temperature. Based upon the experimental evidence, it was proved that the protein (i.e., Harpin(Es)) does require its own export system (species-specific) to get out of the bacterial cell and can not be exported by the export system of even the very closely related bacterium, Erwinia amylovora. It was also found that the export of Harpin(Es) is, unlike the case of Harpin(Ea) (HR-eliciting protein of Erwinia amylovora), independent of the growth temperature.

  9. Comparative genomics of Japanese Erwinia pyrifoliae strain Ejp617 with closely related erwinias.

    Science.gov (United States)

    Thapa, Shree P; Park, Duck H; Kim, Won S; Choi, Beom S; Lim, Jong S; Choi, Ik Y; Hur, Jang H; Lim, Chun K

    2013-02-01

    Japanese Erwinia pyrifoliae strains cause bacterial shoot blight of pear (BSBP) in Japan. The genetics of Japanese Erwinia remains largely unknown relative to the abundant genomic information available for other Erwinia strains. We compared the genome of Japanese and Korean E. pyrifoliae strains along with those of E. amylovora and E. tasmaniensis. Comparisons with the Korean E. pyrifoliae strain revealed numerous gene insertions/deletions, rearrangements, and inversions in the central regions of the chromosomes. Approximately 80% (2843) of coding DNA sequences (CDSs) are shared by these two genomes which represent about three-quarters of the genome, and there are about 20% unique CDSs. Comparative analysis with closely related erwinias showed that 1942 (more than 50%) core open reading frames (ORF) are shared by all these strains. In addition to two type III secretion systems (hrp/dsp and inv/spa), the genome of Ejp617 encodes numerous virulence factors, including a type VI secretion system, an exopolysaccharide synthesis cluster, and another protein secretion system present in plant pathogenic Erwinia strains. The availability of whole genome sequence should provide a resource to further improve the understanding of pathogenesis in Japanese E. pyrifoliae Ejp617 and to facilitate evolutionary studies among the species of the genus Erwinia.

  10. Functional Characterization of Cyclic Adenosine Monphosphate (cAMP)Recptor Protein Gene (crp) from Erwinia amylovora%梨火疫菌(Erwinia amylovora)环腺苷酸受体蛋白基因(crp)的功能分析

    Institute of Scientific and Technical Information of China (English)

    刘倩倩; 于洋洋; 宋俊贤; 胡白石; 范加勤; 刘凤权

    2010-01-01

    梨火疫菌(Erwinia amylovora)可引起梨、苹果等蔷薇科(Rosaceae)植物的火疫病.在菊欧文氏菌(Erwinia chrysanthemi)中,由crp基因编码的环腺苷酸受体蛋白(cyclic adenosine monphosphate(cAMP)receptor protein,CRP)对果胶酶基因的表达调控和菌株致病性起着重要的作用.本研究首次鉴定并克隆出梨火疫菌中的crp同源基因,命名为Eacrp,并通过同源重组的方法,构建了梨火疫菌的crp基因突变体Ea△crp以及互补子,进行了致病性、过敏性反应、胞外多糖、鞭毛运动等一系列相关表型的鉴定.结果表明,crp基因影响着梨火疫菌的致病性、胞外多糖、游动性、生长情况等多种生物学特性,然而,Ea△crp仍能引起烟草过敏性反应,并且在过氧化氢敏感度以及沉降性、生物膜和AI-2信号分子的生成方面与野生型菌株相比差异明显.本研究结果说明,梨火疫菌crp基因对病菌的胞外多糖分泌、生长、游动性以及致病性方面具有关键作用.

  11. Trefkans detectie Erwinia in pootgoed toegenomen

    NARCIS (Netherlands)

    Wolf, van der J.M.

    2014-01-01

    Binnen het Deltaplan Erwinia is een methode ontwikkeld die met grotere zekerheid de aanwezigheid van de Erwinia’s, Pectobacterium en Dickeya, in pootgoed kan aantonen. De verbeterde methode maakt gebruik gemaakt van uitschotknollen die op de sorteerband uitgeselecteerd zijn en een toets waarbij de g

  12. Deltaplan Erwinia hielp piepers en bollen vooruit

    NARCIS (Netherlands)

    Dwarswaard, A.; Doorn, van J.

    2013-01-01

    Vier jaar lang werkte de bloembollensector samen met de aardappelsector aan de gezamenlijke bacterieziekte Erwinia. In beide sectoren was al het nodige voorwerk gedaan. Op 12 december 2012 werd het project afgesloten. Met de hoop op toch nog enige vorm van voortzetting.

  13. Evolutionary insights from Erwinia amylovora genomics.

    Science.gov (United States)

    Smits, Theo H M; Rezzonico, Fabio; Duffy, Brion

    2011-08-20

    Evolutionary genomics is coming into focus with the recent availability of complete sequences for many bacterial species. A hypothesis on the evolution of virulence factors in the plant pathogen Erwinia amylovora, the causative agent of fire blight, was generated using comparative genomics with the genomes E. amylovora, Erwinia pyrifoliae and Erwinia tasmaniensis. Putative virulence factors were mapped to the proposed genealogy of the genus Erwinia that is based on phylogenetic and genomic data. Ancestral origin of several virulence factors was identified, including levan biosynthesis, sorbitol metabolism, three T3SS and two T6SS. Other factors appeared to have been acquired after divergence of pathogenic species, including a second flagellar gene and two glycosyltransferases involved in amylovoran biosynthesis. E. amylovora singletons include 3 unique T3SS effectors that may explain differential virulence/host ranges. E. amylovora also has a unique T1SS export system, and a unique third T6SS gene cluster. Genetic analysis revealed signatures of foreign DNA suggesting that horizontal gene transfer is responsible for some of these differential features between the three species.

  14. Beheersing van Erwinia vruchtrot in paprika

    NARCIS (Netherlands)

    Vries, de R.S.M.; Hofland-Zijlstra, J.D.; Ludeking, D.J.W.

    2013-01-01

    Doel van dit onderzoek was om infectiebronnen en verspreidingsrisico’s van Erwinia vruchtrot op te sporen, praktijkervaringen te inventariseren en biologische bestrijdingsmethoden te toetsen. Uit de literatuurstudie blijkt dat een hoge RV (> 90%) noodzakelijk is voor het infectieproces. Op een be

  15. New Erwinia-like organism causing cervical lymphadenitis.

    Science.gov (United States)

    Shin, Sang Yop; Lee, Mi Young; Song, Jae-Hoon; Ko, Kwan Soo

    2008-09-01

    The first case of cervical lymphadenitis due to infection by a new Erwinia-like organism is reported. The organism was identified initially as Pantoea sp. by a Vitek 2-based assessment but was finally identified as a member of the genus Erwinia by 16S rRNA gene sequence analysis. The isolate displayed 98.9% 16S rRNA gene sequence similarity to that of E. tasmaniensis and showed phenotypic characteristics that were different from other Erwinia species.

  16. Expression of lysozymes from Erwinia amylovora phages and Erwinia genomes and inhibition by a bacterial protein.

    Science.gov (United States)

    Müller, Ina; Gernold, Marina; Schneider, Bernd; Geider, Klaus

    2012-01-01

    Genes coding for lysozyme-inhibiting proteins (Ivy) were cloned from the chromosomes of the plant pathogens Erwinia amylovora and Erwinia pyrifoliae. The product interfered not only with activity of hen egg white lysozyme, but also with an enzyme from E. amylovora phage ΦEa1h. We have expressed lysozyme genes from the genomes of three Erwinia species in Escherichia coli. The lysozymes expressed from genes of the E. amylovora phages ΦEa104 and ΦEa116, Erwinia chromosomes and Arabidopsis thaliana were not affected by Ivy. The enzyme from bacteriophage ΦEa1h was fused at the N- or C-terminus to other peptides. Compared to the intact lysozyme, a His-tag reduced its lytic activity about 10-fold and larger fusion proteins abolished activity completely. Specific protease cleavage restored lysozyme activity of a GST-fusion. The bacteriophage-encoded lysozymes were more active than the enzymes from bacterial chromosomes. Viral lyz genes were inserted into a broad-host range vector, and transfer to E. amylovora inhibited cell growth. Inserted in the yeast Pichia pastoris, the ΦEa1h-lysozyme was secreted and also inhibited by Ivy. Here we describe expression of unrelated cloned 'silent' lyz genes from Erwinia chromosomes and a novel interference of bacterial Ivy proteins with a viral lysozyme.

  17. PURIFICATION OF GLUTAMINASE ENZYME PRODUCED FROM ERWINIA

    OpenAIRE

    PUSHPINDER PAUL

    2013-01-01

    The purpose of this study was to do Purification of the Glutaminase enzyme produced from free cells of Erwinia species at flask level. Glutaminase can be isolated from a number of sources such as plants, animals and microorganisms. Glutaminase is an important enzyme that serves many functions. It plays a key role in the energy and nitrogen metabolism of mammalian cells. Glutaminase is very important food enzyme used in food industries for flavor enhancement. Glutaminase, in combination with o...

  18. Evaluation of Susceptibility of Different Pear Hybrid Populations to Fire Blight (Erwinia amylovora

    Directory of Open Access Journals (Sweden)

    Yasemin EVRENOSOĞLU

    2011-05-01

    Full Text Available Fire blight disease caused by pathogenic bacterium Erwinia amylovora, is the serious disease of pear, and there is not a certain chemical management against this disease except antibiotic-type compounds such as streptomycin. It is very important to improve new fire blight resistant cultivars in case of integrated disease management. With this purpose, different crosses have been made between Pyrus communis varieties that have good fruit characteristics and resistant cultigens. Besides, self and open pollination treatments have been carried out in maternal plants. The disease resistance level of the hybrids obtained from these combinations was determined by artificial inoculations by Erwinia amylovora in greenhouse conditions. A total of 3284 hybrids were inoculated, and 2631 of them survived and were distributed to different susceptibility classes. 19.88% of the inoculated hybrids was killed by Erwinia amylovora. Total distribution of the hybrids to susceptibility classes was as 6.18% in class “A- slightly susceptible”, 3.11% in class “B- less susceptible”, 8.89% in class “C- mid-susceptible”, 20.28% in class “D- susceptible”, and 61.54% in class “E- very susceptible”. Majority of class “A- slightly susceptible” hybrids were obtained from ‘Magness’ x ‘Ankara’ combination. ‘Kieffer’ x ‘Santa Maria’, ‘Kieffer’ open pollination, ‘Magness’ x ‘Akça’, ‘Magness’ x ‘Kieffer’, ‘Magness’ x ‘Santa Maria’, ‘Mustafa Bey’ x ‘Moonglow’ treatments displayed good results with respect to “A- slightly susceptible” character. It is very important to evaluate these hybrid pear populations through different fruit and tree characteristics in the future.

  19. Pantoea agglomerans: a marvelous bacterium of evil and good.Part I. Deleterious effects: Dust-borne endotoxins and allergens – focus on cotton dust

    OpenAIRE

    Jacek Dutkiewicz; Barbara Mackiewicz; Marta Kinga Lemieszek; Marcin Golec; Janusz Milanowski

    2015-01-01

    The ubiquitous Gram-negative bacterium Pantoea agglomerans (synonyms: Enterobacter agglomerans, Erwinia herbicola) is known both as an epiphytic microbe developing on the surface of plants and as an endophytic organism living inside the plants. The bacterium occurs also abundantly in plant and animal products, in the body of arthropods and other animals, in water, soil, dust and air, and occasionally in humans. From the human viewpoint, the role of this organism is ambiguous, both deleterious...

  20. Comparative Genomics of Erwinia amylovora and Related Erwinia Species—What do We Learn?

    Directory of Open Access Journals (Sweden)

    Youfu Zhao

    2011-09-01

    Full Text Available Erwinia amylovora, the causal agent of fire blight disease of apples and pears, is one of the most important plant bacterial pathogens with worldwide economic significance. Recent reports on the complete or draft genome sequences of four species in the genus Erwinia, including E. amylovora, E. pyrifoliae, E. tasmaniensis, and E. billingiae, have provided us near complete genetic information about this pathogen and its closely-related species. This review describes in silico subtractive hybridization-based comparative genomic analyses of eight genomes currently available, and highlights what we have learned from these comparative analyses, as well as genetic and functional genomic studies. Sequence analyses reinforce the assumption that E. amylovora is a relatively homogeneous species and support the current classification scheme of E. amylovora and its related species. The potential evolutionary origin of these Erwinia species is also proposed. The current understanding of the pathogen, its virulence mechanism and host specificity from genome sequencing data is summarized. Future research directions are also suggested.

  1. Characterization of Monoclonal Antibodies Specific for Erwinia carotovora subsp. atroseptica and Comparison of Serological Methods for Its Sensitive Detection on Potato Tubers.

    Science.gov (United States)

    Gorris, M T; Alarcon, B; Lopez, M M; Cambra, M

    1994-06-01

    Seven monoclonal antibodies (MAbs) to Erwinia carotovora subsp. atroseptica have been produced. One, called 4G4, reacted with high specificity for serogroup I of E. carotovora subsp. atroseptica, the most common serogroup on potato tubers in different serological assays. Eighty-six strains belonging to different E. carotovora subsp. atroseptica serogroups were assayed. Some strains of serogroup XXII also reacted positively. No cross-reactions were observed against other species of plant pathogenic bacteria or 162 saprophytic bacteria from potato tubers. Only one strain of E. chrysanthemi from potato cross-reacted. A comparison of several serological techniques to detect E. carotovora subsp. atroseptica on potato tubers was performed with MAb 4G4 or polyclonal antibodies. The organism was extracted directly from potato peels of artificially inoculated tubers by soaking or selective enrichment under anaerobiosis in a medium with polypectate. MAb 4G4 was able to detect specifically 240 E. carotovora subsp. atroseptica cells per ml by indirect immunofluorescence and immunofluorescence colony staining and after soaking by ELISA-DAS (double-antibody sandwich enzyme-linked immunosorbent assay) after enrichment. The same amount of cells was detected by using immunolectrotransfer with polyclonal antibodies, and E. carotovora subsp. atroseptica and subsp. carotovora were distinguished by the latter technique. ELISA-DAS using MAb 4G4 with an enrichment step also efficiently detected E. carotovora subsp. atroseptica in naturally infected tubers and plants. PMID:16349293

  2. The role of abscisic acid in the defence response of tomato (Solanum lycopersicum) to the necrotrophic pathogens Botrytis cinerea and Erwinia chrysanthemi

    OpenAIRE

    Asselbergh, B.

    2007-01-01

    In order to cope with the constant threat of a wide range of potentially harmful micro-organisms, plants have developed an impressive constitutive and inducible defensive machinery of enormous complexity to combat pathogen invasion. Plant hormones are not only important for controlling plant development, but are also essential to regulate plant responses to the environment. The plant hormones salicylic acid (SA), jasmonate (JA) and ethylene (ET) are classically associated with plant pathogen ...

  3. Erwinia amylovora novel plasmid pEI70: complete sequence, biogeography, and role in aggressiveness in the fire blight phytopathogen.

    Directory of Open Access Journals (Sweden)

    Pablo Llop

    Full Text Available Comparative genomics of several strains of Erwinia amylovora, a plant pathogenic bacterium causal agent of fire blight disease, revealed that its diversity is primarily attributable to the flexible genome comprised of plasmids. We recently identified and sequenced in full a novel 65.8 kb plasmid, called pEI70. Annotation revealed a lack of known virulence-related genes, but found evidence for a unique integrative conjugative element related to that of other plant and human pathogens. Comparative analyses using BLASTN showed that pEI70 is almost entirely included in plasmid pEB102 from E. billingiae, an epiphytic Erwinia of pome fruits, with sequence identities superior to 98%. A duplex PCR assay was developed to survey the prevalence of plasmid pEI70 and also that of pEA29, which had previously been described in several E. amylovora strains. Plasmid pEI70 was found widely dispersed across Europe with frequencies of 5-92%, but it was absent in E. amylovora analyzed populations from outside of Europe. Restriction analysis and hybridization demonstrated that this plasmid was identical in at least 13 strains. Curing E. amylovora strains of pEI70 reduced their aggressiveness on pear, and introducing pEI70 into low-aggressiveness strains lacking this plasmid increased symptoms development in this host. Discovery of this novel plasmid offers new insights into the biogeography, evolution and virulence determinants in E. amylovora.

  4. The Differences among Pear Genotypes to Fire Blight (Erwinia amylovora Attack, Based on Observations of Natural Infection

    Directory of Open Access Journals (Sweden)

    Adriana F. SESTRAS

    2008-08-01

    Full Text Available Fire blight, caused by the bacterium Erwinia amylovora, is one of the most damaging diseases of pear in the world. In Cluj-Napoca area, situated in central Transylvania, Romania, fire blight was observed first in 1994, very late comparative with the other countries from occidental Europe. The response of the pear cultivars and species from National Pear Collection from Cluj-Napoca to fire blight attack, assessed in natural conditions of infection, range on a large scale of variability, which denotes a strong influence of the genotype in expression of resistance or sensitivity to disease. From all genotypes, about 20.5% have not presented symptoms of attack, among them being the following: 'Blanquet precoce', 'Klementinka', 'Severianka', 'Beurre Bachelier', 'Kieffer Seedling', 'Er Shi Shinge', 'Beurre Amanlis', 'Bristol Cross', 'Beurre Liegel', 'Beurre Lucon', 'Grand Champion', 'Magness', 'Mericourt' etc. and several ancient autochthonous cultivars ('Pere malaiete', 'De zahar de Bihor', 'Cu miez rosu', 'Clopotele', 'Garoafa mare', 'Craiese', 'Para de apa'. Also, there were identified several species of Pyrus with no attack, as P. pollveria, P. common pear, P. lindlezi, P. malifolia, P. persica, P. ussuriensis, P. variolosa. The remarked genotypes could be potential sources for further breeding programmes and increase the number of genotypes available for breeding new pear cultivars resistant to Erwinia attack.

  5. Mutational analysis of a predicted double β-propeller domain of the DspA/E effector of Erwinia amylovora.

    Science.gov (United States)

    Siamer, Sabrina; Gaubert, Stéphane; Boureau, Tristan; Brisset, Marie-Noëlle; Barny, Marie-Anne

    2013-05-01

    The bacterium Erwinia amylovora causes fire blight, an invasive disease that threatens apple trees, pear trees and other plants of the Rosaceae family. Erwinia amylovora pathogenicity relies on a type III secretion system and on a single effector DspA/E. This effector belongs to the widespread AvrE family of effectors whose biological function is unknown. In this manuscript, we performed a bioinformatic analysis of DspA/E- and AvrE-related effectors. Motif search identified nuclear localization signals, peroxisome targeting signals, endoplasmic reticulum membrane retention signals and leucine zipper motifs, but none of these motifs were present in all the AvrE-related effectors analysed. Protein threading analysis, however, predicted a conserved double β-propeller domain in the N-terminal part of all the analysed effector sequences. We then performed a random pentapeptide mutagenesis of DspA/E, which led to the characterization of 13 new altered proteins with a five amino acids insertion. Eight harboured the insertion inside the predicted β-propeller domain and six of these eight insertions impaired DspA/E stability or function. Conversely, the two remaining insertions generated proteins that were functional and abundantly secreted in the supernatant suggesting that these two insertions stabilized the protein.

  6. Virulence Factors of Erwinia amylovora: A Review

    Directory of Open Access Journals (Sweden)

    Núria Piqué

    2015-06-01

    Full Text Available Erwinia amylovora, a Gram negative bacteria of the Enterobacteriaceae family, is the causal agent of fire blight, a devastating plant disease affecting a wide range of host species within Rosaceae and a major global threat to commercial apple and pear production. Among the limited number of control options currently available, prophylactic application of antibiotics during the bloom period appears the most effective. Pathogen cells enter plants through the nectarthodes of flowers and other natural openings, such as wounds, and are capable of rapid movement within plants and the establishment of systemic infections. Many virulence determinants of E. amylovora have been characterized, including the Type III secretion system (T3SS, the exopolysaccharide (EPS amylovoran, biofilm formation, and motility. To successfully establish an infection, E. amylovora uses a complex regulatory network to sense the relevant environmental signals and coordinate the expression of early and late stage virulence factors involving two component signal transduction systems, bis-(3′-5′-cyclic di-GMP (c-di-GMP and quorum sensing. The LPS biosynthetic gene cluster is one of the relatively few genetic differences observed between Rubus- and Spiraeoideae-infecting genotypes of E. amylovora. Other differential factors, such as the presence and composition of an integrative conjugative element associated with the Hrp T3SS (hrp genes encoding the T3SS apparatus, have been recently described. In the present review, we present the recent findings on virulence factors research, focusing on their role in bacterial pathogenesis and indicating other virulence factors that deserve future research to characterize them.

  7. Virulence Factors of Erwinia amylovora: A Review.

    Science.gov (United States)

    Piqué, Núria; Miñana-Galbis, David; Merino, Susana; Tomás, Juan M

    2015-06-05

    Erwinia amylovora, a Gram negative bacteria of the Enterobacteriaceae family, is the causal agent of fire blight, a devastating plant disease affecting a wide range of host species within Rosaceae and a major global threat to commercial apple and pear production. Among the limited number of control options currently available, prophylactic application of antibiotics during the bloom period appears the most effective. Pathogen cells enter plants through the nectarthodes of flowers and other natural openings, such as wounds, and are capable of rapid movement within plants and the establishment of systemic infections. Many virulence determinants of E. amylovora have been characterized, including the Type III secretion system (T3SS), the exopolysaccharide (EPS) amylovoran, biofilm formation, and motility. To successfully establish an infection, E. amylovora uses a complex regulatory network to sense the relevant environmental signals and coordinate the expression of early and late stage virulence factors involving two component signal transduction systems, bis-(3'-5')-cyclic di-GMP (c-di-GMP) and quorum sensing. The LPS biosynthetic gene cluster is one of the relatively few genetic differences observed between Rubus- and Spiraeoideae-infecting genotypes of E. amylovora. Other differential factors, such as the presence and composition of an integrative conjugative element associated with the Hrp T3SS (hrp genes encoding the T3SS apparatus), have been recently described. In the present review, we present the recent findings on virulence factors research, focusing on their role in bacterial pathogenesis and indicating other virulence factors that deserve future research to characterize them.

  8. Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short‑chain fatty acids.

    Science.gov (United States)

    Konecki, Katrin; Gernold, Marina; Wensing, Annette; Geider, Klaus

    2013-11-01

    Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight.

  9. Plasmid ColVBtrp maintenance in Erwinia carotovora.

    OpenAIRE

    Schukin, N N

    1981-01-01

    Plasmid ColVBtrp maintenance in Erwinia carotovora cells was followed by measuring kinetics of elimination of plasmid genetic markers and loss of plasmid deoxyribonucleic acid. An E. carotovora mutant stably carrying plasmid ColVBtrp was isolated. Besides stable plasmid maintenance, the mutant showed altered sensitivity to male-specific phage MS2, sensitivity to drugs, and colony morphology.

  10. Hyacintentelers stemmen in met aanpak Erwinia en fonds onderzoek

    NARCIS (Netherlands)

    Dwarswaard, A.; Vreeburg, P.J.M.

    2013-01-01

    Twee stevige onderwerpen telde de agenda van de jaarvergadering van de KAVB-productgroep Hyacint. Het voorstel om werkbollen te gaan toetsen op Erwinia kreeg bijval, en ook het plan om een fonds te vormen waaruit hyacintenonderzoek wordt betaald werd met instemming begroet.

  11. Fysische, chemische en biologische bestrijding van pectinolytische Erwinia's

    NARCIS (Netherlands)

    Wolf, van der J.M.; Doorn, van J.

    2006-01-01

    Rotveroorzakende bacteriën, met name pectinolytische Erwinia spp., zijn verantwoordelijk voor veel schade in de diverse gewassen, vooral in de teelt van aardappelen en de bloembolgewassen hyacint, zantedeschia en iris. In deze literatuurstudie worden de beschikbare gegevens nog eens nader bekeken va

  12. Proteins from Erwinia asparaginase Erwinase ® and E. coli asparaginase 2 MEDAC ® for treatment of human leukemia, show a multitude of modifications for which the consequences are completely unclear.

    Science.gov (United States)

    Bae, Narkhyun; Pollak, Arnold; Lubec, Gert

    2011-07-01

    L-Asparaginase from Erwinia chrysanthemi (ASPG_ERWCH; UniProtKB accession number P06608 (Erwinase(®))) and L-asparaginase 2 from Escherichia coli (ASPG2_ECOLI; UniProtKB accession number P00805 (Medac(®))), both L-asparagine amidohydrolases, are widely used for the treatment of acute lymphoblastic leukemia. A series of serious side effects have been reported and this warrants studies into the protein chemistry of the medical products sold. Mass spectrometry (MS) data on ASPG_ERWCH and ASPG2_ECOLI have not been published so far and herein a gel-based proteomics study was performed to provide information about sequence and modifications of the commercially available medical products. ASPG_ERWCH and ASPG2_ECOLI were applied onto two-dimensional gel electrophoresis, spots were in-gel digested with several proteases and resulting peptides and protein modifications were analysed by nano-ESI-LC-MS/MS. Four spots were observed for ASPG_ERWCH, six spots were observed for ASPG2_ECOLI and the identified proteins showed high sequence coverage without sequence conflicts. Several protein modifications including technical and posttranslational modifications were demonstrated. Protein modifications are known to change physicochemical, immunochemical, biological and pharmacological properties and results from this work may challenge re-designing of the product including possible removal of the modifications by the manufacturer because it is not known whether they are contributing to the serious adverse effects of the protein drug.

  13. Erwinia amylovora – the Causal Agent of Root Collar Necrosis of Apple Trees

    Directory of Open Access Journals (Sweden)

    Veljko Gavrilović

    2008-01-01

    Full Text Available A large-scale outbreak of fire blight symptoms caused by Erwinia amylovora was recorded in pome fruit trees during 2007. In addition to fruit necrosis and shoot blight as the typical disease symptoms, dark purple necrosis was observed in the root collar area girdling the trunk just above the ground and thus withering the whole apple tree. Since similar symptoms on apple trees could be caused by E. amylovora or one of several phytopathogenic fungi of the genera Phomopsis and Phytophthora, an investigation was conducted to identify the causal agent of this disease. Levan-producing, nonfluorescent bacteria were isolated from diseased samples. The isolated strains produced HR in tobacco leaves and necrosis of artificially inoculated, immature pear fruits, followed by oozing of bacterial exudate, a characterisitic of E. amylovora. Based on the results of pathogenicity tests, biochemical characteristics, ELISA test and PCR analysis, it was confirmed that the investigated strainsbelonged to E. amylovora, causing the root collar necrosis of apple trees as an atypical symptom of this bacterium in Serbia. The explanation of this symptom may be that the vegetative rootstocks were infected with E. amylovora. Therefore, the development of diagnostic protocols for detection of E. amylovora in apple rootstock is very important for health inspections of planting materials.

  14. Production of endo-pectate lyase by two stage cultivation of Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Fukuoka, Satoshi; Kobayashi, Yoshiaki

    1987-02-26

    The productivity of endo-pectate lyase from Erwinia carotovora GIR 1044 was found to be greatly improved by two stage cultivation: in the first stage the bacterium was grown with an inducing carbon source, e.g., pectin, and in the second stage it was cultivated with glycerol, xylose, or fructose with the addition of monosodium L-glutamate as nitrogen source. In the two stage cultivation using pectin or glycerol as the carbon source the enzyme activity reached 400 units/ml, almost 3 times as much as that of one stage cultivation in a 10 liter fermentor. Using two stage cultivation in the 200 liter fermentor improved enzyme productivity over that in the 10 liter fermentor, with 500 units/ml of activity. Compared with the cultivation in Erlenmeyer flasks, fermentor cultivation improved enzyme productivity. The optimum cultivating conditions were agitation of 480 rpm with aeration of 0.5 vvm at 28 /sup 0/C. (4 figs, 4 tabs, 14 refs)

  15. Exopolysaccharides favor the survival of Erwinia amylovora under copper stress through different strategies.

    Science.gov (United States)

    Ordax, Mónica; Marco-Noales, Ester; López, María M; Biosca, Elena G

    2010-09-01

    Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants very difficult to control. We demonstrated that copper, employed to control plant diseases, induces the "viable-but-nonculturable" (VBNC) state in E. amylovora. Moreover, it was previously reported that copper increases production of its main exopolysaccharide (EPS), amylovoran. In this work, the copper-complexing ability of amylovoran and levan, other major EPS of E. amylovora, was demonstrated. Following this, EPS-deficient mutants were used to determine the role of these EPSs in survival of this bacterium in AB mineral medium with copper, compared to their wild type strain and AB without copper. Total, viable and culturable counts of all strains were monitored for six months. With copper, a larger fraction of the viable population of EPS mutants entered into the VBNC state, and earlier than their wild type strain, showing the contribution of both EPSs to long-term survival in a culturable state. Further, we demonstrated that both EPSs can be used as carbon source by E. amylovora under deprivation conditions. Overall, these previously unreported functions of amylovoran and levan provide survival advantages for E. amylovora, which could contribute to its enhanced persistence in nature.

  16. [Multiple change of phenotype, conjugated with the loss of yellow pigmentation of Erwinia herbicola].

    Science.gov (United States)

    Tovkach, F I; Tovkach, A F

    2004-01-01

    It has been shown that the loss of yellow pigmentation (phenotype Crt) of nonphotosynthesizing epiphyte bacterium Erwinia herbicola is accompanied by the loss of prototrophicity (phenotype Thi). Most Crt Thi-variants change the character of sensitivity to temperate erwiniophage E105 and bacteriocins (phenotype Ph/Bn). Some of them become sensitive to the killer effect of their own bacteriocins--autocins (phenotype Au). Multiple change of the phenotype in E. herbicola occurs so spontaneously as under variable growing of bacteria at the optimal and supraoptimal growth temperature. It is also established that the cells of one of the strains stop synthesizing the additional carotenoid or synthesize the changed products. It is shown that carotenoid synthesis in the cells of E. herbicola g157/5k may be reduced by means of transduction of the Crt phenotype by lipid-containing bacteriophage UA1. Multiple change of the phenotype connected with the loss of yellow pigmentation by E. herbicola was referred to the phenomenon of the population dissociation which is similar to that in E. carotovora. PMID:15456215

  17. Cellular, physiological, and molecular adaptive responses of Erwinia amylovora to starvation.

    Science.gov (United States)

    Santander, Ricardo D; Oliver, James D; Biosca, Elena G

    2014-05-01

    Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants distributed worldwide. This bacterium is a nonobligate pathogen able to survive outside the host under starvation conditions, allowing its spread by various means such as rainwater. We studied E. amylovora responses to starvation using water microcosms to mimic natural oligotrophy. Initially, survivability under optimal (28 °C) and suboptimal (20 °C) growth temperatures was compared. Starvation induced a loss of culturability much more pronounced at 28 °C than at 20 °C. Natural water microcosms at 20 °C were then used to characterize cellular, physiological, and molecular starvation responses of E. amylovora. Challenged cells developed starvation-survival and viable but nonculturable responses, reduced their size, acquired rounded shapes and developed surface vesicles. Starved cells lost motility in a few days, but a fraction retained flagella. The expression of genes related to starvation, oxidative stress, motility, pathogenicity, and virulence was detected during the entire experimental period with different regulation patterns observed during the first 24 h. Further, starved cells remained as virulent as nonstressed cells. Overall, these results provide new knowledge on the biology of E. amylovora under conditions prevailing in nature, which could contribute to a better understanding of the life cycle of this pathogen.

  18. Phylogeography and population structure of the biologically invasive phytopathogen Erwinia amylovora inferred using minisatellites.

    Science.gov (United States)

    Bühlmann, Andreas; Dreo, Tanja; Rezzonico, Fabio; Pothier, Joël F; Smits, Theo H M; Ravnikar, Maja; Frey, Jürg E; Duffy, Brion

    2014-07-01

    Erwinia amylovora causes a major disease of pome fruit trees worldwide, and is regulated as a quarantine organism in many countries. While some diversity of isolates has been observed, molecular epidemiology of this bacterium is hindered by a lack of simple molecular typing techniques with sufficiently high resolution. We report a molecular typing system of E. amylovora based on variable number of tandem repeats (VNTR) analysis. Repeats in the E. amylovora genome were identified with comparative genomic tools, and VNTR markers were developed and validated. A Multiple-Locus VNTR Analysis (MLVA) was applied to E. amylovora isolates from bacterial collections representing global and regional distribution of the pathogen. Based on six repeats, MLVA allowed the distinction of 227 haplotypes among a collection of 833 isolates of worldwide origin. Three geographically separated groups were recognized among global isolates using Bayesian clustering methods. Analysis of regional outbreaks confirmed presence of diverse haplotypes but also high representation of certain haplotypes during outbreaks. MLVA analysis is a practical method for epidemiological studies of E. amylovora, identifying previously unresolved population structure within outbreaks. Knowledge of such structure can increase our understanding on how plant diseases emerge and spread over a given geographical region.

  19. Molecular Weight and Aggregation of Erwinia Gum in Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Erwinia(E) gum is composed of glucose, fucose, galactose and glucuronic acid. The weight-average molecular weights Mw, number-average molecular weights Mn and intrinsic viscosities[η] of the four fractions and the unfractionated E gum in aqueous solutions at desired temperatures were studied by light scattering, membrane osmometry, size exclusion chromatography(SEC) and viscometry. The experimental results prove that E gum formed aggregates in the aqueous solution at 25 ℃ and the aggregates were broken gradually with increasing temperature. The dissociation of the aggregates of E gum in the aqueous solution started at 36 ℃, and was completed at around 90 ℃. The [η] values of E gum and its fractions are much higher than those of the conventional polymers with the similar molecular weights, and decrease with increasing NaCl concentration.

  20. Release of cell-free ice nuclei by Erwinia herbicola.

    OpenAIRE

    Phelps, P; Giddings, T. H.; Prochoda, M; Fall, R

    1986-01-01

    Several ice-nucleating bacterial strains, including Erwinia herbicola, Pseudomonas fluorescens, and Pseudomonas syringae isolates, were examined for their ability to shed ice nuclei into the growth medium. Only E. herbicola isolates shed cell-free ice nuclei active at -2 to -10 degrees C. These cell-free nuclei exhibited a freezing spectrum similar to that of ice nuclei found on whole cells, both above and below -5 degrees C. Partially purified cell-free nuclei were examined by density gradie...

  1. Characterization of the RcsC sensor kinase from Erwinia amylovora and other Enterobacteria.

    Science.gov (United States)

    Wang, Dongping; Korban, Schuyler S; Pusey, P Lawrence; Zhao, Youfu

    2011-06-01

    RcsC is a hybrid sensor kinase which contains a sensor domain, a histidine kinase domain, and a receiver domain. We have previously demonstrated that, although the Erwinia amylovora rcsC mutant produces more amylovoran than the wild-type (WT) strain in vitro, the mutant remains nonpathogenic on both immature pear fruit and apple plants. In this study, we have comparatively characterized the Erwinia RcsC and its homologs from various enterobacteria. Results demonstrate that expression of the Erwinia rcsC gene suppresses amylovoran production in various amylovoran overproducing WT and mutant strains, thus suggesting the presence of a net phosphatase activity of Erwinia RcsC. Findings have also demonstrated that rcsC homologs from other enterobacteria could not rescue amylovoran production of the Erwinia rcsC mutant in vitro. However, virulence of the Erwinia rcsC mutant is partially restored by rcsC homologs from Pantoea stewartii, Yersinia pestis, and Salmonella enterica but not from Escherichia coli on apple shoots. Domain-swapping experiments have indicated that replacement of the E. coli RcsC sensor domain by those of Erwinia and Yersinia spp. partially restores virulence of the Erwinia rcsC mutant, whereas chimeric constructs containing the sensor domain of E. coli RcsC could not rescue virulence of the Erwinia rcsC mutant on apple. Interestingly, only chimeric constructs containing the histidine kinase and receiver domains of Erwinia RcsC are fully capable of rescuing amylovoran production. These results suggest that the sensor domain of RcsC may be important in regulating bacterial virulence, whereas the activity of the histidine kinase and receiver domains of Erwinia RcsC may be essential for amylovoran production in vitro. PMID:21261468

  2. Characterization of the RcsC sensor kinase from Erwinia amylovora and other Enterobacteria.

    Science.gov (United States)

    Wang, Dongping; Korban, Schuyler S; Pusey, P Lawrence; Zhao, Youfu

    2011-06-01

    RcsC is a hybrid sensor kinase which contains a sensor domain, a histidine kinase domain, and a receiver domain. We have previously demonstrated that, although the Erwinia amylovora rcsC mutant produces more amylovoran than the wild-type (WT) strain in vitro, the mutant remains nonpathogenic on both immature pear fruit and apple plants. In this study, we have comparatively characterized the Erwinia RcsC and its homologs from various enterobacteria. Results demonstrate that expression of the Erwinia rcsC gene suppresses amylovoran production in various amylovoran overproducing WT and mutant strains, thus suggesting the presence of a net phosphatase activity of Erwinia RcsC. Findings have also demonstrated that rcsC homologs from other enterobacteria could not rescue amylovoran production of the Erwinia rcsC mutant in vitro. However, virulence of the Erwinia rcsC mutant is partially restored by rcsC homologs from Pantoea stewartii, Yersinia pestis, and Salmonella enterica but not from Escherichia coli on apple shoots. Domain-swapping experiments have indicated that replacement of the E. coli RcsC sensor domain by those of Erwinia and Yersinia spp. partially restores virulence of the Erwinia rcsC mutant, whereas chimeric constructs containing the sensor domain of E. coli RcsC could not rescue virulence of the Erwinia rcsC mutant on apple. Interestingly, only chimeric constructs containing the histidine kinase and receiver domains of Erwinia RcsC are fully capable of rescuing amylovoran production. These results suggest that the sensor domain of RcsC may be important in regulating bacterial virulence, whereas the activity of the histidine kinase and receiver domains of Erwinia RcsC may be essential for amylovoran production in vitro.

  3. Efficacy of potato seeds disinfection products to control Erwinia spp.

    Science.gov (United States)

    Dupuis, B; Garcia, N; Boels, G

    2008-01-01

    Erwinia spp. provokes soft rot on potato tubers during storage. No disinfection products are available on the market in the European Union to control these bacteria. We tested 3 products presented as good candidates to cure potato tubers from bacterial diseases. First, Anthium 500 (Du Pont de Nemours) a product based on chlorine dioxyde, then Phostrol (Nufarm) with phosphoric acid as a.i. and finally Solucuivre (Proval), a copper based product. We firstly managed disinfection trials: high Erwinia contaminated potato seed samples were treated by immersion and were then incubated, we observed the percentage of tubers rotting. Secondly, we managed protection trials: protected healthy tubers were incubated during 23 days in contact with rotting tubers. We evaluated weight loss after symptoms development. No tested product was effective to control Erwinia spp. on seed tubers in our trials conditions. Furthermore, we observed more rot development after Phostrol and Solucuivre application. We suppose that the product couldn't reach the latent bacteria and weakened the tubers. No protection effect was observed.

  4. Draft Genome Sequence of the Bactrocera oleae Symbiont "Candidatus Erwinia dacicola".

    Science.gov (United States)

    Blow, Frances; Gioti, Anastasia; Starns, David; Ben-Yosef, Michael; Pasternak, Zohar; Jurkevitch, Edouard; Vontas, John; Darby, Alistair C

    2016-01-01

    "Candidatus Erwinia dacicola" is a Gammaproteobacterium that forms a symbiotic association with the agricultural pest Bactrocera oleae Here, we present a 2.1-Mb draft hybrid genome assembly for "Ca. Erwinia dacicola" generated from single-cell and metagenomic data. PMID:27634990

  5. Draft Genome Sequence of the Bactrocera oleae Symbiont “Candidatus Erwinia dacicola”

    Science.gov (United States)

    Blow, Frances; Gioti, Anastasia; Starns, David; Ben-Yosef, Michael; Pasternak, Zohar; Jurkevitch, Edouard; Vontas, John

    2016-01-01

    “Candidatus Erwinia dacicola” is a Gammaproteobacterium that forms a symbiotic association with the agricultural pest Bactrocera oleae. Here, we present a 2.1-Mb draft hybrid genome assembly for “Ca. Erwinia dacicola” generated from single-cell and metagenomic data. PMID:27634990

  6. Goed om uitgangsmateriaal op Erwinia te testen (interview met Jan van der Wolf)

    NARCIS (Netherlands)

    Dwarswaard, A.; Bovenkamp, van den G.; Wolf, van der J.M.

    2012-01-01

    Bloembollen en aardappelen. Ze hebben in ieder geval één ziekte gemeen: bacterierot, veroorzaakt door Erwinia. In beide teelten zorgen deze bacterieziekten voor veel schade. In het Deltaplan Erwinia werken de bloembollen- en aardappelwereld samen op onderzoeksgebied. In twee artikelen staat de vraag

  7. Complete genome sequence of Japanese erwinia strain ejp617, a bacterial shoot blight pathogen of pear.

    Science.gov (United States)

    Park, Duck Hwan; Thapa, Shree Prasad; Choi, Beom-Soon; Kim, Won-Sik; Hur, Jang Hyun; Cho, Jun Mo; Lim, Jong-Sung; Choi, Ik-Young; Lim, Chun Keun

    2011-01-01

    The Japanese Erwinia strain Ejp617 is a plant pathogen that causes bacterial shoot blight of pear in Japan. Here, we report the complete genome sequence of strain Ejp617 isolated from Nashi pears in Japan to provide further valuable insight among related Erwinia species.

  8. Multidrug Efflux Pumps in the Genus Erwinia: Physiology and Regulation of Efflux Pump Gene Expression.

    Science.gov (United States)

    Thekkiniath, J; Ravirala, R; San Francisco, M

    2016-01-01

    Plant pathogens belonging to the genus Erwinia cause diseases in several economically important plants. Plants respond to bacterial infection with a powerful chemical arsenal and signaling molecules to rid themselves of the microbes. Although our understanding of how Erwinia initiate infections in plants has become clear, a comprehensive understanding of how these bacteria rid themselves of noxious antimicrobial agents during the infection is important. Multidrug efflux pumps are key factors in bacterial resistance toward antibiotics by reducing the level of antimicrobial compounds in the bacterial cell. Erwinia induce the expression of efflux pump genes in response to plant-derived antimicrobials. The capability of Erwinia to co-opt plant defense signaling molecules such as salicylic acid to trigger multidrug efflux pumps might have developed to ensure bacterial survival in susceptible host plants. In this review, we discuss the developments in Erwinia efflux pumps, focusing in particular on efflux pump function and the regulation of efflux pump gene expression. PMID:27571694

  9. Environmentally friendly ionic liquid-in-water microemulsions for extraction of hydrophilic and lipophilic components from Flos Chrysanthemi.

    Science.gov (United States)

    Chen, Jue; Cao, Jun; Gao, Wen; Qi, Lian-Wen; Li, Ping

    2013-10-21

    Ionic liquids (ILs) have numerous chemical applications as environmentally green solvents that are extending into microemulsion applications. In this work, a novel benign IL-in-water microemulsion system modified by an IL surfactant has been proposed for simultaneous extraction of hydrophilic and lipophilic constituents from Flos Chrysanthemi (Chrysanthemum morifolium). Constituents were analyzed by rapid-resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. A mixture-design approach was used to optimize the IL surfactant and the IL oil phase in the microemulsion system. Microemulsions consisting of 6.0% 1-dodecyl-3-methylimidazolium hydrogen sulfate, 0.1% 1-vinyl-3-methylimidazolium hexafluorophosphate and 93.9% water offered the acceptable extract efficiency that are comparable to or even better than conventional volatile organic solvents. This assay was fully validated with respect to the linearity of response (r(2) > 0.999 over two orders of magnitude), precision (intra-RSD microemulsion method provided an environmentally friendly alternative for efficient extraction of compounds from Flos Chrysanthemi and could be extended to complex environmental and pharmaceutical samples. PMID:23928686

  10. The dual function in virulence and host range restriction of a gene isolated from the pPATH (Ehg) plasmid of Erwinia herbicola pv. gypsophilae.

    Science.gov (United States)

    Ezra, D; Barash, I; Valinsky, L; Manulis, S

    2000-06-01

    The host range of the gall-forming bacterium Erwinia herbicola pv. gypsophilae (Ehg) is restricted to gypsophila whereas Erwinia herbicola pv. betae (Ehb) attacks beet as well as gypsophila. Both pathovars contain an indigenous plasmid (pPATH(Ehg or pPATH(Ehb)) that harbors pathogenicity genes, including the hrp gene cluster. A cosmid library of Ehg824-1 plasmid DNA was mobilized into Ehb4188 and the transconjugants were screened for pathogenicity on beet. One Ehb transconjugant harboring the cosmid pLA173 of pPATHEb induced a hypersensitive-like response and abolished pathogenicity on beet. Transposon mutagenesis of an open reading frame (ORF) located on this cosmid eliminated its affect on pathogenicity. Marker exchange of this mutation into Ehg824-1 caused a substantial reduction in gall size on gypsophila and caused Ehg824-1 to extend its host range and incite galls on beet. The ORF (1.5 kb) was designated as pthG (pathogenicity gene on gypsophila). DNA sequence analysis of pthG revealed no significant homology to known genes in the data bank. Only remnants of the pthG sequences were identified on the pPATH of Ehb4188. The deduced protein lacked an N-terminal signal peptide but contained a short trans-membrane helix in its C terminus. The gene product, as determined by expression in Escherichia coli and Western blots (immunoblots), was a 56-kDa protein. PMID:10830268

  11. Characterization of xylitol-utilizing mutants of Erwinia uredovora.

    OpenAIRE

    Doten, R C; Mortlock, R P

    1985-01-01

    Of the four pentitols ribitol, xylitol, D-arabitol, and L-arabitol, Erwinia uredovora was able to utilize only D-arabitol as a carbon and energy source. Although attempts to isolate ribitol- or L-arabitol-utilizing mutants were unsuccessful, mutants able to grow on xylitol were isolated at a frequency of 9 X 10(-8). Xylitol-positive mutants constitutively synthesized both a novel NAD-dependent xylitol-4-dehydrogenase, which oxidized xylitol to L-xylulose, and an L-xylulokinase. The xylitol de...

  12. Studies of the antifungal compounds produced by Erwinia herbicola.

    Science.gov (United States)

    Adetuyi, F C

    1990-01-01

    The organic phase of a wide spectrum, antimycotic and diffusable toxin from Erwinia herbicola showed a highly significant inhibitory activity against Pyricularia oryzae spores in spore well bioassay. Germ tube lengths were inhibited more in wells containing 5 microliters equivalent of bacterial toxin than 1 microliter. No significant difference between the germ tube in an equal mixture of Dimethyl sulphoxide: ethanol and controls. Thin layer chromatography using the chloroform extraction of the organic phase showed a significant antagonism on Cladosporium cucumerinum. The retardation factor values for inhibitory zones in solvent 1 were 0.07 for lower spot and 0.26 for upper spot. PMID:2394476

  13. Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola.

    OpenAIRE

    Kozloff, L. M.; Schofield, M. A.; Lute, M

    1983-01-01

    Chemical and biological properties of the ice nucleating sites of Pseudomonas syringae, strain C-9, and Erwinia herbicola have been characterized. The ice nucleating activity (INA) for both bacteria was unchanged in buffers ranging from pH 5.0 to 9.2, suggesting that there were no essential groups for which a change in charge in this range was critical. The INA of both bacteria was also unaffected by the addition of metal chelating compounds. Borate compounds and certain lectins markedly inhi...

  14. Cloning and regulation of Erwinia herbicola pigment genes.

    OpenAIRE

    Perry, K L; Simonitch, T A; Harrison-Lavoie, K J; Liu, S T

    1986-01-01

    The genes coding for yellow pigment production in Erwinia herbicola Eho10 (ATCC 39368) were cloned and localized to a 12.4-kilobase (kb) chromosomal fragment. A 2.3-kb AvaI deletion in the cloned fragment resulted in the production of a pink-yellow pigment, a possible precursor of the yellow pigment. Production of yellow pigment in both E. herbicola Eho10 and pigmented Escherichia coli clones was inhibited by glucose. When the pigment genes were transformed into a cya (adenylate cyclase) E. c...

  15. Erwinia uzenensis sp. nov., a novel pathogen that affects European pear trees (Pyrus communis L.).

    Science.gov (United States)

    Matsuura, Takayuki; Mizuno, Akifumi; Tsukamoto, Takanori; Shimizu, Yoshiaki; Saito, Norihiko; Sato, Shigeyoshi; Kikuchi, Shigemi; Uzuki, Tsuneyasu; Azegami, Koji; Sawada, Hiroyuki

    2012-08-01

    Bacteria were isolated from black lesions on shoots of European pear trees (Pyrus communis L.) in an orchard in Japan. Previous characterization of this novel pathogen by phenotypic and genotypic methods suggested that it should belong to the genus Erwinia but might not correspond to either Erwinia amylovora or Erwinia pyrifoliae. Here, phylogenetic analyses of the 16S rRNA gene, gyrB, and rpoD gene sequences indicated that it could not be assigned to any recognized species of the genus Erwinia. DNA-DNA hybridization confirmed that the bacterial strains represented a novel species. The DNA G+C contents, the fatty acid profile and phenotypic characteristics resembled those previously reported for members of the genus Erwinia. On the basis of these and previous results, the pathogen represents a novel species of the genus Erwinia, for which the name Erwinia uzenensis sp. nov. (type strain: YPPS 951(T) = LMG 25843(T) = NCPPB 4475(T)) is proposed.

  16. Erwinia teleogrylli sp. nov., a Bacterial Isolate Associated with a Chinese Cricket.

    Science.gov (United States)

    Liu, Bo; Luo, Jin; Li, Wei; Long, Xiu-Feng; Zhang, Yu-Qin; Zeng, Zhi-Gang; Tian, Yong-Qiang

    2016-01-01

    A bacterial isolate (SCU-B244T) was obtained in China from crickets (Teleogryllus occipitalis) living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea. Analysis of multilocus sequence typing based on concatenated partial atpD, gyrB and infB gene sequences and physiological and biochemical characteristics indicated that the strain belonged to the genus Erwinia, as member of a new species as it was distinct from other known Erwinia species. Further analysis of the 16S rRNA gene showed SCU-B244T to have 94.71% identity to the closest species of that genus, Erwinia oleae (DSM 23398T), which is below the threshold of 97% used to discriminate bacterial species. DNA-DNA hybridization results (5.78±2.52%) between SCU-B244T and Erwinia oleae (DSM 23398T) confirmed that SCU-B244T and Erwinia oleae (DSM 23398T) represent different species combined with average nucleotide identity values which range from 72.42% to 74.41. The DNA G+C content of SCU-B244T was 55.32 mol%, which also differs from that of Erwinia oleae (54.7 to 54.9 mol%). The polyphasic taxonomic approach used here confirmed that the strain belongs to the Erwinia group and represents a novel species. The name Erwinia teleogrylli sp. nov. is proposed for this novel taxon, for which the type strain is SCU-B244T (= CGMCC 1.12772T = DSM 28222T = KCTC 42022T).

  17. Erwinia teleogrylli sp. nov., a Bacterial Isolate Associated with a Chinese Cricket.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available A bacterial isolate (SCU-B244T was obtained in China from crickets (Teleogryllus occipitalis living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea. Analysis of multilocus sequence typing based on concatenated partial atpD, gyrB and infB gene sequences and physiological and biochemical characteristics indicated that the strain belonged to the genus Erwinia, as member of a new species as it was distinct from other known Erwinia species. Further analysis of the 16S rRNA gene showed SCU-B244T to have 94.71% identity to the closest species of that genus, Erwinia oleae (DSM 23398T, which is below the threshold of 97% used to discriminate bacterial species. DNA-DNA hybridization results (5.78±2.52% between SCU-B244T and Erwinia oleae (DSM 23398T confirmed that SCU-B244T and Erwinia oleae (DSM 23398T represent different species combined with average nucleotide identity values which range from 72.42% to 74.41. The DNA G+C content of SCU-B244T was 55.32 mol%, which also differs from that of Erwinia oleae (54.7 to 54.9 mol%. The polyphasic taxonomic approach used here confirmed that the strain belongs to the Erwinia group and represents a novel species. The name Erwinia teleogrylli sp. nov. is proposed for this novel taxon, for which the type strain is SCU-B244T (= CGMCC 1.12772T = DSM 28222T = KCTC 42022T.

  18. A gene cluster for amylovoran synthesis in Erwinia amylovora: characterization and relationship to cps genes in Erwinia stewartii.

    Science.gov (United States)

    Bernhard, F; Coplin, D L; Geider, K

    1993-05-01

    A large ams gene cluster required for production of the acidic extracellular polysaccharide (EPS) amylovoran by the fire blight pathogen Erwinia amylovora was cloned. Tn5 mutagenesis and gene replacement were used to construct chromosomal ams mutants. Five complementation groups, essential for amylovoran synthesis and virulence in E. amylovora, were identified and designated ams A-E. The ams gene cluster is about 7 kb in size and functionally equivalent to the cps gene cluster involved in EPS synthesis by the related pathogen Erwinia stewartii. Mucoidy and virulence were restored to E. stewartii mutants in four cps complementation groups by the cloned E. amylovora ams genes. Conversely, the E. stewartii cps gene cluster was able to complement mutations in E. amylovora ams genes. Correspondence was found between the amsA-E complementation groups and the cpsB-D region, but the arrangement of the genes appears to be different. EPS production and virulence were also restored to E. amylovora amsE and E. stewartii cpsD mutants by clones containing the Rhizobium meliloti exo A gene.

  19. Differentiation of Erwinia amylovora and Erwinia pyrifoliae strains with single nucleotide polymorphisms and by synthesis of dihydrophenylalanine.

    Science.gov (United States)

    Gehring, I; Geider, K

    2012-07-01

    Fire blight has spread from North America to New Zealand, Europe, and the Mediterranean region. We were able to differentiate strains from various origins with a novel PCR method. Three Single Nucleotide Polymorphisms (SNPs) in the Erwinia amylovora genome were characteristic of isolates from North America and could distinguish them from isolates from other parts of the world. They were derived from the galE, acrB, and hrpA genes of strains Ea273 and Ea1/79. These genes were analyzed by conventional PCR (cPCR) and quantitative PCR (qPCR) with differential primer annealing temperatures. North-American E. amylovora strains were further differentiated according to their production of L: -2,5-dihydrophenylalanine (DHP) as tested by growth inhibition of the yeast Rhodotorula glutinis. E. amylovora fruit tree (Maloideae) and raspberry (rubus) strains were also differentiated by Single Strand Conformational Polymorphism analysis. Strains from the related species Erwinia pyrifoliae isolated in Korea and Japan were all DHP positive, but were differentiated from each other by SNPs in the galE gene. Differential PCR is a rapid and simple method to distinguish E. amylovora as well as E. pyrifoliae strains according to their geographical origin.

  20. Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees (Pyrus pyrifolia Nakai)

    Science.gov (United States)

    Kim, W S; Gardan, L; Rhim, S L; Geider, K

    1999-04-01

    A novel pathogen from Asian pears (Pyrus pyrifolia Nakai) was analysed by sequencing the 16S rDNA and the adjacent intergenic region, and the data were compared to related Enterobacteriaceae. The 16S rDNA of the Asian pear pathogen was almost identical with the sequence of Erwinia amylovora, in contrast to the 16S-23S rRNA intergenic transcribed spacer region of both species. A dendrogram was deduced from determined sequences of the spacer regions including those of several related species such as Erwinia amylovora, Enterobacter pyrinus, Pantoea stewartii subsp. stewartii and Escherichia coli. Dendrograms derived from 121 biochemical characteristics including Biotype 100 data placed the Asian pear pathogen close to Erwinia amylovora and more distantly to other members of the species Erwinia and to the species Pantoea and Enterobacter. Another DNA relatedness study was performed by DNA hybridizations and estimation of delta Tm values. The Asian pear strains constituted a tight DNA hybridization group (89-100%) and were barely related to strains of Erwinia amylovora (40-50%) with a delta Tm in the range of 5.2-6.8. The G + C content of DNA from the novel pathogen is 52 mol%. Therefore, it is proposed that strains isolated from Asian pears constitute a new species and the name Erwinia pyrifoliae is suggested; the type strain is strain Ep 16/96T (= CFBP 4172T = DSM 12163T). PMID:10319516

  1. Autoinducer-2 of the fire blight pathogen Erwinia amylovora and other plant-associated bacteria.

    Science.gov (United States)

    Mohammadi, Mojtaba; Geider, Klaus

    2007-01-01

    Autoinducers are important for cellular communication of bacteria. The luxS gene has a central role in the synthesis of autoinducer-2 (AI-2). The gene was identified in a shotgun library of Erwinia amylovora and primers designed for PCR amplification from bacterial DNA. Supernatants of several Erwinia amylovora strains were assayed for AI-2 activity with a Vibrio harveyi mutant and were positive. Many other plant-associated bacteria also showed AI-2 activity such as Erwinia pyrifoliae and Erwinia tasmaniensis. The luxS genes of several bacteria were cloned, sequenced, and complemented Escherichia coli strain DH5alpha and a Salmonella typhimurium mutant, both defective in luxS, for synthesis of AI-2. Assays to detect AI-2 activity in culture supernatants of several Pseudomonas syringae pathovars failed, which may indicate the absence of AI-2 or synthesis of another type. Several reporter strains did not detect synthesis of an acyl homoserine lactone (AHL, AI-1) by Erwinia amylovora, but confirmed AHL-synthesis for Erwinia carotovora ssp. atroseptica and Pantoea stewartii. PMID:17092294

  2. Erwinia iniecta sp. nov., isolated from Russian wheat aphid (Diuraphis noxia).

    Science.gov (United States)

    Campillo, Tony; Luna, Emily; Portier, Perrine; Fischer-Le Saux, Marion; Lapitan, Nora; Tisserat, Ned A; Leach, Jan E

    2015-10-01

    Short, Gram-negative-staining, rod-shaped bacteria were isolated from crushed bodies of Russian wheat aphid [Diuraphis noxia (Kurdjumov)] and artificial diets after Russian wheat aphid feeding. Based on multilocus sequence analysis involving the 16S rRNA, atpD, infB, gyrB and rpoB genes, these bacterial isolates constitute a novel clade in the genus Erwinia, and were most closely related to Erwinia toletana. Representative distinct strains within this clade were used for comparisons with related species of Erwinia. Phenotypic comparisons using four distinct strains and average nucleotide identity (ANI) measurements using two distinct draft genomes revealed that these strains form a novel species within the genus Erwinia. The name Erwinia iniecta sp. nov. is proposed, and strain B120T ( = CFBP 8182T = NCCB 100485T) was designated the type strain. Erwinia iniecta sp. nov. was not pathogenic to plants. However, virulence to the Russian wheat aphid was observed.

  3. Examining phylogenetic relationships of Erwinia and Pantoea species using whole genome sequence data.

    Science.gov (United States)

    Zhang, Yucheng; Qiu, Sai

    2015-11-01

    The genera Erwinia and Pantoea contain species that are devastating plant pathogens, non-pathogen epiphytes, and opportunistic human pathogens. However, some controversies persist in the taxonomic classification of these two closely related genera. The phylogenomic analysis of these two genera was investigated via a comprehensive analysis of 25 Erwinia genomes and 23 Pantoea genomes. Single-copy orthologs could be extracted from the Erwinia/Pantoea core-genome to reconstruct the Erwinia/Pantoea phylogeny. This tree has strong bootstrap support for almost all branches. We also estimated the in silico DNA-DNA hybridization (isDDH) and the average nucleotide identity (ANI) values between each genome; strains from the same species showed ANI values ≥96% and isDDH values >70%. These data confirm that whole genome sequence data provides a powerful tool to resolve the complex taxonomic questions of Erwinia/Pantoea, e.g. Pantoea agglomerans 299R was not clustered into a single group with other P. agglomerans strains, and the ANI values and isDDH values between them were Erwinia/Pantoea phylogeny.

  4. Erwinia oleae sp. nov., isolated from olive knots caused by Pseudomonas savastanoi pv. savastanoi.

    Science.gov (United States)

    Moretti, Chiaraluce; Hosni, Taha; Vandemeulebroecke, Katrien; Brady, Carrie; De Vos, Paul; Buonaurio, Roberto; Cleenwerck, Ilse

    2011-11-01

    Three endophytic bacterial isolates were obtained in Italy from olive knots caused by Pseudomonas savastanoi pv. savastanoi. Phenotypic tests in combination with 16S rRNA gene sequence analysis indicated a phylogenetic position for these isolates in the genera Erwinia or Pantoea, and revealed two other strains with highly similar 16S rRNA gene sequences (>99 %), CECT 5262 and CECT 5264, obtained in Spain from olive knots. Rep-PCR DNA fingerprinting of the five strains from olive knots with BOX, ERIC and REP primers revealed three groups of profiles that were highly similar to each other. Multilocus sequence analysis (MLSA) based on concatenated partial atpD, gyrB, infB and rpoB gene sequences indicated that the strains constituted a single novel species in the genus Erwinia. The strains showed general phenotypic characteristics typical of the genus Erwinia and whole genome DNA-DNA hybridization data confirmed that they represented a single novel species of the genus Erwinia. The strains showed DNA G+C contents ranging from 54.7 to 54.9 mol%. They could be discriminated from phylogenetically related species of the genus Erwinia by their ability to utilize potassium gluconate, l-rhamnose and d-arabitol, but not glycerol, inositol or d-sorbitol. The name Erwinia oleae sp. nov. (type strain DAPP-PG 531(T)= LMG 25322(T) = DSM 23398(T)) is proposed for this novel taxon.

  5. Autoinducer-2 of the fire blight pathogen Erwinia amylovora and other plant-associated bacteria.

    Science.gov (United States)

    Mohammadi, Mojtaba; Geider, Klaus

    2007-01-01

    Autoinducers are important for cellular communication of bacteria. The luxS gene has a central role in the synthesis of autoinducer-2 (AI-2). The gene was identified in a shotgun library of Erwinia amylovora and primers designed for PCR amplification from bacterial DNA. Supernatants of several Erwinia amylovora strains were assayed for AI-2 activity with a Vibrio harveyi mutant and were positive. Many other plant-associated bacteria also showed AI-2 activity such as Erwinia pyrifoliae and Erwinia tasmaniensis. The luxS genes of several bacteria were cloned, sequenced, and complemented Escherichia coli strain DH5alpha and a Salmonella typhimurium mutant, both defective in luxS, for synthesis of AI-2. Assays to detect AI-2 activity in culture supernatants of several Pseudomonas syringae pathovars failed, which may indicate the absence of AI-2 or synthesis of another type. Several reporter strains did not detect synthesis of an acyl homoserine lactone (AHL, AI-1) by Erwinia amylovora, but confirmed AHL-synthesis for Erwinia carotovora ssp. atroseptica and Pantoea stewartii.

  6. Cloning, expression, purification, crystallization and preliminary X-ray analysis of EaLsc, a levansucrase from Erwinia amylovora

    International Nuclear Information System (INIS)

    EaLsc, a levansucrase from E. amylovora, has been cloned, expressed, purified and crystallized. X-ray crystallographic analysis and data collection to 2.77 Å resolution have been carried out. The structure was solved by molecular replacement and refinement is in progress. The Gram-negative bacterium Erwinia amylovora is a destructive pathogen of Rosaceae. During infection, E. amylovora produces the exopolysaccharide levan, which contributes to the occlusion of plant vessels, causing the wilting of shoots. Levan is a fructose polymer that is synthesized by multifunctional enzymes called levansucrases. The levansucrase from E. amylovora (EaLsc) was heterologously expressed as a GST-fusion protein in Escherichia coli, purified and crystallized after tag removal. The protein crystallized in space group P21212. X-ray diffraction data were acquired to 2.77 Å resolution. The structure of the enzyme was solved by molecular replacement. The asymmetric unit contains eight enzyme molecules, giving a solvent content of 58.74% and a Matthews coefficient of 2.98 Å3 Da-1

  7. The operon for cytokinin biosynthesis of Erwinia herbicola pv. gypsophilae contains two promoters and is plant induced.

    Science.gov (United States)

    Guo, M; Manulis, S; Barash, I; Lichter, A

    2001-12-01

    The operon for cytokinin biosynthesis in the gall-forming bacterium Erwinia herbicola pv. gypsophilae (Ehg) has been previously shown to reside on an indigenous plasmid (pPATH(Ehg)) that is mandatory for pathogenicity. This operon consists of two genes: the first open reading frame (pre-etz) is of unknown function, whereas the second one (etz) encodes for isopentenyl transferase. Northern hybridization performed with the wild-type strain Ehg824-1 grown in Luria-Bertani broth demonstrated two transcripts of which an etz-specific transcript (1.0 kb) was predominant. Fusion of upstream DNA fragments of both pre-etz and etz to the ice nucleation reporter gene inaZ in pVSP61 showed high ice nucleation activity in both cultures, confirming the presence of two independent promoters. An increase of 1-1.5 orders in transcriptional activity of these promoters was observed following inoculation of gypsophila cuttings. Mutants of Ehg824-1 were generated by insertion of inaZ into pre-etz and etz using the transposon reporter Tn3-Spice. An increase of about two orders in transcriptional activity was recorded with both mutants following inoculation of gypsophila or bean cuttings. A similar induction was also observed when the bacteria were applied to the leaf surface of these plants. Unlike other virulence genes present on the pPATH(Ehg), neither pre-etz nor etz was regulated by the adjacent hrp gene cluster. PMID:11822839

  8. Suppressing Erwinia carotovora pathogenicity by projecting N-acyl homoserine lactonase onto the surface of Pseudomonas putida cells.

    Science.gov (United States)

    Li, Qianqian; Ni, Hong; Meng, Shan; He, Yan; Yu, Ziniu; Li, Lin

    2011-12-01

    N-Acyl homoserine lactones (AHLs) serve as the vital quorum-sensing signals that regulate the virulence of the pathogenic bacterium Erwinia carotovora. In the present study, an approach to efficiently restrain the pathogenicity of E. carotovora-induced soft rot disease is described. Bacillus thuringiensis-derived N-acyl homoserine lactonase (AiiA) was projected onto the surface of Pseudomonas putida cells, and inoculation with both strains was challenged. The previously identified N-terminal moiety of the ice nucleation protein, InaQ-N, was applied as the anchoring motif. A surface display cassette with inaQ-N/ aiiA was constructed and expressed under the control of a constitutive promoter in P. putida AB92019. Surface localization of the fusion protein was confirmed by Western blot analysis, flow cytometry, and immunofluorescence microscopy. The antagonistic activity of P. putida MB116 expressing InaQ-N/AiiA toward E. carotovora ATCC25270 was evaluated by challenge inoculation in potato slices at different ratios. The results revealed a remarkable suppressing effect on E. carotovora infection. The active component was further analyzed using different cell fractions, and the cell surface-projected fusion protein was found to correspond to the suppressing effect. PMID:22210621

  9. Control of plant defense mechanisms and fire blight pathogenesis through the regulation of 6-thioguanine biosynthesis in Erwinia amylovora.

    Science.gov (United States)

    Coyne, Sébastien; Litomska, Agnieszka; Chizzali, Cornelia; Khalil, Mohammed N A; Richter, Klaus; Beerhues, Ludger; Hertweck, Christian

    2014-02-10

    Fire blight is a devastating disease of Rosaceae plants, such as apple and pear trees. It is characterized by necrosis of plant tissue, caused by the phytopathogenic bacterium Erwinia amylovora. The plant pathogen produces the well-known antimetabolite 6-thioguanine (6TG), which plays a key role in fire blight pathogenesis. Here we report that YcfR, a member of the LTTR family, is a major regulator of 6TG biosynthesis in E. amylovora. Inactivation of the regulator gene (ycfR) led to dramatically decreased 6TG production. Infection assays with apple plants (Malus domestica cultivar Holsteiner Cox) and cell cultures of Sorbus aucuparia (mountain ash, rowan) revealed abortive fire blight pathogenesis and reduced plant response (biphenyl and dibenzofuran phytoalexin production). In the presence of the ΔycfR mutant, apple trees were capable of activating the abscission machinery to remove infected tissue. In addition to unveiling the regulation of 6TG biosynthesis in a major plant pathogen, we demonstrate for the first time that this antimetabolite plays a pivotal role in dysregulating the plant response to infection.

  10. Enhanced production of extracellular ice nucleators from Erwinia herbicola.

    Science.gov (United States)

    Li, Jingkun; Lee, Tung-Ching

    1998-12-01

    The effects of growth conditions and chemical or physical treatments on the production of extracellular ice nucleators (ECINs) by Erwinia herbicola cells were investigated. The spontaneous release of ECINs, active at temperatures higher than -4 degrees C, into the environment depended on culture conditions, with optimal production when cells were grown in yeast extract to an early stationary phase at temperatures below 22 degrees C. ECINs were vesicular, released from cell surfaces with sizes ranging from 0.1 to 0.3 &mgr;m as determined by ultrafiltration and transmission electron microscopy. Protein profiles of ECIN fractions during bacterial growth were examined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and Ina proteins were detected by Western blotting. ECIN production was enhanced 5-fold when cells were treated with EDTA and 20- to 30-fold when subjected to sonication. These conditions provide a means for large-scale preparationage> ECINs by E. herbicola. PMID:12501408

  11. Cloud Activation Characteristics of Airborne Erwinia carotovora Cells.

    Science.gov (United States)

    Franc, Gary D.; Demott, Paul J.

    1998-10-01

    Several strains of plant pathogenic bacteria, Erwinia carotovora carotovora and E. carotovora atroseptica, were observed to be active as cloud condensation nuclei (CCN). The CCN supersaturation spectra of bacterial aerosols were measured in the laboratory and compared to the activity of ammonium sulfate. Approximately 25%-30% of the aerosolized bacterial cells activated droplets at 1% water supersaturation compared to 80% activation of the ammonium sulfate aerosol. Physical and numerical simulations of cloud droplet activation and growth on bacteria were also performed. Both simulations predict that aerosolized bacteria will be incorporated into cloud droplets during cloud formation. Results strongly support the hypothesis that significant numbers of the tested bacterial strains are actively involved in atmospheric cloud formation and precipitation processes following natural aerosolization and vertical transport to cloud levels.

  12. Immobilization of glucosyltransferase from Erwinia sp. using two different techniques.

    Science.gov (United States)

    Contesini, Fabiano Jares; Ibarguren, Carolina; Grosso, Carlos Raimundo Ferreira; Carvalho, Patrícia de Oliveira; Sato, Hélia Harumi

    2012-04-15

    Two different techniques of glucosyltransferase immobilization were studied for the conversion of sucrose into isomaltulose. The optimum conditions for immobilization of Erwinia sp. glucosyltransferase onto Celite 545, determined using response surface methodology, was pH 4.0 and 170 U of glucosyltransferase/g of Celite 545. Using this conditions more than 60% conversion of sucrose into isomaltulose can be obtained. The immobilization of glucosyltransferase was also studied by its entrapment in microcapsules of low-methoxyl pectin and fat (butter and oleic acid). The non-lyophilized microcapsules of pectin, containing the enzyme and fat, showed higher glucosyltransferase activity, compared with lyophilized microcapsules containing enzyme plus fat, and also lyophilized microcapsules containing enzyme without fat addition. The non-lyophilized microcapsules of pectin containing the glucosyltransferase and fat, converted 30% of sucrose into isomaltulose in the first batch. However the conversion decreased to 5% at the 10th batch, indicating inactivation of the enzyme.

  13. Molecular Characterization of Global Regulatory RNA Species That Control Pathogenicity Factors in Erwinia amylovora and Erwinia herbicola pv. gypsophilae†‡

    OpenAIRE

    Ma, Weilei; Cui, Yaya; Liu, Yang; Dumenyo, C. Korsi; Mukherjee, Asita; Chatterjee, Arun K.

    2001-01-01

    rsmBEcc specifies a nontranslatable RNA regulator that controls exoprotein production and pathogenicity in soft rot-causing Erwinia carotovora subsp. carotovora. This effect of rsmBEcc RNA is mediated mostly by neutralizing the function of RsmAEcc, an RNA-binding protein of E. carotovora subsp. carotovora, which acts as a global negative regulator. To determine the occurrence of functional homologs of rsmBEcc in non-soft-rot-causing Erwinia species, we cloned the rsmB genes of E. amylovora (r...

  14. Antibiotic Production by Erwinia herbicola Eh1087: Its Role in Inhibition of Erwinia amylovora and Partial Characterization of Antibiotic Biosynthesis Genes

    OpenAIRE

    Kearns, L. P.; Mahanty, H K

    1998-01-01

    Mutants of Erwinia herbicola Eh1087 (Ant−), which did not produce antibiotic activity against Erwinia amylovora, the fire blight pathogen, were selected after TnphoA mutagenesis. In immature pear fruit Ant− mutants grew at the same rate as wild-type strain Eh1087 but did not suppress development of the disease caused by E. amylovora. These results indicated that antibiosis plays an important role in the suppression of disease by strain Eh1087. All of the Ant− mutations obtained were located i...

  15. Complete genome sequences of three Erwinia amylovora phages isolated in north america and a bacteriophage induced from an Erwinia tasmaniensis strain.

    Science.gov (United States)

    Müller, I; Kube, M; Reinhardt, R; Jelkmann, W; Geider, K

    2011-02-01

    Fire blight, a plant disease of economic importance caused by Erwinia amylovora, may be controlled by the application of bacteriophages. Here, we provide the complete genome sequences and the annotation of three E. amylovora-specific phages isolated in North America and genomic information about a bacteriophage induced by mitomycin C treatment of an Erwinia tasmaniensis strain that is antagonistic for E. amylovora. The American phages resemble two already-described viral genomes, whereas the E. tasmaniensis phage displays a singular genomic sequence in BLAST searches.

  16. Oorzaak Erwiniaproblemen dahlia vooral Dickeya dianthicola

    NARCIS (Netherlands)

    Leeuwen, van P.J.; Dees, R.H.L.; Vreeburg, P.J.M.; Doorn, van J.

    2012-01-01

    Dahlia kan, net als een aantal andere bol- en knolgewassen, worden aangetast door Erwinia. Bacterieverwelkingsziekte in dahlia wordt veroorzaakt door Erwinia chrysanthemi, een bacterie die tegenwoordig Dickeya heet. PPO Bloembollen onderzocht welke problemen Dickeya veroorzaakt bij dahlia en wat er

  17. Complete Genome Sequence of Japanese Erwinia Strain Ejp617, a Bacterial Shoot Blight Pathogen of Pear ▿

    OpenAIRE

    Park, Duck Hwan; Thapa, Shree Prasad; Choi, Beom-Soon; Kim, Won-Sik; Hur, Jang Hyun; Cho, Jun Mo; Lim, Jong-Sung; Choi, Ik-Young; Lim, Chun Keun

    2010-01-01

    The Japanese Erwinia strain Ejp617 is a plant pathogen that causes bacterial shoot blight of pear in Japan. Here, we report the complete genome sequence of strain Ejp617 isolated from Nashi pears in Japan to provide further valuable insight among related Erwinia species.

  18. Detection of soft rot Erwinia spp. on seed potatoes: conductimetry versus dilution plating, PCR and serological assays

    NARCIS (Netherlands)

    Fraaije, B.A.; Appels, M.; Boer, de S.H.; Vuurde, van J.W.L.; Bulk, van den R.W.

    1997-01-01

    Automated conductance measurements in polypectate medium were used for the detection of pathogenic soft rot Erwinia spp. in potato peel extracts. The detection threshold for Erwinia carotovora subsp. atroseptica (Eca) in inoculated peel extracts was ca. 104 colony forming units (cfu) ml-1 when sampl

  19. Identification of Erwinia species isolated from apples and pears by differential PCR.

    Science.gov (United States)

    Gehring, I; Geider, K

    2012-04-01

    Many pathogenic and epiphytic bacteria isolated from apples and pears belong to the genus Erwinia; these include the species E. amylovora, E. pyrifoliae, E. billingiae, E. persicina, E. rhapontici and E. tasmaniensis. Identification and classification of freshly isolated bacterial species often requires tedious taxonomic procedures. To facilitate routine identification of Erwinia species, we have developed a PCR method based on species-specific oligonucleotides (SSOs) from the sequences of the housekeeping genes recA and gpd. Using species-specific primers that we report here, differentiation was done with conventional PCR (cPCR) and quantitative PCR (qPCR) applying two consecutive primer annealing temperatures. The specificity of the primers depends on terminal Single Nucleotide Polymorphisms (SNPs) that are characteristic for the target species. These PCR assays enabled us to distinguish eight Erwinia species, as well as to identify new Erwinia isolates from plant surfaces. When performed with mixed bacterial cultures, they only detected a single target species. This method is a novel approach to classify strains within the genus Erwinia by PCR and it can be used to confirm other diagnostic data, especially when specific PCR detection methods are not already available. The method may be applied to classify species within other bacterial genera.

  20. RHEOLOGICAL BEHAVIOR OF ERWINIA GUM IN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Li-na Zhang; Mei Zhang; Jing-hua Chen; Hideki Iijima; Hiromichi Tsuchiya

    1999-01-01

    Erwinia (E) gum, an extracellular polysaccharide, is composed of fucose, galatose, glucose and glucuronic acid. Its viscosity behavior was investigated by a low-shear-rate multiball viscometer and a rotational viscometer. Its weight-average molecular weight Mw and intrinsic viscosity [η] in 0.2 mol/L NaCl aqueous solution were measured by light scattering method at 35℃ and viscometry at 25℃ and found to be 1.06 × 106 g/mol and 1050 mL/g, respectively, and its aggregates in aqueous solution were proved by gel permeation chromatography (GPC). These results indicated that E gum in water has exceedingly high viscosity and exhibits Binham fluid behavior, owing to its aggregation. The viscosity of E gum decreased with increasing temperature, and the turning point appeared at 38℃ for dilute solution and 80℃ for concentrated solution suggesting that the aggregates of E gum in water started to disaggregate under these temperatures. In addition, the aggregates can be disrupted by adding either acid or base. The experimental results indicated that the E gum is a good thickening agent, and its fluid behavior is similar to xanthan.

  1. Differential Colonization Dynamics of Cucurbit Hosts by Erwinia tracheiphila.

    Science.gov (United States)

    Vrisman, Cláudio M; Deblais, Loïc; Rajashekara, Gireesh; Miller, Sally A

    2016-07-01

    Bacterial wilt is one of the most destructive diseases of cucurbits in the Midwestern and Northeastern United States. Although the disease has been studied since 1900, host colonization dynamics remain unclear. Cucumis- and Cucurbita-derived strains exhibit host preference for the cucurbit genus from which they were isolated. We constructed a bioluminescent strain of Erwinia tracheiphila (TedCu10-BL#9) and colonization of different cucurbit hosts was monitored. At the second-true-leaf stage, Cucumis melo plants were inoculated with TedCu10-BL#9 via wounded leaves, stems, and roots. Daily monitoring of colonization showed bioluminescent bacteria in the inoculated leaf and petiole beginning 1 day postinoculation (DPI). The bacteria spread to roots via the stem by 2 DPI, reached the plant extremities 4 DPI, and the plant wilted 6 DPI. However, Cucurbita plants inoculated with TedCu10-BL#9 did not wilt, even at 35 DPI. Bioluminescent bacteria were detected 6 DPI in the main stem of squash and pumpkin plants, which harbored approximately 10(4) and 10(1) CFU/g, respectively, of TedCu10-BL#9 without symptoms. Although significantly less systemic plant colonization was observed in nonpreferred host Cucurbita plants compared with preferred hosts, the mechanism of tolerance of Cucurbita plants to E. tracheiphila strains from Cucumis remains unknown.

  2. Tasmancin and lysogenic bacteriophages induced from Erwinia tasmaniensis strains.

    Science.gov (United States)

    Müller, Ina; Lurz, Rudi; Geider, Klaus

    2012-07-25

    Mitomycin C treatment of Erwinia tasmaniensis strains from Australia induced prophages and the expression of bacteriocins. The bacteriocin named tasmancin inhibited E. tasmaniensis strains from South Africa and Germany. A gene cluster with a klebicin-related operon and an immunity protein was detected on plasmid pET46 from E. tasmaniensis strain Et1/99. PCR reactions using primers directed to this region produced signals for several strains originating from Australia, but not for strains isolated in South Africa and Germany. The latter isolates lacked plasmid pET46. Bacteriophages were induced from E. tasmaniensis strains Et88 and Et14/99, both isolates from South-Eastern Australia. These phages formed plaques on several other strains from this region, as well as on E. tasmaniensis strains from South Africa and Germany. Sequencing revealed similarity of phages ϕEt88 and ϕEt14, which shared the host range on E. tasmaniensis strains. Bacteriophages and tasmancin may interfere with the viability of several related E. tasmaniensis strains in the environment of carrier strains.

  3. Erwinia piriflorinigrans sp. nov., a novel pathogen that causes necrosis of pear blossoms.

    Science.gov (United States)

    López, María M; Roselló, Montserrat; Llop, Pablo; Ferrer, Sergi; Christen, Richard; Gardan, Louis

    2011-03-01

    Eight Erwinia strains, isolated from necrotic pear blossoms in València, Spain, were compared with reference strains of Erwinia amylovora and Erwinia pyrifoliae, both of which are pathogenic to species of pear tree, and to other species of the family Enterobacteriaceae using a polyphasic approach. Phenotypic analyses clustered the novel isolates into one phenon, distinct from other species of the genus Erwinia, showing that the novel isolates constituted a homogeneous phenotypic group. Rep-PCR profiles, PCR products obtained with different pairs of primers and plasmid contents determined by restriction analysis showed differences between the novel strains and reference strains of E. amylovora and E. pyrifoliae. Phylogenetic analysis of 16S rRNA, gpd and recA gene sequences showed that the eight novel strains could not be assigned to any recognized species. On the basis of DNA-DNA hybridization studies, the novel isolates constituted a single group with relatedness values of 87-100  % to the designated type strain of the group, CFBP 5888(T). Depending on the method used, strain CFBP 5888(T) showed DNA-DNA relatedness values of between 22.7 and 50  % to strains of the closely related species E. amylovora and E. tasmaniensis. The DNA G+C contents of two of the novel strains, CFBP 5888(T) and CFBP 5883, were 51.1 and 50.5 mol%, respectively. On the basis of these and previous results, the novel isolates represent a novel species of the genus Erwinia, for which the name Erwinia piriflorinigrans sp. nov. is proposed. The type strain is CFBP 5888(T) (=CECT 7348(T)).

  4. Pantoea agglomerans Strain EH318 Produces Two Antibiotics That Inhibit Erwinia amylovora In Vitro

    OpenAIRE

    Wright, Sandra A. I.; Zumoff, Cathy H.; Schneider, Lois; Beer, Steven V.

    2001-01-01

    Pantoea agglomerans (synonym: Erwinia herbicola) strain Eh318 produces through antibiosis a complex zone of inhibited growth in an overlay seeded with Erwinia amylovora, the causal agent of fire blight. This zone is caused by two antibiotics, named pantocin A and B. Using a genomic library of Eh318, two cosmids, pCPP702 and pCPP704, were identified that conferred on Escherichia coli the ability to inhibit growth of E. amylovora. The two cosmids conferred different antibiotic activities on E. ...

  5. Erwinia mallotivora sp., a New Pathogen of Papaya (Carica papaya) in Peninsular Malaysia

    OpenAIRE

    Noriha Mat Amin; Hamidun Bunawan; Rohaiza Ahmad Redzuan; Indu Bala S. Jaganath

    2010-01-01

    Erwinia mallotivora was isolated from papaya infected with dieback disease showing the typical symptoms of greasy, water-soaked lesions and spots on leaves. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belonged to the genus Erwinia and was united in a monophyletic group with E. mallotivora DSM 4565 (AJ233414). Earlier studies had indicated that the causal agent for this disease was E. papayae. However, our current studies, through Koch’s postulate, have confirmed th...

  6. High performance liquid chromatography time of flight electrospray ionization mass spectrometry for quantification of sesquiterpenes in Chrysanthemi indici Flos active extract

    OpenAIRE

    Fu, Ling; Wang, Pan; SUN, YIQUN; Wang, Yangyang; Zhao, Jing; Ye, Yuting; Zhang, Yanbin; Bi, Yuefeng

    2015-01-01

    Background: Chrysanthemi indici Flos, a traditional herbal medicine is used to clearing heat–toxicity, removing the liver fire, and improving eyesight. In our preliminary work, an active extract of CTC in C. An indici Flos with anti-hepatitis B virus and liver protective activity was found by HepG2.2.1.5 test and experiment of protein synthesis in mice's injured liver. In this work, we aimed to study the active faction CTC further by qualitative and quantitative analysis method. Materials and...

  7. Functional assembly of the foreign carotenoid lycopene into the photosynthetic apparatus of Rhodobacter sphaeroides, achieved by replacement of the native 3-step phytoene desaturase with its 4-step counterpart from Erwinia herbicola.

    Science.gov (United States)

    Garcia-Asua, Guillermo; Cogdell, Richard J; Hunter, C Neil

    2002-04-01

    Photosynthetic organisms synthesize a diverse range of carotenoids. These pigments are important for the assembly, function and stability of photosynthetic pigment-protein complexes, and they are used to quench harmful radicals. The photosynthetic bacterium Rhodobacter sphaeroides was used as a model system to explore the origin of carotenoid diversity. Replacing the native 3-step phytoene desaturase (CrtI) with the 4-step enzyme from Erwinia herbicola results in significant flux down the spirilloxanthin pathway for the first time in Rb. sphaeroides. In Rb. sphaeroides, the completion of four desaturations to lycopene by the Erwinia CrtI appears to require the absence of CrtC and, in a crtC background, even the native 3-step enzyme can synthesize a significant amount (13%) of lycopene, in addition to the expected neurosporene. We suggest that the CrtC hydroxylase can intervene in the sequence of reactions catalyzed by phytoene desaturase. We investigated the properties of the lycopene-synthesizing strain of Rb. sphaeroides. In the LH2 light-harvesting complex, lycopene transfers absorbed light energy to the bacteriochlorophylls with an efficiency of 54%, which compares favourably with other LH2 complexes that contain carotenoids with 11 conjugated double bonds. Thus, lycopene can join the assembly pathway for photosynthetic complexes in Rb. sphaeroides, and can perform its role as an energy donor to bacteriochlorophylls. PMID:11967082

  8. Functional assembly of the foreign carotenoid lycopene into the photosynthetic apparatus of Rhodobacter sphaeroides, achieved by replacement of the native 3-step phytoene desaturase with its 4-step counterpart from Erwinia herbicola.

    Science.gov (United States)

    Garcia-Asua, Guillermo; Cogdell, Richard J; Hunter, C Neil

    2002-04-01

    Photosynthetic organisms synthesize a diverse range of carotenoids. These pigments are important for the assembly, function and stability of photosynthetic pigment-protein complexes, and they are used to quench harmful radicals. The photosynthetic bacterium Rhodobacter sphaeroides was used as a model system to explore the origin of carotenoid diversity. Replacing the native 3-step phytoene desaturase (CrtI) with the 4-step enzyme from Erwinia herbicola results in significant flux down the spirilloxanthin pathway for the first time in Rb. sphaeroides. In Rb. sphaeroides, the completion of four desaturations to lycopene by the Erwinia CrtI appears to require the absence of CrtC and, in a crtC background, even the native 3-step enzyme can synthesize a significant amount (13%) of lycopene, in addition to the expected neurosporene. We suggest that the CrtC hydroxylase can intervene in the sequence of reactions catalyzed by phytoene desaturase. We investigated the properties of the lycopene-synthesizing strain of Rb. sphaeroides. In the LH2 light-harvesting complex, lycopene transfers absorbed light energy to the bacteriochlorophylls with an efficiency of 54%, which compares favourably with other LH2 complexes that contain carotenoids with 11 conjugated double bonds. Thus, lycopene can join the assembly pathway for photosynthetic complexes in Rb. sphaeroides, and can perform its role as an energy donor to bacteriochlorophylls.

  9. Erwinia amylovora affects the phenylpropanoid-flavonoid pathway in mature leaves of Pyrus communis cv. Conférence.

    Science.gov (United States)

    Vrancken, K; Holtappels, M; Schoofs, H; Deckers, T; Treutter, D; Valcke, R

    2013-11-01

    Flavonoids, which are synthesized by the phenylpropanoid-flavonoid pathway, not only contribute to fruit colour and photoprotection, they also may provide antimicrobial and structural components during interaction with micro-organisms. A possible response of this pathway was assessed in both mature and immature leaves of shoots of 2-year-old pear trees cv. Conférence, which were inoculated with the gram-negative bacterium Erwinia amylovora strain SGB 225/12, were mock-inoculated or were left untreated. The phenylpropanoid-flavonoid pathway was analysed by histological studies, by gene expression using RT-qPCR and by HPLC analyses of the metabolites at different time intervals after infection. Transcription patterns of two key genes anthocyanidin reductase (ANR) and chalcone synthase (CHS) related to the phenylpropanoid-flavonoid pathway showed differences between control, mock-inoculated and E. amylovora-inoculated mature leaves, with the strongest reaction 48 h after inoculation. The impact of E. amylovora was also visualised in histological sections, and confirmed by HPLC, as epicatechin -which is produced via ANR- augmented 72 h after inoculation in infected leaf tissue. Besides the effect of treatments, ontogenesis-related differences were found as well. The increase of certain key genes, the rise in epicatechin and the visualisation in several histological sections in this study suggest a non-negligible impact on the phenylpropanoid-flavonoid pathway in Pyrus communis due to inoculation with E. amylovora. In this study, we propose a potential role of this pathway in defence mechanisms, providing a detailed analysis of the response of this system attributable to inoculation with E. amylovora.

  10. Conventional and real-time PCRs for detection of Erwinia piriflorinigrans allow its distinction from the fire blight pathogen, Erwinia amylovora.

    Science.gov (United States)

    Barbé, Silvia; Bertolini, Edson; Roselló, Montserrat; Llop, Pablo; López, María M

    2014-04-01

    Erwinia piriflorinigrans is a new pathogenic species of the bacterial genus Erwinia that has been described recently in Spain. Accurate detection and identification of E. piriflorinigrans are challenging because its symptoms on pear blossoms are similar to those caused by Erwinia amylovora, the causal agent of fire blight. Moreover, these two species share phenotypic and molecular characteristics. Two specific and sensitive conventional and real-time PCR protocols were developed to identify and detect E. piriflorinigrans and to differentiate it from E. amylovora and other species of this genus. These protocols were based on sequences from plasmid pEPIR37, which is present in all strains of E. piriflorinigrans analyzed. After the stability of the plasmid was demonstrated, the specificities of the protocols were confirmed by the amplification of all E. piriflorinigrans strains tested, whereas 304 closely related pathogenic and nonpathogenic Erwinia strains and microbiota from pear trees were not amplified. In sensitivity assays, 10(3) cells/ml extract were detected in spiked plant material by conventional or real-time PCR, and 10(2) cells/ml were detected in DNA extracted from spiked plant material by real-time PCR. The protocols developed here succeeded in detecting E. piriflorinigrans in 102 out of 564 symptomatic and asymptomatic naturally infected pear samples (flowers, cortex stem tissue, leaves, shoots, and fruitlets), in necrotic Pyracantha sp. blossoms, and in necrotic pear and apple tissues infected with both E. amylovora and E. piriflorinigrans. Therefore, these new tools can be used in epidemiological studies that will enhance our understanding of the life cycle of E. piriflorinigrans in different hosts and plant tissues and its interaction with E. amylovora.

  11. Development of a Duplex PCR for Identification of Erwinia amylovora%步双重PCR法检测梨火疫病原细菌(Erwinia amylovora)

    Institute of Scientific and Technical Information of China (English)

    许景升; 徐进; 冯洁

    2008-01-01

    @@ 由梨火疫病原细菌(Erwinia amylovom)导致的火疫病(fire blight)是梨、苹果及其它蔷薇科植物上的毁灭性病害,我国将其定为对外一类检疫性有害生物.该病随种苗、果实及包装材料传播.

  12. Development of microwave-assisted extraction followed by headspace solid-phase microextraction and gas chromatography-mass spectrometry for quantification of camphor and borneol in Flos Chrysanthemi Indici

    Energy Technology Data Exchange (ETDEWEB)

    Deng Chunhui [Department of Chemistry, Fudan University, Shanghai 200433 (China); Mao Yu [Department of Basic Medical Sciences, Second Military Medicinal University, Shanghai 200433 (China); Yao Ning [Department of Chemistry, Fudan University, Shanghai 200433 (China); Zhang Xiangmin [Department of Chemistry, Fudan University, Shanghai 200433 (China)]. E-mail: xmzhang@fudan.edu.cn

    2006-08-04

    In the work, microwave-assisted extraction (MAE) followed by headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) was developed for quantitative analysis of the bioactive components of camphor and borneol in a traditional Chinese medicines (TCM) of Flos Chrysanthemi Indici. After systematical investigation, the optimal experimental parameters microwave power (400 W), irradiation time (4 min), fiber coating (PDMS/DVB fiber), extraction temperature (40 deg. C), extraction time (20 min), stirring rate (1100 rpm), and salt effect (no salt added) were investigated. The optimized method provided satisfactory precision (RSD values less than 12%), good recovery (from 86% to 94%), and good linearity (R {sup 2} > 0.999). The proposed method was applied to quantitative analysis of camphor and borneol in Flos Chrysanthemi Indici samples from 11 different growing areas. To demonstrate the method feasibility, steam distillation was also used to analyze camphor and borneol in Flos Chrysanthemi Indici samples from these different growing areas. The very close results were obtained by the two methods. It has been shown that the proposed ME-HS-SPME-GC-MS is a simple, rapid, solvent-free and reliable method for quantitative analysis of camphor and borneol in TCM, and a potential tool for quality assessment of Flos Chrysanthemi Indici.

  13. Evaluation of a PCR kit for the detection of Erwinia carotovora subsp. atroseptica on potato tubers

    NARCIS (Netherlands)

    Frechon, D.; Exbrayat, P.; Helias, V.; Hyman, L.J.; Jouan, B.; Llop, P.; Lopez, M.M.; Payet, N.; Perombelon, M.C.M.; Toth, I.K.; Beckhoven, van J.R.C.M.; Wolf, van der J.M.; Bertheau, Y.

    1998-01-01

    A PCR-based kit, Probelia(TM), for the detection of Erwinia carotovora subsp. atroseptica (Eca) on potatoes was evaluated at five laboratories in four countries. The kit is based on DNA-specific PCR amplification followed by detection of amplicons by hybridization to a peroxidase-labelled DNA probe

  14. Characterization of the RcsC sensor kinase from Erwinia amylovora and other enterobacteria

    Science.gov (United States)

    RcsC is a hybrid sensor kinase which contains a sensor domain, a histidine kinase domain and a receiver domain. We have previously demonstrated that, while the Erwinia amylovora rcsC mutant produces more amylovoran than the wild type strain in vitro, the mutant remains avirulent on both immature pea...

  15. Draft Genome Sequence of Erwinia mallotivora BT-MARDI, Causative Agent of Papaya Dieback Disease.

    Science.gov (United States)

    Redzuan, R Ahmad; Abu Bakar, N; Rozano, L; Badrun, R; Mat Amin, N; Mohd Raih, M F

    2014-01-01

    Erwinia mallotivora was isolated from papaya trees infected with dieback disease, which were planted at the Malaysian Agricultural Research and Development Institute (MARDI), Malaysia. Here, we report a draft genome sequence of E. mallotivora BT-MARDI, which offers an important source of information for understanding pathogen and host interaction during papaya dieback development. PMID:24812220

  16. Draft Genome Sequence of Erwinia mallotivora BT-MARDI, Causative Agent of Papaya Dieback Disease

    OpenAIRE

    Redzuan, R. Ahmad; Abu Bakar, N; Rozano, L.; Badrun, R.; Mat Amin, N.; Mohd Raih, M. F.

    2014-01-01

    Erwinia mallotivora was isolated from papaya trees infected with dieback disease, which were planted at the Malaysian Agricultural Research and Development Institute (MARDI), Malaysia. Here, we report a draft genome sequence of E. mallotivora BT-MARDI, which offers an important source of information for understanding pathogen and host interaction during papaya dieback development.

  17. Antibiosis by Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple blossom stigmas

    Science.gov (United States)

    Pantoea agglomerans E325, the active ingredient in a commercial product for fire blight control, was previously shown in vitro to produce a unique alkaline- and phosphate-sensitive antibiotic specific to Erwinia amylovora. Antibiosis was evaluated as a mode of antagonism on blossom stigmas using two...

  18. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics

    Science.gov (United States)

    Protein lysine acetylation (LysAc) in bacteria has recently been demonstrated to be widespread in E. coli and Salmonella and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we report the lysine acetylome of Erwinia amylovo...

  19. AmyR is a novel negative regulator of amylovoran production in Erwinia amylovora

    Science.gov (United States)

    We have previously reported the characterization of an orphan gene ybjN from Escherichia coli. In this study, we attempted to understand the role of amyR in Erwinia amylovora, a functionally conserved homolog of E. coli ybjN. As reported earlier, amylovoran production in the amyR knockout mutant is ...

  20. Genome-wide identification of genes regulated by the Rcs Phosphorelay system in Erwinia amylovora

    Science.gov (United States)

    The exopolysaccharide amylovoran is one of the major pathgenicity factors in Erwinia amylovora, the causal agent of fire blight of apples and pears. We have previously demonstrated that the RcsBCD phosphorelay system is essential for virulence by controlling amylovoran biosynthesis. We have also fou...

  1. Draft genome sequence of Erwinia tracheiphila, an economically important bacterial pathogen of cucurbits

    Science.gov (United States)

    Erwinia tracheiphila is one of the most economically important pathogen of cucumbers, melons, squashes, pumpkins, and gourds, in the Northeastern and Midwestern United States, yet the molecular pathology remains uninvestigated. Here we report the first draft genome sequence of an E. tracheiphila str...

  2. [Erwinia amylovora--the fire blight pathogen of trees in Ukraine].

    Science.gov (United States)

    Iakovleva, L M; Moroz, S N; Shcherbina, T N; Ogorodnik, L E; Gvozdiak, R I; Patyka, V F

    2014-01-01

    Niduses of fire blight of fruit and ornamental trees have been found in the Kyiv and Vinnitsa regions of Ukraine. Pathogen Erwinia amylovora was isolated between April and October. The pathogen was often accompanied by bacteria Pseudomonas syringae pv. syringae. Artificial infection with a mixture of bacteria E. amylovora and P. syringae pv. syringae accelerates and enhances the disease process in the laboratory.

  3. Genetic islands in pome fruit pathogenic and nonpathogenic Erwinia species and related plasmids

    Directory of Open Access Journals (Sweden)

    Pablo eLlop

    2015-08-01

    Full Text Available New pathogenic bacteria species belonging to the genus Erwinia associated with pome fruit trees (Erwinia pyrifoliae, E. piriflorinigrans, E. uzenensis have been increasingly described in the last years, and comparative analyses have found that all these species share several genetic characteristics. Studies at different level (whole genome comparison, virulence genes, plasmid content, etc. show a high intraspecies homogeneity (i.e. among E. amylovora strains and also abundant similarities appear between the different Erwinia species: presence of plasmids of similar size in the pathogenic species; high similarity in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes, in the chromosomes. Many genetic similarities have been observed also among some of the plasmids (and genomes from the pathogenic species and E. tasmaniensis or E. billingiae, two epiphytic species on the same hosts. The amount of genetic material shared in this genus varies from individual genes to clusters, genomic islands and genetic material that even may constitute a whole plasmid. Recent research on evolution of erwinias point out the horizontal transfer acquisition of some genomic islands that were subsequently lost in some species and several pathogenic traits that are still present. How this common material has been obtained and is efficiently maintained in different species belonging to the same genus sharing a common ecological niche provides an idea of the origin and evolution of the pathogenic Erwinia and the interaction with nonpathogenic species present in the same niche, and the role of the genes that are conserved in all of them.

  4. Production of glucosyltransferase by Erwinia sp. using experimental design and response surface methodology Produção de glicosiltransferase por Erwinia sp. utilizando planejamento experimental e metodologia de superfície de resposta

    OpenAIRE

    Haroldo Yukio Kawaguti; Eiric Manrich; Luciana Francisco Fleuri; Hélia Harumi Sato

    2005-01-01

    Glucosyltransferase produced by strain Erwinia sp. is an intracellular enzyme that catalyzes the formation of isomaltulose from sucrose. Isomaltulose is a non-cariogenic reducing dissacharide commercially used in foods. Response surface methodology and 2³-factorial central composite design were employed to optimize a fermentation medium for the production of glucosyltransferase by Erwinia sp. in shaken flasks at 200 rpm and 30ºC. The three variables involved in this study were sugar cane mola...

  5. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    In contrast to higher eukaryotes, bacteria are haploid, i.e. they store their genetic information in a single chromosome, which is then duplicated during the cell cycle. If the growth rate is sufficiently low, the bacterium is born with only a single copy of the chromosome, which gets duplicated...... before the bacterium divides. Fast-growing bacteria have overlapping rounds of replication, and can contain DNA corresponding to more than four genome equivalents. However, the terminus region of the chromosome is still present in just one copy after division, and is not duplicated until right before...... the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...

  6. Single Bacterium Detection Using Sers

    Science.gov (United States)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  7. Identification of an RcsA/RcsB recognition motif in the promoters of exopolysaccharide biosynthetic operons from Erwinia amylovora and Pantoea stewartii subspecies stewartii.

    Science.gov (United States)

    Wehland, M; Kiecker, C; Coplin, D L; Kelm, O; Saenger, W; Bernhard, F

    1999-02-01

    The regulation of capsule synthesis (Rcs) regulatory network is responsible for the induction of exopolysaccharide biosynthesis in many enterobacterial species. We have previously shown that two transcriptional regulators, RcsA and RcsB, do bind as a heterodimer to the promoter of amsG, the first reading frame in the operon for amylovoran biosynthesis in the plant pathogenic bacterium Erwinia amylovora. We now identified a 23-base pair fragment from position -555 to -533 upstream of the translational start site of amsG as sufficient for the specific binding of the Rcs proteins. In addition, we could detect an RcsA/RcsB-binding site in a corresponding region of the promoter of cpsA, the homologous counterpart to the E. amylovora amsG gene in the operon for stewartan biosynthesis of Pantoea stewartii. The specificity and characteristic parameters of the protein-DNA interaction were analyzed by DNA retardation, protein-DNA cross-linking, and directed mutagenesis. The central core motif TRVGAAWAWTSYG of the amsG promoter was found to be most important for the specific interaction with RcsA/RcsB, as evaluated by mutational analysis and an in vitro selection approach. The wild type P. stewartii Rcs binding motif is degenerated in two positions and an up-mutation according to our consensus motif resulted in about a 5-fold increased affinity of the RcsA/RcsB proteins. PMID:9920870

  8. The crystal structure of Erwinia amylovora levansucrase provides a snapshot of the products of sucrose hydrolysis trapped into the active site.

    Science.gov (United States)

    Wuerges, Jochen; Caputi, Lorenzo; Cianci, Michele; Boivin, Stephane; Meijers, Rob; Benini, Stefano

    2015-09-01

    Levansucrases are members of the glycoside hydrolase family and catalyse both the hydrolysis of the substrate sucrose and the transfer of fructosyl units to acceptor molecules. In the presence of sufficient sucrose, this may either lead to the production of fructooligosaccharides or fructose polymers. Aim of this study is to rationalise the differences in the polymerisation properties of bacterial levansucrases and in particular to identify structural features that determine different product spectrum in the levansucrase of the Gram-negative bacterium Erwinia amylovora (Ea Lsc, EC 2.4.1.10) as compared to Gram-positive bacteria such as Bacillus subtilis levansucrase. Ea is an enterobacterial pathogen responsible for the Fire Blight disease in rosaceous plants (e.g., apple and pear) with considerable interest for the agricultural industry. The crystal structure of Ea Lsc was solved at 2.77 Å resolution and compared to those of other fructosyltransferases from Gram-positive and Gram-negative bacteria. We propose the structural features, determining the different reaction products, to reside in just a few loops at the rim of the active site funnel. Moreover we propose that loop 8 may have a role in product length determination in Gluconacetobacter diazotrophicus LsdA and Microbacterium saccharophilum FFase. The Ea Lsc structure shows for the first time the products of sucrose hydrolysis still bound in the active site. PMID:26208466

  9. Carotenoid biosynthesis in bacteria: In vitro studies of a crt/bch transcription factor from Rhodobacter capsulatus and carotenoid enzymes from Erwinia herbicola

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, D.A.

    1992-11-01

    A putative transcription factor in Rhodobactor capsulatus which binds upstream of the crt and bch pigment biosynthesis operons and appears to play a role in the adaptation of the organism from the aerobic to the anaerobic-photosynthetic growth mode was characterized. Chapter 2 describes the identification of this factor through an in vitro mobility shift assay, as well as the determination of its binding properties and sequence specificity. Chapter 3 focuses on the isolation of this factor. Biochemistry of later carotenoid biosynthesis enzymes derived from the non-photosynthetic bacterium, Erwinia herbicola. Chapter 4 describes the separate overexpression and in vitro analysis of two enzymes involved in the main sequence of the carotenoid biosynthesis pathway, lycopene cyclase and 5-carotene hydroxylase. Chapter 5 examines the overexpression and enzymology of functionally active zeaxanthin glucosyltransferase, an enzyme which carries out a more unusual transformation, converting a carotenoid into its more hydrophilic mono- and diglucoside derivatives. In addition, amino acid homology with other glucosyltransferases suggests a putative binding site for the UDP-activated glucose substrate.

  10. The crystal structure of Erwinia amylovora levansucrase provides a snapshot of the products of sucrose hydrolysis trapped into the active site.

    Science.gov (United States)

    Wuerges, Jochen; Caputi, Lorenzo; Cianci, Michele; Boivin, Stephane; Meijers, Rob; Benini, Stefano

    2015-09-01

    Levansucrases are members of the glycoside hydrolase family and catalyse both the hydrolysis of the substrate sucrose and the transfer of fructosyl units to acceptor molecules. In the presence of sufficient sucrose, this may either lead to the production of fructooligosaccharides or fructose polymers. Aim of this study is to rationalise the differences in the polymerisation properties of bacterial levansucrases and in particular to identify structural features that determine different product spectrum in the levansucrase of the Gram-negative bacterium Erwinia amylovora (Ea Lsc, EC 2.4.1.10) as compared to Gram-positive bacteria such as Bacillus subtilis levansucrase. Ea is an enterobacterial pathogen responsible for the Fire Blight disease in rosaceous plants (e.g., apple and pear) with considerable interest for the agricultural industry. The crystal structure of Ea Lsc was solved at 2.77 Å resolution and compared to those of other fructosyltransferases from Gram-positive and Gram-negative bacteria. We propose the structural features, determining the different reaction products, to reside in just a few loops at the rim of the active site funnel. Moreover we propose that loop 8 may have a role in product length determination in Gluconacetobacter diazotrophicus LsdA and Microbacterium saccharophilum FFase. The Ea Lsc structure shows for the first time the products of sucrose hydrolysis still bound in the active site.

  11. Erwinia mallotivora sp., a new pathogen of papaya (Carica papaya) in Peninsular Malaysia.

    Science.gov (United States)

    Amin, Noriha Mat; Bunawan, Hamidun; Redzuan, Rohaiza Ahmad; Jaganath, Indu Bala S

    2010-01-01

    Erwinia mallotivora was isolated from papaya infected with dieback disease showing the typical symptoms of greasy, water-soaked lesions and spots on leaves. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belonged to the genus Erwinia and was united in a monophyletic group with E. mallotivora DSM 4565 (AJ233414). Earlier studies had indicated that the causal agent for this disease was E. papayae. However, our current studies, through Koch's postulate, have confirmed that papaya dieback disease is caused by E. mallotivora. To our knowledge, this is the first new discovery of E. mallotivora as a causal agent of papaya dieback disease in Peninsular Malaysia. Previous reports have suggested that E. mallotivora causes leaf spot in Mallotus japonicus. However, this research confirms it also to be pathogenic to Carica papaya. PMID:21339975

  12. Erwinia mallotivora sp., a new pathogen of papaya (Carica papaya) in Peninsular Malaysia.

    Science.gov (United States)

    Amin, Noriha Mat; Bunawan, Hamidun; Redzuan, Rohaiza Ahmad; Jaganath, Indu Bala S

    2010-12-24

    Erwinia mallotivora was isolated from papaya infected with dieback disease showing the typical symptoms of greasy, water-soaked lesions and spots on leaves. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belonged to the genus Erwinia and was united in a monophyletic group with E. mallotivora DSM 4565 (AJ233414). Earlier studies had indicated that the causal agent for this disease was E. papayae. However, our current studies, through Koch's postulate, have confirmed that papaya dieback disease is caused by E. mallotivora. To our knowledge, this is the first new discovery of E. mallotivora as a causal agent of papaya dieback disease in Peninsular Malaysia. Previous reports have suggested that E. mallotivora causes leaf spot in Mallotus japonicus. However, this research confirms it also to be pathogenic to Carica papaya.

  13. Erwinia mallotivora sp., a New Pathogen of Papaya (Carica papaya in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Noriha Mat Amin

    2010-12-01

    Full Text Available Erwinia mallotivora was isolated from papaya infected with dieback disease showing the typical symptoms of greasy, water-soaked lesions and spots on leaves. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belonged to the genus Erwinia and was united in a monophyletic group with E. mallotivora DSM 4565 (AJ233414. Earlier studies had indicated that the causal agent for this disease was E. papayae. However, our current studies, through Koch’s postulate, have confirmed that papaya dieback disease is caused by E. mallotivora. To our knowledge, this is the first new discovery of E. mallotivora as a causal agent of papaya dieback disease in Peninsular Malaysia. Previous reports have suggested that E. mallotivora causes leaf spot in Mallotus japonicus. However, this research confirms it also to be pathogenic to Carica papaya.

  14. Cloning, expression, purification and characterisation of Erwinia carotovora L-asparaginase in Escherichia coli

    OpenAIRE

    Meraj Pourhossein; Hassan Korbekandi

    2014-01-01

    Background: For the past 30 years, bacterial L-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukemia. It is found in a variety of organisms such as microbes, plants and mammals. Their intrinsic low-rate glutaminase activity, however, causes serious side-effects, including neurotoxicity, hepatitis, coagulopathy and other dysfunctions. Erwinia carotovora asparaginase shows decreased glutaminase activity, so it is believed to have fewer sid...

  15. Non-conventional possibilities of protection of apple and pear against fire blight (Erwinia amylovora)

    OpenAIRE

    Piotr Sobiczewski; Grzegorz Krupiński; Joanna Puławska

    2013-01-01

    Standard program of plant protection against fire blight consists of use of management practices and chemical control method. Recently a new, non-conventional possibilities based on application of biocontrol agents (two biopreparations have been already introduced into practice: Bliteban A506 (Pseudomonas fluorescens) and BlossomBless (Pantoea agglomerans), plant extracts active against Erwinia amylovora (AkseBio containing extracts from Thymbra spicata and Biomit Plussz with extracts from va...

  16. Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces

    OpenAIRE

    Brandl, M. T.; Quiñones, B.; Lindow, S E

    2001-01-01

    We investigated the spatial pattern of expression of ipdC, a plant inducible gene involved in indoleacetic acid biosynthesis in Erwinia herbicola, among individual cells on plants to gain a better understanding of the role of this phenotype in the epiphytic ecology of bacteria and the factors involved in the regulation of ipdC. Nonpathogenic E. herbicola strain 299R harboring a transcriptional fusion of ipdC to gfp was inoculated onto bean plants, recovered fro...

  17. Effect of Culture Conditions on the Production of Tyrosine Phenol-Lyase by Erwinia herbicola

    OpenAIRE

    Para, G. M.; Baratti, J. C.

    1984-01-01

    The effect of environmental parameters on the growth and the tyrosine phenol-lyase content of Erwinia herbicola was investigated. On mineral medium containing glycerol, l-tyrosine increased the enzyme content 23-fold. When the l-tyrosine was also the carbon source, bacterial growth was 300 times greater than the basal level. On a rich medium, tyrosine phenol-lyase production was strongly dependent on pH and aeration. Catabolite repression and induction both probably control enzyme content.

  18. Plasmid-borne determinants of pigmentation and thiamine prototrophy in Erwinia herbicola.

    OpenAIRE

    Gantotti, B. V.; Beer, S. V.

    1982-01-01

    Strains of Erwinia herbicola lost yellow pigmentation and thiamine prototrophy at high frequency when grown at elevated temperature (38 degrees C) or in the presence of sodium dodecyl sulfate. All pigmentless, thiamine-auxotrophic variants had lost a large plasmid (ca. 350 megadaltons). Conversely, all pigmented, thiamine-prototrophic strains contained the large plasmid. The evidence presented indicates that pigmentation and thiamine prototrophy are specified or controlled by genes carried on...

  19. The crtE gene in Erwinia herbicola encodes geranylgeranyl diphosphate synthase.

    OpenAIRE

    Math, S K; Hearst, J E; Poulter, C. D.

    1992-01-01

    A cluster of genes essential for the biosynthesis of carotenoids in Erwinia herbicola has been isolated and characterized [Armstrong, G.A., Alberti, M. & Hearst, J. E. (1990) Proc. Natl. Acad. Sci. USA 87, 9975-9979]. Related gene clusters are found in other carotenoid-producing bacteria. Two of these genes, crtB and crtE, have been assigned to enzymes responsible for conversion of geranylgeranyl diphosphate (GGPP) to prephytoene diphosphate and prephytoene diphosphate to phytoene, respective...

  20. Functional analysis of the Erwinia herbicola tutB gene and its product.

    Science.gov (United States)

    Katayama, Takane; Suzuki, Hideyuki; Koyanagi, Takashi; Kumagai, Hidehiko

    2002-06-01

    The tutB gene, which lies just downstream of tpl, has been cloned from Erwinia herbicola, and its product was analyzed. Despite its high sequence similarity to tryptophan transporters, TutB was found to be a tyrosine-specific transporter. Tryptophan acted as a competitive inhibitor of tyrosine transport. Unlike the tryptophanase operon, the tpl and tutB genes do not constitute an operon. PMID:12003958

  1. Functional Analysis of the Erwinia herbicola tutB Gene and Its Product

    OpenAIRE

    Katayama, Takane; Suzuki, Hideyuki; Koyanagi, Takashi; Kumagai, Hidehiko

    2002-01-01

    The tutB gene, which lies just downstream of tpl, has been cloned from Erwinia herbicola, and its product was analyzed. Despite its high sequence similarity to tryptophan transporters, TutB was found to be a tyrosine-specific transporter. Tryptophan acted as a competitive inhibitor of tyrosine transport. Unlike the tryptophanase operon, the tpl and tutB genes do not constitute an operon.

  2. Absence of lysogeny in wild populations of Erwinia amylovora and Pantoea agglomerans.

    Science.gov (United States)

    Roach, Dwayne R; Sjaarda, David R; Sjaarda, Calvin P; Ayala, Carlos Juarez; Howcroft, Brittany; Castle, Alan J; Svircev, Antonet M

    2015-05-01

    Lytic bacteriophages are in development as biological control agents for the prevention of fire blight disease caused by Erwinia amylovora. Temperate phages should be excluded as biologicals since lysogeny produces the dual risks of host resistance to phage attack and the transduction of virulence determinants between bacteria. The extent of lysogeny was estimated in wild populations of E. amylovora and Pantoea agglomerans with real-time polymerase chain reaction primers developed to detect E. amylovora phages belonging to the Myoviridae and Podoviridae families. Pantoea agglomerans, an orchard epiphyte, is easily infected by Erwinia spp. phages, and it serves as a carrier in the development of the phage-mediated biological control agent. Screening of 161 E. amylovora isolates from 16 distinct geographical areas in North America, Europe, North Africa and New Zealand and 82 P. agglomerans isolates from southern Ontario, Canada showed that none possessed prophage. Unstable phage resistant clones or lysogens were produced under laboratory conditions. Additionally, a stable lysogen was recovered from infection of bacterial isolate Ea110R with Podoviridae phage ΦEa35-20. These laboratory observations suggested that while lysogeny is possible in E. amylovora, it is rare or absent in natural populations, and there is a minimal risk associated with lysogenic conversion and transduction by Erwinia spp. phages.

  3. The influence of antibiotic production and pre-emptive colonization on the population dynamics of Pantoea agglomerans (Erwinia herbicola) Eh1087 and Erwinia amylovora in planta.

    Science.gov (United States)

    Giddens, Stephen R; Houliston, Gary J; Mahanty, H Khris

    2003-10-01

    Stigma colonization by Erwinia amylovora is the crucial first step in the development of most fire blight infections in apple and pear trees. Suppression at this point of the disease process by antagonists of E. amylovora, such as Pantoea agglomerans (Erwinia herbicola) strain Eh1087, is a rational approach to control fire blight. We tested the hypothesis that the ability of E. amylovora to compete with Eh1087 for colonization of a stigma is reduced by the potential for Eh1087 to produce the phenazine antibiotic, d-alanylgriseoluteic acid (AGA). In competition experiments on the stigmas of apple flowers, E. amylovora was significantly less successful against Eh1087 (AGA+) than against EhDeltaAGA (AGA-). Further experiments to test the importance of pre-emptive colonization of the stigma by either the pathogen or the antagonist suggested that AGA production significantly enhanced the competitiveness of Eh1087 when it was applied at the same time or 24 h before the pathogen. We also found that pre-emptive stigma colonization by either the pathogen or the antagonist resulted in a population that was resilient to subsequent invasion by a second species suggesting that niche exclusion has a dominant influence on the dynamics of bacterial populations on stigmas. PMID:14510856

  4. Low genetic diversity among pathogenic strains of Erwinia psidii from Brazil Baixa diversidade genética entre estirpes patogênicas de Erwinia psidii no Brasil

    Directory of Open Access Journals (Sweden)

    Ana C. O. Teixeira

    2009-09-01

    Full Text Available Erwinia psidii causes bacterial disease of guava in Brazil. Phenotypic and molecular characterization through rep-PCR fingerprinting of 42 strains from different geographical regions showed that E. psidii populations in Brazil have a low level of genetic diversity and suggest that contaminated plant material is the main source for pathogen dissemination in the country.Erwinia psidii é o agente causal da seca-dos-ponteiros ou bacteriose da goiabeira no Brasil. A caracterização fenotípica e molecular através de rep-PCR de 42 estirpes patogênicas de diferentes regiões mostrou que as populações de E. psidii no Brasil têm um baixo nível de diversidade genética e sugere que material de propagação infectado é a principal fonte de disseminação do patógeno para novas áreas no país.

  5. Erwinia amylovora expresses fast and simultaneously hrp/dsp virulence genes during flower infection on apple trees.

    Directory of Open Access Journals (Sweden)

    Doris Pester

    Full Text Available BACKGROUND: Pathogen entry through host blossoms is the predominant infection pathway of the gram-negative bacterium Erwinia amylovora leading to manifestation of the disease fire blight. Like in other economically important plant pathogens, E. amylovora pathogenicity depends on a type III secretion system encoded by hrp genes. However, timing and transcriptional order of hrp gene expression during flower infections are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative real-time PCR analyses, we addressed the questions of how fast, strong and uniform key hrp virulence genes and the effector dspA/E are expressed when bacteria enter flowers provided with the full defense mechanism of the apple plant. In non-invasive bacterial inoculations of apple flowers still attached to the tree, E. amylovora activated expression of key type III secretion genes in a narrow time window, mounting in a single expression peak of all investigated hrp/dspA/E genes around 24-48 h post inoculation (hpi. This single expression peak coincided with a single depression in the plant PR-1 expression at 24 hpi indicating transient manipulation of the salicylic acid pathway as one target of E. amylovora type III effectors. Expression of hrp/dspA/E genes was highly correlated to expression of the regulator hrpL and relative transcript abundances followed the ratio: hrpA>hrpN>hrpL>dspA/E. Acidic conditions (pH 4 in flower infections led to reduced virulence/effector gene expression without the typical expression peak observed under natural conditions (pH 7. CONCLUSION/SIGNIFICANCE: The simultaneous expression of hrpL, hrpA, hrpN, and the effector dspA/E during early floral infection indicates that speed and immediate effector transmission is important for successful plant invasion. When this delicate balance is disturbed, e.g., by acidic pH during infection, virulence gene expression is reduced, thus partly explaining the efficacy of acidification in fire blight

  6. Potential Distribution of Alien Invasive Species and Risk Assessment: a Case Study of Erwinia amylovora in China

    Institute of Scientific and Technical Information of China (English)

    CHEN Chen; CHEN Juan; HU Bai-shi; JIANG Ying-hua; LIU Feng-quan

    2007-01-01

    Alien invasive species represent a severe risk to biodiversity and economy, as in the case of fire blight (Erwinia amylovora), a bacterial disease that originated in North America, which may be released into new locations by means of fruit trade. On the basis of the knowledge of Erwinia amylovora's biophysical characteristics and environmental data, the geographic information system (GIS) has been applied to determine areas where Erwinia amylovora can potentially invade China. Temperature and precipitation, during the blossoming period, are considered to be two critical factors affecting the Erwinia amylovora's suitable climatic zones. This spatial modeling approach was validated from a case study in Europe, where the occurrence of Erwinia amylovora has been proven. The model prediction agreed with the occurrence of the bacteria recorded in Europe, and the same procedure has been applied to produce a potential establishment area in China's two preferential apple cultivation regions, Bohai Bay region and Huangtu Altiplano region. It has been found that areas belonging to the high-risk category are more or less the main apple producing areas, accounting for their great economic importance in China. This methodology provides an initial baseline for assessment, prevention, and management of alien species that may become invasive under certain environmental conditions. In addition, this modeling approach provides a tool for policy makers to use, in making decisions on management practices where alien species are involved.

  7. The olive fly endosymbiont, "Candidatus Erwinia dacicola," switches from an intracellular existence to an extracellular existence during host insect development.

    Science.gov (United States)

    Estes, Anne M; Hearn, David J; Bronstein, Judith L; Pierson, Elizabeth A

    2009-11-01

    As polyphagous, holometabolous insects, tephritid fruit flies (Diptera: Tephritidae) provide a unique habitat for endosymbiotic bacteria, especially those microbes associated with the digestive system. Here we examine the endosymbiont of the olive fly [Bactrocera oleae (Rossi) (Diptera: Tephritidae)], a tephritid of great economic importance. "Candidatus Erwinia dacicola" was found in the digestive systems of all life stages of wild olive flies from the southwestern United States. PCR and microscopy demonstrated that "Ca. Erwinia dacicola" resided intracellularly in the gastric ceca of the larval midgut but extracellularly in the lumen of the foregut and ovipositor diverticulum of adult flies. "Ca. Erwinia dacicola" is one of the few nonpathogenic endosymbionts that transitions between intracellular and extracellular lifestyles during specific stages of the host's life cycle. Another unique feature of the olive fly endosymbiont is that unlike obligate endosymbionts of monophagous insects, "Ca. Erwinia dacicola" has a G+C nucleotide composition similar to those of closely related plant-pathogenic and free-living bacteria. These two characteristics of "Ca. Erwinia dacicola," the ability to transition between intracellular and extracellular lifestyles and a G+C nucleotide composition similar to those of free-living relatives, may facilitate survival in a changing environment during the development of a polyphagous, holometabolous host. We propose that insect-bacterial symbioses should be classified based on the environment that the host provides to the endosymbiont (the endosymbiont environment).

  8. Genetic differences between blight-causing Erwinia species with differing host specificities, identified by suppression subtractive hybridization.

    Science.gov (United States)

    Triplett, Lindsay R; Zhao, Youfu; Sundin, George W

    2006-11-01

    PCR-based subtractive hybridization was used to isolate sequences from Erwinia amylovora strain Ea110, which is pathogenic on apples and pears, that were not present in three closely related strains with differing host specificities: E. amylovora MR1, which is pathogenic only on Rubus spp.; Erwinia pyrifoliae Ep1/96, the causal agent of shoot blight of Asian pears; and Erwinia sp. strain Ejp556, the causal agent of bacterial shoot blight of pear in Japan. In total, six subtractive libraries were constructed and analyzed. Recovered sequences included type III secretion components, hypothetical membrane proteins, and ATP-binding proteins. In addition, we identified an Ea110-specific sequence with homology to a type III secretion apparatus component of the insect endosymbiont Sodalis glossinidius, as well as an Ep1/96-specific sequence with homology to the Yersinia pestis effector protein tyrosine phosphatase YopH.

  9. EFEKTIFITAS DAYA HAMBAT BAKTERI Streptomyces sp TERHADAP Erwinia sp PENYEBAB PENYAKIT BUSUK REBAH PADA TANAMAN LIDAH BUAYA (Aloe barbadensis Mill

    Directory of Open Access Journals (Sweden)

    SARMILA TASNIM

    2013-05-01

    Full Text Available Streptomyces sp was conducted from December 2010 - June 2011 at the Laboratoryof Microbiology, Biology Department, Math and Science Faculty, UdayanaUniversity Bukit Jimbaran-Bali. Implementation stages of the research consisted ofisolation and testing of the antibiotic activity Streptomyces sp to inhibit growthbacterial pathogens Erwinia sp as a cause of disease in plants fallen foul (Soft rot ofAloe barbadensis Mill.The results of this study have eight isolates of Streptomyces spwith macroscopic and microscopic characters are varied. Furthermore, all isolateswere obtained and then tested against antibiotic activity to inhibit growth the bacteriaErwinia sp. Test results obtained by Streptomyces sp that has the most effective ininhibiting the ability of the bacteria Erwinia sp isolates are Streptomyces sp2for (45%.

  10. Erwinia asparaginase achieves therapeutic activity after pegaspargase allergy: a report from the Children's Oncology Group.

    Science.gov (United States)

    Salzer, Wanda L; Asselin, Barbara; Supko, Jeffrey G; Devidas, Meenakshi; Kaiser, Nicole A; Plourde, Paul; Winick, Naomi J; Reaman, Gregory H; Raetz, Elizabeth; Carroll, William L; Hunger, Stephen P

    2013-07-25

    AALL07P2 evaluated whether substitution of Erwinia asparaginase 25000 IU/m(2) for 6 doses given intramuscularly Monday/Wednesday/Friday (M/W/F) to children and young adults with acute lymphoblastic leukemia and clinical allergy to pegaspargase would provide a 48-hour nadir serum asparaginase activity (NSAA) ≥ 0.10 IU/mL. AALL07P2 enrolled 55 eligible/evaluable patients. NSAA ≥ 0.1 IU/mL was achieved in 38 of 41 patients (92.7%) with acceptable samples 48 hours and in 38 of 43 patients (88.4%) 72 hours after dosing during course 1. Among samples obtained during all courses, 95.8% (252 of 263) of 48-hour samples and 84.5% (125 of 148) of 72-hour samples had NSAA ≥ 0.10-IU/mL. Pharmacokinetic parameters were estimated by fitting the serum asparaginase activity-time course for all 6 doses given during course 1 to a 1-compartment open model with first order absorption. Erwinia asparaginase administered with this schedule achieved therapeutic NSAA at both 48 and 72 hours and was well tolerated with no reports of hemorrhage, thrombosis, or death, and few cases of grade 2 to 3 allergic reaction (n = 6), grade 1 to 3 hyperglycemia (n = 6), or grade 1 pancreatitis (n = 1). Following allergy to pegaspargase, Erwinia asparaginase 25000 IU/m(2) × 6 intramuscularly M/W/F can be substituted for a single dose of pegaspargase.

  11. Relaciones serológicas entre aislamientos bacterianos de los géneros Erwinia, Pectobacterium Y Pantoea

    OpenAIRE

    Yonis Hernández; Gustavo Trujillo

    2004-01-01

    Este estudio fue realizado con el propósito de conocer las relaciones serológicas entre aislamientos pertenecientes a diferentes generos y especies de bacterias. Se utilizaron ocho aislamientos, tres de Pectobacterium chrysanthemi obtenidos de maíz (Zea mays), papa (Solanum tuberosum) y batata (Ipomoea batatas); tres de P. carotovora subsp. carotovora, provenientes uno de cafecito de jardín (Aglaonema commutatum ´María‘) y dos de tomate (Lycopersicon esculentum), con diferencias en el comport...

  12. 菊花破壁饮片的HPLC指纹图谱研究%Study on HPLC Fingerprint of Cell Wall-Broken Decoction Pieces of Chrysanthemi Flos

    Institute of Scientific and Technical Information of China (English)

    刘星云; 王慧玲; 彭丽华; 成金乐

    2016-01-01

    目的:建立菊花破壁饮片HPLC指纹图谱,并分析破壁饮片成品与其中间品、原料的化学成分相关性,为菊花破壁饮片整体质量评价提供依据.方法:采用高效液相色谱法,十八烷基硅烷键合硅胶为填充剂的色谱柱(250 mm×4.6 mm,5μm),以乙腈-0.5%磷酸溶液为流动相进行梯度洗脱,检测波长:348 nm,柱温:35℃.结果:建立了菊花破壁饮片的HPLC指纹图谱,得到了15个共有特征峰,11批样品的相似度达0.98以上,方法学考察结果符合指纹图谱技术要求.结论:所建立的方法稳定、可靠、重复性好,可用于菊花破壁饮片质量控制和综合评价.%Objective:To establish the HPLC fingerprint of Cell Wall-Broken Decoction Pieces of Chrysanthemi Flos, and analyze the relativity between its decoction pieces,broken powder and broken particle,helping to evaluate its quality comprehensively.Methods:RP-HPLC method was performed on an Agilent C18 (250 mm ×4.6 mm,5 μm)column with a gradient elution composed of acetonitrile-aqueous solution containing 0.5% phosphoric acid.The column temperature was set at 35 ℃,while the detective wavelength was set at 348 nm.Results:The chromatographic fingerprint common pattern was established.Fifteen mutual peaks were obtained from the chromatograms of eleven batches of samples.Conclusion:The method with good reproducibility is reliable and stable,which is feasible for quality control of cell wall-broken decoction pieces of Chrysanthemi Flos.

  13. Phenazine Production in The Presence of Heavy Metals in Recombinant Erwinia herbicola Bearing the Hemoglobin Gene

    OpenAIRE

    KAHRAMAN, Hüseyin; Emel AYTAN; GİRAY KURT, Aslı; Duygu ÖZCAN

    2014-01-01

    In this study, from Vitreoscilla sp. recombinant strains were obtained from cloned bacterial hemoglobin (VHb) gene (vgb) Eh [pUC8:15] and its wild-type strain Erwinia herbicola phenazine production in the presence of heavy metals were investigated. Time-dependent production of phenazine in the wild bacteria not shows a significant change. In generally, at the end of 96 hours in the presence of Pb in terms of production of wild-type bacteria phenazine 2.91 μg/ml of recombinant bacteria is to ...

  14. Contribution of Indole-3-Acetic Acid Production to the Epiphytic Fitness of Erwinia herbicola

    OpenAIRE

    Brandl, M. T.; Lindow, S E

    1998-01-01

    Erwinia herbicola 299R produces large quantities of indole-3-acetic acid (IAA) in culture media supplemented with l-tryptophan. To assess the contribution of IAA production to epiphytic fitness, the population dynamics of the wild-type strain and an IAA-deficient mutant of this strain on leaves were studied. Strain 299XYLE, an isogenic IAA-deficient mutant of strain 299R, was constructed by insertional interruption of the indolepyruvate decarboxylase gene of strain 299R with the xylE gene, wh...

  15. Surface survival and internalization of salmonella through natural cracks on developing cantaloupe fruits, alone or in the presence of the melon wilt pathogen Erwinia tracheiphila.

    Directory of Open Access Journals (Sweden)

    Dhiraj Gautam

    Full Text Available Outbreaks of foodborne illness attributed to the consumption of Salmonella-tainted cantaloupe have occurred repeatedly, but understanding of the ecology of Salmonella on cantaloupe fruit surfaces is limited. We investigated the interactions between Salmonella enterica Poona, the plant pathogenic bacterium Erwinia tracheiphila, and cantaloupe fruit. Fruit surfaces were inoculated at the natural cracking stage by spreading S. enterica and E. tracheiphila, 20 µl at 107 cfu/ml, independently or together, over a 2×2 cm rind area containing a crack. Microbial and microscopic analyses were performed at 0, 9 and 24 days post inoculation (DPI. Even at 24 DPI (fruit maturity S. enterica was detected on 14% and 40% of the fruit inoculated with S. enterica alone and the two-pathogen mixture, respectively. However, the population of S. enterica declined gradually after initial inoculation. E. tracheiphila, inoculated alone or together with Salmonella, caused watersoaked lesions on cantaloupe fruit; but we could not conclude in this study that S. enterica survival on the fruit surface was enhanced by the presence of those lesions. Of fruit inoculated with E. tracheiphila alone and sampled at 24 DPI, 61% had watersoaked lesions on the surface. In nearly half of those symptomatic fruits the watersoaking extended into the sub-rind mesocarp, and E. tracheiphila was recovered from that tissue in 50% of the symptomatic fruit. In this work, E. tracheiphila internalized through natural cracks on developing fruits. S. enterica was never detected in the fruit interior (ca. 2-3 mm below rind surface under the limited conditions of our experiments, but the possibility that it, or other human pathogens that contaminate fresh produce, might also do so should be investigated under a wider range of conditions and produce types.

  16. Evidence of two lineages of the symbiont 'Candidatus Erwinia dacicola' in Italian populations of Bactrocera oleae (Rossi) based on 16S rRNA gene sequences.

    Science.gov (United States)

    Savio, Claudia; Mazzon, Luca; Martinez-Sañudo, Isabel; Simonato, Mauro; Squartini, Andrea; Girolami, Vincenzo

    2012-01-01

    The close association between the olive fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) and bacteria has been known for more than a century. Recently, the presence of a host-specific, hereditary, unculturable symbiotic bacterium, designated 'Candidatus Erwinia dacicola', has been described inside the cephalic organ of the fly, called the oesophageal bulb. In the present study, the 16S rRNA gene sequence variability of 'Ca. E. dacicola' was examined within and between 26 Italian olive fly populations sampled across areas where olive trees occur in the wild and areas where cultivated olive trees have been introduced through history. The bacterial contents of the oesophageal bulbs of 314 olive flies were analysed and a minimum of 781 bp of the 16S rRNA gene was sequenced. The corresponding host fly genotype was assessed by sequencing a 776 bp portion of the mitochondrial genome. Two 'Ca. E. dacicola' haplotypes were found (htA and htB), one being slightly more prevalent than the other (57%). The two haplotypes did not co-exist in the same individuals, as confirmed by cloning. Interestingly, the olive fly populations of the two main Italian islands, Sicily and Sardinia, appeared to be represented exclusively by the htB and htA haplotypes, respectively, while peninsular populations showed both bacterial haplotypes in different proportions. No significant correlation emerged between the two symbiont haplotypes and the 16 host fly haplotypes observed, suggesting evidence for a mixed model of vertical and horizontal transmission of the symbiont during the fly life cycle.

  17. Surface survival and internalization of salmonella through natural cracks on developing cantaloupe fruits, alone or in the presence of the melon wilt pathogen Erwinia tracheiphila.

    Science.gov (United States)

    Gautam, Dhiraj; Dobhal, Shefali; Payton, Mark E; Fletcher, Jacqueline; Ma, Li Maria

    2014-01-01

    Outbreaks of foodborne illness attributed to the consumption of Salmonella-tainted cantaloupe have occurred repeatedly, but understanding of the ecology of Salmonella on cantaloupe fruit surfaces is limited. We investigated the interactions between Salmonella enterica Poona, the plant pathogenic bacterium Erwinia tracheiphila, and cantaloupe fruit. Fruit surfaces were inoculated at the natural cracking stage by spreading S. enterica and E. tracheiphila, 20 µl at 107 cfu/ml, independently or together, over a 2×2 cm rind area containing a crack. Microbial and microscopic analyses were performed at 0, 9 and 24 days post inoculation (DPI). Even at 24 DPI (fruit maturity) S. enterica was detected on 14% and 40% of the fruit inoculated with S. enterica alone and the two-pathogen mixture, respectively. However, the population of S. enterica declined gradually after initial inoculation. E. tracheiphila, inoculated alone or together with Salmonella, caused watersoaked lesions on cantaloupe fruit; but we could not conclude in this study that S. enterica survival on the fruit surface was enhanced by the presence of those lesions. Of fruit inoculated with E. tracheiphila alone and sampled at 24 DPI, 61% had watersoaked lesions on the surface. In nearly half of those symptomatic fruits the watersoaking extended into the sub-rind mesocarp, and E. tracheiphila was recovered from that tissue in 50% of the symptomatic fruit. In this work, E. tracheiphila internalized through natural cracks on developing fruits. S. enterica was never detected in the fruit interior (ca. 2-3 mm below rind surface) under the limited conditions of our experiments, but the possibility that it, or other human pathogens that contaminate fresh produce, might also do so should be investigated under a wider range of conditions and produce types.

  18. Same ammo, different weapons: enzymatic extracts from two apple genotypes with contrasted susceptibilities to fire blight (Erwinia amylovora) differentially convert phloridzin and phloretin in vitro.

    Science.gov (United States)

    Gaucher, Matthieu; Dugé de Bernonville, Thomas; Guyot, Sylvain; Dat, James F; Brisset, Marie-Noëlle

    2013-11-01

    The necrogenic bacterium Erwinia amylovora responsible for the fire blight disease causes cell death in apple tissues to enrich intercellular spaces with nutrients. Apple leaves contain large amounts of dihydrochalcones (DHCs), including phloridzin and its aglycone phloretin. Previous work showed an important decrease in the constitutive DHCs stock in infected leaves, probably caused by transformation reactions during the infection process. At least two flavonoid transformation pathways have been described so far: deglucosylation and oxidation. The aim of the present study was to determine whether DHCs are differentially converted in two apple genotypes displaying contrasted susceptibilities to the disease. Different analyses were performed: i) enzymatic activity assays in infected leaves, ii) identification/quantification of end-products obtained after in vitro enzymatic reactions with DHCs, iii) evaluation of the bactericidal activity of end-products. The results of the enzymatic assays showed that deglucosylation was dominant over oxidation in the susceptible genotype MM106 while the opposite was observed in the resistant genotype Evereste. These data were confirmed by LC-UV/Vis-MS analysis of in vitro reaction mixtures, especially because higher levels of o-quinoid oxidation products of phloretin were measured by using the enzymatic extracts of Evereste infected leaves. Their presence correlated well with a strong bactericidal activity of the reaction mixtures. Thus, our results suggest that a differential transformation of DHCs occur in apple genotypes with a potential involvement in the establishment of the susceptibility or the resistance to fire blight, through the release of glucose or of highly bactericidal compounds respectively. PMID:23561298

  19. Surface survival and internalization of salmonella through natural cracks on developing cantaloupe fruits, alone or in the presence of the melon wilt pathogen Erwinia tracheiphila.

    Science.gov (United States)

    Gautam, Dhiraj; Dobhal, Shefali; Payton, Mark E; Fletcher, Jacqueline; Ma, Li Maria

    2014-01-01

    Outbreaks of foodborne illness attributed to the consumption of Salmonella-tainted cantaloupe have occurred repeatedly, but understanding of the ecology of Salmonella on cantaloupe fruit surfaces is limited. We investigated the interactions between Salmonella enterica Poona, the plant pathogenic bacterium Erwinia tracheiphila, and cantaloupe fruit. Fruit surfaces were inoculated at the natural cracking stage by spreading S. enterica and E. tracheiphila, 20 µl at 107 cfu/ml, independently or together, over a 2×2 cm rind area containing a crack. Microbial and microscopic analyses were performed at 0, 9 and 24 days post inoculation (DPI). Even at 24 DPI (fruit maturity) S. enterica was detected on 14% and 40% of the fruit inoculated with S. enterica alone and the two-pathogen mixture, respectively. However, the population of S. enterica declined gradually after initial inoculation. E. tracheiphila, inoculated alone or together with Salmonella, caused watersoaked lesions on cantaloupe fruit; but we could not conclude in this study that S. enterica survival on the fruit surface was enhanced by the presence of those lesions. Of fruit inoculated with E. tracheiphila alone and sampled at 24 DPI, 61% had watersoaked lesions on the surface. In nearly half of those symptomatic fruits the watersoaking extended into the sub-rind mesocarp, and E. tracheiphila was recovered from that tissue in 50% of the symptomatic fruit. In this work, E. tracheiphila internalized through natural cracks on developing fruits. S. enterica was never detected in the fruit interior (ca. 2-3 mm below rind surface) under the limited conditions of our experiments, but the possibility that it, or other human pathogens that contaminate fresh produce, might also do so should be investigated under a wider range of conditions and produce types. PMID:25147942

  20. Reaction of arracacha genotypes to the root soft rot caused by Pectobacterium chrysanthemi Reação de genótipos de mandioquinha-salsa à podridão-mole das raízes causada por Pectobacterium chrysanthemi

    Directory of Open Access Journals (Sweden)

    Gilmar Paulo Henz

    2005-01-01

    Full Text Available The purpose of this paper was to screen thirty-two arracacha genotypes for their reaction to root soft rot. Twenty roots of each genotype were inoculated with two Pectobacterium chrysanthemi isolates in a randomized experiment (10 roots/isolate. After inoculation, roots were individually wrapped with PVC film and kept at 26ºC in closed plastic bags. Soft rot lesions were recorded after 36 hours and genotypes were grouped in four classes of susceptibility by cluster analysis: 10 were less susceptible, 16 intermediate, 3 susceptible and 3 very susceptible. All the tested arracacha genotypes showed only variation in the degree of susceptibility.O objetivo deste trabalho foi avaliar a reação de 32 genótipos de mandioquinha-salsa à podridão-mole das raízes. Vinte raízes de cada genótipo foram inoculadas com dois isolados de Pectobacterium chrysanthemi em um experimento casualizado (10 raízes/isolado. Após a inoculação, as raízes foram embaladas com filmes de PVC e mantidas a 26ºC em sacos de plástico. As lesões de podridão-mole foram avaliadas após 36 horas e os genótipos agrupados em quatro classes de suscetibilidade por análise de agrupamento: 10 foram menos suscetíveis, 16 intermediários, 3 suscetíveis e 3 muito suscetíveis. Todos os genótipos avaliados demonstraram apenas variação no grau de suscetibilidade.

  1. Conductrimetric detection of Pseudomonas syringae pathovar pisi in pea seeds and soft rot Erwinia spp. on potato tubers.

    NARCIS (Netherlands)

    Fraaije, B.A.

    1996-01-01

    Pea bacterial blight and potato blackleg are diseases caused by Pseudomonas syringae pv. pisi ( Psp ) and soft rot Erwinia spp., respectively. The primary source of inoculum for these bacteria is contaminated plant propagation material, i.e. pea seeds and potato tubers. One of the best ways to contr

  2. Genetics of biosynthesis and structure of the capsular exopolysaccharide from the Asian pear pathogen Erwinia pyrifoliae.

    Science.gov (United States)

    Kim, Won-Sik; Schollmeyer, Martin; Nimtz, Manfred; Wray, Victor; Geider, Klaus

    2002-12-01

    Erwinia pyrifoliae is a novel bacterial pathogen, which causes Asian pear blight and is related to Erwinia amylovora, the causative agent of fire blight. E. pyrifoliae produces exopolysaccharide (EPS) related to amylovoran in its sugar composition and sugar linkages. This was shown by degradation of the EPS with a viral depolymerase, and by methylation analysis and ESI/MS. The structure of the repeating units was confirmed by (1)H-NMR spectra. The EPS of E. pyrifoliae carried side chains, which were mainly terminated by acetyl and pyruvyl residues as found previously for amylovoran. On the other hand, a second side chain with glucose found for up to 65% of the repeating units of amylovoran was completely absent. The nucleotide sequences of five genes of the cps cluster of E. pyrifoliae encoding proteins for EPS synthesis were characterized and displayed a high homology with the corresponding ams genes. Similar functions of the gene products are assumed. As for ams mutants of E. amylovora, a cpsB mutant of E. pyrifoliae did not synthesize EPS and did not produce ooze on slices of immature pears or symptoms on pear seedlings. The cps mutant was complemented for EPS synthesis and virulence on pear slices with a gene cluster of E. amylovora that included amsB.

  3. Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro.

    Science.gov (United States)

    Wright, S A; Zumoff, C H; Schneider, L; Beer, S V

    2001-01-01

    Pantoea agglomerans (synonym: Erwinia herbicola) strain Eh318 produces through antibiosis a complex zone of inhibited growth in an overlay seeded with Erwinia amylovora, the causal agent of fire blight. This zone is caused by two antibiotics, named pantocin A and B. Using a genomic library of Eh318, two cosmids, pCPP702 and pCPP704, were identified that conferred on Escherichia coli the ability to inhibit growth of E. amylovora. The two cosmids conferred different antibiotic activities on E. coli DH5alpha and had distinct restriction enzyme profiles. A smaller, antibiotic-conferring DNA segment from each cosmid was cloned. Each subclone was characterized and mutagenized with transposons to generate clones that were deficient in conferring pantocin A and B production, respectively. Mutated subclones were introduced into Eh318 to create three antibiotic-defective marker exchange mutants: strain Eh421 (pantocin A deficient); strain Eh439 (pantocin B deficient), and Eh440 (deficient in both pantocins). Cross-hybridization results, restriction maps, and spectrum-of-activity data using the subclones and marker exchange mutants, supported the presence of two distinct antibiotics, pantocin A and pantocin B, whose biosynthetic genes were present in pCPP702 and pCPP704, respectively. The structure of pantocin A is unknown, whereas that of pantocin B has been determined as (R)-N-[((S)-2-amino-propanoylamino)-methyl]-2-methanesulfonyl-s uccina mic acid. The two pantocins mainly affect other enteric bacteria, based on limited testing. PMID:11133457

  4. Molecular detection of Erwinia psidii in guava plants under greenhouse and field conditions

    Directory of Open Access Journals (Sweden)

    Claudênia Ferreira da Silva

    2016-09-01

    Full Text Available ABSTRACT: Erwinia psidii causes bacterial blight of guava ( Psidium guajava , an important disease of this crop in Brazil. The pathogen affects branches and twigs of guava trees, reducing yield significantly. Bacterial dissemination often occurs through contaminated but asymptomatic propagating plant material. The objectives of this research were to evaluate the use of BIO-PCR and conventional PCR to detect E. psidii in inoculated guava plants grown in a greenhouse and in symptomatic and asymptomatic trees from guava orchards. Erwinia psidii strain IBSBF 1576 was inoculated (107CFU mL-1 into young guava shoots and plant tissue was analysed at 0, 5, 10, and 15 days after inoculation. Symptoms were observed after 5 days and all inoculated shoots were PCR positive at all times, by both BIO-PCR and conventional PCR. Under natural infection conditions, 40 samples were tested by BIO-PCR from each of three guava orchards, 20 showing symptoms and 20 asymptomatic. PCR was positive for 58 out of 60 symptomatic samples (96.7% and for 6.7% of asymptomatic samples, showing that the method can be used to detect the pathogen at early stages of infection. This PCR method may be used as a diagnostic tool to assess bacterial survival, dissemination and disease outbreaks.

  5. A prospective study on drug monitoring of PEGasparaginase and Erwinia asparaginase and asparaginase antibodies in pediatric acute lymphoblastic leukemia.

    Science.gov (United States)

    Tong, Wing H; Pieters, Rob; Kaspers, Gertjan J L; te Loo, D Maroeska W M; Bierings, Marc B; van den Bos, Cor; Kollen, Wouter J W; Hop, Wim C J; Lanvers-Kaminsky, Claudia; Relling, Mary V; Tissing, Wim J E; van der Sluis, Inge M

    2014-03-27

    This study prospectively analyzed the efficacy of very prolonged courses of pegylated Escherichia coli asparaginase (PEGasparaginase) and Erwinia asparaginase in pediatric acute lymphoblastic leukemia (ALL) patients. Patients received 15 PEGasparaginase infusions (2500 IU/m(2) every 2 weeks) in intensification after receiving native E coli asparaginase in induction. In case of allergy to or silent inactivation of PEGasparaginase, Erwinia asparaginase (20 000 IU/m(2) 2-3 times weekly) was given. Eighty-nine patients were enrolled in the PEGasparaginase study. Twenty (22%) of the PEGasparaginase-treated patients developed an allergy; 7 (8%) showed silent inactivation. The PEGasparaginase level was 0 in all allergic patients (grade 1-4). Patients without hypersensitivity to PEGasparaginase had serum mean trough levels of 899 U/L. Fifty-nine patients were included in the Erwinia asparaginase study; 2 (3%) developed an allergy and none silent inactivation. Ninety-six percent had at least 1 trough level ≥100 U/L. The serum asparagine level was not always completely depleted with Erwinia asparaginase in contrast to PEGasparaginase. The presence of asparaginase antibodies was related to allergies and silent inactivation, but with low specificity (64%). Use of native E coli asparaginase in induction leads to high hypersensitivity rates to PEGasparaginase in intensification. Therefore, PEGasparaginase should be used upfront in induction, and we suggest that the dose could be lowered. Switching to Erwinia asparaginase leads to effective asparaginase levels in most patients. Therapeutic drug monitoring has been added to our ALL-11 protocol to individualize asparaginase therapy.

  6. The Analysis of Saccharides in Chrysanthemi Flos by Capillary Electrophoresis-Amperometric Detection%菊花中糖类组分的毛细管电泳——安培检测研究

    Institute of Scientific and Technical Information of China (English)

    朱金坤; 姚孝林; 郑胜彪; 唐婧

    2012-01-01

    本文采用毛细管区带电泳-安培检测法(CZE-AD),研究了四类菊花中的常见单糖及蔗糖的分离、检测方法。在选定的实验条件下,可在20分钟内实现对葡萄糖、果糖、半乳糖、蔗糖的有效分离;待测糖类在铜电极上具有良好的电流响应、检测灵敏度(LOD:~1.0×10-6mol/L)及适宜的线性范围(5.0×10-6~5.0×10-4mol/L)。实验对滁菊、杭黄菊、贡菊、亳菊中的糖类组分进行了CZE-AD分离检测,方法具有良好的重现性及应用前景。检测结果表明,四类菊花中常见糖类组分的含量差异较大,可为相关植物资源的开发利用提供参考;检测方法简单、快速、有效,可用于菊花中常见糖类成分的测定及质量控制。%In this paper,the determination of normal saccharides in four kinds of Chrysanthemi Flos was investigated with capillary zone electrophoresis-amperometric detection method(CZE-AD).Under the optimized conditions,glucose,fructose,galactose and sucrose could be separated in 20 min.These analyzed saccharides gained excellent current response,detection limits(LOD): ~1.0×10-6mol/L and adequate linear ranges(5.0×10-6~5.0×10-4mol/L).The saccharides in four kinds of Chrysanthemi Flos(Chu-Ju,Hanghuang-Ju,Gong-Ju,Bo-Ju) were analyzed,and the results indicated good reproducibility and applicability of this proposed CZE-AD method.It could be found that the concerns of saccharides varied from one kind of Chrysanthemi Flos to another,and the detection data would provide reference to exploit the corresponding plant resources efficiently.This proposed detection method was simple,quick and effective with potential application in the analysis of saccharides for quality control of Chrysanthemi Flos.

  7. Drugs Approved for Leukemia

    Science.gov (United States)

    ... Ask about Your Treatment Research Drugs Approved for Leukemia This page lists cancer drugs approved by the ... not listed here. Drugs Approved for Acute Lymphoblastic Leukemia (ALL) Abitrexate (Methotrexate) Arranon (Nelarabine) Asparaginase Erwinia chrysanthemi ...

  8. Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888T as assessed by comparative genomics.

    Science.gov (United States)

    Smits, Theo H M; Rezzonico, Fabio; López, María M; Blom, Jochen; Goesmann, Alexander; Frey, Jürg E; Duffy, Brion

    2013-10-01

    Erwinia piriflorinigrans is a necrotrophic pathogen of pear reported from Spain that destroys flowers but does not progress further into the host. We sequenced the complete genome of the type strain CFBP 5888(T) clarifying its phylogenetic position within the genus Erwinia, and indicating a position between its closest relative, the epiphyte Erwinia tasmaniensis and other plant pathogenic Erwinia spp. (i.e., the fire blight pathogen E. amylovora and the Asian pear pathogen E. pyrifoliae). Common features are the type III and type VI secretion systems, amylovoran biosynthesis and desferrioxamine production. The E. piriflorinigrans genome also provided the first evidence for production of the siderophore chrysobactin within the genus Erwinia sensu stricto, which up to now was mostly associated with phytopathogenic, soft-rot Dickeya and Pectobacterium species. Plasmid pEPIR37, reported in this strain, is closely related to small plasmids found in the fire blight pathogen E. amylovora and E. pyrifoliae. The genome of E. piriflorinigrans also gives detailed insights in evolutionary genomics of pathoadapted Erwinia.

  9. Cloning, purification, crystallization and 1.57 Å resolution X-ray data analysis of AmsI, the tyrosine phosphatase controlling amylovoran biosynthesis in the plant pathogen Erwinia amylovora.

    Science.gov (United States)

    Benini, Stefano; Caputi, Lorenzo; Cianci, Michele

    2014-12-01

    The Gram-negative bacterium Erwinia amylovora is a destructive pathogen of plants belonging to the Rosaceae family. Amongst its pathogenicity factors, E. amylovora produces the exopolysaccharide amylovoran, which contributes to the occlusion of plant vessels, causing wilting of shoots and eventually resulting in plant death. Amylovoran biosynthesis requires the presence of 12 genes (from amsA to amsL) clustered in the ams region of the E. amylovora genome. They mostly encode glycosyl transferases (AmsG, AmsB, AmsD, AmsE, AmsJ and AmsK), proteins involved in amylovoran translocation and assembly (AmsH, AmsL and AmsC), and also a tyrosine kinase (AmsA) and a tyrosine phosphatase (AmsI), which are both involved in the regulation of amylovoran biosynthesis. The low-molecular-weight protein tyrosine phosphatase AmsI was overexpressed as a His6-tagged protein in Escherichia coli, purified and crystallized. X-ray diffraction data were collected to a maximum resolution of 1.57 Å in space group P3121.

  10. Localization of transposon insertions in pathogenicity mutants of Erwinia amylovora and their biochemical characterization.

    Science.gov (United States)

    Bellemann, P; Geider, K

    1992-05-01

    Transposon Tn5, on a mobilizable ColE1 plasmid, on a Ti plasmid derepressed for bacterial transfer, and on the bacteriophage fd genome, was used to construct pathogenicity mutants of the fire blight pathogen Erwinia amylovora. Eleven nonpathogenic mutants were isolated from 1600 independent mutants screened. These mutants were divided into three types: auxotrophs, exopolysaccharide (EPS)-deficient mutants and a mutant of the dsp phenotype. According to their insertion sites the Tn5 mutants were mapped into several classes. Some of the mutants could be complemented with cosmid clones from a genomic library of the parent strain for EPS production on minimal agar. EPS-deficient mutants and the dsp mutant could complement each other to produce virulence symptoms on pear slices.

  11. Structure of amylovoran, the capsular exopolysaccharide from the fire blight pathogen Erwinia amylovora.

    Science.gov (United States)

    Nimtz, M; Mort, A; Domke, T; Wray, V; Zhang, Y; Qiu, F; Coplin, D; Geider, K

    1996-06-01

    The acidic exopolysaccharide (EPS) of Erwinia amylovora, amylovoran, was purified from culture supernatants of bacteria in minimal medium and cleaved chemically either by treatment with trifluoracetic acid or hydrofluoric acid, and enzymatically by digestion with depolymerase from E. amylovora phage phi-Ealh. Structural characterization of the resulting oligosaccharides was performed by a combination of mass spectrometric and NMR [one- and two-dimensional (1D and 2D)] spectroscopic techniques. A branched repeating unit with five monosaccharide residues and various substituents was determined: [sequence: see text] The terminal monosaccharide of the side branch, which bears a 4,6-bound pyruvate residue in the R-configuration, was found to be modified with 2-linked (26%), 3-linked (24%), 2-,3-linked (40%) O-acetyl groups, or these were absent (10%). An additional glucose residue is linked to approximately 10% of the core alpha-galactose of the repeating unit.

  12. Non-conventional possibilities of protection of apple and pear against fire blight (Erwinia amylovora

    Directory of Open Access Journals (Sweden)

    Piotr Sobiczewski

    2013-12-01

    Full Text Available Standard program of plant protection against fire blight consists of use of management practices and chemical control method. Recently a new, non-conventional possibilities based on application of biocontrol agents (two biopreparations have been already introduced into practice: Bliteban A506 (Pseudomonas fluorescens and BlossomBless (Pantoea agglomerans, plant extracts active against Erwinia amylovora (AkseBio containing extracts from Thymbra spicata and Biomit Plussz with extracts from various plant species and microelements and resistance inducers (Regalis, Bion and plant extracts are of great interest. Also plant transformation with resistance genes such as: hrpN (harpin, dpo (EPS depolymerase and lytic protein genes (attacin E, cecropin SB-37, T4 lysozyme is a promising perspective.

  13. Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains.

    Science.gov (United States)

    Rodríguez, H; Gonzalez, T; Selman, G

    2001-11-30

    A genetic construction was carried out using the broad host range vector pKT230 and plasmid pMCG898, which encodes the Erwinia herbicola pyrroloquinoline quinone (PQQ) synthase, a gene involved in mineral phosphate solubilization (mps). The final construction was transformed and expressed in Escherichia coli MC1061, and the recombinant plasmids were transferred to Burkholderia cepacia IS-16 and Pseudomonas sp. PSS recipient cells by conjugation. Clones containing recombinant plasmids produced higher clearing halos in plates with insoluble phosphate as the unique (P) source, in comparison with those of strains without plasmids, demonstrating the heterologous expression of the E. herbicola gene in the recipient strains. This genetic manipulation allowed the increase in mps ability of both strains, enhancing their potentialities as growth promoters of agricultural crops. These results represent the first report on the application of the recombinant DNA methodology for the obtaining of improved phosphate solubilizing ability from rhizobacterial strains for biofertilization purposes. PMID:11090687

  14. Simplification of vacuole structure during plant cell death triggered by culture filtrates of Erwinia carotovora

    Institute of Scientific and Technical Information of China (English)

    Yumi Hirakawa; Toshihisa Nomura; Seiichiro Hasezawa; Takumi Higaki

    2015-01-01

    Vacuoles are suggested to play crucial roles in plant defense-related cel death. During programmed cel death, previous live cel imaging studies have observed vacuoles to become simpler in structure and have implicated this simplification as a prelude to the vacuole’s rupture and consequent lysis of the plasma membrane. Here, we examined dynamics of the vacuole in cel cycle-synchronized tobacco BY-2 (Nicotiana tabacum L. cv. Bright Yel ow 2) cel s during cel death induced by application of culture filtrates of Erwinia carotovora. The filtrate induced death in about 90%of the cel s by 24 h. Prior to cel death, vacuole shape simplified and endoplasmic actin filaments disassembled;however, the vacuoles did not rupture until after plasma membrane integrity was lost. Instead of facilitating rupture, the simplification of vacuole structure might play a role in the retrieval of membrane components needed for defense-related cel death.

  15. Characterization of a novel phenazine antibiotic gene cluster in Erwinia herbicola Eh1087.

    Science.gov (United States)

    Giddens, Stephen R; Feng, Yunjiang; Mahanty, H Khris

    2002-08-01

    Erwinia herbicola strain Eh1087 produces the broad-spectrum phenazine antibiotic D-alanylgriseoluteic acid (AGA). In this report, a cluster of 16 ehp (Erwinia herbicola phenazine) plasmid genes required for the production of AGA by Eh1087 is described. The extent of the gene cluster was revealed by the isolation of 82 different Eh1087 AGA- mutants, all found to possess single mini-Tn5lacZ2 insertions within a 14 kbp DNA region. Additional transposon insertions that did not affect antibiotic production by Eh1087 were created to define the boundaries of the gene cluster. The size and location of genes between these boundaries were derived from a combination of DNA sequence analyses, minicell protein analyses and the correlation between mutation position and the production of coloured AGA intermediates by many ehp mutants. Precursor-feeding and complementation experiments resulted in 15 ehp genes being assigned to one of four functional groups according to their role in the synthesis of AGA. Group 1 is required for the synthesis of the phenazine nucleus in the form of antibiotic precursor one (AP1, phenazine-1,6-dicarboxylic acid). Group 2 is responsible for conversion of AP1 to AP2, which is subsequently modified to AP3 (griseoluteic acid) and exported by the group 3 gene products. Group 4 catalyses the addition of D-alanine to AP3 to create AGA, independently of groups 1, 2 and 3. A gene that is divergently transcribed from the 15 AGA synthesis ehp genes confers resistance to AGA. PMID:12139622

  16. Erwinia amylovora pyrC mutant causes fire blight despite pyrimidine auxotrophy.

    Science.gov (United States)

    Ramos, L S; Sinn, J P; Lehman, B L; Pfeufer, E E; Peter, K A; McNellis, T W

    2015-06-01

    Erwinia amylovora bacteria cause fire blight disease, which affects apple and pear production worldwide. The Erw. amylovora pyrC gene encodes a predicted dihydroorotase enzyme involved in pyrimidine biosynthesis. Here, we discovered that the Erw. amylovora pyrC244::Tn5 mutant was a uracil auxotroph. Unexpectedly, the Erw. amylovora pyrC244::Tn5 mutant grew as well as the wild-type in detached immature apple and pear fruits. Fire blight symptoms caused by the pyrC244::Tn5 mutant in immature apple and pear fruits were attenuated compared to those caused by the wild-type. The pyrC244::Tn5 mutant also caused severe fire blight symptoms in apple tree shoots. A plasmid-borne copy of the wild-type pyrC gene restored prototrophy and symptom induction in apple and pear fruit to the pyrC244::Tn5 mutant. These results suggest that Erw. amylovora can obtain sufficient pyrimidine from the host to support bacterial growth and fire blight disease development, although de novo pyrimidine synthesis by Erw. amylovora is required for full symptom development in fruits. Significance and impact of the study: This study provides information about the fire blight host-pathogen interaction. Although the Erwinia amylovora pyrC mutant was strictly auxotrophic for pyrimidine, it grew as well as the wild-type in immature pear and apple fruits and caused severe fire blight disease in apple trees. This suggests that Erw. amylovora can obtain sufficient pyrimidines from host tissue to support growth and fire blight disease development. This situation contrasts with findings in some human bacterial pathogens, which require de novo pyrimidine synthesis for growth in host blood, for example.

  17. Erwinia typographi sp. nov., isolated from bark beetle (Ips typographus) gut.

    Science.gov (United States)

    Skrodenyte-Arbaciauskiene, V; Radziute, S; Stunzenas, V; Būda, V

    2012-04-01

    Gram-negative-staining bacteria that were resistant to monoterpene myrcene (7-methyl-3-methylene-1.6-octadiene, C10H16, at concentrations of up to 10 µl ml(-1) in TSB) were isolated from the gut contents of adult bark beetles Ips typographus (Coleoptera, Scolytidae). The beetles were collected from the bark of Norway spruce (Picea abies) in Lithuania. Bark beetles feed on conifers, which produce myrcene among many other defensive compounds. It has been suggested that the micro-organisms present within the beetles' guts could be involved in their resistance towards this plant defensive compound. The most resistant bacterial strains were isolated and characterized by phenotypic assays as well as fatty acid analysis, 16S rRNA gene sequencing, multilocus sequence analyses (MLSA) based on the rpoB, atpD and infB genes and DNA-DNA hybridization. Biochemical characterization indicated that the bacteria belonged to the family Enterobacteriaceae. Phylogenetic analyses of the 16S rRNA gene sequences and MLSA of the novel strains revealed that they belonged to the genus Erwinia, but represented a novel species. The dominant cellular fatty acids were C16:0 and C17:0 cyclo. The DNA G+C content was 49.1 mol%. The results obtained in this study indicated that these bacteria from the bark beetle gut represented a novel species, for which the name Erwinia typographi sp. nov. is proposed, with the type strain DSM 22678T (=Y1T=LMG 25347T).

  18. Acyl-homoserine lactones from Erwinia psidii R. IBSBF 435T, a guava phytopathogen (Psidium guajava L.).

    Science.gov (United States)

    Pomini, Armando M; Manfio, Gilson P; Araújo, Welington L; Marsaioli, Anita J

    2005-08-10

    The phytopathogen Erwinia psidii R. IBSBF 435T causes rot in branches, flowers, and fruits of guava (Psidium guajava L.), being responsible for crop losses, and has no effective control. It was demonstrated that this strain produces two compounds [S-(-)-N-hexanoyl and N-heptanoyl-homoserine lactone], both belonging to the class of quorum-sensing signaling substances. A protocol using gas chromatography-flame ionization detection with chiral stationary phase is described for the absolute configuration determination of a natural acyl-homoserine lactone. Biological assays with specific reporter and synthesis of identified substances are also described. This is the first report on the N-heptanoyl-homoserine lactone occurrence in the Erwinia genus. PMID:16076103

  19. [Effects of mitomycin C on the expression and transport of ice-nuclei proteins of Erwinia herbicola].

    Science.gov (United States)

    Chen, Qing-Sen; Gao, Xiu-Zhi; Yan, Ya-Li; Song, Li-Ping; Pang, Guang-Chang; Guo, Shu-Hua

    2005-05-01

    Abstract: In this paper, Mitomycin C (MMC) was added to different kinds of medium to study the effects of different cultural conditions on the Erwinia herbicola 10025A. For the first time it was confirmed that the expressed activity of the ice-nuclei active protein was different from its transportable manner from the ice nucleation active bacteria (Erwinia herbicola 10025A). The findings indicated that MMC could stimulate the SOS response,and induce the synthesis of some enzymes and proteins, which take part in repairing the damaged DNA. The effects of the MMC on the E. herbicola under different media were different. It could increase the ice nucleation activity of the E. herbicola, forming new small vesicles, which are secreted to the outside of membrane. The importance of this research for study the living mechanism of cells ander poor condition was discussed. PMID:16018268

  20. Production of L-dihydroxyphenylalanine in Escherichia coli with the tyrosine phenol-lyase gene cloned from Erwinia herbicola.

    OpenAIRE

    Foor, F; Morin, N.; Bostian, K A

    1993-01-01

    The gene (tutA) encoding tyrosine phenol-lyase from Erwinia herbicola was cloned into Escherichia coli, and fusions to the lac and tac promoters were constructed. The enzyme was expressed at high levels in E. coli in the presence of isopropyl-beta-D-thiogalactopyranoside or lactose as an inducer. L-Dihydroxyphenylalanine was synthesized in high yield from catechol, pyruvate, and ammonia by induced cells.

  1. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola.

    OpenAIRE

    Brandl, M. T.; Lindow, S E

    1996-01-01

    Erwinia herbicola 299R synthesizes indole-3-acetic acid (IAA) primarily by the indole-3-pyruvic acid pathway. A gene involved in the biosynthesis of IAA was cloned from strain 299R. This gene (ipdC) conferred the synthesis of indole-3-acetaldehyde and tryptophol upon Escherichia coli DH5 alpha in cultures supplemented with L-tryptophan. The deduced amino acid sequence of the gene product has high similarity to that of the indolepyruvate decarboxylase of Enterobacter cloacae. Regions within py...

  2. Biosynthesis of the antimetabolite 6-thioguanine in Erwinia amylovora plays a key role in fire blight pathogenesis.

    Science.gov (United States)

    Coyne, Sébastien; Chizzali, Cornelia; Khalil, Mohammed N A; Litomska, Agnieszka; Richter, Klaus; Beerhues, Ludger; Hertweck, Christian

    2013-09-27

    Sulfur for fire: The molecular basis for the biosynthesis of the antimetabolite 6-thioguanine (6TG) was unveiled in Erwinia amylovora, the causative agent of fire blight. Bioinformatics, heterologous pathway reconstitution in E. coli, and mutational analyses indicate that the protein YcfA mediates guanine thionation in analogy to 2-thiouridylase. Assays in planta and in cell cultures reveal for the first time a crucial role of 6TG in fire blight pathogenesis.

  3. Molecular characterization and pathogenicity of Erwinia spp. associated with pineapple [Ananas comosus (L. Merr.] and papaya (Carica papaya L.

    Directory of Open Access Journals (Sweden)

    Ramachandran Kogeethavani

    2015-12-01

    Full Text Available The Erwinia species are well-known pathogens of economic importance in Malaysia causing serious damage to high-value fruit crops that include pineapple [Ananas comosus (L. Merr.] and papaya (Carica papaya L..The 16S rRNA sequence using eubacteria fD1 and rP2 primers, identified two bacteria species; Dickeya zeae from pineapple heart rot, and Erwinia mallotivora from papaya dieback. Phylogenetic analysis based on the neighbor-joining method indicated that all the bacterial isolates clustered in their own taxa and formed monophyletic clades. From the pathogenicity test, all isolates of D. zeae and E. mallotivora showed pathogenic reactions on their respective host plants. Genetic variability of these isolates was assessed using repetitive sequence-based PCR (rep-PCR fingerprinting. The results indicated interspecies, and intraspecies variation in both species’ isolates. There were more polymorphic bands shown by rep-PCR fingerprints than enterobacterial repetitive intergenic consensus (ERIC and BOX- PCRs, however both species’ isolates produced distinguishable banding patterns. Unweighted pair-group method with arithmetic averages (UPGMA cluster analysis indicated that all Dickeya and Erwinia isolates from the same species were grouped in the same main cluster. Similarity among the isolates ranged from 77 to 99%. Sequencing of 16S rRNA using eubacteria fD1 and rP2 primers, and rep-PCR fingerprinting revealed diversity among Dickeya and Erwinia isolates. But this method appears to be reliable for discriminating isolates from pineapple heart rot and papaya dieback.

  4. Identification and genetics of 6-thioguanine secreted by Erwinia species and its interference with the growth of other bacteria.

    Science.gov (United States)

    Wensing, A; Gernold, M; Jock, S; Jansen, R; Geider, K

    2014-04-01

    We identified a compound in culture supernatants of Erwinia species, such as Erwinia amylovora, E. pyrifoliae, E. billingiae, E. tasmaniensis, E. persicina and E. rhapontici absorbing at 340 nm, which was associated before with the yellow pigment produced by E. amylovora on media containing copper ions. The compound was purified from E. tasmaniensis strain Et1/99 supernatants by chromatography on Dowex-1 and Dowex-50 columns and identified by HPLC/MS and NMR analysis as 6-thioguanine (6TG). Its signal at 167 Da matched with the expected molecular mass. By random mutagenesis with miniTn5, we obtained mutants defective in the genes for pyrimidine and purine metabolism. A specific gene cluster with ycf genes described by us before, absent in the corresponding region of Escherichia coli, was identified in the genome sequence of three Erwinia species and named tgs region for thioguanine synthesis. Clones of the tgs gene cluster promoted 6TG synthesis and secretion in E. coli, when the bacteria were grown in minimal medium supplemented with amino acids. 6TG was bacteriostatic for E. coli and Salmonella typhimurium strains, with cell growth resumed after prolonged incubation. Similar results were obtained with P. agglomerans strains. Bacteria from the genus Pectobacterium were barely and Rahnella or Gibbsiella species were not inhibited by 6TG. Adenine and guanine relieved the toxic effect of 6TG on E. coli. Non-producing strains were fully virulent on host plants. 6TG synthesis may help erwinias to interfere with growth of some microorganisms in the environment.

  5. Prevalence of Erwinia soft rot affecting cut foliage, Dracaena sanderiana ornamental industry and solution towards its management.

    Science.gov (United States)

    Kayalvily, Thio Desiya; Jegathambigai, V; Karunarathne, M D S D; Svinningen, Arne; Mikunthan, G

    2012-01-01

    The study was carried out under net house conditions at Green Farms Ltd, Marawila to determine the occurrence and severity of Erwinia soft rot disease in Dracaena sanderiana plants and to formulate the possible control measures. Field experiment was carried out to manage the soft rot disease in D. sanderiana plants. Three different soil treatments with vermicompost, cow dung and poultry manure were tested to manage the disease and plots without application were kept as control. Percent disease incidence, disease reduction and growth parameters were recorded and data were statistically analyzed. Higher percentage of disease reduction was observed in vermicompost (80%) treated plots than those with cow dung (60%) and poultry manure treated. Sprinkler application of water was found favorable to spread soft rot disease and watering through horse pope had lessened the disease incidence significantly. Moreover plant height, shoot and root biomass, number of leaves per plant, leaf length and leaf width were significantly high in vermicompost media. Weeding, removal of diseased leaves and plants, and avoiding sprinkler irrigation were helpful to reduce the disease spread from plant to plant. Vermicompost is the best substrate for suppression of the disease and promoting the growth of plant. Among the different water management practices tested to reduce the disease severity of Erwinia soft rot disease in D. sanderiana plants, water irrigated through the horse pipe was effective compare to sprinkler application. In-vitro experiment conducted to manage the Erwinia soft rot disease by using bio-agent, Pseudomonas fluorescens was found effective to reduce the growth of Erwinia under in-vitro conditions.

  6. IDENTIFICATION OF THE BACTERIUM TOMATO STEM CANKER

    Directory of Open Access Journals (Sweden)

    Goner A. Shaker

    2014-01-01

    Full Text Available Diseased tomato samples were collected from green house was evaluated for isolation, pathogenicity and biochemical tests. The symptoms of the infected tomato plants were as sudden wilting after curled on leaves and necrotic streak regions developed at the crown and base of the stem and the cavities deepen and expand up and down, brown discoloration and necrosis occurring on xylem and phloem vasculer. All of ages of tomato plant were susceptible to bacteria when the weather condition favorable and immediately, seen collapse symptom on tomato plant at once fail and die. The bacterium was isolated from diseased plant in all regions on nutrient Agar; a yellow bacterium was isolated from infected tomato plant in green houses and fields in Abu-Ghraib, Rashiedia and Qanat Al-Geiaysh nurseries in Baghdad provinces of Iraq. The bacterium was found gram positive, rod-shaped, non-motile and capable an aerobic growth and based on the morphological and biochemical characteristics revealed that this bacterium belongs to: Clavibacter michiganensis subsp. michiganensis. (smith pathogenicity and hypersensitivity of the bacterium Cmm showed the disease index were 18.33, 6.66, 16.66, 5, 0% for tomato seedlings were inoculated treatments as the wounding roots, without wounding roots, crown of the stem, petiole and control respectively.

  7. Duplex real-time polymerase chain reaction reveals competition between Erwinia amylovora and E. pyrifoliae on pear blossoms.

    Science.gov (United States)

    Lehman, Susan M; Kim, Won-Sik; Castle, Alan J; Svircev, Antonet M

    2008-06-01

    Erwinia amylovora and E. pyrifoliae are the causative agents of fire blight and Asian pear blight, respectively. The pathogens are closely related, with overlapping host ranges. Data are unavailable on the current distribution of E. pyrifoliae and on the interaction between the two species when they are present together on the same host. In this study, a duplex real-time polymerase chain reaction (PCR) protocol was developed to monitor the population dynamics of E. amylovora and E. pyrifoliae on the surface of Bartlett pear blossoms. Bacterial cells washed from blossoms were used directly as the PCR template without DNA extraction. Primers and a probe based on the E. amylovora levansucrase gene detected all E. amylovora strains. All E. pyrifoliae strains, including the Japanese Erwinia strains previously described as E. amylovora, were detected with a primer and probe combination based on the E. pyrifoliae hrpW gene. Disease development and severity were not significantly different in blossoms inoculated with individual Erwinia species or with a mixture of the two species. However, E. amylovora grew to greater population sizes than did E. pyrifoliae in both single species inoculations and in mixtures, suggesting that E. amylovora has a greater competitive fitness on Bartlett pear blossoms than E. pyrifoliae.

  8. 梨火疫病病原菌(Erwinia amylovora)三型分泌系统的鉴别及Erwinia spp. HrpA的分析%Identification of Type Ⅲ Secration System in Erwinia amylovora and Analyse of HrpA in Erwinia spp.

    Institute of Scientific and Technical Information of China (English)

    朱勃; 金谷雷; 怀雁; 谢关林

    2009-01-01

    [目的]明确梨火疫病病原菌(Erwinia amylovora)三型分泌系统(type Ⅲ secretion system,TTSS)的所在区域、相关基因及Erwiaia spp.的HrpA(hypersensitive response and pathogenicity gene A)选择压水平.[方法]利用生物信息学方法,通过BLAST程序对梨火疫病菌基因组的核苷酸数据库进行同源比对,同时对Erwiaia spp.与宿主互作的表面蛋白HrpA进行选择压分析.[结果] TTSS分析结果显示在40 kb大小的毒力岛上有27个TTSS相关基因.通过与看家基因及毒力岛上的致病性相关的重要基因HrpN的比较、选择压分析、多序列比较,发现HrpA基因处于较强的选择压作用下,且HrpA蛋白N端主要受正向选择,C端主要受净化选择.NJ法构建的HrpA系统发育树显示Erwinia spp.形成两个明显的分支,表明HrpA基因可能在种间分化后产生了不同的选择压变化.[结论]梨火疫病病原菌基因组3.14-3.18 Mb为其TTSS分布区域.该病原菌通过TTSS侵染寄主植物,在其病原菌表面有一种类鞭毛结构的TTSS蛋白HrpA,HrpA作为传输者起着将效应分子输送到宿主内部的功能,在进化上受到了较强的选择压影响.

  9. Microflora of urogenital tract in pregnancy with asymptomatic bacterium

    International Nuclear Information System (INIS)

    The article contains results of research interrelationship from colonization of vagina and urinary tract diseases. E.coli one of the main factors in development asymptomatic bacterium. Presented high effects of penicillin medicaments and nitrofurans in treatment of asymptomatic bacterium

  10. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  11. First report of Pantoea ananatis (Syn. Erwinia uredovora) being associated with peanut rust in Georgia

    Science.gov (United States)

    Peanut rust is caused by the fungus Puccinia arachidis. This disease, if not treated can cause severe damage and defoliation. While sequencing DNA of urediniospores of the rust fungus, BLAST analysis detected many sequences corresponding to the bacterial species Pantoea ananatis. This bacterium, ...

  12. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico.

    Science.gov (United States)

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A; Setién, Alvaro Aguilar

    2015-12-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc.

  13. Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity.

    Science.gov (United States)

    Koczan, Jessica M; McGrath, Molly J; Zhao, Youfu; Sundin, George W

    2009-11-01

    Erwinia amylovora is a highly virulent, necrogenic, vascular pathogen of rosaceous species that produces the exopolysaccharide amylovoran, a known pathogenicity factor, and levan, a virulence factor. An in vitro crystal violet staining and a bright-field microscopy method were used to demonstrate that E. amylovora is capable of forming a biofilm on solid surfaces. Amylovoran and levan production deletion mutants were used to determine that amylovoran was required for biofilm formation and that levan contributed to biofilm formation. In vitro flow cell and confocal microscopy were used to further reveal the architectural detail of a mature biofilm and differences in biofilm formation between E. amylovora wild-type (WT), Deltaams, and Deltalsc mutant cells labeled with green fluorescent protein or yellow fluorescent protein. Scanning electron microscopy analysis of E. amylovora WT cells following experimental inoculation in apple indicated that extensive biofilm formation occurs in xylem vessels. However, Deltaams mutant cells were nonpathogenic and died rapidly following inoculation, and Deltalsc mutant cells were not detected in xylem vessels and were reduced in movement into apple shoots. These results demonstrate that biofilm formation plays a critical role in the pathogenesis of E. amylovora. PMID:19821727

  14. Cloning, expression, purification and characterisation of Erwinia carotovora L-asparaginase in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Meraj Pourhossein

    2014-01-01

    Full Text Available Background: For the past 30 years, bacterial L-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukemia. It is found in a variety of organisms such as microbes, plants and mammals. Their intrinsic low-rate glutaminase activity, however, causes serious side-effects, including neurotoxicity, hepatitis, coagulopathy and other dysfunctions. Erwinia carotovora asparaginase shows decreased glutaminase activity, so it is believed to have fewer side-effects in leukemia therapy. Our aim was to clone, express, purify and characterize E. carotovora asparaginase. Materials and Methods: L-asparaginase from E. carotovora NCYC 1526 (ErA was cloned and expressed in Escherichia coli strain BL21 (DE3. The enzyme was purified to homogeneity by affinity chromatography. Various conditions were tested to maximize the production of recombinant asparaginase in E. coli. Results: A new L. asparaginase from E. carotovora NCYC 1526 (ErA was successfully cloned, expressed and purified in E. coli BL21 (DE3. The specific activity of the enzyme was 430 IU/mg. Conclusion: The results of the present work form the basis for a new engineered form of ErA for future therapeutic use, which could be extended with crystallographic studies.

  15. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics.

    Science.gov (United States)

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L; Huber, Steven C; Zhao, Youfu

    2013-02-21

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence. PMID:23234799

  16. EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora.

    Science.gov (United States)

    Moreau, Manon; Degrave, Alexandre; Vedel, Régine; Bitton, Frédérique; Patrit, Oriane; Renou, Jean-Pierre; Barny, Marie-Anne; Fagard, Mathilde

    2012-03-01

    Erwinia amylovora causes fire blight in rosaceous plants. In nonhost Arabidopsis thaliana, E. amylovora triggers necrotic symptoms associated with transient bacterial multiplication, suggesting either that A. thaliana lacks a susceptibility factor or that it actively restricts E. amylovora growth. Inhibiting plant protein synthesis at the time of infection led to an increase in necrosis and bacterial multiplication and reduced callose deposition, indicating that A. thaliana requires active protein synthesis to restrict E. amylovora growth. Analysis of the callose synthase-deficient pmr4-1 mutant indicated that lack of callose deposition alone did not lead to increased sensitivity to E. amylovora. Transcriptome analysis revealed that approximately 20% of the genes induced following E. amylovora infection are related to defense and signaling. Analysis of mutants affected in NDR1 and EDS1, two main components of the defense-gene activation observed, revealed that E. amylovora multiplied ten times more in the eds1-2 mutant than in the wild type but not in the ndr1-1 mutant. Analysis of mutants affected in three WRKY transcription factors showing EDS1-dependent activation identified WRKY46 and WRKY54 as positive regulators and WRKY70 as a negative regulator of defense against E. amylovora. Altogether, we show that EDS1 is a positive regulator of nonhost resistance against E. amylovora in A. thaliana and hypothesize that it controls the production of several effective defenses against E. amylovora through the action of WRKY46 and WRKY54, while WRKY70 acts as a negative regulator.

  17. Bacterial phytoene synthase: molecular cloning, expression, and characterization of Erwinia herbicola phytoene synthase.

    Science.gov (United States)

    Iwata-Reuyl, Dirk; Math, Shivanand K; Desai, Shrivallabh B; Poulter, C Dale

    2003-03-25

    Phytoene synthase (PSase) catalyzes the condensation of two molecules of geranylgeranyl diphosphate (GGPP) to give prephytoene diphosphate (PPPP) and the subsequent rearrangement of the cyclopropylcarbinyl intermediate to phytoene. These reactions constitute the first pathway specific step in carotenoid biosynthesis. The crtB gene encoding phytoene synthase was isolated from a plasmid containing the carotenoid gene cluster in Erwinia herbicola and cloned into an Escherichia coli expression system. Upon induction, recombinant phytoene synthase constituted 5-10% of total soluble protein. To facilitate purification of the recombinant enzyme, the structural gene for PSase was modified by site-directed mutagenesis to incorporate a C-terminal Glu-Glu-Phe (EEF) tripepetide to allow purification by immunoaffinity chromatography on an immobilized monoclonal anti-alpha-tubulin antibody YL1/2 column. Purified recombinant PSase-EEF gave a band at 34.5 kDa upon SDS-PAGE. Recombinant PSase-EEF was then purified to >90% homogeneity in two steps by ion-exchange and immunoaffinity chromatography. The enzyme required Mn(2+) for activity, had a pH optimum of 8.2, and was strongly stimulated by detergent. The concentration of GGPP needed for half-maximal activity was approximately 35 microM, and a significant inhibition of activity was seen at GGPP concentrations above 100 microM. The sole product of the reaction was 15,15'-Z-phytoene. PMID:12641468

  18. Cloning and characterization of a sucrose isomerase from Erwinia rhapontici NX-5 for isomaltulose hyperproduction.

    Science.gov (United States)

    Li, Sha; Cai, Heng; Qing, Yujia; Ren, Ben; Xu, Hong; Zhu, Hongyang; Yao, Jun

    2011-01-01

    The sucrose isomerase (SIase) gene from an efficient strain of Erwinia rhapontici NX-5 for isomaltulose hyperproduction was cloned and overexpressed in Escherichia coli. Protein sequence alignment revealed that SIase was a member of the glycoside hydrolase 13 family. The molecular mass of the purified recombinant protein was estimated at 66 kDa by SDS-PAGE. The SIase had an optimal pH and temperature of 5.0 and 30 °C, respectively, with a K (m) of 257 mmol/l and V (max) of 48.09 μmol/l/s for sucrose. To the best of our knowledge, the recombinant SIase has the most acidic optimum pH for isomaltulose synthesis. When the recombinant E. coli (pET22b- palI) cells were used for isomaltulose synthesis, almost complete conversion of sucrose (550 g/l solution) to isomaltulose was achieved in 1.5 h with high isomaltulose yields (87%). The immobilized E. coli cells remained stable for more than 30 days in a "batch"-type enzyme reactor. This indicated that the recombinant SIase could continuously and efficiently produce isomaltulose.

  19. Characterization of a new ViI-like Erwinia amylovora bacteriophage phiEa2809.

    Science.gov (United States)

    Lagonenko, Alexander L; Sadovskaya, Olga; Valentovich, Leonid N; Evtushenkov, Anatoly N

    2015-04-01

    Erwinia amylovora is a Gram-negative plant pathogenic bacteria causing fire blight disease in many Rosaceae species. A novel E. amylovora bacteriophage, phiEa2809, was isolated from symptomless apple leaf sample collected in Belarus. This phage was also able to infect Pantoea agglomerans strains. The genome of phiEa2809 is a double-stranded linear DNA 162,160 bp in length, including 145 ORFs and one tRNA gene. The phiEa2809 genomic sequence is similar to the genomes of the Serratia plymutica phage MAM1, Shigella phage AG-3, Dickeya phage vB DsoM LIMEstone1 and Salmonella phage ViI and lacks similarity to described E. amylovora phage genomes. Based on virion morphology (an icosahedral head, long contractile tail) and genome structure, phiEa2809 was classified as a member of Myoviridae, ViI-like bacteriophages group. PhiEa2809 is the firstly characterized ViI-like bacteriophage able to lyse E. amylovora.

  20. Global small RNA chaperone Hfq and regulatory small RNAs are important virulence regulators in Erwinia amylovora.

    Science.gov (United States)

    Zeng, Quan; McNally, R Ryan; Sundin, George W

    2013-04-01

    Hfq is a global small RNA (sRNA) chaperone that interacts with Hfq-regulated sRNAs and functions in the posttranscriptional regulation of gene expression. In this work, we identified Hfq to be a virulence regulator in the Gram-negative fire blight pathogen Erwinia amylovora. Deletion of hfq in E. amylovora Ea1189 significantly reduced bacterial virulence in both immature pear fruits and apple shoots. Analysis of virulence determinants in strain Ea1189Δhfq showed that Hfq exerts pleiotropic regulation of amylovoran exopolysaccharide production, biofilm formation, motility, and the type III secretion system (T3SS). Further characterization of biofilm regulation by Hfq demonstrated that Hfq limits bacterial attachment to solid surfaces while promoting biofilm maturation. Characterization of T3SS regulation by Hfq revealed that Hfq positively regulates the translocation and secretion of the major type III effector DspE and negatively controls the secretion of the putative translocator HrpK and the type III effector Eop1. Lastly, 10 Hfq-regulated sRNAs were identified using a computational method, and two of these sRNAs, RprA and RyhA, were found to be required for the full virulence of E. amylovora.

  1. Purification and characterization of a highly selective sucrose isomerase from Erwinia rhapontici NX-5.

    Science.gov (United States)

    Ren, Ben; Li, Sha; Xu, Hong; Feng, Xiao-Hai; Cai, Heng; Ye, Qi

    2011-06-01

    A highly selective sucrose isomerase (SIase) was purified to homogeneity from the cell-free extract of Erwinia rhapontici NX-5 with a recovery of 27.7% and a fold purification of 213.6. The purified SIase showed a high specific activity of 427.1 U mg(-1) with molecular weight of 65.6 kDa. The K (m) for sucrose was 222 mM while V (max) was 546 U mg(-1). The optimum pH and temperature for SIase activity were 6.0 and 30 °C, respectively. The purified SIase was stable in the temperature range of 10-40 °C and retained 65% of the enzyme activity after 2 weeks' storage at 30 °C. The SIase activity was enhanced by Mg(2+) and Mn(2+), inhibited by Ca(2+), Cu(2+), Zn(2+), and Co(2+), completely inhibited by Hg(2+) and Ag(2+). The purified SIase was strongly inhibited by SDS, while partially inhibited by dimethylformamide, tetrahydrofuran, and PMSF. Additionally, glucose and fructose acted as competitive inhibitors for purified SIase.

  2. Modified inoculation and disease assessment methods reveal host specificity in Erwinia tracheiphila-Cucurbitaceae interactions.

    Science.gov (United States)

    Nazareno, Eric S; Dumenyo, C Korsi

    2015-12-01

    We conducted a greenhouse trial to determine specific compatible interactions between Erwinia tracheiphila strains and cucurbit host species. Using a modified inoculation system, E. tracheiphila strains HCa1-5N, UnisCu1-1N, and MISpSq-N were inoculated to cucumber (Cucumis sativus) cv. 'Sweet Burpless', melon (Cucumis melo) cv. 'Athena Hybrid', and squash (Cucubita pepo) cv. 'Early Summer Crookneck'. We observed symptoms and disease progression for 30 days; recorded the number of days to wilting of the inoculated leaf (DWIL), days to wilting of the whole plant (DWWP), and days to death of the plant (DDP). We found significant interactions between host cultivar and pathogen strains, which imply host specificity. Pathogen strains HCa1-5N and UnisCu1-1N isolated from Cucumis species exhibited more virulence in cucumber and melon than in squash, while the reverse was true for strain MISpSq-N, an isolate from Cucurbita spp. Our observations confirm a previous finding that E. tracheiphila strains isolated from Cucumis species were more virulent on Cucumis hosts and those from Cucubita were more virulent on Cucubita hosts. This confirmation helps in better understanding the pathosystem and provides baseline information for the subsequent development of new disease management strategies for bacterial wilt. We also demonstrated the efficiency of our modified inoculation and disease scoring methods.

  3. Sucrose isomerase and its mutants from Erwinia rhapontici can synthesise α-arbutin.

    Science.gov (United States)

    Zhou, Xing; Zheng, Yuantao; Wei, Xingming; Yang, Kedi; Yang, Xiangkai; Wang, Yuting; Xu, Liming; Du, Liqin; Huang, Ribo

    2011-10-01

    Sucrose isomerase (SI) from Erwinia rhapontici is an intramolecular isomerase that is normally used to synthesise isomaltulose from sucrose by a mechanism of intramolecular transglycosylation. In this study, it was found that SI could synthesise α-arbutin using hydroquinone and sucrose as substrates, via an intermolecular transglycosylation reaction. Five phenylalanine residues (F185, F186, F205, F297, and F321) in the catalytic pocket of SI were chosen for sitedirected mutagenesis. Mutants F185I, F321I, and F321W, whose hydrolytic activities were enhanced after the mutation, could synthesise α-arbutin through intermolecular transglycosylation with a more than two-fold increase in the molar transfer ratio compared with wild type SI. The F297A mutant showed a strong ability to synthesise a novel α-arbutin derivative and a four-fold increase in its specific activity for intermolecular transglycosylation over the wild type. Our findings may lead to a new way to synthesise novel glucoside products such as α-arbutin derivatives by simply manipulating the Phe residues in the catalytic pocket. From the structure superposition, our strategy of manipulating these Phe residues may be applicable to other similar transglycosylating enzymes.

  4. Variabilidade genética na região its do rDNA de isolados de trichoderma spp. (Biocontrolador e Fusarium oxysporum f. sp. Chrysanthemi Genetic variability in rDNA ITS region of Trichoderma spp. (biocontrole agent and Fusarium oxysporum f. sp. chrysanthemi isolates

    Directory of Open Access Journals (Sweden)

    Josiane Pacheco Menezes

    2010-02-01

    Full Text Available A análise de características morfológicas e culturais podem não ser suficientes para uma caracterização precisa das espécies de Trichoderma e Fusarium. Objetivou-se, neste trabalho, caracterizar a região do Espaço Interno Transcrito (ITS do rDNA dos isolados UFSMT15.1, UFSMT16 e UFSMT17 de Trichoderma spp. utilizados no biocontrole de Fusarium oxysporum f. sp. chrysanthemi (isolado UFSMF6. A extração de DNA de cada isolado foi realizada a partir de micélio produzido em meio líquido Batata-Dextrose. As amostras de DNA genômico foram submetidas à Reação em Cadeia da Polimerase (PCR com os oligonucleotídeos iniciadores universais ITS1 e ITS4 e o produto gerado foi sequenciado. Os fragmentos gerados pela amplificação da PCR foram tratados com as enzimas de restrição HaeIII, HinfI e MboI. As regiões ITS1, ITS2 e 5.8S do rDNA desses isolados fúngicos foram amplificadas com sucesso. A região ITS dos isolados UFSMT15.1, UFSMT16 e UFSMT17 de Trichoderma e o isolado UFSMF6 de Fusarium apresentaram uma banda simples com um fragmento de aproximadamente 600 pares de base (pb. As enzimas de restrição HaeIII, HinfI e MboI geraram polimorfismo de bandas entre os isolados. Com base nas análises da sequência de DNA, os isolados UFSMT15.1, UFSMT16, UFSMT17 e UFSMF6 apresentaram maior similaridade com as espécies Trichoderma koningiopsis, Hypocrea virens, Hypocrea lixii e Fusarium oxysporum, respectivamente.The analysis of morphological and cultural characteristics may not enough for the characterization of the species of Trichoderma and Fusarium. The aim of this work was to characterize the Internal Transcribed Spacer (ITS region of the rDNA of UFSMT15.1, UFSMT16 and UFSMT17 isolates of Trichoderma spp. used in the biocontrol of Fusarium oxysporum f. sp. chrysanthemi UFSMF6. DNA extraction of each isolate was accomplished starting from hyphae produced in liquid medium Potato-Dextrose-Agar. The samples of genomic DNA were submitted to

  5. Oorzaak Erwiniaproblemen dahlia vooral Dickeya dianthicola

    OpenAIRE

    Leeuwen, van, T.G.; Dees, R.H.L.; Vreeburg, P.J.M.; Doorn, van, Erik A.

    2012-01-01

    Dahlia kan, net als een aantal andere bol- en knolgewassen, worden aangetast door Erwinia. Bacterieverwelkingsziekte in dahlia wordt veroorzaakt door Erwinia chrysanthemi, een bacterie die tegenwoordig Dickeya heet. PPO Bloembollen onderzocht welke problemen Dickeya veroorzaakt bij dahlia en wat er bekend is over de besmetting door deze bacterieverwelkingsziekte in dit gewas.

  6. Production of glucosyltransferase by Erwinia sp. using experimental design and response surface methodology Produção de glicosiltransferase por Erwinia sp. utilizando planejamento experimental e metodologia de superfície de resposta

    Directory of Open Access Journals (Sweden)

    Haroldo Yukio Kawaguti

    2005-09-01

    Full Text Available Glucosyltransferase produced by strain Erwinia sp. is an intracellular enzyme that catalyzes the formation of isomaltulose from sucrose. Isomaltulose is a non-cariogenic reducing dissacharide commercially used in foods. Response surface methodology and 2³-factorial central composite design were employed to optimize a fermentation medium for the production of glucosyltransferase by Erwinia sp. in shaken flasks at 200 rpm and 30ºC. The three variables involved in this study were sugar cane molasses (SCM, corn steep liquor (CSL and yeast extract Prodex Lac SD (YEP. The statistical analysis of the results showed that, in the range studied, all the factors had a significant effect on glucosyltransferase production and the optimum medium composition for enzyme production was (in g l-1 SCM-100, CSL-60 and YEP-8, which lead to a glucosyltransferase activity of 6.65 U mL-1.A glicosiltransferase obtida pela linhagem Erwinia sp. é uma enzima intracelular que catalisa a conversão de sacarose em isomaltulose. A isomaltulose é um dissacarídeo redutor, não cariogênico e comercialmente utilizado em alimentos como substituto da sacarose. A metodologia de superfície de resposta e planejamento fatorial composto central-2³ foram utilizados para otimizar o meio de cultivo para a produção de glicosiltransferase de Erwinia sp. em frascos sob agitação a 200 rpm e 30ºC. As três variáveis independentes envolvidas no estudo foram o melaço de cana de açúcar, a água de maceração de milho e o extrato de levedura Prodex Lac SD. As análises estatísticas dos resultados mostraram que, dentro da faixa estudada das concentrações dos componentes de meio de cultivo, todas as variáveis apresentaram efeito significativo na produção de glicosiltransferase. O meio de cultivo otimizado foi composto de 100 gL-1 de melaço de cana de açúcar, 60 gL-1 de água de maceração de milho e 8 gL-1 de extrato de levedura Prodex Lac SD, apresentando atividade de

  7. Molecular and physiological properties of bacteriophages from North America and Germany affecting the fire blight pathogen Erwinia amylovora

    OpenAIRE

    Müller, Ina; Lurz, Rudi; Kube, Michael; Quedenau, Claudia; Jelkmann, Wilhelm; Geider, Klaus

    2011-01-01

    Summary For possible control of fire blight affecting apple and pear trees, we characterized Erwinia amylovora phages from North America and Germany. The genome size determined by electron microscopy (EM) was confirmed by sequence data and major coat proteins were identified from gel bands by mass spectroscopy. By their morphology from EM data, φEa1h and φEa100 were assigned to the Podoviridae and φEa104 and φEa116 to the Myoviridae. Host ranges were essentially confined to E. amylovora, stra...

  8. Fire blight (Erwinia amylovora) of rosaceous plants. Pathogen virulence and selection and characterization of biological control agents

    OpenAIRE

    Cabrefiga Olamendi, Jordi

    2004-01-01

    El fuego bacteriano, causado por Erwinia amylovora, es una enfermedad muy importante a nivel comercial y económico porque afecta a plantas de la familia de las rosáceas y es especialmente agresiva en manzano (Pyrus malus) y peral (Pyrus communis), así como en plantas ornamentales (Crataegus, Cotoneaster o Pyracantha). Esta enfermedad está distribuida por todo el mundo en zonas climáticas templadas de Amércia del Norte, Nueva Zelanda, Japón, Israel, Turquí y Europa. En España, el fuego bacter...

  9. In Vitro Studies on Some Natural Beverages as Botanical Pesticides against Erwinia amylovora and Curtobacterium flaccumfaciensis subsp. poinsettiae

    OpenAIRE

    NAS, Mehmet Nuri

    2004-01-01

    Several tannin-rich beverages were tested for their antibacterial activity against 2 important phytopathogenic bacteria, Erwinia amylovora and Curtobacterium flacumfaciensis subsp. poinsettiae. Black tea (9.5, 19 and 38 g l-1), green tea (9.5, 19 and 38 g l-1) and tannic acid (0.2, 0.4 and 0.8 g l-1) inhibited the growth of E. amylovora and C. f. subsp. poinsettiae. Coffee (8.75, 17.5 and 35 g l-1) and cocoa (8.75, 17.5 and 35 g l-1) did not display any inhibitory effect on the growth of bact...

  10. The aroQ-encoded monofunctional chorismate mutase (CM-F) protein is a periplasmic enzyme in Erwinia herbicola.

    OpenAIRE

    Xia, T.; J. Song; Zhao, G.; Aldrich, H; Jensen, R A

    1993-01-01

    Enteric bacteria possess two species of chorismate mutase which exist as catalytic domains on the amino termini of the bifunctional PheA and TyrA proteins. In addition, some of these organisms possess a third chorismate mutase, CM-F, which exists as a small monofunctional protein. The CM-F gene (denoted aroQ) from Erwinia herbicola was cloned and sequenced for the first time. A strategy for selection by functional complementation in a chorismate mutase-free Escherichia coli background was dev...

  11. Erwinia herbicola isolates from alfalfa plants may play a role in nodulation of alfalfa by Rhizobium meliloti.

    OpenAIRE

    Handelsman, J; Brill, W J

    1985-01-01

    Erwinia herbicola was isolated from roots of plants derived from surface-sterilized seeds of all alfalfa varieties that were tested. Some of these E. herbicola strains affected nodulation by certain strains of Rhizobium meliloti. In previously published work we presented the isolation of slow-and fast-nodulating variants from a single culture of R. meliloti 102F51. In the absence of E. herbicola, the slow-nodulating variant induced the formation of nodules on alfalfa as rapidly as the faster-...

  12. RelA-Dependent (p)ppGpp Production Controls Exoenzyme Synthesis in Erwinia carotovora subsp. atroseptica▿

    OpenAIRE

    Wang, Jinhong; Gardiol, Noemie; Burr, Tom; Salmond, George P. C.; Welch, Martin

    2007-01-01

    In this report, we investigate the link between nutrient limitation, RelA-mediated (p)ppGpp production, and virulence in the phytopathogen Erwinia carotovora subsp. atroseptica. A relA null mutant (JWC7) was constructed by allelic exchange, and we confirmed that, unlike the wild-type progenitor, this mutant did not produce elevated levels of (p)ppGpp upon nutrient downshift. However, (p)ppGpp production could be restored in strain JWC7 during nutrient limitation by supplying relA in trans. Du...

  13. AmyR is a novel negative regulator of amylovoran production in Erwinia amylovora.

    Directory of Open Access Journals (Sweden)

    Dongping Wang

    Full Text Available In this study, we attempted to understand the role of an orphan gene amyR in Erwinia amylovora, a functionally conserved ortholog of ybjN in Escherichia coli, which has recently been characterized. Amylovoran, a high molecular weight acidic heteropolymer exopolysaccharide, is a virulent factor of E. amylovora. As reported earlier, amylovoran production in an amyR knockout mutant was about eight-fold higher than that in the wild type (WT strain of E. amylovora. When a multicopy plasmid containing the amyR gene was introduced into the amyR mutant or WT strains, amylovoran production was strongly inhibited. Furthermore, amylovoran production was also suppressed in various amylovoran-over-producing mutants, such as grrSA containing multicopies of the amyR gene. Consistent with amylovoran production, an inverse correlation was observed between in vitro expression of amyR and that of amylovoran biosynthetic genes. However, both the amyR knockout mutant and over-expression strains showed reduced levan production, another exopolysaccharide produced by E. amylovora. Virulence assays demonstrated that while the amyR mutant was capable of inducing slightly greater disease severity than that of the WT strain, strains over-expressing the amyR gene did not incite disease on apple shoots or leaves, and only caused reduced disease on immature pear fruits. Microarray studies revealed that amylovoran biosynthesis and related membrane protein-encoding genes were highly expressed in the amyR mutant, but down-regulated in the amyR over-expression strains in vitro. Down-regulation of amylovoran biosynthesis genes in the amyR over-expression strain partially explained why over-expression of amyR led to non-pathogenic or reduced virulence in vivo. These results suggest that AmyR plays an important role in regulating exopolysaccharide production, and thus virulence in E. amylovora.

  14. Antagonistic potential of Pseudomonas graminis 49M against Erwinia amylovora, the causal agent of fire blight.

    Science.gov (United States)

    Mikiciński, Artur; Sobiczewski, Piotr; Puławska, Joanna; Malusa, Eligio

    2016-08-01

    In a previous study (Mikiciński et al. in Eur J Plant Pathol, doi: 10.1007/s10658-015-0837-y , 2015), we described the characterization of novel strain 49M of Pseudomonas graminis, isolated from the phyllosphere of apple trees in Poland showing a good protective activity against fire blight on different organs of host plants. We now report investigations to clarify the basis for this activity. Strain 49M was found to produce siderophores on a medium containing complex CAS-Fe(3+) and HDTMA, but was not able to produce N-acyl homoserine lactones (AHLs). Moreover, it formed a biofilm on polystyrene and polyvinyl chloride (PVC) surfaces. Strain 49M gave a positive reaction in PCR with primers complementary to gacA, the regulatory gene influencing the production of several secondary metabolites including antibiotics. The genes prnD (encoding pyrrolnitrin), pltC, pltB (pyoluteorin), phlD (2,4-diacetyl-phloroglucinol) and phzC as well as phzD (and their homologs phzF and phzA encoding phenazine), described for antagonistic fluorescent pseudomonads, however, were not detected. Research into the biotic relationship between strain 49M and Erwinia amylovora strain Ea659 on five microbiological media showed that this strain clearly inhibited the growth of the pathogen on King's B and nutrient agar with glycerol media, to a very small extent on nutrient agar with sucrose, and not at all on Luria-Bertani agar. On medium 925, strain 49M even stimulated E. amylovora growth. The addition of ferric chloride to King's B resulted in the loss of its inhibitory ability. Testing the survival of 49M in vitro showed its resistance to drought, greater than that of E. amylovora. PMID:27002332

  15. Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces.

    Science.gov (United States)

    Brandl, M T; Quiñones, B; Lindow, S E

    2001-03-13

    We investigated the spatial pattern of expression of ipdC, a plant inducible gene involved in indoleacetic acid biosynthesis in Erwinia herbicola, among individual cells on plants to gain a better understanding of the role of this phenotype in the epiphytic ecology of bacteria and the factors involved in the regulation of ipdC. Nonpathogenic E. herbicola strain 299R harboring a transcriptional fusion of ipdC to gfp was inoculated onto bean plants, recovered from individual leaves 48 h after inoculation, and subjected to fluorescence in situ hybridization using a 16S rRNA oligonucleotide probe specific to strain 299R. Epifluorescence images captured through a rhodamine filter were used to distinguish the 5carboxytetramethylrhodamine-labeled cells of strain 299R from other leaf microflora. Quantification of the green fluorescence intensity of individual cells by analysis of digital images revealed that about 65% of the 299R cells recovered from bean leaves had higher ipdC expression than in culture. Additionally, 10% of the cells exhibited much higher levels of green fluorescence than the median fluorescence intensity, indicating that they are more heterogeneous with respect to ipdC expression on plants than in culture. Examination of 299R cells in situ on leaf surfaces by confocal laser scanning microscopy after fluorescence in situ hybridization of cells on leaf samples showed that even cells that were in close proximity exhibited dramatically different green fluorescence intensities, and thus, were in a physical or chemical microenvironment that induced differential expression of ipdC. PMID:11248099

  16. The regulatory cascade that activates the Hrp regulon in Erwinia herbicola pv. gypsophilae.

    Science.gov (United States)

    Nizan-Koren, R; Manulis, S; Mor, H; Iraki, N M; Barash, I

    2003-03-01

    The pathogenicity of Erwinia herbicola pv. gypsophilae (Ehg) is dependent on a plasmid (pPATH(Ehg)) that harbors the hrp gene cluster and additional virulence genes. The hrp regulatory cascade of Ehg comprises an hrpXY operon encoding a two-component system; hrpS encoding a transcriptional factor of the NtrC family and hrpL encoding an alternative sigma factor. Results obtained suggest the following signal transduction model for activating the Hrp regulon: phosphorylated HrpY activates hrpS, HrpS activates hrpL, and HrpL activates genes containing "hrp box" promoter. This model was supported by studies on the effects of mutations in the regulatory genes on pathogenicity and complementation analysis. Nonpolar mutations in hrpX did not affect virulence or transcription of downstream genes. Site-directed mutagenesis of the conserved aspartate 57 in HrpY suggested that its phosphorylation is crucial for activating the hrp regulatory cascade. Studies on the effects of mutations in the hrp regulatory genes on transcriptional activity of downstream genes or of their isolated promoters in planta showed dependency of hrpS expression on active HrpY, of hrpL expression on active HrpS, and of hrpN or hrpJ expression on active HrpL. These results were also partially supported by overexpression of regulatory genes under in vitro conditions. The hrpXY is constitutively expressed with high basal levels under repressive conditions, in contrast to hrpS and hrpL, which exhibit low basal expression levels and are environmentally regulated. PMID:12650456

  17. Genetic and virulence variability among Erwinia tracheiphila strains recovered from different cucurbit hosts.

    Science.gov (United States)

    Rojas, E Saalau; Dixon, P M; Batzer, J C; Gleason, M L

    2013-09-01

    The causal agent of cucurbit bacterial wilt, Erwinia tracheiphila, has a wide host range in the family Cucurbitaceae, including economically important crops such as muskmelon (Cucumis melo), cucumber (C. sativus), and squash (Cucurbita spp.). Genetic variability of 69 E. tracheiphila strains was investigated by repetitive-element polymerase chain reaction (rep-PCR) using BOXA1R and ERIC1-2 primers. Fingerprint profiles revealed significant variability associated with crop host; strains isolated from Cucumis spp. were clearly distinguishable from Cucurbita spp.-isolated strains regardless of geographic origin. Twelve E. tracheiphila strains isolated from muskmelon, cucumber, or summer squash were inoculated onto muskmelon and summer squash seedlings, followed by incubation in a growth chamber. Wilt symptoms were assessed over 3 weeks, strains were reisolated, and rep-PCR profiles were compared with the inoculated strains. Wilting occurred significantly faster when seedlings were inoculated with strains that originated from the same crop host genus (P<0.001). In the first run of the experiment, cucumber and muskmelon strains caused wilting on muskmelon seedlings at a median of 7.8 and 5.6 days after inoculation (dai), respectively. Summer squash seedlings wilted 18.0, 15.7, and 5.7 dai when inoculated with muskmelon-, cucumber-, and squash-origin strains, respectively. In a second run of the experiment, cucumber and muskmelon strains caused wilting on muskmelon at 7.0 and 6.9 dai, respectively, whereas summer squash seedlings wilted at 23.6, 29.0 and 9.0 dai when inoculated with muskmelon-, cucumber-, and squash-origin strains, respectively. Our results provide the first evidence of genetic diversity within E. tracheiphila and suggest that strain specificity is associated with plant host. This advance is a first step toward understanding the genetic and population structure of E. tracheiphila.

  18. Crystallization and preliminary crystallographic analysis of l-asparaginase from Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Linnea E. K. [Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521 (Finland); Krasotkina, Julya; Kuchumova, Anastasia; Sokolov, Nikolay N. [Institute for Biomedical Chemistry, Russian Academy of Medical Sciences, 559-B, 10 Pogodinskay St, Moscow 119121 (Russian Federation); Papageorgiou, Anastassios C., E-mail: tassos.papageorgiou@btk.fi [Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521 (Finland)

    2005-04-01

    Er. carotovoral-asparaginase, a potential antileukaemic agent, has been crystallized. Crystals diffract to 2.6 Å using a rotating-anode source and belong to space group P2{sub 1}, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. Bacterial l-asparaginases have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukaemia for over 30 y. However, their use is limited owing to the glutaminase activity of the administered enzymes, which results in serious side effects. In contrast, l-asparaginase from Erwinia carotovora exhibits low glutaminase activity at physiological concentrations of l-asparagine and l-glutamine in the blood. Recombinant Er. carotovoral-asparaginase was crystallized in the presence of l-glutamate by the hanging-drop vapour-diffusion method using 10 mg ml{sup −1} purified enzyme, 16–18%(w/v) PEG 3350 and 0.2 M NaF. X-ray diffraction data were collected to 2.6 Å at 293 K using an in-house rotating-anode generator. The crystals belong to the monoclinic P2{sub 1} space group, with unit-cell parameters a = 78.0, b = 112.3, c = 78.7 Å, β = 101.9° and a homotetramer in the crystallographic asymmetric unit. A molecular-replacement solution has been found and refinement is currently in progress. The crystal structure may provide leads towards protein-engineering efforts aimed at safer asparaginase administration in leukaemia treatment.

  19. The Genome Sequence of Alcaligenes faecalis NBIB-017 Contains Genes with Potentially High Activities against Erwinia carotovora

    Science.gov (United States)

    Liu, Xiaoyan; Huang, Daye; Wu, Jinping; Yu, Cui; Zhou, Ronghua; Liu, Cuijun; Zhang, Wei; Yao, Jingwu; Cheng, Meng

    2016-01-01

    Alcaligenes faecalis NBIB-017, a Gram-negative bacterium, was isolated from soil in China. Here, we provide the complete genome sequence of this bacterium, which possesses a high number of genes encoding antibacterial factors, including proteins and small molecular peptides. PMID:27056227

  20. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora

    DEFF Research Database (Denmark)

    Manefield, M.; Welch, M.; Givskov, Michael Christian;

    2001-01-01

    The plant pathogen Erwinia carotovora regulates expression of virulence factors and antibiotic production via an N-3- oxohexanoyl-L-homoserine lactone (3-oxo-C6-HSL) dependent quorum sensing mechanism. The marine alga Delisea pulchra produces halogenated furanones known to antagonise 3-oxo-C6-HSL...

  1. Genetic organization of the hrp gene cluster and dspAE/BF operon in Erwinia herbicola pv. gypsophilae.

    Science.gov (United States)

    Mor, H; Manulis, S; Zuck, M; Nizan, R; Coplin, D L; Barash, I

    2001-03-01

    Erwinia herbicola pv. gypsophilae induces gall formation in gypsophila that is dependent on the existence of a pathogenicity plasmid (pPATHEhg). We previously demonstrated the presence of several hrp genes on this plasmid. By employing transposon mutagenesis and sequencing, a functional hrp gene cluster on the pPATHEhg has now been characterized completely. The hrp genes of E. herbicola pv. gypsophilae are remarkably similar to and colinear with those of Erwinia amylovora and Pantoea stewartii and generally showed 60 to 90% nucleotide or deduced amino acid identity. E. herbicola pv. gypsophilae, however, lacks hrpW, which is present in E. amylovora. Additionally, E. herbicola pv. gypsophilae mutants deficient in harpin production retained pathogenicity and were slightly reduced in their ability to elicit a hypersensitive response (HR) in tobacco. The "disease specific" region, dspA/EB/F, exhibited 60 to 74% identity with the dspA/EB/F loci of E. amylovora and P. stewartii, respectively. Mutations in dspA/E abolished pathogenicity of E. herbicola pv. gypsophilae but not HR elicitation on tobacco. Inactivation of HrpL reduced plant-induced transcription of dspA/E by three orders, indicating Hrp-dependent regulation. PMID:11277443

  2. Molecular and physiological properties of bacteriophages from North America and Germany affecting the fire blight pathogen Erwinia amylovora.

    Science.gov (United States)

    Müller, Ina; Lurz, Rudi; Kube, Michael; Quedenau, Claudia; Jelkmann, Wilhelm; Geider, Klaus

    2011-11-01

    For possible control of fire blight affecting apple and pear trees, we characterized Erwinia amylovora phages from North America and Germany. The genome size determined by electron microscopy (EM) was confirmed by sequence data and major coat proteins were identified from gel bands by mass spectroscopy. By their morphology from EM data, φEa1h and φEa100 were assigned to the Podoviridae and φEa104 and φEa116 to the Myoviridae. Host ranges were essentially confined to E. amylovora, strains of the species Erwinia pyrifoliae, E. billingiae and even Pantoea stewartii were partially sensitive. The phages φEa1h and φEa100 were dependent on the amylovoran capsule of E. amylovora, φEa104 and φEa116 were not. The Myoviridae efficiently lysed their hosts and protected apple flowers significantly better than the Podoviridae against E. amylovora and should be preferred in biocontrol experiments. We have also isolated and partially characterized E. amylovora phages from apple orchards in Germany. They belong to the Podoviridae or Myoviridae with a host range similar to the phages isolated in North America. In EM measurements, the genome sizes of the Podoviridae were smaller than the genomes of the Myoviridae from North America and from Germany, which differed from each other in corresponding nucleotide sequences. PMID:21791029

  3. Production of isomaltulose obtained by Erwinia sp. cells submitted to different treatments and immobilized in calcium alginate

    Directory of Open Access Journals (Sweden)

    Haroldo Yukio Kawaguti

    2011-03-01

    Full Text Available In recent decades, there has been an increase in the studies of isomaltulose obtainment, due to its physicochemical properties and physiological health benefits. These properties, which include low cariogenicity, low glycemic index and greater stability, allow the use of this sweetener as a substitute for sucrose in foods; besides the fact that it can be converted to isomalt, a dietary non-cariogenic sugar alcohol used in pharmaceuticals as well as in the food industry. Isomaltulose (6-O-α-D-glucopyronosyl-1-6-D-fructofuranose is a disaccharide reducer obtained by the enzymatic conversion of sucrose - the α-glucosyltransferase enzyme. Different treatments were performed for the preparation of whole cells; lysed cells; and crude enzyme extract of Erwinia sp. D12 strain immobilized in calcium alginate. The packed bed column of granules, containing Erwinia sp. cells sonicated and immobilized in calcium alginate (CSI, reached a maximum conversion of 53-59% sucrose into isomaltulose and it presented activity for 480 hours. The converted syrup was purified and the isomaltulose crystallization was performed through the lowering of temperature. The isomaltulose crystals presented purity of 96.5%.

  4. Isolation of a Bacterium Strain Degraded Agar

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    One in 58 strains of bacteria isolated from the compost showed clear colonies after a few days of growth on the plates containing medium made of only agar and water.Water suspension contained only agar (2 and 8g·L -1 ) with two controls (normal saline,LB medium) was inoculated with the bacterium BR5-1 to see whether there was an increasement of the alive bacteria concentration after 48 h of the growth.The results showed that there was a significant rising of the alive bacteria concentration in the agar susp...

  5. Swimming Efficiency of Bacterium Escherichia Coli

    CERN Document Server

    Chattopadhyay, S; Wu, X L; Yeung, C; Chattopadhyay, Suddhashil; Moldovan, Radu; Yeung, Chuck

    2005-01-01

    We use in vivo measurements of swimming bacteria in an optical trap to determine fundamental properties of bacterial propulsion. In particular, we determine the propulsion matrix, which relates the angular velocity of the flagellum to the torques and forces propelling the bacterium. From the propulsion matrix dynamical properties such as forces, torques, swimming speed and power can be obtained from measurements of the angular velocity of the motor. We find significant heterogeneities among different individuals even though all bacteria started from a single colony. The propulsive efficiency, defined as the ratio of the propulsive power output to the rotary power input provided by the motors, is found to be 0.2%.

  6. Functional Characterization of Twin-arginine Translocation Gene (tatC) from Erwinia amylovora%梨火疫病菌(Erwinia amylovora)双精氨酸运输系统基因(tatC)的功能分析

    Institute of Scientific and Technical Information of China (English)

    于洋洋; 刘倩倩; 徐恩丽; 胡白石

    2011-01-01

    Erwinia amylovom causes fire blight on many plants of the Rosaceae family such as apple and pear. The Twin-arginine translocation (Tat) pathway plays a crucial role in transporting the proteins which are related to virulence. In this study, a tatC disruption mutant EaAtatC was successfully constructed by homologous recombination as well as the complement strain EaAtatC (pME-tatC). The results showed that the tatC mutant EaAtafC displayed the reduced virulence, extracellular polysaccharide production, chemotaxis, motility, flagella assembly and growth in vitro. However, compared to wild type strain NCPPB1665 (Eal665), the induction of hypersensitive response in nonhost tobacco, biofilm synthesis and cellulose production of the tatC mutant EaAtalC didn't show significant difference. These findings demonstrate that tatC gene in Erwinia amylovora is involved in growth, and motility and play an important role in virulence.%梨火疫病菌(Erwinia amylovora)可引起梨、苹果等蔷薇科植物的火疫病.双精氨酸运输系统(Tat)与致病相关蛋白的转运有特定的联系.本研究在梨火疫病菌全基因组中发现了同源基因,通过同源重组的方法,构建了梨火疫病菌的tatC基因突变体以及互补子.研究结果表明,tatC基因影响着梨火疫病菌的致病性、胞外多糖、鞭毛运动、游动性、趋化性、生长情况等多种生物学特性.然而,Ea△tatC仍能引起烟草过敏性反应,并且在胞外纤维素和生物膜的生成方面与野生型菌株相比没有明显差异.说明梨火疫病菌tatC基因对病菌的生长、游动性以及致病性方面具有关键作用.

  7. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Bentancor Marcel

    2007-10-01

    Full Text Available Abstract Background Vascular plants respond to pathogens by activating a diverse array of defense mechanisms. Studies with these plants have provided a wealth of information on pathogen recognition, signal transduction and the activation of defense responses. However, very little is known about the infection and defense responses of the bryophyte, Physcomitrella patens, to well-studied phytopathogens. The purpose of this study was to determine: i whether two representative broad host range pathogens, Erwinia carotovora ssp. carotovora (E.c. carotovora and Botrytis cinerea (B. cinerea, could infect Physcomitrella, and ii whether B. cinerea, elicitors of a harpin (HrpN producing E.c. carotovora strain (SCC1 or a HrpN-negative strain (SCC3193, could cause disease symptoms and induce defense responses in Physcomitrella. Results B. cinerea and E.c. carotovora were found to readily infect Physcomitrella gametophytic tissues and cause disease symptoms. Treatments with B. cinerea spores or cell-free culture filtrates from E.c. carotovoraSCC1 (CF(SCC1, resulted in disease development with severe maceration of Physcomitrella tissues, while CF(SCC3193 produced only mild maceration. Although increased cell death was observed with either the CFs or B. cinerea, the occurrence of cytoplasmic shrinkage was only visible in Evans blue stained protonemal cells treated with CF(SCC1 or inoculated with B. cinerea. Most cells showing cytoplasmic shrinkage accumulated autofluorescent compounds and brown chloroplasts were evident in a high proportion of these cells. CF treatments and B. cinerea inoculation induced the expression of the defense-related genes: PR-1, PAL, CHS and LOX. Conclusion B. cinerea and E.c. carotovora elicitors induce a defense response in Physcomitrella, as evidenced by enhanced expression of conserved plant defense-related genes. Since cytoplasmic shrinkage is the most common morphological change observed in plant PCD, and that harpins and B

  8. Biodegradation of heavy oils by halophilic bacterium

    Institute of Scientific and Technical Information of China (English)

    Ruixia Hao; Anhuai Lu

    2009-01-01

    A halophilic bacterial strain TM-1 was isolated from the reservoir of the Shengli oil field in East China. Strain TM-1, which was found to be able to degrade crude oils, is a gram-positive non-motile bacterium with a coccus shape that can grow at temperatures of up to 58 ℃ and in 18% NaCl solution. Depending on the culture conditions, the organism may occur in tetrads. In addition, strain TM-1 pro-duced acid from glucose without gas formation and was catalase-negative. Furthermore, strain TM-I was found to be a facultative aer-obe capable of growth under anaerobic conditions. Moreover, it produced butylated hydroxytoluene, 1,2-benzenedicarboxylic acid-bis ester and dibutyl phthalate and could use different organic substrates. Laboratory studies indicated that strain TM-1 affected different heavy oils by degrading various components and by changing the chemical properties of the oils. In addition, growth of the bacterium in heavy oils resulted in the loss of aromatic hydrocarbons, resins and asphaltenes, and enrichment with light hydrocarbons and an overall redistribution of these hydrocarbons.

  9. A Sequential Statistical Approach towards an Optimized Production of a Broad Spectrum Bacteriocin Substance from a Soil Bacterium Bacillus sp. YAS 1 Strain

    Directory of Open Access Journals (Sweden)

    Amira M. Embaby

    2014-01-01

    Full Text Available Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken was employed to optimize bacteriocin (BAC YAS 1 production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v, incubation time (62 hrs, and agitation speed (207 rpm in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora. BAC YAS 1 showed activity over a wide range of pH (1–13 and temperature (45–80°C. A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium, the plant pathogen (E. amylovora, and the food spoiler (Listeria innocua was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri. Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries.

  10. A sequential statistical approach towards an optimized production of a broad spectrum bacteriocin substance from a soil bacterium Bacillus sp. YAS 1 strain.

    Science.gov (United States)

    Embaby, Amira M; Heshmat, Yasmin; Hussein, Ahmed; Marey, Heba S

    2014-01-01

    Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken) was employed to optimize bacteriocin (BAC YAS 1) production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v), incubation time (62 hrs), and agitation speed (207 rpm)) in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora). BAC YAS 1 showed activity over a wide range of pH (1-13) and temperature (45-80 °C). A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium), the plant pathogen (E. amylovora), and the food spoiler (Listeria innocua) was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri). Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries.

  11. Characterization and plasmid profile of an inhibitory strain of Erwinia herbicola isolated from Phaseolous vulgaris in Egypt.

    Science.gov (United States)

    el-Hendawy, H H; Azab, E A

    1999-01-01

    Erwinia herbicola strain 48 was isolated from diseased phaseolous seedlings and characterized by biochemical properties, cellular fatty acid analysis and SDS-PAGE of the soluble cell protein. Although cellular fatty acid profile and the soluble cellular protein pattern showed high degree of similarity in comparison to those from E. herbicola strain 347417, obtained from the International Mycological Institute U.K., plasmid profiles were different. Both strains harbor a 23.1 kb plasmid, in addition, E. herbicola 48 contains 2 more plasmids (26.8 and 32.5 kb). The antagonism of E. herbicola 48 against a number of Gram-negative and Gram-positive bacteria was tested in vitro. Only Gram-negative bacteria were inhibited, suggesting that the inhibitory factor is likely to be bacteriocin. PMID:10052157

  12. High-level expression of ice nuclei in Erwinia herbicola is induced by phosphate starvation and low temperature.

    Science.gov (United States)

    Fall, A L; Fall, R

    1998-06-01

    In laboratory cultures of ice nucleation-active (Ice+) Erwinia herbicola isolates, it has been difficult to achieve high-level expression of ice nuclei, especially nuclei active at temperatures warmer than -5 degrees C (i.e., type 1 ice nuclei). Here we demonstrate that starvation for phosphate and exposure to low temperature triggers expression of ice nuclei in E. herbicola cultures. Starvation for nitrogen, sulfur, or iron was less effective. Under optimal conditions with two different strains, essentially all cells produced ice nuclei active at -10 degrees C or warmer, with an average of 22% containing type 1 ice nuclei within 1 h of a low-temperature shift. These conditions did not greatly enhance the shedding of ice nucleation-active membrane vesicles that are known to be produced by Ice+ E. herbicola isolates. These results support the theory that the Ice+ phenotype may allow nutrient-limited epiphytes to trigger freezing damage, releasing nutrients from host plants. PMID:9608750

  13. Diffusion of magnetotactic bacterium in rotating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Cebers, A., E-mail: aceb@tesla.sal.l [Department of Physics, University of Latvia, Zellu 8, Ri-bar ga, LV-1002 (Latvia)

    2011-02-15

    Swimming trajectory of a magnetotactic bacterium in a rotating magnetic field is a circle. Random reversals of the direction of the bacterium motion induces a random walk of the curvature center of the trajectory. In assumption of the distribution of the switching events according to the Poisson process the diffusion coefficient is calculated in dependence on the frequency of the rotating field and the characteristic time between the switching events. It is confirmed by the numerical simulation of the random walk of the bacterium in the rotating magnetic field. - Research highlights: Random switching of the flagella leads to diffusion of a bacterium in the field. Mean square displacement of the curvature center is proportional to time. Diffusion coefficient depends on the period of a rotating field. At zero frequency diffusion coefficient is the same as for a tumbling bacterium.

  14. Gene Cloning and Characterization of luxR Transcriptional Regulator from Erwinia amylovora%梨火疫病菌luxR转录调节因子的克隆与功能分析

    Institute of Scientific and Technical Information of China (English)

    吴惠秋; 徐恩丽; 于洋洋; 田艳丽; 钱国良; 刘凤权; 胡白石

    2013-01-01

    Erwinia amylovora is a necrogenic phytopathogenic bacterium,the causal agent of fire blight in pear(Pyrus sorotina),apple(Malus domestica) and other members of the Rosaceae family,causing serious economic losses.LuxR transcriptional regulator is a key player in quorum sensing and plays important physiological and biochemical roles.In this paper,one of luxR homologous gene was amplified by PCR from E.amylovora.The mutant Ea△luxR was successfully constucted by homologous recombination,and the function studied preliminarily.The experimental results showed that,compared to the wild-type strain,the polyene macrolide biosynthesis,anti-oxidative stress,growth,and pathogenicity of mutant Ea△luxR declined.However,Ea△luxR still caused tobacco(Nicotiana tabacum) hypersensitive response,and there was no significant difference in antibiotic tolerance level and biofilm formation comparing to wild-type strain.These findings demonstrated that luxR gene in E.amylovora is involved in polyene macrolide biosynthesis,growth,and anti-oxidative stress and plays an important role in virulence.In addition,our results provid molecular evidence for in-depth understanding of the quorum sensing system of E.amylovora.%梨火疫病菌(Erwinia amylovora)是一种具有毁灭性的植物病原细菌,能够侵染梨、苹果和其他蔷薇科植物引起火疫病,造成严重的经济损失.luxR家族调控因子具有重要的生理生化作用,是细菌群体感应机制中研究较多的一类重要的转录调节基因.本研究采用PCR技术从梨火疫病菌中扩增出一个luxR同源基因,命名为EaluxR,应用同源重组的方法构建了突变株(Ea△luxR),并对其功能进行初步研究.实验结果表明,Ea△luxR与野生型菌株相比产生的多烯大环内酯类代谢产物在抗氧化压力和生长情况方面有明显差异,对梨幼苗及幼果的致病能力下降;但是Ea△luxR仍能引起烟草过敏性反应,并且在抗生素耐受水

  15. Genetic characterization of the HrpL regulon of the fire blight pathogen Erwinia amylovora reveals novel virulence factors.

    Science.gov (United States)

    McNally, R Ryan; Toth, Ian K; Cock, Peter J A; Pritchard, Leighton; Hedley, Pete E; Morris, Jenny A; Zhao, Youfu; Sundin, George W

    2012-02-01

    The bacterial pathogen Erwinia amylovora is the causal agent of fire blight, an economically significant disease of apple and pear. Disease initiation by E. amylovora requires the translocation of effector proteins into host cells via the hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS). The alternative sigma factor HrpL positively regulates the transcription of structural and translocated components of the T3SS via hrp promoter elements. To characterize genome-wide HrpL-dependent gene expression in E. amylovora Ea1189, wild-type and Ea1189ΔhrpL strains were cultured in hrp-inducing minimal medium, and total RNA was compared using a custom microarray designed to represent the annotated genes of E. amylovora ATCC 49946. The results revealed 24 genes differentially regulated in Ea1189ΔhrpL relative to Ea1189 with fold-change expression ratios greater than 1.5; of these, 19 genes exhibited decreased transcript abundance and five genes showed increased transcript abundance relative to Ea1189. To expand our understanding of the HrpL regulon and to elucidate direct versus indirect HrpL-mediated effects on gene expression, the genome of E. amylovora ATCC 49946 was examined in silico using a hidden Markov model assembled from known Erwinia spp. hrp promoters. This technique identified 15 putative type III novel hrp promoters, seven of which were validated with quantitative polymerase chain reaction based on expression analyses. It was found that HrpL-regulated genes encode all known components of the hrp T3SS, as well as five putative type III effectors. Eight genes displayed apparent indirect HrpL regulation, suggesting that the HrpL regulon is connected to downstream signalling networks. The construction of deletion mutants of three novel HrpL-regulated genes resulted in the identification of additional virulence factors as well as mutants displaying abnormal motility and biofilm phenotypes. PMID:21831138

  16. Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity

    Directory of Open Access Journals (Sweden)

    Frey Jürg E

    2010-01-01

    Full Text Available Abstract Background Erwinia pyrifoliae is a newly described necrotrophic pathogen, which causes fire blight on Asian (Nashi pear and is geographically restricted to Eastern Asia. Relatively little is known about its genetics compared to the closely related main fire blight pathogen E. amylovora. Results The genome of the type strain of E. pyrifoliae strain DSM 12163T, was sequenced using both 454 and Solexa pyrosequencing and annotated. The genome contains a circular chromosome of 4.026 Mb and four small plasmids. Based on their respective role in virulence in E. amylovora or related organisms, we identified several putative virulence factors, including type III and type VI secretion systems and their effectors, flagellar genes, sorbitol metabolism, iron uptake determinants, and quorum-sensing components. A deletion in the rpoS gene covering the most conserved region of the protein was identified which may contribute to the difference in virulence/host-range compared to E. amylovora. Comparative genomics with the pome fruit epiphyte Erwinia tasmaniensis Et1/99 showed that both species are overall highly similar, although specific differences were identified, for example the presence of some phage gene-containing regions and a high number of putative genomic islands containing transposases in the E. pyrifoliae DSM 12163T genome. Conclusions The E. pyrifoliae genome is an important addition to the published genome of E. tasmaniensis and the unfinished genome of E. amylovora providing a foundation for re-sequencing additional strains that may shed light on the evolution of the host-range and virulence/pathogenicity of this important group of plant-associated bacteria.

  17. Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae

    Directory of Open Access Journals (Sweden)

    Kuhl Heiner

    2010-06-01

    Full Text Available Abstract Background The genus Erwinia includes plant-associated pathogenic and non-pathogenic Enterobacteria. Important pathogens such as Erwinia amylovora, the causative agent of fire blight and E. pyrifoliae causing bacterial shoot blight of pear in Asia belong to this genus. The species E. tasmaniensis and E. billingiae are epiphytic bacteria and may represent antagonists for biocontrol of fire blight. The presence of genes that are putatively involved in virulence in E. amylovora and E. pyrifoliae is of special interest for these species in consequence. Results Here we provide the complete genome sequences of the pathogenic E. pyrifoliae strain Ep1/96 with a size of 4.1 Mb and of the non-pathogenic species E. billingiae strain Eb661 with a size of 5.4 Mb, de novo determined by conventional Sanger sequencing and next generation sequencing techniques. Genome comparison reveals large inversions resulting from homologous recombination events. Furthermore, comparison of deduced proteins highlights a relation of E. billingiae strain Eb661 to E. tasmaniensis strain Et1/99 and a distance to E. pyrifoliae for the overall gene content as well as for the presence of encoded proteins representing virulence factors for the pathogenic species. Pathogenicity of E. pyrifoliae is supposed to have evolved by accumulation of potential virulence factors. E. pyrifoliae carries factors for type III secretion and cell invasion. Other genes described as virulence factors for E. amylovora are involved in the production of exopolysaccharides, the utilization of plant metabolites such as sorbitol and sucrose. Some virulence-associated genes of the pathogenic species are present in E. tasmaniensis but mostly absent in E. billingiae. Conclusion The data of the genome analyses correspond to the pathogenic lifestyle of E. pyrifoliae and underlines the epiphytic localization of E. tasmaniensis and E. billingiae as a saprophyte.

  18. Fluctuation-Enhanced Sensing of Bacterium Odors

    CERN Document Server

    Chang, Hung-Chih; King, Maria D; Kwan, Chiman

    2009-01-01

    The goal of this paper is to explore the possibility to detect and identify bacteria by sensing their odor via fluctuation-enhanced sensing with commercial Taguchi sensors. The fluctuations of the electrical resistance during exposure to different bacterial odors, Escherichia coli and anthrax-surrogate Bacillus subtilis, have been measured and analyzed. In the present study, the simplest method, the measurement and analysis of power density spectra was used. The sensors were run in the normal heated and the sampling-and-hold working modes, respectively. The results indicate that Taguchi sensors used in these fluctuation-enhanced modes are effective tools of bacterium detection and identification even when they are utilizing only the power density spectrum of the stochastic sensor signal.

  19. The chemical formula of a magnetotactic bacterium.

    Science.gov (United States)

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life.

  20. Effect of concentration and substrate flow rate on isomaltulose production from sucrose by Erwinia sp. cells immobilized in calcium-alginate using packed bed reactor.

    Science.gov (United States)

    Kawaguti, Haroldo Yukio; Harumi Sato, Hélia

    2010-09-01

    Isomaltulose was obtained from sucrose solution by immobilized cells of Erwinia sp. D12 using a batch and a continuous process. Parameters for sucrose conversion into isomaltulose were evaluated using both experimental design and response surface methodology. Erwinia sp. D12 cells were immobilized in different alginates, and the influence of substrate flow rate and concentration parameters to produce isomaltulose from sucrose were observed. Response surface methodology demonstrated that packed bed columns containing cells immobilized in low-viscosity sodium alginate (250 cP) presented a mean isomaltulose conversion rate of 47%. In a continuous process, both sucrose substrate concentration and substrate flow rate parameters had a significant effect (p < 0.05) and influenced the conversion of sucrose into isomaltulose. Higher conversion rates of sucrose into isomaltulose, from 53-75% were obtained using 75 g of immobilized cells at a substrate flow rate of 0.6 mL/min.

  1. In-vitro antibacterial activities of the essential oils of aromatic plants against Erwinia herbicola (Lohnis) and pseudomonas putida (Kris Hamilton)

    OpenAIRE

    Pandey Abhay K; Singh Pooja; Palni Uma T.; Tripathi N.N.

    2012-01-01

    This study was designed to examine in vitro antibacterial activities of essential oils extracted from 53 aromatic plants of Gorakhpur Division (UP, INDIA) for the control of two phytopathogenic bacteria namely Erwinia herbicola and Pseudomonas putida causing several post-harvest diseases in fruits and vegetables. Out of 53 oils screened, 8 oils such as Chenopodium ambrosioides, Citrus aurantium, Clausena pentaphylla, Hyptis suaveolens, Lippia alba, Mentha arvensis, Ocimum sanctum and Vi...

  2. The presence of diverse IS elements and an avrPphD homologue that acts as a virulence factor on the pathogenicity plasmid of Erwinia herbicola pv. gypsophilae.

    Science.gov (United States)

    Guo, Ming; Manulis, Shulamit; Mor, Henia; Barash, Isaac

    2002-07-01

    The pathogenicity of Erwinia herbicola pv. gypsophilae (Ehg) and Erwinia herbicola pv. betae (Ehb) is dependent on a native plasmid (pPATH(Ehg) or pPATH(Ehb)) that harbors the hrp gene cluster, genes encoding type III effectors, phytohormones, biosynthetic genes, and several copies of IS1327. Sequence analysis of the hrp-flanking region in pPATH(Ehg) (cosmid pLA150) revealed a cluster of four additional IS elements designated as ISEhel, ISEhe2, ISEhe3, and ISEhe4. Two copies of another IS element (ISEhe5) were identified on the upstream region of the indole-3-acetic acid operon located on the same cosmid. Based on homology of amino acids and genetic organization, ISEhe1 belongs to the IS630 family, ISEhe2 to the IS5 family, ISEhe3 and ISEhe4 to different groups of the IS3 family, and ISEhe5 to the IS1 family. With the exception of ISEhe4, one to three copies of all the other IS elements were identified only in pathogenic strains of Erwinia herbicola pv. gypsophilae and Erwinia herbicola pv. betae whereas ISEhe4 was present in both pathogenic and nonpathogenic strains. An open reading frame that exhibited high identity (89% in amino acids) to AvrPphD of Pseudomonas syringae pv. phaseolicola was present within the cluster of IS elements. An insertional mutation in the AvrPphDEh, reduced gall size in gypsophila by approximately 85%. In addition, remnants of known genes from four different bacteria were detected on the same cosmid. PMID:12118887

  3. Cloning, sequencing and partial characterisation of sorbitol transporter (srlT) gene encoding phosphotransferase system, glucitol/sorbitol-specific IIBC components of Erwinia herbicola ATCC 21998.

    Science.gov (United States)

    Qazi, P H; Johri, S; Verma, V; Khan, L; Qazi, G N

    2004-09-01

    A DNA fragment of approximately 1500 bp, harbouring the sorbitol transport gene (srlT), was amplified from the chromosomal DNA of Erwinia herbicola ATCC 21998 by PCR and cloned in Escherichia coli JM109. Degenerate oligonucleotide primers used were designed based on the conserved regions in the gene sequences within the gut operon of E. coli (Gene Bank accession no. J02708) and the srl operon of Erwinia amylovora (Gene Bank accession no. Y14603). The cloned DNA fragment was sequenced and found to contain an open reading frame of 1473 nucleotides coding for a protein of 491 amino acids, corresponding to a mass of 52410 Da. The nucleotide sequence of this ORF was highly homologous to that of the gutA gene of Escherichia coli gut operon, the srlE gene of Shigella flexrni and the sorbitol transporter gene sequence of Escherichia coli K12 (Gene Bank accession nos. J02708, AE016987 and D90892 respectively). The protein sequence showed significant homology to that of the phosphotransferase system i.e. the glucitol/sorbitol-specific IIBC components of Escherichia coli and Erwinia amylovora (P56580, O32522). The cloned DNA fragment was introduced into a pRA90 vector and the recombinant was used for developing srlT mutants of Erwinia herbicola, by homologous recombination. Mutants obtained were unable to grow on minimal medium with sorbitol. The insertion of the pRA90 vector inside the srlT gene sequence of the mutants was confirmed by DNA-DNA hybridisation. PMID:15560368

  4. Evaluation of Two Surface Sampling Methods for Detection of Erwinia herbicola on a Variety of Materials by Culture and Quantitative PCR▿

    OpenAIRE

    Buttner, Mark P.; Cruz, Patricia; Stetzenbach, Linda D.; Cronin, Tracy

    2007-01-01

    This research was designed to evaluate surface sampling protocols for use with culture and quantitative PCR (QPCR) amplification assay for detection of the gram-negative bacterial biothreat simulant Erwinia herbicola on a variety of surface materials. Surfaces selected for evaluation were wood laminate, glass and computer monitor screens, metal file cabinets, plastic arena seats, nylon seat cushions, finished concrete flooring, and vinyl tile flooring. Laboratory and test chamber studies were...

  5. Characterization of Monoclonal Antibodies Specific for Erwinia carotovora subsp. atroseptica and Comparison of Serological Methods for Its Sensitive Detection on Potato Tubers

    OpenAIRE

    Gorris, María Teresa; Alarcon, Benito; Lopez, María M.; Cambra, Mariano

    1994-01-01

    Seven monoclonal antibodies (MAbs) to Erwinia carotovora subsp. atroseptica have been produced. One, called 4G4, reacted with high specificity for serogroup I of E. carotovora subsp. atroseptica, the most common serogroup on potato tubers in different serological assays. Eighty-six strains belonging to different E. carotovora subsp. atroseptica serogroups were assayed. Some strains of serogroup XXII also reacted positively. No cross-reactions were observed against other species of plant patho...

  6. Gliding Arc Discharge in the Potato Pathogen Erwinia carotovora subsp. atroseptica: Mechanism of Lethal Action and Effect on Membrane-Associated Molecules▿

    OpenAIRE

    Moreau, M; Feuilloley, M. G. J.; Veron, W.; Meylheuc, T.; Chevalier, S.; Brisset, J.-L.; Orange, N.

    2007-01-01

    Gliding arc (glidarc) discharge is a physicochemical technique for decontamination at atmospheric pressure and ambient temperature. It leads to the destruction of bacterial phytopathogens responsible for important losses in industrial agriculture, namely, Erwinia spp., without the formation of resistant forms. We investigated the effect of a novel optimized prototype allowing bacterial killing without lag time. This prototype also decreases the required duration of treatment by 50%. The study...

  7. Comparative analysis of the Hrp pathogenicity island of Rubus- and Spiraeoideae-infecting Erwinia amylovora strains identifies the IT region as a remnant of an integrative conjugative element.

    Science.gov (United States)

    Mann, Rachel A; Blom, Jochen; Bühlmann, Andreas; Plummer, Kim M; Beer, Steven V; Luck, Joanne E; Goesmann, Alexander; Frey, Jürg E; Rodoni, Brendan C; Duffy, Brion; Smits, Theo H M

    2012-08-01

    The Hrp pathogenicity island (hrpPAI) of Erwinia amylovora not only encodes a type III secretion system (T3SS) and other genes required for pathogenesis on host plants, but also includes the so-called island transfer (IT) region, a region that originates from an integrative conjugative element (ICE). Comparative genomic analysis of the IT regions of two Spiraeoideae- and three Rubus-infecting strains revealed that the regions in Spiraeoideae-infecting strains were syntenic and highly conserved in length and genetic information, but that the IT regions of the Rubus-infecting strains varied in gene content and length, showing a mosaic structure. None of the ICEs in E. amylovora strains were complete, as conserved ICE genes and the left border were missing, probably due to reductive genome evolution. Comparison of the hrpPAI region of E. amylovora strains to syntenic regions from other Erwinia spp. indicates that the hrpPAI and the IT regions are the result of several insertion and deletion events that have occurred within the ICE. It also suggests that the T3SS was present in a common ancestor of the pathoadapted Erwinia spp. and that insertion and deletion events in the IT region occurred during speciation.

  8. Experimental evolution of aging in a bacterium

    Directory of Open Access Journals (Sweden)

    Stearns Stephen C

    2007-07-01

    Full Text Available Abstract Background Aging refers to a decline in reproduction and survival with increasing age. According to evolutionary theory, aging evolves because selection late in life is weak and mutations exist whose deleterious effects manifest only late in life. Whether the assumptions behind this theory are fulfilled in all organisms, and whether all organisms age, has not been clear. We tested the generality of this theory by experimental evolution with Caulobacter crescentus, a bacterium whose asymmetric division allows mother and daughter to be distinguished. Results We evolved three populations for 2000 generations in the laboratory under conditions where selection was strong early in life, but very weak later in life. All populations evolved faster growth rates, mostly by decreasing the age at first division. Evolutionary changes in aging were inconsistent. The predominant response was the unexpected evolution of slower aging, revealing the limits of theoretical predictions if mutations have unanticipated phenotypic effects. However, we also observed the spread of a mutation causing earlier aging of mothers whose negative effect was reset in the daughters. Conclusion Our results confirm that late-acting deleterious mutations do occur in bacteria and that they can invade populations when selection late in life is weak. They suggest that very few organisms – perhaps none- can avoid the accumulation of such mutations over evolutionary time, and thus that aging is probably a fundamental property of all cellular organisms.

  9. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711

    OpenAIRE

    Shoemaker, William R.; Muscarella, Mario E.; Lennon, Jay T

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments.

  10. Pantoea agglomerans: a marvelous bacterium of evil and good.Part I. Deleterious effects: Dust-borne endotoxins and allergens - focus on cotton dust.

    Science.gov (United States)

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Milanowski, Janusz

    2015-01-01

    The ubiquitous Gram-negative bacterium Pantoea agglomerans (synonyms: Enterobacter agglomerans, Erwinia herbicola) is known both as an epiphytic microbe developing on the surface of plants and as an endophytic organism living inside the plants. The bacterium occurs also abundantly in plant and animal products, in the body of arthropods and other animals, in water, soil, dust and air, and occasionally in humans. From the human viewpoint, the role of this organism is ambiguous, both deleterious and beneficial: on one side it causes disorders in people exposed to inhalation of organic dusts and diseases of crops, and on the other side it produces substances effective in the treatment of cancer and other diseases of humans and animals, suppresses the development of various plant pathogens, promotes plant growth, and appears as a potentially efficient biofertilizer and bioremediator. P. agglomerans was identified as a predominant bacterium on cotton plant grown all over the world, usually as an epiphyte, rarely as pathogen. It is particularly numerous on cotton bract after senescence. During processing of cotton in mills, bacteria and their products are released with cotton dust into air and are inhaled by workers, causing respiratory and general disorders, usually defined as byssinosis. The most adverse substance is endotoxin, a heteropolymer macromolecule present in the outermost part of the cell wall, consisting of lipopolysaccharide (LPS) as a major constituent, phospholipids and protein. The numerous experiments carried out in last quarter of XXth century on laboratory animals and human volunteers supported a convincing evidence that the inhaled endotoxin produced by P. agglomerans causes numerous pathologic effects similar to those elicited by cotton dust, such as influx of free lung cells into airways and activation of alveolar macrophages which secrete mediators (prostaglandins, platelet-activating factor, interleukin-1, tumor necrosis factor) that cause

  11. Pantoea agglomerans: a marvelous bacterium of evil and good.Part I. Deleterious effects: Dust-borne endotoxins and allergens – focus on cotton dust

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2015-12-01

    Full Text Available The ubiquitous Gram-negative bacterium Pantoea agglomerans (synonyms: Enterobacter agglomerans, Erwinia herbicola is known both as an epiphytic microbe developing on the surface of plants and as an endophytic organism living inside the plants. The bacterium occurs also abundantly in plant and animal products, in the body of arthropods and other animals, in water, soil, dust and air, and occasionally in humans. From the human viewpoint, the role of this organism is ambiguous, both deleterious and beneficial: on one side it causes disorders in people exposed to inhalation of organic dusts and diseases of crops, and on the other side it produces substances effective in the treatment of cancer and other diseases of humans and animals, suppresses the development of various plant pathogens, promotes plant growth, and appears as a potentially efficient biofertilizer and bioremediator. P. agglomerans was identified as a predominant bacterium on cotton plant grown all over the world, usually as an epiphyte, rarely as pathogen. It is particularly numerous on cotton bract after senescence. During processing of cotton in mills, bacteria and their products are released with cotton dust into air and are inhaled by workers, causing respiratory and general disorders, usually defined as byssinosis. The most adverse substance is endotoxin, a heteropolymer macromolecule present in the outermost part of the cell wall, consisting of lipopolysaccharide (LPS as a major constituent, phospholipids and protein. The numerous experiments carried out in last quarter of XXth century on laboratory animals and human volunteers supported a convincing evidence that the inhaled endotoxin produced by P. agglomerans causes numerous pathologic effects similar to those elicited by cotton dust, such as influx of free lung cells into airways and activation of alveolar macrophages which secrete mediators (prostaglandins, platelet-activating factor, interleukin-1, tumor necrosis factor

  12. Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium

    OpenAIRE

    Little, C. Deane; Palumbo, Anthony V; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

    1988-01-01

    Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine...

  13. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  14. Research progress on chemical constituents and pharmacological activities of Chrysanthemi Flos%杭白菊化学成分和药理活性的研究进展

    Institute of Scientific and Technical Information of China (English)

    钟爱娇; 姜哲; 李雪征; 李宁

    2014-01-01

    杭白菊具有较高的药用价值,民间应用广泛,是卫生部首批批准的药食同源的道地药材之一。杭白菊主要含有黄酮、挥发油、三萜、甾体、酚类、多糖及微量元素等多种成分,具有心血管保护、降血脂、血糖、血压、抗氧化、抗癌、神经保护、肝保护等多种药理活性。为了进一步开发和合理利用该药用植物资源,综述了近年来国内外对杭白菊的化学成分和药理活性的研究进展。%Chrysanthemi Flosis widely used in folk with high medicinal value. It was firstly approved as one of the medicinal and edible herbals by Ministry of Public Health. Phytochemical studies revealed that it contained flavonoids, volatile oils, triterpenes, sterols, phenols, polysaccharides, trace elements and other physiologically active substances. Furthermore, it showed many pharmaceutical effects, such as cardiovascular protective and hypolipidemic, hyperglycemic and hypotesive activities, antioxidative, anti-cancer, neuroprotective effects, hepatoprotective effects, and so on. To further develop and rationally use this plant resource, this article summarizes the chemical constituents and pharmacological activities ofChrysanthemi Flosin recent years.

  15. Erwinia herbicola冰核活性蛋白的分离、电泳分析鉴定%Differential centrifugal isolation and identification of electrophoresis analysis to ice-nucleating activity protein of Erwinia herbicola

    Institute of Scientific and Technical Information of China (English)

    陈庆森; 张晓玲; 阎亚丽; 刘剑虹; 庞广昌

    2002-01-01

    Erwinia herbicola(A25)菌株的冰核活性蛋白的分离纯化及电泳进行研究.主要方法①按双温培养的方法,获得了较高的生物量积累和强冰核活性的诱导表达.②实验采用渗透压冲击法破碎细菌细胞,破碎率达98.67%.③通过差速离心法获取不同冰核活性蛋白组分,测定各组分的冰核活性和SDS-PAGE电泳图谱分析.建立了冰核活性因子的高冰核活性与离心力之间的关系;利用SDS-PAGE还建立了具冰核活性蛋白的分子量的大小与冰核活性蛋白组分之间的关系.证实了具高冰核活性蛋白质最小结构单位约为26.0kD.

  16. HOPX1 Ea (Eop3) in Erwinia Amylovora functions as an avirulence gene in apple and is regulated by HRPL

    Science.gov (United States)

    Fire blight is a devastating disease of rosaceous plants caused by the Gram-negative bacterium E. amylovora. This pathogen delivers virulence proteins into host cells utilizing the Type-Three Secretion System (T3SS). Expression of the T3SS and associated substrates are activated by the alternative s...

  17. Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core.

    Directory of Open Access Journals (Sweden)

    Rachel A Mann

    Full Text Available The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus and strains infecting Rubus (raspberries and blackberries. Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains, the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1(Ea and a putative secondary metabolite pathway only present in Rubus-infecting strains.

  18. Diversity, evolution, and functionality of clustered regularly interspaced short palindromic repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora.

    Science.gov (United States)

    Rezzonico, Fabio; Smits, Theo H M; Duffy, Brion

    2011-06-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system confers acquired heritable immunity against mobile nucleic acid elements in prokaryotes, limiting phage infection and horizontal gene transfer of plasmids. In CRISPR arrays, characteristic repeats are interspersed with similarly sized nonrepetitive spacers derived from transmissible genetic elements and acquired when the cell is challenged with foreign DNA. New spacers are added sequentially and the number and type of CRISPR units can differ among strains, providing a record of phage/plasmid exposure within a species and giving a valuable typing tool. The aim of this work was to investigate CRISPR diversity in the highly homogeneous species Erwinia amylovora, the causal agent of fire blight. A total of 18 CRISPR genotypes were defined within a collection of 37 cosmopolitan strains. Strains from Spiraeoideae plants clustered in three major groups: groups II and III were composed exclusively of bacteria originating from the United States, whereas group I generally contained strains of more recent dissemination obtained in Europe, New Zealand, and the Middle East. Strains from Rosoideae and Indian hawthorn (Rhaphiolepis indica) clustered separately and displayed a higher intrinsic diversity than that of isolates from Spiraeoideae plants. Reciprocal exclusion was generally observed between plasmid content and cognate spacer sequences, supporting the role of the CRISPR/Cas system in protecting against foreign DNA elements. However, in several group III strains, retention of plasmid pEU30 is inconsistent with a functional CRISPR/Cas system.

  19. The luxS gene is involved in AI-2 production, pathogenicity, and some phenotypes in Erwinia amylovora.

    Science.gov (United States)

    Gao, Yan; Song, Junxian; Hu, Baishi; Zhang, Lei; Liu, Qianqian; Liu, Fengquan

    2009-01-01

    Erwinia amylovora causes fire blight of apple, pear, and other members of the Rosaceae family. The enzyme LuxS catalyzes the last step in the production of autoinducer-2 (AI-2), a molecule implicated with quorum sensing in many bacterial species. It is now well recognized that LuxS also plays a central role in sulfur metabolism and in the activated methyl cycle, which is responsible for the generation of S-adenosyl-L-methionine. A research paper has reported that luxS is not involved with quorum sensing in Er. amylovora, but in our study, Er. amylovora strain NCPPB1665 (Ea1665) produced luxS-dependent extracellular AI-2 activity. Additionally, the maximal AI-2 activity occurred during late-exponential and early-stationary growth phases and diminished during the stationary phase. The luxS mutant of Ea1665 was constructed, and the phenotypes of a defined luxS mutant have been characterized. Inactivation of luxS in Ea1665 impaired motility, extracellular polysaccharide (EPS) production, and tolerance for hydrogen peroxide, and reduced virulence on pear leaves.

  20. Small-molecule inhibitors suppress the expression of both type III secretion and amylovoran biosynthesis genes in Erwinia amylovora.

    Science.gov (United States)

    Yang, Fan; Korban, Schuyler S; Pusey, P Lawrence; Elofsson, Michael; Sundin, George W; Zhao, Youfu

    2014-01-01

    The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)-inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein-encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small-molecule inhibitors that disable T3SS function could be explored to control fire blight disease.

  1. A novel plasmid pEA68 of Erwinia amylovora and the description of a new family of plasmids.

    Science.gov (United States)

    Ismail, Emadeldeen; Blom, Jochen; Bultreys, Alain; Ivanović, Milan; Obradović, Aleksa; van Doorn, Joop; Bergsma-Vlami, Maria; Maes, Martine; Willems, Anne; Duffy, Brion; Stockwell, Virginia O; Smits, Theo H M; Puławska, Joanna

    2014-12-01

    Recent genome analysis of Erwinia amylovora, the causal agent of fire blight disease on Rosaceae, has shown that the chromosome is highly conserved among strains and that plasmids are the principal source of genomic diversity. A new circular plasmid, pEA68, was found in E. amylovora strain 692 (LMG 28361), isolated in Poland from Sorbus (mountain ash) with fire blight symptoms. Annotation of the 68,763-bp IncFIIa-type plasmid revealed that it contains 79 predicted CDS, among which two operons (tra, pil) are associated with mobility. The plasmid is maintained stably in E. amylovora and does not possess genes associated with antibiotic resistance or known virulence genes. Curing E. amylovora strain 692 of pEA68 did not influence its virulence in apple shoots nor amylovoran synthesis. Of 488 strains of E. amylovora from seventeen countries, pEA68 was only found in two additional strains from Belgium. Although the spread of pEA68 is currently limited to Europe, pEA68 comprises, together with pEA72 and pEA78 both found in North America, a new plasmid family that spans two continents.

  2. Phenylalanine in the pore of the Erwinia ligand-gated ion channel modulates picrotoxinin potency but not receptor function.

    Science.gov (United States)

    Thompson, Andrew J; Alqazzaz, Mona; Price, Kerry L; Weston, David A; Lummis, Sarah C R

    2014-10-01

    The Erwinia ligand-gated ion channel (ELIC) is a bacterial homologue of eukaryotic Cys-loop ligand-gated ion channels. This protein has the potential to be a useful model for Cys-loop receptors but is unusual in that it has an aromatic residue (Phe) facing into the pore, leading to some predictions that this protein is incapable of ion flux. Subsequent studies have shown this is not the case, so here we probe the role of this residue by examining the function of the ELIC in cases in which the Phe has been substituted with a range of alternative amino acids, expressed in Xenopus oocytes and functionally examined. Most of the mutations have little effect on the GABA EC50, but the potency of the weak pore-blocking antagonist picrotoxinin at F16'A-, F16'D-, F16'S-, and F16'T-containing receptors was increased to levels comparable with those of Cys-loop receptors, suggesting that this antagonist can enter the pore only when residue 16' is small. T6'S has no effect on picrotoxinin potency when expressed alone but abolishes the increased potency when combined with F16'S, indicating that the inhibitor binds at position 6', as in Cys-loop receptors, if it can enter the pore. Overall, the data support the proposal that the ELIC pore is a good model for Cys-loop receptor pores if the role of F16' is taken into consideration.

  3. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    Nirakar Pradhan

    2015-06-01

    Full Text Available As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.

  4. Seca dos ponteiros da goiabeira causada por Erwinia psidii: níveis de incidência e aspectos epidemiológicos Guava bacterial blight due to Erwinia psidii: incidence levels and epidemiological aspects

    Directory of Open Access Journals (Sweden)

    Abi Soares Anjos Marques

    2007-01-01

    Full Text Available Um dos fatores limitantes ao cultivo da goiabeira no Brasil é a 'seca dos ponteiros', causada por Erwinia psidii, presente nas regiões Sudeste e Centro-Oeste, onde se concentram grandes áreas produtoras. Considerando a pequena disponibilidade de informações sobre a epidemiologia e níveis de incidência dessa bacteriose, este estudo teve como objetivos: confirmar a distribuição e verificar a dispersão da seca dos ponteiros da goiabeira no Distrito Federal; investigar o efeito da temperatura sobre a multiplicação in vitro de E. psidii; desenvolver um teste de patogenicidade prático e eficiente e avaliar a sobrevivência in vitro da bactéria em diferentes substratos. A doença foi identificada em 56% das propriedades produtoras avaliadas no DF, com 81,9% de correlação entre a presença de sintomas e o diagnóstico laboratorial. A melhor faixa de temperatura para multiplicação de E. psidii foi de 24 a 33 ºC, e a bactéria permaneceu viável por até 120 dias em suspensão em água. A inoculação da bactéria em folhas ou hastes destacadas levou ao aparecimento de sintomas a partir do sétimo dia e mostrou-se eficiente como um teste rápido para se avaliar a patogenicidade de isolados.A major disease that affects guava is 'bacterial blight', caused by Erwinia psidii, which has been reported in Southeastern and Central Regions of Brazil where the major producing areas are located. Considering the lack of information on epidemiology and incidence levels of this disease, the objectives of this study were to confirm the presence and to verify the spread of the disease in Distrito Federal (DF; to determine optimal temperature for in vitro multiplication of E. psidii; to develop a simple and effective method for pathogenicity testing and to evaluate in vitro bacterial survival on different substrates. The disease was detected in 56% of producing orchards evaluated in DF, with a correlation of 81, 9% between presence of symptoms and

  5. Decarboxylative Conversion of Hydroxycinnamic Acids by Klebsiella oxytoca and Erwinia uredovora, Epiphytic Bacteria of Polymnia sonchifolia Leaf, Possibly Associated with Formation of Microflora on the Damaged Leaves.

    Science.gov (United States)

    Hashidoko, Y; Urashima, M; Yoshida, T; Mizutani, J

    1993-01-01

    Two bacteria, Klebsiella oxytoca and Erwinia uredovora, which constituted epiphytic microftora on yacon (Polymnia sonchifolia) leaves, converted hydroxycinnamic acids into hydroxystyrenes decarboxylatively. Hydroxycinnamate decarboxylase was extracted as crude protein from the bacterial cells, and was substrate-inducible. This decarboxylation was for the bacteria a detoxification of hydroxycinnamic acids of plants, but the metabolites were toxic to other test bacteria and fungi, including some phytopathogens. The possible ecological role of these epiphytic bacteria on the host-plant was discussed. from the viewpoint of their chemical interaction via the styrene derivatives. PMID:27314772

  6. Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria.

    OpenAIRE

    Chiou, C S; Jones, A L

    1993-01-01

    A class II Tn3-type transposable element, designated Tn5393 and located on plasmid pEa34 from streptomycin-resistant strain CA11 of Erwinia amylovora, was identified by its ability to move from pEa34 to different sites in plasmids pGEM3Zf(+) and pUCD800. Nucleotide sequence analysis reveals that Tn5393 consists of 6,705 bp with 81-bp terminal inverted repeats and generates 5-bp duplications of the target DNA following insertion. Tn5393 contains open reading frames that encode a putative trans...

  7. Effective production of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) with Erwinia herbicola cells carrying a mutant transcriptional regulator TyrR.

    Science.gov (United States)

    Koyanagi, Takashi; Katayama, Takane; Suzuki, Hideyuki; Nakazawa, Hidetsugu; Yokozeki, Kenzo; Kumagai, Hidehiko

    2005-02-01

    The enzymatic production of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) using Erwinia herbicola cells involves the action of tyrosine phenol-lyase (Tpl, EC 4.1.99.2). Since Tpl is only synthesized under L-tyrosine-induced conditions, the addition of L-tyrosine to the medium is unavoidable when preparing cells (the enzyme source), but severely impedes the pure preparation of the final product L-DOPA. We circumvented this problem by using recombinant E. herbicola cells carrying a mutant transcriptional regulator TyrR, which is capable of activating the tpl promoter in the absence of L-tyrosine. PMID:15639092

  8. Cloning and Random Mutagenesis of the Erwinia herbicola tyrR Gene for High-Level Expression of Tyrosine Phenol-Lyase

    OpenAIRE

    Katayama, Takane; Suzuki, Hideyuki; Koyanagi, Takashi; Kumagai, Hidehiko

    2000-01-01

    Tyrosine phenol-lyase (Tpl), which can synthesize 3,4-dihydroxyphenylalanine from pyruvate, ammonia, and catechol, is a tyrosine-inducible enzyme. Previous studies demonstrated that the tpl promoter of Erwinia herbicola is activated by the TyrR protein of Escherichia coli. In an attempt to create a high-Tpl-expressing strain, we cloned the tyrR gene of E. herbicola and then randomly mutagenized it. Mutant TyrR proteins with enhanced ability to activate tpl were screened for by use of the lac ...

  9. Deep sequencing revealed genome-wide single-nucleotide polymorphism and plasmid content of Erwinia amylovora strains isolated in Middle Atlas, Morocco.

    Science.gov (United States)

    Hannou, Najat; Mondy, Samuel; Planamente, Sara; Moumni, Mohieddine; Llop, Pablo; López, María; Manceau, Charles; Barny, Marie-Anne; Faure, Denis

    2013-10-01

    Erwinia amylovora causes economic losses that affect pear and apple production in Morocco. Here, we report comparative genomics of four Moroccan E. amylovora strains with the European strain CFBP1430 and North-American strain ATCC49946. Analysis of single nucleotide polymorphisms (SNPs) revealed genetic homogeneity of Moroccan's strains and their proximity to the European strain CFBP1430. Moreover, the collected sequences allowed the assembly of a 65 kpb plasmid, which is highly similar to the plasmid pEI70 harbored by several European E. amylovora isolates. This plasmid was found in 33% of the 40 E. amylovora strains collected from several host plants in 2009 and 2010 in Morocco.

  10. Characterization of a cfr-Carrying Plasmid from Porcine Escherichia coli That Closely Resembles Plasmid pEA3 from the Plant Pathogen Erwinia amylovora.

    Science.gov (United States)

    Zhang, Rongmin; Sun, Bin; Wang, Yang; Lei, Lei; Schwarz, Stefan; Wu, Congming

    2015-11-02

    The multiresistance gene cfr was found in two porcine Escherichia coli isolates, one harboring it on the conjugative 33,885-bp plasmid pFSEC-01, the other harboring it in the chromosomal DNA. Sequence analysis of pFSEC-01 revealed that a 6,769-bp fragment containing the cfr gene bracketed by two IS26 elements was inserted into a plasmid closely related to pEA3 from the plant pathogen Erwinia amylovora, suggesting that pFSEC-01 may be transferred between different bacterial genera of both animal and plant origin.

  11. Antibacterial activity of moss extracts on Erwinia carotovora%藓类提取物对白菜软腐病菌的抑菌活性

    Institute of Scientific and Technical Information of China (English)

    程辉彩; 赵建成

    2006-01-01

    以欧文氏菌(Erwinia carotovora)为供试菌,对24种藓类乙醇提取物进行抑菌活性筛选.结果表明,有15种藓类提取物对欧文氏菌表现出不同程度抑菌作用,并将有较强抑菌作用的提取物对欧文氏菌进行了最低抑菌浓度MIC测定.

  12. Significance of the C-terminal domain of Erwinia uredovora ice nucleation-active protein (Ina U).

    Science.gov (United States)

    Michigami, Y; Abe, K; Obata, H; Arai, S

    1995-12-01

    Ice nucleation-active (Ina) proteins of bacterial origin comprise three distinct domains, i.e., N-terminal (N-), central repeat (R-), and C-terminal (C-) domains, among which the R-domain is essential, and its length may be correlated with the ice nucleation activity. In addition, the short C-terminal domain of about 50 amino acid residues is indispensable for the activity. Using the Ina U protein of Erwinia uredovora, we carried out precise mutational analyses of its C-terminus. The ice nucleation activity (T50) assay showed that the C-terminal 12 amino acids were not necessary, and a deletion mutant (delta C29) with a new C-terminal, Met29 (numbered from the first amino acid residue of the C-domain and corresponding to Met1022), exhibited almost the same activity as the wild-type Ina U protein did. However, deletion of the C-terminal 13 residues including Met29 resulted in almost complete loss of the activity. In the deletion mutant (delta C29), amino acid replacement of the C-terminus, Met29, showed that the activity was retained when Met29 was replaced with a neutral, aromatic, or basic amino acid (Gly, Phe, or Lys), but was lost on the replacement with an acidic amino acid (Asp or Glu). In addition, two other residues in the C-terminal region commonly present in all Ina proteins were examined as to their importance, and it was shown that one of these residues, Tyr27, is important for the activity, although it is not exclusively required; the activity was lost to a great extent when this residue was replaced with Gly or Ala, but to a lesser extent when it was replaced with Leu. These results suggest that significance of the secondary and/or tertiary structure of the C-terminal region of the Ina U protein for the ice nucleation activity. PMID:8720147

  13. Alternative sigma factor RpoN and its modulation protein YhbH are indispensable for Erwinia amylovora virulence.

    Science.gov (United States)

    Ancona, Veronica; Li, Wenting; Zhao, Youfu

    2014-01-01

    In Erwinia amylovora, ECF (extracytoplasmic functions) alternative sigma factor HrpL regulates the transcription of hrp (hypersensitive response and pathogenicity)-type III secretion system (T3SS) genes by binding to a consensus sequence known as the hrp box in hrp gene promoters. In turn, the expression of hrpL has been proposed to be positively controlled by alternative sigma factor 54 (σ(54)) (RpoN) and HrpS, a member of the σ(54) enhancer-binding proteins (EBPs). However, the function of RpoN has not been characterized genetically in E. amylovora. In this study, we investigated the role of RpoN, a nitrogen limitation sigma factor, and its modulation protein YhbH, a novel ribosome-associated protein, in E. amylovora virulence. Our results showed that mutations in hrpS, hrpL, rpoN and yhbH, but not yfiA and rmf3, resulted in a nonpathogenic phenotype on immature pear fruits and apple shoots. Consistently, the expression of T3SS genes, including hrpL, dspE, hrpN and hrpA, was barely detected in hrpS, hrpL, rpoN and yhbH mutants. These mutants were also not capable of eliciting a hypersensitive response (HR) on tobacco; however, the overexpression of hrpL using an inducible promoter rescued the HR-eliciting abilities of these mutants. These results suggest that a sigma factor cascade exists in the regulatory networks of E. amylovora and regulates important virulence factors. On the basis of this study and previously reported data, a model is proposed for the regulation of T3SS in E. amylovora.

  14. Mutation of the Erwinia amylovora argD gene causes arginine auxotrophy, nonpathogenicity in apples, and reduced virulence in pears.

    Science.gov (United States)

    Ramos, Laura S; Lehman, Brian L; Peter, Kari A; McNellis, Timothy W

    2014-11-01

    Fire blight is caused by Erwinia amylovora and is the most destructive bacterial disease of apples and pears worldwide. In this study, we found that E. amylovora argD(1000)::Tn5, an argD Tn5 transposon mutant that has the Tn5 transposon inserted after nucleotide 999 in the argD gene-coding region, was an arginine auxotroph that did not cause fire blight in apple and had reduced virulence in immature pear fruits. The E. amylovora argD gene encodes a predicted N-acetylornithine aminotransferase enzyme, which is involved in the production of the amino acid arginine. A plasmid-borne copy of the wild-type argD gene complemented both the nonpathogenic and the arginine auxotrophic phenotypes of the argD(1000)::Tn5 mutant. However, even when mixed with virulent E. amylovora cells and inoculated onto immature apple fruit, the argD(1000)::Tn5 mutant still failed to grow, while the virulent strain grew and caused disease. Furthermore, the pCR2.1-argD complementation plasmid was stably maintained in the argD(1000)::Tn5 mutant growing in host tissues without any antibiotic selection. Therefore, the pCR2.1-argD complementation plasmid could be useful for the expression of genes, markers, and reporters in E. amylovora growing in planta, without concern about losing the plasmid over time. The ArgD protein cannot be considered an E. amylovora virulence factor because the argD(1000)::Tn5 mutant was auxotrophic and had a primary metabolism defect. Nevertheless, these results are informative about the parasitic nature of the fire blight disease interaction, since they indicate that E. amylovora cannot obtain sufficient arginine from apple and pear fruit tissues or from apple vegetative tissues, either at the beginning of the infection process or after the infection has progressed to an advanced state.

  15. Determination of Quantities of Host Protein after Infection with Erwinia amylovora of Apple, Pear And Quince Cultivars

    Directory of Open Access Journals (Sweden)

    Şerife Çetin

    2014-10-01

    Full Text Available Fire blight disease caused by Erwinia amylovora is a destructive bacterial pathogen mainly on pears, apples and quinces from Rosaceae family. In this study, it was aimed determination of total protein amounts in different apple cultivars (Braeburn, Fuji, Gala and Golden, pear cultivars (Santa Maria and Williams and quince cultivars (Eşme and Ekmek in the infections of two virulent E. amylovora strains (Ea234-1 and Ea240-3 according as the time. It was taken leaf samples after leaf inoculation with E. amylovora (108 CFU ml-1 at 24th, 36th and 72nd hours. For verification of the infections, re-isolations were made from bacteria inoculated plants and the agent was identified as E. amylovora by biochemical, physiological and molecular tests. In determining the amounts of total protein and in the SDS-PAGE analyses were used Bradford and Laemmli methods, respectively, and absorbance values of protein extracts derived from the leaf samples taken, were obtained at 595 nm wavelength. According to the findings obtained; after infection of E. amylovora in the apple varieties comparing to controls, total protein concentrations at 24th hours increased and a decrease in the amount of 36th to 72nd hours and Braeburn has the highest protein content was determined. In the pear varieties, while total protein concentrations at 24th and 36th hours increased, a decrease in the amount of 72nd hour, and Santa Maria variety has the highest protein content was detected. In the quince varieties, total protein concentrations at 72th hour increased and Eşme variety has the highest protein content was identified. As a result of SDS-PAGE analysis, protein fractions which have different molecular weights were obtained. The protein bands were defined approximately 55-70 kDa and 35-55 kDa molecule weight on apple and quince varieties, respectively and also approx. 55-70 kDa in pear varieties.

  16. Rnf Genes in Purple Sulfur Bacterium Allochromatium vinosum

    OpenAIRE

    DİNÇTÜRK, H. Benan; DEMİR, Volkan

    2006-01-01

    Allochromatium vinosum is a photosynthetic, diazotrophic purple sulfur bacterium that oxidizes reduced sulfur compounds hydrogen sulfide, elemental sulfur and thiosulfide. In this article, we report the presence of rnf genes in Allochromatium vinosum, some of which have been reported to take part in nitrogen fixation in some species.

  17. Draft Genome Sequence of Oral Bacterium Streptococcus mutans JH1140

    OpenAIRE

    Escano, Jerome; Deng, Peng; Lu, Shi-En; Smith, Lief

    2016-01-01

    Streptococcus mutans JH1140 is an oral bacterium known to produce the bacteriocin mutacin 1140, and the strain has been genetically engineered to combat dental caries. Here, we report the 2.0-Mb draft genome of S. mutans JH1140. This genome provides new insights into the strain’s superior colonization properties and its utility in replacement therapy.

  18. Genome of a mosquito-killing bacterium decoded

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Researchers with the CAS Wuhan Institute of Virology (WHIOV) recently completed the genome sequencing of a mosquitocidal bacterium Bacillus shaericus C3-41. The feat, first of its kind in China, is expected to further promote the bio-control studies of mosquitoes.

  19. The genome of the Erwinia amylovora phage PhiEaH1 reveals greater diversity and broadens the applicability of phages for the treatment of fire blight.

    Science.gov (United States)

    Meczker, Katalin; Dömötör, Dóra; Vass, János; Rákhely, Gábor; Schneider, György; Kovács, Tamás

    2014-01-01

    The enterobacterium Erwinia amylovora is the causal agent of fire blight. This study presents the analysis of the complete genome of phage PhiEaH1, isolated from the soil surrounding an E. amylovora-infected apple tree in Hungary. Its genome is 218 kb in size, containing 244 ORFs. PhiEaH1 is the second E. amylovora infecting phage from the Siphoviridae family whose complete genome sequence was determined. Beside PhiEaH2, PhiEaH1 is the other active component of Erwiphage, the first bacteriophage-based pesticide on the market against E. amylovora. Comparative genome analysis in this study has revealed that PhiEaH1 not only differs from the 10 formerly sequenced E. amylovora bacteriophages belonging to other phage families, but also from PhiEaH2. Sequencing of more Siphoviridae phage genomes might reveal further diversity, providing opportunities for the development of even more effective biological control agents, phage cocktails against Erwinia fire blight disease of commercial fruit crops.

  20. Analysis of conductance responses during depolymerization of pectate by soft rot Erwinia spp. and other pectolytic bacteria isolated from potato tubers.

    Science.gov (United States)

    Fraaije, B A; Bosveld, M; Van den Bulk, R W; Rombouts, F M

    1997-07-01

    Different bacteria isolated from potato tubers were screened for their pectolytic properties by examining pitting in polypectate agar, recording conductance responses in polypectate medium and performing potato tuber soft rot tests. For bacteria found positive in conductimetry, the role of polygalacturonase (PG) and pectate lyase (PL) in the generation of conductance changes in a polygalacturonic acid (PGA) medium was further analysed using enzyme activity staining after gel electrophoresis and high-performance anion exchange chromatography. The extent of the conductance changes during depolymerization of PGA was dependent on the amounts of galacturonate monomers and oligomers accumulated in the medium. In comparison with an unidentified saprophyte and a Klebsiella strain, both mainly having PL activity, soft rot Erwinia spp. rapidly produced larger conductance responses, due to a combined action of multiple forms of PG and PL. The responses of Erwinia spp. were initially associated with the accumulation of large amounts of monomers and saturated dimers to heptamers, due to PG activity. Subsequently, as well as monomers and saturated dimers, large amounts of unsaturated dimers were also detected, due to PL activity. The role of PG as an important conductimetric factor was also demonstrated for a pectinase preparation derived from Aspergillus niger. Besides detection, automated conductimetric assays in pectate media may also be useful for monitoring of pectolytic activity in pectinase preparations and for screening of pectolytic activity of microorganisms under different media and growth conditions.

  1. Shotgun Genome Sequence of the Large Purple Photosynthetic Bacterium Rhodospirillum photometricum DSM122

    OpenAIRE

    Duquesne, K.; Sturgis, James N.

    2012-01-01

    Here, we present the shotgun genome sequence of the purple photosynthetic bacterium Rhodospirillum photometricum DSM122. The photosynthetic apparatus of this bacterium has been particularly well studied by microscopy. The knowledge of the genome of this oversize bacterium will allow us to compare it with the other purple bacterial organisms to follow the evolution of the photosynthetic apparatus.

  2. 响应面法优化广西红树林菌种Erwinia sp.5-8产抗菌活性物质的发酵条件%Optimization of fermentation medium and conditions of antibiotic active substances production by the Erwinia sp.5-8 isolated from Guangxi mangrove

    Institute of Scientific and Technical Information of China (English)

    邱晨; 孟令洋; 张培玉

    2015-01-01

    目的 采用响应面法(RSM)优化广西红树林菌种Erwinia sp.5-8产抗菌活性物质的发酵条件.方法 在单因素实验最适发酵条件基础上,利用Plackett-Burman筛选出对抑菌活性有显著影响的3个因素为温度、盐度和蛋白胨的浓度浓度,在此基础上通过最陡爬坡实验逼近最佳响应面区域;再运用Box-Behnken实验设计和响应面分析法进行回归分析,确定重要因素的最优条件.结果 菌株Erwinia5-8的最佳发酵条件为:温度为26.0℃,盐度为0.96%,蛋白胨的浓度为0.27%,葡萄糖浓度为0.6%,初始pH为8.5,装液量为40%(V/V),接种量为1%.结论 在此最优条件下菌株Erwinia 5-8发酵液的抗菌活性较优化前提高了7.96%.

  3. Rock Phosphate Solubilization Mechanisms of One Fungus and One Bacterium

    Institute of Scientific and Technical Information of China (English)

    LIN Qi-mei; ZHAO Xiao-rong; ZHAO Zi-juan; LI Bao-guo

    2002-01-01

    Many microorganisms can dissolve the insoluble phosphates like apatite. However, the mechanisms are still not clear. This study was an attempt to investigate the mechanisms of rock phosphate solubilization by an Aspergillus 2TCiF2 and an Arthrobacter1TCRi7. The results indicated that the fungus produced a large amount of organic acids, mainly oxalic acid. The total quantity of the organic acids produced by the fungus was 550 times higher than that by the bacterium. Different organic acids had completely different capacities to solubilize the rock. Oxalic acid and citric acid had stronger capacity to dissolve the rock than malic acid, tartaric acid, lactic acid, acetic acid, malonic acid and succinic acid. The fungus solubilized the rock through excreting both proton and organic acids. The rock solubilization of the bacterium depended on only proton.

  4. A Streamlined Strategy for Biohydrogen Production with an Alkaliphilic Bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A [ORNL; Wall, Judy D. [University of Missouri; Mormile, Dr. Melanie R. [Missouri University of Science and Technology; Begemann, Matthew B [University of Wisconsin, Madison

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, biohydrogen production remains inefficient and heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium strain sapolanicus, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. sapolanicus ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen and acetate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  5. Prokaryotic expression of iceA gene from ice nucleation active bacteria Erwinia ananas 110 and analysis of ice nucleation activity%冰核细菌Erwinia ananas 110冰核基因iceA的原核表达及冰核活性分析

    Institute of Scientific and Technical Information of China (English)

    姚润贤; 袁哲明

    2013-01-01

    To obtain recombinant strain with high ice nucleation activity,iceA gene were amplified by PCR from ice nucleation active bacteria Erwinia ananas 110 and cloned into vector pMD19-T which was transformed into E.coli DH5α.The recombinant clones were screened by single and double digestion before sequenced.From the positive recombinant strain,iceA gene was subcloned into prokaryotic expression vector pET-23a(+),resulting in recombinant plasmid pET-23a(+)-ice which was transformed into E.coli BL21(DE3)pLysS and induced by IPTG.SDS-PAGE indicated that ice nucleation active protein was expressed as inclusion bodies with molecular weight of about 180 000.Ice nucleation activity test showed there was no difference in ice nucleation activity under-5,4,-3,and-2 ℃ between recombinant E.coli BL21(DE3)pLysS and wild ice nucleation active bacteria Erwinia ananas 110.%为获得具有高冰核活性的基因工程菌,从冰核细菌Erwinia ananas 110扩增冰核基因iceA,将其克隆到pMD 19-T载体上,转化大肠杆菌DH5α,单、双酶切鉴定并测序;阳性克隆目的片段亚克隆到表达载体pET-23a(+)上,转化大肠杆菌DH5αt,单、双酶切鉴定重组质粒;阳性重组质粒转化大肠杆菌BL21(DE3)pLysS,并经IPTG诱导表达.SDS-PAGE电泳检测表明,冰核基因iceA能够并以包涵体形式表达,相对分子质量约为180 000.冰核活性测定结果表明,重组菌BL21 (DE3)pLysS/pET-ice的冰核活性与野生冰核细菌Erwinia ananas 110在-5、-4、-3、-2℃下无明显差别.

  6. Praktische toets voor ploffers in dahlia werkt onvoldoende

    NARCIS (Netherlands)

    Leeuwen, van P.J.; Trompert, J.P.T.

    2009-01-01

    Tijdens de stekproductie van dahlia kunnen knollen uitvallen door 'ploffers', het natrot wegvallen van knollen. De veroorzaker van deze ziekte is de bacterie Erwinia chrysanthemi. Een praktische toets kort na het rooien is wenselijk om vast te stellen of een partij gezond is of niet. De door PPO Blo

  7. ANTIBACTERIAL ACTIVITY OF THREE MEDICINAL PLANTS OF KUMAUN HIMALAYA AGAINST SOME PATHOGENIC BACTERIA

    OpenAIRE

    Sati, S. C.; POONAM TAKULI; Kumar, P.; K. KHULBE

    2015-01-01

    The antibacterial property of methanol, ethanol and hexane extracts of Berberis aristata, Chenopodium ambrosioides and Tinospora cordifolia grown in Kumaun Himalayan were investigated against some pathogenic gram positive and gram negative bacterial strains (Bacillus subtilis, Agrobacterium tumefaciens, Escherichia coli, Xanthomonas phaseoli and Erwinia chrysanthemi) using disc diffusion method. Methanol extract of B. aristata was found with highest inhibitory activity against E. chrysanth...

  8. A physical map of the hyperthermophilic bacterium Aquifex pyrophilus chromosome.

    OpenAIRE

    Shao, Z; Mages, W; Schmitt, R.

    1994-01-01

    A genomic map of the hyperthermophilic hydrogen-oxidizing bacterium Aquifex pyrophilus was established with NotI (GC/GGCCGC), SpeI (A/CTAGT), and XbaI (T/CTAGA). Linking clones and cross-hybridization of restriction fragments revealed a single circular chromosome of 1.6 Mbp. A single flagellin gene and six rRNA gene units were located on this map by Southern hybridization.

  9. Isolation of a Bacterium Capable of Degrading Peanut Hull Lignin

    OpenAIRE

    Kerr, Thomas J.; Kerr, Robert D.; Benner, Ronald

    1983-01-01

    Thirty-seven bacterial strains capable of degrading peanut hull lignin were isolated by using four types of lignin preparations and hot-water-extracted peanut hulls. One of the isolates, tentatively identified as Arthrobacter sp., was capable of utilizing all four lignin preparations as well as extracted peanut hulls as a sole source of carbon. The bacterium was also capable of degrading specifically labeled [14C]lignin-labeled lignocellulose and [14C]cellulose-labeled lignocellulose from the...

  10. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    OpenAIRE

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and c...

  11. A deep-sea bacterium with unique nitrifying property

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, A.; LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    cember 2000 A deep - sea bacterium with unique n i trifying property A. S. Pradeep Ram, P. A. Loka Bharathi*, Shanta Nair and D. Chandramohan Department of Microbiology, National Institute of Oceanography, Dona Paula, Goa 403 004..., nitrite oxidizers have been shown to augment chemolithotrophic lifestyle with heterotrophic me tab o lism of simple carbon substrate 17 . Retaining both the traits enables them to exploit unique niches several centimetres bsf, where carbon or energy...

  12. An on-bacterium flow cytometric immunoassay for protein quantification.

    Science.gov (United States)

    Lan, Wen-Jun; Lan, Wei; Wang, Hai-Yan; Yan, Lei; Wang, Zhe-Li

    2013-09-01

    The polystyrene bead-based flow cytometric immunoassay has been widely reported. However, the preparation of functional polystyrene bead is still inconvenient. This study describes a simple and easy on-bacterium flow cytometric immunoassay for protein quantification, in which Staphylococcus aureus (SAC) is used as an antibody-antigen carrier to replace the polystyrene bead. The SAC beads were prepared by carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling, paraformaldehyde fixation and antibody binding. Carcinoembryonic antigen (CEA) and cytokeratin-19 fragment (CYFRA 21-1) proteins were used as models in the test system. Using prepared SAC beads, biotinylated proteins, and streptavidin-phycoerythrin (SA-PE), the on-bacterium flow cytometric immunoassay was validated by quantifying CEA and CYFRA 21-1 in sample. Obtained data demonstrated a concordant result between the logarithm of the protein concentration and the logarithm of the PE mean fluorescence intensity (MFI). The limit of detection (LOD) in this immunoassay was at least 0.25 ng/ml. Precision and accuracy assessments appeared that either the relative standard deviation (R.S.D.) or the relative error (R.E.) was CYFRA 21-1. In conclusion, the on-bacterium flow cytometric immunoassay may be of use in the quantification of serum protein. PMID:23739299

  13. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a re

  14. HrpG and HrpV proteins from the Type III secretion system of Erwinia amylovora form a stable heterodimer.

    Science.gov (United States)

    Gazi, Anastasia D; Charova, Spyridoula; Aivaliotis, Michalis; Panopoulos, Nicholas J; Kokkinidis, Michael

    2015-01-01

    Bacterial type III secretion systems (T3SSs) are specialized multicomponent nanomachines that mediate the transport of proteins either to extracellular locations or directly into eukaryotic host cell cytoplasm. Erwinia amylovora, the main agent of rosaceous plants fireblight disease, employs an Hrp/Hrc1 T3SS to accomplish its pathogenesis. The regulatory network that controls the activation of this T3SS is largely unknown in E. amylovora. However, in Pseudomonas syringae pathovars, the HrpG/HrpV complex has been shown to directly regulate the activity of transcription factor HrpS and consequently the upregulation of the Hrp/Hrc1 T3SS related genes. In this work, we report the successful recombinant production and purification of a stable E. amylovora HrpG/HrpV complex, using pPROpET, a bicistronic expression vector. Furthermore, we present the first solution structure of this complex based on small-angle X-ray scattering data.

  15. 甘薯细菌性黑腐病发生流行的研究%Occurrence and epidemic of Erwinia carotovora sp in sweet potato

    Institute of Scientific and Technical Information of China (English)

    罗克昌; 李云平; 陈路招; 林意; 陈聚元

    2003-01-01

    对甘薯细菌性黑腐病(Erwinia carotovora sp)的发生流行研究结果表明:土壤中残存的病株是病害的初侵染源,病菌从耕作栽培伤口侵入,土壤过湿和高温多雨气候是病害流行条件.甘薯栽种后至茎叶旺长结薯期的50~60天是病害对鲜薯产量影响的关键时期,也是防治的重要时期,病株率与产量成显著负相关(相关系数为-0.8828).

  16. [The feasibility of Erwinia asparaginase for pediatric patients who developed an allergic reaction to E.coli asparaginase during treatment of acute lymphoblastic leukemia].

    Science.gov (United States)

    Takahashi, Hiroyoshi; Koh, Katsuyoshi; Kato, Motohiro; Isobe, Kiyotaka; Yasui, Naoko; Mori, Makiko; Akiyama, Kosuke; Kikuchi, Akira; Hanada, Ryoji

    2013-04-01

    Asparaginase (ASNase) is one of the most important key drugs in the treatment of acute lymphoblastic leukemia (ALL). However, clinical hypersensitivity reactions often occur and lead to the discontinuation of ASNase treatment. Here, we report a retrospective study of 68 Erwinia ASNase (Erw-ASNase) administrations in 11 patients with childhood ALL who developed allergic reactions to E.coli-ASNase in our hospital between 2006 and 2012. The median age of the patients was 6 (range, 0 to 14). Erw-ASNase purchased overseas by the patients' guardians had already been administered when we obtained informed consent from the guardians. In all patients, fibrinogen and/or anti-thrombin III levels were decreased, but thrombosis did not develop. There was only one mild adverse event (grade 2 urticaria) in one patient, in whom Erw-ASNase could be continued after increasing the doses of premedication with antihistamine and prednisolone. Erw-ASNase could be safely administered to all patients.

  17. Regulation of hrp genes and type III protein secretion in Erwinia amylovora by HrpX/HrpY, a novel two-component system, and HrpS.

    Science.gov (United States)

    Wei, Z; Kim, J F; Beer, S V

    2000-11-01

    Two novel regulatory components, hrpX and hrpY, of the hrp system of Erwinia amylovora were identified. The hrpXY operon is expressed in rich media, but its transcription is increased threefold by low pH, nutrient, and temperature levels--conditions that mimic the plant apoplast. hrpXY is autoregulated and directs the expression of hrpL; hrpL, in turn, activates transcription of other loci in the hrp gene cluster (Z.-M. Wei and S. V. Beer, J. Bacteriol. 177:6201-6210, 1995). The deduced amino -acid sequences of hrpX and hrpY are similar to bacterial two-component regulators including VsrA/VsrD of Pseudomonas (Ralstonia) solanacearum, DegS/DegU of Bacillus subtilis, and UhpB/UhpA and NarX/NarP, NarL of Escherichia coli. The N-terminal signal-input domain of HrpX contains PAS domain repeats. hrpS, located downstream of hrpXY, encodes a protein with homology to WtsA (HrpS) of Erwinia (Pantoea) stewartii, HrpR and HrpS of Pseudomonas syringae, and other delta54-dependent, enhancer-binding proteins. Transcription of hrpS also is induced under conditions that mimic the plant apoplast. However, hrpS is not autoregulated, and its expression is not affected by hrpXY. When hrpS or hrpL were provided on multicopy plasmids, both hrpX and hrpY mutants recovered the ability to elicit the hypersensitive reaction in tobacco. This confirms that hrpS and hrpL are not epistatic to hrpXY. A model of the regulatory cascades leading to the induction of the E. amylovora type III system is proposed. PMID:11059492

  18. Characterization of the rcsB gene from Erwinia amylovora and its influence on exoploysaccharide synthesis and virulence of the fire blight pathogen.

    Science.gov (United States)

    Bereswill, S; Geider, K

    1997-02-01

    RcsB belongs to a family of positive regulators of exopolysaccharide synthesis in various enterobacteria. The rcsB gene of the fire blight pathogen Erwinia amylovora was cloned by PCR amplification with consensus primers, and its role in exopolysaccharide (EPS) synthesis was investigated. Its overexpression from high-copy-number plasmids stimulated the synthesis of the acidic EPS amylovoran and suppressed expression of the levan-forming enzyme levansucrase. Inactivation of rcsB by site-directed mutagenesis created mutants that were deficient in amylovoran synthesis and avirulent on host plants. In addition, a cosmid which complemented rcsB mutants was selected from a genomic library. The spontaneous E. amylovora mutant E8 has a similar phenotype and was complemented by the cloned rcsB gene. The rcsB region of strain E8 was also amplified by PCR, and the mutation was characterized as a nine-nucleotide deletion at the start of the rcsB gene. Nucleotide sequence analysis of the E. amylovora rcsB region and the predicted amino acid sequence of RcsB revealed extensive homology to rcsB and the encoded protein of other bacteria such as Escherichia coli and Erwinia stewartii. In all three organisms, rcsB is localized adjacent to the rcsC gene, which is transcribed in the opposite direction of rcsB. The E. amylovora rcsB gene has now been shown to strongly affect the formation of disease symptoms of a plant pathogen.

  19. Mutagenesis and functional characterization of the RNA and protein components of the toxIN abortive infection and toxin-antitoxin locus of Erwinia.

    Science.gov (United States)

    Blower, T R; Fineran, P C; Johnson, M J; Toth, I K; Humphreys, D P; Salmond, G P C

    2009-10-01

    Bacteria are constantly challenged by bacteriophage (phage) infection and have developed multiple adaptive resistance mechanisms. These mechanisms include the abortive infection systems, which promote "altruistic suicide" of an infected cell, protecting the clonal population. A cryptic plasmid of Erwinia carotovora subsp. atroseptica, pECA1039, has been shown to encode an abortive infection system. This highly effective system is active across multiple genera of gram-negative bacteria and against a spectrum of phages. Designated ToxIN, this two-component abortive infection system acts as a toxin-antitoxin module. ToxIN is the first member of a new type III class of protein-RNA toxin-antitoxin modules, of which there are multiple homologues cross-genera. We characterized in more detail the abortive infection phenotype of ToxIN using a suite of Erwinia phages and performed mutagenesis of the ToxI and ToxN components. We determined the minimal ToxI RNA sequence in the native operon that is both necessary and sufficient for abortive infection and to counteract the toxicity of ToxN. Furthermore, site-directed mutagenesis of ToxN revealed key conserved amino acids in this defining member of the new group of toxic proteins. The mechanism of phage activation of the ToxIN system was investigated and was shown to have no effect on the levels of the ToxN protein. Finally, evidence of negative autoregulation of the toxIN operon, a common feature of toxin-antitoxin systems, is presented. This work on the components of the ToxIN system suggests that there is very tight toxin regulation prior to suicide activation by incoming phage.

  20. Systems level analysis of two-component signal transduction systems in Erwinia amylovora: Role in virulence, regulation of amylovoran biosynthesis and swarming motility

    Directory of Open Access Journals (Sweden)

    Sundin George W

    2009-05-01

    Full Text Available Abstract Background Two-component signal transduction systems (TCSTs, consisting of a histidine kinase (HK and a response regulator (RR, represent a major paradigm for signal transduction in prokaryotes. TCSTs play critical roles in sensing and responding to environmental conditions, and in bacterial pathogenesis. Most TCSTs in Erwinia amylovora have either not been identified or have not yet been studied. Results We used a systems approach to identify TCST and related signal transduction genes in the genome of E. amylovora. Comparative genomic analysis of TCSTs indicated that E. amylovora TCSTs were closely related to those of Erwinia tasmaniensis, a saprophytic enterobacterium isolated from apple flowers, and to other enterobacteria. Forty-six TCST genes in E. amylovora including 17 sensor kinases, three hybrid kinases, 20 DNA- or ligand-binding RRs, four RRs with enzymatic output domain (EAL-GGDEF proteins, and two kinases were characterized in this study. A systematic TCST gene-knockout experiment was conducted, generating a total of 59 single-, double-, and triple-mutants. Virulence assays revealed that five of these mutants were non-pathogenic on immature pear fruits. Results from phenotypic characterization and gene expression experiments indicated that several groups of TCST systems in E. amylovora control amylovoran biosynthesis, one of two major virulence factors in E. amylovora. Both negative and positive regulators of amylovoran biosynthesis were identified, indicating a complex network may control this important feature of pathogenesis. Positive (non-motile, EnvZ/OmpR, negative (hypermotile, GrrS/GrrA, and intermediate regulators for swarming motility in E. amylovora were also identified. Conclusion Our results demonstrated that TCSTs in E. amylovora played major roles in virulence on immature pear fruit and in regulating amylovoran biosynthesis and swarming motility. This suggested presence of regulatory networks governing

  1. Research Progress and Perspectives of Nitrogen Fixing Bacterium, Gluconacetobacter diazotrophicus, in Monocot Plants

    Directory of Open Access Journals (Sweden)

    N. Eskin

    2014-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a nitrogen fixing bacterium originally found in monocotyledon sugarcane plants in which the bacterium actively fixes atmosphere nitrogen and provides significant amounts of nitrogen to plants. This bacterium mainly colonizes intercellular spaces within the roots and stems of plants and does not require the formation of the complex root organ like nodule. The bacterium is less plant/crop specific and indeed G. diazotrophicus has been found in a number of unrelated plant species. Importantly, as the bacterium was of monocot plant origin, there exists a possibility that the nitrogen fixation feature of the bacterium may be used in many other monocot crops. This paper reviews and updates the research progress of G. diazotrophicus for the past 25 years but focuses on the recent research development.

  2. Purification of Ice-Nucleation Active Proteins of Ice- Nucleation Active Bacteria Erwinia herbicola%冰核活性细菌中冰核活性蛋白质的分离与纯化的研究

    Institute of Scientific and Technical Information of China (English)

    陈庆森; 王昌禄; 高秀芝; 阎亚丽; 庞广昌

    2007-01-01

    解决生物冰核应用中的安全问题,从产冰核活性的细菌中分离纯化天然冰核活性蛋白质是一条重要途径,对其应用具有重要价值.本研究以冰核活性细菌(Erwinia herbicola 10025A)为实验菌种,经培养获得高浓度发酵液,离心处理后,采用超声波破碎、凝胶层析的方法,分离纯化得到了Erwinia herbicola 10025A的Ⅰ型冰核活性蛋白质.该蛋白质经SDS-PAGE的分析鉴定,证实了该冰核活性蛋白质的分子量为150kD左右.

  3. Fast Neutron Irradiation of the Highly Radioresistant Bacterium Deinococcus Radiodurans

    Science.gov (United States)

    Case, Diane Louise

    Fast neutron dose survival curves were generated for the bacterium Deinococcus radiodurans, which is renowned for its unusually high resistance to gamma, x-ray, and ultraviolet radiation, but for which fast neutron response was unknown. The fast neutrons were produced by the University of Massachusetts Lowell 5.5-MV, type CN Van de Graaff accelerator through the ^7Li(p,n)^7 Be reaction by bombarding a thick metallic lithium target with a 4-MeV proton beam. The bacteria were uniformly distributed on 150-mm agar plates and were exposed to the fast neutron beam under conditions of charged particle equilibrium. The plates were subdivided into concentric rings of increasing diameter from the center to the periphery of the plate, within which the average neutron dose was calculated as the product of the precisely known neutron fluence at the average radius of the ring and the neutron energy dependent kerma factor. The neutron fluence and dose ranged from approximately 3 times 1013 n cm^ {-2} to 1 times 1012 n cm^ {-2}, and 200 kilorad to 5 kilorad, respectively, from the center to the periphery of the plate. Percent survival for Deinococcus radiodurans as a function of fast neutron dose was derived from the ability of the irradiated cells to produce visible colonies within each ring compared to that of a nonirradiated control population. The bacterium Escherichia coli B/r (CSH) was irradiated under identical conditions for comparative purposes. The survival response of Deinococcus radiodurans as a result of cumulative fast neutron exposures was also investigated. The quantification of the ability of Deinococcus radiodurans to survive cellular insult from secondary charged particles, which are produced by fast neutron interactions in biological materials, will provide valuable information about damage and repair mechanisms under extreme cellular stress, and may provide new insight into the origin of this bacterium's unprecedented radiation resistance.

  4. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    OpenAIRE

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotro...

  5. A Plant Growth-Promoting Bacterium That Decreases Nickel Toxicity in Seedlings

    OpenAIRE

    Burd, Genrich I.; Dixon, D. George; Glick, Bernard R.

    1998-01-01

    A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni2+, Pb2+, Zn2+, and CrO4−, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride w...

  6. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone.

    OpenAIRE

    Liu, S T; Lee, L Y; Tai, C.Y.; Hung, C. H.; Chang, Y. S.; Wolfram, J H; Rogers, R.; Goldstein, A. H.

    1992-01-01

    Escherichia coli is capable of synthesizing the apo-glucose dehydrogenase enzyme (GDH) but not the cofactor pyrroloquinoline quinone (PQQ), which is essential for formation of the holoenzyme. Therefore, in the absence of exogenous PQQ, E. coli does not produce gluconic acid. Evidence is presented to show that the expression of an Erwinia herbicola gene in E. coli HB101(pMCG898) resulted in the production of gluconic acid, which, in turn, implied PQQ biosynthesis. Transposon mutagenesis showed...

  7. Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins

    Directory of Open Access Journals (Sweden)

    De Maayer Pieter

    2011-11-01

    Full Text Available Abstract Background The Type VI secretion apparatus is assembled by a conserved set of proteins encoded within a distinct locus. The putative effector proteins Hcp and VgrG are also encoded within these loci. We have identified numerous distinct Type VI secretion system (T6SS loci in the genomes of several ecologically diverse Pantoea and Erwinia species and detected the presence of putative effector islands associated with the hcp and vgrG genes. Results Between two and four T6SS loci occur among the Pantoea and Erwinia species. While two of the loci (T6SS-1 and T6SS-2 are well conserved among the various strains, the third (T6SS-3 locus is not universally distributed. Additional orthologous loci are present in Pantoea sp. aB-valens and Erwinia billingiae Eb661. Comparative analysis of the T6SS-1 and T6SS-3 loci showed non-conserved islands associated with the vgrG and hcp, and vgrG genes, respectively. These regions had a G+C content far lower than the conserved portions of the loci. Many of the proteins encoded within the hcp and vgrG islands carry conserved domains, which suggests they may serve as effector proteins for the T6SS. A number of the proteins also show homology to the C-terminal extensions of evolved VgrG proteins. Conclusions Extensive diversity was observed in the number and content of the T6SS loci among the Pantoea and Erwinia species. Genomic islands could be observed within some of T6SS loci, which are associated with the hcp and vgrG proteins and carry putative effector domain proteins. We propose new hypotheses concerning a role for these islands in the acquisition of T6SS effectors and the development of novel evolved VgrG and Hcp proteins.

  8. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    Science.gov (United States)

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain. PMID:26972517

  9. Intracellular iron minerals in a dissimilatory iron-reducing bacterium.

    Science.gov (United States)

    Glasauer, Susan; Langley, Sean; Beveridge, Terry J

    2002-01-01

    Among prokaryotes, there are few examples of controlled mineral formation; the formation of crystalline iron oxides and sulfides [magnetite (Fe3O4) or greigite (Fe3S4)] by magnetotactic bacteria is an exception. Shewanella putrefaciens CN32, a Gram-negative, facultative anaerobic bacterium that is capable of dissimilatory iron reduction, produced microscopic intracellular grains of iron oxide minerals during growth on two-line ferrihydrite in a hydrogen-argon atmosphere. The minerals, formed at iron concentrations found in the soil and sedimentary environments where these bacteria are active, could represent an unexplored pathway for the cycling of iron by bacteria. PMID:11778045

  10. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  11. Screening, identification and desilication of a silicate bacterium

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong-bo; ZENG Xiao-xi; LIU Fei-fei; QIU Guan-zhou; HU Yue-hua

    2006-01-01

    The strain Lv1-2 isolated from the Henan bauxite was characterized by morphological observation, biochemical and physiological identification, and 16S rDNA sequence analysis. The influences of temperature, initial pH value, the volume of medium, shaking speed and illite concentration on the desilicating ability of the strain Lv1-2 were investigated. The results show that the bacterium is a Gram-negative rod-shaped bacterium with oval endspores and thick capsule, but without flagellum. The biochemical and physiological tests indicate that the strain Lv1-2 is similar to Bacillus mucilaginosus. In GenBank the 16S rDNA sequence similarity of the strain Lv1-2 and the B. mucilaginosus YNUCC0001 (AY571332) is more than 99 %. Based on the above results, the strain Lv1-2 is identified as B. mucilaginosus. The optimum conditions for the strain Lv1-2 to remove silicon from illite are as follows: temperature is 30℃ ;initial pH value is 7.5; medium volume in 200 mL bottle is 60 mL; shaking speed of rotary shaker is 220 r/m; illite concentration is 1%.

  12. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  13. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.

    Science.gov (United States)

    Gardner, Jeffrey G

    2016-07-01

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. This review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkable ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications. PMID:27263016

  14. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    Science.gov (United States)

    Sparks, N.H.C.; Mann, S.; Bazylinski, D.A.; Lovley, D.R.; Jannasch, H.W.; Frankel, R.B.

    1990-01-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo??ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 ?? 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of {110} faces which are capped and truncated by {111} end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization. ?? 1990.

  15. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    Science.gov (United States)

    Sparks, N. H. C.; Mann, S.; Bazylinski, D. A.; Lovley, D. R.; Jannasch, H. W.; Frankel, R. B.

    1990-04-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo¨ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 × 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of 110 faces which are capped and truncated by 111 end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization.

  16. Treatment of common warts with the immune stimulant Propionium bacterium parvum Tratamento das verrugas vulgares com o imunoestimulante Propionium bacterium parvum

    OpenAIRE

    Nilton Nasser

    2012-01-01

    BACKGROUND: Warts are epithelial proliferations in the skin and mucous membrane caused by various types of HPV. They can decrease spontaneously or increase in size and number according to the patient's immune status. The Propionium bacterium parvum is a strong immune stimulant and immune modulator and has important effects in the immune system and it is able to produce antibodies in the skin. OBJECTIVE: To show the efficacy of the Propionium bacterium parvum in saline solution in the treatmen...

  17. Draft Genome Sequence of Ensifer adhaerens M78, a Mineral-Weathering Bacterium Isolated from Soil.

    Science.gov (United States)

    Wang, Yuanli; Chen, Wei; He, Linyan; Wang, Qi; Sheng, Xia-Fang

    2016-01-01

    Ensifer adhaerens M78, a bacterium isolated from soil, can weather potash feldspar and release Fe, Si, and Al from rock under nutrient-poor conditions. Here, we report the draft genome sequence of strain M78, which may facilitate a better understanding of the molecular mechanism involved in mineral weathering by the bacterium. PMID:27609930

  18. Draft Genome Sequence of Ensifer adhaerens M78, a Mineral-Weathering Bacterium Isolated from Soil.

    Science.gov (United States)

    Wang, Yuanli; Chen, Wei; He, Linyan; Wang, Qi; Sheng, Xia-Fang

    2016-01-01

    Ensifer adhaerens M78, a bacterium isolated from soil, can weather potash feldspar and release Fe, Si, and Al from rock under nutrient-poor conditions. Here, we report the draft genome sequence of strain M78, which may facilitate a better understanding of the molecular mechanism involved in mineral weathering by the bacterium.

  19. Dense populations of a giant sulfur bacterium in Namibian shelf sediments

    DEFF Research Database (Denmark)

    Schulz, HN; Brinkhoff, T.; Ferdelman, TG;

    1999-01-01

    A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA...

  20. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties

    NARCIS (Netherlands)

    Sessitsch, A; Coenye, T; Sturz, AV; Vandamme, P; Barka, EA; Salles, JF; Van Elsas, JD; Faure, D; Reiter, B; Glick, BR; Wang-Pruski, G; Nowak, J

    2005-01-01

    A Gram-negative, non-sporulating, rod-shaped, motile bacterium, with a single polar flagellum, designated strain PsJNT, was isolated from surface-sterilized onion roots. This isolate proved to be a highly effective plant-beneficial bacterium, and was able to establish rhizosphere and endophytic popu

  1. Algicidal lactones from the marine Roseobacter clade bacterium Ruegeria pomeroyi

    Directory of Open Access Journals (Sweden)

    Ramona Riclea

    2012-06-01

    Full Text Available Volatiles released by the marine Roseobacter clade bacterium Rugeria pomeroyi were collected by use of a closed-loop stripping headspace apparatus (CLSA and analysed by GC–MS. Several lactones were found for which structural proposals were derived from their mass spectra and unambiguously verified by the synthesis of reference compounds. An enantioselective synthesis of two exemplary lactones was performed to establish the enantiomeric compositions of the natural products by enantioselective GC–MS analyses. The lactones were subjected to biotests to investigate their activity against several bacteria, fungi, and algae. A specific algicidal activity was observed that may be important in the interaction between the bacteria and their algal hosts in fading algal blooms.

  2. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol.

  3. Characterisation of an unusual bacterium isolated from genital ulcers.

    Science.gov (United States)

    Ursi, J P; van Dyck, E; Ballard, R C; Jacob, W; Piot, P; Meheus, A Z

    1982-02-01

    The preliminary characterisation of an unusual gram-negative bacillus isolated from genital ulcers in Swaziland is reported. Like Haemophilus ducreyi, it is an oxidase positive, nitrate-reductase-positive gram-negative rod that forms streptobacillary chains in some circumstances; it was therefore called the "ducreyi-like bacterium" (DLB). Distinguishing features of DLB are production of alpha-haemolysis on horse-blood agar, stimulation of growth by a microaerophilic atmosphere and by a factor produced by Staphylococcus aureus, a strongly positive porphyrin test, and a remarkable ability to undergo autolysis. DLB had a guanine + cytosine value of c. 50 mole% but it cannot be classified, even at the genus level, until more taxonomic data are obtained.

  4. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  5. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. PMID:26965627

  6. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene

    Energy Technology Data Exchange (ETDEWEB)

    Maymo-Gatell, X.; Chien, Yueh-tyng; Zinder, S.H. [Cornell Univ., Ithaca, NY (United States)] [and others

    1997-06-06

    Tetrachloroethene is a prominent groundwater pollutant that can be reductively dechlorinated by mixed anaerobic microbial populations to the nontoxic product ethene. Strain 195, a coccoid bacterium that dechlorinates tetrachlorethene to ethene, was isolated and characterized. Growth of strain 195 with H{sub 2} and tetrachloroethene as the electron donor and acceptor pair required extracts from mixed microbial cultures. Growth of strain 195 was resistant to ampicillin and vancomycin; its cell wall did not react with a peptidoglycan-specific lectin and its ultrastructure resembled S-layers of Archaea. Analysis of the 16S ribosomal DNA sequence of strain 195 indicated that it is a eubacterium without close affiliation to any known groups. 24 refs., 4 figs., 1 tab.

  7. Produção de isomaltulose a partir da transformação enzimática da sacarose, utilizando-se Erwinia sp D12 imobilizada com alginato de cálcio Production of isomaltulose from enzymatic transformation of sucrose, using Erwinia sp D12 immobilized with calcium alginate

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Leite Moraes

    2005-03-01

    Full Text Available A glicosiltransferase de Erwinia sp D12 é capaz de converter a sacarose em isomaltulose (6-o-alfa-glicopiranosil D-frutofuranose, um açúcar alternativo que apresenta baixo potencial cariogênico, e que pode ser utilizado em chocolates, gomas de mascar e balas. A isomaltulose é também utilizada na produção de isomalte, uma mistura de açúcar álcool, de baixo valor calórico e baixo potencial cariogênico. No estudo da influência dos componentes do meio de cultivo, na produção de glicosiltransferase, em frascos agitados, foi obtido maior atividade da enzima (12,8 unidades de atividade/mL do meio de cultura em meio de cultura A constituído de melaço 12% (p/v de sólidos solúveis totais, peptona 4% (p/v e extrato de carne 0,4% (p/v. No estudo do efeito do tempo e da temperatura na fermentação da linhagem de Erwinia sp D12, em fermentador New Brunswick de 3L, contendo meio de cultura A, foi obtida maior atividade de glicosiltransferase (15,6 unidades de atividade/ mL de meio de cultura na fase exponencial de crescimento após 8 horas de fermentação a 30ºC. Na produção de isomaltulose a partir da sacarose utilizando-se células de Erwinia sp D12 imobilizadas em alginato de cálcio, estudou-se o efeito da temperatura (25 - 35ºC e da concentração de substrato (12,5 - 60% p/v. Foi obtido um rendimento em torno de 50% de isomaltulose, com soluções de sacarose entre 20-30% (p/v a 35ºC. Concentrações em excesso de sacarose (ao redor de 40% p/v afetaram a atividade da célula imobilizada, diminuindo a conversão de sacarose em isomaltulose. O xarope de isomaltulose foi purificado através de cromatografia de troca iônica e o eluato cristalizado por abaixamento de temperatura. Os cristais apresentaram 91,39% de isomaltulose.The glucosyltransferase of Erwinia sp D12 is able to convert sucrose into isomaltulose (6-0-alpha-D-glucopyranosyl-D-fructofuranose, an alternative sugar which presents low cariogenic potential, and can be

  8. The tail-associated depolymerase of Erwinia amylovora phage L1 mediates host cell adsorption and enzymatic capsule removal, which can enhance infection by other phage.

    Science.gov (United States)

    Born, Yannick; Fieseler, Lars; Klumpp, Jochen; Eugster, Marcel R; Zurfluh, Katrin; Duffy, Brion; Loessner, Martin J

    2014-07-01

    The depolymerase enzyme (DpoL1) encoded by the T7-like phage L1 efficiently degrades amylovoran, an important virulence factor and major component of the extracellular polysaccharide (EPS) of its host, the plant pathogen Erwinia amylovora. Mass spectrometry analysis of hydrolysed EPS revealed that DpoL1 cleaves the galactose-containing backbone of amylovoran. The enzyme is most active at pH 6 and 50°C, and features a modular architecture. Removal of 180 N-terminal amino acids was shown not to affect enzyme activity. The C-terminus harbours the hydrolase activity, while the N-terminal domain links the enzyme to the phage particle. Electron microscopy demonstrated that DpoL1-specific antibodies cross-link phage particles at their tails, either lateral or frontal, and immunogold staining confirmed that DpoL1 is located at the tail spikes. Exposure of high-level EPS-producing Er. amylovora strain CFBP1430 to recombinant DpoL1 dramatically increased sensitivity to the Dpo-negative phage Y2, which was not the case for EPS-negative mutants or low-level EPS-producing Er. amylovora. Our findings indicate that enhanced phage susceptibility is based on enzymatic removal of the EPS capsule, normally a physical barrier to Y2 infection, and that use of DpoL1 together with the broad host range, virulent phage Y2 represents an attractive combination for biocontrol of fire blight.

  9. Plasmid-mediated gene transfer between insect-resident bacteria, Enterobacter cloacae, and plant-epiphytic bacteria, Erwinia herbicola, in guts of silkworm larvae.

    Science.gov (United States)

    Watanabe, K; Sato, M

    1998-11-01

    Five strains of Enterobacter cloacae isolated from several species of plants and insects were able to grow in the guts of silkworm larvae. A much larger population of Ent. cloacae strains was detected in the insect guts and feces collected 3 and 6 days than in samples collected 1 day after feeding artificial diets contaminating these bacteria. Furthermore, insect-origin strains of Ent. cloacae were mated with a donor strain, epiphytic Erwinia herbicola, harboring RSF1010 and pBPW1::Tn7 plasmids in the insect guts by introducing these bacteria through separate artificial diets administered at different times. A number of transconjugants, Ent. cloacae strains which had acquired RSF1010 plasmid, were detected from guts and fecal samples at transfer frequencies of 10(-2) to 10(-3) per recipient. Thus, gene transfer between epiphytic Er. herbicola and insect-resident Ent. cloacae strains in the insect guts was confirmed. These findings may provide significant information about the role of "in insecta mating" in the evolution of these bacteria. PMID:9767717

  10. A host-specific virulence protein of Erwinia herbicola pv. gypsophilae is translocated into human epithelial cells by the Type III secretion system of enteropathogenic Escherichia coli.

    Science.gov (United States)

    Valinsky, Lea; Nisan, Israel; Tu, Xuanlin; Nisan, Gal; Rosenshine, Ilan; Hanski, Emanuel; Barash, Isaac; Manulis, Shulamit

    2002-03-01

    summary HsvG is a virulence factor that determines the host specificity of Erwinia herbicola pathovars gypsophilae and betae on gypsophila. We used the calmodulin adenylate cyclase reporter (CyaA) to demonstrate that HsvG is secreted and translocated into HeLa cells by the type III secretion system (TTSS) of the enteropathogenic Escherichia coli (EPEC). A fusion of HsvG-CyaA containing 271 amino acids of the N-terminus of HsvG were introduced into a wild-type EPEC, espB mutant deficient in translocation and an escV mutant deficient in secretion. A significant secretion was detected in EPEC/HsvG-CyaA and its espB mutant, but not with the escV mutant. Translocation was only observed with the wild-type EPEC, and not with the other two mutants. To localize the secretion and translocation signals of HsvG, fusions containing 39, 11 and 3 amino acids of the N-terminus of HsvG were constructed and expressed in EPEC. A fusion containing the first 39 N-terminal amino acids of HsvG was secreted and translocated at significant level (31-35%) as compared to the original fusion. In contrast, fusions containing the 3 and 11 amino acids failed to be secreted and translocated. PMID:20569314

  11. In-vitro antibacterial activities of the essential oils of aromatic plants against Erwinia herbicola (Lohnis and pseudomonas putida (Kris Hamilton

    Directory of Open Access Journals (Sweden)

    Pandey Abhay K.

    2012-01-01

    Full Text Available This study was designed to examine in vitro antibacterial activities of essential oils extracted from 53 aromatic plants of Gorakhpur Division (UP, INDIA for the control of two phytopathogenic bacteria namely Erwinia herbicola and Pseudomonas putida causing several post-harvest diseases in fruits and vegetables. Out of 53 oils screened, 8 oils such as Chenopodium ambrosioides, Citrus aurantium, Clausena pentaphylla, Hyptis suaveolens, Lippia alba, Mentha arvensis, Ocimum sanctum and Vitex negundo completely inhibited the growth of test bacteria. Furthermore MIC & MBC values of C. ambrosioides oil were least for Erw. herbicola (0.25 & 2.0 μl/ml and Ps. putida (0.12 & 1.0 μl/ml respectively than other 7 oils as well as Agromycin and Streptomycin drugs used in current study. GC and GC-MS analysis of Chenopodium oil revealed presence of 125 major and minor compounds, out of them, 14 compounds were recognized. The findings concluded that Chenopodium oil may be regarded as safe antibacterial agent for the management of post-harvest diseases of fruits and vegetables.

  12. Nucleotide sequences and organization of the genes for carotovoricin (Ctv) from Erwinia carotovora indicate that Ctv evolved from the same ancestor as Salmonella typhi prophage.

    Science.gov (United States)

    Yamada, Kazuteru; Hirota, Morihiko; Niimi, Yoshiko; Nguyen, Hoa Anh; Takahara, Yoshiyuki; Kamio, Yoshiyuki; Kaneko, Jun

    2006-09-01

    Carotovoricin Er (CtvEr), which is produced by a plant soft rot disease causative agent, Erwinia carotovora subsp. carotovora Er, is a high-molecular-weight bacteriocin showing Myoviridae phage-tail-like morphology with contractile sheath and plural tail fibers. We determined the complete nucleotide sequences of CtvEr genes on the E. carotovora Er chromosome and report that CtvEr genes consist of lysis cassette, major and minor structural protein gene clusters. Four promoters were identified. The lysis gene cassette, which is composed of the genes for lysis enzyme and holin, was also identified and characterized. The nucleotide sequences and organization of the genes for CtvCGE, which is produced by E. carotovora strain CGE234-M403 with the morphology similar to CtvEr, were also determined and compared to that of CtvEr, and it was found that CtvCGE is almost identical to CtvEr except for tail fibers which are involved in the killing spectra of both bacteriocins. We also explain that the gene organization and the deduced amino acid sequences of both carotovoricins are very close to those of prophage, which is lysogenized in the chromosome on Salmonella enterica serovar Typhi CT18. These findings strongly suggest that Ctv evolved as a phage tail-like bacteriocin from a common ancestor with Salmonella typhi prophage. PMID:16960352

  13. Characterisation of the stbD/E toxin-antitoxin system of pEP36, a plasmid of the plant pathogen Erwinia pyrifoliae.

    Science.gov (United States)

    Unterholzner, Simon J; Hailer, Barbara; Poppenberger, Brigitte; Rozhon, Wilfried

    2013-09-01

    pEP36 is a plasmid ubiquitously present in Erwinia pyrifoliae, a pathogen which causes black stem blight of Asian pear. pEP36 is highly stable in its host, even in the absence of selective pressure. The plasmid is closely related to pEA29, which is widespread in E. amylovora, the causative agent of fire blight of apple and pear trees. Here we report that pEP36 possesses a functional hybrid toxin-antitoxin module, stbD/E(pEP36), with the toxin showing homology to the RelE/ParE proteins and the antidote belonging to the Phd/YefM antitoxin family. Bacteria expressing the StbE(pEP36) toxin arrest cell growth and enter a viable but non-culturable stage. However, they maintain their typical cell length and do not show filamentation. Pulse-chase experiments revealed that StbE(pEP36) acts as a global inhibitor of protein synthesis while it does not interfere with DNA and RNA synthesis. The StbD(pEP36) antitoxin is capable of neutralising StbE(pEP36) toxicity. Additional experiments show that the stbD/E(pEP36) module can stabilise plasmids at least 20-fold. Thus the toxin-antitoxin system may contribute to the remarkable stability of pEP36.

  14. The pathogeny occurrence pattern and control of Erwinia Jujubovora%枣缩果病病原发病规律及防治

    Institute of Scientific and Technical Information of China (English)

    任士福; 张彦婷

    2001-01-01

    @@ 枣缩果病(Erwinia Jujubovora)又名铁皮病、黑腐病,是目前枣树生产中最重要的果实病害.该病在枣果白熟期开始发病,病果果肉变褐,味变苦,造成提前落果,导致产量和品质下降.从20世纪80年代初开始,该病为害日趋严重,其发病快而集中,常常暴发流行.河北省每年由于该病导致病果产量损失30%~80%,有的地方甚至出现绝收.该病在河南、山东、山西、内蒙古、广西等省区也有发生,有的地方发生的也相当严重,已成为当前大枣生产中亟待解决的重大问题.现介绍河北农业大学最新研究成果,以指导枣产区的生产.

  15. T3SS-dependent differential modulations of the jasmonic acid pathway in susceptible and resistant genotypes of Malus spp. challenged with Erwinia amylovora.

    Science.gov (United States)

    Dugé De Bernonville, Thomas; Gaucher, Matthieu; Flors, Victor; Gaillard, Sylvain; Paulin, Jean-Pierre; Dat, James F; Brisset, Marie-Noëlle

    2012-06-01

    Fire blight is a bacterial disease of Maloideae caused by Erwinia amylovora (Ea). This necrogenic enterobacterium uses a type III secretion system (T3SS) to inject type III effectors into the plant cells to cause disease on its susceptible hosts, including economically important crops like apple and pear. The expressions of marker genes of the salicylic acid (SA) and jasmonic acid (JA) defense regulation pathways were monitored by RT-qPCR in leaves of two apple genotypes, one susceptible and one resistant, challenged with a wild type strain, a T3SS-deficient strain or water. The transcriptional data taken together with hormone level measurements indicated that the SA pathway was similarly induced in both apple genotypes during infection by Ea. On the contrary, the data clearly showed a strong T3SS-dependent down-regulation of the JA pathway in leaves of the susceptible genotype but not in those of the resistant one. Accordingly, methyl-jasmonate treated susceptible plants displayed an increased resistance to Ea. Bacterial mutant analysis indicated that JA manipulation by Ea mainly relies on the type III effector DspA/E. Taken together, our data suggest that the T3SS-dependent down-regulation of the JA pathway is a critical step in the infection process of Malus spp. by Ea.

  16. Phylogenetic analysis of PR genes in some pome fruit species with the emphasis on transcriptional analysis and ROS response under Erwinia amylovora inoculation in apple.

    Science.gov (United States)

    Hassani, Maryam; Salami, Seyed Alireza; Nasiri, Jaber; Abdollahi, Hamid; Ghahremani, Zahra

    2016-02-01

    Attempts were made to identify eight pathogenesis related (PR) genes (i.e., PR-1a, PR3-ch1, PR3-Ch2, PR3-Ch3, PR3-Ch4, PR3-Ch5, PR-5 and PR-8) from 27 genotypes of apple, quince and pear, which are induced in response to inoculation with the pathogen Erwinia amylovora, the causal agent of fire blight. Totally, 32 PR genes of different families were obtained, excepting PR3-Ch2 (amplified only in apple) and PR3-Ch4 (amplified only in apple and pear), the others were successfully amplified in all the genotypes of apple, quince and pear. Evolutionary, the genes of each family exhibited significant homology with each other, as the corresponded phylogenetic neighbor-joining-based dendrograms were taken into consideration. Meanwhile, according to the expression assay, it was deduced that the pathogen activity can significantly affect the expression levels of some selected PR genes of PR3-Ch2, PR3-Ch4, PR3-Ch5 and particularly Cat I in both resistant (MM-111) and semi-susceptible (MM-106) apple rootstocks. Lastly, it was concluded that the pathogen E. amylovora is able to stimulate ROS response, particularly using generation of hydrogen peroxide (H2O2) in both aforementioned apple rootstock.

  17. Exploring new roles for the rpoS gene in the survival and virulence of the fire blight pathogen Erwinia amylovora.

    Science.gov (United States)

    Santander, Ricardo D; Monte-Serrano, Mercedes; Rodríguez-Herva, José J; López-Solanilla, Emilia; Rodríguez-Palenzuela, Pablo; Biosca, Elena G

    2014-12-01

    Erwinia amylovora causes fire blight in economically important plants of the family Rosaceae. This bacterial pathogen spends part of its life cycle coping with starvation and other fluctuating environmental conditions. In many Gram-negative bacteria, starvation and other stress responses are regulated by the sigma factor RpoS. We obtained an E. amylovora rpoS mutant to explore the role of this gene in starvation responses and its potential implication in other processes not yet studied in this pathogen. Results showed that E. amylovora needs rpoS to develop normal starvation survival and viable but nonculturable (VBNC) responses. Furthermore, this gene contributed to stationary phase cross-protection against oxidative, osmotic, and acid stresses and was essential for cross-protection against heat shock, but nonessential against acid shock. RpoS also mediated regulation of motility, exopolysaccharide synthesis, and virulence in immature loquats, but not in pear plantlets, and contributed to E. amylovora survival in nonhost tissues during incompatible interactions. Our results reveal some unique roles for the rpoS gene in E. amylovora and provide new knowledge on the regulation of different processes related to its ecology, including survival in different environments and virulence in immature fruits.

  18. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora.

    Science.gov (United States)

    Khokhani, Devanshi; Zhang, Chengfang; Li, Yan; Wang, Qi; Zeng, Quan; Yamazaki, Akihiro; Hutchins, William; Zhou, Shan-Shan; Chen, Xin; Yang, Ching-Hong

    2013-09-01

    Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.

  19. ANTIBACTERIAL ACTIVITY OF THREE MEDICINAL PLANTS OF KUMAUN HIMALAYA AGAINST SOME PATHOGENIC BACTERIA

    Directory of Open Access Journals (Sweden)

    S. C. SATI

    2015-11-01

    Full Text Available The antibacterial property of methanol, ethanol and hexane extracts of Berberis aristata, Chenopodium ambrosioides and Tinospora cordifolia grown in Kumaun Himalayan were investigated against some pathogenic gram positive and gram negative bacterial strains (Bacillus subtilis, Agrobacterium tumefaciens, Escherichia coli, Xanthomonas phaseoli and Erwinia chrysanthemi using disc diffusion method. Methanol extract of B. aristata was found with highest inhibitory activity against E. chrysanthemi (ZOI, 11±0.3mm. Whereas lowest inhibition was recorded in ethanolic extract of B. aristata against E. coli. The hexane extract of B. aristata and methanolic extract of C. ambrosioides were found totally inactive against all the pathogens tested.

  20. Loss of allosteric control but retention of the bifunctional catalytic competence of a fusion protein formed by excision of 260 base pairs from the 3' terminus of pheA from Erwinia herbicola.

    OpenAIRE

    Xia, T.; Zhao, G.; Jensen, R A

    1992-01-01

    A bifunctional protein denoted as the P protein and encoded by pheA is widely present in purple gram-negative bacteria. This P protein carries catalytic domains that specify chorismate mutase (CM-P) and prephenate dehydratase. The instability of a recombinant plasmid carrying a pheA insert cloned from Erwinia herbicola resulted in a loss of 260 bp plus the TAA stop codon from the 3' terminus of pheA. The plasmid carrying the truncated pheA gene (denoted pheA*) was able to complement an Escher...

  1. Pathogenicity and Biological Characters of Erwinia chyrsanthemi in Yunnan Province%云南水稻细菌性基腐病的致病性及病原生物学特性研究

    Institute of Scientific and Technical Information of China (English)

    周惠萍; 范静华; 徐自怀; 陈建斌

    2004-01-01

    通过对云南省水稻细菌性基腐病菌进行细菌学性状、致病性和温度测定,结果表明:该病原菌属于菊欧氏杆菌玉米致病变种(Erwinia chyrsanthemi pv.zeae),其生长适宜温度范围28~36 ℃,其中以32 ℃为最适,最低温度为10 ℃,最高温度42 ℃,致死温度53 ℃,10 min.

  2. The Genomic DNA Library Construction of Erwinia Carotovora CXJZ95-198%欧文氏杆菌CXJZ95-198基因组文库的构建

    Institute of Scientific and Technical Information of China (English)

    张运雄; 刘正初

    2006-01-01

    采用改良鸟枪法构建了草本纤维精制高效菌种Erwinia carotovora CXJZ95-198的基因组文库,结合透明圈法,筛选到了8个甘露聚糖酶基因阳性克隆,并采用PCR方法对它们进行了分析鉴定,结果表明它们含有同一个甘露聚糖酶基因.

  3. Study on resistance of Chinese cabbage to Erwinia carotovora subsp.carotovora by exogenous 24-Epibrassinolide treatment%表油菜素内酯诱导大白菜抗软腐病研究

    Institute of Scientific and Technical Information of China (English)

    屈淑平; 张灵宇; 崔崇士

    2009-01-01

    To ascertain the induced resistance to Erwinia carotovora subsp. carotovora by 24-Epibra-ssinolide and its physiological mechanism, Chinese cabbage was used to study the effects of 24-Epibra-ssinolide on its physiological and biochemical characteristics with foliar spray. The results showed that 24-Epibrassinolide decreased disease indexes of Chinese cabbage seedlings by 25.8%, increased H_2O_2 accumulation, decreased MDA contents, increased catalase (CAT) activities, peroxidase (POD) activities trend, increased slowly in early phase, and decreased in later stage. Erwinia carotovora subp. carotovora infection resulted in increased levels of H_2O_2 and MDA when plants were sprayed with EBR, but the MDA content was lower than the control treatment. Foliar spraying with EBR increased CAT activities, and POD activities reduced than the control treatment. EBR promoted the growth of Chinese cabbage seedling, this increasing appeared even after Erwinia carotovora subsp. carotovora infection. EBR kept the metabolism of active oxygen species at a balance state and increased the resistance to Erwinia carotovora subsp. carotovora in Chinese cabbage.%试验采用叶面喷施的方法,研究了24-表油菜素内酯(24-Epibrassinolide,EBR)对大白菜软腐病的诱抗作用及其生理机制.结果表明,外源EBR处理大白菜幼苗病情指教明显比对照降低,下降了25.8%;喷施EBR提高了大白菜叶片中H_2O_2含量,使丙二醛(Malondialdehyde,MDA)含量下降,提高了过氧化氢酶(Catalase,CAT)活性,过氧化物酶(Peroxidase,POD)活性先缓慢升高然后下降;接种软腐病菌后,EBR使H_2O_2和MDA含量缓慢增加,但EBR处理MDA含量低于对照处理,显著提高了CAT活性,POD活性与对照相比下降,呈现缓慢升高趋势;EBR处理明显促进幼苗的生长,即使在接种软腐病菌期间,植株的长势也比对照强.说明EBR通过调节植物体内氧的代谢平衡,增强对软腐病的抗性.

  4. Treatment of common warts with the immune stimulant Propionium bacterium parvum Tratamento das verrugas vulgares com o imunoestimulante Propionium bacterium parvum

    Directory of Open Access Journals (Sweden)

    Nilton Nasser

    2012-08-01

    Full Text Available BACKGROUND: Warts are epithelial proliferations in the skin and mucous membrane caused by various types of HPV. They can decrease spontaneously or increase in size and number according to the patient's immune status. The Propionium bacterium parvum is a strong immune stimulant and immune modulator and has important effects in the immune system and it is able to produce antibodies in the skin. OBJECTIVE: To show the efficacy of the Propionium bacterium parvum in saline solution in the treatment of skin warts. METHODS: A randomized double-blind study. Twenty patients with multiple warts were divided into two groups: one received 0,1ml intradermal injection of placebo solution in just one of the warts and the other received 0,1 ml of saline solution of Propionium bacterium parvum, one dose a month, for 3 to 5 months. RESULTS: Among the 20 patients who participated in the study, ten received the placebo and ten received the saline solution with Propionium bacterium parvum. In 9 patients treated with the Propionium bacterium parvum solution the warts disappeared without scars and in 1 patient it decreased in size. In 9 patients who received the placebo no change to the warts was observed and in 1 it decreased in size. CONCLUSIONS: The immune modulator and immune stimulant Propionium bacterium parvum produced antibodies in the skin which destroyed the warts without scars, with statistically significant results (PFUNDAMENTOS: Verrugas são proliferações epiteliais na pele e mucosas causadas por diversos tipos de HPV. Elas podem involuir espontaneameme ou aumentar em número e tamanho de acordo com estado imunitário do paciente. O Propionium bacterium parvum é urn potente imunoestimulador e imunomodulador e tem efeitos importantes no sistema imune e é capaz de produzir anticorpos na pele. OBJETIVO: Mostrar a eficácia do Propionium bacterium parvum diluído em solução salina no tratamento de verrugas cutâneas. MÊTODOS: Estudo duplo

  5. Tracing the run-flip motion of an individual bacterium

    Science.gov (United States)

    Liu, Bin; Morse, Michael; Tang, Jay; Powers, Thomas; Breuer, Kenneth S.

    2012-11-01

    We have developed a digital 3D tracking microscope in which the microscope stage follows the motion of an individual motile microorganism so that the target remains focused at the center of the view-field. The tracking mechanism is achieved by a high-speed feedback control through real-time image analysis and the trace of the microorganism is recorded with submicron accuracy. We apply this tracking microscope to a study of the motion of an individual Caulobacter crescentus, a bacterium that moves up to 100 microns (or 50 body lengths) per second and reverses its direction of motion occasionally by switching the rotation direction of its single helical flagellum. By tracking the motion of a single cell over many seconds, we show how a flip event occurs with submicron resolution and how the speed of a single cell varies over time and with the rotational rate of the flagellum. We also present statistics for the run-reverse dynamics of an ensemble of cells.

  6. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    Science.gov (United States)

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels. PMID:26902345

  7. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium.

    Science.gov (United States)

    Zheng, Haiyan; Liu, Ying; Sun, Guangdong; Gao, Xiyan; Zhang, Qingling; Liu, Zhipei

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium, strain S1-1, was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system. Strain S1-1 was preliminarily identified as Psychrobacter sp. based on the analysis of its 16S rRNA gene sequence, which showed 100% sequence similarity to that of Psychrobacter sp. TSBY-70. Strain S1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite, and the total nitrogen removal rates could reach to 46.48% and 31.89%, respectively. The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low level accumulation of nitrite, suggesting that the aerobic denitrification process of strain S1-1 occurred mainly in this phase. The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1. Finally, factors affecting the growth of strain S1-1 and its aerobic denitrifying ability were also investigated. Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source, C/N ratio15, salinity 10 g/L NaCl, incubation temperature 20 degrees C and initial pH 6.5. PMID:22432315

  8. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium

    Institute of Scientific and Technical Information of China (English)

    Haiyan Zheng; Ying Liu; Guangdong Sun; Xiyan Gao; Qingling Zhang; Zhipei Liu

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium,strain S1-1,was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system.Strain S1-1 was preliminarily identified as Psychrobacter sp.based on the analysis of its 16S rRNA gene sequence,which showed 100% sequence similarity to that of Psychrobacter sp.TSBY-70.Strain S 1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite,and the total nitrogen removal rates could reach to 46.48% and 31.89%,respectively.The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low leve 1 accumulation of nitrite,suggesting that the aerobic denitrification process of strain S l-1 occurred mainly in this phase.The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1.Finally,factors affecting the growth of strain Sl-1 and its aerobic denitrifying ability were also investigated.Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source,C/N ratio15,salinity 10 g/L NaCl,incubation temperature 20℃ and initial pH 6.5.

  9. Presence of an unusual methanogenic bacterium in coal gasification waste

    Energy Technology Data Exchange (ETDEWEB)

    Tomei, F.A.; Rouse, D.; Maki, J.S.; Mitchell, R.

    1988-12-01

    Methanogenic bacteria growing on a pilot-scale, anaerobic filter processing coal gasification waste were enriched in a mineral salts medium containing hydrogen and acetate as potential energy sources. Transfer of the enrichments to methanol medium resulted in the initial growth of a strain of Methanosarcina barkeri, but eventually small cocci became dominant. The cocci growing on methanol produced methane and exhibited the typical fluorescence of methanogenic bacteria. They grew in the presence of the cell wall synthesis-inhibiting antibiotics D-cycloserine, fosfomycin, penicillin G, and vancomycin as well as in the presence of kanamycin, an inhibitor of protein synthesis in eubacteria. The optimal growth temperature was 37 degrees C, and the doubling time was 7.5 h. The strain lysed after reaching stationary phase. The bacterium grew poorly with hydrogen as the energy source and failed to grow on acetate. Morphologically, the coccus shared similarities with Methanosarcina sp. Cells were 1 ..mu..m wide, exhibited the typical thick cell wall and cross-wall formation, and formed tetrads. Packets and cysts were not formed. 62 refs., 4 figs.

  10. Electromicrobiology of Dissimilatory Sulfur Reducing Bacterium Desulfuromonas acetexigens

    KAUST Repository

    Bin Bandar, Khaled

    2014-12-01

    Bioelectrochmical systems (BES) are engineered electrochemical devices that harness hidden chemical energy of the wastewater in to the form of electricity or hydrogen. Unique microbial communities enrich in these systems for oxidation of organic matter as well as transfer of resulted electron to anode, known them as “electricigens” communities. Exploring novel electricigenesis microbial communities in the nature and understanding their electromicrobiology is one the important aspect for BES systems scale up. Herein, we report first time the electricigenesis property of an anaerobic, fresh water sediment, sulfur reducing bacterium Desulfuromona acetexigens. The electrochemical behavior of D. acetexigens biofilms grown on graphite-rod electrodes in batch-fed mode under an applied potential was investigated with traditional electroanalytical tools, and correlate the electron transfer from biofilms to electrode with a model electricigen Geobacter sulfurreducens electrochemical behavior. Research findings suggest that D. acetexigens has the ability to use electrode as electron acceptor in BES systems through establishing the direct contact with anode by expressing the membrane bound redox proteins, but not due to the secretion of soluble redox mediators. Preliminary results revealed that D. acetexigens express three distinct redox proteins in their membranes for turnover of the electrons from biofilm to electrode, and the 4 whole electricigenesis process observed to be unique in the D. acetexigens compared to that of well-studied model organism G. sulfurreducens.

  11. Bioconversion of methane to lactate by an obligate methanotrophic bacterium.

    Science.gov (United States)

    Henard, Calvin A; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G; Pienkos, Philip T; Guarnieri, Michael T

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to "green" chemicals and fuels. PMID:26902345

  12. Pandoraea sp. RB-44, A Novel Quorum Sensing Soil Bacterium

    Directory of Open Access Journals (Sweden)

    Robson Ee Han-Jen

    2013-10-01

    Full Text Available Proteobacteria are known to communicate via signaling molecules and this process is known as quorum sensing. The most commonly studied quorum sensing molecules are N-acylhomoserine lactones (AHLs that consists of a homoserine lactone moiety and an N-acyl side chain with various chain lengths and degrees of saturation at the C-3 position. We have isolated a bacterium, RB-44, from a site which was formally a landfill dumping ground. Using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF mass spectrometry analysis, this isolate was identified as a Pandoraea sp.which was then screened for AHL production using biosensors which indicated its quorum sensing properties. To identify the AHL profile of Pandoraea sp. RB-44, we used high resolution tandem mass spectrometry confirming that this isolate produced N-octanoylhomoserine lactone (C8-HSL. To the best of our knowledge, this is the first report that showed quorum sensing activity exhibited by Pandoraea sp. Our data add Pandoraea sp. to the growing number of bacteria that possess QS systems.

  13. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences

    NARCIS (Netherlands)

    Vanfossen, A.L.; Verhaart, M.R.A.; Kengen, S.W.M.; Kelly, R.M.

    2009-01-01

    Co-utilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H2-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on indiv

  14. SIMULTANEOUS PHOTOTROPHIC AND CHEMOTROPIC GROWTH IN THE PURPLE SULFUR BACTERIUM THIOCAPSA-ROSEOPERSICINA M1

    NARCIS (Netherlands)

    SCHAUB, BEM; VANGEMERDEN, H

    1994-01-01

    The anoxygenic phototrophic purple sulfur bacterium Thiocapsa roseopersicina was grown in illuminated continuous cultures with thiosulfate as growth limiting substrate. Aeration resulted in completely colorless cells growing chemotrophically, whereafter the conditions were changed to a 23 h oxic/1 h

  15. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Mathrani, Indra M.; Ahring, Birgitte Kiær

    1995-01-01

    and ethanol occurred as minor fermentation products. Only a restricted number of carbon sources (cellulose, xylan, starch, pectin, cellobiose, xylose, maltose and lactose) were used as substrates. During growth on Avicel, the bacterium produced free cellulases with carboxymethylcellulase and avicelase...

  16. Turnover of dimethylsulfoniopropionate (DMSP) by the purple sulfur bacterium Thiocapsa roseopersicina M11 : Ecological implications

    NARCIS (Netherlands)

    Jonkers, HM; van Gemerden, H

    1998-01-01

    The use of dimethylsulfoniopropionate (DMSP) by the anoxygenic phototrophic purple sulfur bacterium Thiocapsa roseopersicina M11 under different environmental conditions was studied. Under anoxic/light conditions DMSP cleavage occurred both at low and intermediate salinities but at different growth

  17. Genome Sequence of the Haloalkaliphilic Methanotrophic Bacterium Methylomicrobium alcaliphilum 20Z

    OpenAIRE

    Vuilleumier, Stéphane; Khmelenina, Valentina N; Bringel, Françoise; Reshetnikov, Alexandr S.; Lajus, Aurélie; Mangenot, Sophie; Rouy, Zoé; Op Den Camp, Huub J M; Jetten, Mike S. M.; DiSpirito, Alan A.; Dunfield, Peter; Klotz, Martin G.; Semrau, Jeremy D.; Stein, Lisa Y.; Barbe, Valérie

    2012-01-01

    Methylomicrobium strains are widespread in saline environments. Here, we report the complete genome sequence of Methylomicrobium alcaliphilum 20Z, a haloalkaliphilic methanotrophic bacterium, which will provide the basis for detailed characterization of the core pathways of both single-carbon metabolism and responses to osmotic and high-pH stresses. Final assembly of the genome sequence revealed that this bacterium contains a 128-kb plasmid, making M. alcaliphilum 20Z the first methanotrophic...

  18. Effect of alginic acid decomposing bacterium on the growth of Laminaria japonica (Phaeophyceae)

    Institute of Scientific and Technical Information of China (English)

    WANG You; TANG Xue-xi; YANG Zhen; YU Zhi-ming

    2006-01-01

    We collected the diseased blades of Laminaria japonica from Yantai Sea Farm from October to December 2002, and the alginic acid decomposing bacterium on the diseased blade was isolated and purified, and was identified as Alteromonas espejiana. This bacterium was applied as the causative pathogen to infect the blades of L. japonica under laboratory conditions. The aim of the present study was to identify the effects of the bacterium on the growth of L. japonica, and to find the possibly effective mechanism. Results showed that: (1)The blades of L.japonica exhibited symptoms of lesion,bleaching and deterioration when infected by the bacterium,and their growth and photosynthesis were dramatically suppressed. At the same time, the reactive oxygen species (ROS) generation enhanced obviously, and the relative membrane permeability increased significantly. The contents of malonaldehyde (MDA) and free fatty acid in the microsomol membrane greatly elevated, but the phospholipid content decreased. Result suggested an obvious peroxidation and deesterrification in the blades of L. japonica when infected by the bacterium. (2) The simultaneous assay on the antioxidant enzyme activities demonstrated that superoxide dismutase (SOD) and catalase (CAT) increased greatly when infected by the bacterium, but glutathione peroxidase (Gpx) and ascorbate peroxidase (APX) did not exhibit active responses to the bacterium throughout the experiment. (3) The histomorphological observations gave a distinctive evidence of the severity of the lesions as well as the relative abundance in the bacterial population on the blades after infection. The bacterium firstly invaded into the endodermis of L. japonica and gathered around there, and then resulted in the membrane damage, cells corruption and ultimately, the death of L.japonica.

  19. Draft Genome Sequence of a Dyella-Like Bacterium from the Planthopper Hyalesthes obsoletus.

    Science.gov (United States)

    Lahav, Tamar; Zchori-Fein, Einat; Naor, Vered; Freilich, Shiri; Iasur-Kruh, Lilach

    2016-01-01

    We report here the draft genome sequence of a Dyella-like bacterium (DLB) isolated from Hyalesthes obsoletus, the insect vector of the uncultivable mollicute bacterium "Candidatus Phytoplasma." This isolate inhibits Spiroplasma melliferum, a cultivable mollicute. The draft genome of DLB consists of 4,196,214 bp, with a 68.6% G+C content, and 3,757 genes were predicted. PMID:27445378

  20. Draft Genome Sequence of DLB, a Dyella-Like Bacterium from the Planthopper Hyalesthes obsoletus

    Science.gov (United States)

    Lahav, Tamar; Zchori-Fein, Einat; Naor, Vered; Freilich, Shiri

    2016-01-01

    We report here the draft genome sequence of a Dyella-like bacterium (DLB) isolated from Hyalesthes obsoletus, the insect vector of the uncultivable mollicute bacterium “Candidatus Phytoplasma.” This isolate inhibits Spiroplasma melliferum, a cultivable mollicute. The draft genome of DLB consists of 4,196,214 bp, with a 68.6% G+C content, and 3,757 genes were predicted. PMID:27445378

  1. Biosynthesis Of Gold Nanoparticles By Marine Purple Non Sulphur Bacterium, Rhodopseudomonas Sp.

    OpenAIRE

    Abirami. G; Asmathunisha. N; Kathiresan. K

    2013-01-01

    This paper describes for the first time that an anaerobic marine bacterium is capable of producing gold nanoparticles. A marine purple non-sulphur bacterium was isolated from mangrove sediment and identified as Rhodopseudomonas sp. . The bacterial culture was tested for the synthesis of gold nanoparticles by using aqueous HAuCl4 solution as substrate in darkness. The gold nanoparticles synthesized were found to be of cubical structure in the size range of 10–20 nm.

  2. Structural analysis of the DNA-binding domain of the Erwinia amylovora RcsB protein and its interaction with the RcsAB box.

    Science.gov (United States)

    Pristovsek, Primoz; Sengupta, Kaushik; Löhr, Frank; Schäfer, Birgit; von Trebra, Markus Wehland; Rüterjans, Heinz; Bernhard, Frank

    2003-05-16

    The transcriptional regulator RcsB interacts with other coactivators to control the expression of biosynthetic operons in enterobacteria. While in a heterodimer complex with the regulator RcsA the RcsAB box consensus is recognized, DNA binding sites for RcsB without RcsA have also been identified. The conformation of RcsB might therefore be modulated upon interaction with various coactivators, resulting in the recognition of different DNA targets. We report the solution structure of the C-terminal DNA-binding domain of the RcsB protein from Erwinia amylovora spanning amino acid residues 129-215 solved by heteronuclear magnetic resonance (NMR) spectroscopy. The C-terminal domain is composed of four alpha-helices where two central helices form a helix-turn-helix motif similar to the structures of the regulatory proteins GerE, NarL, and TraR. Amino acid residues involved in the RcsA independent DNA binding of RcsB were identified by titration studies with a RcsAB box consensus fragment. Data obtained from NMR spectroscopy together with surface plasmon resonance measurements demonstrate that the RcsAB box is specifically recognized by the RcsAB heterodimer as well as by RcsB alone. However, the binding constant of RcsB alone at target promoters from Escherichia coli, E. amylovora, and Pantoea stewartii was approximately 1 order of magnitude higher compared with that of the RcsAB heterodimer. We present evidence that the obvious role of RcsA is not to alter the DNA binding specificity of RcsB but to stabilize RcsB-DNA complexes. PMID:12740396

  3. Control of fire blight (Erwinia amylovora on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes

    Directory of Open Access Journals (Sweden)

    Srđan G. Aćimović

    2015-02-01

    Full Text Available Management of fire blight is complicated by limitations on use of antibiotics in agriculture, antibiotic resistance development, and limited efficacy of alternative control agents. Even though successful in control, preventive antibiotic sprays also affect non-target bacteria, aiding the selection for resistance which could ultimately be transferred to the pathogen Erwinia amylovora. Trunk injection is a target-precise pesticide delivery method that utilizes tree xylem to distribute injected compounds. Trunk injection could decrease antibiotic usage in the open environment and increase the effectiveness of compounds in fire blight control. In field experiments, after 1-2 apple tree injections of either streptomycin, potassium phosphites (PH or acibenzolar-S-methyl (ASM, significant reduction of blossom and shoot blight symptoms was observed compared to water- or non-injected control trees. Overall disease suppression with streptomycin was lower than typically observed following spray applications to flowers. Trunk injection of oxytetracycline resulted in excellent control of shoot blight severity, suggesting that injection is a superior delivery method for this antibiotic. Injection of both ASM and PH resulted in the significant induction of PR-1, PR-2 and PR-8 protein genes in apple leaves indicating induction of systemic acquired resistance (SAR under field conditions. The time separating SAR induction and fire blight symptom suppression indicated that various defensive compounds within the SAR response were synthesized and accumulated in the canopy. ASM and PH suppressed fire blight even after cessation of induced gene expression. With the development of injectable formulations and optimization of doses and injection schedules, the injection of protective compounds could serve as an effective option for fire blight control.

  4. Biochemical characterization and immobilization of Erwinia carotovoral-asparaginase in a microplate for high-throughput biosensing of l-asparagine.

    Science.gov (United States)

    Labrou, Nikolaos E; Muharram, Magdy Mohamed

    2016-10-01

    l-Asparaginases (l-ASNase, E.C. 3.5.1.1) catalyze the conversion of l-asparagine to l-aspartic acid and ammonia. In the present work, a new form of l-ASNase from a strain of Erwinia carotovora (EcaL-ASNase) was cloned, expressed in Escherichia coli as a soluble protein and characterized. The enzyme was purified to homogeneity by a single-step procedure comprising ion-exchange chromatography. The properties of the recombinant enzyme were investigated employing kinetic analysis and molecular modelling and the kinetic parameters (Km, kcat) were determined for a number of substrates. The enzyme was used to assemble a microplate-based biosensor that was used for the development of a simple assay for the determination of l-asparagine in biological samples. In this sensor, the enzyme was immobilized by crosslinking with glutaraldehyde and deposited into the well of a microplate in 96-well format. The sensing scheme was based on the colorimetric measurement of ammonia formation using the Nessler's reagent. This format is ideal for micro-volume applications and allows the use of the proposed biosensor in high-throughput applications for monitoring l-asparagine levels in serum and foods samples. Calibration curve was obtained for l-asparagine, with useful concentration range 10-200μΜ. The biosensor had a detection limit of 10μM for l-asparagine. The method's reproducibility was in the order of ±3-6% and l-asparagine mean recoveries were 101.5%.

  5. Evaluation of two surface sampling methods for detection of Erwinia herbicola on a variety of materials by culture and quantitative PCR.

    Science.gov (United States)

    Buttner, Mark P; Cruz, Patricia; Stetzenbach, Linda D; Cronin, Tracy

    2007-06-01

    This research was designed to evaluate surface sampling protocols for use with culture and quantitative PCR (QPCR) amplification assay for detection of the gram-negative bacterial biothreat simulant Erwinia herbicola on a variety of surface materials. Surfaces selected for evaluation were wood laminate, glass and computer monitor screens, metal file cabinets, plastic arena seats, nylon seat cushions, finished concrete flooring, and vinyl tile flooring. Laboratory and test chamber studies were performed to evaluate two sampling methods, a sponge and a macrofoam swab, for detection of E. herbicola on surface materials. In laboratory trials, seven materials were inoculated with a known concentration of E. herbicola cells and samples were collected from the surfaces of the materials to determine sampling efficiencies. Culture analysis was ineffective for assessing E. herbicola collection efficiency because very few culturable cells were obtained from surface samples. QPCR demonstrated that E. herbicola DNA was present in high concentrations on all of the surface samples, and sampling efficiencies ranged from 0.7 to 52.2%, depending on the sampling method and the surface material. The swab was generally more efficient than the sponge for collection of E. herbicola from surfaces. Test chamber trials were also performed in which E. herbicola was aerosolized into the chamber and allowed to settle onto test materials. Surface sampling results supported those obtained in laboratory trials. The results of this study demonstrate the capabilities of QPCR to enhance the detection and enumeration of biocontaminants on surface materials and provide information on the comparability of sampling methods. PMID:17416685

  6. Characterization of free and alginate-polylysine-alginate microencapsulated Erwinia herbicola for the conversion of ammonia, pyruvate, and phenol into L-tyrosine

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd-George, I.; Chang, T.M.S. [McGill Univ., Montreal, Quebec (Canada)

    1995-12-20

    The whole cell tyrosine phenol-lyase activity of Erwinia herbicola was microencapsulated. The authors studied the use of this for the conversion of ammonia and pyruvate along with phenol or catechol, respectively, into L-tyrosine or dihydroxyphenyl-L-alanine (L-dopa). The reactions are relevant to the development of new methods for the production of L-tyrosine and L-dopa. The growth of E. herbicola at temperatures from 22 C to 32 C is stable, since at these temperatures the cells grow up to the stationary phase and remain there for at least 10 h. At 37 C the cells grow rapidly, but they also enter the death phase rapidly. There is only limited growth of E. herbicola at 42 C. Whole cells of E. herbicola were encapsulated within alginate-polylysine-alginate microcapsules (916 {+-} 100 {micro}m, mean {+-} std. dev.). The TPL activity of the cells catalyzed the production of L-tyrosine or dihydroxyphenol-L-alanine (L-dopa) from ammonia, pyruvate, and phenol or catechol, respectively. In the production of tyrosine, an integrated equation based on an ordered ter-uni rapid equilibrium mechanism can be used to find the kinetic parameters of TPL. In an adequately stirred system, the apparent values of the kinetic parameters of whole cell TPL are equal whether the cells are free or encapsulated. The apparent K{sub M} of tyrosine varies with the amount of whole cells in the system, ranging from 0.2 to 0.3 mM. The apparent K{sub M} for phenol is 0.5 mM. The apparent K{sub M} values for pyruvate and ammonia are an order of magnitude greater for whole cells than they are for the cell free enzyme.

  7. Mechanistic deductions from kinetic isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: Erwinia herbicola and Citrobacter freundii tyrosine phenol-lyase

    International Nuclear Information System (INIS)

    The pH dependence of the kinetic parameters and primary deuterium isotope effects have been determined for tyrosine phenol-lyase from both Erwinia herbicola and Citrobacter freundii. The primary deuterium isotope effects indicate that proton abstraction from the 2-position of the substrate is partially rate-limiting for both enzymes. The C. freundii enzyme primary deuterium isotope effects [DV = 3.5 and D(V/Ktyr) = 2.5] are pH independent, indicating that tyrosine is not sticky (i.e., does not dissociate slower than it reacts to give products). Since Vmax for both tyrosine and the alternate substrate S-methyl-L-cysteine is also pH independent, substrate binds only to the correctly protonated form of the enzyme. For the E. herbicola enzyme, both Vmax and V/K for tyrosine or S-methyl-L-cysteine are pH dependent, as well as both DV and D(V/Ktyr). Thus, while both the protonated and unprotonated enzyme can bind substrate, and may be interconverted directly, only the unprotonated Michaelis complex is catalytically competent. At pH 9.5, DV = 2.5 and D(V/Ktyr) = 1.5. However, at pH 6.4 the isotope effect on both parameters is equal to 4.1. From these data, the forward commitment factor (cf = 5.2) and catalytic ratio (cvf = 1.1) for tyrosine and S-methyl-L-cysteine (cf = 2.2, cvf = 24) are calculated. Also, the Michaelis complex partition ratio (cf/cvf) for substrate and products is calculated to be 4.7 for tyrosine and 0.1 for S-methyl-L-cysteine

  8. Intramolecular signal transmission in enterobacterial aspartate transcarbamylases II. Engineering co-operativity and allosteric regulation in the aspartate transcarbamylase of Erwinia herbicola.

    Science.gov (United States)

    Cunin, R; Rani, C S; Van Vliet, F; Wild, J R; Wales, M

    1999-12-17

    The aspartate transcarbamylase (ATCase) from Erwinia herbicola differs from the other investigated enterobacterial ATCases by its absence of homotropic co-operativity toward the substrate aspartate and its lack of response to ATP which is an allosteric effector (activator) of this family of enzymes. Nevertheless, the E. herbicola ATCase has the same quaternary structure, two trimers of catalytic chains with three dimers of regulatory chains ((c3)2(r2)3), as other enterobacterial ATCases and shows extensive primary structure conservation. In (c3)2(r2)3 ATCases, the association of the catalytic subunits c3 with the regulatory subunits r2 is responsible for the establishment of positive co-operativity between catalytic sites for the binding of aspartate and it dictates the pattern of allosteric response toward nucleotide effectors. Alignment of the primary sequence of the regulatory polypeptides from the E. herbicola and from the paradigmatic Escherichia coli ATCases reveals major blocks of divergence, corresponding to discrete structural elements in the E. coli enzyme. Chimeric ATCases were constructed by exchanging these blocks of divergent sequence between these two ATCases. It was found that the amino acid composition of the outermost beta-strand of a five-stranded beta-sheet in the effector-binding domain of the regulatory polypeptide is responsible for the lack of co-operativity and response to ATP of the E. herbicola ATCase. A novel structural element involved in allosteric signal recognition and transmission in this family of ATCases was thus identified. PMID:10600394

  9. Cloning and random mutagenesis of the Erwinia herbicola tyrR gene for high-level expression of tyrosine phenol-lyase.

    Science.gov (United States)

    Katayama, T; Suzuki, H; Koyanagi, T; Kumagai, H

    2000-11-01

    Tyrosine phenol-lyase (Tpl), which can synthesize 3, 4-dihydroxyphenylalanine from pyruvate, ammonia, and catechol, is a tyrosine-inducible enzyme. Previous studies demonstrated that the tpl promoter of Erwinia herbicola is activated by the TyrR protein of Escherichia coli. In an attempt to create a high-Tpl-expressing strain, we cloned the tyrR gene of E. herbicola and then randomly mutagenized it. Mutant TyrR proteins with enhanced ability to activate tpl were screened for by use of the lac reporter system in E. coli. The most increased transcription of tpl was observed for the strain with the mutant tyrR allele involving amino acid substitutions of alanine, cysteine, and glycine for valine-67, tyrosine-72, and glutamate-201, respectively. A tyrR-deficient derivative of E. herbicola was constructed and transformed with a plasmid carrying the mutant tyrR allele (V67A Y72C E201G substitutions). The resultant strain expressed Tpl without the addition of tyrosine to the medium and produced as much of it as was produced by the wild-type strain grown under tyrosine-induced conditions. The regulatory properties of the mutant TyrR(V67A), TyrR(Y72C), TyrR(E201G), and TyrR(V67A Y72C E201G) proteins were examined in vivo. Interestingly, as opposed to the wild-type TyrR protein, the mutant TyrR(V67A) protein had a repressive effect on the tyrP promoter in the presence of phenylalanine as the coeffector. PMID:11055921

  10. Mechanistic deductions from kinetic isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: Erwinia herbicola and Citrobacter freundii tyrosine phenol-lyase

    Energy Technology Data Exchange (ETDEWEB)

    Kiick, D.M.; Phillips, R.S.

    1988-09-20

    The pH dependence of the kinetic parameters and primary deuterium isotope effects have been determined for tyrosine phenol-lyase from both Erwinia herbicola and Citrobacter freundii. The primary deuterium isotope effects indicate that proton abstraction from the 2-position of the substrate is partially rate-limiting for both enzymes. The C. freundii enzyme primary deuterium isotope effects (DV = 3.5 and D(V/Ktyr) = 2.5) are pH independent, indicating that tyrosine is not sticky (i.e., does not dissociate slower than it reacts to give products). Since Vmax for both tyrosine and the alternate substrate S-methyl-L-cysteine is also pH independent, substrate binds only to the correctly protonated form of the enzyme. For the E. herbicola enzyme, both Vmax and V/K for tyrosine or S-methyl-L-cysteine are pH dependent, as well as both DV and D(V/Ktyr). Thus, while both the protonated and unprotonated enzyme can bind substrate, and may be interconverted directly, only the unprotonated Michaelis complex is catalytically competent. At pH 9.5, DV = 2.5 and D(V/Ktyr) = 1.5. However, at pH 6.4 the isotope effect on both parameters is equal to 4.1. From these data, the forward commitment factor (cf = 5.2) and catalytic ratio (cvf = 1.1) for tyrosine and S-methyl-L-cysteine (cf = 2.2, cvf = 24) are calculated. Also, the Michaelis complex partition ratio (cf/cvf) for substrate and products is calculated to be 4.7 for tyrosine and 0.1 for S-methyl-L-cysteine.

  11. Control of postharvest soft rot caused by Erwinia carotovora of vegetables by a strain of Bacillus amyloliquefaciens and its potential modes of action.

    Science.gov (United States)

    Zhao, Yancun; Li, Pengxia; Huang, Kaihong; Wang, Yuning; Hu, Huali; Sun, Ya

    2013-03-01

    Erwinia carotovora subsp. carotovora (Ecc), the causal agent of bacterial soft rot, is one of the destructive pathogens of postharvest vegetables. In this study, a bacterial isolate (BGP20) from the vegetable farm soil showed strong antagonistic activity against Ecc in vitro, and its twofold cell-free culture filtrate showed excellent biocontrol effect in controlling the postharvest bacterial soft rot of potatoes at 25 °C. The anti-Ecc metabolites produced by the isolate BGP20 had a high resistance to high temperature, UV-light and protease K. Based on the colonial morphology, cellular morphology, sporulation, and partial nucleotide sequences of 16S rRNA and gyrB gene, the isolate BGP20 was identified as Bacillus amyloliquefaciens subsp. plantarum. Further in vivo assays showed that the BGP20 cell culture was more effective in controlling the postharvest bacterial soft rot of green peppers and Chinese cabbages than its twofold cell-free culture filtrate. In contrast, the biocontrol effect and safety of the BGP20 cell culture were very poor on potatoes. In the wounds of potatoes treated with both the antagonist BGP20 and the pathogen Ecc, the viable count of Ecc was 31,746 times that of BGP20 at 48 h of incubation at 25 °C. But in the wounds of green peppers, the viable count of BGP20 increased 182.3 times within 48 h, and that of Ecc increased only 51.3 %. In addition, the treatment with both BGP20 and Ecc induced higher activity of phenylalanine ammonia-lyase (PAL) than others in potatoes. But the same treatment did not induce an increase of PAL activity in green peppers. In conclusion, the present study demonstrated that the isolate BGP20 is a promising candidate in biological control of postharvest bacterial soft rot of vegetables, but its main mode of action is different among various vegetables.

  12. Erwinia carotovora ssp. carotovora Infection Induced "Defense Lignin" Accumulation and Lignin Biosynthetic Gene Expression in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Erwinia carotovora subsp. carotovora (Ecc) infects and causes soft rot disease in hundreds of crop species including vegetables, flowers and fruits. Lignin biosynthesis has been implicated in defensive reactions to injury and pathogen Infection in plants. In this work, variations of lignin content and gene expression in the molecular interaction between Chinese cabbage and Ecc were investigated. H2O2 accumulation and peroxidase activity were detected by 3, 3'-Dimethoxybenzidine staining at mocked and Ecc-inoculated sites of Chinese cabbage leafstalks. Klason lignin content in inoculated plants increased by about 7.84%, 40.37%, and 43.13% more than that of the mocked site at 12, 24 and 72 h after inoculation, respectively. Gas chromatography detected more p-coumaryl (H) and less coniferyl (G) and sinapyl (S)monolignins in leafstalks of Chinese cabbage. All three monomers increased in Ecc-infected leafstalks, and the Ecc-induced "defense lignin" were composed of more G and H monolignins, and less S monolignin. After searching the expressed sequence tags (EST) data of Chinese cabbage, 12 genes putatively encoding enzymes involved in lignin biosynthesis were selected to study their expression. All of these genes could be Induced by mock inoculation and Ecc infection, while the gene expression lasted for several more hours in the infected samples than in mocked and untreated plants. Our results indicated that "defense lignin" was different from the developmental lignin in composition; G and S monolignins were significantly induced in plants in response to the soft rot Ecc; thus, lignin biosynthesis was differentially regulated and played a role in plant response to the soft rot Ecc.

  13. Conserved aspartate and lysine residues of RcsB are required for amylovoran biosynthesis, virulence, and DNA binding in Erwinia amylovora.

    Science.gov (United States)

    Ancona, Veronica; Chatnaparat, Tiyakhon; Zhao, Youfu

    2015-08-01

    In Erwinia amylovora, the Rcs phosphorelay system is essential for amylovoran production and virulence. To further understand the role of conserved aspartate residue (D56) in the phosphor receiver (PR) domain and lysine (K180) residue in the function domain of RcsB, amino acid substitutions of RcsB mutant alleles were generated by site-directed mutagenesis and complementation of various rcs mutants were performed. A D56E substitution of RcsB, which mimics the phosphorylation state of RcsB, complemented the rcsB mutant, resulting in increased amylovoran production and gene expression, reduced swarming motility, and restored pathogenicity. In contrast, D56N and K180A or K180Q substitutions of RcsB did not complement the rcsB mutant. Electrophoresis mobility shift assays showed that D56E, but not D56N, K180Q and K180A substitutions of RcsB bound to promoters of amsG and flhD, indicating that both D56 and K180 are required for DNA binding. Interestingly, the RcsBD56E allele could also complement rcsAB, rcsBC and rcsABCD mutants with restored virulence and increased amylovoran production, indicating that RcsB phosphorylation is essential for virulence of E. amylovora. In addition, mutations of T904 and A905, but not phosphorylation mimic mutation of D876 in the PR domain of RcsC, constitutively activate the Rcs system, suggesting that phosphor transfer is required for activating the Rcs system and indicating both A905 and T904 are required for the phosphatase activity of RcsC. Our results demonstrated that RcsB phosphorylation and dephosphorylation, phosphor transfer from RcsC are essential for the function of the Rcs system, and also suggested that constitutive activation of the Rcs system could reduce the fitness of E. amylovora.

  14. 化学抑制剂Woodward′s Reagent K对来源于Erwinia rhapontici NX 5蔗糖异构酶的抑制动力学%Inhibition kinetics of sucrose isomerase from Erwinia rhapontici NX-5 by Woodward′s Reagent K

    Institute of Scientific and Technical Information of China (English)

    王彦媛; 李莎; 姚忠; 徐虹

    2014-01-01

    从重组大肠杆菌E�coli BL21( pET22b palⅠ)中纯化得到来源于Erwinia rhapontici NX 5的蔗糖异构酶(sucrose isomerase,SIase,EC 5�4�99�11),以纯酶为对象考察其酶活力抑制动力学。结果表明:SIase 纯比酶活1512�77 U/mg,动力学常数 Km=260 mmol/L,Vmax=39�41μmol/(L·s)。以化学抑制剂 Woodward′s Reagent K (WRK)对重组蔗糖异构酶进行抑制反应,反应体系中随着WRK浓度的升高,SIase与底物蔗糖的亲和力常数Km增大,最大反应速度Vmax在一定范围内保持稳定。通过对SIase的抑制动力学分析可得到,WRK对SIase的抑制类型为可逆的竞争性抑制,这可能与WRK与蔗糖的结构类似,与可竞争性的结合SIase的活性中心有关。%Sucrose isomerase ( SIase,EC5�4�99�11) from Erwinia rhapontici NX⁃5 was purified from the extract of recombinant E�coli BL21 ( pET22b⁃palⅠ) culture,and the inhibition kinetics of the pure SIase was studied with chemical inhibitor Woodward′s Reagent K( WRK)�Results show that SIase had the high specific activity of 1 512�77 U/mg,as well as the Michaelis⁃Menten constants of Km=260 mmol/L and Vmax=39�41 μmol/( L·s)�Km increased as the concentration of inhibitor increased,but Vmax kept stable within limits�The inhibition of SIase by WRK was reversible and competitive, probably caused by the similar structure of WRK and sucrose.

  15. Carbonate biomineralization induced by soil bacterium Bacillus megaterium

    Science.gov (United States)

    Lian, Bin; Hu, Qiaona; Chen, Jun; Ji, Junfeng; Teng, H. Henry

    2006-11-01

    Biogenic carbonates spawned from microbial activities are common occurrences in soils. Here, we investigate the carbonate biomineralization mediated by the bacterium Bacillus megaterium, a dominant strain separated from a loess profile in China. Upon completing bacterial cultivation, the ensuring products are centrifuged, and the resultant supernatant and the concentrated bacterial sludge as well as the un-separated culture are added separately into a Ca-CO 3 containing solution for crystallization experiments. Results of XRD and SEM analysis indicate that calcite is the dominant mineral phase formed when the bacteria are present. When the supernatant alone is used, however, a significant portion of vaterite is also precipitated. Experimental results further reveal that the bacteria have a strong tendency to colonize the center area of the calcite {1 0 1¯ 4} faces. Observed crystal morphology suggests that the bacterial colony may promote the growth normal to each individual {1 0 1¯ 4} face of calcite when the cell concentration is high, but may retard it or even cause dissolution of the immediate substrate surfaces when the concentration is low. SEM images taken at earlier stages of the crystallization experiments demonstrate the nucleation of calcite on the bacterial cell walls but do not show obvious morphological changes on the nanometer- to submicron-sized nuclei. δ 13C measurements unveil that the crystals grown in the presence of bacteria are further enriched in the heavy carbon isotope, implying that the bacterial metabolism may not be the carbon sources for the mineralization. Based upon these findings, we propose a mechanism for the B. megaterium mediated calcite mineralization and conclude that the whole process involves epi- and inter-cellular growth in the local microenvironments whose conditions may be controlled by cell sequestration and proton pumping during bacterial respiration.

  16. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.

    Science.gov (United States)

    Braakman, Rogier; Smith, Eric

    2014-01-01

    Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA) cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere. PMID:24516572

  17. Interaction of Cadmium With the Aerobic Bacterium Pseudomonas Mendocina

    Science.gov (United States)

    Schramm, P. J.; Haack, E. A.; Maurice, P. A.

    2006-05-01

    The fate of toxic metals in the environment can be heavily influenced by interaction with bacteria in the vadose zone. This research focuses on the interactions of cadmium with the strict aerobe Pseudomonas mendocina. P. mendocina is a gram-negative bacterium that has shown potential in the bioremediation of recalcitrant organic compounds. Cadmium is a common environmental contaminant of wide-spread ecological consequence. In batch experiments P. mendocina shows typical bacterial growth curves, with an initial lag phase followed by an exponential phase and a stationary to death phase; concomitant with growth was an increase in pH from initial values of 7 to final values at 96 hours of 8.8. Cd both delays the onset of the exponential phase and decreases the maximum population size, as quantified by optical density and microscopic cell counts (DAPI). The total amount of Cd removed from solution increases over time, as does the amount of Cd removed from solution normalized per bacterial cell. Images obtained with transmission electron microscopy (TEM) showed the production of a cadmium, phosphorus, and iron containing precipitate that was similar in form and composition to precipitates formed abiotically at elevated pH. However, by late stationary phase, the precipitate had been re-dissolved, perhaps by biotic processes in order to obtain Fe. Stressed conditions are suggested by TEM images showing the formation of pili, or nanowires, when 20ppm Cd was present and a marked decrease in exopolysaccharide and biofilm material in comparison to control cells (no cadmium added).

  18. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.

    Directory of Open Access Journals (Sweden)

    Rogier Braakman

    Full Text Available Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere.

  19. 进境韩国兰花细菌性褐腐病菌的分离与鉴定%Isolation and Identification of Erwinia cypripedii from Imported Korea Cymbidium

    Institute of Scientific and Technical Information of China (English)

    厉艳; 王英超; 尼秀媚; 甘琴华; 封立平

    2012-01-01

    [目的]鉴定进境韩国兰花细菌性褐腐病菌.[方法]从韩国进境的大花蕙兰植株病变叶片中分离到细菌菌株,并通过形态鉴定、培养特征、生理生化及16S rDNA序列分析和致病性测定对其进行了鉴定.[结果]确认该病菌为兰花细菌性褐腐病菌(Erwinia cypripedii),这是我国首次从进境兰花中检出该病害.[结论]为我国兰花细菌性褐腐病菌的预防及控制奠定了基础.%The aim was to identify Erwinia cypripedii from imported Korea Cymbidium. [ Method] The pathogenic bacteria was i-solated from imported Korea Cymbidium leaves, and then it was identified by morphological identification, cultural characteristics, physiological and biochemical reactions, 16S rDNA gene sequences analysis and pathogenicity test. [Result] The isolated strain was identified as E. cypripedii, and it was the first interception in China. [ Conclusion ] The research result lays the foundation for the prevention and control of E. cypripedii in China.

  20. Effects of the two-component system comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the production of global regulatory rsmB RNA, extracellular enzymes, and harpinEcc.

    Science.gov (United States)

    Cui, Y; Chatterjee, A; Chatterjee, A K

    2001-04-01

    Posttranscriptional regulation mediated by the regulator of secondary metabolites (RSM) RsmA-rsmB pair is the most important factor in the expression of genes for extracellular enzymes and HarpinEcc in Erwinia carotovora subsp. carotovora. RsmA is a small RNA-binding protein, which acts by lowering the half-life of a mRNA species. rsmB specifies an untranslated regulatory RNA and neutralizes the RsmA effect. It has been speculated that GacA-GacS, members of a two-component system, may affect gene expression via RsmA. Because expA, a gacA homolog, and expS (or rpfA), a gacS homolog, have been identified in E. carotovora subsp. carotovora, we examined the effects of these gacA and gacS homologs on the expression of rsmA, rsmB, and an assortment of exoprotein genes. The gacA gene of E. carotovora subsp. carotovora strain 71 stimulated transcription of genes for several extracellular enzymes (pel-1, a pectate lyase gene; peh-1, a polygalacturonase gene; and celV, a cellulase gene), hrpNEcc (an E. carotovora subsp. carotovora gene specifying the elicitor of hypersensitive reaction), and rsmB in GacA+ and GacS+ E. carotovora subsp. carotovora strains. Similarly, the E. carotovora subsp. carotovora gacA gene stimulated csrB (rsmB) transcription in Escherichia coli. A GacS- mutant of E. carotovora subsp. carotovora strain AH2 and a GacA- mutant of E. carotovora subsp. carotovora strain Ecc71 compared with their parent strains produced very low levels of rsmB, pel-1, peh-1, celV, and hrpNEcc transcripts but produced similar levels of rsmA RNA and RsmA protein as well as transcripts of hyperproduction of extracellular enzymes (Hex) hexA, kdgR (repressor of genes for uronate and pectate catabolism), rsmC, and rpoS (gene for Sigma-S, an alternate Sigma factor). The levels of rsmB, pel-1, peh-1, celV, and hrpNEcc transcripts as well as production of pectate lyase, polygalacturonase, cellulase, protease, and HarpinEcc proteins were stimulated in GacS- and GacA- mutants by Gac

  1. Bioinformatics Analysis on a Novel T3SS Pathogenicity Islands of Erwinia amylovora Ea273 and its Homology in Erwinia%梨火疫病菌新的Ⅲ型泌出系统(T3SS)分析及在其他菌株中的分布

    Institute of Scientific and Technical Information of China (English)

    柴一秋; BOCSANCZY Ana Maria; BEER Steven; 王金生

    2010-01-01

    试验分析了梨火疫病菌(Erwinia amylovora)Ea273基因组上新的T3SS(Trpe Ⅲ Secretion System,T3SS)致病岛特征并验证它们在Erwinia属的21个菌株基因组上是否存在.生物信息学分析发现,Ea273基因组不同位点上存在两个新的T3SS致病岛,称为PAI-2和PAI-3,大小分别为32.889kb和21.792kb.经PCR和Southern blot证明Ea273、Ea246、Ea262、Ea528以及Ea644 5个菌株基因组存在PAI-2和PAI-3.PAI-3和PAI-2在基因结构和组成上相似,同源性超过70%,PAI-3包含PAI-2所有基因,两者和昆虫内生菌S. gtossinidius编码的T3SS的SSR-1致病岛非常相似.

  2. Regulation of Polyhydroxybutyrate Synthesis in the Soil Bacterium Bradyrhizobium diazoefficiens.

    Science.gov (United States)

    Quelas, J I; Mesa, S; Mongiardini, E J; Jendrossek, D; Lodeiro, A R

    2016-07-15

    Polyhydroxybutyrate (PHB) is a carbon and energy reserve polymer in various prokaryotic species. We determined that, when grown with mannitol as the sole carbon source, Bradyrhizobium diazoefficiens produces a homopolymer composed only of 3-hydroxybutyrate units (PHB). Conditions of oxygen limitation (such as microoxia, oxic stationary phase, and bacteroids inside legume nodules) were permissive for the synthesis of PHB, which was observed as cytoplasmic granules. To study the regulation of PHB synthesis, we generated mutations in the regulator gene phaR and the phasin genes phaP1 and phaP4 Under permissive conditions, mutation of phaR impaired PHB accumulation, and a phaP1 phaP4 double mutant produced more PHB than the wild type, which was accumulated in a single, large cytoplasmic granule. Moreover, PhaR negatively regulated the expression of phaP1 and phaP4 as well as the expression of phaA1 and phaA2 (encoding a 3-ketoacyl coenzyme A [CoA] thiolases), phaC1 and phaC2 (encoding PHB synthases), and fixK2 (encoding a cyclic AMP receptor protein [CRP]/fumarate and nitrate reductase regulator [FNR]-type transcription factor of genes for microoxic lifestyle). In addition to the depressed PHB cycling, phaR mutants accumulated more extracellular polysaccharides and promoted higher plant shoot dry weight and competitiveness for nodulation than the wild type, in contrast to the phaC1 mutant strain, which is defective in PHB synthesis. These results suggest that phaR not only regulates PHB granule formation by controlling the expression of phasins and biosynthetic enzymes but also acts as a global regulator of excess carbon allocation and symbiosis by controlling fixK2 IMPORTANCE: In this work, we investigated the regulation of polyhydroxybutyrate synthesis in the soybean-nodulating bacterium Bradyrhizobium diazoefficiens and its influence in bacterial free-living and symbiotic lifestyles. We uncovered a new interplay between the synthesis of this carbon reserve polymer

  3. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Burd, G.I.; Dixon, D.G.; Glick, B.R. [Univ. of Waterloo, Ontario (Canada). Dept. of Biology

    1998-10-01

    A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni{sup 2+}, Pb{sup 2+}, Zn{sup 2+}, and CrO{sub 4}{sup {minus}}, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride were partially protected against nickel toxicity. In addition, protection by the bacterium against nickel toxicity was evident in pot experiments with canola and tomato seeds. The presence of K. ascorbata SUD165 had no measurable influence on the amount of nickel accumulated per milligram (dry weight) of either roots or shoots of canola plants. Therefore, the bacterial plant growth-promoting effect in the presence of nickel was probably not attributable to the reduction of nickel uptake by seedlings. Rather, it may reflect the ability of the bacterium to lower the level of stress ethylene induced by the nickel.

  4. Isolation and Determination of Bacterial Soft Rot Pathogens from Potato Tubers in Yunnan%云南马铃薯细菌性软腐病原菌的分离鉴定

    Institute of Scientific and Technical Information of China (English)

    赵志坚; 王淑芬; 方琦; 李先平; 何云昆

    2000-01-01

    从云南省马铃薯产区取样,用厌气技术分离纯化了42个软腐欧文氏杆菌菌株.根据品种差异代表性地选出20个菌株进行主要细菌学性状鉴定,并在此基础上进行分类.结果表明:13个菌株(占65%)是Erwinia carotovora var. carotovora,3个菌株(15%)是Erwinia chrysanthemi,其它4个菌株根据其生理生化特性划归为中间型,介于Erwinia carotovora var. carotovora和Erwinia chrysanthemi之间.

  5. Studies on the pathogenic bacterium of ulcer disease in Epinephelus awoara

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Studies were conducted to determine the cause of the acute mortality of cage-cultured Epinephelus awoara in the Tong'an Bay of Xiamen, China during the summer of 2002. Predominant bacteria strain TS-628 was isolated from the diseased grouper. The virulence test confirmed that TS-628 was the pathogenic bacterium. Biochemical characteristics of the isolates were determined using the automatic bacterial identification system and standard tube tests. To further confirm the identification, a 1 121 bp 16S rRNA gene sequence of the isolate was amplified by PCR, which had been deposited into Genbank (accession number: AY747308). According to the biochemical characteristics and by comparing the 16S rRNA gene homology of the isolate, the pathogenic bacterium was identified as Vibrio harveyi. Drug sensitivity tests showed that this pathogenic bacterium was sensitive to 16 antibacterials, especially to chloramphenicol and actinospectacin, but completely resistant to antibacterials likes vancomycin, penicillin, lincomycin, and so on.

  6. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Mun Su [University of Florida, Gainesville; Moritz, Brelan E. [University of Florida, Gainesville; Xie, Gary [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Patel, Milind [University of Florida, Gainesville; Ou, Mark [University of Florida, Gainesville; Harbrucker, Roberta [University of Florida, Gainesville; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  7. Action of the Selenomorpholine Compounds on the Bacterium Growth by Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    李曦; 刘义; 等

    2002-01-01

    The action of β-(N-selenomorpholine) ethyl phenyl ketone hydrochloride and 4-(N-selenomorpholine)-2-butanone hydro-chloride on Escherichia coli and Staphylococcus aureus was studied by microcalorimetry,Differences in their capacities to affect the metabolism of this bacterium were observed.The kinetics shows that the selenomorpholine compounds had action on the metabolism process of Escherichia coli and Staphylococcus aureus.The rate constant (k) of the studied bacterium in the presence of the drugs are concentration-dependant.The growth rate constants decrease with an increase in the mass of the selenomorpholine compounds ,but their relationship is different.As deduced from the rate constant(k) of the studied bacterium(in log phase )and the half inhibitory concentration (IC50),the experimental results reveal that the studied selenomorpholine compounds all have good antibiotic activity and better antibacterial activity on Staphylcoccus aureus than on Escherichia coli.

  8. Action of the Selenomorpholine Compounds on the Bacterium Growth by Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    LI,Xi(李曦); LIU,Yi(刘义); WU,Jun(吴军); QU,Song-Sheng(屈松生)

    2002-01-01

    The action of β-(N-selenomorpholine) ethyl phenyl ketone hy drochloride and 4-(N-selenomorpholine)-2-butanone hydrochloride on Escherichia coli and Staphylococcus aureus was studied by microcalorimetry. Differences in their capacities to affect the metabolism of this bacterium were observed. The kinetics shows that the selenomorphline compounds had action on the metabolism process of Escherichia coli and Staphylococcus aureus. The rate constant (k) of the studied bacterium in the presence of the drugs are concentration-dependant. The growth rate constants decrease with an increase in the mass of the selenomorpholine compounds, but their relationship is different. As deduced from the rate constant (k) of the studied bacterium (in log phase) and the half inhibitory concentration (IC50), the experimental results reveal that the studied selenomorphline compounds all have good antibiotic activity and better antibacterial activity on Staphylococcus aureus than on Escherichia coli.

  9. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  10. Removal of corper(II) Ions from aqueous solution by a lactic acid bacterium

    OpenAIRE

    M. Yilmaz(Department of Physics, Gazi University, Ankara); T. Tay; M. Kivanc; H. Turk

    2010-01-01

    Enterococcus faecium, a lactic acid bacterium (LAB), was evaluated for its ability to remove copper(II) ions from water. The effects of the pH, contact time, initial concentration of copper(II) ions, and temperature on the biosorption rate and capacity were studied. The initial concentrations of copper(II) ions used to determine the maximum amount of biosorbed copper(II) ions onto lyophilised lactic acid bacterium varied from 25 mg L-1 to 500 mg L-1. Maximum biosorption capacities were attain...

  11. Sensitivity of the bacterium Bacillus Thuringiensis as an insect disease agent to gamma-rays

    International Nuclear Information System (INIS)

    The effect of gamma radiation on the viability of the entomopathogenic spore-forming bacterium, Bacillus thuringiensis, was tested. The different gamma doses varied much in their effect on such bacterium. All irradiated Bacillus suspensions with doses below 85 krad showed different degrees of inhibitory activity. However, bacterial suspensions irradiated at a dose of 90 krad. proved to promote spore germination. Changes in the physiological, and morphological characters of the irradiated Bacillus at these levels were detected. The new observed characters were induced at a particular dose level of 90 krad. These new characters are assumed to be due to genetic changes induced at this particular gamma dose

  12. Purification and Characterization of Haloalkaline, Organic Solvent Stable Xylanase from Newly Isolated Halophilic Bacterium-OKH

    OpenAIRE

    Sanghvi, Gaurav; Jivrajani, Mehul; Patel, Nirav; Jivrajani, Heta; Bhaskara, Govinal Badiger; Patel, Shivani

    2014-01-01

    A novel, alkali-tolerant halophilic bacterium-OKH with an ability to produce extracellular halophilic, alkali-tolerant, organic solvent stable, and moderately thermostable xylanase was isolated from salt salterns of Mithapur region, Gujarat, India. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. Maximum xylanase production was achieved at pH 9.0 and 37°C temperature in the medium containing 15% NaCl and 1% (w/v) corn cobs. Sugarcane bagasse and whe...

  13. Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium

    OpenAIRE

    Baena, S.; Fardeau, Marie-Laure; Ollivier, Bernard; Labat, Marc; Thomas, P; Garcia, Jean-Louis; Patel, B.K.C.

    1999-01-01

    A novel, asaccharolytic, amino-acid-degrading bacterium, designated strain GLU-3T, was isolated from an anaerobic lagoon of a dairy wastewater treatment plant. Strain GLU-3T stained Gram-negative and was an obligately anaerobic, non-spore-forming, slightly curved, rod-shaped bacterium (0.3 x 4.0-6.0 micrometers) which existed singly or in pairs. The DNA G+C content was 43 mol%. Optimum growth occurred at 35°C and pH 7.5 on arginine, histidine, threonine and glycine. Acetate was the end-produc...

  14. Virgibacillus salarius sp. nov., a novel halophilic bacterium isolated from a Saharan salt lake

    OpenAIRE

    Hua, Ngoc-Phuc; Amel, Hamza-Chaffai; Vreeland, Russell H.; Isoda, Hiroko; Naganuma, Takeshi

    2008-01-01

    A Gram-positive, endospore-forming, rod-shaped and moderately halophilic bacterium was isolated from a salt crust sample collected in Gharsa salt lake (Chott el Gharsa), Tunisia. The newly isolated bacterium designated SA-Vb1T was identified based on polyphasic taxonomy including genotypic, phenotypic and chemotaxonomic characterization. Strain SA-Vb1T was closely related to Virgibacillus marismortui and V. olivae with 16S rRNA gene sequence similarities of 99.7% and 99.4%, respectively. Howe...

  15. Marinobacter hydrocarbonoclasticus NY-4, a novel denitrifying, moderately halophilic marine bacterium

    OpenAIRE

    Li, Rongpeng; Zi, Xiaoli; Wang, Xinfeng; Zhang, Xia; Gao, Haofeng; Hu, Nan

    2013-01-01

    The isolation and characterization of a novel halophilic denitrifying marine bacterium is described. The halophilic bacterium, designated as NY-4, was isolated from soil in Yancheng City, China, and identified as Marinobacter hydrocarbonoclasticus by 16S rRNA gene sequence phylogenetic analysis. This organism can grow in NaCl concentrations ranging from 20 to 120 g/L. Optimum growth occurs at 80 g/L NaCl and pH 8.0. The organism can grow on a broad range of carbon sources and demonstrated eff...

  16. Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalism

    OpenAIRE

    Ueda, Kenji; YAMASHITA Atsushi; Ishikawa, Jun; Shimada, Masafumi; Watsuji, Tomo-o; Morimura, Kohji; Ikeda, Haruo; Hattori, Masahira; Beppu, Teruhiko

    2004-01-01

    Symbiobacterium thermophilum is an uncultivable bacterium isolated from compost that depends on microbial commensalism. The 16S ribosomal DNA-based phylogeny suggests that this bacterium belongs to an unknown taxon in the Gram-positive bacterial cluster. Here, we describe the 3.57 Mb genome sequence of S.thermophilum. The genome consists of 3338 protein-coding sequences, out of which 2082 have functional assignments. Despite the high G + C content (68.7%), the genome is closest to that of Fir...

  17. Initial in vitro evaluations of antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria

    OpenAIRE

    Aires, A.; Mota, V.R.; Saavedra, M.J.; Monteiro, A.A.; Simões, M; Rosa, E.A.S.; Bennett, R.N.

    2009-01-01

    Aims: The aim of the study was to evaluate the in vitro antibacterial effects of glucosinolate hydrolysis products (GHP) against plant pathogenic micro-organisms namely Agrobacterium tumefaciens, Erwinia chrysanthemi, Pseudomonas cichorii, Pseudomonas tomato, Xanthomonas campestris and Xanthomonas juglandis. Methods and Results: Using a disc diffusion assay, seven different doses of 10 GHP were tested against each bacteria. The results showed that the isothiocyanates were...

  18. Isolation from the Sorghum bicolor Mycorrhizosphere of a Bacterium Compatible with Arbuscular Mycorrhiza Development and Antagonistic towards Soilborne Fungal Pathogens

    Science.gov (United States)

    Budi, S. W.; van Tuinen, D.; Martinotti, G.; Gianinazzi, S.

    1999-01-01

    A gram-positive bacterium with antagonistic activity towards soilborne fungal pathogens has been isolated from the mycorrhizosphere of Sorghum bicolor inoculated with Glomus mosseae. It has been identified as Paenibacillus sp. strain B2 based on its analytical profile index and on 16S ribosomal DNA analysis. Besides having antagonistic activity, this bacterium stimulates mycorrhization. PMID:10543835

  19. Isolation from swine feces of a bacterium which decarboxylates p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol).

    OpenAIRE

    L. A. Ward; Johnson, K A; Robinson, I.M.; Yokoyama, M T

    1987-01-01

    An obligate anaerobe has been isolated from swine feces which decarboxylates p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol). The bacterium was an ovoid rod, gram positive, nonsporeforming, and nonmotile. Lactate and acetate were major end products of glucose fermentation. Based on its characteristics, the bacterium is tentatively assigned to the genus Lactobacillus.

  20. Toxicity Measurement of Several Bactericides on Erwinia carotovora susp. Atroseptica%几种杀细菌剂对胡萝卜软腐欧文氏菌的毒力测定

    Institute of Scientific and Technical Information of China (English)

    雷玉明; 张建朝; 邢会琴; 费永祥

    2010-01-01

    采用室内抑菌圈法测定了6种杀细菌剂对胡萝卜软腐欧文氏菌马铃薯黑胫病亚种(Erwinia carotovora susp. Atroseptica)的毒力,筛选出2种有明显抑菌作用的药剂72%农用硫酸链霉素可湿性粉剂和90%链霉素·土可溶性粉剂,抑菌效果显著,EC50分别为0.092 1 mg·mL-1和0.097 2 mg·mL-1.

  1. 欧文氏菌乳糖酶的分离纯化及其酶学性质研究%Purification and enzymatic characterization of a β-galactosidase from Erwinia sp.

    Institute of Scientific and Technical Information of China (English)

    夏雨; 成玉梁; 赵莹; 吕源玲; 孙震

    2011-01-01

    The β-galactosidase from Erwinia sp. E5 was isolated and purified. The specific enzymatic activity of the purified enzyme was 554. 92 U/mg protein. The properties of this enzyme were characterized. Results showed this enzyme had a maximum activity at 40 ℃ , and more than 40% of the enzymatic activity was kept at 20 ℃. The optimal pH to this enzyme is 7. 0, and 95% of the enzymatic activity was kept under pH 6. 5. Metal cations Mg2+ and Na+ could activate the enzymatic activity while the cation Ca2+ acted as a weak inhibitor. The lactose hydrolysis experiment showed that this enzyme kept a relatively fast reaction speed when the lactose concentration was below 10%.%对欧文氏菌Erwinia sp.E5株所产β-半乳糖苷酶进行分离纯化,所得纯酶的比酶活为554.92 U/mg ·蛋白质.对纯化得到的酶进行酶学性质研究,其最适反应温度为40℃,在20℃保持40%以上的酶活力;该酶最适反应pH为7.0,在pH6.5体系中保持95%的酶活力;Mg2+和Na+对该酶具有激活作用,而Ca2+为弱抑制剂.乳糖水解试验显示该酶在乳糖含量小于10%的反应体系中具有较高反应速率.

  2. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    Science.gov (United States)

    Yang, Yu; Yang, Jun; Jiang, Lei

    2016-08-19

    Yoshida et al (Report, 11 March 2016, p. 1196) reported that the bacterium Ideonella sakaiensis 201-F6 can degrade and assimilate poly(ethylene terephthalate) (PET). However, the authors exaggerated degradation efficiency using a low-crystallinity PET and presented no straightforward experiments to verify depolymerization and assimilation of PET. Thus, the authors' conclusions are rather misleading. PMID:27540159

  3. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response.

    Science.gov (United States)

    Van Puyvelde, Sandra; Cloots, Lore; Engelen, Kristof; Das, Frederik; Marchal, Kathleen; Vanderleyden, Jos; Spaepen, Stijn

    2011-05-01

    The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.

  4. Draft Genome Sequence of a Thermophilic Desulfurization Bacterium, Geobacillus thermoglucosidasius Strain W-2

    Science.gov (United States)

    Zhu, Lin; Li, Mingchang; Guo, Shuyi

    2016-01-01

    Geobacillus thermoglucosidasius strain W-2 is a thermophilic bacterium isolated from a deep-subsurface oil reservoir in northern China, which is capable of degrading organosulfur compounds. Here, we report the draft genome sequence of G. thermoglucosidasius strain W-2, which may help to elucidate the genetic basis of biodegradation of organosulfur pollutants under heated conditions. PMID:27491977

  5. Genome sequence of Citrobacter sp. strain A1, a dye-degrading bacterium.

    Science.gov (United States)

    Chan, Giek Far; Gan, Han Ming; Rashid, Noor Aini Abdul

    2012-10-01

    Citrobacter sp. strain A1, isolated from a sewage oxidation pond, is a facultative aerobe and mesophilic dye-degrading bacterium. This organism degrades azo dyes efficiently via azo reduction and desulfonation, followed by the successive biotransformation of dye intermediates under an aerobic environment. Here we report the draft genome sequence of Citrobacter sp. A1.

  6. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

    DEFF Research Database (Denmark)

    Clausen, Anders; Mikkelsen, Marie Just; Schrøder, I.;

    2004-01-01

    The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence...

  7. The Mechanism and Usage for Enhanced Oil Recovery by Chemotaxis of Bacterium BS2

    Institute of Scientific and Technical Information of China (English)

    LiYiqian; JingGuicheng; GaoShusheng; XungWei

    2005-01-01

    Due to its chemotaxis, the motion ability of bacterium BS2 is very strong, and under the microscope, the distribution grads of bacterium concentration can be seen at the oil-water interface. During the experiments in glass box, it can be observed, with eyes, because of the chemotaxis, that muddy gets thicker and thicker at the interface gradually, and it is measured there, from sampling, that the bacterium concentration is 109 cells/mL, pH value 4.4 and the concentration of bio-surfactant 2.87%; The microbial oil-displacement experiments are carried out in emulational network models, and the oil-displacement mechanism by the bacterium and its metabolizing production is studied. And, during oil-displacement experiments in the gravel-input glass models, because of the profile control of thalli and the production, the sweep area of subsequent waterflood becomes wider, which can be seen with eyes and the recovery is enhanced by 13.6%. Finally, the successful field test is introduced in brief: the ratio of response producers is 85.7%, and the water-cut degrades by 6.4%, while 20038t oil has increased in accumulative total in 2 years.

  8. Cadmium and zinc interactions with a Gram-positive soil bacterium.

    NARCIS (Netherlands)

    Plette, A.C.C.

    1996-01-01

    A detailed study is presented on the cadmium and zinc sorption to both isolated cell walls and intact, living cells of the Gram-positive soil bacterium Rhodococcus erythropolis A177. Acid/base titrations were performed on isolated cell wall material to characterize the type and amount of reactive si

  9. Active efflux systems in the solvent-tolerant bacterium Pseudomonas putida S12

    NARCIS (Netherlands)

    Kieboom, J.

    2002-01-01

    The aim of the research presented in this thesis was to study the molecular mechanisms of organic solvent tolerance in Pseudomonas putida S12. This bacterium is capable of growth at saturated solvent concentrations, which are lethal to normal bacteria. Organic solve

  10. Complete genome sequence of Pandoraea thiooxydans DSM 25325(T), a thiosulfate-oxidizing bacterium.

    Science.gov (United States)

    Yong, Delicia; Ee, Robson; Lim, Yan-Lue; Yu, Choo-Yee; Ang, Geik-Yong; How, Kah-Yan; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2016-01-10

    Pandoraea thiooxydans DSM 25325(T) is a thiosulfate-oxidizing bacterium isolated from rhizosphere soils of a sesame plant. Here, we present the first complete genome of P. thiooxydans DSM 25325(T). Several genes involved in thiosulfate oxidation and biodegradation of aromatic compounds were identified.

  11. Thermaerobacter litoralis sp. nov., a strictly aerobic and thermophilic bacterium isolated from a coastal hydrothermal field

    DEFF Research Database (Denmark)

    Tanaka, Reiji; Kawaichi, Satoshi; Nishimura, Hiroshi;

    2006-01-01

    A novel thermophilic bacterium, strain KW1T, was isolated from a coastal hydrothermal field on the Satsuma Peninsula, Kagoshima Prefecture, Japan. The variably Gram-stained cells were motile rods with flagella, did not form spores and proliferated at 52-78°C (optimum, 70°C), pH 5-8 (optimum, pH 7...

  12. Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes.

    Science.gov (United States)

    Ghazal, Shimaa; Oshone, Rediet; Simpson, Stephen; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Khalil, Kamal M; Tisa, Louis S

    2016-01-01

    Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes. PMID:26988056

  13. Whole-Genome Shotgun Sequence of Pseudomonas viridiflava, a Bacterium Species Pathogenic to Arabidopsis thaliana

    OpenAIRE

    Lefort, Francois; Calmin, Gautier; Crovadore, Julien; Osteras, Magne; Farinelli, Laurent

    2013-01-01

    We report here the first whole-genome shotgun sequence of Pseudomonas viridiflava strain UASWS38, a bacterium species pathogenic to the biological model plant Arabidopsis thaliana but also usable as a biological control agent and thus of great scientific interest for understanding the genetics of plant-microbe interactions.

  14. Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes)

    OpenAIRE

    Thiel, Vera; Hamilton, Trinity L.; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Ramaley, Robert F.; Stephan C Schuster; Steinke, Laurey; Bryant, Donald A.

    2014-01-01

    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons.

  15. First Insights into the Genome of the Moderately Thermophilic Bacterium Clostridium tepidiprofundi SG 508T.

    Science.gov (United States)

    Poehlein, Anja; Friedrich, Ines; Krüger, Larissa; Daniel, Rolf

    2016-01-01

    The moderately thermophilic bacterium Clostridium tepidiprofundi is Gram-positive and belongs to clostridial cluster I. It was isolated from a hydrothermal vent chimney. Substrates utilized by C. tepidiprofundi include casein, peptone, tryptone, yeast extract, beef extract, starch, maltose, and glucose. The genome consists of one replicon (3.06 Mb). PMID:27174286

  16. First Insights into the Genome of the Moderately Thermophilic Bacterium Clostridium tepidiprofundi SG 508T

    OpenAIRE

    Poehlein, Anja; Friedrich, Ines; Krüger, Larissa; Daniel, Rolf

    2016-01-01

    The moderately thermophilic bacterium Clostridium tepidiprofundi is Gram-positive and belongs to clostridial cluster I. It was isolated from a hydrothermal vent chimney. Substrates utilized by C. tepidiprofundi include casein, peptone, tryptone, yeast extract, beef extract, starch, maltose, and glucose. The genome consists of one replicon (3.06 Mb).

  17. Modeling of Cd Uptake and Efflux Kinetics in Metal-Resistant Bacterium Cupriavidus metallidurans

    NARCIS (Netherlands)

    Hajdu, R.; Pinheiro, J.P.; Galceran, J.; Slaveykova, V.I.

    2010-01-01

    The Model of Uptake with Instantaneous Adsorption and Efflux, MUIAE, describing and predicting the overall Cd uptake by the metal-resistant bacterium Cupriavidus metallidurans CH34, is presented. MUIAE takes into account different processes at the bacteria-medium interface with specific emphasis on

  18. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Majumder, Avishek; Cai, Liyang; Ejby, Morten;

    2012-01-01

    Lactobacillus acidophilus NCFM (NCFM) is a well‐documented probiotic bacterium isolated from human gut. Detailed 2D gel‐based NCFM proteomics addressed the so‐called alkaline range, i.e., pH 6–11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D...

  19. Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes

    OpenAIRE

    Ghazal, Shimaa; Oshone, Rediet; Simpson, Stephen,; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W. Kelley; Khalil, Kamal M.; Tisa, Louis S.

    2016-01-01

    Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes.

  20. Genome Sequence of Bacillus mycoides B38V, a Growth-Promoting Bacterium of Sunflower.

    Science.gov (United States)

    Ambrosini, Adriana; Sant'Anna, Fernando Hayashi; de Souza, Rocheli; Tadra-Sfeir, Michele; Faoro, Helisson; Alvarenga, Samuel M; Pedrosa, Fabio Oliveira; Souza, Emanuel Maltempi; Passaglia, Luciane M P

    2015-01-01

    Bacillus mycoides B38V is a bacterium isolated from the sunflower rhizosphere that is able to promote plant growth and N uptake. The genome of the isolate has approximately 5.80 Mb and presents sequence codifiers for plant growth-promoting characteristics, such as nitrate reduction and ammonification and iron-siderophore uptake. PMID:25838494

  1. Genome Sequence of Bacillus mycoides B38V, a Growth-Promoting Bacterium of Sunflower

    OpenAIRE

    Ambrosini, Adriana; Sant’Anna, Fernando Hayashi; de Souza, Rocheli; Tadra-Sfeir, Michele; Faoro, Helisson; Alvarenga, Samuel M.; Pedrosa, Fabio Oliveira; Souza, Emanuel Maltempi; Passaglia, Luciane M. P.

    2015-01-01

    Bacillus mycoides B38V is a bacterium isolated from the sunflower rhizosphere that is able to promote plant growth and N uptake. The genome of the isolate has approximately 5.80 Mb and presents sequence codifiers for plant growth-promoting characteristics, such as nitrate reduction and ammonification and iron-siderophore uptake.

  2. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    NARCIS (Netherlands)

    Bielen, A.A.M.; Verhaart, M.R.A.; Oost, van der J.; Kengen, S.W.M.

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit fo

  3. Isolation and algae-lysing characteristics of the algicidal bacterium B5

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Water blooms have become a worldwide environmental problem. Recently, algicidal bacteria have attracted wide attention as possible agents for inhibiting algal water blooms. In this study, one strain of algicidal bacterium B5 was isolated from activated sludge. On the basis of analysis of its physiological characteristics and 16S rDNA gene sequence, it was identified as Bacillus fusiformis. Its algae-lysing characteristics on Microcystis aeruginosa, Chlorella and Scenedesmus were tested. The results showed that: (1) the algicidal bacterium B5 is a Gram-negative bacterium. The 16S rDNA nucleotide sequence homology of strain B5 with 2 strains of B. fusiformis reached 99.86%, so B5 was identified as B. fusiformis; (2) the algal-lysing effects of the algicidal bacterium B5 on M. aeruginosa, Chlorella and Scenedesmus were pronounced. The initial bacterial and algal cell densities strongly influence the removal rates of chlorophyll-a. The greater the initial bacterial cell density, the faster the degradation of chlorophyll-a. The greater the initial algal cell density, the slower the degradation of chlorophyll-a. When the bacterial cell density was 3.6 × 107 cells/ml, nearly 90% of chlorophyll-a was removed. When the chlorophyll-a concentration was less than 550 μg/L, about 70 % was removed; (3) the strain B5 lysed algae not directly but by secreting metabolites and these metabolites could bear heat treatment.

  4. The construction of an engineered bacterium to remove cadmium from wastewater.

    Science.gov (United States)

    Chang, S; Shu, H

    2014-01-01

    The removal of cadmium (Cd) from wastewater before it is released from factories is important for protecting human health. Although some researchers have developed engineered bacteria, the resistance of these engineered bacteria to Cd have not been improved. In this study, two key genes involved in glutathione synthesis (gshA and gshB), a serine acetyltransferase gene (cysE), a Thlaspi caerulescens phytochelatin synthase gene (TcPCS1), and a heavy metal ATPase gene (TcHMA3) were transformed into Escherichia coli BL21. The resistance of the engineered bacterium to Cd was significantly greater than that of the initial bacterium and the Cd accumulation in the engineered bacterium was much higher than in the initial bacterium. In addition, the Cd resistance of the bacteria harboring gshB, gshA, cysE, and TcPCS1 was higher than that of the bacteria harboring gshA, cysE, and TcPCS1. This finding demonstrated that gshB played an important role in glutathione synthesis and that the reaction catalyzed by glutathione synthase was the limiting step for producing phytochelatins. Furthermore, TcPCS1 had a greater specificity and a higher capacity for removing Cd than SpPCS1, and TcHMA3 not only played a role in T. caerulescens but also functioned in E. coli.

  5. Complete Genome Sequence of Sphingomonas sp. Strain NIC1, an Efficient Nicotine-Degrading Bacterium

    Science.gov (United States)

    Zhu, Xiongyu; Wang, Weiwei; Xu, Ping

    2016-01-01

    Sphingomonas sp. strain NIC1, an efficient nicotine-degrading bacterium, was isolated from tobacco leaves. Here, we present the complete genome sequence of strain NIC1, which contains one circular chromosome and two circular plasmids. The genomic information will provide insights into its molecular mechanism for nicotine degradation. PMID:27417841

  6. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    Science.gov (United States)

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. PMID:26853478

  7. An ATP transport system in the intracellular bacterium, Bdellovibrio bacteriovorus 109J.

    OpenAIRE

    Ruby, E G; McCabe, J B

    1986-01-01

    The intracellularly growing bacterium Bdellovibrio bacteriovorus 109J transports intact ATP by a specific, energy-requiring process. ATP transport does not involve either an ADP-ATP or an AMP-ATP exchange mechanism but, instead, has characteristics of an active transport permease. Kinetically distinct systems for ATP transport are expressed by the two developmental stages of the bdellovibrio life cycle.

  8. Draft Genome Sequence of the Moderately Halophilic Bacterium Pseudoalteromonas ruthenica Strain CP76.

    Science.gov (United States)

    de la Haba, Rafael R; Sánchez-Porro, Cristina; León, María José; Papke, R Thane; Ventosa, Antonio

    2013-05-23

    Pseudoalteromonas ruthenica strain CP76, isolated from a saltern in Spain, is a moderately halophilic bacterium belonging to the Gammaproteobacteria. Here we report the draft genome sequence, which consists of a 4.0-Mb chromosome, of this strain, which is able to produce the extracellular enzyme haloprotease CPI.

  9. Aerobic degradation of highly chlorinated polychlorobiphenyls by a marine bacterium, Pseudomonas CH07

    Digital Repository Service at National Institute of Oceanography (India)

    De, J.; Ramaiah, N.; Sarkar, A.

    and the other coplanar tetrachloro congener CB-77 was degraded by more than 40% within 40 hours by this microorganism. Apparently absence of bphC in this bacterium led to proposition of different mechanism of PCBs degradation. KEY WORDS: Pseudomonas CH07...

  10. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery

    DEFF Research Database (Denmark)

    Martinez, Virginia; Herencias, Cristina; Jurkevitch, Edouard;

    2016-01-01

    This work examines the potential of the predatory bacterium Bdellovibrio bacteriovorus HD100, an obligate predator of other Gram-negative bacteria, as an external cell-lytic agent for recovering valuable intracellular bio-products produced by prey cultures. The bio-product targets to be recovered...

  11. Genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens BBc6R8

    Energy Technology Data Exchange (ETDEWEB)

    Deveau, Aurelie [French National Insitute for Agricultural Research (INRA); Grob, Harald [University of Bonn, Germany; Morin, Emmanuelle [INRA, Nancy, France; Karpinets, Tatiana V [ORNL; Utturkar, Sagar M [ORNL; Mehnaz, Samina [University of the Punjab, Pakistan; Kurz, Sven [University of Bonn, Germany; Martin, Francis [INRA, Nancy, France; Frey-Klett, Pascale [INRA, Nancy, France; Labbe, Jessy L [ORNL

    2014-01-01

    We report the draft genome sequence of the mycorrhiza helper bacterium Pseudomonas fluorescens strain BBc6R8 . Several traits which could be involved in the mycorrhiza helper ability of the bacterial strain such as multiple secretion systems, auxin metabolism and phosphate mobilization were evidenced in the genome.

  12. Mechanisms of Stress Resistance and Gene Regulation in the Radioresistant Bacterium Deinococcus radiodurans.

    Science.gov (United States)

    Agapov, A A; Kulbachinskiy, A V

    2015-10-01

    The bacterium Deinococcus radiodurans reveals extraordinary resistance to ionizing radiation, oxidative stress, desiccation, and other damaging conditions. In this review, we consider the main molecular mechanisms underlying such resistance, including the action of specific DNA repair and antioxidation systems, and transcription regulation during the anti-stress response.

  13. Toxicity of herbicides used in the sugarcane crop to diazotrophic bacterium Herbaspirillum seropedicae

    OpenAIRE

    Sergio de Oliveira Procópio; Marcelo Ferreira Fernandes; Daniele Araújo Teles; José Guedes Sena Filho; Alberto Cargnelutti Filho; Marcelo Araújo Resende; Leandro Vargas

    2014-01-01

    The objective of this work was to identify herbicides used in the sugarcane crop that affects neither the growth, the development, of nor the process of biological nitrogen fixation (BNF) by the diazotrophic bacterium Herbaspirillum seropedicae. Eighteen herbicides (paraquat, ametryne, tebuthiuron, amicarbazone, diuron, metribuzin, [hexazinone + diuron], [hexazinone + clomazone], clomazone, isoxaflutole, sulfentrazone, oxyfluorfen, imazapic, imazapyr, [trifloxysulfuron sodium + ametryne], gly...

  14. A commensal symbiotic interrelationship for the growth of Symbiobacterium toebii with its partner bacterium, Geobacillus toebii

    Directory of Open Access Journals (Sweden)

    Masui Ryoji

    2011-10-01

    Full Text Available Abstract Background Symbiobacterium toebii is a commensal symbiotic thermophile that absolutely requires its partner bacterium Geobacillus toebii for growth. Despite development of an independent cultivation method using cell-free extracts, the growth of Symbiobacterium remains unknown due to our poor understanding of the symbiotic relationship with its partner bacterium. Here, we investigated the interrelationship between these two bacteria for growth of S. toebii using different cell-free extracts of G. toebii. Results Symbiobacterium toebii growth-supporting factors were constitutively produced through almost all growth phases and under different oxygen tensions in G. toebii, indicating that the factor may be essential components for growth of G. toebii as well as S. toebii. The growing conditions of G. toebii under different oxygen tension dramatically affected to the initial growth of S. toebii and the retarded lag phase was completely shortened by reducing agent, L-cysteine indicating an evidence of commensal interaction of microaerobic and anaerobic bacterium S. toebii with a facultative aerobic bacterium G. toebii. In addition, the growth curve of S. toebii showed a dependency on the protein concentration of cell-free extracts of G. toebii, demonstrating that the G. toebii-derived factors have nutrient-like characters but not quorum-sensing characters. Conclusions Not only the consistent existence of the factor in G. toebii during all growth stages and under different oxygen tensions but also the concentration dependency of the factor for proliferation and optimal growth of S. toebii, suggests that an important biosynthetic machinery lacks in S. toebii during evolution. The commensal symbiotic bacterium, S. toebii uptakes certain ubiquitous and essential compound for its growth from environment or neighboring bacteria that shares the equivalent compounds. Moreover, G. toebii grown under aerobic condition shortened the lag phase of S

  15. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    Institute of Scientific and Technical Information of China (English)

    Yong Wang; Zhao-Ming Gao; Jiang-Tao Li; Salim Bougouffa; Ren Mao Tian; Vladimir B.Bajic; Pei-Yuan Qian

    2016-01-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum,of which the metabolic processes and ecological importance remain unclear.In the present study,we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method.Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments.Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla.The genome of TCS1 (at least 1.27 Mbp)contains a full set of genes encoding core metabolic pathways,including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate.The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat.Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism.The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood-Ljungdahl pathway were also found in the genome.Phylogenetic study of the essential genes for the Wood-Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens.Compared with genomes of acetogenic bacteria,Aerophobetes bacterium TCS 1 genome lacks the genes involved in nitrogen metabolism,sulfur metabolism,signal transduction and cell motility.The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2,hydrogen and sugars,and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps.

  16. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    KAUST Repository

    Wang, Yong

    2016-07-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum, of which the metabolic processes and ecological importance remain unclear. In the present study, we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method. Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments. Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla. The genome of TCS1 (at least 1.27 Mbp) contains a full set of genes encoding core metabolic pathways, including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate. The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat. Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism. The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood–Ljungdahl pathway were also found in the genome. Phylogenetic study of the essential genes for the Wood–Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens. Compared with genomes of acetogenic bacteria, Aerophobetes bacterium TCS1 genome lacks the genes involved in nitrogen metabolism, sulfur metabolism, signal transduction and cell motility. The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2, hydrogen and sugars, and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps. © 2016, Science China Press and Springer-Verlag Berlin Heidelberg.

  17. Evaluation of Biosynthetic Pathways of 2Н- and 13С-Labeled Amino Acids by an Obligate Methylotrophic Bacterium Methylobacillus Flagellatum and a Facultative Methylotrophic Bacterium Brevibacterium Methylicum

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2016-06-01

    Full Text Available By the method of electron impact mass-spectrometry was studied the pathways of biosynthesis of 2H, 13C-labeled amino acids of a facultative methylotrophic bacterium Brevibacterium methylicum and an obligate methylotrophic bacterium Methylobacillus flagellatum obtained on growth media containing as a source of stable isotopes [2H]methanol, [13C]methanol and 2H2O. For mass-spectrometric analysis the multicomponential mixtures of 2H- and 13C-labeled amino acids, derived from cultural media and protein hydrolysates after hydrolysis in 6 M 2HСl (3 % phenol and 2 M Ва(OH2 were modified into N-benzyloxycarbonyl-derivatives of amino acids as well as into methyl esters of N-5-(dimethylaminonaphthalene-1-sulfonyl chloride (dansyl derivatives of [2H, 13С]amino acids, which were preparative separated using a method of reverse-phase HCLP. Biosynthetically obtained 2H- and 13C-labeled amino acids represented the mixtures differing in quantities of isotopes incorporated into molecule. The levels of 2H and 13С enrichment of secreted amino acids and amino acid resigues of protein were found to vary from 20,0 atom % to L-leucine/isoleucine up to 97,5 atom % for L-alanine depending on concentration of 2H- and 13C-labelled substrates.

  18. Influence of pH and Oxidant Ozone to Amount of Bacterium Coliform at Hospital Waste

    International Nuclear Information System (INIS)

    Influence of pH and oxidant ozone to amount of bacterium coliform at hospital waste have been done. As sample is liquid waste Public Hospital of town (RSUD) Yogyakarta. Sample waste processed by 3 kinds of treatment, that is first certain ozone waste during, that is waste given by the third and just chalk of waste given by the certain and ozonization chalk during. From third the treatment, in the reality third treatment which can give the maximal result, that is waste given the chalk until pH waste 8.5 and ozonization during 40 minute give the following result : bacterium coliform from 810.000 MPN become 0 MPN ( cell / 100 mL). This result have fulfilled the conditions as according to decision of Governor of DIY no. 65 year 1999 for the waste of faction II, that is waste used for the irrigation of fishery and agriculture. (author)

  19. Crystal structure of ribosomal protein L1 from the bacterium Aquifex aeolicus

    Science.gov (United States)

    Nikonova, E. Yu.; Tishchenko, S. V.; Gabdulkhakov, A. G.; Shklyaeva, A. A.; Garber, M. B.; Nikonov, S. V.; Nevskaya, N. A.

    2011-07-01

    The crystal structure of ribosomal protein L1 from the bacterium Aquifex aeolicus was solved by the molecular-replacement method and refined to R cryst = 19.4% and R free = 25.1% at 2.1 Å protein consists of two domains linked together by a flexible hinge region. In the structure under consideration, the domains are in close proximity and adopt a closed conformation. Earlier, this conformation has been found in the structure of protein L1 from the bacterium Thermus thermophilus, whereas the structures of archaeal L1 proteins and the structures of all L1 proteins in the RNA-bound form have an open conformation. The fact that a closed conformation was found in the structures of two L1 proteins which crystallize in different space groups and belong to different bacteria suggests that this conformation is a characteristic feature of L1 bacterial proteins in the free form.

  20. Isolation and characterization of a new arsenic methylating bacterium from soil

    Energy Technology Data Exchange (ETDEWEB)

    Honschopp, S. [Bremen Univ. (Germany). Abt. Mikrobiologie; Brunken, N. [Bremen Univ. (Germany). Inst. fuer Anorganische und Physikalische Chemie; Nehrkorn, A. [Bremen Univ. (Germany). Abt. Mikrobiologie; Breunig, H.J. [Bremen Univ. (Germany). Inst. fuer Anorganische und Physikalische Chemie

    1996-12-31

    An arsenic resistant and arsenic methylating bacterium belonging to the Flavobacterium-Cytophaga group was isolated from soil with an arsenic content of 1.5 ppm. The growth of the bacterium is enhanced in the presence of As compounds in concentrations up to 200 ppm in the cultural media with a stronger effect of As(V) than of As(III) compounds. As a volatile product of the methylation of both NaH{sub 2}AsO{sub 3} and NaH{sub 2}AsO{sub 4} exclusively, Me{sub 3}As was formed and detected by mass spectrometry. Quantitative aspects of the methylation were studied with GC/MS. The intracellular accumulation of arsenic in the methylating strain was compared with two non methylating strains from the same soil. (orig.)