WorldWideScience

Sample records for bacterium eggerthella strain

  1. Isolation and Characterization of a Human Intestinal Bacterium Eggerthella sp. AUH-JLD49s for the Conversion of (-)-3'-Desmethylarctigenin.

    Science.gov (United States)

    Wang, Ye; Yu, Fei; Liu, Ming-Yue; Zhao, Yi-Kai; Wang, Dong-Ming; Hao, Qing-Hong; Wang, Xiu-Ling

    2017-05-24

    Arctiin is the most abundant bioactive compound contained in the Arctium lappa plant. In our previous study, we isolated one single bacterium capable of bioconverting arctigenin, an aglycone of arctiin, to 3'-desmethylarctigenin (3'-DMAG) solely. However, to date, a specific bacterium capable of producing other arctiin metabolites has not been reported. In this study, we isolated one single bacterium, which we named Eggerthella sp. AUH-JLD49s, capable of bioconverting 3'-DMAG under anaerobic conditions. The metabolite of 3'-DMAG by strain AUH-JLD49s was identified as 3'-desmethyl-4'-dehydroxyarctigenin (DMDH-AG) based on electrospray ionization mass spectrometry (ESI-MS) and 1 H and 13 C nuclear magnetic resonance spectroscopy. The bioconversion kinetics and bioconversion capacity of strain AUH-JLD49s were investigated. In addition, the metabolite DMDH-AG showed an inhibitory effect on cell growth of human colon cancer cell line HCT116 and human breast cancer cell line MDA-MB-231.

  2. methoxyethanol by a new bacterium isolate Pseudomonas sp. Strain

    African Journals Online (AJOL)

    Michael Horsfall

    A 2-methoxyethanol degrading bacterium was isolated from anaerobic sludge of a municipal sewage from ... Stoichiometrically, the strain utilized one mole of oxygen per one mole of 2-methoxyethanol instead of ... physiological and biochemical characterization of the .... observed with acetate and the intact resting cells.

  3. Draft Genome Sequence of Advenella kashmirensis Strain W13003, a Polycyclic Aromatic Hydrocarbon-Degrading Bacterium

    Science.gov (United States)

    Jin, Decai; Zhou, Lisha; Wu, Liang; An, Wei; Zhao, Lin

    2014-01-01

    Advenella kashmirensis strain W13003 is a polycyclic aromatic hydrocarbon (PAH)-degrading bacterium isolated from PAH-contaminated marine sediments. Here, we report the 4.8-Mb draft genome sequence of this strain, which will provide insights into the diversity of A. kashmirensis and the mechanism of PAH degradation in the marine environment. PMID:24482505

  4. Draft Genome Sequence of the Efficient Bioflocculant-Producing Bacterium Paenibacillus sp. Strain A9

    Science.gov (United States)

    Liu, Jin-liang; Hu, Xiao-min

    2013-01-01

    Paenibacillus sp. strain A9 is an important bioflocculant-producing bacterium, isolated from a soil sample, and is pale pink-pigmented, aerobic, and Gram-positive. Here, we report the draft genome sequence and the initial findings from a preliminary analysis of strain A9, which is a novel species of Paenibacillus. PMID:23618713

  5. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Mun Su [University of Florida, Gainesville; Moritz, Brelan E. [University of Florida, Gainesville; Xie, Gary [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Patel, Milind [University of Florida, Gainesville; Ou, Mark [University of Florida, Gainesville; Harbrucker, Roberta [University of Florida, Gainesville; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  6. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  7. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Science.gov (United States)

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  8. Draft Genome Sequence of Desulfuromonas acetexigens Strain 2873, a Novel Anode-Respiring Bacterium

    KAUST Repository

    Katuri, Krishna

    2017-03-03

    Here, we report the draft genome sequence of Desulfuromonas acetexigens strain 2873, which was originally isolated from digester sludge from a sewage treatment plant in Germany. This bacterium is capable of anode respiration with high electrochemical activity in microbial electrochemical systems. The draft genome contains 3,376 predicted protein-coding genes and putative multiheme c-type cytochromes.

  9. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    Science.gov (United States)

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Draft Genome Sequence of Desulfuromonas acetexigens Strain 2873, a Novel Anode-Respiring Bacterium

    KAUST Repository

    Katuri, Krishna; Albertsen, Mads; Saikaly, Pascal

    2017-01-01

    Here, we report the draft genome sequence of Desulfuromonas acetexigens strain 2873, which was originally isolated from digester sludge from a sewage treatment plant in Germany. This bacterium is capable of anode respiration with high electrochemical activity in microbial electrochemical systems. The draft genome contains 3,376 predicted protein-coding genes and putative multiheme c-type cytochromes.

  11. Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium Actinokineospora sp. Strain EG49

    KAUST Repository

    Harjes, Janno; Ryu, Tae Woo; Abdelmohsen, Usama Ramadan; Moitinho-Silva, Lucas; Horn, Hannes; Ravasi, Timothy; Hentschel, Ute

    2014-01-01

    The marine sponge-associated bacterium Actinokineospora sp. strain EG49 produces the antitrypanosomal angucycline-like compound actinosporin A. The draft genome of Actinokineospora sp. EG49 has a size of 7.5 megabases and a GC content of 72.8% and contains 6,629 protein-coding sequences (CDS). antiSMASH predicted 996 genes residing in 36 secondary metabolite gene clusters.

  12. Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium Actinokineospora sp. Strain EG49

    KAUST Repository

    Harjes, Janno

    2014-03-06

    The marine sponge-associated bacterium Actinokineospora sp. strain EG49 produces the antitrypanosomal angucycline-like compound actinosporin A. The draft genome of Actinokineospora sp. EG49 has a size of 7.5 megabases and a GC content of 72.8% and contains 6,629 protein-coding sequences (CDS). antiSMASH predicted 996 genes residing in 36 secondary metabolite gene clusters.

  13. Morphological characterization of several strains of the rice-pathogenic bacterium Burkholderia glumae in North Sumatra

    Science.gov (United States)

    Hasibuan, M.; Safni, I.; Lisnawita; Lubis, K.

    2018-02-01

    Burkholderia glumae is a quarantine seed-borne bacterial pathogen causing panicle blight disease on rice. This pathogen has been detected in some locations in Java, and recently, farmers in North Sumatra have reported rice yield loss with symptoms similar with those on rice infeced by the rice-pathogenic bacterium B. glumae. This research was aimed to isolate several bacterial strains from several rice varieties in various locations in North Sumatra and characterize the morphology of the strains to detect and identify the unknown bacterial strains presumably B. glumae. Several rice seed varieties were collected from Medan and Deli Serdang Districts. The seed samples were extracted, isolated and purified, then grown in semi-selective media PPGA. The morphological characteristics of the bacterial strains were determined including Gram staining, bacterial colony’s and bacterial cell’s morphology. The results showed that of eleven strains isolated, two strains were Gram negative and nine strains were Gram positive. On the basis of colony morphology, all strains had circular form, flat elevation and cream colour while the colony margin varied, i.e. entire and undulate. Most strains had bacillus/rod shape (8 strains) and only 3 strains were coccus.

  14. Reduction of Mo(VI) by the bacterium Serratia sp. strain DRY5.

    Science.gov (United States)

    Rahman, M F A; Shukor, M Y; Suhaili, Z; Mustafa, S; Shamaan, N A; Syed, M A

    2009-01-01

    The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.

  15. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    Science.gov (United States)

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  16. Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress.

    Science.gov (United States)

    Chen, Yanmei; Chao, Yuanqing; Li, Yaying; Lin, Qingqi; Bai, Jun; Tang, Lu; Wang, Shizhong; Ying, Rongrong; Qiu, Rongliang

    2016-01-04

    Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd(2+) MIC, >250 mg liter(-1)) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11

    Energy Technology Data Exchange (ETDEWEB)

    Yuki Kasai; Yumiko Kodama; Yoh Takahata; Toshihiro Hoaki; Kazuya Watanabe [Marine Biotechnology Institute, Kamaishi (Japan)

    2007-09-15

    Azoarcus sp. strain DN11 is a denitrifying bacterium capable of benzene degradation under anaerobic conditions. The present study evaluated strain DN11 for its application to bioaugmentation of benzene-contaminated underground aquifers. Strain DN11 could grow on benzene, toluene, m-xylene, and benzoate as the sole carbon and energy sources under nitrate-reducing conditions, although o- and p-xylenes were transformed in the presence of toluene. Phenol was not utilized under anaerobic conditions. Kinetic analysis of anaerobic benzene degradation estimated its apparent affinity and inhibition constants to be 0.82 and 11 {mu}M, respectively. Benzene-contaminated groundwater taken from a former coal-distillation plant site in Aichi, Japan was anaerobically incubated in laboratory bottles and supplemented with either inorganic nutrients (nitrogen, phosphorus, and nitrate) alone, or the nutrients plus strain DN11, showing that benzene was significantly degraded only when DN11 was introduced. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments, and quantitative PCR revealed that DN11 decreased after benzene was degraded. Following the decrease in DN11 16S rRNA gene fragments corresponding to bacteria related to Owenweeksia hongkongensis and Pelotomaculum isophthalicum, appeared as strong bands, suggesting possible metabolic interactions in anaerobic benzene degradation. Results suggest that DN11 is potentially useful for degrading benzene that contaminates underground aquifers at relatively low concentrations. 50 refs., 6 figs., 1 tab.

  18. Nitrosomonas communis strain YNSRA, an ammonia-oxidizing bacterium, isolated from the reed rhizoplane in an aquaponics plant.

    Science.gov (United States)

    Tokuyama, Tatsuaki; Mine, Atsusi; Kamiyama, Kaoru; Yabe, Ryuichi; Satoh, Kazuo; Matsumoto, Hirotoshi; Takahashi, Reiji; Itonaga, Koji

    2004-01-01

    An ammonia-oxidizing bacterium (strain YNSRA) was isolated from the rhizoplane of the reed (Phragmites communis) used in an aquaponics plant which is a wastewater treatment plant. Strain YNSRA was identified as Nitrosomonas communis by taxonomic studies. The hydroxylamine-cytochrome c reductase (HCR) of strain YNSRA was found to have a higher activity (25.60 u/mg) than that of Nitrosomonas europaea ATCC25978T (8.94 u/mg). Ribulose-1,5-bisphosphate carboxylase (RubisCO) activity was detected at very low levels in strain YNSRA, whereas strain ATCC25978T had definite activity.

  19. Novel Acetone Metabolism in a Propane-Utilizing Bacterium, Gordonia sp. Strain TY-5▿

    Science.gov (United States)

    Kotani, Tetsuya; Yurimoto, Hiroya; Kato, Nobuo; Sakai, Yasuyoshi

    2007-01-01

    In the propane-utilizing bacterium Gordonia sp. strain TY-5, propane was shown to be oxidized to 2-propanol and then further oxidized to acetone. In this study, the subsequent metabolism of acetone was studied. Acetone-induced proteins were found in extracts of cells induced by acetone, and a gene cluster designated acmAB was cloned on the basis of the N-terminal amino acid sequences of acetone-induced proteins. The acmA and acmB genes encode a Baeyer-Villiger monooxygenase (BVMO) and esterase, respectively. The BVMO encoded by acmA was purified from acetone-induced cells of Gordonia sp. strain TY-5 and characterized. The BVMO exhibited NADPH-dependent oxidation activity for linear ketones (C3 to C10) and cyclic ketones (C4 to C8). Escherichia coli expressing the acmA gene oxidized acetone to methyl acetate, and E. coli expressing the acmB gene hydrolyzed methyl acetate. Northern blot analyses revealed that polycistronic transcription of the acmAB gene cluster was induced by propane, 2-propanol, and acetone. These results indicate that the acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation and clarify the propane metabolism pathway of strain TY-5 (propane → 2-propanol → acetone → methyl acetate → acetic acid + methanol). This paper provides the first evidence for BVMO-dependent acetone metabolism. PMID:17071761

  20. A novel electrophototrophic bacterium Rhodopseudomonas palustris strain RP2, exhibits hydrocarbonoclastic potential in anaerobic environments

    Directory of Open Access Journals (Sweden)

    Krishnaveni Venkidusamy

    2016-07-01

    Full Text Available An electrophototrophic, hydrocarbonoclastic bacterium Rhodopseudomonas palustris stain RP2 was isolated from the anodic biofilms of hydrocarbon fed microbial electrochemical remediation systems (MERS. Salient properties of the strain RP2 were direct electrode respiration, dissimilatory metal oxide reduction, spore formation, anaerobic nitrate reduction, free living diazotrophy and the ability to degrade n-alkane components of petroleum hydrocarbons in anoxic, photic environments. In acetate fed microbial electrochemical cells, a maximum current density of 305±10 mA/m2 (1000Ω was generated (power density 131.65±10 mW/m2 by strain RP2 with a coulombic efficiency of 46.7 ± 1.3%. Cyclic voltammetry studies showed that anaerobically grown cells of strain RP2 is electrochemically active and likely to transfer electrons extracellularly to solid electron acceptors through membrane bound compounds, however, aerobically grown cells lacked the electrochemical activity. The ability of strain RP2 to produce current (maximum current density 21±3 mA/m2; power density 720±7 µW/m2, 1000Ω using petroleum hydrocarbon (PH as a sole energy source was also examined using an initial concentration of 800 mg l-1 of diesel range hydrocarbons (C9- C36 with a concomitant removal of 47.4 ± 2.7% hydrocarbons in MERS. Here, we also report the first study that shows an initial evidence for the existence of a hydrocarbonoclastic behavior in the strain RP2 when grown in different electron accepting and illuminated conditions (anaerobic and MERS degradation. Such observations reveal the importance of photoorganotrophic growth in the utilization of hydrocarbons from contaminated environments. Identification of such novel petrochemical hydrocarbon degrading electricigens, not only expands the knowledge on the range of bacteria known for the hydrocarbon bioremediation but also shows a biotechnological potential that goes well beyond its applications to MERS.

  1. Complete genome sequences of two strains of the meat spoilage bacterium Brochothrix thermosphacta isolated from ground chicken

    Science.gov (United States)

    Brochothrix thermosphacta is an important meat spoilage bacterium. Here we report the genome sequences of two strains of B. thermosphacta isolated from ground chicken. The genome sequences were determined using long-read PacBio single-molecule real-time (SMRT©) technology and are the first complete ...

  2. Genome Sequence of the Enterobacter mori Type Strain, LMG 25706, a Pathogenic Bacterium of Morus alba L. ▿

    Science.gov (United States)

    Zhu, Bo; Zhang, Guo-Qing; Lou, Miao-Miao; Tian, Wen-Xiao; Li, Bin; Zhou, Xue-Ping; Wang, Guo-Feng; Liu, He; Xie, Guan-Lin; Jin, Gu-Lei

    2011-01-01

    Enterobacter mori is a plant-pathogenic enterobacterium responsible for the bacterial wilt of Morus alba L. Here we present the draft genome sequence of the type strain, LMG 25706. To the best of our knowledge, this is the first genome sequence of a plant-pathogenic bacterium in the genus Enterobacter. PMID:21602328

  3. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria.

    Science.gov (United States)

    da Silva, Fábio Daniel Florêncio; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Dall'Agnol, Leonardo Teixeira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Oliveira, Karol Guimarães; de Lima, Clayton Pereira Silva; Nunes, Márcio Roberto Teixeira; Vianez-Júnior, João Lídio Silva Gonçalves; Gonçalves, Evonnildo Costa

    2016-05-19

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here. Copyright © 2016 da Silva et al.

  4. Draft Genome Sequence of Limnobacter sp. Strain CACIAM 66H1, a Heterotrophic Bacterium Associated with Cyanobacteria

    OpenAIRE

    da Silva, F?bio Daniel Flor?ncio; Lima, Alex Ranieri Jer?nimo; Moraes, Pablo Henrique Gon?alves; Siqueira, Andrei Santos; Dall?Agnol, Leonardo Teixeira; Bara?na, Anna Rafaella Ferreira; Martins, Luisa Car?cio; Oliveira, Karol Guimar?es; de Lima, Clayton Pereira Silva; Nunes, M?rcio Roberto Teixeira; Vianez-J?nior, Jo?o L?dio Silva Gon?alves; Gon?alves, Evonnildo Costa

    2016-01-01

    Ecological interactions between cyanobacteria and heterotrophic prokaryotes are poorly known. To improve the genomic studies of heterotrophic bacterium-cyanobacterium associations, the draft genome sequence (3.2 Mbp) of Limnobacter sp. strain CACIAM 66H1, found in a nonaxenic culture of Synechococcus sp. (cyanobacteria), is presented here.

  5. Characterization of a novel chitinase from a moderately halophilic bacterium, Virgibacillus marismortui strain M3-23

    OpenAIRE

    Essghaier, Badiaa; Hedi, Abdeljabbar; Bajji, Mohammed; Jijakli, Haissam; Boudabous, Abdellatif; Sadfi-Zouaoui, Najla

    2012-01-01

    A new chitinase produced by the moderately halophilic bacterium Virgibacillus marismortui strain M3- 23 was identified and characterized. Distinguishable characteristics of high activity and stability at different pH, temperatures and salinity of M3-23 chitinase are reported. Analysis of the catalytic domain sequence from the enzyme highlighted its relationship to glycosyl hydrolase family 18. Comparison of the deduced chitinase sequence from strain M3-23 to known chitinases from Bacillus spe...

  6. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    Science.gov (United States)

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  7. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium.

    Science.gov (United States)

    Santos, Anderson F; Valle, Roberta S; Pacheco, Clarissa A; Alvarez, Vanessa M; Seldin, Lucy; Santos, André L S

    2013-12-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties.

  8. Denitrifying metabolism of the methylotrophic marine bacterium Methylophaga nitratireducenticrescens strain JAM1.

    Science.gov (United States)

    Mauffrey, Florian; Cucaita, Alexandra; Constant, Philippe; Villemur, Richard

    2017-01-01

    Methylophaga nitratireducenticrescens strain JAM1 is a methylotrophic, marine bacterium that was isolated from a denitrification reactor treating a closed-circuit seawater aquarium. It can sustain growth under anoxic conditions by reducing nitrate ([Formula: see text]) to nitrite ([Formula: see text]). These physiological traits are attributed to gene clusters that encode two dissimilatory nitrate reductases (Nar). Strain JAM1 also contains gene clusters encoding two nitric oxide (NO) reductases and one nitrous oxide (N 2 O) reductase, suggesting that NO and N 2 O can be reduced by strain JAM1. Here we characterized further the denitrifying activities of M. nitratireducenticrescens JAM1. Series of oxic and anoxic cultures of strain JAM1 were performed with N 2 O, [Formula: see text] or sodium nitroprusside, and growth and N 2 O, [Formula: see text], [Formula: see text] and N 2 concentrations were measured. Ammonium ([Formula: see text])-free cultures were also tested to assess the dynamics of N 2 O, [Formula: see text] and [Formula: see text]. Isotopic labeling of N 2 O was performed in 15 NH 4 + -amended cultures. Cultures with the JAM1Δ narG1narG2 double mutant were performed to assess the involvement of the Nar systems on N 2 O production. Finally, RT-qPCR was used to measure the gene expression levels of the denitrification genes cytochrome bc -type nitric oxide reductase ( cnorB1 and cnorB2 ) and nitrous oxide reductase ( nosZ ), and also nnrS and norR that encode NO-sensitive regulators. Strain JAM1 can reduce NO to N 2 O and N 2 O to N 2 and can sustain growth under anoxic conditions by reducing N 2 O as the sole electron acceptor. Although strain JAM1 lacks a gene encoding a dissimilatory [Formula: see text] reductase, [Formula: see text]-amended cultures produce N 2 O, representing up to 6% of the N-input. [Formula: see text] was shown to be the key intermediate of this production process. Upregulation in the expression of c norB1 , cnorB2, nnrS and nor

  9. Denitrifying metabolism of the methylotrophic marine bacterium Methylophaga nitratireducenticrescens strain JAM1

    Directory of Open Access Journals (Sweden)

    Florian Mauffrey

    2017-11-01

    Full Text Available Background Methylophaga nitratireducenticrescens strain JAM1 is a methylotrophic, marine bacterium that was isolated from a denitrification reactor treating a closed-circuit seawater aquarium. It can sustain growth under anoxic conditions by reducing nitrate ( ${\\mathrm{NO}}_{3}^{-}$ NO 3 − to nitrite ( ${\\mathrm{NO}}_{2}^{-}$ NO 2 − . These physiological traits are attributed to gene clusters that encode two dissimilatory nitrate reductases (Nar. Strain JAM1 also contains gene clusters encoding two nitric oxide (NO reductases and one nitrous oxide (N2O reductase, suggesting that NO and N2O can be reduced by strain JAM1. Here we characterized further the denitrifying activities of M. nitratireducenticrescens JAM1. Methods Series of oxic and anoxic cultures of strain JAM1 were performed with N2O, ${\\mathrm{NO}}_{3}^{-}$ NO 3 − or sodium nitroprusside, and growth and N2O, ${\\mathrm{NO}}_{3}^{-}$ NO 3 − , ${\\mathrm{NO}}_{2}^{-}$ NO 2 − and N2 concentrations were measured. Ammonium ( ${\\mathrm{NH}}_{4}^{+}$ NH 4 + -free cultures were also tested to assess the dynamics of N2O, ${\\mathrm{NO}}_{3}^{-}$ NO 3 − and ${\\mathrm{NO}}_{2}^{-}$ NO 2 − . Isotopic labeling of N2O was performed in 15NH4+-amended cultures. Cultures with the JAM1ΔnarG1narG2 double mutant were performed to assess the involvement of the Nar systems on N2O production. Finally, RT-qPCR was used to measure the gene expression levels of the denitrification genes cytochrome bc-type nitric oxide reductase (cnorB1 and cnorB2 and nitrous oxide reductase (nosZ, and also nnrS and norR that encode NO-sensitive regulators. Results Strain JAM1 can reduce NO to N2O and N2O to N2 and can sustain growth under anoxic conditions by reducing N2O as the sole electron acceptor. Although strain JAM1 lacks a gene encoding a dissimilatory ${\\mathrm{NO}}_{2}^{-}$ NO 2 − reductase, ${\\mathrm{NO}}_{3}^{-}$ NO 3 − -amended cultures produce N2O, representing up to 6% of the N

  10. Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments.

    Science.gov (United States)

    Küsel, K; Dorsch, T; Acker, G; Stackebrandt, E; Drake, H L

    2000-03-01

    A strictly anaerobic, H2-utilizing bacterium, strain SL1, was isolated from the sediment of an acidic coal mine pond. Cells of strain SL1 were sporulating, motile, long rods with a multilayer cell wall. Growth was observed at 5-35 degrees C and pH 3.9-7.0. Acetate was the sole end product of H2 utilization and was produced in stoichiometries indicative of an acetyl-CoA-pathway-dependent metabolism. Growth and substrate utilization also occurred with CO/CO2, vanillate, syringate, ferulate, ethanol, propanol, 1-butanol, glycerine, cellobiose, glucose, fructose, mannose, xylose, formate, lactate, pyruvate and gluconate. With most substrates, acetate was the main or sole product formed. Growth in the presence of H2/CO2 or CO/CO2 was difficult to maintain in laboratory cultures. Methoxyl, carboxyl and acrylate groups of various aromatic compounds were O-demethylated, decarboxylated and reduced, respectively. Small amounts of butyrate were produced during the fermentation of sugars. The acrylate group of ferulate was reduced. Nitrate, sulfate, thiosulfate, dimethylsulfoxide and Fe(III) were not utilized as electron acceptors. Analysis of the 16S rRNA gene sequence of strain SL1 demonstrated that it is closely related to Clostridium scatologenes (99.6% sequence similarity), an organism characterized as a fermentative anaerobe but not previously shown to be capable of acetogenic growth. Comparative experiments with C. scatologenes DSM 757T demonstrated that it utilized H2/CO2 (negligible growth), CO/CO2 (negligible growth), formate, ethanol and aromatic compounds according to stoichiometries indicative of the acetyl-CoA pathway. CO dehydrogenase, formate dehydrogenase and hydrogenase activities were present in both strain SL1 and C. scatologenes DSM 757T. These results indicate that (i) sediments of acidic coal mine ponds harbour acetogens and (ii) C. scatologenes is an acetogen that tends to lose its capacity to grow acetogenically under H2/CO2 or CO/CO2 after prolonged

  11. Nitrous Oxide Reduction by an Obligate Aerobic Bacterium, Gemmatimonas aurantiaca Strain T-27.

    Science.gov (United States)

    Park, Doyoung; Kim, Hayeon; Yoon, Sukhwan

    2017-06-15

    ,000 parts per million by volume [ppmv]). Although a large fraction of nosZ genes recovered from soil is affiliated with nosZ found in the genomes of the obligate aerobic phylum Gemmatimonadetes , N 2 O reduction has not yet been confirmed in any of these organisms. This study demonstrates that N 2 O is reduced by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27, and suggests a novel regulation mechanism for N 2 O reduction in this organism, which may also be applicable to other obligate aerobic organisms possessing nosZ genes. We expect that these findings will significantly advance the understanding of N 2 O dynamics in environments with frequent transitions between oxic and anoxic conditions. Copyright © 2017 American Society for Microbiology.

  12. Draft Genome Sequence of Bacillus aryabhattai Strain PHB10, a Poly(3-Hydroxybutyrate)-Accumulating Bacterium Isolated from Domestic Sewerage.

    Science.gov (United States)

    Balakrishna Pillai, Aneesh; Jaya Kumar, Arjun; Thulasi, Kavitha; Reghunathan, Dinesh; Prasannakumar, Manoj; Kumarapillai, Harikrishnan

    2017-10-12

    Bacillus aryabhattai PHB10 is a poly(3-hydroxybutyrate) (PHB)-accumulating bacterium isolated from domestic sewerage. Here, we report the 4.19-Mb draft genome sequence, with 4,050 protein-coding genes and a G+C content of 37.5%. This sequence will be helpful in the study of the high-level PHB accumulation mechanism of the strain. Copyright © 2017 Balakrishna Pillai et al.

  13. Growth characteristics of a strain of iron-oxidizing bacterium and its application in bioleaching of uranium ores

    International Nuclear Information System (INIS)

    Zhang Rui; Liu Yajie; Gao Feng; Xu Lingling

    2008-01-01

    05B is a strain of iron-oxidizing bacterium which separated from a uranium ore. The effect of temperature, initial pH, inoculation amount and initial total iron concentration on the strain's growth and activities in bioleaching of uranium ores are studied. The results show that the optimum growth temperature is 40-45 degree C, the optimum inoculation pH value being 1.5-1.7, the optimum initial inoculation amount being 10%-20%, and the initial total iron concentration being not more than 5 g/L. 05B is fit for leaching of low grade uranium ores. (authors)

  14. Draft Genome Sequence of the Phosphate-Solubilizing Bacterium Pseudomonas argentinensis Strain SA190 Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi; Alam, Intikhab; Geurts, Rene; Bisseling, Ton; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged

    2016-01-01

    Pseudomonas argentinensis strain SA190 is a plant endophytic-inhabiting bacterium that was isolated from root nodules of the desert plant Indigofera argentea collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of SA

  15. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40 T.

    Directory of Open Access Journals (Sweden)

    Ronald M Weiner

    2008-05-01

    Full Text Available The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40 is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment.

  16. Ralstonia syzygii, the Blood Disease Bacterium and Some Asian R. solanacearum Strains Form a Single Genomic Species Despite Divergent Lifestyles

    Science.gov (United States)

    Cellier, Gilles; Jacobs, Jonathan M.; Mangenot, Sophie; Barbe, Valérie; Lajus, Aurélie; Vallenet, David; Medigue, Claudine; Fegan, Mark; Allen, Caitilyn; Prior, Philippe

    2011-01-01

    The Ralstonia solanacearum species complex includes R. solanacearum, R. syzygii, and the Blood Disease Bacterium (BDB). All colonize plant xylem vessels and cause wilt diseases, but with significant biological differences. R. solanacearum is a soilborne bacterium that infects the roots of a broad range of plants. R. syzygii causes Sumatra disease of clove trees and is actively transmitted by cercopoid insects. BDB is also pathogenic to a single host, banana, and is transmitted by pollinating insects. Sequencing and DNA-DNA hybridization studies indicated that despite their phenotypic differences, these three plant pathogens are actually very closely related, falling into the Phylotype IV subgroup of the R. solanacearum species complex. To better understand the relationships among these bacteria, we sequenced and annotated the genomes of R. syzygii strain R24 and BDB strain R229. These genomes were compared to strain PSI07, a closely related Phylotype IV tomato isolate of R. solanacearum, and to five additional R. solanacearum genomes. Whole-genome comparisons confirmed previous phylogenetic results: the three phylotype IV strains share more and larger syntenic regions with each other than with other R. solanacearum strains. Furthermore, the genetic distances between strains, assessed by an in-silico equivalent of DNA-DNA hybridization, unambiguously showed that phylotype IV strains of BDB, R. syzygii and R. solanacearum form one genomic species. Based on these comprehensive data we propose a revision of the taxonomy of the R. solanacearum species complex. The BDB and R. syzygii genomes encoded no obvious unique metabolic capacities and contained no evidence of horizontal gene transfer from bacteria occupying similar niches. Genes specific to R. syzygii and BDB were almost all of unknown function or extrachromosomal origin. Thus, the pathogenic life-styles of these organisms are more probably due to ecological adaptation and genomic convergence during vertical

  17. Whole-Genome Sequence of the Purple Photosynthetic Bacterium Rhodovulum sulfidophilum Strain W4

    OpenAIRE

    Masuda, Shinji; Hori, Koichi; Maruyama, Fumito; Ren, Shukun; Sugimoto, Saori; Yamamoto, Nozomi; Mori, Hiroshi; Yamada, Takuji; Sato, Shusei; Tabata, Satoshi; Ohta, Hiroyuki; Kurokawa, Ken

    2013-01-01

    We report the draft genome sequence of the purple photosynthetic bacterium Rhodovulum sulfidophilum. The photosynthesis gene cluster comprises two segments?a unique feature among photosynthesis gene clusters of purple bacteria. The genome information will be useful for further analysis of bacterial photosynthesis.

  18. Draft Genome Sequence of Bacillus amyloliquefaciens EBL11, a New Strain of Plant Growth-Promoting Bacterium Isolated from Rice Rhizosphere

    Science.gov (United States)

    Wang, Yinghuan; Greenfield, Paul; Jin, Decai

    2014-01-01

    Bacillus amyloliquefaciens strain EBL11 is a bacterium that can promote plant growth by inhibiting the growth of fungi on plant surfaces and providing nutrients as a nonchemical biofertilizer. The estimated genome of this strain is 4.05 Mb in size and harbors 3,683 coding genes (CDSs). PMID:25059875

  19. Draft Genome Sequence of the Antagonistic Rhizosphere Bacterium Serratia plymuthica Strain PRI-2C

    NARCIS (Netherlands)

    Garbeva, P.; van Elsas, J.D.; de Boer, W.

    Serratia plymuthica strain PRI-2C is a rhizosphere bacterial strain with antagonistic activity against different plant pathogens. Here we present the 5.39-Mb (G+C content, 55.67%) draft genome sequence of S. plymuthica strain PRI-2C with the aim of providing insight into the genomic basis of its

  20. Analysis of the genome-wide variations among multiple strains of the plant pathogenic bacterium Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2006-09-01

    Full Text Available Abstract Background The Gram-negative, xylem-limited phytopathogenic bacterium Xylella fastidiosa is responsible for causing economically important diseases in grapevine, citrus and many other plant species. Despite its economic impact, relatively little is known about the genomic variations among strains isolated from different hosts and their influence on the population genetics of this pathogen. With the availability of genome sequence information for four strains, it is now possible to perform genome-wide analyses to identify and categorize such DNA variations and to understand their influence on strain functional divergence. Results There are 1,579 genes and 194 non-coding homologous sequences present in the genomes of all four strains, representing a 76. 2% conservation of the sequenced genome. About 60% of the X. fastidiosa unique sequences exist as tandem gene clusters of 6 or more genes. Multiple alignments identified 12,754 SNPs and 14,449 INDELs in the 1528 common genes and 20,779 SNPs and 10,075 INDELs in the 194 non-coding sequences. The average SNP frequency was 1.08 × 10-2 per base pair of DNA and the average INDEL frequency was 2.06 × 10-2 per base pair of DNA. On an average, 60.33% of the SNPs were synonymous type while 39.67% were non-synonymous type. The mutation frequency, primarily in the form of external INDELs was the main type of sequence variation. The relative similarity between the strains was discussed according to the INDEL and SNP differences. The number of genes unique to each strain were 60 (9a5c, 54 (Dixon, 83 (Ann1 and 9 (Temecula-1. A sub-set of the strain specific genes showed significant differences in terms of their codon usage and GC composition from the native genes suggesting their xenologous origin. Tandem repeat analysis of the genomic sequences of the four strains identified associations of repeat sequences with hypothetical and phage related functions. Conclusion INDELs and strain specific genes

  1. Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions.

    Science.gov (United States)

    Mnif, S; Chamkha, M; Sayadi, S

    2009-09-01

    To isolate and characterize an efficient hydrocarbon-degrading bacterium under hypersaline conditions, from a Tunisian off-shore oil field. Production water collected from 'Sercina' petroleum reservoir, located near the Kerkennah island, Tunisia, was used for the screening of halotolerant or halophilic bacteria able to degrade crude oil. Bacterial strain C2SS100 was isolated after enrichment on crude oil, in the presence of 100 g l(-1) NaCl and at 37 degrees C. This strain was aerobic, Gram-negative, rod-shaped, motile, oxidase + and catalase +. Phenotypic characters and phylogenetic analysis based on the 16S rRNA gene of the isolate C2SS100 showed that it was related to members of the Halomonas genus. The degradation of several compounds present in crude oil was confirmed by GC-MS analysis. The use of refined petroleum products such as diesel fuel and lubricating oil as sole carbon source, under the same conditions of temperature and salinity, showed that significant amounts of these heterogenic compounds could be degraded. Strain C2SS100 was able to degrade hexadecane (C16). During growth on hexadecane, cells surface hydrophobicity and emulsifying activity increased indicating the production of biosurfactant by strain C2SS100. A halotolerant bacterial strain Halomonas sp. C2SS100 was isolated from production water of an oil field, after enrichment on crude oil. This strain is able to degrade hydrocarbons efficiently. The mode of hydrocarbon uptake is realized by the production of a biosurfactant which enhances the solubility of hydrocarbons and renders them more accessible for biodegradation. The biodegradation potential of the Halomonas sp. strain C2SS100 gives it an advantage for possibly application on bioremediation of water, hydrocarbon-contaminated sites under high-salinity level.

  2. Degradation of Phenol via Phenylphosphate and Carboxylation to 4-Hydroxybenzoate by a Newly Isolated Strain of the Sulfate-Reducing Bacterium Desulfobacterium anilini▿ †

    OpenAIRE

    Ahn, Young-Beom; Chae, Jong-Chan; Zylstra, Gerben J.; Häggblom, Max M.

    2009-01-01

    A sulfate-reducing phenol-degrading bacterium, strain AK1, was isolated from a 2-bromophenol-utilizing sulfidogenic estuarine sediment enrichment culture. On the basis of phylogenetic analysis of the 16S rRNA gene and DNA homology, strain AK1 is most closely related to Desulfobacterium anilini strain Ani1 (= DSM 4660T). In addition to phenol, this organism degrades a variety of other aromatic compounds, including benzoate, 2-hydroxybenzoate, 4-hydroxybenzoate, 4-hydroxyphenylacetate, 2-aminob...

  3. The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium.

    Science.gov (United States)

    Wang, L Q; Meselhy, M R; Li, Y; Nakamura, N; Min, B S; Qin, G W; Hattori, M

    2001-12-01

    A human intestinal bacterium, Eubacterium (E.) sp. strain SDG-2, was tested for its ability to metabolize various (3R)- and (3S)-flavan-3-ols and their 3-O-gallates. This bacterium cleaved the C-ring of (3R)- and (3S)-flavan-3-ols to give 1,3-diphenylpropan-2-ol derivatives, but not their 3-O-gallates. Furthermore, E. sp. strain SDG-2 had the ability of p-dehydroxylation in the B-ring of (3R)-flavan-3-ols, such as (-)-catechin, (-)-epicatechin, (-)-gallocatechin and (-)-epigallocatechin, but not of (3S)-flavan-3-ols, such as (+)-catechin and (+)-epicatechin.

  4. Evaluation of Arthrobacter aurescens Strain TC1 as Bioaugmentation Bacterium in Soils Contaminated with the Herbicidal Substance Terbuthylazine.

    Directory of Open Access Journals (Sweden)

    Vera P Silva

    Full Text Available In the last years the chloro-s-triazine active substance terbuthylazine has been increasingly used as an herbicide and may leave residues in the environment which can be of concern. The present study aimed at developing a bioaugmentation tool based on the soil bacterium Arthrobacter aurescens strain TC1 for the remediation of terbuthylazine contaminated soils and at examining its efficacy for both soil and aquatic compartments. First, the feasibility of growing the bioaugmentation bacterium inocula on simple sole nitrogen sources (ammonium and nitrate instead of atrazine, while still maintaining its efficiency to biodegrade terbuthylazine was shown. In sequence, the successful and quick (3 days bioremediation efficacy of ammonium-grown A. aurescens TC1 cells was proven in a natural soil freshly spiked or four-months aged with commercial terbuthylazine at a dose 10× higher than the recommended in corn cultivation, to mimic spill situations. Ecotoxicity assessment of the soil eluates towards a freshwater microalga supported the effectiveness of the bioaugmentation tool. Obtained results highlight the potential to decontaminate soil while minimizing terbuthylazine from reaching aquatic compartments via the soil-water pathway. The usefulness of this bioaugmentation tool to provide rapid environment decontamination is particularly relevant in the event of accidental high herbicide contamination. Its limitations and advantages are discussed.

  5. Evaluation of Arthrobacter aurescens Strain TC1 as Bioaugmentation Bacterium in Soils Contaminated with the Herbicidal Substance Terbuthylazine

    Science.gov (United States)

    Silva, Vera P.; Moreira-Santos, Matilde; Mateus, Carla; Teixeira, Tânia; Ribeiro, Rui; Viegas, Cristina A.

    2015-01-01

    In the last years the chloro-s-triazine active substance terbuthylazine has been increasingly used as an herbicide and may leave residues in the environment which can be of concern. The present study aimed at developing a bioaugmentation tool based on the soil bacterium Arthrobacter aurescens strain TC1 for the remediation of terbuthylazine contaminated soils and at examining its efficacy for both soil and aquatic compartments. First, the feasibility of growing the bioaugmentation bacterium inocula on simple sole nitrogen sources (ammonium and nitrate) instead of atrazine, while still maintaining its efficiency to biodegrade terbuthylazine was shown. In sequence, the successful and quick (3 days) bioremediation efficacy of ammonium-grown A. aurescens TC1 cells was proven in a natural soil freshly spiked or four-months aged with commercial terbuthylazine at a dose 10× higher than the recommended in corn cultivation, to mimic spill situations. Ecotoxicity assessment of the soil eluates towards a freshwater microalga supported the effectiveness of the bioaugmentation tool. Obtained results highlight the potential to decontaminate soil while minimizing terbuthylazine from reaching aquatic compartments via the soil-water pathway. The usefulness of this bioaugmentation tool to provide rapid environment decontamination is particularly relevant in the event of accidental high herbicide contamination. Its limitations and advantages are discussed. PMID:26662024

  6. Draft Genome Sequence of Sphingopyxis sp. Strain MWB1, a Crude-Oil-Degrading Marine Bacterium

    Science.gov (United States)

    Kim, Jonghyun; Kim, Soo Jung; Kim, Seon Hee; Kim, Seung Il; Moon, Yoon-Jung; Park, Sung-Joon

    2014-01-01

    Sphingopyxis sp. strain MWB1, which is capable of degrading crude oil, diesel, and kerosene, was isolated from crude oil–contaminated seashore in Tae-an, South Korea. Here, we report the draft genome sequence of this strain, which comprises 3,118,428 bp with a G+C content of 62.85 mol%. PMID:25477411

  7. Draft genome sequence of a caprolactam degrader bacterium: Pseudomonas taiwanensis strain SJ9

    Directory of Open Access Journals (Sweden)

    Sung-Jun Hong

    Full Text Available Abstract Pseudomonas taiwanensis strain SJ9 is a caprolactam degrader, isolated from industrial wastewater in South Korea and considered to have the potential for caprolactam bioremediation. The genome of this strain is approximately 6.2 Mb (G + C content, 61.75% with 6,010 protein-coding sequences (CDS, of which 46% are assigned to recognized functional genes. This draft genome of strain SJ9 will provide insights into the genetic basis of its caprolactam-degradation ability.

  8. Draft Genome Sequence of the Sulfate-Reducing Bacterium Desulfotomaculum copahuensis Strain CINDEFI1 Isolated from the Geothermal Copahue System, Neuqu?n, Argentina

    OpenAIRE

    Willis Poratti, Graciana; Yaakop, Amira Suriaty; Chan, Chia Sing; Urbieta, M. Sof?a; Chan, Kok-Gan; Ee, Robson; Tan-Guan-Sheng, Adrian; Goh, Kian Mau; Donati, Edgardo R.

    2016-01-01

    Desulfotomaculum copahuensis strain CINDEFI1 is a novel spore-forming sulfate-reducing bacterium isolated from the Copahue volcano area, Argentina. Here, we present its draft genome in which we found genes related with the anaerobic respiration of sulfur compounds similar to those present in the Copahue environment.

  9. Draft Genome Sequence of the Sulfate-Reducing Bacterium Desulfotomaculum copahuensis Strain CINDEFI1 Isolated from the Geothermal Copahue System, Neuquén, Argentina.

    Science.gov (United States)

    Willis Poratti, Graciana; Yaakop, Amira Suriaty; Chan, Chia Sing; Urbieta, M Sofía; Chan, Kok-Gan; Ee, Robson; Tan-Guan-Sheng, Adrian; Goh, Kian Mau; Donati, Edgardo R

    2016-08-18

    Desulfotomaculum copahuensis strain CINDEFI1 is a novel spore-forming sulfate-reducing bacterium isolated from the Copahue volcano area, Argentina. Here, we present its draft genome in which we found genes related with the anaerobic respiration of sulfur compounds similar to those present in the Copahue environment. Copyright © 2016 Willis Poratti et al.

  10. Draft Genome Sequence of Aeribacillus pallidus Strain 8m3, a Thermophilic Hydrocarbon-Oxidizing Bacterium Isolated from the Dagang Oil Field (China).

    Science.gov (United States)

    Poltaraus, Andrey B; Sokolova, Diyana S; Grouzdev, Denis S; Ivanov, Timophey M; Malakho, Sophia G; Korshunova, Alena V; Rozanov, Aleksey S; Tourova, Tatiyana P; Nazina, Tamara N

    2016-06-09

    The draft genome sequence of Aeribacillus pallidus strain 8m3, a thermophilic aerobic oil-oxidizing bacterium isolated from production water from the Dagang high-temperature oil field, China, is presented here. The genome is annotated to provide insights into the genomic and phenotypic diversity of the genus Aeribacillus. Copyright © 2016 Poltaraus et al.

  11. Draft Genome Sequence of Aeribacillus pallidus Strain 8m3, a Thermophilic Hydrocarbon-Oxidizing Bacterium Isolated from the Dagang Oil Field (China)

    OpenAIRE

    Poltaraus, Andrey B.; Sokolova, Diyana S.; Grouzdev, Denis S.; Ivanov, Timophey M.; Malakho, Sophia G.; Korshunova, Alena V.; Rozanov, Aleksey S.; Tourova, Tatiyana P.; Nazina, Tamara N.

    2016-01-01

    The draft genome sequence of Aeribacillus pallidus strain 8m3, a thermophilic aerobic oil-oxidizing bacterium isolated from production water from the Dagang high-temperature oil field, China, is presented here. The genome is annotated to provide insights into the genomic and phenotypic diversity of the genus Aeribacillus.

  12. Complete Genome Sequence of Alkaliphilus metalliredigens Strain QYMF, an Alkaliphilic and Metal-Reducing Bacterium Isolated from Borax-Contaminated Leachate Ponds.

    Science.gov (United States)

    Hwang, C; Copeland, A; Lucas, S; Lapidus, A; Barry, K; Detter, J C; Glavina Del Rio, T; Hammon, N; Israni, S; Dalin, E; Tice, H; Pitluck, S; Chertkov, O; Brettin, T; Bruce, D; Han, C; Schmutz, J; Larimer, F; Land, M L; Hauser, L; Kyrpides, N; Mikhailova, N; Ye, Q; Zhou, J; Richardson, P; Fields, M W

    2016-11-03

    Alkaliphilus metalliredigens strain QYMF is an anaerobic, alkaliphilic, and metal-reducing bacterium associated with phylum Firmicutes QYMF was isolated from alkaline borax leachate ponds. The genome sequence will help elucidate the role of metal-reducing microorganisms under alkaline environments, a capability that is not commonly observed in metal respiring-microorganisms. Copyright © 2016 Hwang et al.

  13. Draft Genome Sequence of the Phosphate-Solubilizing Bacterium Pseudomonas argentinensis Strain SA190 Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi

    2016-12-23

    Pseudomonas argentinensis strain SA190 is a plant endophytic-inhabiting bacterium that was isolated from root nodules of the desert plant Indigofera argentea collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of SA190, highlighting several functional genes related to plant growth-promoting activity, environment adaption, and antifungal activity.

  14. The Lipid A from the Haloalkaliphilic Bacterium Salinivibrio sharmensis Strain BAGT

    Directory of Open Access Journals (Sweden)

    Maria Michela Corsaro

    2013-01-01

    Full Text Available Lipid A is a major constituent of the lipopolysaccharides (or endotoxins, which are complex amphiphilic macromolecules anchored in the outer membrane of Gram-negative bacteria. The glycolipid lipid A is known to possess the minimal chemical structure for LPSs endotoxic activity, able to cause septic shock. Lipid A isolated from extremophiles is interesting, since very few cases of pathogenic bacteria have been found among these microorganisms. In some cases their lipid A has shown to have an antagonist activity, i.e., it is able to interact with the immune system of the host without triggering a proinflammatory response by blocking binding of substances that could elicit such a response. However, the relationship between the structure and the activity of these molecules is far from being completely clear. A deeper knowledge of the lipid A chemical structure can help the understanding of these mechanisms. In this manuscript, we present our work on the complete structural characterization of the lipid A obtained from the lipopolysaccharides (LPS of the haloalkaliphilic bacterium Salinivibrio sharmensis. Lipid A was obtained from the purified LPS by mild acid hydrolysis. The lipid A, which contains different number of fatty acids residues, and its partially deacylated derivatives were completely characterized by means of electrospray ionization Fourier transform ion cyclotron (ESI FT-ICR mass spectrometry and chemical analysis.

  15. Complete Genome Sequence of Dietzia sp. Strain WMMA184, a Marine Coral-Associated Bacterium

    OpenAIRE

    Braun, Doug R.; Chevrette, Marc G.; Acharya, Deepa; Currie, Cameron R.; Rajski, Scott R.; Ritchie, Kim B.; Bugni, Tim S.

    2018-01-01

    ABSTRACT Dietzia sp. strain WMMA184 was isolated from the marine coral Montastraea faveolata as part of ongoing drug discovery efforts. Analysis of the 4.16-Mb genome provides information regarding interspecies interactions as it pertains to the regulation of secondary metabolism and natural product biosynthesis potential.

  16. Complete Genome Sequence of Rhodococcus sp. Strain WMMA185, a Marine Sponge-Associated Bacterium

    OpenAIRE

    Adnani, Navid; Braun, Doug R.; McDonald, Bradon R.; Chevrette, Marc G.; Currie, Cameron R.; Bugni, Tim S.

    2016-01-01

    The Rhodococcus strain WMMA185 was isolated from the marine sponge Chondrilla nucula as part of ongoing drug discovery efforts. Analysis of the 4.44-Mb genome provides information regarding interspecies interactions as pertains to regulation of secondary metabolism and natural product biosynthetic potentials.

  17. Genome sequence of the agar-degrading marine bacterium Alteromonadaceae sp. strain G7.

    Science.gov (United States)

    Kwak, Min-Jung; Song, Ju Yeon; Kim, Byung Kwon; Chi, Won-Jae; Kwon, Soon-Kyeong; Choi, Soobeom; Chang, Yong-Keun; Hong, Soon-Kwang; Kim, Jihyun F

    2012-12-01

    Here, we present the high-quality draft genome sequence of the agar-degrading marine gammaproteobacterium Alteromonadaceae sp. strain G7, which was isolated from coastal seawater to be utilized as a bioresource for production of agar-derived biofuels. The 3.91-Mb genome contains a number of genes encoding algal polysaccharide-degrading enzymes such as agarases and sulfatases.

  18. Genome Sequence of the Agar-Degrading Marine Bacterium Alteromonadaceae sp. Strain G7

    OpenAIRE

    Kwak, Min-Jung; Song, Ju Yeon; Kim, Byung Kwon; Chi, Won-Jae; Kwon, Soon-Kyeong; Choi, Soobeom; Chang, Yong-Keun; Hong, Soon-Kwang; Kim, Jihyun F.

    2012-01-01

    Here, we present the high-quality draft genome sequence of the agar-degrading marine gammaproteobacterium Alteromonadaceae sp. strain G7, which was isolated from coastal seawater to be utilized as a bioresource for production of agar-derived biofuels. The 3.91-Mb genome contains a number of genes encoding algal polysaccharide-degrading enzymes such as agarases and sulfatases.

  19. Isolation and characterization of a furfural-degrading bacterium Bacillus cereus sp. strain DS1.

    Science.gov (United States)

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Gao, Chunlei

    2015-02-01

    Furfural was found to be the main organic pollutant in the wastewater coming from the Diosgenin factory. This substance is derived from acidic pentosan in Dioscorea zingiberensis and is also found in a variety of agricultural byproducts, including corncobs, oat, wheat bran, and sawdust. It is regarded as a toxicant and an inhibitor to the growth of microorganism in both sewage disposal and biological fermentation. A furfural-degrading strain (DS1) was isolated from activated sludge of wastewater treatment plant in a diosgenin factory by continuous enrichment culture. The strain was identified as Bacillus cereus based on morphological, physiological tests, as well as on 16S rDNA sequence and Biolog analyses. The capacity of this strain to grow on a mineral salt medium, utilizing furfural as the sole carbon and energy source to degrade furfural, was investigated in this study. Under the condition of pH 9.0, temperature 35 °C, with rotating speed of 150 rpm, and an inoculum of 6 %, the strain showed that the furfural degradation capacity reaches 35 % in 7 days, as measured by high-performance liquid chromatography. The addition of inorganic carbon sources could bring down the biodegradation efficiency of the furfural. The strain DS1 showed better furfural removal capacity, as compared to other inorganic carbon sources in the media. Furthermore, a furfural concentration of as high as 4,000 mg L(-1) was tolerated by the culture. The capacity to degrade furfural was demonstrated for the first time by using the genus B. cereus. This study suggests the possible application in biodegradation strategies.

  20. Isolation and initial characterization of the tellurite reducing moderately halophilic bacterium, Salinicoccus sp. strain QW6.

    Science.gov (United States)

    Amoozegar, Mohammad Ali; Ashengroph, Morahem; Malekzadeh, Feridon; Reza Razavi, Mohamad; Naddaf, Saied; Kabiri, Mahboubeh

    2008-01-01

    Among the 49 strains of moderately halophilic bacteria isolated from the salty environments of Iran, a Gram-positive coccus designated as strain QW6 showed high capacity in the removal of toxic oxyanions of tellurium in a wide range of culture medium factors including pH (5.5-10.5), temperature (25-45 degrees C), various salts including NaCl, KCl, and Na(2)SO(4) (0.5-4 M), selenooxyanions (2-10 mM), and at different concentrations of potassium tellurite (0.5-1 mM) under aerobic condition. Phenotypic characterization and phylogenetic analyses based on 16S rDNA sequence comparisons indicated that this strain was a member of the genus Salinicoccus. The maximum tellurite removal was exhibited in 1.5M NaCl at 35 degrees C, while the activity reduced by 53% and 47% at 25 and 45 degrees C, respectively. The optimum pH for removal activity was shown to be 7.5, with 90% and 83% reduced removal capacities at the two extreme values of 5.5 and 10, respectively. The impact of different concentrations of selenooxyanions (2-10 mM) on tellurite removal by strain QW6 was evaluated. The ability of strain QW6 in the removal of tellurite in the presence of 6mM selenite increased by 25%. The concentration of toxic potassium tellurite in the supernatant of the bacterial culture medium decreased by 99% (from 0.5 to 0.005 mM) after 6 days and the color of the medium changed to black due to the formation of less toxic elemental tellurium.

  1. Isolation and characterization of two cryptic plasmids in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11.

    Science.gov (United States)

    Yamagata, A; Kato, J; Hirota, R; Kuroda, A; Ikeda, T; Takiguchi, N; Ohtake, H

    1999-06-01

    Two plasmids were discovered in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11, which was isolated from activated sludge. The plasmids, designated pAYS and pAYL, were relatively small, being approximately 1.9 kb long. They were cryptic plasmids, having no detectable plasmid-linked antibiotic resistance or heavy metal resistance markers. The complete nucleotide sequences of pAYS and pAYL were determined, and their physical maps were constructed. There existed two major open reading frames, ORF1 in pAYS and ORF2 in pAYL, each of which was more than 500 bp long. The predicted product of ORF2 was 28% identical to part of the replication protein of a Bacillus plasmid, pBAA1. However, no significant similarity to any known protein sequences was detected with the predicted product of ORF1. pAYS and pAYL had a highly homologous region, designated HHR, of 262 bp. The overall identity was 98% between the two nucleotide sequences. Interestingly, HHR-homologous sequences were also detected in the genomes of ENI-11 and the plasmidless strain Nitrosomonas europaea IFO14298. Deletion analysis of pAYS and pAYL indicated that HHR, together with either ORF1 or ORF2, was essential for plasmid maintenance in ENI-11. To our knowledge, pAYS and pAYL are the first plasmids found in the ammonia-oxidizing autotrophic bacteria.

  2. Formation of Highly Twisted Ribbons in a Carboxymethylcellulase Gene-Disrupted Strain of a Cellulose-Producing Bacterium

    Science.gov (United States)

    Sugano, Yasushi; Shoda, Makoto; Sakakibara, Hitoshi; Oiwa, Kazuhiro; Tuzi, Satoru; Imai, Tomoya; Sugiyama, Junji; Takeuchi, Miyuki; Yamauchi, Daisuke

    2013-01-01

    Cellulases are enzymes that normally digest cellulose; however, some are known to play essential roles in cellulose biosynthesis. Although some endogenous cellulases of plants and cellulose-producing bacteria are reportedly involved in cellulose production, their functions in cellulose production are unknown. In this study, we demonstrated that disruption of the cellulase (carboxymethylcellulase) gene causes irregular packing of de novo-synthesized fibrils in Gluconacetobacter xylinus, a cellulose-producing bacterium. Cellulose production was remarkably reduced and small amounts of particulate material were accumulated in the culture of a cmcax-disrupted G. xylinus strain (F2-2). The particulate material was shown to contain cellulose by both solid-state 13C nuclear magnetic resonance analysis and Fourier transform infrared spectroscopy analysis. Electron microscopy revealed that the cellulose fibrils produced by the F2-2 cells were highly twisted compared with those produced by control cells. This hypertwisting of the fibrils may reduce cellulose synthesis in the F2-2 strains. PMID:23243308

  3. Does S-metolachlor affect the performance of Pseudomonas sp. strain ADP as bioaugmentation bacterium for atrazine-contaminated soils?

    Directory of Open Access Journals (Sweden)

    Cristina A Viegas

    Full Text Available Atrazine (ATZ and S-metolachlor (S-MET are two herbicides widely used, often as mixtures. The present work examined whether the presence of S-MET affects the ATZ-biodegradation activity of the bioaugmentation bacterium Pseudomonas sp. strain ADP in a crop soil. S-MET concentrations were selected for their relevance in worst-case scenarios of soil contamination by a commercial formulation containing both herbicides. At concentrations representative of application of high doses of the formulation (up to 50 µg g(-1 of soil, corresponding to a dose approximately 50× higher than the recommended field dose (RD, the presence of pure S-MET significantly affected neither bacteria survival (~10(7 initial viable cells g(-1 of soil nor its ATZ-mineralization activity. Consistently, biodegradation experiments, in larger soil microcosms spiked with 20× or 50 × RD of the double formulation and inoculated with the bacterium, revealed ATZ to be rapidly (in up to 5 days and extensively (>96% removed from the soil. During the 5 days, concentration of S-MET decreased moderately to about 60% of the initial, both in inoculated and non-inoculated microcosms. Concomitantly, an accumulation of the two metabolites S-MET ethanesulfonic acid and S-MET oxanilic acid was found. Despite the dissipation of almost all the ATZ from the treated soils, the respective eluates were still highly toxic to an aquatic microalgae species, being as toxic as those from the untreated soil. We suggest that this high toxicity may be due to the S-MET and/or its metabolites remaining in the soil.

  4. Draft genome sequence of Paraburkholderia tropica Ppe8 strain, a sugarcane endophytic diazotrophic bacterium.

    Science.gov (United States)

    Silva, Paula Renata Alves da; Simões-Araújo, Jean Luiz; Vidal, Márcia Soares; Cruz, Leonardo Magalhães; Souza, Emanuel Maltempi de; Baldani, José Ivo

    Paraburkholderia tropica (syn Burkholderia tropica) are nitrogen-fixing bacteria commonly found in sugarcane. The Paraburkholderia tropica strain Ppe8 is part of the sugarcane inoculant consortium that has a beneficial effect on yield. Here, we report a draft genome sequence of this strain elucidating the mechanisms involved in its interaction mainly with Poaceae. A genome size of approximately 8.75Mb containing 7844 protein coding genes distributed in 526 subsystems was de novo assembled with ABySS and annotated by RAST. Genes related to the nitrogen fixation process, the secretion systems (I, II, III, IV, and VI), and related to a variety of metabolic traits, such as metabolism of carbohydrates, amino acids, vitamins, and proteins, were detected, suggesting a broad metabolic capacity and possible adaptation to plant association. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2.

    Science.gov (United States)

    Amoozegar, Mohammad Ali; Salehghamari, Ensieh; Khajeh, Khosro; Kabiri, Mahbube; Naddaf, Saied

    2008-06-01

    Fifty strains of moderately halophilic bacteria were isolated from various salty environments in Iran. A strain designated as SA-2 was shown to be the best producer of extracellular lipase and was selected for further studies. Biochemical and physiological characterization along with 16S rDNA sequence analysis placed SA-2 in the genus Salinivibrio. The optimum salt, pH, temperature and aeration for enzyme production were 0.1 M KCl, pH 8, 35 degrees C and 150 rpm, respectively. The enzyme production was synchronized bacterial growth and reached a maximum level during the early-stationary phase in the basal medium containing 1 M NaCl. Triacylglycerols enhanced lipase production, while carbohydrates had inhibitory effects on it. The maximum lipase activity was obtained at pH 7.5, 50 degrees C and CaCl(2) concentration of 0.01 M. The enzyme was stable at pH range of 7.5-8 and retained 90% of its activity at 80 degrees C for 30 min. Different concentrations of NaNO(3), Na(2)SO(4), KCl and NaCl had no affect on lipase stability for 3 h. These results suggest that the lipase secreted by Salinivibrio sp. strain SA-2 is industrially important from the perspective of its tolerance to a broad temperature range, its moderate thermoactivity and its high tolerance to a wide range of salt concentrations (0-3 M NaCl).

  6. A Cyanide-Induced 3-Cyanoalanine Nitrilase in the Cyanide-Assimilating Bacterium Pseudomonas pseudoalcaligenes Strain CECT 5344.

    Science.gov (United States)

    Acera, Felipe; Carmona, María Isabel; Castillo, Francisco; Quesada, Alberto; Blasco, Rafael

    2017-05-01

    Pseudomonas pseudoalcaligenes CECT 5344 is a bacterium able to assimilate cyanide as a sole nitrogen source. Under this growth condition, a 3-cyanoalanine nitrilase enzymatic activity was induced. This activity was encoded by nit4 , one of the four nitrilase genes detected in the genome of this bacterium, and its expression in Escherichia coli enabled the recombinant strain to fully assimilate 3-cyanoalanine. P. pseudoalcaligenes CECT 5344 showed a weak growth level with 3-cyanoalanine as the N source, unless KCN was also added. Moreover, a nit4 knockout mutant of P. pseudoalcaligenes CECT 5344 became severely impaired in its ability to grow with 3-cyanoalanine and cyanide as nitrogen sources. The native enzyme expressed in E. coli was purified up to electrophoretic homogeneity and biochemically characterized. Nit4 seems to be specific for 3-cyanoalanine, and the amount of ammonium derived from the enzymatic activity doubled in the presence of exogenously added asparaginase activity, which demonstrated that the Nit4 enzyme had both 3-cyanoalanine nitrilase and hydratase activities. The nit4 gene is located downstream of the cyanide resistance transcriptional unit containing cio1 genes, whose expression levels are under the positive control of cyanide. Real-time PCR experiments revealed that nit4 expression was also positively regulated by cyanide in both minimal and LB media. These results suggest that this gene cluster including cio1 and nit4 could be involved both in cyanide resistance and in its assimilation by P. pseudoalcaligenes CECT 5344. IMPORTANCE Cyanide is a highly toxic molecule present in some industrial wastes due to its application in several manufacturing processes, such as gold mining and the electroplating industry. The biodegradation of cyanide from contaminated wastes could be an attractive alternative to physicochemical treatment. P. pseudoalcaligenes CECT 5344 is a bacterial strain able to assimilate cyanide under alkaline conditions, thus

  7. Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica

    Science.gov (United States)

    2013-01-01

    Background The use of microorganisms in the synthesis of nanoparticles emerges as an eco-friendly and exciting approach, for production of nanoparticles due to its low energy requirement, environmental compatibility, reduced costs of manufacture, scalability, and nanoparticle stabilization compared with the chemical synthesis. Results The production of gold nanoparticles by the thermophilic bacterium Geobacillus sp. strain ID17 is reported in this study. Cells exposed to Au3+ turned from colourless into an intense purple colour. This change of colour indicates the accumulation of intracellular gold nanoparticles. Elemental analysis of particles composition was verified using TEM and EDX analysis. The intracellular localization and particles size were verified by TEM showing two different types of particles of predominant quasi-hexagonal shape with size ranging from 5–50 nm. The mayority of them were between 10‒20 nm in size. FT-IR was utilized to characterize the chemical surface of gold nanoparticles. This assay supports the idea of a protein type of compound on the surface of biosynthesized gold nanoparticles. Reductase activity involved in the synthesis of gold nanoparticles has been previously reported to be present in others microorganisms. This reduction using NADH as substrate was tested in ID17. Crude extracts of the microorganism could catalyze the NADH-dependent Au3+ reduction. Conclusions Our results strongly suggest that the biosynthesis of gold nanoparticles by ID17 is mediated by enzymes and NADH as a cofactor for this biological transformation. PMID:23919572

  8. Extracellular Pectinase from a Novel Bacterium Chryseobacterium indologenes Strain SD and Its Application in Fruit Juice Clarification

    Directory of Open Access Journals (Sweden)

    Karabi Roy

    2018-01-01

    Full Text Available Pectinase is one of the important enzymes of industrial sectors. Presently, most of the pectinases are of plant origin but there are only a few reports on bacterial pectinases. The aim of the present study was to isolate a novel and potential pectinase producing bacterium as well as optimization of its various parameters for maximum enzyme production. A total of forty bacterial isolates were isolated from vegetable dump waste soil using standard plate count methods. Primary screening was done by hydrolysis of pectin. Pectinase activity was determined by measuring the increase in reducing sugar formed by the enzymatic hydrolysis of pectin. Among the bacterial isolates, the isolate K6 exhibited higher pectinase activity in broth medium and was selected for further studies. The selected bacterial isolate K6 was identified as Chryseobacterium indologenes strain SD. The isolate was found to produce maximum pectinase at 37°C with pH 7.5 upon incubation for 72 hours, while cultured in production medium containing citrus pectin and yeast extract as C and N sources, respectively. During enzyme-substrate reaction phase, the enzyme exhibited its best activity at pH of 8.0 and temperature of 40°C using citrus pectin as substrate. The pectinase of the isolate showed potentiality on different types of fruit juice clarification.

  9. [Development of a liquid fermentation system and encystment for a nitrogen-fixing bacterium strain having biofertilizer potential].

    Science.gov (United States)

    Camelo-Rusinque, Mauricio; Moreno-Galván, Andrés; Romero-Perdomo, Felipe; Bonilla-Buitrago, Ruth

    The indiscriminate use of chemical fertilizers has contributed to the deterioration of the biological, physical and chemical properties of the soil, resulting in the loss of its productive capacity. For this reason, the use of biofertilizers has emerged as a technological alternative. The objective of this research was to develop a suitable liquid fermentation system and encystment for the multiplication of Azotobacter chroococcum AC1 strain, a bacterium employed in a biofertilizer formulation produced at present by CARPOICA, Colombia. Sequential statistical designs were used to determine the conditions in the fermentation system. The interaction between agitation, aeration and pH was evaluated on the viable biomass (CFU/ml) of AC1. In addition, the encystment ability of the strain was evaluated using two encystment agents and the potential plant growth-promoting rhizobacteria (PGPR) activity was assessed by different techniques, such as nitrogen fixation by ARA, phosphate solubilization by the phospho-molybdenum-blue reaction and indolic compound production by colorimetric reaction using the Salkowski reagent. Results showed significant effects (p<0.05) on the viable biomass in the three conditions (pH, aeration and agitation) tested individually, in one dual interaction and one tripartite interaction, were demonstrated to have a positive effect on the response variable aeration and agitation. The addition of the two encystment agents evaluated, AE01 and AE02, demonstrated the ability of AC1 to form cysts under stress conditions. Likewise, fermentation and encystment conditions did not affect the biological activities tested. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Genome sequence of the photoarsenotrophic bacterium Ectothiorhodospira sp. strain BSL-9, isolated from a hypersaline alkaline arsenic-rich extreme environment

    Science.gov (United States)

    Hernandez-Maldonado, Jaime; Stoneburner, Brendon; Boren, Alison; Miller, Laurence; Rosen, Michael R.; Oremland, Ronald S.; Saltikov, Chad W

    2016-01-01

    The full genome sequence of Ectothiorhodospira sp. strain BSL-9 is reported here. This purple sulfur bacterium encodes an arxA-type arsenite oxidase within the arxB2AB1CD gene island and is capable of carrying out “photoarsenotrophy” anoxygenic photosynthetic arsenite oxidation. Its genome is composed of 3.5 Mb and has approximately 63% G+C content.

  11. Genome sequence of the pink-pigmented marine bacterium Loktanella hongkongensis type strain (UST950701-009P(T)), a representative of the Roseobacter group.

    Science.gov (United States)

    Lau, Stanley Ck; Riedel, Thomas; Fiebig, Anne; Han, James; Huntemann, Marcel; Petersen, Jörn; Ivanova, Natalia N; Markowitz, Victor; Woyke, Tanja; Göker, Markus; Kyrpides, Nikos C; Klenk, Hans-Peter; Qian, Pei-Yuan

    2015-01-01

    Loktanella hongkongensis UST950701-009P(T) is a Gram-negative, non-motile and rod-shaped bacterium isolated from a marine biofilm in the subtropical seawater of Hong Kong. When growing as a monospecies biofilm on polystyrene surfaces, this bacterium is able to induce larval settlement and metamorphosis of a ubiquitous polychaete tubeworm Hydroides elegans. The inductive cues are low-molecular weight compounds bound to the exopolymeric matrix of the bacterial cells. In the present study we describe the features of L. hongkongensis strain DSM 17492(T) together with its genome sequence and annotation and novel aspects of its phenotype. The 3,198,444 bp long genome sequence encodes 3104 protein-coding genes and 57 RNA genes. The two unambiguously identified extrachromosomal replicons contain replication modules of the RepB and the Rhodobacteraceae-specific DnaA-like type, respectively.

  12. Draft Genome Sequence of the Soil Bacterium Burkholderia terrae Strain BS001, Which Interacts with Fungal Surface Structures

    DEFF Research Database (Denmark)

    Nazir, Rashid; Hansen, Martin A.; Sorensen, Soren

    2012-01-01

    Burkholderia terrae BS001 is a soil bacterium which was originally isolated from the mycosphere of the ectomycorrhizal fungus Laccaria proxima. It exhibits a range of fungus-interacting traits which reveal its propensity to actively interact at fungal interfaces. Here, we present the approximately...

  13. Degradation of phenol via phenylphosphate and carboxylation to 4-hydroxybenzoate by a newly isolated strain of the sulfate-reducing bacterium Desulfobacterium anilini.

    Science.gov (United States)

    Ahn, Young-Beom; Chae, Jong-Chan; Zylstra, Gerben J; Häggblom, Max M

    2009-07-01

    A sulfate-reducing phenol-degrading bacterium, strain AK1, was isolated from a 2-bromophenol-utilizing sulfidogenic estuarine sediment enrichment culture. On the basis of phylogenetic analysis of the 16S rRNA gene and DNA homology, strain AK1 is most closely related to Desulfobacterium anilini strain Ani1 (= DSM 4660(T)). In addition to phenol, this organism degrades a variety of other aromatic compounds, including benzoate, 2-hydroxybenzoate, 4-hydroxybenzoate, 4-hydroxyphenylacetate, 2-aminobenzoate, 2-fluorophenol, and 2-fluorobenzoate, but it does not degrade aniline, 3-hydroxybenzoate, 4-cyanophenol, 2,4-dihydroxybenzoate, monohalogenated phenols, or monohalogenated benzoates. Growth with sulfate as an electron acceptor occurred with acetate and pyruvate but not with citrate, propionate, butyrate, lactate, glucose, or succinate. Strain AK1 is able to use sulfate, sulfite, and thiosulfate as electron acceptors. A putative phenylphosphate synthase gene responsible for anaerobic phenol degradation was identified in strain AK1. In phenol-grown cultures inducible expression of the ppsA gene was verified by reverse transcriptase PCR, and 4-hydroxybenzoate was detected as an intermediate. These results suggest that the pathway for anaerobic degradation of phenol in D. anilini strain AK1 proceeds via phosphorylation of phenol to phenylphosphate, followed by carboxylation to 4-hydroxybenzoate. The details concerning such reaction pathways in sulfidogenic bacteria have not been characterized previously.

  14. Draft Genome Sequence of Cupriavidus pauculus Strain KF709, a Biphenyl-Utilizing Bacterium Isolated from Biphenyl-Contaminated Soil.

    Science.gov (United States)

    Watanabe, Takahito; Yamazoe, Atsushi; Hosoyama, Akira; Fujihara, Hidehiko; Suenaga, Hikaru; Hirose, Jun; Futagami, Taiki; Goto, Masatoshi; Kimura, Nobutada; Furukawa, Kensuke

    2015-03-26

    We report the draft genome sequence of Cupriavidus pauculus strain KF709, which comprises 6,826,799 bp with 6,272 coding sequences. The strain KF709 utilizes biphenyl and degrades low-chlorinated biphenyls; however, it possesses fewer coding sequences involved in the degradation of aromatic compounds than other strains belonging to the Betaproteobacteria. Copyright © 2015 Watanabe et al.

  15. Draft Genome Sequence of Cupriavidus pauculus Strain KF709, a Biphenyl-Utilizing Bacterium Isolated from Biphenyl-Contaminated Soil

    OpenAIRE

    Watanabe, Takahito; Yamazoe, Atsushi; Hosoyama, Akira; Fujihara, Hidehiko; Suenaga, Hikaru; Hirose, Jun; Futagami, Taiki; Goto, Masatoshi; Kimura, Nobutada; Furukawa, Kensuke

    2015-01-01

    We report the draft genome sequence of Cupriavidus pauculus strain KF709, which comprises 6,826,799 bp with 6,272 coding sequences. The strain KF709 utilizes biphenyl and degrades low-chlorinated biphenyls; however, it possesses fewer coding sequences involved in the degradation of aromatic compounds than other strains belonging to the Betaproteobacteria.

  16. Draft Genome Sequence of Halomonas elongata Strain K4, an Endophytic Growth-Promoting Bacterium Enhancing Salinity Tolerance In Planta

    KAUST Repository

    Lafi, Feras Fawzi

    2016-11-04

    Halomonas elongata strain K4 is an endophytic bacterial strain that was isolated from roots of Cyperus conglomeratus collected at the Red Sea coast in Thuwal, Saudi Arabia. Here, we present a draft genome sequence of this strain, highlighting a number of pathways involved in plant growth promotion under salt stress.

  17. Draft Genome Sequence of Halomonas elongata Strain K4, an Endophytic Growth-Promoting Bacterium Enhancing Salinity Tolerance In Planta

    KAUST Repository

    Lafi, Feras Fawzi; Ramirez Prado, Juan Sebastian; Alam, Intikhab; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged

    2016-01-01

    Halomonas elongata strain K4 is an endophytic bacterial strain that was isolated from roots of Cyperus conglomeratus collected at the Red Sea coast in Thuwal, Saudi Arabia. Here, we present a draft genome sequence of this strain, highlighting a number of pathways involved in plant growth promotion under salt stress.

  18. Genome Sequence of Aeribacillus pallidus Strain GS3372, an Endospore-Forming Bacterium Isolated in a Deep Geothermal Reservoir

    OpenAIRE

    Sevasti Filippidou; Marion Jaussi; Thomas Junier; Tina Wunderlin; Nicole Jeanneret; Simona Regenspurg; Po-E Li; Chien-Chi Lo; Shannon Johnson; Kim McMurry; Cheryl D. Gleasner; Momchilo Vuyisich; Patrick S. Chain; Pilar Junier

    2015-01-01

    The genome of strain GS3372 is the first publicly available strain of Aeribacillus pallidus. This endospore-forming thermophilic strain was isolated from a deep geothermal reservoir. The availability of this genome can contribute to the clarification of the taxonomy of the closely related Anoxybacillus, Geobacillus, and Aeribacillus genera.

  19. Genome Sequence of Aeribacillus pallidus Strain GS3372, an Endospore-Forming Bacterium Isolated in a Deep Geothermal Reservoir.

    Science.gov (United States)

    Filippidou, Sevasti; Jaussi, Marion; Junier, Thomas; Wunderlin, Tina; Jeanneret, Nicole; Regenspurg, Simona; Li, Po-E; Lo, Chien-Chi; Johnson, Shannon; McMurry, Kim; Gleasner, Cheryl D; Vuyisich, Momchilo; Chain, Patrick S; Junier, Pilar

    2015-08-27

    The genome of strain GS3372 is the first publicly available strain of Aeribacillus pallidus. This endospore-forming thermophilic strain was isolated from a deep geothermal reservoir. The availability of this genome can contribute to the clarification of the taxonomy of the closely related Anoxybacillus, Geobacillus, and Aeribacillus genera. Copyright © 2015 Filippidou et al.

  20. Effect of cell immobilization on the treatment of olive mill wastewater by a total phenols, acetic acid and formic acid degrading bacterium strain

    Directory of Open Access Journals (Sweden)

    Errami, Mohamed

    2005-06-01

    Full Text Available Olive mill wastewater (OMW is a pure vegetative by-product, containing a high organic and polyphenol content and is resistant to biodegradation. Its disposal lead to major environmental pollution problems in the Mediterranean basin. An aerobic bacterium was isolated from OMW. During three consecutive diluted and supplemented OMW treatment cycles, significant abatement of its phytotoxic substances was observed. In fact, total phenols, acetic and formic acids were reduced between 33 and 64 % when cells of the isolated bacterium were grown free; and between 62 and 78 % when cells of the same isolated bacterium were grown immobilized in a polyurethane sponge. These results suggest that the bacterium culture of the new isolate would decrease the OMW phytotoxicity. Phylogenetic analysis of 16S ribosomal DNA showed that all the related sequences are members of the Enterobacteriaceae family and revealed that the isolated bacterium was characterized as a Klebsiella oxytoca strain.El alpechín (OMW es un residuo puro de la extracción del aceite de oliva, que contiene una elevada carga orgánica y de polifenoles por lo que es resistente a la degradación. Su descarga produce graves problemas de contaminación medioambiental en toda el área mediterránea. Se ha aislado una bacteria anaerobia del OMW, que , durante tres ciclos consecutivos de tratamiento del OMW diluido y suplementado, produjo una disminución significativa de las sustancias fitotóxicas del residuo. De hecho, la concentración en fenoles totales, ácido acético y ácido fórmico se redujeron entre 33 y 64 % cuando las células no estaban inmovilizadas y entre el 62 y 78 % cuando las células bacterianas se inmovilizaron en una esponja de poliuretano. Estos resultados indican que el cultivo de la nueva bacteria aislada puede disminuir la fototoxicidad del alpechín. Análisis filogenético del ribosoma 16S de DNA demostró que todas las secuencias eran miembros de la familia

  1. Draft genome sequence of Agrobacterium sp. strain R89-1, a morphine alkaloid-biotransforming bacterium

    Czech Academy of Sciences Publication Activity Database

    Zahradník, Jiří; Kyslíková, Eva; Kyslík, Pavel

    2016-01-01

    Roč. 4, č. 2 (2016), e00196-16 ISSN 2169-8287 Institutional support: RVO:61388971 Keywords : Agrobacterium sp. strain R89-1 * codeine/morphine * phylogenetic lineage Subject RIV: EE - Microbiology, Virology

  2. Genome Sequence of Vibrio campbellii Strain UMTGB204, a Marine Bacterium Isolated from a Green Barrel Tunicate

    Science.gov (United States)

    Gan, Huan You; Noor, Mohd Ezhar Mohd; Saari, Nur Azna; Musa, Najiah; Mustapha, Baharim; Usup, Gires

    2015-01-01

    Vibrio campbellii strain UMTGB204 was isolated from a green barrel tunicate. The genome of this strain comprises 5,652,224 bp with 5,014 open reading frames, 9 rRNAs, and 116 tRNAs. It contains genes related to virulence and environmental tolerance. Gene clusters for the biosynthesis of nonribosomal peptides and bacteriocin were also identified. PMID:25814609

  3. Genome sequence of Ochrobactrum anthropi strain SUBG007, a plant pathogen and potential xenobiotic compounds degradation bacterium

    Directory of Open Access Journals (Sweden)

    Kiran S. Chudasama

    2017-03-01

    Full Text Available Ochrobactrum anthropi SUBG007 was isolated from the fruit of Prunus dulcis in Rajkot (22.30°N, 70.78°E, Gujarat, India. Here we present the 4.37 Mb genome sequence strain SUBG007, which may provide the genetic information for the application in environment pollution degradation and agriculture field. The strain also posses many genes cluster which involved in production of important secondary metabolites. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession LUAY00000000.

  4. Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan

    2011-01-01

    , representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying...... the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from...

  5. High genetic diversity among strains of the unindustrialized lactic acid bacterium Carnobacterium maltaromaticum in dairy products as revealed by multilocus sequence typing.

    Science.gov (United States)

    Rahman, Abdur; Cailliez-Grimal, Catherine; Bontemps, Cyril; Payot, Sophie; Chaillou, Stéphane; Revol-Junelles, Anne-Marie; Borges, Frédéric

    2014-07-01

    Dairy products are colonized with three main classes of lactic acid bacteria (LAB): opportunistic bacteria, traditional starters, and industrial starters. Most of the population structure studies were previously performed with LAB species belonging to these three classes and give interesting knowledge about the population structure of LAB at the stage where they are already industrialized. However, these studies give little information about the population structure of LAB prior their use as an industrial starter. Carnobacterium maltaromaticum is a LAB colonizing diverse environments, including dairy products. Since this bacterium was discovered relatively recently, it is not yet commercialized as an industrial starter, which makes C. maltaromaticum an interesting model for the study of unindustrialized LAB population structure in dairy products. A multilocus sequence typing scheme based on an analysis of fragments of the genes dapE, ddlA, glpQ, ilvE, pyc, pyrE, and leuS was applied to a collection of 47 strains, including 28 strains isolated from dairy products. The scheme allowed detecting 36 sequence types with a discriminatory index of 0.98. The whole population was clustered in four deeply branched lineages, in which the dairy strains were spread. Moreover, the dairy strains could exhibit a high diversity within these lineages, leading to an overall dairy population with a diversity level as high as that of the nondairy population. These results are in agreement with the hypothesis according to which the industrialization of LAB leads to a diversity reduction in dairy products. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Biological consequences of ancient gene acquisition and duplication in the large genome soil bacterium, ""solibacter usitatus"" strain Ellin6076

    Energy Technology Data Exchange (ETDEWEB)

    Challacombe, Jean F [Los Alamos National Laboratory; Eichorst, Stephanie A [Los Alamos National Laboratory; Xie, Gary [Los Alamos National Laboratory; Kuske, Cheryl R [Los Alamos National Laboratory; Hauser, Loren [ORNL; Land, Miriam [ORNL

    2009-01-01

    Bacterial genome sizes range from ca. 0.5 to 10Mb and are influenced by gene duplication, horizontal gene transfer, gene loss and other evolutionary processes. Sequenced genomes of strains in the phylum Acidobacteria revealed that 'Solibacter usistatus' strain Ellin6076 harbors a 9.9 Mb genome. This large genome appears to have arisen by horizontal gene transfer via ancient bacteriophage and plasmid-mediated transduction, as well as widespread small-scale gene duplications. This has resulted in an increased number of paralogs that are potentially ecologically important (ecoparalogs). Low amino acid sequence identities among functional group members and lack of conserved gene order and orientation in the regions containing similar groups of paralogs suggest that most of the paralogs were not the result of recent duplication events. The genome sizes of cultured subdivision 1 and 3 strains in the phylum Acidobacteria were estimated using pulsed-field gel electrophoresis to determine the prevalence of the large genome trait within the phylum. Members of subdivision 1 were estimated to have smaller genome sizes ranging from ca. 2.0 to 4.8 Mb, whereas members of subdivision 3 had slightly larger genomes, from ca. 5.8 to 9.9 Mb. It is hypothesized that the large genome of strain Ellin6076 encodes traits that provide a selective metabolic, defensive and regulatory advantage in the variable soil environment.

  7. Antifouling Activity towards Mussel by Small-Molecule Compounds from a Strain of Vibrio alginolyticus Bacterium Associated with Sea Anemone Haliplanella sp.

    Science.gov (United States)

    Wang, Xiang; Huang, Yanqiu; Sheng, Yanqing; Su, Pei; Qiu, Yan; Ke, Caihuan; Feng, Danqing

    2017-03-28

    Mussels are major fouling organisms causing serious technical and economic problems. In this study, antifouling activity towards mussel was found in three compounds isolated from a marine bacterium associated with the sea anemone Haliplanella sp. This bacterial strain, called PE2, was identified as Vibrio alginolyticus using morphology, biochemical tests, and phylogenetic analysis based on sequences of 16S rRNA and four housekeeping genes ( rpoD, gyrB, rctB, and toxR ). Three small-molecule compounds (indole, 3-formylindole, and cyclo (Pro-Leu)) were purified from the ethyl acetate extract of V. alginolyticus PE2 using column chromatography techniques. They all significantly inhibited byssal thread production of the green mussel Perna viridis , with EC 50 values of 24.45 μg/ml for indole, 50.07 μg/ml for 3-formylindole, and 49.24 μg/ml for cyclo (Pro-Leu). Previous research on the antifouling activity of metabolites from marine bacteria towards mussels is scarce. Indole, 3-formylindole and cyclo (Pro-Leu) also exhibited antifouling activity against settlement of the barnacle Balanus albicostatus (EC 50 values of 8.84, 0.43, and 11.35 μg/ml, respectively) and the marine bacterium Pseudomonas sp. (EC 50 values of 42.68, 69.68, and 39.05 μg/ml, respectively). These results suggested that the three compounds are potentially useful for environmentally friendly mussel control and/or the development of new antifouling additives that are effective against several biofoulers.

  8. Genome sequence of the moderately halophilic bacterium Salinicoccus carnicancri type strain Crm(T) (= DSM 23852(T)).

    Science.gov (United States)

    Hyun, Dong-Wook; Whon, Tae Woong; Cho, Yong-Joon; Chun, Jongsik; Kim, Min-Soo; Jung, Mi-Ja; Shin, Na-Ri; Kim, Joon-Yong; Kim, Pil Soo; Yun, Ji-Hyun; Lee, Jina; Oh, Sei Joon; Bae, Jin-Woo

    2013-01-01

    Salinicoccus carnicancri Jung et al. 2010 belongs to the genus Salinicoccus in the family Staphylococcaceae. Members of the Salinicoccus are moderately halophilic and originate from various salty environments. The halophilic features of the Salinicoccus suggest their possible uses in biotechnological applications, such as biodegradation and fermented food production. However, the genus Salinicoccus is poorly characterized at the genome level, despite its potential importance. This study presents the draft genome sequence of S. carnicancri strain Crm(T) and its annotation. The 2,673,309 base pair genome contained 2,700 protein-coding genes and 78 RNA genes with an average G+C content of 47.93 mol%. It was notable that the strain carried 72 predicted genes associated with osmoregulation, which suggests the presence of beneficial functions that facilitate growth in high-salt environments.

  9. Draft genome sequence of an endophytic bacterium, Paenibacillus tyrfis strain SUK123, isolated from Santiria apiculata stem

    Directory of Open Access Journals (Sweden)

    Emmanuel Haruna

    2017-12-01

    Full Text Available Here we report the draft genome sequence of an endophytic Paenibacillus tyrfis strain isolated from the Universiti Kebangsaan Malaysia reserve forest, Malaysia. The genome size was approximately 8.04 Mb, and the assembly consisted of 107 scaffolds with 168 contigs, and had a G + C content of 53%. Phylogenetic analysis of strain SUK123 using the 16S rRNA gene revealed that it belonged to the family Paenibacillaceae with the highest similarity to Paenibacillus elgii SDT (99%. Whole genome comparison of SUK123 with related species using average nucleotide identity (ANI analysis revealed a similarity of 98% to Paenibacillus tyrfis Mst1T, 94% to Paenibacillus elgii B69T, 91% to Paenibacillus ehimensis A2T, 68% to Paenibacillus polymyxa SC2T and 69% to Paenibacillus alvei DMS29T. The draft genome was deposited at the European Nucleotide Archive (PRJEB21373.

  10. Isolation of a halophilic bacterium, Bacillus sp. strain NY-6 for organic contaminants removal in saline wastewater on ship

    Science.gov (United States)

    Gao, Jie; Yu, Zhenjiang; Zhang, Xiaohui; Zhao, Dan; Zhao, Fangbo

    2013-06-01

    The objective of this research was to examine if certain strains of Bacillus bacteria, could survive in dry powder products and if so, could the bacteria degrade organic contaminants in saline wastewater on a ship. As part of the study, we isolated 7 domesticated strains named NY1, NY2,..., and NY7, the strain NY6 showed to have the best performance for organic matter degradation and could survive in dry powder more than 3 months. NY6 was identified as Bacillus aerius, based on the morphological and physic-chemical properties. Its optimal growth conditions were as follows: salinity was 2%; temperature was 37°C; pH was in 6.5-7.0; best ratio of C: N: P was 100:5:1. The capability of its dry powder for Chemical Oxygen Demand (COD) removal was 800mg COD/g in synthesized marine wastewater with 2% salinity. The spores in the dry powder were 1.972×108 g -1.

  11. Stimulation of indigenous lactobacilli by fermented milk prepared with probiotic bacterium, Lactobacillus delbrueckii subsp. bulgaricus strain 2038, in the pigs.

    Science.gov (United States)

    Ohashi, Yuji; Tokunaga, Makoto; Taketomo, Naoki; Ushida, Kazunari

    2007-02-01

    The aim of this study was to evaluate the effect of feeding yoghurt, prepared with Lactobacillus delbrueckii subsp. bulgaricus strain 2038, on indigenous lactobacilli in the pig cecum. Three female pigs fistulated at the cecum were fed 250 g of this yoghurt that contained over 10(11) colony-forming units of L. delbrueckii subsp. bulgaricus strain 2038 with their daily meal for 2 wk. The relative abundance and the composition of cecal lactobacilli was monitored by analysis of bacterial 16S rDNA with real time PCR and amplified bacterial rDNA restriction analysis using Lactobacillus-group specific primers, respectively, for 2 wk prior to, at the end of 2 wk of and 2 wk after the administration of this yoghurt. The relative abundance of lactobacilli was significantly increased by feeding yoghurt (pdelbrueckii subsp. bulgaricus strain 2038 was not detected by amplified bacterial rDNA restriction analysis during this study. The number of operational taxonomic units (OTUs) detected was increased with feeding of the yoghurt in all pigs. At the same time, the estimated cell number of each OTU was increased with feeding of the yoghurt. It is demonstrated that continuous consumption of the probiotic lactobacilli will stimulate the growth of some indigenous lactobacilli and alter the composition of the lactobacilli.

  12. Removal of Nitrate in Simulated Water at Low Temperature by a Novel Psychrotrophic and Aerobic Bacterium, Pseudomonas taiwanensis Strain J

    Directory of Open Access Journals (Sweden)

    Tengxia He

    2018-01-01

    Full Text Available Low temperatures and high pH generally inhibit the biodenitrification. Thus, it is important to explore the psychrotrophic and alkali-resisting microorganism for degradation of nitrogen. This research was mainly focused on the identification of a psychrotrophic strain and preliminary explored its denitrification characteristics. The new strain J was isolated using the bromothymol blue solid medium and identified as Pseudomonas taiwanensis on the basis of morphology and phospholipid fatty acid as well as 16S rRNA gene sequence analyses, which is further testified to work efficiently for removing nitrate from wastewater at low temperature circumstances. This is the first report that Pseudomonas taiwanensis possessed excellent tolerance to low temperature, with 15°C as its optimum and 5°C as viable. The Pseudomonas taiwanensis showed unusual ability of aerobic denitrification with the nitrate removal efficiencies of 100% at 15°C and 51.61% at 5°C. Single factor experiments showed that the optimal conditions for denitrification were glucose as carbon source, 15°C, shaking speed 150 r/min, C/N 15, pH≥7, and incubation quantity 2.0 × 106 CFU/mL. The nitrate and total nitrogen removal efficiencies were up to 100% and 93.79% at 15°C when glucose is served as carbon source. These results suggested that strain J had aerobic denitrification ability, as well as the notable ability to tolerate the low temperature and high pH.

  13. Removal of Nitrate in Simulated Water at Low Temperature by a Novel Psychrotrophic and Aerobic Bacterium, Pseudomonas taiwanensis Strain J

    Science.gov (United States)

    He, Tengxia; Ye, Qing; Sun, Quan; Cai, Xi; Ni, Jiupai

    2018-01-01

    Low temperatures and high pH generally inhibit the biodenitrification. Thus, it is important to explore the psychrotrophic and alkali-resisting microorganism for degradation of nitrogen. This research was mainly focused on the identification of a psychrotrophic strain and preliminary explored its denitrification characteristics. The new strain J was isolated using the bromothymol blue solid medium and identified as Pseudomonas taiwanensis on the basis of morphology and phospholipid fatty acid as well as 16S rRNA gene sequence analyses, which is further testified to work efficiently for removing nitrate from wastewater at low temperature circumstances. This is the first report that Pseudomonas taiwanensis possessed excellent tolerance to low temperature, with 15°C as its optimum and 5°C as viable. The Pseudomonas taiwanensis showed unusual ability of aerobic denitrification with the nitrate removal efficiencies of 100% at 15°C and 51.61% at 5°C. Single factor experiments showed that the optimal conditions for denitrification were glucose as carbon source, 15°C, shaking speed 150 r/min, C/N 15, pH ≥ 7, and incubation quantity 2.0 × 106 CFU/mL. The nitrate and total nitrogen removal efficiencies were up to 100% and 93.79% at 15°C when glucose is served as carbon source. These results suggested that strain J had aerobic denitrification ability, as well as the notable ability to tolerate the low temperature and high pH. PMID:29789796

  14. Genome Sequence of Lactobacillus saerimneri 30a (Formerly Lactobacillus sp. Strain 30a), a Reference Lactic Acid Bacterium Strain Producing Biogenic Amines

    NARCIS (Netherlands)

    Romano, Andrea; Trip, Hein; Campbell-Sills, Hugo; Bouchez, Olivier; Sherman, David; Lolkema, Juke S.; Lucas, Patrick M.

    2013-01-01

    Lactobacillus sp. strain 30a (Lactobacillus saerimneri) produces the biogenic amines histamine, putrescine, and cadaverine by decarboxylating their amino acid precursors. We report its draft genome sequence (1,634,278 bases, 42.6% G+C content) and the principal findings from its annotation, which

  15. Identification of a 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid Reductase, FlRed, in an Alginolytic Bacterium Flavobacterium sp. Strain UMI-01

    Directory of Open Access Journals (Sweden)

    Akira Inoue

    2015-01-01

    Full Text Available In alginate-assimilating bacteria, alginate is depolymerized to unsaturated monosaccharide by the actions of endolytic and exolytic alginate lyases (EC 4.2.2.3 and EC 4.2.2.11. The monosaccharide is non-enzymatically converted to 4-deoxy-l-ery thro-5-hexoseulose uronic acid (DEH, then reduced to 2-keto-3-deoxy-d-gluconate (KDG by a specific reductase, and metabolized through the Entner–Doudoroff pathway. Recently, the NADPH-dependent reductase A1-R that belongs to short-chain dehydrogenases/reductases (SDR superfamily was identified as the DEH-reductase in Sphingomonas sp. A1. We have subsequently noticed that an SDR-like enzyme gene, flred, occurred in the genome of an alginolytic bacterium Flavobacterium sp. strain UMI-01. In the present study, we report on the deduced amino-acid sequence of flred and DEH-reducing activity of recombinant FlRed. The deduced amino-acid sequence of flred comprised 254 residues and showed 34% amino-acid identities to that of A1-R from Sphingomonas sp. A1 and 80%–88% to those of SDR-like enzymes from several alginolytic bacteria. Common sequence motifs of SDR-superfamily enzymes, e.g., the catalytic tetrad Asn-Lys-Tyr-Ser and the cofactor-binding sequence Thr-Gly-x-x-x-Gly-x-Gly in Rossmann fold, were completely conserved in FlRed. On the other hand, an Arg residue that determined the NADPH-specificity of Sphingomonas A1-R was replaced by Glu in FlRed. Thus, we investigated cofactor-preference of FlRed using a recombinant enzyme. As a result, the recombinant FlRed (recFlRed was found to show high specificity to NADH. recFlRed exhibited practically no activity toward variety of aldehyde, ketone, keto ester, keto acid and aldose substrates except for DEH. On the basis of these results, we conclude that FlRed is the NADH-dependent DEH-specific SDR of Flavobacterium sp. strain UMI-01.

  16. Clostridium geopurificans strain MJ1 sp. nov., a strictly anaerobic bacterium that grows via fermentation and reduces the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).

    Science.gov (United States)

    Kwon, Man Jae; Wei, Na; Millerick, Kayleigh; Popovic, Jovan; Finneran, Kevin

    2014-06-01

    A fermentative, non-spore forming, motile, rod-shaped bacterium, designated strain MJ1(T), was isolated from an RDX contaminated aquifer at a live-fire training site in Northwest NJ, United States. On the basis of 16S rRNA gene sequencing and DNA base composition, strain MJ1(T) was assigned to the Firmicutes. The DNA G+C content was 42.8 mol%. Fermentative growth was supported by glucose and citrate in a defined basal medium. The bacterium is a strict anaerobe that grows between at pH 6.0 and pH 8.0 and 18 and 37 °C. The culture did not grow with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as the electron acceptor or mineralize RDX under these conditions. However, MJ1(T) transformed RDX into MNX, methylenedinitramine, formaldehyde, formate, ammonium, nitrous oxide, and nitrate. The nearest phylogenetic relative with a validly published name was Desulfotomaculum guttoideum (95 % similarity). However, MJ1(T) was also related to Clostridium celerecrescens DSM 5628 (95 %), Clostridium indolis DSM 755 (94 %), and Clostridium sphenoides DSM 632 (94 %). DNA:DNA hybridization with these strains was between 6.7 and 58.7 percent. The dominant cellular fatty acids (greater than 5 % of the total, which was 99.0 % recovery) were 16:0 fatty acid methyl ester (FAME) (32.12 %), 18:1cis 11 dimethyl acetal (DMA) (16.47 %), 16:1cis 9 DMA (10.28 %), 16:1cis 9 FAME (8.10 %), and 18:1cis 9 DMA (5.36 %). On the basis of morphological, physiological, and phylogenetic data, Clostridium geopurificans is proposed as a new species in genus Clostridium, with strain MJ1(T) as the type strain.

  17. Complete genome sequence of the termite hindgut bacterium Spirochaeta coccoides type strain (SPN1T), reclassification in the genus Sphaerochaeta as Sphaerochaeta coccoides comb. nov. and emendations of the family Spirochaetaceae and the genus Sphaerochaeta

    Energy Technology Data Exchange (ETDEWEB)

    Abt, Birte; Han, Cliff; Scheuner, Carmen; Lu, Megan; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxane; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Huntemann, Marcel; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Gronow, Sabine; Goker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Detter, John C.

    2012-05-25

    Spirochaeta coccoides Dröge et al. 2006 is a member of the genus Spirochaeta Ehrenberg 1835, one of the oldest named genera within the Bacteria. S. coccoides is an obligately anaerobic, Gram-negative, non-motile, spherical bacterium that was isolated from the hindgut contents of the termite Neotermes castaneus. The species is of interest because it may play an important role in the digestion of breakdown products from cellulose and hemicellulose in the termite gut. Here we provide a taxonomic re-evaluation for strain SPN1T, and based on physiological and genomic characteristics, we propose its reclassification as a novel species in the genus Sphaerochaeta, a recently published sister group of the Spirochaeta. The 2,227,296 bp long genome of strain SPN1T with its 1,866 protein-coding and 58 RNA genes is a part of the GenomicEncyclopedia of Bacteria and Archaea project.

  18. Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity▿†

    Science.gov (United States)

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan; Harder, Tilmann; Gram, Lone

    2011-01-01

    The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains, representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva zoospores to less than 10% of the number settling on control surfaces. The antifouling alpP gene was detected only in P. tunicata strains (with purple and yellow pigmentation), so

  19. Genome Sequence of Thermotoga sp. Strain RQ2, a Hyperthermophilic Bacterium Isolated from a Geothermally Heated Region of the Seafloor near Ribeira Quente, the Azores

    Science.gov (United States)

    Swithers, Kristen S.; DiPippo, Jonathan L.; Bruce, David C.; Detter, Christopher; Tapia, Roxanne; Han, Shunsheng; Saunders, Elizabeth; Goodwin, Lynne A.; Han, James; Woyke, Tanja; Pitluck, Sam; Pennacchio, Len; Nolan, Matthew; Mikhailova, Natalia; Lykidis, Athanasios; Land, Miriam L.; Brettin, Thomas; Stetter, Karl O.; Nelson, Karen E.; Gogarten, J. Peter; Noll, Kenneth M.

    2011-01-01

    Thermotoga sp. strain RQ2 is probably a strain of Thermotoga maritima. Its complete genome sequence allows for an examination of the extent and consequences of gene flow within Thermotoga species and strains. Thermotoga sp. RQ2 differs from T. maritima in its genes involved in myo-inositol metabolism. Its genome also encodes an apparent fructose phosphotransferase system (PTS) sugar transporter. This operon is also found in Thermotoga naphthophila strain RKU-10 but no other Thermotogales. These are the first reported PTS transporters in the Thermotogales. PMID:21952543

  20. Draft Genome Sequence of Bacillus thuringiensis Strain BrMgv02-JM63, a Chitinolytic Bacterium Isolated from Oil-Contaminated Mangrove Soil in Brazil.

    Science.gov (United States)

    Marcon, Joelma; Taketani, Rodrigo Gouvêa; Dini-Andreote, Francisco; Mazzero, Giulia Inocêncio; Soares, Fabio Lino; Melo, Itamar Soares; Azevedo, João Lúcio; Andreote, Fernando Dini

    2014-01-30

    Here, we report the draft genome sequence and the automatic annotation of Bacillus thuringiensis strain BrMgv02-JM63. This genome comprises a set of genes involved in the metabolism of chitin and N-acetylglucosamine utilization, thus suggesting the possible role of this strain in the cycling of organic matter in mangrove soils.

  1. Draft genome sequence of Bacillus thuringiensis strain BrMgv02-JM63, a chitinolytic bacterium isolated from oil-contaminated mangrove soil in Brazil

    NARCIS (Netherlands)

    Marcon, Joelma; Taketani, Rodrigo Gouvêa; Dini-Andreote, Francisco; Mazzero, Giulia Inocêncio; Soares Junior, Fabio Lino; Melo, Itamar Soares; Azevedo, João Lúcio; Andreote, Fernando Dini

    2014-01-01

    Here, we report the draft genome sequence and the automatic annotation of Bacillus thuringiensis strain BrMgv02-JM63. This genome comprises a set of genes involved in the metabolism of chitin and N-acetylglucosamine utilization, thus suggesting the possible role of this strain in the cycling of

  2. Interaction between the Bacterium Pseudomonas fluorescens strain CHA0, its genetic derivatives and vermiculite: Effects on chemical, mineralogical and mechanical properties of vermiculite

    Science.gov (United States)

    Mueller, Barbara

    2016-04-01

    Using bacteria of the strain Pseudomonas fluorescens wild type CHA0 and its genetic derivative strains CHA77, CHA89, CHA400, CHA631 and CHA661 (which differ in one gene only) the changes in chemical, mineralogical and rheological properties of the clay mineral vermiculite affected by microbial activity were studied in order to test whether the individually different production of metabolites by the genetically engineered strains may alter the clay mineral vermiculite in distinct ways. With the novel strategy of working with living wild type bacteria, their genetic derivatives and clay, the following properties of the mineral altered by the various strains of Pseudomonas fluorescens were determined: grain size, X-Ray diffraction pattern, intercrystalline swelling with glycerol, layer charge, CEC, BET surface and uptake of trace elements. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to determine the changes in major, minor and trace elements of the clay vermiculite affected by microbial activity. Among all analyzed trace elements, Fe, Mn and Cu are the most interesting. Fe and Mn are taken up from the clay mineral by all bacterial strains whereas Cu is only removed from vermiculite by strains CHA0, CHA77, CHA400 and CHA661. The latter mentioned strains all produce the antibiotics 2,4-diacetylphloroglucinol and monoacetylphloroglucinol which can complex Cu efficiently. Therefore the alteration of only one gene of the bacteria is causing significant effects on the clay mineral.

  3. Complete genome sequence of the halophilic bacterium Spirochaeta africana type strain (Z-7692T) from the alkaline Lake Magadi in the East African Rift

    Energy Technology Data Exchange (ETDEWEB)

    Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Abt, Birte [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Scheuner, Carmen [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Held, Brittany [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2013-01-01

    Spirochaeta africana Zhilina et al. 1996 is an anaerobic, aerotolerant, spiral-shaped bacte- rium that is motile via periplasmic flagella. The type strain of the species, Z-7692T, was iso- lated in 1993 or earlier from a bacterial bloom in the brine under the trona layer in a shallow lagoon of the alkaline equatorial Lake Magadi in Kenya. Here we describe the features of this organism, together with the complete genome sequence, and annotation. Considering the pending reclassification of S. caldaria to the genus Treponema, S. africana is only the second 'true' member of the genus Spirochaeta with a genome-sequenced type strain to be pub- lished. The 3,285,855 bp long genome of strain Z-7692T with its 2,817 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  4. A Sequential Statistical Approach towards an Optimized Production of a Broad Spectrum Bacteriocin Substance from a Soil Bacterium Bacillus sp. YAS 1 Strain

    Directory of Open Access Journals (Sweden)

    Amira M. Embaby

    2014-01-01

    Full Text Available Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken was employed to optimize bacteriocin (BAC YAS 1 production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v, incubation time (62 hrs, and agitation speed (207 rpm in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora. BAC YAS 1 showed activity over a wide range of pH (1–13 and temperature (45–80°C. A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium, the plant pathogen (E. amylovora, and the food spoiler (Listeria innocua was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri. Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries.

  5. Proteomic analysis of the purple sulfur bacterium Candidatus "Thiodictyon syntrophicum" strain Cad16T isolated from Lake Cadagno

    DEFF Research Database (Denmark)

    Storelli, Nicola; Saad, Maged M.; Frigaard, Niels-Ulrik

    2014-01-01

    Lake Cadagno is characterised by a compact chemocline with high concentrations of purple sulfur bacteria (PSB). 2D-DIGE was used to monitor the global changes in the proteome of Candidatus "Thiodictyon syntrophicum" strain Cad16T both in the presence and absence of light. This study aimed to disc...

  6. The Draft Genome Sequence of Clostridium sp. Strain NJ4, a Bacterium Capable of Producing Butanol from Inulin Through Consolidated Bioprocessing.

    Science.gov (United States)

    Jiang, Yujia; Lu, Jiasheng; Chen, Tianpeng; Yan, Wei; Dong, Weiliang; Zhou, Jie; Zhang, Wenming; Ma, Jiangfeng; Jiang, Min; Xin, Fengxue

    2018-05-23

    A novel butanogenic Clostridium sp. NJ4 was successfully isolated and characterized, which could directly produce relatively high titer of butanol from inulin through consolidated bioprocessing (CBP). The assembled draft genome of strain NJ4 is 4.09 Mp, containing 3891 encoded protein sequences with G+C content of 30.73%. Among these annotated genes, a levanase, a hypothetical inulinase, and two bifunctional alcohol/aldehyde dehydrogenases (AdhE) were found to play key roles in the achievement of ABE production from inulin through CBP.

  7. Genome sequence of the moderately thermophilic sulfur-reducing bacterium Thermanaerovibrio velox type strain (Z-9701(T)) and emended description of the genus Thermanaerovibrio.

    Science.gov (United States)

    Palaniappan, Krishna; Meier-Kolthoff, Jan P; Teshima, Hazuki; Nolan, Matt; Lapidus, Alla; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Rohde, Manfred; Mayilraj, Shanmugam; Spring, Stefan; Detter, John C; Göker, Markus; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Woyke, Tanja

    2013-10-16

    Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of its morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883(T), the type strain of T. acidaminovorans, stain Z-9701(T) is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project.

  8. Crystallization and preliminary X-ray diffraction study of recombinant adenine phosphoribosyltransferase from the thermophilic bacterium Thermus thermophilus strain HB27

    Science.gov (United States)

    Sinitsyna, E. V.; Timofeev, V. I.; Tuzova, E. S.; Kostromina, M. A.; Murav'eva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2017-07-01

    Adenine phosphoribosyltransferase (APRT) belongs to the type I phosphoribosyltransferase family and catalyzes the formation of adenosine monophosphate via transfer of the 5-phosphoribosyl group from phosphoribosyl pyrophosphate to the nitrogen atom N9 of the adenine base. Proteins of this family are involved in a salvage pathway of nucleotide synthesis, thus providing purine base utilization and maintaining the optimal level of purine bases in the body. Adenine phosphoribosyltransferase from the extremely thermophilic Thermus thermophilus strain HB27 was produced using a highly efficient E. coli producer strain and was then purified by affinity and gel-filtration chromatography. This enzyme was successfully employed as a catalyst for the cascade biosynthesis of biologically important nucleotides. The screening of crystallization conditions for recombinant APRT from T. thermophilus HB27 was performed in order to determine the enzyme structure by X-ray diffraction. The crystallization conditions, which were found by the vapor-diffusion technique, were then optimized to apply the counter-diffusion technique. The crystals of the enzyme were grown by the capillary counter-diffusion method. The crystals belong to sp. gr. P1211 and have the following unitcell parameters: a = 69.86 Å, b = 82.16 Å, c = 91.39 Å, α = γ = 90°, β = 102.58°. The X-ray diffraction data set suitable for the determination of the APRT structure at 2.6 Å resolution was collected from the crystals at the SPring-8 synchrotron facility (Japan).

  9. Selection and evaluation of reference genes for RT-qPCR expression studies on Burkholderia tropica strain Ppe8, a sugarcane-associated diazotrophic bacterium grown with different carbon sources or sugarcane juice.

    Science.gov (United States)

    da Silva, Paula Renata Alves; Vidal, Marcia Soares; de Paula Soares, Cleiton; Polese, Valéria; Simões-Araújo, Jean Luís; Baldani, José Ivo

    2016-11-01

    Among the members of the genus Burkholderia, Burkholderia tropica has the ability to fix nitrogen and promote sugarcane plant growth as well as act as a biological control agent. There is little information about how this bacterium metabolizes carbohydrates as well as those carbon sources found in the sugarcane juice that accumulates in stems during plant growth. Reverse transcription quantitative PCR (RT-qPCR) can be used to evaluate changes in gene expression during bacterial growth on different carbon sources. Here we tested the expression of six reference genes, lpxC, gyrB, recA, rpoA, rpoB, and rpoD, when cells were grown with glucose, fructose, sucrose, mannitol, aconitic acid, and sugarcane juice as carbon sources. The lpxC, gyrB, and recA were selected as the most stable reference genes based on geNorm and NormFinder software analyses. Validation of these three reference genes during strain Ppe8 growth on the same carbon sources showed that genes involved in glycogen biosynthesis (glgA, glgB, glgC) and trehalose biosynthesis (treY and treZ) were highly expressed when Ppe8 was grown in aconitic acid relative to other carbon sources, while otsA expression (trehalose biosynthesis) was reduced with all carbon sources. In addition, the expression level of the ORF_6066 (gluconolactonase) gene was reduced on sugarcane juice. The results confirmed the stability of the three selected reference genes (lpxC, gyrB, and recA) during the RT-qPCR and also their robustness by evaluating the relative expression of genes involved in glycogen and trehalose biosynthesis when strain Ppe8 was grown on different carbon sources and sugarcane juice.

  10. Physical map location of the multicopy genes coding for ammonia monooxygenase and hydroxylamine oxidoreductase in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11.

    Science.gov (United States)

    Hirota, R; Yamagata, A; Kato, J; Kuroda, A; Ikeda, T; Takiguchi, N; Ohtake, H

    2000-02-01

    Pulsed-field gel electrophoresis of PmeI digests of the Nitrosomonas sp. strain ENI-11 chromosome produced four bands ranging from 1,200 to 480 kb in size. Southern hybridizations suggested that a 487-kb PmeI fragment contained two copies of the amoCAB genes, coding for ammonia monooxygenase (designated amoCAB(1) and amoCAB(2)), and three copies of the hao gene, coding for hydroxylamine oxidoreductase (hao(1), hao(2), and hao(3)). In this DNA fragment, amoCAB(1) and amoCAB(2) were about 390 kb apart, while hao(1), hao(2), and hao(3) were separated by at least about 100 kb from each other. Interestingly, hao(1) and hao(2) were located relatively close to amoCAB(1) and amoCAB(2), respectively. DNA sequence analysis revealed that hao(1) and hao(2) shared 160 identical nucleotides immediately upstream of each translation initiation codon. However, hao(3) showed only 30% nucleotide identity in the 160-bp corresponding region.

  11. Studies on the O-specific polysaccharide of the lipopolysaccharide from the Pseudomonas mediterranea strain C5P1rad1, a bacterium pathogenic of tomato and chrysanthemum.

    Science.gov (United States)

    Zdorovenko, Evelina L; Cimmino, Alessio; Marchi, Guido; Shashkov, Alexander S; Fiori, Mario; Knirel, Yuriy A; Evidente, Antonio

    2017-08-07

    An O-specific polysaccharide (OPS) was isolated from the lipopolysaccharide of Pseudomonas mediterranea strain C5P1rad1, the causal agents of tomato pith necrosis and Chrysanthemum stem rot, and studied by one- and two-dimensional 1 H and 13 C NMR spectroscopy. The following structure of the trisaccharide repeating unit of the OPS was established, which, to our knowledge, is unique among the known bacterial polysaccharide structures: →4)-β-d-ManpNAc3NAcA-(1 → 4)-β-d-ManpNAc3NAcA-(1 → 3)-α-d-QuipNAc4NAc-(1→ where QuiNAc4NAc and ManNAc3NAcA indicate 2,4-diacetamido-2,4,6-trideoxyglucose and 2,3-diacetamido-2,3-dideoxymannuronic acid, respectively. Pre-treatment of leaves with LPS or OPS preparations at 250 and 50 μg mL -1 did not inhibit development of a hypersensitivity reaction induced by P. mediterranea C5P1rad1 on tobacco, tomato and chrysanthemum plants. The same preparations at 250 μg mL -1 partially prevented elicitation of the hypersensitivity reaction by Pseudomonas syringae KVPT7RC on chrysanthemum but not tobacco and tomato. Copyright © 2017. Published by Elsevier Ltd.

  12. Novel Glucose-1-Phosphatase with High Phytase Activity and Unusual Metal Ion Activation from Soil Bacterium Pantoea sp. Strain 3.5.1.

    Science.gov (United States)

    Suleimanova, Aliya D; Beinhauer, Astrid; Valeeva, Liia R; Chastukhina, Inna B; Balaban, Nelly P; Shakirov, Eugene V; Greiner, Ralf; Sharipova, Margarita R

    2015-10-01

    Phosphorus is an important macronutrient, but its availability in soil is limited. Many soil microorganisms improve the bioavailability of phosphate by releasing it from various organic compounds, including phytate. To investigate the diversity of phytate-hydrolyzing bacteria in soil, we sampled soils of various ecological habitats, including forest, private homesteads, large agricultural complexes, and urban landscapes. Bacterial isolate Pantoea sp. strain 3.5.1 with the highest level of phytase activity was isolated from forest soil and investigated further. The Pantoea sp. 3.5.1 agpP gene encoding a novel glucose-1-phosphatase with high phytase activity was identified, and the corresponding protein was purified to apparent homogeneity, sequenced by mass spectroscopy, and biochemically characterized. The AgpP enzyme exhibits maximum activity and stability at pH 4.5 and at 37°C. The enzyme belongs to a group of histidine acid phosphatases and has the lowest Km values toward phytate, glucose-6-phosphate, and glucose-1-phosphate. Unexpectedly, stimulation of enzymatic activity by several divalent metal ions was observed for the AgpP enzyme. High-performance liquid chromatography (HPLC) and high-performance ion chromatography (HPIC) analyses of phytate hydrolysis products identify dl-myo-inositol 1,2,4,5,6-pentakisphosphate as the final product of the reaction, indicating that the Pantoea sp. AgpP glucose-1-phosphatase can be classified as a 3-phytase. The identification of the Pantoea sp. AgpP phytase and its unusual regulation by metal ions highlight the remarkable diversity of phosphorus metabolism regulation in soil bacteria. Furthermore, our data indicate that natural forest soils harbor rich reservoirs of novel phytate-hydrolyzing enzymes with unique biochemical features. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Echinicola shivajiensis sp. nov., a novel bacterium of the family "Cyclobacteriaceae" isolated from brackish water pond

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, T.N.R.; Tryambak, B.K.; AnilKumar, P.

    Strain AK12 sup(T), an orange pigmented Gramnegative, rod shaped, non-motile bacterium, was isolated fromamud sample collected froma brackishwater pond at Rampur of West Bengal, India. The strain was positive for oxidase, catalase and phosphatase...

  14. Bacterium oxidizing carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kistner, A

    1953-01-01

    Present-day knowledge of the microbiological oxidation of carbon monoxide is based on doubtful observations and imperfect experimental procedures. By making use of shake cultures in contact with gas mixtures containing high concentrations of CO and by employing liquid enrichment media with a low content of organic matter and solid media of the same composition with not more than 1.2% agar, it proved possible to isolate a co-oxidizing bacterium of the genus hydrogenomonas from sewage sludge. For the first time irrefutable proof has been given of the oxidation of carbon monoxide by a pure culture of a bacterium, both in growing cultures and in resting cell suspensions. 12 references.

  15. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Mathrani, Indra M.; Ahring, Birgitte Kiær

    1995-01-01

    An anaerobic, extremely thermophilic, cellulolytic, non-spore-forming bacterium, strain 6A, was isolated from an alkaline hot spring in Hverageroi, Iceland. The bacterium was non-motile, rod-shaped (1.5-3.5 x 0.7 mu m) and occurred singly, in pairs or in chains and stained gram-negative. The growth...

  16. Antagonistic bioactivity of an endophytic bacterium isolated from ...

    African Journals Online (AJOL)

    Antagonistic bioactivity of an endophytic bacterium isolated from Epimedium brevicornu Maxim. R He, G Wang, X Liu, C Zhang, F Lin. Abstract. Endophytic bacteria are one of the most potential biological control agents in plant disease protection. The aim of this work was to evaluate the antimicrobial activities of a strain of ...

  17. Complete genome of Martelella sp. AD-3, a moderately halophilic polycyclic aromatic hydrocarbons-degrading bacterium.

    Science.gov (United States)

    Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi

    2016-05-10

    Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Stark absorption spectroscopy on the carotenoids bound to B800-820 and B800-850 type LH2 complexes from a purple photosynthetic bacterium, Phaeospirillum molischianum strain DSM120.

    Science.gov (United States)

    Horibe, Tomoko; Qian, Pu; Hunter, C Neil; Hashimoto, Hideki

    2015-04-15

    Stark absorption spectroscopy was applied to clarify the structural differences between carotenoids bound to the B800-820 and B800-850 LH2 complexes from a purple photosynthetic bacterium Phaeospirillum (Phs.) molischianum DSM120. The former complex is produced when the bacteria are grown under stressed conditions of low temperature and dim light. These two LH2 complexes bind carotenoids with similar composition, 10% lycopene and 80% rhodopin, each with the same number of conjugated CC double bonds (n=11). Quantitative classical and semi-quantum chemical analyses of Stark absorption spectra recorded in the carotenoid absorption region reveal that the absolute values of the difference dipole moments |Δμ| have substantial differences (2 [D/f]) for carotenoids bound to either B800-820 or B800-850 complexes. The origin of this striking difference in the |Δμ| values was analyzed using the X-ray crystal structure of the B800-850 LH2 complex from Phs. molischianum DSM119. Semi-empirical molecular orbital calculations predict structural deformations of the major carotenoid, rhodopin, bound within the B800-820 complex. We propose that simultaneous rotations around neighboring CC and CC bonds account for the differences in the 2 [D/f] of the |Δμ| value. The plausible position of the rotation is postulated to be located around C21-C24 bonds of rhodopin. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Production of biosurfactant on crude date syrup under saline conditions by entrapped cells of Natrialba sp. strain E21, an extremely halophilic bacterium isolated from a solar saltern (Ain Salah, Algeria).

    Science.gov (United States)

    Kebbouche-Gana, Salima; Gana, Mohamed Lamine; Ferrioune, Imen; Khemili, Souad; Lenchi, Nesrine; Akmouci-Toumi, Sihem; Bouanane-Darenfed, Nabila Amel; Djelali, Nacer-Eddine

    2013-11-01

    A bacterial strain E21 was isolated from a sample of water collected in the salt lake located close to Ain Salah, Algeria. The analysis of 16S rRNA gene sequence had indicated that the strain had 93 % sequence similarity with the genus Natrialba sp. strain E21 (GenBank, FR750525.1) and was considered extremely halophilic. Production of biosurfactant by the strain E21 with free and entrapped cells was investigated using soluble starch in the saline conditions. Biosurfactant synthesis was followed by measuring the surface tension and emulsifying index 9 days under optimal conditions (40 °C, pH 7). Some diffusional limitations in alginate and agar beads affected the kinetics of biosurfactant production when compared to that obtained with free cells culture. The minimum values of surface tension were 27 and 30 mN m(-1) achieved after 9 days with free and immobilized cells, respectively, while the corresponding maximum E24 values were 65.3 and 62.3 %, respectively. The re-use of bacterial cells along with the limited cell losses provided by the immobilized system might lead to significant reduction of the biosurfactant production cost.

  20. Genome Sequence of Lactobacillus delbrueckii subsp. lactis CNRZ327, a Dairy Bacterium with Anti-Inflammatory Properties.

    Science.gov (United States)

    El Kafsi, Hela; Binesse, Johan; Loux, Valentin; Buratti, Julien; Boudebbouze, Samira; Dervyn, Rozenn; Hammani, Amal; Maguin, Emmanuelle; van de Guchte, Maarten

    2014-07-17

    Lactobacillus delbrueckii subsp. lactis CNRZ327 is a dairy bacterium with anti-inflammatory properties both in vitro and in vivo. Here, we report the genome sequence of this bacterium, which appears to contain no less than 215 insertion sequence (IS) elements, an exceptionally high number regarding the small genome size of the strain. Copyright © 2014 El Kafsi et al.

  1. Intestinimonas butyriciproducens gen. nov., sp. nov., a novel butyrate-producing bacterium from the mouse intestine

    NARCIS (Netherlands)

    Kläring, K.; Hanske, L.; Bui, T.P.N.; Charrier, C.; Blaut, M.; Haller, D.; Plugge, C.M.; Clavel, T.

    2013-01-01

    Whilst creating a bacterial collection of strains from the mouse intestine, we isolated a Gram-negative, spore-forming, non-motile and strictly anaerobic rod-shaped bacterium from the caecal content of a TNFdeltaARE mouse. The isolate, referred to as strain SRB-521-5-IT, was originally cultured on a

  2. Flavobacterium nitratireducens sp. nov., an amylolytic bacterium of the family Flavobacteriaceae isolated from coastal surface seawater

    Digital Repository Service at National Institute of Oceanography (India)

    Nupur; Bhumika, V.; Srinivas, T.N.R.; AnilKumar, P.

    A novel Gram-negative, rod-shaped, non-motile bacterium, designated strain N1 sup(T), was isolated from a marine water sample collected from the sea shore, Bay of Bengal, Visakhapatnam, India. The strain was positive for starch hydrolysis, nitrate...

  3. Marinobacter nitratireducens sp. nov., a halophilic and lipolytic bacterium isolated from coastal surface sea water

    Digital Repository Service at National Institute of Oceanography (India)

    Bhumika, V.; Ravinder, K.; Korpole, S.; Srinivas, T.N.R.; AnilKumar, P.

    A novel Gram-stain-negative, rod-shaped, motile bacterium, designated strain AK21T , was isolated from coastal surface sea water at Visakhapatnam, India. The strain was positive for oxidase, catalase, lipase, L-proline arylamidase...

  4. Oceanospirillum nioense sp. nov., a marine bacterium isolated from sediment sample of Palk bay, India

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.K.; Bhumika, V.; Thomas, M.; AnilKumar, P.; Srinivas, T.N.R.

    A novel Gram-negative, spiral shaped, motile bacterium, designated strain NIO-S6T, was isolated from a sediment sample collected from Offshore Rameswaram, Tamilnadu, India. Strain NIO-S6 sup(T) was found to be positive for oxidase, DNase and lysine...

  5. The hydrocarbon-degrading marine bacterium Cobetia sp. strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking

    Science.gov (United States)

    Ibacache-Quiroga, C; Ojeda, J; Espinoza-Vergara, G; Olivero, P; Cuellar, M; Dinamarca, M A

    2013-01-01

    Summary Biosurfactants are produced by hydrocarbon-degrading marine bacteria in response to the presence of water-insoluble hydrocarbons. This is believed to facilitate the uptake of hydrocarbons by bacteria. However, these diffusible amphiphilic surface-active molecules are involved in several other biological functions such as microbial competition and intra-or inter-species communication. We report the isolation and characterization of a marine bacterial strain identified as Cobetia sp. MM1IDA2H-1, which can grow using the sulfur-containing heterocyclic aromatic hydrocarbon dibenzothiophene (DBT). As with DBT, when the isolated strain is grown in the presence of a microbial competitor, it produces a biosurfactant. Because the obtained biosurfactant was formed by hydroxy fatty acids and extracellular lipidic structures were observed during bacterial growth, we investigated whether the biosurfactant at its critical micelle concentration can interfere with bacterial communication systems such as quorum sensing. We focused on Aeromonas salmonicida subsp. salmonicida, a fish pathogen whose virulence relies on quorum sensing signals. Using biosensors for quorum sensing based on Chromobacterium violaceum and Vibrio anguillarum, we showed that when the purified biosurfactant was mixed with N-acyl homoserine lactones produced by A. salmonicida, quorum sensing was inhibited, although bacterial growth was not affected. In addition, the transcriptional activities of A. salmonicida virulence genes that are controlled by quorum sensing were repressed by both the purified biosurfactant and the growth in the presence of Cobetia sp. MM1IDA2H-1. We propose that the biosurfactant, or the lipid structures interact with the N-acyl homoserine lactones, inhibiting their function. This could be used as a strategy to interfere with the quorum sensing systems of bacterial fish pathogens, which represents an attractive alternative to classical antimicrobial therapies in fish

  6. 生防细菌K2-1对大菱鲆病原菌的抑制作用及其抗菌特性分析%Antimicrobial activity of a biocontrol bacterium strain K2-1 against selected pathogens ofScophthalmus maximus and its antimicrobial property analysis

    Institute of Scientific and Technical Information of China (English)

    方卫东; 唐旭; 刘源森; 林凌; 黄仕新; 徐长安

    2015-01-01

    In order to study the possibility of using biocontrol bacterium for control and prevention of aquatic dis-eases caused by bacterial pathogens, a bacterium strain K2-1, identified asBacillus cereus, was screened out from the mud of Haicang harbor, Xiamen, China. Antibacterial test was conducted using an agar diffusion method, and the result showed that the supernatant of strain K2-1 could inhibit the growth of some common pathogens related withScophthalmus maximus diseases during farming includingVibrio parahaemolyticus,Edwardsiella,Vibrio har-veyi,Aeromonas hydrophilaand Vibrio alginolyticus. Further study of its antibacterial substance property was im-plemented, and it revealed that the bioactive substance produced by strain K2-1 was a protein (peptide). This anti-bacterial protein was thermal stable, and it kept high antimicrobial activity under temperature ranging from 40℃ to 70℃, and it was also of high acid and alkali tolerance, with its antibacterial activity decreasing less than 15% in the rang of pH 3.0 to 9.0. Enzymatic treatment test showed that this antibacterial protein was resistant to most pro-tease including trypsase, pepsase and papain, but it was sensitive to protease K. All the these results showed that the strain K2-1 had high development and application values in the future.%为探讨生防细菌应用于水产养殖动物细菌病防治的可行性,作者从厦门市海沧港口污泥中筛选到一株蜡状芽孢杆菌(Bacillus cereus)K2-1,利用琼脂扩散法发现其发酵上清对大菱鲆(Scophthalmus maximus)养殖常见致病菌——副溶血弧菌(Vibrio parahaemolyticus)、爱德华氏菌(Edwardsiella)、哈维氏弧菌(Vibrio harveyi)、嗜水气单胞菌(Aeromonas hydrophila)、溶藻弧菌(Vibrio alginolyticus))有较强拮抗作用。进一步分析抗菌物质的部分特性,结果显示,蜡状芽孢杆菌(Bacillus cereus)K2-1发酵产生的抗菌物质含有蛋白(肽)类成分,该抗菌物质具有

  7. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...... milk products, is born with two complete non-replicating chromosomes. L. lactis therefore remain diploid throughout its entire life cycle....

  8. Molecular identification of phosphate solubilizing bacterium ...

    African Journals Online (AJOL)

    A phosphate solubilizing bacterium was isolated from the rhizosphere soil of upland rice and identified by 16S rRNA gene sequencing. The gene sequence showed 99% homology with Alcaligenes faecalis. Based on the gene sequence homology, it was identified as A. faecalis. Interaction effect of this bacterium on growth ...

  9. Thermotoga lettingae sp. nov. : a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor

    NARCIS (Netherlands)

    Balk, M.; Weijma, J.; Stams, A.J.M.

    2002-01-01

    A novel, anaerobic, non-spore-forming, mobile, Gram-negative, thermophilic bacterium, strain TMO(T), was isolated from a thermophilic sulfate-reducing bioreactor operated at 65 degrees C with methanol as the sole substrate. The G C content of the DNA of strain TMO(T) was 39.2 molÐThe optimum pH,

  10. Whole-Genome Shotgun Sequence of the Keratinolytic Bacterium Lysobacter sp. A03, Isolated from the Antarctic Environment

    OpenAIRE

    Pereira, Jamile Queiroz; Ambrosini, Adriana; Sant?Anna, Fernando Hayashi; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, F?bio Oliveira; Souza, Emanuel Maltempi; Brandelli, Adriano; Passaglia, Luciane M. P.

    2015-01-01

    Lysobacter sp. strain A03 is a protease-producing bacterium isolated from decomposing-penguin feathers collected in the Antarctic environment. This strain has the ability to degrade keratin at low temperatures. The A03 genome sequence provides the possibility of finding new genes with biotechnological potential to better understand its cold-adaptation mechanism and survival in cold environments.

  11. Thermaerobacter litoralis sp. nov., a strictly aerobic and thermophilic bacterium isolated from a coastal hydrothermal field

    DEFF Research Database (Denmark)

    Tanaka, Reiji; Kawaichi, Satoshi; Nishimura, Hiroshi

    2006-01-01

    A novel thermophilic bacterium, strain KW1T, was isolated from a coastal hydrothermal field on the Satsuma Peninsula, Kagoshima Prefecture, Japan. The variably Gram-stained cells were motile rods with flagella, did not form spores and proliferated at 52-78°C (optimum, 70°C), pH 5-8 (optimum, pH 7...

  12. Aliidiomarina haloalkalitolerans sp. nov., a marine bacterium isolated from coastal surface seawater

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, T.N.R.; Nupur; AnilKumar, P.

    A novel Gram-negative, rod shaped, motile, non-sporing strictly aerobic bacterium, designated strain AK5 sup(T), was isolated from a sea water sample collected near Visakhapatnam coast, Bay of Bengal, India. Colonies on marine agar were circular, 3...

  13. Draft Genome Sequence of Lactobacillus paracasei DmW181, a Bacterium Isolated from Wild Drosophila

    OpenAIRE

    Hammer, Austin J.; Walters, Amber; Carroll, Courtney; Newell, Peter D.; Chaston, John M.

    2017-01-01

    ABSTRACT The draft genome sequence of Lactobacillus paracasei DmW181, an anaerobic bacterium isolate from wild Drosophila flies, is reported here. Strain DmW181 possesses genes for sialic acid and mannose metabolism. The assembled genome is 3,201,429?bp, with 3,454 predicted genes.

  14. Draft Genome Sequence of Lactobacillus paracasei DmW181, a Bacterium Isolated from Wild Drosophila.

    Science.gov (United States)

    Hammer, Austin J; Walters, Amber; Carroll, Courtney; Newell, Peter D; Chaston, John M

    2017-07-06

    The draft genome sequence of Lactobacillus paracasei DmW181, an anaerobic bacterium isolate from wild Drosophila flies, is reported here. Strain DmW181 possesses genes for sialic acid and mannose metabolism. The assembled genome is 3,201,429 bp, with 3,454 predicted genes. Copyright © 2017 Hammer et al.

  15. Draft Genome Sequence of Pontibacter sp. nov. BAB1700, a Halotolerant, Industrially Important Bacterium

    Science.gov (United States)

    Joshi, M. N.; Sharma, A. C.; Pandya, R. V.; Patel, R. P.; Saiyed, Z. M.; Saxena, A. K.

    2012-01-01

    Pontibacter sp. nov. BAB1700 is a halotolerant, Gram-negative, rod-shaped, pink-pigmented, menaquinone-7-producing bacterium isolated from sediments of a drilling well. The draft genome sequence of the strain, consisting of one chromosome of 4.5 Mb, revealed vital gene clusters involved in vitamin biosynthesis and resistance against various metals and antibiotics. PMID:23105068

  16. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater

    Science.gov (United States)

    A novel Gram-stain-negative, facultatively anaerobic, yellowish and agar-digesting marine bacterium, designated strain QM50**T, was isolated from coastal seawater in an aquaculture site near Qingdao, China. Phylogenetic analysis based on 16S rDNA sequences revealed that the novel isolate represented...

  17. Alteration of the Canine Small-Intestinal Lactic Acid Bacterium Microbiota by Feeding of Potential Probiotics

    OpenAIRE

    Manninen, Titta J. K.; Rinkinen, Minna L.; Beasley, Shea S.; Saris, Per E. J.

    2006-01-01

    Five potentially probiotic canine fecal lactic acid bacterium (LAB) strains, Lactobacillus fermentum LAB8, Lactobacillus salivarius LAB9, Weissella confusa LAB10, Lactobacillus rhamnosus LAB11, and Lactobacillus mucosae LAB12, were fed to five permanently fistulated beagles for 7 days. The survival of the strains and their potential effects on the indigenous intestinal LAB microbiota were monitored for 17 days. Denaturing gradient gel electrophoresis (DGGE) demonstrated that the five fed LAB ...

  18. Photoproduction of hydrogen by a non-sulphur bacterium isolated from root zones of water fern Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Srivastava, S.C.; Pandey, K.D. (Banaras Hindu Univ., Varanasi (IN). Centre of Advanced Study in Botany)

    1990-01-01

    A photosynthetic bacterium Rhodopseudomonas sp. BHU strain 1 was isolated from the root zone of water fern Azolla pinnata. The bacterium was found to produce hydrogen with potato starch under phototrophic conditions. The immobilized bacterial cells showed sustained hydrogen production with a more than 4-fold difference over free cell suspensions. The data have been discussed in the light of possible utilization of relatively cheaper raw materials by non-sulphur bacteria to evolve hydrogen. (author).

  19. Organic metabolites produced by Vibrio parahaemolyticus strain ...

    African Journals Online (AJOL)

    Identification and action of several antibacterial metabolites produced by a fish pathogen Vibrio parahaemolyticus strain An3 from marine ecosystem of Goa has been demonstrated. Antibacterial activity of the crude cell extract of the test bacterium has been evaluated against indicator pathogenic bacterial strains such as ...

  20. Studies on the pathogenic bacterium of ulcer disease in Epinephelus awoara

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Studies were conducted to determine the cause of the acute mortality of cage-cultured Epinephelus awoara in the Tong'an Bay of Xiamen, China during the summer of 2002. Predominant bacteria strain TS-628 was isolated from the diseased grouper. The virulence test confirmed that TS-628 was the pathogenic bacterium. Biochemical characteristics of the isolates were determined using the automatic bacterial identification system and standard tube tests. To further confirm the identification, a 1 121 bp 16S rRNA gene sequence of the isolate was amplified by PCR, which had been deposited into Genbank (accession number: AY747308). According to the biochemical characteristics and by comparing the 16S rRNA gene homology of the isolate, the pathogenic bacterium was identified as Vibrio harveyi. Drug sensitivity tests showed that this pathogenic bacterium was sensitive to 16 antibacterials, especially to chloramphenicol and actinospectacin, but completely resistant to antibacterials likes vancomycin, penicillin, lincomycin, and so on.

  1. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes. Final Report

    International Nuclear Information System (INIS)

    Lidstrom, Mary E.

    2003-01-01

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions

  2. [Identification and function test of an alkali-tolerant denitrifying bacterium].

    Science.gov (United States)

    Wang, Ru; Zheng, Ping; Li, Wei; Chen, Hui; Chen, Tingting; Ghulam, Abbas

    2013-04-04

    We obtained an alkali-tolerant denitrifying bacterium, and determined its denitrifying activity and alkali-tolerance. An alkali-tolerant denitrifying bacterial strain was obtained by isolation and purification. We identified the bacterial strain by morphological observation, physiological test and 16S rRNA analysis. We determined the denitrifying activity and alkali-tolerance by effects of initial nitrate concentration and initial pH on denitrification. An alkali-tolerant denitrifier strain R9 was isolated from the lab-scale high-rate denitrifying reactor, and it was identified as Diaphorobater nitroreducens. The strain R9 grew heterotrophically with methanol as the electron donor and nitrate as the electron acceptor. The nitrate conversion was 93.25% when strain R9 was cultivated for 288 h with initial nitrate concentration 50 mg/L and initial pH 9.0. The denitrification activity could be inhibited at high nitrate concentration with a half inhibition constant of 202.73 mg N/L. Strain R9 showed a good alkali tolerance with the nitrate removal rate at pH 11.0 remained 86% of that at pH 9.0. Strain R9 was identified as Diaphorobater nitroreducens, and it was an alkali-tolerant denitrifying bacterium with optimum pH value of 9.0.

  3. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    Science.gov (United States)

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and contained cytochrome c3 and desulfoviridin. Except for furfural degradation, the characteristics of the furfural isolate were remarkably similar to those of the sulfate reducer Desulfovibrio gigas. The furfural isolate has been tentatively identified as Desulfovibrio sp. strain F-1. Images PMID:16346423

  4. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. Copyright © 2016, American Association for the Advancement of Science.

  5. The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythrocytes

    DEFF Research Database (Denmark)

    Belstrøm, Daniel; Holmstrup, Palle; Damgaard, Christian

    2011-01-01

    A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows...... the bacterium to adhere to human red blood cells (RBCs) and thereby evade attack by circulating phagocytes. On incubation with normal human serum, the P. gingivalis strain efficiently fixed complement component 3 (C3). Incubation of bacteria with washed whole blood cells suspended in autologous serum resulted...... in a dose- and time-dependent adherence to RBCs. The adherence required functionally intact complement receptor 1 (CR1; also called CD35) on the RBCs and significantly inhibited the uptake of P. gingivalis by neutrophils and B cells within 1 min of incubation (by 64% and 51%, respectively...

  6. Permanent draft genome of the malachite-green-tolerant bacterium Rhizobium sp. MGL06.

    Science.gov (United States)

    Liu, Yang; Wang, Runping; Zeng, Runying

    2014-12-01

    Rhizobium sp. MGL06, the first Rhizobium isolate from a marine environment, is a malachite-green-tolerant bacterium with a broader salinity tolerance (range: 0.5% to 9%) than other rhizobia. This study sequences and annotates the draft genome sequence of this strain. Genome sequence information provides a basis for analyzing the malachite green tolerance, broad salinity adaptation, nitrogen fixation properties, and taxonomic classification of the isolate. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Two New Cholic Acid Derivatives from the Marine Ascidian-Associated Bacterium Hasllibacter halocynthiae

    Directory of Open Access Journals (Sweden)

    Sung Hun Kim

    2012-10-01

    Full Text Available The investigation of secondary metabolites in liquid cultures of a recently discovered marine bacterium, Hasllibacter halocynthiae strain KME 002T, led to the isolation of two new cholic acid derivatives. The structures of these compounds were determined to be 3,3,12-trihydroxy-7-ketocholanic acid (1 and 3,3,12-trihydroxy-7-deoxycholanic acid (2 through HRFABMS and NMR data analyses.

  8. Draft Genome Sequence of the Hydrocarbon-Degrading Bacterium Alcanivorax dieselolei KS-293 Isolated from Surface Seawater in the Eastern Mediterranean Sea

    KAUST Repository

    Barbato, Marta; Mapelli, Francesca; Chouaia, Bessem; Crotti, Elena; Daffonchio, Daniele; Borin, Sara

    2015-01-01

    We report here the draft genome sequence of Alcanivorax dieselolei KS-293, a hydrocarbonoclastic bacterium isolated from the Mediterranean Sea, by supplying diesel oil as the sole carbon source. This strain contains multiple putative genes associated with hydrocarbon degradation pathways and that are highly similar to those described in A. dieselolei type strain B5.

  9. Draft Genome Sequence of the Hydrocarbon-Degrading Bacterium Alcanivorax dieselolei KS-293 Isolated from Surface Seawater in the Eastern Mediterranean Sea

    KAUST Repository

    Barbato, Marta

    2015-12-10

    We report here the draft genome sequence of Alcanivorax dieselolei KS-293, a hydrocarbonoclastic bacterium isolated from the Mediterranean Sea, by supplying diesel oil as the sole carbon source. This strain contains multiple putative genes associated with hydrocarbon degradation pathways and that are highly similar to those described in A. dieselolei type strain B5.

  10. ‘Lactobacillus raoultii’ sp. nov., a new bacterium isolated from the vaginal flora of a woman with bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    B. Nicaise

    2018-01-01

    Full Text Available We report the isolation of a new bacterium species, ‘Lactobacillus raoultii’ strain Marseille P4006 (CSUR P4006, isolated from a vaginal sample of a 45-year-old woman with bacterial vaginosis. Keywords: Bacterial vaginosis, culturomics, emerging bacteria, human microbiota, Lactobacillus raoultii, vaginal microbiota

  11. Phosphorus uptake of an arbuscular mycorrhizal fungus is not effected by the biocontrol bacterium ¤Burkholderia cepacia¤

    DEFF Research Database (Denmark)

    Ravnskov, S.; Larsen, J.; Jakobsen, I.

    2002-01-01

    The biocontrol bacterium Burkholderia cepacia is known to suppress a broad range of root pathogenic fungi, while its impact on other beneficial non-target organisms such as arbuscular mycorrhizal (AM) fungi is unknown. Direct interactions between five B. cepacia strains and the AM fungus, Glomus ...

  12. Microbacter margulisiae gen. nov., sp. nov., a novel propionigenic bacterium isolated from sediments of an acid rock drainage pond

    NARCIS (Netherlands)

    Sanchez Andrea, I.; Luis Sanz, J.; Stams, A.J.M.

    2014-01-01

    A novel anaerobic propionigenic bacterium, strain ADRIT, was isolated from sediment of an acid rock drainage environment (Tinto River, Spain). Cells were small (0.4-0.6 x 1-1.7 µm), non-motile and non-spore forming rods. Cells possessed a Gram-negative cell wall structure and were vancomycin

  13. Complete genome of Pandoraea pnomenusa RB-38, an oxalotrophic bacterium isolated from municipal solid waste landfill site.

    Science.gov (United States)

    Lim, Yan-Lue; Ee, Robson; Yong, Delicia; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2015-11-20

    Pandoraea pnomenusa RB-38 is a bacterium isolated from a former sanitary landfill site. Here, we present the complete genome of P. pnomenusa RB38 in which an oxalate utilization pathway was identified. The genome analysis suggested the potential of this strain as an effective biocontrol agent against oxalate-producing phytopathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  15. Genomic Analysis of a Marine Bacterium: Bioinformatics for Comparison, Evaluation, and Interpretation of DNA Sequences

    Directory of Open Access Journals (Sweden)

    Bhagwan N. Rekadwad

    2016-01-01

    Full Text Available A total of five highly related strains of an unidentified marine bacterium were analyzed through their short genome sequences (AM260709–AM260713. Genome-to-Genome Distance (GGDC showed high similarity to Pseudoalteromonas haloplanktis (X67024. The generated unique Quick Response (QR codes indicated no identity to other microbial species or gene sequences. Chaos Game Representation (CGR showed the number of bases concentrated in the area. Guanine residues were highest in number followed by cytosine. Frequency of Chaos Game Representation (FCGR indicated that CC and GG blocks have higher frequency in the sequence from the evaluated marine bacterium strains. Maximum GC content for the marine bacterium strains ranged 53-54%. The use of QR codes, CGR, FCGR, and GC dataset helped in identifying and interpreting short genome sequences from specific isolates. A phylogenetic tree was constructed with the bootstrap test (1000 replicates using MEGA6 software. Principal Component Analysis (PCA was carried out using EMBL-EBI MUSCLE program. Thus, generated genomic data are of great assistance for hierarchical classification in Bacterial Systematics which combined with phenotypic features represents a basic procedure for a polyphasic approach on unambiguous bacterial isolate taxonomic classification.

  16. Microflora of urogenital tract in pregnancy with asymptomatic bacterium

    International Nuclear Information System (INIS)

    Abdullaeva, R.A.

    2006-01-01

    The article contains results of research interrelationship from colonization of vagina and urinary tract diseases. E.coli one of the main factors in development asymptomatic bacterium. Presented high effects of penicillin medicaments and nitrofurans in treatment of asymptomatic bacterium

  17. Engineering a wild fast-growing Mycoplasma bacterium to generate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-01-12

    Jan 12, 2018 ... The CCPP bacterium causes sick animals to experience severe symptoms ... because antibiotic treatment does not eliminate the responsible bacterium. ... To develop a fast growing CCPP vaccine for cheaper production and ...

  18. Complete genome sequence of Klebsiella pneumoniae J1, a protein-based microbial flocculant-producing bacterium.

    Science.gov (United States)

    Pang, Changlong; Li, Ang; Cui, Di; Yang, Jixian; Ma, Fang; Guo, Haijuan

    2016-02-20

    Klebsiella pneumoniae J1 is a Gram-negative strain, which belongs to a protein-based microbial flocculant-producing bacterium. However, little genetic information is known about this species. Here we carried out a whole-genome sequence analysis of this strain and report the complete genome sequence of this organism and its genetic basis for carbohydrate metabolism, capsule biosynthesis and transport system. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Whole-Genome Shotgun Sequence of the Keratinolytic Bacterium Lysobacter sp. A03, Isolated from the Antarctic Environment.

    Science.gov (United States)

    Pereira, Jamile Queiroz; Ambrosini, Adriana; Sant'Anna, Fernando Hayashi; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, Fábio Oliveira; Souza, Emanuel Maltempi; Brandelli, Adriano; Passaglia, Luciane M P

    2015-04-02

    Lysobacter sp. strain A03 is a protease-producing bacterium isolated from decomposing-penguin feathers collected in the Antarctic environment. This strain has the ability to degrade keratin at low temperatures. The A03 genome sequence provides the possibility of finding new genes with biotechnological potential to better understand its cold-adaptation mechanism and survival in cold environments. Copyright © 2015 Pereira et al.

  20. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  1. Yersinia ruckeri sp. nov., the redmouth (RM) bacterium

    Science.gov (United States)

    Ewing, W.H.; Ross, A.J.; Brenner, Don J.; Fanning, G. R.

    1978-01-01

    Cultures of the redmouth (RM) bacterium, one of the etiological agents of redmouth disease in rainbow trout (Salmo gairdneri) and certain other fishes, were characterized by means of their biochemical reactions, by deoxyribonucleic acid (DNA) hybridization, and by determination of guanine-plus-cytosine (G+C) ratios in DNA. The DNA relatedness studies confirmed the fact that the RM bacteria are members of the family Enterobacteriaceae and that they comprise a single species that is not closely related to any other species of Enterobacteriaceae. They are about 30% related to species of both Serratia and Yersinia. A comparison of the biochemical reactions of RM bacteria and serratiae indicated that there are many differences between these organisms and that biochemically the RM bacteria are most closely related to yersiniae. The G+C ratios of RM bacteria were approximated to be between 47.5 and 48.5% These values are similar to those of yersiniae but markedly different from those of serratiae. On the basis of their biochemical reactions and their G+C ratios, the RM bacteria are considered to be a new species of Yersinia, for which the name Yersinia ruckeri is proposed. Strain 2396-61 (= ATCC 29473) is designated the type strain of the species.

  2. DNA type analysis to differentiate strains of Xylophilus ampelinus from Europe and Hokkaido, Japan

    OpenAIRE

    Komatsu, Tsutomu; Shinmura, Akinori; Kondo, Norio

    2016-01-01

    Strains of the bacterium Xylophilus ampelinus were collected from Europe and Hokkaido, Japan. Genomic fingerprints generated from 43 strains revealed four DNA types (A-D) using the combined results of Rep-, ERIC-, and Box-PCR. Genetic variation was found among the strains examined; strains collected from Europe belonged to DNA types A or B, and strains collected from Hokkaido belonged to DNA types C or D. However, strains belonging to each DNA type showed the same pathogenicity to grapevines ...

  3. Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest

    Directory of Open Access Journals (Sweden)

    Jun-Feng Shi

    Full Text Available ABSTRACT Tomato is one of the most important vegetables in the world. Decay after harvest is a major issue in the development of tomato industry. Currently, the most effective method for controlling decay after harvest is storage of tomato at low temperature combined with usage of chemical bactericide; however, long-term usage of chemical bactericide not only causes pathogen resistance but also is harmful for human health and environment. Biocontrol method for the management of disease after tomato harvest has great practical significance. In this study, antagonistic bacterium B-6-1 strain was isolated from the surface of tomato and identified as Enterobacter cowanii based on morphological characteristics and physiological and biochemical features combined with sequence analysis of 16SrDNA and ropB gene and construction of dendrogram. Effects of different concentrations of antagonistic bacterium E. cowanii suspension on antifungal activity after tomato harvest were analyzed by mycelium growth rate method. Results revealed that antifungal activity was also enhanced with increasing concentrations of antagonistic bacterium; inhibitory rates of 1 × 105 colony-forming units (cfu/mL antagonistic bacterial solution on Fusarium verticillioides, Alternaria tenuissima, and Botrytis cinerea were 46.31%, 67.48%, and 75.67%, respectively. By using in vivo inoculation method, it was further confirmed that antagonistic bacterium could effectively inhibit the occurrence of B. cinerae after tomato harvest, biocontrol effect of 1 × 109 cfu/mL zymotic fluid reached up to 95.24%, and antagonistic bacterium E. cowanii has biocontrol potential against B. cinerea after harvest of fruits and vegetables.

  4. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    Science.gov (United States)

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  5. High quality draft genome sequence of the moderately halophilic bacterium Pontibacillus yanchengensis Y32(T) and comparison among Pontibacillus genomes.

    Science.gov (United States)

    Huang, Jing; Qiao, Zi Xu; Tang, Jing Wei; Wang, Gejiao

    2015-01-01

    Pontibacillus yanchengensis Y32(T) is an aerobic, motile, Gram-positive, endospore-forming, and moderately halophilic bacterium isolated from a salt field. In this study, we describe the features of P. yanchengensis strain Y32(T) together with a comparison with other four Pontibacillus genomes. The 4,281,464 bp high-quality-draft genome of strain Y32(T) is arranged into 153 contigs containing 3,965 protein-coding genes and 77 RNA encoding genes. The genome of strain Y32(T) possesses many genes related to its halophilic character, flagellar assembly and chemotaxis to support its survival in a salt-rich environment.

  6. Colwellia polaris sp. nov., a psychrotolerant bacterium isolated from Arctic sea ice.

    Science.gov (United States)

    Zhang, De-Chao; Yu, Yong; Xin, Yu-Hua; Liu, Hong-Can; Zhou, Pei-Jin; Zhou, Yu-Guang

    2008-08-01

    A novel psychrotolerant, Gram-negative, aerobic bacterium, designated strain 537T, was isolated from sea-ice samples from the Arctic. Strain 537T was able to grow at 4-26 degrees C, with optimum growth occurring at 20-21 degrees C. Strain 537T had Q-8 as the major respiratory quinone and contained iso-C15:0 2-OH and/or C16:1 omega7c (22.95 %), C15:1 (17.64 %) and C17:1 omega8c (13.74 %) as the predominant cellular fatty acids. The genomic DNA G+C content was 38.9 mol%. A phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 537T formed a coherent cluster within the genus Colwellia. The highest level of 16S rRNA gene sequence similarity (97.5 %) exhibited by strain 537T was obtained with respect to the type strain of Colwellia aestuarii. On the basis of phenotypic, chemotaxonomic and phylogenetic properties and DNA-DNA relatedness data, strain 537T represents a novel species of the genus Colwellia, for which the name Colwellia polaris sp. nov. is proposed. The type strain is 537T (=CGMCC 1.6132T =JCM 13952T).

  7. Isolation and characterization of a radiation resistant thermophilic bacterium from radon hot spring

    International Nuclear Information System (INIS)

    Liang Xinle; Yang Long; Zhang Hong; Zhang Lei

    2011-01-01

    A radiation resistant and thermophilic bacterium strain R4-33 was isolated from radon hot spring water samples, pretreated with 60 Co γ-rays and UV irradiation. Tests on morphological, physiological and biochemical characters, fatty acid compositions, (G + C) mol% contents, and 16S rDNA sequencing were conducted. The results showed that strain R4-33 was of rod-shape, Gram-negative, atrichous, and endospore-forming. The optimum growth temperature and pH were 60 ℃ and 7.5, respectively. The strain utilized glucose, maltose and trehalose as carbon sources, and hydrolyzed casein and starch. Its catalase positive. The strain was sensitive to penicillin, neomycin, erythromycin, vancomycin, streptomycin, gentamycin, amikacin and ampicillin. The major cellular fatty acids were C 14:1 (48.8%) and C 15:1 (15.2%). The (G + C) mol% content of DNA was 58.2%. Phylogenetic tree based on 16S rDNA sequence showed R4-33 shared highly similarity to those of species in genus Anoxybacillus, especially to that of Anoxybacillus gonensis (99.5%). Based on the above, the strain R4-33 was proposed to the evolution branch of Anoxybacillus and designated as Anoxybacillu sp. R4-33. The UV and γ-radiation tests showed that the strain R4-33 had an ability of resistance to UV of 396 J/m 2 and 60 Co γ-rays irradiation of 14.0 kGy, indicating that the strain was a radiation resistant and thermophilic bacterium. (authors)

  8. Closed Genome Sequence of Phytopathogen Biocontrol Agent Bacillus velezensis Strain AGVL-005, Isolated from Soybean.

    Science.gov (United States)

    Pylro, Victor Satler; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini; Morais, Daniel Kumazawa; Varani, Alessandro de Mello; Andreote, Cristiane Cipolla Fasanella; Bernardo, Eduardo Roberto de Almeida; Zucchi, Tiago

    2018-02-15

    We report here the closed and near-complete genome sequence and annotation of Bacillus velezensis strain AGVL-005, a bacterium isolated from soybean seeds in Brazil and used for phytopathogen biocontrol. Copyright © 2018 Pylro et al.

  9. Isolation and characterization of Alicycliphilus denitrificans strain BC, which grows on benzene with chlorate as the electron acceptor

    NARCIS (Netherlands)

    Weelink, S.A.B.; Tan, N.C.G.; Broeke, H. ten; Kieboom, C. van den; Doesburg, W. van; Langenhoff, A.A.M.; Gerritse, J.; Junca, H.; Stams, A.J.M.

    2008-01-01

    A bacterium, strain BC, was isolated from a benzene-degrading chlorate-reducing enrichment culture. Strain BC degrades benzene in conjunction with chlorate reduction. Cells of strain BC are short rods that are 0.6 μm wide and 1 to 2 μm long, are motile, and stain gram negative. Strain BC grows on

  10. Genome Sequence of Campylobacter jejuni strain 327, a strain isolated from a turkey slaughterhouse

    DEFF Research Database (Denmark)

    Takamiya, Monica; Özen, Asli Ismihan; Rasmussen, Morten

    2011-01-01

    , catalase positive bacterium obtains energy from the metabolism of amino acids and Krebs cycle intermediates. Strain 327 was isolated from a turkey slaughter production line and is considered environmentally sensitive to food processing (cold, heat, drying) and storage conditions. The 327 whole genome...

  11. A Genetic System for the Thermophilic Acetogenic Bacterium Thermoanaerobacter kivui.

    Science.gov (United States)

    Basen, Mirko; Geiger, Irina; Henke, Laura; Müller, Volker

    2018-02-01

    Thermoanaerobacter kivui is one of the very few thermophilic acetogenic microorganisms. It grows optimally at 66°C on sugars but also lithotrophically with H 2 + CO 2 or with CO, producing acetate as the major product. While a genome-derived model of acetogenesis has been developed, only a few physiological or biochemical experiments regarding the function of important enzymes in carbon and energy metabolism have been carried out. To address this issue, we developed a method for targeted markerless gene deletions and for integration of genes into the genome of T. kivui The strain naturally took up plasmid DNA in the exponential growth phase, with a transformation frequency of up to 3.9 × 10 -6 A nonreplicating plasmid and selection with 5-fluoroorotate was used to delete the gene encoding the orotate phosphoribosyltransferase ( pyrE ), resulting in a Δ pyrE uracil-auxotrophic strain, TKV002. Reintroduction of pyrE on a plasmid or insertion of pyrE into different loci within the genome restored growth without uracil. We subsequently studied fructose metabolism in T. kivui The gene fruK (TKV_c23150) encoding 1-phosphofructosekinase (1-PFK) was deleted, using pyrE as a selective marker via two single homologous recombination events. The resulting Δ fruK strain, TKV003, did not grow on fructose; however, growth on glucose (or on mannose) was unaffected. The combination of pyrE as a selective marker and the natural competence of the strain for DNA uptake will be the basis for future studies on CO 2 reduction and energy conservation and their regulation in this thermophilic acetogenic bacterium. IMPORTANCE Acetogenic bacteria are currently the focus of research toward biotechnological applications due to their potential for de novo synthesis of carbon compounds such as acetate, butyrate, or ethanol from H 2 + CO 2 or from synthesis gas. Based on available genome sequences and on biochemical experiments, acetogens differ in their energy metabolism. Thus, there is an

  12. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike; Mehboob, Farrakh; van Gelder, Antonie H; Rijpstra, W Irene C; Damsté , Jaap S Sinninghe; Stams, Alfons J M

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  13. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike

    2010-08-03

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  14. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23.

    Science.gov (United States)

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-09-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23. Algal culture medium was optimized by applying a Placket-Burman design to obtain a high cell concentration of NP23. Three minerals (i.e., 0.6% KNO3, 0.001% MnSO4·H2O, and 0.3% K2HPO4) were found to be independent factors critical for obtaining the highest cell concentration of 10(13) CFU/mL, which was 10(4) times that of the control. In the algae-lysing experiment, the strain exhibited a high lysis rate for the 4 algae test species, namely, Chlorella vulgari, Scenedesmus, Microcystis wesenbergii, and Chlorella pyrenoidosa. Acute toxicity and mutagenicity tests showed that the bacterium NP23 had no toxic and mutagenic effects on fish, even in large doses such as 10(7) or 10(9) CFU/mL. Thus, Enterobacter sp. strain NP23 has strong potential application in the microbial algae-lysing project.

  15. Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog.

    Science.gov (United States)

    Dedysh, Svetlana N; Khmelenina, Valentina N; Suzina, Natalia E; Trotsenko, Yuri A; Semrau, Jeremy D; Liesack, Werner; Tiedje, James M

    2002-01-01

    A novel genus and species, Methylocapsa acidiphila gen. nov., sp. nov., are proposed for a methane-oxidizing bacterium isolated from an acidic Sphagnum peat bog. This bacterium, designated strain B2T, represents aerobic, gram-negative, colourless, non-motile, curved coccoids that form conglomerates covered by an extracellular polysaccharide matrix. The cells use methane and methanol as sole sources of carbon and energy and utilize the serine pathway for carbon assimilation. Strain B2T is a moderately acidophilic organism with growth between pH 4.2 and 7.2 and at temperatures from 10 to 30 degrees C. The cells possess a well-developed system of intracytoplasmic membranes (ICM) packed in parallel on only one side of the cell membrane. This type of ICM structure represents a novel arrangement, which was termed type III. The resting cells are Azotobacter-type cysts. Strain B2T is capable of atmospheric nitrogen fixation; it possesses particulate methane monooxygenase and does not express soluble methane monooxygenase. The major phospholipid fatty acid is 18:1omega7c and the major phospholipids are phosphatidylglycerols. The G+C content of the DNA is 63.1 mol%. This bacterium belongs to the alpha-subclass of the Proteobacteria and is most closely related to the acidophilic methanotroph Methylocella palustris KT (97.3% 16S rDNA sequence similarity). However, the DNA-DNA hybridization value between strain B2T and Methylocella palustris K(T) is only 7%. Thus, strain B2T is proposed to comprise a novel genus and species, Methylocapsa acidiphila gen. nov., sp. nov. Strain B2T (= DSM 13967T = NCIMB 13765T) is the type strain.

  16. Complete genome sequence of the aerobically denitrifying thermophilic bacterium Chelatococcus daeguensis TAD1

    Directory of Open Access Journals (Sweden)

    Yunlong Yang

    Full Text Available ABSTRACT Chelatococcus daeguensis TAD1 is a themophilic bacterium isolated from a biotrickling filter used to treat NOx in Ruiming Power Plant, located in Guangzhou, China, which shows an excellent aerobic denitrification activity at high temperature. The complete genome sequence of this strain was reported in the present study. Genes related to the aerobic denitrification were identified through whole genome analysis. This work will facilitate the mechanism of aerobic denitrification and provide evidence for its potential application in the nitrogen removal.

  17. A bacterium that can grow by using arsenic instead of phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2010-11-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus. Although these six elements make up nucleic acids, proteins and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, CA, which substitutes arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical significance.

  18. A bacterium that can grow by using arsenic instead of phosphorus.

    Science.gov (United States)

    Wolfe-Simon, Felisa; Switzer Blum, Jodi; Kulp, Thomas R; Gordon, Gwyneth W; Hoeft, Shelley E; Pett-Ridge, Jennifer; Stolz, John F; Webb, Samuel M; Weber, Peter K; Davies, Paul C W; Anbar, Ariel D; Oremland, Ronald S

    2011-06-03

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.

  19. Aggregation of the rhizospheric bacterium Azospirillum brasilense in response to oxygen

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2016-04-01

    Azospirillum brasilense spp. have ecological, scientific and agricultural importance. As model plant growth promoting rhizobacteria they interact with a large variety of plants, including important food and cash crops. Azospirillum strains are known for their production of plant growth hormones that enhance root systems and for their ability to fix nitrogen. Azospirillum cells transform in response to environmental cues. The production of exopolysaccharides and cell aggregation during cellular transformation are important steps in the attachment of Azospirillum to roots. We investigate signals that induce cellular transformation and aggregation in the Azospirillum and report on the importance of oxygen to the process of aggregation in this rhizospheric bacterium.

  20. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    Science.gov (United States)

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production. PMID:24717418

  1. Akkermansia glycaniphila sp. nov., an anaerobic mucin-degrading bacterium isolated from reticulated python faeces.

    Science.gov (United States)

    Ouwerkerk, Janneke P; Aalvink, Steven; Belzer, Clara; de Vos, Willem M

    2016-11-01

    A Gram-stain-negative, non-motile, strictly anaerobic, oval-shaped, non-spore-forming bacterium (strain PytT) was isolated from reticulated python faeces. Strain PytT was capable of using mucin as sole carbon, energy and nitrogen source. Cells could grow singly, in pairs, and were also found to aggregate. Scanning electron microscopy revealed the presence of filamentous structures connecting individual bacterial cells. Strain PytT could grow on a limited number of single sugars, including N-acetylglucosamine, N-acetylgalactosamine, glucose, lactose and galactose, but only when a plentiful protein source was provided. Phylogenetic analysis based on 16S rRNA gene sequencing showed strain PytT to belong to the Verrucomicrobiae class I, family Akkermansiaceae, genus Akkermansia, with Akkermansia muciniphila MucT as the closest relative (94.4 % sequence similarity). DNA-DNA hybridization revealed low relatedness of 28.3 % with A. muciniphila MucT. The G+C content of DNA from strain PytT was 58.2 mol%. The average nucleotide identity (ANI) of the genome of strain PytT compared to the genome of strain MucT was 79.7 %. Chemotaxonomic data supported the affiliation of strain PytT to the genus Akkermansia. Based on phenotypic, phylogenetic and genetic characteristics, strain PytT represents a novel species of the genus Akkermansia, for which the name Akkermansia glycaniphila sp. nov. is proposed. The type strain is PytT (=DSM 100705T=CIP 110913T).

  2. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment.

    Science.gov (United States)

    Finster, K; Liesack, W; Thamdrup, B

    1998-01-01

    A mesophilic, anaerobic, gram-negative bacterium, strain SB164P1, was enriched and isolated from oxidized marine surface sediment with elemental sulfur as the sole energy substrate in the presence of ferrihydrite. Elemental sulfur was disproportionated to hydrogen sulfide and sulfate. Growth was observed exclusively in the presence of a hydrogen sulfide scavenger, e.g., ferrihydrite. In the absence of a scavenger, sulfide and sulfate production were observed but no growth occurred. Strain SB164P1 grew also by disproportionation of thiosulfate and sulfite. With thiosulfate, the growth efficiency was higher in ferrihydrite-supplemented media than in media without ferrihydrite. Growth coupled to sulfate reduction was not observed. However, a slight sulfide production occurred in cultures incubated with formate and sulfate. Strain SB164P1 is the first bacterium described that grows chemolithoautotrophically exclusively by the disproportionation of inorganic sulfur compounds. Comparative 16S rDNA sequencing analysis placed strain SB164P1 into the delta subclass of the class Proteobacteria. Its closest relative is Desulfocapsa thiozymogenes, and slightly more distantly related are Desulfofustis glycolicus and Desulforhopalus vacuolatus. This phylogenetic cluster of organisms, together with members of the genus Desulfobulbus, forms one of the main lines of descent within the delta subclass of the Proteobacteria. Due to the common phenotypic characteristics and the phylogenetic relatedness to Desulfocapsa thiozymogenes, we propose that strain SB164P1 be designated the type strain of Desulfocapsa sulfoexigens sp. nov.

  3. Agrobacterium tumefaciens is a diazotrophic bacterium

    International Nuclear Information System (INIS)

    Kanvinde, L.; Sastry, G.R.K.

    1990-01-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate 15 N supplied as 15 N 2 . As with most other well-characterized diazotrophic bacteria, the presence of NH 4 + in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship

  4. Agrobacterium tumefaciens is a diazotrophic bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Kanvinde, L.; Sastry, G.R.K. (Univ. of Leeds (England))

    1990-07-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate {sup 15}N supplied as {sup 15}N{sub 2}. As with most other well-characterized diazotrophic bacteria, the presence of NH{sub 4}{sup +} in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.

  5. The chemical formula of a magnetotactic bacterium.

    Science.gov (United States)

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life. Copyright © 2011 Wiley Periodicals, Inc.

  6. Partial genome sequence of Thioalkalivibrio thiocyanodenitrificans ARhD 1T, a chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium capable of complete denitrification

    NARCIS (Netherlands)

    Berben, T.; Sorokin, D.Y.; Ivanova, N.; Pati, A.; Kyrpides, N.; Goodwin, L.A; Woyke, T.; Muyzer, G.

    2015-01-01

    Thioalkalivibrio thiocyanodenitrificans strain ARhD 1 T is a motile, Gram-negative bacterium isolated from soda lakes that belongs to the Gammaproteobacteria. It derives energy for growth and carbon fixation from the oxidation of sulfur compounds, most notably thiocyanate, and so is a

  7. Desulfotomaculum arcticum sp. nov., a novel spore-forming, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard

    DEFF Research Database (Denmark)

    Vandieken, Verona; Knoblauch, Christian; Jørgensen, Bo Barker

    2006-01-01

    Strain 15T is a novel spore-forming, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Sulfate could be replaced by sulfite or thiosulfate. Hydrogen, formate, lactate, propionate, butyrate, hexanoate, methanol, ethanol, propanol, butanol, pyruvate, malate...

  8. Halomonas indalinina sp.nov., a moderately halophilic bacterium isolated from a solar saltern in Cabo de Gata, Al,eria, southern Spain

    NARCIS (Netherlands)

    Cabrera, A.; Aguilera, M.; Fuentes Enriquez de Salamanca, S.; Incerti, C.; Russell, N.J.; Ramos-Cormenzana, A.; Monteoliva-Sanchez, M.

    2007-01-01

    moderately halophilic bacterium, strain CG2.1T, isolated from a solar saltern at Cabo de Gata, a wildlife reserve located in the province of Almería, southern Spain, was subjected to a polyphasic taxonomic study. This organism was an aerobic, motile, Gram-negative rod that produced orange-pigmented

  9. “Nigerium massiliense” gen. nov., sp. nov., a new bacterium isolated from the gut from a patient with acute malnutrition

    Directory of Open Access Journals (Sweden)

    Sory Ibrahima Traore

    2016-09-01

    Full Text Available We propose the main characteristics of a new bacterium named “Nigerium massiliense” strain SIT5 (CSURP1302 that was isolated from the stool of a 2-year-old Nigerian child suffering from kwashiorkor, a form of severe acute malnutrition. Keywords: Culturomics, Taxonomy, Genomics, Taxono-genomics, “Nigerium massiliense”

  10. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment

    DEFF Research Database (Denmark)

    Finster, Kai; Liesack, Werner; Thamdrup, Bo

    1998-01-01

    A mesophilic, anaerobic, gram-negative bacterium, strain SB164P1, was enriched and isolated from oxidized marine surface sediment with elemental sulfur as the sole energy substrate in the presence of ferrihydrite. Elemental sulfur was disproportionated to hydrogen sulfide and sulfate. Growth was ...

  11. Crassaminicella profunda gen. nov., sp. nov., an anaerobic marine bacterium isolated from deep-sea sediments.

    Science.gov (United States)

    Lakhal, Raja; Pradel, Nathalie; Postec, Anne; Ollivier, Bernard; Cayol, Jean-Luc; Godfroy, Anne; Fardeau, Marie-Laure; Galés, Grégoire

    2015-09-01

    A novel, anaerobic, chemo-organotrophic bacterium, designated strain Ra1766H(T), was isolated from sediments of the Guaymas basin (Gulf of California, Mexico) taken from a depth of 2002  m. Cells were thin, motile, Gram-stain-positive, flexible rods forming terminal endospores. Strain Ra1766H(T) grew at temperatures of 25-45 °C (optimum 30 °C), pH 6.7-8.1 (optimum 7.5) and in a salinity of 5-60 g l(-1) NaCl (optimum 30 g l(-1)). It was an obligate heterotrophic bacterium fermenting carbohydrates (glucose and mannose) and organic acids (pyruvate and succinate). Casamino acids and amino acids (glutamate, aspartate and glycine) were also fermented. The main end products from glucose fermentation were acetate, butyrate, ethanol, H2 and CO2. Sulfate, sulfite, thiosulfate, elemental sulfur, fumarate, nitrate, nitrite and Fe(III) were not used as terminal electron acceptors. The predominant cellular fatty acids were C14  : 0, C16 : 1ω7, C16 : 1ω7 DMA and C16 : 0. The main polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phospholipids. The G+C content of the genomic DNA was 33.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Ra1766H(T) was affiliated to cluster XI of the order Clostridiales, phylum Firmicutes. The closest phylogenetic relative of Ra1766H(T) was Geosporobacter subterraneus (94.2% 16S rRNA gene sequence similarity). On the basis of phylogenetic inference and phenotypic properties, strain Ra1766H(T) ( = DSM 27501(T) = JCM 19377(T)) is proposed to be the type strain of a novel species of a novel genus, named Crassaminicella profunda.

  12. [Isolation and identification of Mn oxidizing bacterium Aminobacter sp. H1 and its oxidation mechanism].

    Science.gov (United States)

    Yan, Ping; Jiang, Li-Ying; Chen, Jian-Meng; He, Zhi-Min; Xiao, Shao-Dan; Jiang, Yi-Feng

    2014-04-01

    A bacterium with high manganese oxidizing activity was isolated from a biological manganese removal filter and named as H1. Based on its characteristics and the analysis of 16S rDNA sequence, the strain H1 belonged to the genus Aminobacter sp. and its manganese oxidizing ability had never been reported. In this paper, the microbiologic properties of the strain H1, the manganese oxidation mechanisms and characteristics of biogenic manganese oxides were investigated. The results showed that the maximal tolerant Mn concentration of strain H1 was 50 mmol x L(-1), and Mn(II) could be completely removed by strain H1 when the concentration was lower than 10 mmol x L(-1). Strain H1 could oxidize Mn2+ by both the production of manganese oxidizing activity factor and alkaline metabolites during growth, which were synthesized in the cell and then secreted into extracellular culture medium. During the oxidation process, the intermediate of soluble Mn(III) was detected. SEM showed that the biogenic manganese oxides were amorphous and poorly-crystalline, and it closely combined with bacteria. The components of the biogenic manganese oxides produced by strain H1 were identified as MnCO3, MnOOH, Mn3O4 and MnO2 by XRD, XPS and SEM-EDX.

  13. Gracilibacillus aidingensis sp. nov., a novel moderately halophilic bacterium isolated from Aiding salt lake.

    Science.gov (United States)

    Guan, Tong-Wei; Tian, Lei; Li, En-Yuan; Tang, Shu-Kun; Zhang, Xiao-Ping

    2017-11-01

    A novel Gram-positive, aerobe, moderately halophilic bacterium was isolated from saline soil of Aiding lake in Xinjiang, north-west of China, designated strain YIM 98001 T . Cells were rod-shaped, motile and grew at 5-20% (w/v) NaCl (optimum 10%), pH 6-10 (optimum pH 7.0) and 4-45 °C (optimum 37 °C). The major cellular fatty acids were anteiso C 15:0 , anteiso C 17:0 , iso C 15:0 . The predominant respiratory quinone was MK-7. Diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid were the major polar lipids. Meso-diaminopimelic acid was the diagnostic diamino acid of the cell-wall peptidoglycan. The G+C content was 36.46 mol%. 16S rRNA gene sequence analysis showed that the strain belongs to the family Bacillaceae, with the highest sequence similarity to the type strain Gracilibacillus thailandensis TP2-8 T (96.84%), followed by Gracilibacillus saliphilus YIM 91119 T (96.78%) and Gracilibacillus ureilyticus MF38 T (96.57%), thus confirming the affiliation of strain YIM 98001 T to the genus Gracilibacillus. The polyphasic approach indicates that strain YIM 98001 T represents a novel species of the genus Gracilibacillus, for which the name Gracilibacillus aidingensis is proposed. The type strain is YIM 98001 T (=KCTC 42683 T  = DSMZ 104330 T ).

  14. Desulfuromonas thiophila sp. nov., a new obligately sulfur-reducing bacterium from anoxic freshwater sediment.

    Science.gov (United States)

    Finster, K; Coates, J D; Liesack, W; Pfennig, N

    1997-07-01

    A mesophilic, acetate-oxidizing, sulfur-reducing bacterium, strain NZ27T, was isolated from anoxic mud from a freshwater sulfur spring. The cells were ovoid, motile, and gram negative. In addition to acetate, the strain oxidized pyruvate, succinate, and fumarate. Sulfur flower could be replaced by polysulfide as an electron acceptor. Ferric nitrilotriacetic acid was reduced in the presence of pyruvate; however, this reduction did not sustain growth. These phenotypic characteristics suggested that strain NZ27T is affiliated with the genus Desulfuromonas. A phylogenetic analysis based on the results of comparative 16S ribosomal DNA sequencing confirmed that strain NZ27T belongs to the Desulfuromonas cluster in the recently proposed family "Geobacteracea" in the delta subgroup of the Proteobacteria. In addition, the results of DNA-DNA hybridization studies confirmed that strain NZ27T represents a novel species. Desulfuromonas thiophila, a name tentatively used in previous publication, is the name proposed for strain NZ27T in this paper.

  15. Psychromonas boydii sp. nov., a gas-vacuolate, psychrophilic bacterium isolated from an Arctic sea-ice core.

    Science.gov (United States)

    Auman, Ann J; Breezee, Jennifer L; Gosink, John J; Schumann, Peter; Barnes, Carmen R; Kämpfer, Peter; Staley, James T

    2010-01-01

    A gas-vacuolate bacterium, strain 174(T), was isolated from a sea-ice core collected from Point Barrow, Alaska, USA. Comparative analysis of 16S rRNA gene sequences showed that this bacterium was most closely related to Psychromonas ingrahamii 37(T), with a similarity of >99 %. However, strain 174(T) could be clearly distinguished from closely related species by DNA-DNA hybridization; relatedness values determined by two different methods between strain 174(T) and P. ingrahamii 37(T) were 58.4 and 55.7 % and those between strain 174(T) and Psychromonas antarctica DSM 10704(T) were 46.1 and 33.1 %, which are well below the 70 % level used to define a distinct species. Phenotypic analysis, including cell size (strain 174(T) is the largest member of the genus Psychromonas, with rod-shaped cells, 8-18 microm long), further differentiated strain 174(T) from other members of the genus Psychromonas. Strain 174(T) could be distinguished from its closest relative, P. ingrahamii, by its utilization of D-mannose and D-xylose as sole carbon sources, its ability to ferment myo-inositol and its inability to use fumarate and glycerol as sole carbon sources. In addition, strain 174(T) contained gas vacuoles of two distinct morphologies and grew at temperatures ranging from below 0 to 10 degrees C and its optimal NaCl concentration for growth was 3.5 %. The DNA G+C content was 40 mol%. Whole-cell fatty acid analysis showed that 16 : 1omega7c and 16 : 0 comprised 44.9 and 26.4 % of the total fatty acid content, respectively. The name Psychromonas boydii sp. nov. is proposed for this novel species, with strain 174(T) (=DSM 17665(T) =CCM 7498(T)) as the type strain.

  16. Desulfotomaculum arcticum sp nov., a novel spore-formin, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard

    DEFF Research Database (Denmark)

    Vandieken, V.; Knoblauch, C.; Jørgensen, BB

    2006-01-01

    Strain 15 T is a novel spore-forming, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Sulfate could be replaced by sulfite or thiosulfate. Hydrogen, formate, lactate, propionate, butyrate, hexanoate, methanol, ethanol, propanol, butanol, pyruvate, malate, s...... related to Desulfotomaculum thermosapovorans MLF(T) (93-5% 16S rRNA gene sequence similarity). Strain 15 T represents a novel species, for which the name Desulfotomaculurn arcticum sp. nov. is proposed. The type strain is strain 15 T (=DSM 17038(T)=jCM 12923(T))....

  17. Noncontiguous finished genome sequence and description of Planococcus massiliensis sp. nov., a moderately halophilic bacterium isolated from the human gut

    Directory of Open Access Journals (Sweden)

    E.H. Seck

    2016-03-01

    Full Text Available We propose the main phenotypic characteristics and the complete genome sequence and annotation of Planococcus massiliensis strain ES2T (= CSUR P1103 = DSM 28915, the type strain of P. massiliensis sp. nov., isolated from a faeces sample collected from a healthy Senegalese man. It is an aerobic, Gram-positive, moderately halophilic, motile and rod-shaped bacterium. The 3 357 017 bp long genome exhibits a G+C content of 46.0% and contains 3357 protein-coding genes and 48 RNA genes.

  18. Draft genome sequence of the arsenite-oxidizing strain Aliihoeflea sp. 2WW, isolated from arsenic-contaminated groundwater

    NARCIS (Netherlands)

    Cavalca, L.; Corsini, A.; Andreoni, V.; Muyzer, G.

    2013-01-01

    Here, we report the draft genome sequence of the arsenite-oxidizing bacterium Aliihoeflea sp. strain 2WW, which consists of a 4.15-Mb chromosome and contains different genes that are involved in arsenic transformations.

  19. Genome sequence of the thermophilic fresh-water bacterium Spirochaeta caldaria type strain (H1T), reclassification of Spirochaeta caldaria, Spirochaeta stenostrepta, and Spirochaeta zuelzerae in the genus Treponema as Treponema caldaria comb. nov., Treponema stenostrepta comb. nov., and Treponema zuelzerae comb. nov., and emendation of the genus Tr

    Energy Technology Data Exchange (ETDEWEB)

    Abt, Birte [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Scheuner, Carmen [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Han, Cliff [Los Alamos National Laboratory (LANL); Lu, Megan [Los Alamos National Laboratory (LANL); Misra, Monica [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Gronow, Sabine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2013-01-01

    Spirochaeta caldaria Pohlschroeder et al. 1995 is an obligately anaerobic, spiral-shaped bac- terium that is motile via periplasmic flagella. The type strain, H1T, was isolated in 1990 from cyanobacterial mat samples collected at a freshwater hot spring in Oregon, USA, and is of in- terest because it enhances the degradation of cellulose when grown in co-culture with Clos- tridium thermocellum. Here we provide a taxonomic re-evaluation for S. caldaria based on phylogenetic analyses of 16S rRNA sequences and whole genomes, and propose the reclassi- fication of S. caldaria and two other Spirochaeta species as members of the emended genus Treponema. Whereas genera such as Borrelia and Sphaerochaeta possess well-distinguished genomic features related to their divergent lifestyles, the physiological and functional ge- nomic characteristics of Spirochaeta and Treponema appear to be intermixed and are of little taxonomic value. The 3,239,340 bp long genome of strain H1T with its 2,869 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  20. Novel Poly[(R-3-Hydroxybutyrate]-Producing Bacterium Isolated from a Bolivian Hypersaline Lake

    Directory of Open Access Journals (Sweden)

    María Soledad Marqués-Calvo

    2013-01-01

    Full Text Available Poly[(R-3-hydroxybutyrate] (PHB constitutes a biopolymer synthesized from renewable resources by various microorganisms. This work focuses on finding a new PHB-producing bacterium capable of growing in conventional media used for industrial biopolymer production, its taxonomical identification, and characterization of its biopolymer. Thus, a bacterial isolation process was carried out from environmental samples of water and mud. Among the isolates, strain S29 was selected and used in a fed-batch fermentation to generate a biopolymer. This biopolymer was recovered and identified as PHB homopolymer. Surprisingly, it featured several fractions of different molecular masses, and thermal properties unusual for PHB. Hence, the microorganism S29, genetically identified as a new strain of Bacillus megaterium, proved to be interesting not only due to its growth and PHB accumulation kinetics under the investigated cultivation conditions, but also due to the thermal properties of the produced PHB.

  1. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir.

    Science.gov (United States)

    Greene, A C; Patel, B K; Sheehy, A J

    1997-04-01

    A thermophilic anaerobic bacterium, designated strain BMAT (T = type strain), was isolated from the production water of Beatrice oil field in the North Sea (United Kingdom). The cells were straight to bent rods (1 to 5 by 0.3 to 0.5 microns) which stained gram negative. Strain BMAT obtained energy from the reduction of manganese (IV), iron(III), and nitrate in the presence of yeast extract, peptone, Casamino Acids, tryptone, hydrogen, malate, acetate, citrate, pyruvate, lactate, succinate, and valerate. The isolate grew optimally at 60 degrees C (temperature range for growth, 50 to 65 degrees C) and in the presence of 2% (wt/vol) NaCl (NaCl range for growth, 0 to 5% [wt/vol]). The DNA base composition was 34 mol% G + C. Phylogenetic analyses of the 16S rRNA gene indicated that strain BMAT is a member of the domain Bacteria. The closest known bacterium is the moderate thermophile Flexistipes sinusarabici (similarity value, 88%). Strain BMAT possesses phenotypic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, we propose that this isolate should be described as a member of a novel species of a new genus, Deferribacter thermophilus gen. nov., sp. nov.

  2. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    Science.gov (United States)

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe

    NARCIS (Netherlands)

    Slawiak, M.; Beckhoven, van J.R.C.M.; Speksnijder, A.G.C.L.; Czajkowski, R.L.; Grabe, G.; Wolf, van der J.M.

    2009-01-01

    Sixty-five potato strains of the soft rot-causing plant pathogenic bacterium Dickeya spp., and two strains from hyacinth, were characterised using biochemical assays, REP-PCR genomic finger printing, 16S rDNA and dnaX sequence analysis. These methods were compared with nineteen strains representing

  4. Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax

    Directory of Open Access Journals (Sweden)

    Guangli Wang

    2010-06-01

    Full Text Available Microbial degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenylethane (DDT is the most promising way to clean up DDT residues found in the environment. In this paper, a bacterium designated as wax, which was capable of co-metabolizing DDT with other carbon sources, was isolated from a long-term DDT-contaminated soil sample by an enrichment culture technique. The new isolate was identified as a member of the Pseudoxanthomonas sp., based on its morphological, physiological and biochemical properties, as well as by 16S rRNA gene analysis. In the presence of 100 mg l-1 glucose, the wax strain could degrade over 95% of the total DDT, at a concentration of 20 mg l-1, in 72 hours, and could degrade over 60% of the total DDT, at a concentration of 100 mg l-1, in 144 hours. The wax strain had the highest degradation efficiency among all of the documented DDT-degrading bacteria. The wax strain could efficiently degrade DDT at temperatures ranging from 20 to 37ºC, and with initial pH values ranging from 7 to 9. The bacterium could also simultaneously co-metabolize 1,1-dichloro-2,2-bis(p-chlorophenylethane (DDD, 2,2-bis(p-chlorophenyl-1,1-dichlorethylene (DDE, and other organochlorine compounds. The wax strain could also completely remove 20 mg kg-1 of DDT from both sterile and non-sterile soils in 20 days. This study demonstrates the significant potential use of Pseudoxanthomonas sp. wax for the bioremediation of DDT in the environment.

  5. Enterobacter siamensis sp. nov., a transglutaminase-producing bacterium isolated from seafood processing wastewater in Thailand.

    Science.gov (United States)

    Khunthongpan, Suwannee; Bourneow, Chaiwut; H-Kittikun, Aran; Tanasupawat, Somboon; Benjakul, Soottawat; Sumpavapol, Punnanee

    2013-01-01

    A novel strain of Enterobacter, C2361(T), a Gram-negative, non-spore-forming, rod-shaped and facultative anaerobic bacterium with the capability to produce transglutaminase, was isolated from seafood processing wastewater collected from a treatment pond of a seafood factory in Songkhla Province, Thailand. Phylogenetic analyses and phenotypic characteristics, including chemotaxonomic characteristics, showed that the strain was a member of the genus Enterobacter. The 16S rRNA gene sequence similarities between strain C2361(T) and Enterobacter cloacae subsp. cloacae ATCC 13047(T) and Enterobacter cloacae subsp. dissolvens LMG 2683(T) were 97.5 and 97.5%, respectively. Strain C2361(T) showed a low DNA-DNA relatedness with the above-mentioned species. The major fatty acids were C16:0, C17:0cyclo and C14:0. The DNA G+C content was 53.0 mol%. On the basis of the polyphasic evidence gathered in this study, it should be classified as a novel species of the genus Enterobacter for which the name Enterobacter siamensis sp. nov. is proposed. The type strain is C2361(T) (= KCTC 23282(T) = NBRC 107138(T)).

  6. Pseudomonas aestus sp. nov., a plant growth-promoting bacterium isolated from mangrove sediments.

    Science.gov (United States)

    Vasconcellos, Rafael L F; Santos, Suikinai Nobre; Zucchi, Tiago Domingues; Silva, Fábio Sérgio Paulino; Souza, Danilo Tosta; Melo, Itamar Soares

    2017-10-01

    Strain CMAA 1215 T , a Gram-reaction-negative, aerobic, catalase positive, polarly flagellated, motile, rod-shaped (0.5-0.8 × 1.3-1.9 µm) bacterium, was isolated from mangrove sediments, Cananéia Island, Brazil. Analysis of the 16S rRNA gene sequences showed that strain CMAA 1215 T forms a distinct phyletic line within the Pseudomonas putida subclade, being closely related to P. plecoglossicida ATCC 700383 T , P. monteilii NBRC 103158 T , and P. taiwanensis BCRC 17751 T of sequence similarity of 98.86, 98.73, and 98.71%, respectively. Genomic comparisons of the strain CMAA 1215 T with its closest phylogenetic type strains using average nucleotide index (ANI) and DNA:DNA relatedness approaches revealed 84.3-85.3% and 56.0-63.0%, respectively. A multilocus sequence analysis (MLSA) performed concatenating 16S rRNA, gyrB and rpoB gene sequences from the novel species was related with Pseudomonas putida subcluster and formed a new phylogenetic lineage. The phenotypic, physiological, biochemical, and genetic characteristics support the assignment of CMAA 1215 T to the genus Pseudomonas, representing a novel species. The name Pseudomonas aestus sp.nov. is proposed, with CMAA 1215 T (=NRRL B-653100 T  = CBMAI 1962 T ) as the type strain.

  7. Cesiribacter roseus sp. nov., a pink-pigmented bacterium isolated from desert sand.

    Science.gov (United States)

    Liu, Ming; Qi, Huan; Luo, Xuesong; Dai, Jun; Peng, Fang; Fang, Chengxiang

    2012-01-01

    A pink-pigmented, Gram-negative, rod-shaped, motile, strictly aerobic bacterium, designated strain 311(T), was isolated from desert sand in Xinjiang, China. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain 311(T) was related closely to Cesiribacter andamanensis AMV16(T) (94.6% similarity). The DNA G+C content of strain 311(T) was 47.1 mol% and the major respiratory quinone was menaquinone 7 (MK-7). The main cellular fatty acids were C(16:1)ω5c (29.9%), iso-C(15:0) (21.9%), iso-C(17:0) 3-OH (13.3%) and summed feature 4 (iso-C(17:1) I and/or anteiso-C(17:1) B; 13.0%). Based on phenotypic and chemotaxonomic data and phylogenetic analysis, strain 311(T) is considered to represent a novel species of the genus Cesiribacter, for which the name Cesiribacter roseus sp. nov. is proposed. The type strain is 311(T) (=CCTCC AB 207142(T) =KACC 15456(T)).

  8. Xenophilus arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from soil.

    Science.gov (United States)

    Li, Qin-Fen; Sun, Li-Na; Kwon, Soon-Wo; Chen, Qing; He, Jian; Li, Shun-Peng; Zhang, Jun

    2014-06-01

    A Gram-reaction-negative, aerobic, motile, rod-shaped, arsenite [As(III)]-resistant bacterium, designated strain YW8(T), was isolated from agricultural soil. 16S rRNA gene sequence analysis showed over 97% sequence similarity to strains of the environmental species Xenophilus azovorans, Xenophilus aerolatus, Simplicispira metamorpha, Variovorax soli, and Xylophilus ampelinus. However, the phylogenetic tree indicated that strain YW8(T) formed a separate clade from Xenophilus azovorans. DNA-DNA hybridization experiments showed that the DNA-DNA relatedness values between strain YW8(T) and its closest phylogenetic neighbours were below 24.2-35.5%, which clearly separated the strain from these closely related species. The major cellular fatty acids of strain YW8(T) were C(16 : 0), C(17 : 0) cyclo, C(18 : 1)ω7c, and summed feature 3(C(16 : 1)ω6c and/or C(16 : 1)ω7c). The genomic DNA G+C content was 69.3 mol%, and the major respiratory quinone was ubiquinone-8. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unknown phospholipids, an unknown polar lipid and phosphatidylserine. The major polyamines were 2-hydroxyputrescine and putrescine. On the basis of morphological, physiological and biochemical characteristics, phylogenetic position, DNA-DNA hybridization and chemotaxonomic data, strain YW8(T) is considered to represent a novel species of the genus Xenophilus, for which the name Xenophilus arseniciresistens sp. nov. is proposed; the type strain is YW8(T) ( = CCTCC AB2012103(T) = KACC 16853(T)). © 2014 IUMS.

  9. Bacillus endozanthoxylicus sp. nov., an endophytic bacterium isolated from Zanthoxylum bungeanum Maxim leaves.

    Science.gov (United States)

    Ma, Li; Xi, Jia-Qin; Cao, Yong-Hong; Wang, Xiao-Yan; Zheng, Shuai-Chao; Yang, Cheng-Gang; Yang, Ling-Ling; Mi, Qi-Li; Li, Xue-Mei; Zhu, Ming-Liang; Mo, Ming-He

    2017-10-01

    A Gram-stain-positive, rod-shaped, motile bacterium, designated as 1404 T , was isolated from leaves of Chinese red pepper (Huajiao) (Zanthoxylum bungeanum Maxim) collected from Gansu, north-west China. Spores were not observed under a range of conditions. Strain 1404 T was observed to grow at 15-45 °C and pH 6.0-10.0 and in presence of 0-5 % (w/v) NaCl concentration. The cell wall of strain 1404 T was found to contain meso-diaminopimelic acid, and the predominant respiratory quinone was identified as MK-7. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid as well as three unidentified polar lipids. The major fatty acids profile of strain 1404 T consisted of iso-C15 : 0 (25.6 %), anteiso-C15 : 0 (18.4 %) and iso-C14 : 0 (12.1 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 1404 T was affiliated to the genus Bacillus and was closely related to Bacillusoryzisoli 1DS3-10 T , Bacillusbenzoevorans DSM 5391 T and Bacilluscirculans DSM 11 T with sequence similarity of 98.3, 98.2 and 96.9 %, respectively. The G+C content of the genomic DNA was determined to be 39.4 mol%. DNA-DNA hybridization values indicated that relatedness between strain 1404 T and the type strains of closely related species of the genus Bacillus was below 41 %. Therefore, on the basis of the data from the polyphasic taxonomic study presented, strain 1404 T represents a novel species of the genus Bacillus, for which the name proposed is Bacillus endozanthoxylicus sp. nov. The type strain is 1404 T (=CCTCC AB 2017021 T =KCTC 33827 T ).

  10. Methylobacterium pseudosasae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the bamboo phyllosphere.

    Science.gov (United States)

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj

    2014-02-01

    A pink-pigmented, Gram negative, aerobic, facultatively methylotrophic bacterium, strain BL44(T), was isolated from bamboo leaves and identified as a member of the genus Methylobacterium. Phylogenetic analysis based on 16S rRNA gene sequences showed similarity values of 98.7-97.0 % with closely related type strains and showed highest similarity to Methylobacterium zatmanii DSM 5688(T) (98.7 %) and Methylobacterium thiocyanatum DSM 11490(T) (98.7 %). Methylotrophic metabolism in this strain was confirmed by PCR amplification and sequencing of the mxaF gene coding for the α-subunit of methanol dehydrogenase. Strain BL44(T) produced three known quorum sensing signal molecules with similar retention time to C8, C10 and C12-HSLs when characterized by GC-MS. The fatty acid profiles contained major amounts of C18:1 ω7c, iso-3OH C17:0 and summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH), which supported the grouping of the isolate in the genus Methylobacterium. The DNA G+C content was 66.9 mol%. DNA relatedness of the strain BL44(T) to its most closely related strains ranged from 12-43.3 %. On the basis of the phenotypic, phylogenetic and DNA-DNA hybridization data, strain BL44(T) is assigned to a novel species of the genus Methylobacterium for which the name Methylobacterium pseudosasae sp. nov. is proposed (type strain BL44(T) = NBRC 105205(T) = ICMP 17622(T)).

  11. Competitive Interactions Between Incompatible Mutants of the Social Bacterium Myxococcus xanthus DK1622

    Directory of Open Access Journals (Sweden)

    Ya Gong

    2018-06-01

    Full Text Available Due to the high similarity in their requirements for space and food, close bacterial relatives may be each other's strongest competitors. Close bacterial relatives often form visible boundaries to separate their swarming colonies, a phenomenon termed colony-merger incompatibility. While bacterial species are known to have many incompatible strains, it is largely unclear which traits lead to multiple incompatibilities and the interactions between multiple incompatible siblings. To investigate the competitive interactions of closely related incompatible strains, we mutated Myxococcus xanthus DK1622, a predatory bacterium with complex social behavior. From 3392 random transposon mutations, we obtained 11 self-identification (SI deficient mutants that formed unmerged colony boundaries with the ancestral strain. The mutations were at nine loci with unknown functions and formed nine independent SI mutants. Compared with their ancestral strain, most of the SI mutants showed reduced growth, swarming and development abilities, but some remained unchanged from their monocultures. When pairwise mixed with their ancestral strain for co-cultivation, these mutants exhibited improved, reduced or unchanged competitive abilities compared with the ancestral strain. The sporulation efficiencies were affected by the DK1622 partner, ranging from almost complete inhibition to 360% stimulation. The differences in competitive growth between the SI mutants and DK1622 were highly correlated with the differences in their sporulation efficiencies. However, the competitive efficiencies of the mutants in mixture were inconsistent with their growth or sporulation abilities in monocultures. We propose that the colony-merger incompatibility in M. xanthus is associated with multiple independent genetic loci, and the incompatible strains hold competitive interaction abilities, which probably determine the complex relationships between multiple incompatible M. xanthus strains and

  12. Noncontiguous finished genome sequence and description of Virgibacillus massiliensis sp. nov., a moderately halophilic bacterium isolated from human gut

    Directory of Open Access Journals (Sweden)

    S. Khelaifia

    2015-11-01

    Full Text Available Strain Vm-5T was isolated from the stool specimen of a 10-year-old Amazonian boy. This bacterium is a Gram-positive, strictly aerobic rod, motile by a polar flagellum. Here we describe its phenotypic characteristics and complete genome sequence. The 4 353 177 bp long genome exhibits a G + C content of 36.87% and contains 4394 protein-coding and 125 predicted RNA genes. Phylogenetically and genetically, strain Vm-c is a member of the genus Virgibacillus but is distinct enough to be classified as a new species. We propose the creation of V. massiliensis sp. nov., whose type strain is strain Vm-5T (CSUR P971 = DSM 28587.

  13. Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces.

    Science.gov (United States)

    Schwiertz, Andreas; Hold, Georgina L; Duncan, Sylvia H; Gruhl, Barbel; Collins, Matthew D; Lawson, Paul A; Flint, Harry J; Blaut, Michael

    2002-04-01

    Two strains of a previously undescribed Eubacterium-like bacterium were isolated from human faeces. The strains are Gram-variable, obligately anaerobic, catalase negative, asporogenous rod-shaped cells which produced acetate, butyrate and lactate as the end products of glucose metabolism. The two isolates displayed 99.9% 16S rRNA gene sequence similarity to each other and treeing analysis demonstrated the faecal isolates are far removed from Eubacterium sensu stricto and that they represent a new subline within the Clostridium coccoides group of organisms. Based on phenotypic and phylogenetic criteria, it is proposed that the two strains from faeces be classified as a new genus and species, Anaerostipes caccae. The type strain of Anaerostipes caccae is NCIMB 13811T (= DSM 14662T).

  14. Complete genome sequence of Paenibacillus sp. strain JDR-2

    Science.gov (United States)

    Virginia Chow; Guang Nong; Franz J. St. John; John D. Rice; Ellen Dickstein; Olga Chertkov; David Bruce; Chris Detter; Thomas Brettin; James Han; Tanja Woyke; Sam Pitluck; Matt Nolan; Amrita Pati; Joel Martin; Alex Copeland; Miriam L. Land; Lynne Goodwin; Jeffrey B. Jones; Lonnie O. Ingram; Keelnathan T. Shanmugam; James F. Preston

    2012-01-01

    Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by...

  15. Ethanologenic potential of the bacterium Bacillus cereus NB-19 in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-01

    Dec 1, 2009 ... Ethanologenic bacterium was cultivated in a suspension of sugarcane ... bagasse is very useful for obtaining yields of the different products including cell mass and ethanol as ... the resources for the green fuel generation.

  16. Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea.

    Science.gov (United States)

    Heyer, Jürgen; Berger, Ursula; Hardt, Martin; Dunfield, Peter F

    2005-09-01

    A novel genus and species are proposed for two strains of methanotrophic bacteria isolated from hypersaline lakes in the Crimean Peninsula of Ukraine. Strains 10Ki(T) and 4Kr are moderate halophiles that grow optimally at 1-1.5 M (5.8-8.7%, w/v) NaCl and tolerate NaCl concentrations from 0.2 M up to 2.5 M (1.2-15%). This optimum and upper limit are the highest for any methanotrophic bacterium known to date. The strains are Gram-negative, aerobic, non-pigmented, motile, coccoid to spindle-shaped bacteria that grow on methane or methanol only and utilize the ribulose monophosphate pathway for carbon assimilation. They are neutrophilic (growth occurs only in the range pH 6.5-7.5) and mesophilic (optimum growth occurs at 30 degrees C). On the basis of 16S rRNA gene sequence phylogeny, strains 10Ki(T) and 4Kr represent a type I methanotroph within the 'Gammaproteobacteria'. However, the 16S rRNA gene sequence displays <91.5 % identity to any public-domain sequence. The most closely related methanotrophic bacterium is the thermophilic strain HB. The DNA G+C content is 58.7 mol%. The major phospholipid fatty acids are 18:1omega7 (52-61%), 16:0 (22-23%) and 16:1omega7 (14-20%). The dominance of 18:1 over 16:0 and 16:1 fatty acids is unique among known type I methanotrophs. The data suggest that strains 10Ki(T) and 4Kr should be considered as belonging to a novel genus and species of type I methanotrophic bacteria, for which the name Methylohalobius crimeensis gen. nov., sp. nov. is proposed. Strain 10Ki(T) (=DSM 16011(T)=ATCC BAA-967(T)) is the type strain.

  17. Draft genome sequence of Therminicola potens strain JR

    Energy Technology Data Exchange (ETDEWEB)

    Byrne-Bailey, K.G.; Wrighton, K.C.; Melnyk, R.A.; Agbo, P.; Hazen, T.C.; Coates, J.D.

    2010-07-01

    'Thermincola potens' strain JR is one of the first Gram-positive dissimilatory metal-reducing bacteria (DMRB) for which there is a complete genome sequence. Consistent with the physiology of this organism, preliminary annotation revealed an abundance of multiheme c-type cytochromes that are putatively associated with the periplasm and cell surface in a Gram-positive bacterium. Here we report the complete genome sequence of strain JR.

  18. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  19. Draft Genome Sequence of Ochrobactrum intermedium Strain SA148, a Plant Growth-Promoting Desert Rhizobacterium

    KAUST Repository

    Lafi, Feras Fawzi

    2017-03-03

    Ochrobactrum intermedium strain SA148 is a plant growth-promoting bacterium isolated from sandy soil in the Jizan area of Saudi Arabia. Here, we report the 4.9-Mb draft genome sequence of this strain, highlighting different pathways characteristic of plant growth promotion activity and environmental adaptation of SA148.

  20. Draft genome sequence of Xylella fastidiosa pear leaf scorch strain in Taiwan

    Science.gov (United States)

    The draft genome sequence of Xylella fastidiosa pear leaf scorch strain (PLS229) isolated from pear cultivar Hengshan (Pyrus pyrifolia) in Taiwan is reported. The bacterium has a genome size of 2,733,013 bp with a G+C content of 53.1%. The PLS229 strain genome was annotated to have 3,259 open readin...

  1. Draft Genome Sequence of Ochrobactrum intermedium Strain SA148, a Plant Growth-Promoting Desert Rhizobacterium

    KAUST Repository

    Lafi, Feras Fawzi; Alam, Intikhab; Geurts, Rene; Bisseling, Ton; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged

    2017-01-01

    Ochrobactrum intermedium strain SA148 is a plant growth-promoting bacterium isolated from sandy soil in the Jizan area of Saudi Arabia. Here, we report the 4.9-Mb draft genome sequence of this strain, highlighting different pathways characteristic

  2. Isolation and characterization of a novel hydrocarbon-degrading bacterium Achromobacter sp. HZ01 from the crude oil-contaminated seawater at the Daya Bay, southern China

    International Nuclear Information System (INIS)

    Deng, Mao-Cheng; Li, Jing; Liang, Fu-Rui; Yi, Meisheng; Xu, Xiao-Ming; Yuan, Jian-Ping; Peng, Juan; Wu, Chou-Fei; Wang, Jiang-Hai

    2014-01-01

    Graphical abstract: Morphological properties of the colonies and cells of strain HZ01. (A) Colonies of strain HZ01 on the LB solid plate; (B) Gram-negative bacterium of strain HZ01 (20 × 100); (C) Scanning electron microscopy (SEM) photograph of strain HZ01 (×15,000); and (D) Transmission electronic microscopy (TEM) photograph of strain HZ01 (×5000). - Highlights: • A novel petroleum degrading bacterium HZ01 was obtained from the crude oil-contaminated seawater. • Strain HZ01 had been identified as Achromobacter sp. • Strain HZ01 could degrade the evaporated diesel oil with the degradability of 96.6%. • Strain HZ01 could effectively degrade anthracene, phenanthrene and pyrence. • Strain HZ01 may be employed to remove hydrocarbon contaminants. - Abstract: Microorganisms play an important role in the biodegradation of petroleum contaminants, which have attracted great concern due to their persistent toxicity and difficult biodegradation. In this paper, a novel hydrocarbon-degrading bacterium HZ01 was isolated from the crude oil-contaminated seawater at the Daya Bay, South China Sea, and identified as Achromobacter sp. Under the conditions of pH 7.0, NaCl 3% (w/v), temperature 28 °C and rotary speed 150 rpm, its degradability of the total n-alkanes reached up to 96.6% after 10 days of incubation for the evaporated diesel oil. Furthermore, Achromobacter sp. HZ01 could effectively utilize polycyclic aromatic hydrocarbons (PAHs) as its sole carbon source, and could remove anthracene, phenanthrene and pyrence about 29.8%, 50.6% and 38.4% respectively after 30 days of incubation. Therefore, Achromobacter sp. HZ01 may employed as an excellent degrader to develop one cost-effective and eco-friendly method for the bioremediation of marine environments polluted by crude oil

  3. Nocardioides daejeonensis sp. nov., a denitrifying bacterium isolated from sludge in a sewage-disposal plant.

    Science.gov (United States)

    Woo, Sung-Geun; Srinivasan, Sathiyaraj; Yang, Jihoon; Jung, Yong-An; Kim, Myung Kyum; Lee, Myungjin

    2012-05-01

    Strain MJ31(T), a gram-reaction-positive, aerobic, rod-shaped, non-motile bacterium, was isolated from a sludge sample collected at the Daejeon sewage-disposal plant, in South Korea, and characterized in order to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MJ31(T) belonged to the genus Nocardioides, appearing most closely related to Nocardioides dubius KSL-104(T) (98.6 % sequence similarity), Nocardioides jensenii DSM 20641(T) (97.6 %), Nocardioides daedukensis MDN22(T) (97.2 %) and Nocardioides mesophilus MSL-22(T) (97.0 %). The chemotaxonomic properties of strain MJ31(T) were consistent with those of the genus Nocardioides: MK-8(H(4)) was the predominant menaquinone, iso-C(16 : 0), iso-C(17 : 0) and C(18 : 1)ω9c were the predominant cellular fatty acids, and the cell-wall peptidoglycan was based on LL-2,6-diaminopimelic acid. The genomic DNA G+C content of strain MJ31(T) was 71.2 mol%. Some differential phenotypic properties and low DNA-DNA relatedness values (<28 %) with the type strains of closely related species indicated that strain MJ31(T) represents a novel species, for which the name Nocardioides daejeonensis sp. nov. is proposed. The type strain is MJ31(T) ( = KCTC 19772(T) = JCM 16922(T)).

  4. Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae.

    Science.gov (United States)

    Ambrosio, Rafael; Ortiz-Marquez, Juan Cesar Federico; Curatti, Leonardo

    2017-03-01

    The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. However, with the exception of the symbiotic rhizobia-legumes system, progress towards a more extensive realization of this goal has been slow. In this study we manipulated the endogenous regulation of both nitrogen fixation and assimilation in the aerobic bacterium Azotobacter vinelandii. Substituting an exogenously inducible promoter for the native promoter of glutamine synthetase produced conditional lethal mutant strains unable to grow diazotrophically in the absence of the inducer. This mutant phenotype could be reverted in a double mutant strain bearing a deletion in the nifL gene that resulted in constitutive expression of nif genes and increased production of ammonium. Under GS non-inducing conditions both the single and the double mutant strains consistently released very high levels of ammonium (>20mM) into the growth medium. The double mutant strain grew and excreted high levels of ammonium under a wider range of concentrations of the inducer than the single mutant strain. Induced mutant cells could be loaded with glutamine synthetase at different levels, which resulted in different patterns of extracellular ammonium accumulation afterwards. Inoculation of the engineered bacteria into a microalgal culture in the absence of sources of C and N other than N 2 and CO 2 from the air, resulted in a strong proliferation of microalgae that was suppressed upon addition of the inducer. Both single and double mutant strains also promoted growth of cucumber plants in the absence of added N-fertilizer, while this property was only marginal in the parental strain. This study provides a simple synthetic genetic circuit that might inspire engineering of optimized inoculants that efficiently channel N 2 from the air into crops. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All

  5. Echinicola rosea sp. nov., a marine bacterium isolated from surface seawater.

    Science.gov (United States)

    Liang, Pan; Sun, Jia; Li, Hao; Liu, Minyuan; Xue, Zhaocheng; Zhang, Yao

    2016-09-01

    A novel Gram-stain-negative, rod-shaped, gliding, halotolerant, aerobic, light-pink-pigmented bacterium, strain JL3085T, was isolated from surface water of the South China Sea (16° 49' 4″ N 112° 20' 24″ E; temperature: 28.3 °C, salinity: 34.5%). The major respiratory quinone was menaquinone 7 (MK-7). The polar lipids of strain JL3085T comprised phosphatidylethanolamine, four unidentified phospholipids and three unidentified lipids. The major fatty acids were iso-C15 : 0, summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C17 : 0 3-OH, iso-C17 : 1ω9c, C17 : 1ω6c, anteiso-C15 : 0 and C16 : 1ω5c. The DNA G+C content of strain JL3085T was 43.8 mol%. 16S rRNA gene sequence analysis indicated that strain JL3085T was affiliated with the genus Echinicola, a member of the phylum Bacteroidetes, and was related most closely to Echinicola vietnamensis KMM 6221T (96.8 % similarity). DNA-DNA relatedness between strain JL3085T and E. vietnamensis KMM 6221T was 27.5 %. Based on the evidence presented here, strain JL3085T is regarded as representing a novel species of the genus Echinicola, for which the name Echinicola rosea sp. nov. is proposed. The type strain is JL3085T (=NBRC 111782T=CGMCC 1.15407T).

  6. Natranaerobaculum magadiense gen. nov., sp. nov., an anaerobic, alkalithermophilic bacterium from soda lake sediment.

    Science.gov (United States)

    Zavarzina, Daria G; Zhilina, Tatyana N; Kuznetsov, Boris B; Kolganova, Tatyana V; Osipov, Georgy A; Kotelev, Mikhail S; Zavarzin, Georgy A

    2013-12-01

    An obligately alkaliphilic, anaerobic, thermo- and halotolerant, spore-forming bacterium was isolated from sediments of soda lake Magadi (Kenya) and designated strain Z-1001(T). Cells of strain Z-1001(T) were straight, Gram-positive rods, slowly motile. Strain Z-1001(T) was found to be an obligate anaerobe. It grew within a pH range from 7.5 to 10.7 with an optimum at 9.25-9.5 (at 40 °C), a temperature range from 20 to 57 °C with an optimum at 45-50 °C, and a NaCl concentration range from 0 to 1.55 M with an optimum at 1.2-1.4 M. Peptides, such as meat and yeast extracts, peptone and tryptone, were fermented by Z-1001(T). Carbohydrates did not support growth. With yeast extract as an electron donor, strain Z-1001(T) reduced S(2)O(3)(2-), NO(-)(3), AsO(3-)(4), Fe(III) citrate and anthraquinone-2,6-disulfonate (AQDS) as electron acceptors. The isolate was able to grow oligotrophically with a very small amount of yeast extract: 0.03 g l(-1). The main fatty acids were C16 : 0, C16 : 1ω7c, C18 : 0 and C18 : 1ω9. The DNA G+C content of the isolate was 35.6 mol%. 16S rRNA gene sequence analysis showed that strain Z-1001(T) is a member of family Natranaerobiaceae, clustering with the type strain of Natranaerobius thermophilus (95.8-96.0 % sequence similarity). On the basis of physiological and phylogenetic data it is proposed that strain Z-1001(T) ( = DSM 24923(T) = VKM B-2666(T)) represents a novel genus and species, Natranaerobaculum magadiense gen. nov., sp. nov.

  7. Burkholderia susongensis sp. nov., a mineral-weathering bacterium isolated from weathered rock surface.

    Science.gov (United States)

    Gu, Jia-Yu; Zang, Sheng-Gang; Sheng, Xia-Fang; He, Lin-Yan; Huang, Zhi; Wang, Qi

    2015-03-01

    A novel type of mineral-weathering bacterium was isolated from the weathered surface of rock (mica schist) collected from Susong (Anhui, China). Cells of strain L226(T) were Gram-stain-negative. The strain grew optimally at 30 °C, with 1 % (w/v) NaCl and at pH 7.0 in trypticase soy broth. On the basis of 16S rRNA gene phylogeny, strain L226(T) was shown to belong to the genus Burkholderia and the closest phylogenetic relatives were Burkholderia sprentiae WSM5005(T) (98.3 %), Burkholderia acidipaludis NBRC 101816(T) (98.2 %), Burkholderia tuberum STM678(T) (97.2 %) and Burkholderia diazotrophica JPY461(T) (97.1 %). The DNA G+C content was 63.5 mol% and the respiratory quinone was Q-8. The major fatty acids were C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c. The polar lipid profile of strain L226(T) consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, unknown lipids and unidentified aminophospholipids. Based on the low level of DNA-DNA relatedness (ranging from 25.8 % to 34.4 %) to the tested type strains of species of the genus Burkholderia and unique phenotypic characteristics, it is suggested that strain L226(T) represents a novel species of the genus Burkholderia, for which the name Burkholderia susongensis sp. nov., is proposed. The type strain is L226(T) ( = CCTCC AB2014142(T) = JCM 30231(T)). © 2015 IUMS.

  8. Draft genome sequence of Bacillus okhensis Kh10-101T, a halo-alkali tolerant bacterium from Indian saltpan

    Directory of Open Access Journals (Sweden)

    Pilla Sankara Krishna

    2015-12-01

    Full Text Available We report the 4.86-Mb draft genome sequence of Bacillus okhensis strain Kh10-101T, a halo-alkali tolerant rod shaped bacterium isolated from a salt pan near port of Okha, India. This bacterium is a potential model to study the molecular response of bacteria to salt as well as alkaline stress, as it thrives under both high salt and high pH conditions. The draft genome consist of 4,865,284 bp with 38.2% G + C, 4952 predicted CDS, 157 tRNAs and 8 rRNAs. Sequence was deposited at DDBJ/EMBL/GenBank under the project accession JRJU00000000.

  9. Biosynthesis and characterization of polyhydroxyalkanoates produced by an extreme halophilic bacterium, Halomonas nitroreducens, isolated from hypersaline ponds.

    Science.gov (United States)

    Cervantes-Uc, J M; Catzin, J; Vargas, I; Herrera-Kao, W; Moguel, F; Ramirez, E; Rincón-Arriaga, S; Lizama-Uc, G

    2014-10-01

    Morphological, biochemical and genotypic characterization of a halophilic bacterium isolated from hypersaline ponds located at Las Coloradas (Río Lagartos, Yucatán, Mexico). Characterization of polymer produced by this strain was also performed. Twenty strains were isolated from water samples of salt ponds and selected based on both morphological features and their PHA storage capacity, which were determined by SEM and staining methods with Nile red and Nile blue, respectively; strains were also analysed by the fluorescence imaging technique. Among them, JCCOL25.8 strain showed the highest production of PHA's reason why phenotypic and genotypic characterization was performed; this strain was identified as Halomonas nitroreducens. Polymer produced by this strain was characterized by FTIR, DSC, GPC and EDX spectroscopy. Results indicated that the biosynthesized polymer was polyhydroxybutyrate (PHB) which had a melting peak at 170°C and a crystallinity percentage of about 36%. Based on phenotypic and genotypic aspects, JCCOL25.8 strain was identified as H. nitroreducens and it was capable to accumulate PHB. To our knowledge, there is only one study published on the biosynthesis of PHA's by H. nitroreducens strains, although the characterization of the obtained polymer was not reported. © 2014 The Society for Applied Microbiology.

  10. Isolation of a human intestinal anaerobe, Bifidobacterium sp. strain SEN, capable of hydrolyzing sennosides to sennidins.

    OpenAIRE

    Akao, T; Che, Q M; Kobashi, K; Yang, L; Hattori, M; Namba, T

    1994-01-01

    A strictly anaerobic bacterium capable of metabolizing sennosides was isolated from human feces and identified as Bifidobacterium sp., named strain SEN. The bacterium hydrolyzed sennosides A and B to sennidins A and B via sennidin A and B 8-monoglucosides, respectively. Among nine species of Bifidobacterium having beta-glucosidase activity, only Bifidobacterium dentium and B. adolescentis metabolized sennoside B to sennidin B, suggesting that the sennoside-metabolizing bacteria produce a nove...

  11. A novel radio-tolerant astaxanthin-producing bacterium reveals a new astaxanthin derivative: astaxanthin dirhamnoside.

    Science.gov (United States)

    Asker, Dalal; Awad, Tarek S; Beppu, Teruhiko; Ueda, Kenji

    2012-01-01

    Astaxanthin is a red ketocarotenoid that exhibits extraordinary health-promoting activities such as antioxidant, anti-inflammatory, antitumor, and immune booster. The recent discovery of the beneficial roles of astaxanthin against many degenerative diseases such as cancers, heart diseases, and exercise-induced fatigue has raised its market demand as a nutraceutical and medicinal ingredient in aquaculture, food, and pharmaceutical industries. To satisfy the growing demand for this high-value nutraceuticals ingredient and consumer interest in natural products, many research efforts are being made to discover novel microbial producers with effective biotechnological production of astaxanthin. Using a rapid screening method based on 16S rRNA gene, and effective HPLC-Diodearray-MS methods for carotenoids analysis, we succeeded to isolate a unique astaxanthin-producing bacterium (strain TDMA-17(T)) that belongs to the family Sphingomonadaceae (Asker et al., Appl Microbiol Biotechnol 77: 383-392, 2007). In this chapter, we provide a detailed description of effective HPLC-Diodearray-MS methods for rapid analysis and identification of the carotenoids produced by strain TDMA-17(T). We also describe the methods of isolation and identification for a novel bacterial carotenoid (astaxanthin derivative), a major carotenoid that is produced by strain TDMA-17(T). Finally, we describe the polyphasic taxonomic analysis of strain TDMA-17(T) and the description of a novel species belonging to genus Sphingomonas.

  12. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress*♦

    Science.gov (United States)

    Benoit, Stéphane L.; Maier, Robert J.

    2016-01-01

    Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H2O2). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains (katAH56A and katAY339A) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H2O2-dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme. PMID:27605666

  13. Caldanaerobacter uzonensis sp. nov., an anaerobic, thermophilic, heterotrophic bacterium isolated from a hot spring.

    Science.gov (United States)

    Kozina, Irina V; Kublanov, Ilya V; Kolganova, Tatyana V; Chernyh, Nikolai A; Bonch-Osmolovskaya, Elizaveta A

    2010-06-01

    An anaerobic thermophilic bacterium, strain K67(T), was isolated from a terrestrial hot spring of Uzon Caldera, Kamchatka Peninsula. Analysis of the 16S rRNA gene sequence revealed that the novel isolate belongs to the genus Caldanaerobacter, with 95 % 16S rRNA gene sequence similarity to Caldanaerobacter subterraneus subsp. subterraneus SEBR 7858(T), suggesting that it represents a novel species of the genus Caldanaerobacter. Strain K67(T) was characterized as an obligate anaerobe, a thermophile (growth at 50-75 degrees capital ES, Cyrillic; optimum 68-70 degrees C), a neutrophile (growth at pH(25 degrees C) 4.8-8.0; optimum pH(25 degrees C) 6.8) and an obligate organotroph (growth by fermentation of various sugars, peptides and polysaccharides). Major fermentation products were acetate, H2 and CO2; ethanol, lactate and l-alanine were formed in smaller amounts. Thiosulfate stimulated growth and was reduced to hydrogen sulfide. Nitrate, sulfate, sulfite and elemental sulfur were not reduced and did not stimulate growth. Thus, according to the strain's phylogenetic position and phenotypic novelties (lower upper limit of temperature range for growth, the ability to grow on arabinose, the inability to reduce elemental sulfur and the formation of alanine as a minor fermentation product), the novel species Caldanaerobacter uzonensis sp. nov. is proposed, with the type strain K67(T) (=DSM 18923(T) =VKM capital VE, Cyrillic-2408(T)).

  14. Amerindian Helicobacter pylori strains go extinct, as european strains expand their host range.

    Directory of Open Access Journals (Sweden)

    Maria G Domínguez-Bello

    Full Text Available We studied the diversity of bacteria and host in the H. pylori-human model. The human indigenous bacterium H. pylori diverged along with humans, into African, European, Asian and Amerindian groups. Of these, Amerindians have the least genetic diversity. Since niche diversity widens the sets of resources for colonizing species, we predicted that the Amerindian H. pylori strains would be the least diverse. We analyzed the multilocus sequence (7 housekeeping genes of 131 strains: 19 cultured from Africans, 36 from Spanish, 11 from Koreans, 43 from Amerindians and 22 from South American Mestizos. We found that all strains that had been cultured from Africans were African strains (hpAfrica1, all from Spanish were European (hpEurope and all from Koreans were hspEAsia but that Amerindians and Mestizos carried mixed strains: hspAmerind and hpEurope strains had been cultured from Amerindians and hpEurope and hpAfrica1 were cultured from Mestizos. The least genetically diverse H. pylori strains were hspAmerind. Strains hpEurope were the most diverse and showed remarkable multilocus sequence mosaicism (indicating recombination. The lower genetic structure in hpEurope strains is consistent with colonization of a diversity of hosts. If diversity is important for the success of H. pylori, then the low diversity of Amerindian strains might be linked to their apparent tendency to disappear. This suggests that Amerindian strains may lack the needed diversity to survive the diversity brought by non-Amerindian hosts.

  15. ANALYSIS OF IMMUNE RESPONSES ON TRANSGENIC TIGER SHRIMP (Penaeus monodon AGAINST PATHOGENIC BACTERIUM Vibrio harveyi

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2014-06-01

    Full Text Available Vibriosis is one of main diseases of the black tiger shrimp Penaeus monodon infected by pathogenic bioluminous bacterium Vibrio harveyi that can cause mass mortalities in shrimp culture. The bacteria can also trigger the disease white spot syndrome virus (WSSV. An effort to produce shrimp disease-resistant strains has been done through transgenesis technology with antiviral gene transfection. By this technology, it is expected an increase in the immune response of shrimp in a variety of diseasecausing pathogens. This study aimed to determine the immune responses (total haemocytes, haemocyte differentiation, and phenoloxydase activity of transgenic tiger shrimp against pathogenic bacterium V. harveyi. Research using completely randomized design, which consists of two treatments and three replications. Test animals being used were transgenic and non-transgenic shrimp with size, weight 3.93±1.25 g and a total length of 7.59±0.87 cm. Treatments being tested were the injection of bacterium V. harveyi (density of 5x106 cfu/mL of 0.1 mL/individual on transgenic (A and non-transgenic shrimp (B. Immune response parameters such as total haemocytes, haemocyte differentiation, and phenoloxydase activity were observed on day 1, 3, and 6 days after challenging. Data were analyzed using t-test by SPSS software. The results showed that the total haemocyte of transgenic shrimp was not significantly different (P>0.05 from non-transgenic shrimp, but haemocyte differentiation and phenoloxydase activity were significantly different (P<0.05 especially on sixth days after being exposed to the bioluminescent bacteria. The study results implied that transgenic shrimp has a better immune response compared than non-transgenic shrimp.

  16. Screening and identification of Lipase Producing Bacterium

    Science.gov (United States)

    Zheng, Chaocheng

    2018-01-01

    55 samples from different regions were selected and screened by Rhodamine B flat transparent circle method to observe lipase producing effect, among which, LHY-1, identified as Serratia sp. has the characteristics of fast growth, high enzyme production and stable ability. The colony of this strain is white, the edge is smooth and tidy, the surface is moist, the cell is straight, rod-shaped, gram negative, 0.1-0.2 μm in diameter and, length 0.3-0.5 μm in length.

  17. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.

    Science.gov (United States)

    Singh, Nisha; Mathur, Anshu S; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Puri, Munish

    2017-01-01

    Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L -1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L -1 and 82.74% degradation at 10 g L -1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes

  18. Dehalogenimonas formicexedens sp. nov., a chlorinated alkane-respiring bacterium isolated from contaminated groundwater.

    Science.gov (United States)

    Key, Trent A; Bowman, Kimberly S; Lee, Imchang; Chun, Jongsik; Albuquerque, Luciana; da Costa, Milton S; Rainey, Fred A; Moe, William M

    2017-05-01

    A strictly anaerobic, Gram-stain-negative, non-spore-forming bacterium designated NSZ-14T, isolated from contaminated groundwater in Louisiana (USA), was characterized using a polyphasic approach. Strain NSZ-14T reductively dehalogenated a variety of polychlorinated aliphatic alkanes, producing ethene from 1,2-dichloroethane, propene from 1,2-dichloropropane, a mixture of cis- and trans-1,2-dichloroethene from 1,1,2,2-tetrachloroethane, vinyl chloride from 1,1,2-trichloroethane and allyl chloride (3-chloro-1-propene) from 1,2,3-trichloropropane. Formate or hydrogen could both serve as electron donors. Dechlorination occurred between pH 5.5 and 7.5 and over a temperature range of 20-37 °C. Major cellular fatty acids included C18 : 1ω9c, C14 : 0 and C16 : 0. 16S rRNA gene sequence-based phylogenetic analysis indicated that the strain clusters within the class Dehalococcoidia of the phylum Chloroflexi, most closely related to but distinct from type strains of the species Dehalogenimonas alkenigignens (97.63 % similarity) and Dehalogenimonas lykanthroporepellens (95.05 %). A complete genome sequence determined for strain NSZ-14T revealed a DNA G+C content of 53.96 mol%, which was corroborated by HPLC (54.1±0.2 mol% G+C). Genome-wide comparisons based on average nucleotide identity by orthology and estimated DNA-DNA hybridization values combined with phenotypic and chemotaxonomic traits and phylogenetic analysis indicate that strain NSZ-14T represents a novel species within the genus Dehalogenimonas, for which the name Dehalogenimonas formicexedens sp. nov. is proposed. The type strain is NSZ-14T (=HAMBI 3672T=JCM 19277T=VKM B-3058T). An emended description of Dehalogenimonas alkenigignens is also provided.

  19. Anoxybacillus vitaminiphilus sp. nov., a strictly aerobic and moderately thermophilic bacterium isolated from a hot spring.

    Science.gov (United States)

    Zhang, Xin-Qi; Zhang, Zhen-Li; Wu, Nan; Zhu, Xu-Fen; Wu, Min

    2013-11-01

    A strictly aerobic, Gram-stain-positive, motile and spore-forming bacterium, strain 3nP4(T), was isolated from the Puge hot spring located in the south-western geothermal area of China. Strain 3nP4(T) grew at 38-66 °C (optimum 57-60 °C), at pH 6.0-9.3 (optimum 7.0-7.5) and with 0-4 % (w/v) NaCl (optimum 0-0.5 %). Phylogenetic analysis of 16S rRNA gene sequences, as well as DNA-DNA relatedness values, indicated that the isolate represents a novel species of the genus Anoxybacillus, related most closely to Anoxybacillus voinovskiensis DSM 12111(T). Strain 3nP4(T) had diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and one unidentified phospholipid as major polar lipids and iso-C15 : 0 and iso-C17 : 0 as major fatty acids, which are both typical chemotaxonomic characteristics of the genus Anoxybacillus. The mean DNA G+C content of strain 3nP4(T) was 39.2±0.95 mol% (HPLC). A distinctive characteristic of the novel isolate was its extreme reliance on vitamin mixture or yeast extract for growth. Based on data from this taxonomic study using a polyphasic approach, strain 3nP4(T) is considered to represent a novel species of the genus Anoxybacillus, for which the name Anoxybacillus vitaminiphilus sp. nov. is proposed. The type strain is 3nP4(T) ( = CGMCC 1.8979(T) = JCM 16594(T)).

  20. Sulfurospirillum arcachonense sp. nov., a new microaerophilic sulfur-reducing bacterium.

    Science.gov (United States)

    Finster, K; Liesack, W; Tindall, B J

    1997-10-01

    The isolation of a new motile, gram-negative, heterotrophic, sulfur-reducing, microaerophilic, vibrioid bacterium, strain F1F6, from oxidized marine surface sediment (Arcachon Bay, French Atlantic coast) is described. Hydrogen (with acetate as the carbon source), formate (with acetate as the carbon source), pyruvate, lactate, alpha-ketoglutarate, glutarate, glutamate, and yeast extract supported growth with elemental sulfur under anaerobic conditions. Apart from H2 and formate, the oxidation of the substrates was incomplete. Microaerophilic growth was supported with hydrogen (acetate as the carbon source), formate (acetate as the carbon source), acetate, propionate, pyruvate, lactate, alpha-ketoglutarate, glutamate, yeast extract, fumarate, succinate, malate, citrate, and alanine. The isolate grew fermentatively with fumarate, succinate being the only organic product. Elemental sulfur and oxygen were the only electron acceptors used. Vitamins or amino acids were not required. The isolate was oxidase, catalase, and urease positive. Comparative 16S rDNA sequence analysis revealed a tight cluster consisting of the validly described species Sulfurospirillum deleyianum and the strains SES-3 and CCUG 13942 as the closest relatives of strain F1F6 (level of sequence similarity, 91.7 to 92.4%). Together with strain F1F6, these organisms form a novel lineage within the epsilon subclass of proteobacteria clearly separated from the described species of the genera Arcobacter, Campylobacter, Wolinella, and Helicobacter. Due to the phenotypic characteristics shared by strain F1F6 and S. deleyianum and considering their phylogenetic relationship, we propose the inclusion of strain F1F6 in the genus Sulfurospirillum, namely, as S. arcachonense sp. nov. Based on the results of this study, an emended description of the genus Sulfurospirillum is given.

  1. Brockia lithotrophica gen. nov., sp. nov., an anaerobic thermophilic bacterium from a terrestrial hot spring.

    Science.gov (United States)

    Perevalova, Anna A; Kublanov, Ilya V; Baslerov, R V; Zhang, Gengxin; Bonch-Osmolovskaya, Elizaveta A

    2013-02-01

    A novel thermophilic bacterium, strain Kam1851(T), was isolated from a terrestrial hot spring of the Uzon Caldera, Kamchatka Peninsula, Russia. Cells of strain Kam1851(T) were spore-forming rods with a gram-positive type of cell wall. Growth was observed between 46 and 78 °C, and pH 5.5-8.5. The optimal growth (doubling time, 6.0 h) was at 60-65 °C and pH 6.5. The isolate was an obligate anaerobe growing in pre-reduced medium only. It grew on mineral medium with molecular hydrogen or formate as electron donors, and elemental sulfur, thiosulfate or polysulfide as electron acceptors. The main cellular fatty acids were C(16 : 0) (34.2 %), iso-C(16 : 0) (18 %), C(18 : 0) (12.8 %) and iso-C(17 : 0) (11.1 %). The G+C content of the genomic DNA of strain Kam1851(T) was 63 mol%. 16S rRNA gene sequence analysis showed that strain Kam1851(T) belonged to the order Thermoanaerobacterales, but it was not closely related to representatives of any genera with validly published names. The most closely related strains, which had no more than 89.2 % sequence similarity, were members of the genera Ammonifex and Caldanaerobacter. On the basis of its phylogenetic position and novel phenotypic features, isolate Kam1851(T) is proposed to represent a novel species in a new genus, Brockia lithotrophica gen. nov., sp. nov.; the type strain of Brockia lithotrophica is Kam1851(T) ( = DSM 22653(T) = VKM B-2685(T)).

  2. Reduction of nitric oxide catalyzed by hydroxylamine oxidoreductase from an anammox bacterium.

    Science.gov (United States)

    Irisa, Tatsuya; Hira, Daisuke; Furukawa, Kenji; Fujii, Takao

    2014-12-01

    The hydroxylamine oxidoreductase (HAO) from the anammox bacterium, Candidatus Kuenenia stuttgartiensis has been reported to catalyze the oxidation of hydroxylamine (NH2OH) to nitric oxide (NO) by using bovine cytochrome c as an oxidant. In contrast, we investigated whether the HAO from anammox bacterium strain KSU-1 could catalyze the reduction of NO with reduced benzyl viologen (BVred) and the NO-releasing reagent, NOC 7. The reduction proceeded, resulting in the formation of NH2OH as a product. The oxidation rate of BVred was proportional to the concentration of BVred itself for a short period in each experiment, a situation that was termed quasi-steady state. The analyses of the states at various concentrations of HAO allowed us to determine the rate constant for the catalytic reaction, (2.85 ± 0.19) × 10(5) M(-1) s(-1), governing NO reduction by BVred and HAO, which was comparable to that reported for the HAO from the ammonium oxidizer, Nitrosomonas with reduced methyl viologen. These results suggest that the anammox HAO functions to adjust anammox by inter-conversion of NO and NH2OH depending on the redox potential of the physiological electron transfer protein in anammox bacteria. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036.

    Science.gov (United States)

    Choi, Sun Young; Gong, Gyeongtaek; Park, Hong-Sil; Um, Youngsoon; Sim, Sang Jun; Woo, Han Min

    2015-01-10

    Detoxification process of cellular inhibitors including furfural is essential for production of bio-based chemicals from lignocellulosic biomass. Here we isolated an extreme furfural-tolerant bacterium Enterobacter cloacae GGT036 from soil sample collected in Mt. Gwanak, Republic of Korea. Among isolated bacteria, only E. cloacae GGT036 showed cell growth with 35 mM furfural under aerobic culture. Compared to the maximal half inhibitory concentration (IC50) of well-known industrial strains Escherichia coli (24.9 mM furfural) and Corynebacterium glutamicum (10 mM furfural) based on the cell density, IC50 of E. cloacae GGT036 (47.7 mM) was significantly higher after 24 h, compared to E. coli and C. glutamicum. Since bacterial cell growth was exponentially inhibited depending on linearly increased furfural concentrations in the medium, we concluded that E. cloacae GGT036 is an extreme furfural-tolerant bacterium. Recently, the complete genome sequence of E. cloacae GGT036 was announced and this could provide an insight for engineering of E. cloacae GGT036 itself or other industrially relevant bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque.

    Science.gov (United States)

    Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan

    2016-02-10

    Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium.

  5. Production and characterization of bioemulsifier from a marine bacterium, Acinetobacter calcoaceticus subsp. anitratus SM7

    Directory of Open Access Journals (Sweden)

    Kulnaree Phetrong

    2008-05-01

    Full Text Available Marine bacterium strain SM7 was isolated as a bioemulsifier-producing bacterium from oil-spilled seawater in Songkhla lagoon, Thailand. It was identified as Acinetobacter calcoaceticus subsp. anitratus based on morphology, biochemicalcharacteristics and 16S rRNA sequence. A. calcoaceticus subsp. anitratus SM7 produced an extracellular emulsifying agent when grown in a minimal salt medium (pH 7.0 containing 0.3% (v/v n-heptadecane and 0.1% (w/v ammoniumhydrogen carbonate as carbon source and nitrogen source, respectively, at 30oC with agitation rate of 200 rpm. Crude bioemulsifier was recovered from the culture supernatant by ethanol precipitation with a yield of 2.94 g/l and had a criticalemulsifier concentration of 0.04 g/ml. The crude bioemulsifier was capable of emulsifying n-hexadecane in a broad pH range (6-12, temperatures (30-121oC and in the presence of NaCl up to 12% (w/v. The bioemulsifier was stable in saltsolution ranging from 0 to 0.1% (w/v of MgCl2 and CaCl2. The broad range of pH stability, thermostability and salt tolerance suggested that the bioemulsifier from A. calcoaceticus subsp. anitratus SM7 could be useful in environmentalapplication, especially bioremediation of oil-polluted seawater.

  6. The efficiency of gamma irradiation on the bacterium pseudomonas fluorescence (Migh) against the mediterranean fruit fly ceratitis capitata (wiedemann)

    International Nuclear Information System (INIS)

    Fadel, A.M.

    2002-01-01

    The efficiency of the bacterium pseudomonas fluorescence against the mediterranean fruit fly ceratitis capitata (Wied.) was investigated. Adult emergence was significantly reduced by applying the wild and gamma irradiated strain (150 and 300 Gy). The highest reduction occurred by the mutant P1 and the highest concentration (10 8 ). The activity of this bacteria increased by gamma irradiation compared to that of the wild isolate. The reduction in adult survival of both males and females was highly significant by applying the irradiated bacteria with the two doses of gamma radiation and different concentration (10 8 , 10 6 and 10 4 ) of bacterial suspension. Applying the bacteria as a culture filtrate reduced adult survival of wild strain significantly, while the irradiated strain recorded a significant reduction in males and females with the highest concentration (100 %) and by applying the two doses of gamma radiation (150 and 300 Gy) and in females only at the concentration 50% by using the dose of 150 Gy

  7. Sporosalibacterium faouarense gen. nov., sp. nov., a moderately halophilic bacterium isolated from oil-contaminated soil.

    Science.gov (United States)

    Rezgui, Raja; Ben Ali Gam, Zouhaier; Ben Hamed, Said; Fardeau, Marie-Laure; Cayol, Jean-Luc; Maaroufi, Abderrazak; Labat, Marc

    2011-01-01

    A novel strictly anaerobic, moderately halophilic and mesophilic bacterium, designated strain SOL3f37(T), was isolated from a hydrocarbon-polluted soil surrounding a deep petroleum environment located in south Tunisia. Cells of strain SOL3f37(T) stained Gram-positive and were motile, straight and spore-forming. Strain SOL3f37(T) had a typical Gram-positive-type cell-wall structure, unlike the thick, multilayered cell wall of its closest relative Clostridiisalibacter paucivorans. The major fatty acids were iso-C(15 : 0) (41 %), iso-C(14 : 0) 3-OH and/or iso-C(15 : 0) dimethyl acetal (21.6 %), iso-C(13 : 0) (4.4 %), anteiso-C(15 : 0) (3.9 %) and iso-C(15 : 1) (2.8 %). Strain SOL3f37(T) grew between 20 and 48 °C (optimum 40 °C) and at pH 6.2-8.1 (optimum pH 6.9). Strain SOL3f37(T) required at least 0.5 NaCl l(-1) and grew in the presence of NaCl concentrations up to 150 g l(-1) (optimum 40 g l(-1)). Yeast extract (2 g l(-1)) was required for degradation of pyruvate, fumarate, fructose, glucose and mannitol. Also, strain SOL3f37(T) grew heterotrophically on yeast extract, peptone and bio-Trypticase, but was unable to grow on Casamino acids. Sulfate, thiosulfate, sulfite, elemental sulfur, fumarate, nitrate and nitrite were not reduced. The DNA G+C content was 30.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SOL3f37(T) was a member of the family Clostridiaceae in the order Clostridiales; strain SOL3f37(T) was related to members of various genera of the family Clostridiaceae. It exhibited highest 16S rRNA gene sequence similarity (93.4 %) with Clostridiisalibacter paucivorans 37HS60(T), 91.8 % with Thermohalobacter berrensis CTT3(T) and 91.7 % with Caloranaerobacter azorensis MV1087(T). On the basis of genotypic, phenotypic and phylogenetic data, it is suggested that strain SOL3f37(T) represents a novel species in a new genus. The name Sporosalibacterium faouarense gen. nov., sp. nov. is

  8. Rhodoluna lacicola gen. nov., sp. nov., a planktonic freshwater bacterium with stream-lined genome.

    Science.gov (United States)

    Hahn, Martin W; Schmidt, Johanna; Taipale, Sami J; Doolittle, W Ford; Koll, Ulrike

    2014-09-01

    A pure culture of an actinobacterium previously described as 'Candidatus Rhodoluna lacicola' strain MWH-Ta8 was established and deposited in two public culture collections. Strain MWH-Ta8(T) represents a free-living planktonic freshwater bacterium obtained from hypertrophic Meiliang Bay, Lake Taihu, PR China. The strain was characterized by phylogenetic and taxonomic investigations, as well as by determination of its complete genome sequence. Strain MWH-Ta8(T) is noticeable due to its unusually low values of cell size (0.05 µm(3)), genome size (1.43 Mbp), and DNA G+C content (51.5 mol%). Phylogenetic analyses based on 16S rRNA gene and RpoB sequences suggested that strain MWH-Ta8(T) is affiliated with the family Microbacteriaceae with Pontimonas salivibrio being its closest relative among the currently described species within this family. Strain MWH-Ta8(T) and the type strain of Pontimonas salivibrio shared a 16S rRNA gene sequence similarity of 94.3 %. The cell-wall peptidoglycan of strain MWH-Ta8(T) was of type B2β (B10), containing 2,4-diaminobutyric acid as the diamino acid. The predominant cellular fatty acids were anteiso-C15 : 0 (36.5 %), iso-C16 : 0 (16.5 %), iso-C15 : 0 (15.6 %) and iso-C14 : 0 (8.9 %), and the major (>10 %) menaquinones were MK-11 and MK-12. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and two unknown glycolipids. The combined phylogenetic, phenotypic and chemotaxonomic data clearly suggest that strain MWH-Ta8(T) represents a novel species of a new genus in the family Microbacteriaceae, for which the name Rhodoluna lacicola gen. nov., sp. nov. is proposed. The type strain of the type species is MWH-Ta8(T) ( = DSM 23834(T) = LMG 26932(T)). © 2014 IUMS.

  9. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia.

    Science.gov (United States)

    Abd Rahman, Raja Noor Zaliha Raja; Leow, Thean Chor; Salleh, Abu Bakar; Basri, Mahiran

    2007-08-10

    Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78 degrees C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0) as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5-99.2%). Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70 degrees C and was also stable up to 60 degrees C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T) and Geobacillus kaustophilus (DSM 7263T). Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T). Strain T1T was able to secrete extracellular thermostable lipase into culture

  10. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia

    Directory of Open Access Journals (Sweden)

    Salleh Abu

    2007-08-01

    Full Text Available Abstract Background Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78°C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0 as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5–99.2%. Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Results Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70°C and was also stable up to 60°C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T and Geobacillus kaustophilus (DSM 7263T. Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T. Conclusion Strain T1T was able to secrete extracellular

  11. Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil.

    Science.gov (United States)

    Liu, Xu-Yun; Li, Chun-Xiu; Luo, Xiao-Jing; Lai, Qi-Liang; Xu, Jian-He

    2014-09-01

    A methyl parathion (MP) degrading bacterial strain, designated MP-1(T), was isolated from a waste land where pesticides were formerly manufactured in Jiangsu province, China. Polyphasic taxonomic studies showed that MP-1(T) is a Gram-stain-negative, non-spore-forming, rod-shaped and motile bacterium. The bacterium could grow at salinities of 0-1 % (w/v) and temperatures of 15-40 °C. Strain MP-1(T) could reduce nitrate to nitrite, utilize d-glucose and l-arabinose, but not produce indole, or hydrolyse gelatin. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that MP-1(T) belongs to the genus Burkholderia, showing highest sequence similarity to Burkholderia grimmiae DSM 25160(T) (98.5 %), and similar strains including Burkholderia zhejiangensis OP-1(T) (98.2 %), Burkholderia choica LMG 22940(T) (97.5 %), Burkholderia glathei DSM 50014(T) (97.4 %), Burkholderia terrestris LMG 22937(T) (97.2 %) and Burkholderia telluris LMG 22936(T) (97.0 %). In addition, the gyrB and recA gene segments of strain MP-1(T) exhibited less than 89.0 % and 95.1 % similarities with the most highly-related type strains indicated above. The G+C content of strain MP-1(T) was 62.6 mol%. The major isoprenoid quinone was ubiquinone Q-8. The predominant polar lipids comprised phosphatidyl ethanolamine, phosphatidyl glycerol, aminolipid and phospholipid. The principal fatty acids in strain MP-1(T) were C18 : 1ω7c/C18 : 1ω6c (23.3 %), C16 : 0 (16.8 %), cyclo-C17 : 0 (15.0 %), C16 : 1ω7c/C16 : 1ω6 (8.5 %), cyclo-C19 : 0ω8c (8.1 %), C16 : 1 iso I/C14 : 0 3-OH (5.7 %), C16 : 0 3-OH (5.6 %) and C16 : 02-OH (5.1 %). The DNA-DNA relatedness values between strain MP-1(T) and the three type strains (B. grimmiae DSM 25160(T), B. zhejiangensis OP-1(T) and B. glathei DSM 50014(T)) ranged from 24.6 % to 37.4 %. In accordance with phenotypic and genotypic characteristics, strain MP-1(T) represents a novel

  12. Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate- and arsenate-respiring bacterium from Searles Lake, California

    Science.gov (United States)

    Blum, Jodi Switzer; Kulp, Thomas R.; Han, Sukkyun; Lanoil, Brian; Saltikov, Chad W.; Stolz, John F.; Miller, Laurence G.; Oremland, Ronald S.

    2012-01-01

    A haloalkaliphilic sulfate-respiring bacterium, strain SLSR-1, was isolated from a lactate-fed stable enrichment culture originally obtained from the extreme environment of Searles Lake, California. The isolate proved capable of growth via sulfate-reduction over a broad range of salinities (125–330 g/L), although growth was slowest at salt-saturation. Strain SLSR-1 was also capable of growth via dissimilatory arsenate-reduction and displayed an even broader range of salinity tolerance (50–330 g/L) when grown under these conditions. Strain SLSR-1 could also grow via dissimilatory nitrate reduction to ammonia. Growth experiments in the presence of high borate concentrations indicated a greater sensitivity of sulfate-reduction than arsenate-respiration to this naturally abundant anion in Searles Lake. Strain SLSR-1 contained genes involved in both sulfate-reduction (dsrAB) and arsenate respiration (arrA). Amplicons of 16S rRNA gene sequences obtained from DNA extracted from Searles Lake sediment revealed the presence of close relatives of strain SLSR-1 as part of the flora of this ecosystem despite the fact that sulfate-reduction activity could not be detected in situ. We conclude that strain SLSR-1 can only achieve growth via arsenate-reduction under the current chemical conditions prevalent at Searles Lake. Strain SLSR-1 is a deltaproteobacterium in the family Desulfohalobiacea of anaerobic, haloalkaliphilic bacteria, for which we propose the name Desulfohalophilus alkaliarsenatis gen. nov., sp. nov.

  13. [Isolation and identification of a lactate-utilizing, butyrate-producing bacterium and its primary metabolic characteristics].

    Science.gov (United States)

    Liu, Wei; Zhu, Wei-yun; Yao, Wen; Mao, Sheng-yong

    2007-06-01

    The distal mammalian gut harbors prodigiously abundant microbes, which provide unique metabolic traits to host. A lactate-utilizing, butyrate-producing bacterium, strain LB01, was isolated from adult swine feces by utilizing modified Hungate technique with rumen liquid-independent YCFA medium supplemented with lactate as the single carbon source. It was an obligate anaerobic, Gram positive bacterium, and could utilize glucose, fructose, maltose and lactate with a large amount of gas products. 16S rRNA sequence analysis revealed that it had the high similarity with members of the genus Megasphaera. The metabolic characteristics of strain LB01 was investigated by using in vitro fermentation system. Lactate at the concentration of 65 mmol/L in YCFA medium was rapidly consumed within 9 hours and was mainly converted to propionate and butyrate after 24h. As the level of acetate declined, the concentration of butyrate rose only in the presence of glucose, suggesting that butyrate could possibly be synthesized by the acetyl CoA: butyryl CoA transferase. When co-cultured with lactic acid bacteria strain K9, strain LB01 evidently reduced the concentration of lactate produced by strain K9 and decelerated the rapid pH drop, finally producing 12.11 mmol/L butyrate and 4.06 mmol/L propionate. The metabolic characteristics that strain LB01 efficiently converts toxic lactate and excessive acetate to butyrate can prevent lactate and acetate accumulation in the large intestine and maintain the slightly acidic environment of the large intestine, consequently revealing that stain LB01 could act as a potential probiotics.

  14. Rhodonellum psychrophilum gen. nov., sp. nov., a novel psychrophilic and alkaliphilic bacterium of the phylum Bacteroidetes isolated from Greenland.

    Science.gov (United States)

    Schmidt, Mariane; Priemé, Anders; Stougaard, Peter

    2006-12-01

    A novel alkaliphilic and psychrophilic bacterium was isolated from the cold and alkaline ikaite tufa columns of the Ikka Fjord in south-west Greenland. According to 16S rRNA gene sequence analysis, strain GCM71(T) belonged to the family 'Flexibacteraceae' in the phylum Bacteroidetes. Strain GCM71(T), together with five related isolates from ikaite columns, formed a separate cluster with 86-93 % gene sequence similarity to their closest relative, Belliella baltica. The G+C content of the DNA from strain GCM71(T) was 43.1 mol%, whereas that of B. baltica was reported to be 35 mol%. DNA-DNA hybridization between strain GCM71(T) and B. baltica was 9.5 %. The strain was red pigmented, Gram-negative, strictly aerobic with non-motile, rod-shaped cells. The optimal growth conditions for strain GCM71(T) were pH 9.2-10.0, 5 degrees C and 0.6 % NaCl. The fatty acid profile of the novel strain was dominated by branched and unsaturated fatty acids (90-97 %), with a high abundance of iso-C(17 : 1)omega9c (17.5 %), iso-C(17 : 0) 3-OH (17.5 %) and summed feature 3, comprising iso-C(15 : 0) 2-OH and/or C(16 : 1)omega7c (12.6 %). Phylogenetic, chemotaxonomic and physiological characteristics showed that the novel strain could not be affiliated to any known genus. A new genus, Rhodonellum gen. nov., is proposed to accommodate the novel strain. Strain GCM71(T) (=DSM 17998(T)=LMG 23454(T)) is proposed as the type strain of the type species, Rhodonellum psychrophilum sp. nov.

  15. Albibacter methylovorans gen. nov., sp. nov., a novel aerobic, facultatively autotrophic and methylotrophic bacterium that utilizes dichloromethane.

    Science.gov (United States)

    Doronina, N V; Trotsenko, Y A; Tourova, T P; Kuznetsov, B B; Leisinger, T

    2001-05-01

    A novel genus, Albibacter, with one species, Albibacter methylovorans sp. nov., is proposed for a facultatively chemolithotrophic and methylotrophic bacterium (strain DM10T) with the ribulose bisphosphate (RuBP) pathway of C1 assimilation. The bacterium is a Gram-negative, aerobic, asporogenous, nonmotile, colourless rod that multiplies by binary fission. The organism utilizes dichloromethane, methanol, methylamine, formate and CO2/H2, as well as a variety of polycarbon compounds, as carbon and energy sources. It is neutrophilic and mesophilic. The major cellular fatty acids are straight-chain unsaturated C18:1, saturated C16:0 and cyclopropane C19:0 acids. The main ubiquinone is Q-10. The dominant phospholipids are phosphatidyl ethanolamine, phosphatidyl glycerol, phosphatidyl choline and cardiolipin. The DNA G+C content is 66.7 mol%. Strain DM10T has a very low degree of DNA-DNA hybridization (4-7%) with the type species of the genera Paracoccus, Xanthobacter, Blastobacter, Angulomicrobium, Ancylobacter and Ralstonia of RuBP pathway methylobacteria. Another approach, involving comparative 16S rDNA analysis, has shown that the novel isolate represents a separate branch within the alpha-2 subgroup of the Proteobacteria. The type species of the new genus is Albibacter methylovorans sp. nov.; the type strain is DM10T (= VKM B-2236T = DSM 13819T).

  16. UV-induced variability of the amylolytic thermophilic bacterium Bacillus diastaticus

    International Nuclear Information System (INIS)

    Murygina, V.P.

    1978-01-01

    UV-induced variability of a thermophilic bacterium Bacillus diastaticus 13 by amylase formation has been studied. It has been shown, that variability limits in amylase biosynthesis vary from 2.2 to 158.7% under UV irradiation. At 41.8x10 2 erg/mm 2 UV dose a ''plus-variant'' designated as the UV1 mutant has been prepared. Its subsequent selection without using mutagene permitted to select the UV 1-25 variant, exceeding the initial strain in amylase biosynthesis by 43.3%. Under UV irradiation two low-active in biosynthesis amylases of the mutant were prepared. Demands for growth factors of some mutant have been studied as well

  17. UV-induced variability of the amylolytic thermophilic bacterium Bacillus diastaticus

    Energy Technology Data Exchange (ETDEWEB)

    Murygina, V P

    1978-03-01

    Ultroviolet-radioinduced variability in analyase biosynthesis of a thermophilic bacterium Bacillus diastaticus 13, has been studied. It has been shown that amylase biosynthesis varies from 2.2 to 158.7% under UV irradiation. At 41.8x10/sup 2/ erg/mm/sup 2/ UV dose, a ''plus-variant'' designated as the UV1 mutant has been prepared. Its subsequent selection without using mutagene permitted to select the UV 1-25 variant, exceeding the initial strain in amylase biosynthesis by 43.3%. Under UV irradiation, two mutants with reduced amylose biosynthesis activity were prepared. Demands for growth factors by some mutants have been studied as well.

  18. Lethal Effect on Bacterium of Decay of Incorporated Radioactive Atoms (3H, 14C, 32P)

    International Nuclear Information System (INIS)

    Apelgot, Sonia

    1968-01-01

    The biological effect of decay of 3 H, 14 C and 32 P incorporated into a bacterium depends on the nature of the organic molecule labelled, on the position of the isotope within it and on the isotope itself. In sum, results obtained to date show that: The decay of 3 H atoms incorporated into certain macromolecules of a bacterium causes sterilization through ionization by the ß - particle emitted; transmutation is of negligible importance. This self-irradiation is comparable in effect with X-rays and is affected in a similar manner by the same factors: temperature, presence of a radioprotector, radiosensitivity of the strain. Decay of 14 C or 32 P atoms incorporated into bacterial DNA is lethal because of the transmutation effect; ionizations produced by emitted ß - particles may be disregarded. Survival curves for 32 P transmutations depend on the experimental conditions. Some of the results obtained with 32 P are similar to those obtained with X-rays, e.g. effects of temperature, radical capture and oxygen, while others are similar to those of u.v. light, e.g., effect of growth conditions. Comparative tests made with 32 P indicate that the recoil energy of transmutation is not the phenomenon responsible for the lethal effect observed. Comparison of the results obtained after X-irradiation or decay of 3 H or 32 P incorporated into the DNA of bacteria of the same strain of E. coli shows that the efficiency of a 32 P transmutation is about four times greater than that of an ionization produced at random within the same DNA. (author) [fr

  19. Jeotgalibacillus soli sp. nov., a Gram-stain-positive bacterium isolated from soil.

    Science.gov (United States)

    Cunha, Sofia; Tiago, Igor; Paiva, Gabriel; Nobre, Fernanda; da Costa, Milton S; Veríssimo, António

    2012-03-01

    A Gram-staining-positive, motile, rod-shaped, spore-forming bacterium, designated P9(T), was isolated from soil in Portugal. This organism was aerobic and catalase- and oxidase-positive. It had an optimum growth temperature of about 35 °C and an optimum growth pH of about 8.0-8.5, and grew in medium with 0-9% (w/v) NaCl. The cell-wall peptidoglycan was of the A1α type, with L-lysine as the diagnostic diamino acid. The major respiratory quinone was menaquinone 7 (MK-7) and the major fatty acids were anteiso-C(15:0) (45.4%), iso-C(15:0) (22.0%) and anteiso-C(17:0) (11.2%). The genomic DNA G+C content was about 39.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain P9(T) was most closely related to Jeotgalibacillus campisalis DSM 18983(T) (96.8%) and Jeotgalibacillus marinus DSM 1297(T) (96.5%). These two recognized species formed a coherent cluster with strain P9(T) that was supported by a bootstrap value of 99%. On the basis of the phylogenetic analysis and physiological and biochemical characteristics, strain P9(T) (=DSM 23228(T)=LMG 25523(T)) represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus soli sp. nov. is proposed.

  20. Genomic analysis of Melioribacter roseus, facultatively anaerobic organotrophic bacterium representing a novel deep lineage within Bacteriodetes/Chlorobi group.

    Directory of Open Access Journals (Sweden)

    Vitaly V Kadnikov

    Full Text Available Melioribacter roseus is a moderately thermophilic facultatively anaerobic organotrophic bacterium representing a novel deep branch within Bacteriodetes/Chlorobi group. To better understand the metabolic capabilities and possible ecological functions of M. roseus and get insights into the evolutionary history of this bacterial lineage, we sequenced the genome of the type strain P3M-2(T. A total of 2838 open reading frames was predicted from its 3.30 Mb genome. The whole proteome analysis supported phylum-level classification of M. roseus since most of the predicted proteins had closest matches in Bacteriodetes, Proteobacteria, Chlorobi, Firmicutes and deeply-branching bacterium Caldithrix abyssi, rather than in one particular phylum. Consistent with the ability of the bacterium to grow on complex carbohydrates, the genome analysis revealed more than one hundred glycoside hydrolases, glycoside transferases, polysaccharide lyases and carbohydrate esterases. The reconstructed central metabolism revealed pathways enabling the fermentation of complex organic substrates, as well as their complete oxidation through aerobic and anaerobic respiration. Genes encoding the photosynthetic and nitrogen-fixation machinery of green sulfur bacteria, as well as key enzymes of autotrophic carbon fixation pathways, were not identified. The M. roseus genome supports its affiliation to a novel phylum Ignavibateriae, representing the first step on the evolutionary pathway from heterotrophic ancestors of Bacteriodetes/Chlorobi group towards anaerobic photoautotrophic Chlorobi.

  1. Bacillus tamaricis sp. nov., an alkaliphilic bacterium isolated from a Tamarix cone soil.

    Science.gov (United States)

    Zhang, Yong-Guang; Zhou, Xing-Kui; Guo, Jian-Wei; Xiao, Min; Wang, Hong-Fei; Wang, Yun; Bobodzhanova, Khursheda; Li, Wen-Jun

    2018-02-01

    A Gram-stain-positive, alkaliphilic bacterium, designated EGI 80668 T , was isolated from a Tamarix cone soil in Xinjiang, north-west China. Cells were facultatively anaerobic, terminal endospore-forming and motile by means of peritrichous flagella. Colonies were yellowish and the cells showed oxidase-negative and catalase-positive reactions. Strain EGI 80668 T grew at pH 8.0-10.0 and with 0-10 % (w/v) NaCl (optimally at pH 9.0 and with 1-2 % NaCl) on marine agar 2216. The predominant menaquinone was MK-7. The major fatty acids were anteiso-C17 : 0 and anteiso-C15 : 0. The cellular polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unknown phospholipids and one unknown aminophospholipid. The G+C content of the genomic DNA was 38.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EGI 80668 T was affiliated to the genus Bacillus. The highest 16S rRNA gene sequence similarity between strain EGI 80668 T and a member of the genus Bacillus was 96.83 % with Bacillus cellulosilyticus JCM 9156 T . A polyphasic taxonomic study based on morphological, physiological, biochemical and phylogenetic data indicated that strain EGI 80668 T represents a novel species of the genus Bacillus, for which the name Bacillus tamaricis sp. nov. (type strain EGI 80668 T =KCTC 33703 T =CGMCC 1.15917 T ) is proposed.

  2. Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides x nigra DN34).

    Science.gov (United States)

    Van Aken, Benoit; Peres, Caroline M; Doty, Sharon Lafferty; Yoon, Jong Moon; Schnoor, Jerald L

    2004-07-01

    A pink-pigmented, aerobic, facultatively methylotrophic bacterium, strain BJ001T, was isolated from internal poplar tissues (Populus deltoidesxnigra DN34) and identified as a member of the genus Methylobacterium. Phylogenetic analyses showed that strain BJ001T is related to Methylobacterium thiocyanatum, Methylobacterium extorquens, Methylobacterium zatmanii and Methylobacterium rhodesianum. However, strain BJ001T differed from these species in its carbon-source utilization pattern, particularly its use of methane as the sole source of carbon and energy, an ability that is shared with only one other member of the genus, Methylobacterium organophilum. In addition, strain BJ001T is the only member of the genus Methylobacterium to be described as an endophyte of poplar trees. On the basis of its physiological, genotypic and ecological properties, the isolate is proposed as a member of a novel species of the genus Methylobacterium, Methylobacterium populi sp. nov. (type strain, BJ001T=ATCC BAA-705T=NCIMB 13946T).

  3. Natural Competence of Xylella fastidiosa Occurs at a High Frequency Inside Microfluidic Chambers Mimicking the Bacterium's Natural Habitats.

    Science.gov (United States)

    Kandel, Prem P; Lopez, Samantha M; Almeida, Rodrigo P P; De La Fuente, Leonardo

    2016-09-01

    Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect vectors. This bacterium

  4. The physiology of the filamentous bacterium Microthrix parvicella

    NARCIS (Netherlands)

    Slijkhuis, H.

    1983-01-01

    A study has been made of the physiology of Microthrix parvicella. This filamentous bacterium often causes poor settleability of activated sludge in oxidation ditches supplied with domestic sewage. The organism was found to utilize only long chain fatty acids (preferably in

  5. The Bacterium That Got Infected by a Cow! - Horizontal Gene

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 1. The Bacterium That Got Infected by a Cow! - Horizontal Gene Transfer and Evolution. Saurabh Dhawan Tomás John Ryan. General Article Volume 12 Issue 1 January 2007 pp 49-59 ...

  6. Monitoring of a novel bacterium, Lactobacillus thermotolerans , in ...

    African Journals Online (AJOL)

    Abstract. We successfully established fluorescence in situ hybridization (FISH) method for specific detection and enumeration of a novel bacterium, Lactobacillus thermotolerans, in chicken feces. The specific FISH probes were designed based on the L. thermotolerans 16S rRNA gene sequences, and these sequences were ...

  7. Non-obligate predatory bacterium burkholderia casidaeand uses thereof

    OpenAIRE

    1998-01-01

    A novel predator bacterium Burkholderia casidae is disclosed. The invention is directed to the isolation and use of Burkholderia casidae to control microbial diseases of plants. The genetic, biochemical and physiological characteristics of Burkholderia casidae are described. Biocontrol compositions comprising Burkholderia casidae, and antimicrobial compounds and antimicrobial preparations prepared from Burkholderia casidae are also disclosed, as are methods for accomplishing all of the forego...

  8. Non-obligate predatory bacterium Burkholderia casidae and uses thereof

    OpenAIRE

    2001-01-01

    A novel predator bacterium Burkholderia casidae is disclosed. The invention is directed to the isolation and use of Burkholderia casidae to control microbial diseases of plants. The genetic, biochemical and physiological characteristics of Burkholderia casidae are described. Biocontrol compositions comprising Burkholderia casidae, and antimicrobial compounds and antimicrobial preparations prepared from Burkholderia casidae are also disclosed, as are methods for accomplishing all of the forego...

  9. Salinicola tamaricis sp. nov., a heavy-metal-tolerant, endophytic bacterium isolated from the halophyte Tamarix chinensis Lour.

    Science.gov (United States)

    Zhao, Guo-Yan; Zhao, Li-Ya; Xia, Zhi-Jie; Zhu, Jin-Lei; Liu, Di; Liu, Chun-Yue; Chen, Xiu-Lan; Zhang, Yu-Zhong; Zhang, Xi-Ying; Dai, Mei-Xue

    2017-06-01

    A Gram-stain-negative, rod-shaped bacterium, strain F01T, was isolated from leaves of Tamarix chinensis Lour. The isolate grew optimally at 30 °C, at pH 7.0 and with 5.0 % (w/v) NaCl, and showed a high tolerance to manganese, lead, nickel, ferrous ions and copper ions. The major fatty acids were C18 : 1ω7c and C16 : 0, and the predominant respiratory quinone was Q-9. Polar lipids were dominated by diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, unidentified aminoglycolipids and phospholipids. The DNA G+C content was 65.8 %. Based on multilocus phylogenetic analysis, strain F01T belonged to the genus Salinicola, with highest 16S rRNA gene sequence similarity to Salinicola peritrichatus CGMCC 1.12381T (97.7 %). The level of DNA-DNA hybridization between strain F01T and closely related Salinicola strains was well below 70 %. According to the phenotypic, genetic and chemotaxonomic data, strain F01T is considered to represent a novel species in the genus Salinicola, for which the name Salinicola tamaricis sp. nov. is proposed. The type strain is F01T (=CCTCC AB 2015304T=KCTC 42855T).

  10. Gellertiella hungarica gen. nov., sp. nov., a novel bacterium of the family Rhizobiaceae isolated from a spa in Budapest.

    Science.gov (United States)

    Tóth, Erika; Szuróczki, Sára; Kéki, Zsuzsa; Bóka, Károly; Szili-Kovács, Tibor; Schumann, Peter

    2017-11-01

    A novel alphaproteobacterium, strain RAM11 T , belonging to the family Rhizobiaceae was isolated from the pool water of a thermal bath in Budapest, Hungary. Based on the 16S rRNA gene sequence strain RAM11 T shows the highest sequence similarity values to Ensifer adhaerens Casida A (97.44 %), to Ensifer (syn. Sinorhizobium) americanus CFNEI 156 T (96.87 %) and to Rhizobium azooxidifex Po 20/26 T (96.76 %). The new bacterium is strictly aerobic, its optimum growth occurs at 20-37 °C, between pH 7 and 9 and without NaCl. It is motile due to a single polar flagellum, capable of budding and forms rosettes in liquid culture. The major isoprenoid quinone of strain RAM11 T is Q-10, the major cellular fatty acids are C18 : 1ω7c and 11-MeC18 : 1ω7c. The polar lipid profile contains phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, an unidentified aminolipid and an unidentified phospholipid. The G+C content of DNA of the type strain is 62.9 mol%. Strain RAM11 T (=DSM 29853 T =NCAIM B.02618 T ) is proposed as type strain of a new genus and species with the proposed name Gellertiella hungarica gen. nov., sp. nov.

  11. Methylobacterium marchantiae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the thallus of a liverwort.

    Science.gov (United States)

    Schauer, S; Kämpfer, P; Wellner, S; Spröer, C; Kutschera, U

    2011-04-01

    A pink-pigmented, facultatively methylotrophic bacterium, designated strain JT1(T), was isolated from a thallus of the liverwort Marchantia polymorpha L. and was analysed by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis placed the strain in a clade with Methylobacterium adhaesivum AR27(T), Methylobacterium fujisawaense DSM 5686(T), Methylobacterium radiotolerans JCM 2831(T) and Methylobacterium jeotgali S2R03-9(T), with which it showed sequence similarities of 97.8, 97.7, 97.2 and 97.4 %, respectively. However, levels of DNA-DNA relatedness between strain JT1(T) and these and the type strains of other closely related species were lower than 70 %. Cells of JT1(T) stained Gram-negative and were motile, rod-shaped and characterized by numerous fimbriae-like appendages on the outer surface of their wall (density up to 200 µm(-2)). Major fatty acids were C(18 : 1)ω7c and C(16 : 0). Based on the morphological, physiological and biochemical data presented, strain JT1(T) is considered to represent a novel species of the genus Methylobacterium, for which the name Methylobacterium marchantiae sp. nov. is proposed. The type strain is JT1(T) ( = DSM 21328(T)  = CCUG 56108(T)).

  12. Fermentation of glycolate by a pure culture of a strictly anaerobic gram-positive bacterium belonging to the family Lachnospiraceae.

    Science.gov (United States)

    Janssen, Peter H; Hugenholtz, Philip

    2003-05-01

    The component bacteria of a three-membered mixed culture able to ferment glycolate to acetate, propionate and CO(2) were isolated in pure culture. All three strains were strict anaerobes that, on the basis of comparative 16S rRNA gene sequence analysis, belonged to the order Clostridiales in the phylum Firmicutes (low G+C gram-positive bacteria). Two of the strains were not involved in glycolate metabolism. The third, the glycolate-fermenting strain 19gly4 (DSM 11261), was related to members of the family Lachnospiraceae. The cells of strain 19gly4 were oval- to lemon-shaped, 0.85 microm long and 0.65 microm in diameter, occurring singly, in pairs, or in chains of up to 30 cells. Strain 19gly4 fermented glycolate or fumarate to acetate, succinate, and CO(2). Hydrogen was not formed, and strain 19gly4 was able to grow on glycolate in pure culture without any syntrophic hydrogen transfer and without the use of an external electron acceptor. There was no evidence for homoacetogenic metabolism. This bacterium therefore differs in metabolism from previously reported glycolate-utilising anaerobes.

  13. Draft genome sequence of Pseudomonas sp. strain M47T1, carried by Bursaphelenchus xylophilus isolated from Pinus pinaster.

    Science.gov (United States)

    Proença, Diogo Neves; Espírito Santo, Christophe; Grass, Gregor; Morais, Paula V

    2012-09-01

    The draft genome sequence of Pseudomonas sp. strain M47T1, carried by the Bursaphelenchus xylophilus pinewood nematode, the causative agent of pine wilt disease, is presented. In Pseudomonas sp. strain M47T1, genes that make this a plant growth-promoting bacterium, as well as genes potentially involved in nematotoxicity, were identified.

  14. Draft Genome Sequence of Komagataeibacter intermedius Strain AF2, a Producer of Cellulose, Isolated from Kombucha Tea.

    Science.gov (United States)

    Dos Santos, Renato Augusto Corrêa; Berretta, Andresa Aparecida; Barud, Hernane da Silva; Ribeiro, Sidney José Lima; González-García, Laura Natalia; Zucchi, Tiago Domingues; Goldman, Gustavo H; Riaño-Pachón, Diego M

    2015-12-03

    Here, we present the draft genome sequence of Komagataeibacter intermedius strain AF2, which was isolated from Kombucha tea and is capable of producing cellulose, although at lower levels compared to another bacterium from the same environment, K. rhaeticus strain AF1. Copyright © 2015 dos Santos et al.

  15. Genome Sequence of Carbon Dioxide-Sequestering Serratia sp. Strain ISTD04 Isolated from Marble Mining Rocks

    OpenAIRE

    Kumar, Manish; Gazara, Rajesh Kumar; Verma, Sandhya; Kumar, Madan; Verma, Praveen Kumar; Thakur, Indu Shekhar

    2016-01-01

    The Serratia sp. strain ISTD04 has been identified as a carbon dioxide (CO2)-sequestering bacterium isolated from marble mining rocks in the Umra area, Rajasthan, India. This strain grows chemolithotrophically on media that contain sodium bicarbonate (NaHCO3) as the sole carbon source. Here, we report the genome sequence of 5.07?Mb Serratia sp. ISTD04.

  16. Draft Genome Sequence of Plant Growth–Promoting Micrococcus luteus Strain K39 Isolated from Cyperus conglomeratus in Saudi Arabia

    KAUST Repository

    Lafi, Feras Fawzi

    2017-01-27

    Micrococcus luteus strain K39 is an endophyte bacterium isolated from roots of the desert plant Cyperus conglomeratus collected from the Red Sea shore, Thuwal, Saudi Arabia. The draft genome sequence of strain K39 revealed a number of enzymes involved in salinity and oxidative stress tolerance or having herbicide-resistance activity.

  17. Draft Genome Sequence of Plant Growth–Promoting Micrococcus luteus Strain K39 Isolated from Cyperus conglomeratus in Saudi Arabia

    KAUST Repository

    Lafi, Feras Fawzi; Ramirez Prado, Juan Sebastian; Alam, Intikhab; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged

    2017-01-01

    Micrococcus luteus strain K39 is an endophyte bacterium isolated from roots of the desert plant Cyperus conglomeratus collected from the Red Sea shore, Thuwal, Saudi Arabia. The draft genome sequence of strain K39 revealed a number of enzymes involved in salinity and oxidative stress tolerance or having herbicide-resistance activity.

  18. Structural investigation of an extracellular polysaccharide produced by the cariogenic bacterium Streptococcus mutans strain UA159

    NARCIS (Netherlands)

    Li, Bo; Dobruchowska, Justyna M.; Hoogenkamp, Michel A.; Gerwig, Gerrit J.

    2012-01-01

    The structure of an extracellular polysaccharide EPS159 produced from sucrose by Streptococcus mutans UA159 was investigated through the main oligosaccharides obtained from partial acid hydrolysis, monosaccharide/methylation analysis, and 1D/2D H-1 NMR spectroscopy. The results showed that EPS159

  19. Genome Sequence of Rhodococcus erythropolis Strain CCM2595, a Phenol Derivative-Degrading Bacterium

    Czech Academy of Sciences Publication Activity Database

    Strnad, Hynek; Pátek, Miroslav; Fousek, Jan; Szököl, Juraj; Ulbrich, P.; Nešvera, Jan; Pačes, Václav; Vlček, Čestmír

    2014-01-01

    Roč. 2, č. 2 (2014) ISSN 2169-8287 R&D Projects: GA ČR GA13-28283S; GA MŠk 2B08062 Institutional support: RVO:68378050 ; RVO:61388971 Keywords : Rhodococcus erythropolis * genome sequence Subject RIV: EB - Genetics ; Molecular Biology

  20. Genome Sequence of the Marine Photoheterotrophic Bacterium Erythrobacter sp Strain NAP1

    Czech Academy of Sciences Publication Activity Database

    Koblížek, Michal; Janouškovec, J.; Oborník, Miroslav; Johnson, J. H.; Ferriera, S.; Falkowski, P. G.

    2011-01-01

    Roč. 193, č. 20 (2011), s. 5881-5882 ISSN 0021-9193 R&D Projects: GA ČR GAP501/10/0221 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z60220518 Keywords : BACTERIOCHLOROPHYLL-A * OCEAN Subject RIV: EE - Microbiology, Virology; EE - Microbiology, Virology (BC-A) Impact factor: 3.825, year: 2011

  1. Advenella alkanexedens sp. nov., an alkane-degrading bacterium isolated from biogas slurry samples.

    Science.gov (United States)

    Wang, Huimin; Zhou, Shan; Wang, Yanwei; Kong, Delong; Guo, Xiang; Zhu, Jie; Dong, Weiwei; Ruan, Zhiyong

    2016-02-01

    A novel aerobic bacterium, designated strain LAM0050 T , was isolated from a biogas slurry sample, which had been enriched with diesel oil for 30 days. Cells of strain LAM0050 T were gram-stain-negative, non-motile, non-spore-forming and coccoid-shaped. The optimal temperature and pH for growth were 30-35 °C and 8.5, respectively. The strain did not require NaCl for growth, but tolerated up to 5.3 % (w/v) NaCl. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain LAM0050 T was a member of the genus Advenella , and was most closely related to Advenella faeciporci KCTC 23732 T , Advenella incenata CCUG 45225 T , Advenella kashmirensis DSM 17095 T and Advenella mimigardefordensis DSM 17166 T , with 98.1, 96.6, 96.6 and 96.3 % sequence similarity, respectively. The DNA-DNA hybridization relatedness between strain LAM0050 T and A. faeciporci KCTC 23732 T was 41.7 ± 2.4 %. The genomic DNA G+C content was 51.2 mol%, as determined by the T m method. The major fatty acids of strain LAM0050 T were C 16 : 0 , C 17 : 0 cyclo, summed feature 3 (C 16 : 1 ω7 c and/or C 16 : 1 ω6 c ) and summed feature 8 (C 18 : 1 ω7 c and/or C 18 : 1 ω6 c ). The predominant ubiquinone was Q-8. The main polar lipids were diphosphatidyglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine and four unidentified phospholipids. Based on the phenotypic and genotypic properties, strain LAM0050 T is suggested to represent a novel species of the genus Advenella , for which the name Advenella alkanexedens sp. nov., is proposed, the type strain is LAM0050 T ( = ACCC 06485 T  = JCM 30465 T ).

  2. Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep-sea fishes.

    Science.gov (United States)

    Ast, Jennifer C; Cleenwerck, Ilse; Engelbeen, Katrien; Urbanczyk, Henryk; Thompson, Fabiano L; De Vos, Paul; Dunlap, Paul V

    2007-09-01

    Six representatives of a luminous bacterium commonly found in association with deep, cold-dwelling marine fishes were isolated from the light organs and skin of different fish species. These bacteria were Gram-negative, catalase-positive, and weakly oxidase-positive or oxidase-negative. Morphologically, cells of these strains were coccoid or coccoid-rods, occurring singly or in pairs, and motile by means of polar flagellation. After growth on seawater-based agar medium at 22 degrees C for 18 h, colonies were small, round and white, with an intense cerulean blue luminescence. Analysis of 16S rRNA gene sequence similarity placed these bacteria in the genus Photobacterium. Phylogenetic analysis based on seven housekeeping gene sequences (16S rRNA gene, gapA, gyrB, pyrH, recA, rpoA and rpoD), seven gene sequences of the lux operon (luxC, luxD, luxA, luxB, luxF, luxE and luxG) and four gene sequences of the rib operon (ribE, ribB, ribH and ribA), resolved the six strains as members of the genus Photobacterium and as a clade distinct from other species of Photobacterium. These strains were most closely related to Photobacterium phosphoreum and Photobacterium iliopiscarium. DNA-DNA hybridization values between the designated type strain, Photobacterium kishitanii pjapo.1.1(T), and P. phosphoreum LMG 4233(T), P. iliopiscarium LMG 19543(T) and Photobacterium indicum LMG 22857(T) were 51, 43 and 19 %, respectively. In AFLP analysis, the six strains clustered together, forming a group distinct from other analysed species. The fatty acid C(17 : 0) cyclo was present in these bacteria, but not in P. phosphoreum, P. iliopiscarium or P. indicum. A combination of biochemical tests (arginine dihydrolase and lysine decarboxylase) differentiates these strains from P. phosphoreum and P. indicum. The DNA G+C content of P. kishitanii pjapo.1.1(T) is 40.2 %, and the genome size is approximately 4.2 Mbp, in the form of two circular chromosomes. These strains represent a novel species, for

  3. Ponticoccus marisrubri sp. nov., a moderately halophilic marine bacterium of the family Rhodobacteraceae

    KAUST Repository

    Zhang, Guishan

    2017-10-06

    Strain SJ5A-1T, a Gram-stain-negative, coccus-shaped, non-motile, aerobic bacterium, was isolated from the brine-seawater interface of the Erba Deep in the Red Sea, Saudi Arabia. The colonies of strain SJ5A-1T have a beige to pale-brown pigmentation, are approximately 0.5-0.7 µm in diameter, and are catalase and oxidase positive. Growth occurred optimally at 30-33 °C, pH 7.0-7.5, and in the presence of 9.0-12.0 % NaCl (w/v). Phylogenetic analysis of the 16S rRNA gene indicates that strain SJ5A-1T is a member of the genus Ponticoccus within the family Rhodobacteraceae. Ponticoccus litoralis DSM 18986T is the most closely related described species based on 16S rRNA gene sequence identity (96.7 %). The DNA-DNA hybridization value between strain SJ5A-1T and P. litoralis DSM 18986T was 36.7 %. The major respiratory quinone of strain SJ5A-1T is Q-10; it predominantly uses the fatty acids C18 : 1 (54.2 %), C18 : 0 (11.2 %), C16 : 0 (8.6 %), 11-methyl C18 : 1ω7c (7.7 %), C19 : 0cyclo ω8c (3.3 %), and C12 : 1 3-OH (3.5 %), and its major polar lipids are phosphatidylethanolamine, phosphatidylglycerol, phosphocholine, an unknown aminolipid, an unknown phospholipid and two unknown lipids. The genome draft of strain SJ5A-1T as presented here is 4 562 830 bp in size and the DNA G+C content is 68.0 mol %. Based on phenotypic, phylogenetic and genotypic data, strain SJ5A-1T represents a novel species in the genus Ponticoccus, for which we propose the name Ponticoccus marisrubri sp. nov. The type strain of P. marisrubri is SJ5A-1T (=JCM 19520T=ACCC19863T).

  4. Hydrogen production by recombinant Escherichia coli strains

    Science.gov (United States)

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  5. Complete genome of Pseudomonas sp. strain L10.10, a psychrotolerant biofertilizer that could promote plant growth.

    Science.gov (United States)

    See-Too, Wah Seng; Lim, Yan-Lue; Ee, Robson; Convey, Peter; Pearce, David A; Yin, Wai-Fong; Chan, Kok Gan

    2016-03-20

    Pseudomonas sp. strain L10.10 (=DSM 101070) is a psychrotolerant bacterium which was isolated from Lagoon Island, Antarctica. Analysis of its complete genome sequence indicates its possible role as a plant-growth promoting bacterium, including nitrogen-fixing ability and indole acetic acid (IAA)-producing trait, with additional suggestion of plant disease prevention attributes via hydrogen cyanide production. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice.

    Science.gov (United States)

    Madhaiyan, Munusamy; Kim, Byung-Yong; Poonguzhali, Selvaraj; Kwon, Soon-Wo; Song, Myung-Hee; Ryu, Jeoung-Hyun; Go, Seung-Joo; Koo, Bon-Sung; Sa, Tong-Min

    2007-02-01

    A pink-pigmented, facultatively methylotrophic bacterium, strain CBMB20T, isolated from stem tissues of rice, was analysed by a polyphasic approach. Strain CBMB20T utilized 1-aminocyclopropane 1-carboxylate (ACC) as a nitrogen source and produced ACC deaminase. It was related phylogenetically to members of the genus Methylobacterium. 16S rRNA gene sequence analysis indicated that strain CBMB20T was most closely related to Methylobacterium fujisawaense, Methylobacterium radiotolerans and Methylobacterium mesophilicum; however, DNA-DNA hybridization values were less than 70 % with the type strains of these species. The DNA G+C content of strain CBMB20T was 70.6 mol%. The study presents a detailed phenotypic characterization of strain CBMB20T that allows its differentiation from other Methylobacterium species. In addition, strain CBMB20T is the only known member of the genus Methylobacterium to be described from the phyllosphere of rice. Based on the data presented, strain CBMB20T represents a novel species in the genus Methylobacterium, for which the name Methylobacterium oryzae sp. nov. is proposed, with strain CBMB20T (=DSM 18207T=LMG 23582T=KACC 11585T) as the type strain.

  7. Characteristics of cesium accumulation in the filamentous soil bacterium Streptomyces sp. K202

    International Nuclear Information System (INIS)

    Kuwahara, Chikako; Fukumoto, Atsushi; Nishina, Masami; Sugiyama, Hideo; Anzai, Yojiro; Kato, Fumio

    2011-01-01

    A filamentous soil bacterium, strain K202, was isolated from soil where an edible mushroom (Boletopsis leucomelas) was growing and identified as belonging to the genus Streptomyces on the basis of its morphological characteristics and the presence of LL-2, 6-diaminopimelic acid. We studied the existence states of Cs and its migration from extracellular to intracellular fluid in the mycelia of Streptomyces sp. K202. The results indicated that Cs accumulated in the cells through at least 2 steps: in the first step, Cs + was immediately and non-specifically adsorbed on the negatively charged cell surface, and in the second step, this adsorbed Cs + was taken up into the cytoplasm, and a part of the Cs entering the cytoplasm was taken up by an energy-dependent transport system(s). Further, we confirmed that a part of the Cs + was taken up into the mycelia competitively with K + , because K + uptake into the intact mycelia of the strain was significantly inhibited by the presence of Cs + in the culture media. This suggested that part of the Cs is transported by the potassium transport system. Moreover, 133 Cs-NMR spectra and SEM-EDX spectra of the mycelia that accumulated Cs showed the presence of at least 2 intracellular Cs states: Cs + trapped by intercellular materials such as polyphosphate and Cs + present in a cytoplasmic pool. - Research highlights: → Cs was taken up into the cells of Streptomyces sp. K202 via 2 steps. → The existence states of Cs accumulated in strain K202 were at least 2 types. → The localized Cs in the cells would be trapped by granules such as polyphosphate. → The localized Cs in the cells might involve in Cs detoxification of strain K202.

  8. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress.

    Science.gov (United States)

    Benoit, Stéphane L; Maier, Robert J

    2016-11-04

    Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H 2 O 2 ). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains ( katA H56A and katA Y339A ) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H 2 O 2 -dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample.

    Science.gov (United States)

    Reddy, Gundlapally S N; Prakash, Jogadhenu S S; Prabahar, Vadivel; Matsumoto, Genki I; Stackebrandt, Erko; Shivaji, Sisinthy

    2003-01-01

    Strain CMS 76orT, an orange-pigmented bacterium, was isolated from a cyanobacterial mat sample from a pond located in McMurdo Dry Valley, Antarctica. On the basis of chemotaxonomic and phylogenetic properties, strain CMS 76orT was identified as a member of the genus Kocuria. It exhibited a 16S rDNA similarity of 99.8% and DNA-DNA similarity of 71% with Kocuria rosea (ATCC 186T). Phenotypic traits confirmed that strain CMS 78orT and K. rosea were well differentiated. Furthermore, strain CMS 76orT could be differentiated from the other reported species of Kocuria, namely Kocuria kristinae (ATCC 27570T), Kocuria varians (ATCC 15306T), Kocuria rhizophila (DSM 11926T) and Kocuria palustris (DSM 11025T), on the basis of a number of phenotypic features. Therefore, it is proposed that strain CMS 76orT (= MTCC 3702T = DSM 14382T) be assigned to a novel species of the genus Kocuria, as Kocuria polaris.

  10. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4.

    Directory of Open Access Journals (Sweden)

    Jin Duan

    Full Text Available The plant growth-promoting bacterium (PGPB Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated "housekeeping" genes (16S rRNA, gyrB, rpoB and rpoD of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.

  11. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4

    Science.gov (United States)

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Glick, Bernard R.

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  12. Roseimarinus sediminis gen. nov., sp. nov., a facultatively anaerobic bacterium isolated from coastal sediment.

    Science.gov (United States)

    Wu, Wen-Jie; Liu, Qian-Qian; Chen, Guan-Jun; Du, Zong-Jun

    2015-07-01

    A Gram-stain-negative, facultatively anaerobic, non-motile and pink-pigmented bacterium, designated strain HF08(T), was isolated from marine sediment of the coast of Weihai, China. Cells were rod-shaped, and oxidase- and catalase-positive. The isolate grew optimally at 33 °C, at pH 7.5-8.0 and with 2-3% (w/v) NaCl. The dominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C14 : 0. Menaquinone 7 (MK-7) was the major respiratory quinone and the DNA G+C content was 44.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was a member of the class Bacteroidia, and shared 88-90% sequence similarity with the closest genera Sunxiuqinia, Prolixibacter, Draconibacterium, Mariniphaga and Meniscus. Based on the phylogenetic and phenotypic evidence presented, a novel species in a new genus of the family Prolixibacteraceae is proposed, with the name Roseimarinus sediminis gen. nov., sp. nov. The type strain of Roseimarinus sediminis is HF08(T) ( = KCTC 42261(T) = CICC 10901(T)).

  13. Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate Reducing Bacterium Bacillus oryziterrae sp. nov.

    Science.gov (United States)

    Bao, Peng; Xiao, Ke-Qing; Wang, Hui-Jiao; Xu, Hao; Xu, Peng-Peng; Jia, Yan; Häggblom, Max M.; Zhu, Yong-Guan

    2016-09-01

    A novel nitrate- and selenite reducing bacterium strain ZYKT was isolated from a rice paddy soil in Dehong, Yunnan, China. Strain ZYKT is a facultative anaerobe and grows in up to 150, 000 ppm O2. The comparative genomics analysis of strain ZYKT implies that it shares more orthologues with B. subtilis subsp. subtilis NCIB 3610T (ANIm values, 85.4-86.7%) than with B. azotoformans NBRC 15712T (ANIm values, 84.4-84.7%), although B. azotoformans NBRC 15712T (96.3% 16S rRNA gene sequence similarity) is the closest Bacillus species according to 16S rRNA gene comparison. The major cellular fatty acids of strain ZYKT were iso-C14:0 (17.8%), iso-C15:0 (17.8%), and C16:0 (32.0%). The polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. Based on physiological, biochemical and genotypic properties, the strain was considered to represent a novel species of the genus Bacillus, for which the name Bacillus oryziterrae sp. nov. is proposed. The type strain is ZYKT (=DSM 26460T =CGMCC 1.5179T). Strain ZYKT can reduce nitrate to nitrite and ammonium and possesses metabolic genes for nitrate reduction including nar, nap and nrf. Biogenic selenium nanoparticles of strain ZYKT show a narrow size distribution and agree with the gaussian distribution. These selenium nanoparticles show significant dose-dependent inhibition of the lung cancer cell line H157, which suggests potential for application in cancer therapy.

  14. Competitive Dominance by a Bacteriocin-Producing Vibrio harveyi Strain.

    Science.gov (United States)

    Hoyt, P R; Sizemore, R K

    1982-09-01

    Vibrio (Beneckea) harveyi, a bioluminescent marine bacterium, has been shown to produce a bacteriocin-like substance the production of which is mediated by a plasmid. This substance is assumed to be proteinaceous because of its sensitivity to certain proteolytic enzymes. It is stable at low temperatures and can be concentrated by ammonium sulfate precipitation or negative-pressure dialysis. The molecular weight of the bacteriocin was determined to be 2.4 x 10 by molecular exclusion chromatography. Competition experiments indicated that bacteriocin-producing strains predominated over cured variants of the same strain in broth culture experiments. We studied several environmental parameters (pH, salinity, temperature, nutrient concentration) to determine their effects on the competitive advantage bestowed on a bacteriocin-producing strain. Under simulated free-living conditions, no competitive advantage attributable to bacteriocin production was observed. In a simulated enteric habitat, a bacteriocin-producing strain showed dramatic (>90%) inhibition of the sensitive strain within 24 h.

  15. Biosorption of heavy metals by a marine bacterium

    International Nuclear Information System (INIS)

    Iyer, Anita; Mody, Kalpana; Jha, Bhavanath

    2005-01-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here

  16. Biosorption of heavy metals by a marine bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Anita [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India); Mody, Kalpana [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)]. E-mail: khmody@csmcri.org; Jha, Bhavanath [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)

    2005-03-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here.

  17. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    OpenAIRE

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and c...

  18. Antibacterial marine bacterium deter luminous vibriosis in shrimp larvae

    OpenAIRE

    Abraham, T.J.

    2004-01-01

    Inhibitory activity of a marine pigmented bacterium - Alteromonas sp. - isolated from Penaeus monodon Fabricius larva against pathogenic and environmental isolates of Vibrio harveyi was studied. All the isolates were inhibited to varying degrees by Alteromonas sp. in vitro. The antibacterial substance produced by the Alteromonas sp. was soluble in organic solvent and closely bound to the external surface of bacterial cells. The antibacterial Alteromonas sp., when allowed to colonize on shrimp...

  19. Initiation of chromosomal replication in predatory bacterium Bdellovibrio bacteriovorus

    Directory of Open Access Journals (Sweden)

    Lukasz Makowski

    2016-11-01

    Full Text Available Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase and replicating cells (the intracellular-growth phase. The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication – DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box (5’-NN(A/TTCCACA-3’. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus. We compared the architecture of the DnaA–oriC complexes (orisomes in homologous (oriC and DnaA from B. bacteriovorus and heterologous (BdoriC and DnaA from prey, E. coli or P. aeruginosa systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium.

  20. Curiously modern DNA for a "250 million-year-old" bacterium.

    Science.gov (United States)

    Nickle, David C; Learn, Gerald H; Rain, Matthew W; Mullins, James I; Mittler, John E

    2002-01-01

    Studies of ancient DNA have attracted considerable attention in scientific journals and the popular press. Several of the more extreme claims for ancient DNA have been questioned on biochemical grounds (i.e., DNA surviving longer than expected) and evolutionary grounds (i.e., nucleotide substitution patterns not matching theoretical expectations for ancient DNA). A recent letter to Nature from Vreeland et al. (2000), however, tops all others with respect to age and condition of the specimen. These researchers extracted and cultured a bacterium from an inclusion body from what they claim is a 250 million-year (Myr)-old salt crystal. If substantiated, this observation could fundamentally alter views about bacterial physiology, ecology and evolution. Here we report on molecular evolutionary analyses of the 16S rDNA from this specimen. We find that 2-9-3 differs from a modern halophile, Salibacillus marismortui, by just 3 unambiguous bp in 16S rDNA, versus the approximately 59 bp that would be expected if these bacteria evolved at the same rate as other bacteria. We show, using a Poisson distribution, that unless it can be shown that S. marismortui evolves 5 to 10 times more slowly than other bacteria for which 16S rDNA substitution rates have been established, Vreeland et al.'s claim would be rejected at the 0.05 level. Also, a molecular clock test and a relative rates test fail to substantiate Vreeland et al.'s claim that strain 2-9-3 is a 250-Myr-old bacterium. The report of Vreeland et al. thus falls into a long series of suspect ancient DNA studies.

  1. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress.

    Science.gov (United States)

    Ma, Ying; Rajkumar, Mani; Moreno, António; Zhang, Chang; Freitas, Helena

    2017-10-01

    This study evaluates the potential of serpentine endophytic bacterium to foster phytoremediation efficiency of Trifolium arvense grown on multi-metal (Cu, Zn and Ni) contaminated soils under drought stress. A drought resistant endophytic bacterial strain ASS1 isolated from the leaves of Alyssum serpyllifolium grown in serpentine soils was identified as Pseudomonas azotoformans based on biochemical tests and partial 16S rRNA gene sequencing. P. azotoformans ASS1 possessed abiotic stress resistance (heavy metals, drought, salinity, antibiotics and extreme temperature) and plant growth promoting (PGP) properties (phosphate solubilization, nitrogen fixation, production of 1-aminocyclopropane-1-carboxylate deaminase, siderophore and ammonia). Inoculation of T. arvense with ASS1 considerably increased the plant biomass and leaf relative water content in both roll towel assay and pot experiments in the absence and presence of drought stress (DS). In the pot experiments, ASS1 greatly enhanced chlorophyll content, catalase, peroxidase, superoxide dismutase activities, and proline content (only in the absence of drought) in plant leaves, whereas they decreased the concentrations of malondialdehyde. Irrespective of water stress, ASS1 significantly improved accumulation, total removal, bio-concentration factor and biological accumulation coefficient of metals (Cu, Zn and Ni), while decreased translocation factors of Cu. The effective colonization and survival in the rhizosphere and tissue interior assured improved plant growth and successful metal phytoremediation under DS. These results demonstrate the potential of serpentine endophytic bacterium ASS1 for protecting plants against abiotic stresses and helping plants to thrive in semiarid ecosystems and accelerate phytoremediation process in metal polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. [Screening and optimization of cholesterol conversion strain].

    Science.gov (United States)

    Fan, Dan; Xiong, Bingjian; Pang, Cuiping; Zhu, Xiangdong

    2014-10-04

    Bacterial strain SE-1 capable of transforming cholesterol was isolated from soil and characterized. The transformation products were identified. Fermentation conditions were optimized for conversion. Cholesterol was used as sole carbon source to isolate strain SE-1. Morphology, physiological and biochemical characteristics of strain SE-1 were studied. 16S rRNA gene was sequenced and subjected to phylogenetic analysis. Fermentation supernatants were extracted with chloroform, the transformation products were analyzed by silica gel thin layer chromatography and Sephadex LH20. Their structures were identified by 1H-NMR and 13C-NMR. Fermentation medium including carbon and nitrogen, methods of adding substrates and fermentation conditions for Strain SE-1 were optimized. Strain SE-1 was a Gram-negative bacterium, exhibiting the highest homologs to Burkholderia cepacia based on the physiological analysis. The sequence analysis of 16S rRNA gene of SE-1 strain and comparison with related Burkholderia show that SE-1 strain was very close to B. cepacia (Genbank No. U96927). The similarity was 99%. The result of silica gel thin layer chromatography shows that strain SE-1 transformed cholesterol to two products, 7beta-hydroxycholesterol and the minor product was 7-oxocholesterol. The optimum culture conditions were: molasses 5%, (NH4 )2SO4 0.3%, 4% of inoculation, pH 7.5 and 36 degrees C. Under the optimum culture condition, the conversion rate reached 34.4% when concentration of cholesterol-Tween 80 was 1 g/L. Cholesterol 7beta-hydroxylation conversion rate under optimal conditions was improved by 20.8%. Strain SE-1 isolated from soil is capable of converting cholesterol at lab-scale.

  3. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil.

    Science.gov (United States)

    Lee, Yunho; Jeon, Che Ok

    2018-04-01

    A Gram-stain-negative, facultatively aerobic, aromatic hydrocarbon-degrading bacterium, designated strain BN5 T , was isolated from gasoline-contaminated soil. Cells were motile and slightly curved rods with a single flagellum showing catalase and oxidase activities. Growth was observed at 20-37 °C (optimum, 25-30 °C), pH 3-7 (optimum, pH 5-6) and 0-2 % NaCl (optimum, 0 %). Ubiquinone-8 was the predominant respiratory quinone. The major fatty acids were C16 : 0, cyclo-C19 : 0ω8c and summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c). Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phosphoamino lipid, three unidentified amino lipids and eight unidentified lipids were the identified polar lipids. The DNA G+C content was 62.93 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BN5 T formed a phylogenic lineage with members of the genus Paraburkholderia and showed the highest 16S rRNA gene sequence similarities to Paraburkholderia phytofirmans PsJN T (99.4 %), Paraburkholderia dipogonis DL7 T (98.8 %) and Paraburkholderia insulsa PNG-April T (98.8 %). The average nucleotide identity and in silico DNA-DNA hybridization (DDH) values between strain BN5 T and P. phytofirmans PsJN T were 88.5 and 36.5 %, respectively. The DDH values for strain BN5 T with P. dipogonis LMG 28415 T and P. insulsa DSM 28142 T were 41.0±4.9 % (reciprocal, 33.0±4.3 %) and 47.1±6.6 % (reciprocal, 51.7±5.4 %), respectively. Based on its physiological, chemotaxonomic and phylogenetic features, we conclude that strain BN5 T is a novel species of the genus Paraburkholderia, for which the name Paraburkholderia aromaticivorans sp. nov. is proposed. The type strain is BN5 T (=KACC 19419 T =JCM 32303 T ).

  4. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity.

    Science.gov (United States)

    Manso Cobos, Isabel; Ibáñez García, María Isabel; de la Peña Moreno, Fernando; Sáez Melero, Lara Paloma; Luque-Almagro, Víctor Manuel; Castillo Rodríguez, Francisco; Roldán Ruiz, María Dolores; Prieto Jiménez, María Auxiliadora; Moreno Vivián, Conrado

    2015-06-10

    Cyanide is one of the most toxic chemicals produced by anthropogenic activities like mining and jewelry industries, which generate wastewater residues with high concentrations of this compound. Pseudomonas pseudoalcaligenes CECT5344 is a model microorganism to be used in detoxification of industrial wastewaters containing not only free cyanide (CN(-)) but also cyano-derivatives, such as cyanate, nitriles and metal-cyanide complexes. Previous in silico analyses suggested the existence of genes putatively involved in metabolism of short chain length (scl-) and medium chain length (mcl-) polyhydroxyalkanoates (PHAs) located in three different clusters in the genome of this bacterium. PHAs are polyesters considered as an alternative of petroleum-based plastics. Strategies to optimize the bioremediation process in terms of reducing the cost of the production medium are required. In this work, a biological treatment of the jewelry industry cyanide-rich wastewater coupled to PHAs production as by-product has been considered. The functionality of the pha genes from P. pseudoalcaligenes CECT5344 has been demonstrated. Mutant strains defective in each proposed PHA synthases coding genes (Mpha(-), deleted in putative mcl-PHA synthases; Spha(-), deleted in the putative scl-PHA synthase) were generated. The accumulation and monomer composition of scl- or mcl-PHAs in wild type and mutant strains were confirmed by gas chromatography-mass spectrometry (GC-MS). The production of PHAs as by-product while degrading cyanide from the jewelry industry wastewater was analyzed in batch reactor in each strain. The wild type and the mutant strains grew at similar rates when using octanoate as the carbon source and cyanide as the sole nitrogen source. When cyanide was depleted from the medium, both scl-PHAs and mcl-PHAs were detected in the wild-type strain, whereas scl-PHAs or mcl-PHAs were accumulated in Mpha(-) and Spha(-), respectively. The scl-PHAs were identified as homopolymers of 3

  5. MODELING OF MIXED CHEMOSTAT CULTURES OF AN AEROBIC BACTERIUM, COMAMONAS-TESTOSTERONI, AND AN ANAEROBIC BACTERIUM, VEILLONELLA-ALCALESCENS - COMPARISON WITH EXPERIMENTAL-DATA

    NARCIS (Netherlands)

    GERRITSE, J; SCHUT, F; GOTTSCHAL, JC

    A mathematical model of mixed chemostat cultures of the obligately aerobic bacterium Comamonas testosteroni and the anaerobic bacterium Veillonella alcalescens grown under dual limitation Of L-lactate and oxygen was constructed. The model was based on Michaelis-Menten-type kinetics for the

  6. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a

  7. Loktanella spp. Gb03 as an algicidal bacterium, isolated from the culture of Dinoflagellate Gambierdiscus belizeanus.

    Science.gov (United States)

    Bloh, Anmar Hameed; Usup, Gires; Ahmad, Asmat

    2016-02-01

    Bacteria associated with harmful algal blooms can play a crucial role in regulating algal blooms in the environment. This study aimed at isolating and identifying algicidal bacteria in Dinoflagellate culture and to determine the optimum growth requirement of the algicidal bacteria, Loktanella sp. Gb-03. The Dinoflagellate culture used in this study was supplied by Professor Gires Usup's Laboratory, School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Malaysia. The culture was used for the isolation of Loktanella sp., using biochemical tests, API 20 ONE kits. The fatty acid content of the isolates and the algicidal activity were further evaluated, and the phenotype was determined through the phylogenetic tree. Gram-negative, non-motile, non-spore-forming, short rod-shaped, aerobic bacteria (Gb01, Gb02, Gb03, Gb04, Gb05, and Gb06) were isolated from the Dinoflagellate culture. The colonies were pink in color, convex with a smooth surface and entire edge. The optimum growth temperature for the Loktanella sp. Gb03 isolate was determined to be 30°C, in 1% of NaCl and pH7. Phylogenetic analysis based on 16S rRNA gene sequences showed that the bacterium belonged to the genus Loktanella of the class Alphaproteobacteria and formed a tight cluster with the type strain of Loktanella pyoseonensis (97.0% sequence similarity). On the basis of phenotypic, phylogenetic data and genetic distinctiveness, strain Gb-03, were placed in the genus Loktanella as the type strain of species. Moreover, it has algicidal activity against seven toxic Dinoflagellate. The algicidal property of the isolated Loktanella is vital, especially where biological control is needed to mitigate algal bloom or targeted Dinoflagellates.

  8. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Wang

    Full Text Available Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals.

  9. Survival of diverse bacillus thuringiensis strains in gypsy moth (Lepidotera: Lymantriidae) is correlated with urease production

    Science.gov (United States)

    Bacillus thuringiensis is an entomopathogenic bacterium that can kill a variety of pest insects, but seldom causes epizootics because it replicates poorly in insects. By attempting to repeatedly pass lepidopteran-active B. thuringiensis strains through gypsy moth larvae, we found that only those str...

  10. Genome Sequence of Lactococcus lactis subsp. lactis NCDO 2118, a GABA-Producing Strain

    DEFF Research Database (Denmark)

    Oliveira, Letícia C; Saraiva, Tessália D L; Soares, Siomar C

    2014-01-01

    Lactococcus lactis subsp. lactis NCDO 2118 is a nondairy lactic acid bacterium, a xylose fermenter, and a gamma-aminobutyric acid (GABA) producer isolated from frozen peas. Here, we report the complete genome sequence of L. lactis NCDO 2118, a strain with probiotic potential activity....

  11. Complete Genome Sequence of the Pigmented Streptococcus thermophilus Strain JIM8232

    Science.gov (United States)

    Delorme, Christine; Bartholini, Claire; Luraschi, Mélanie; Pons, Nicolas; Loux, Valentin; Almeida, Mathieu; Guédon, Eric; Gibrat, Jean-François; Renault, Pierre

    2011-01-01

    Streptococcus thermophilus is a dairy species commonly used in the manufacture of cheese and yogurt. Here, we report the complete sequence of S. thermophilus strain JIM8232, isolated from milk and which produces a yellow pigment, an atypical trait for this bacterium. PMID:21914889

  12. Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jennifer R. [Brown University; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Teshima, Hazuki [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Wei, Chia-Lin [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Sello, Jason K. [Brown University

    2013-01-01

    We announce the availability of the genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a plant biomass- degrading actinomycete. This bacterium is of special interest because of its capacity to degrade lignin, an underutilized compo- nent of plants in the context of bioenergy. It has a full complement of genes for plant biomass catabolism.

  13. Draft Genome Sequence of a Kale (Brassica oleracea L.) Root Endophyte, Pseudomonas sp. Strain C9.

    Science.gov (United States)

    Laugraud, Aurelie; Young, Sandra; Gerard, Emily; O'Callaghan, Maureen; Wakelin, Steven

    2017-04-13

    Pseudomonas sp. strain C9 is a plant growth-promoting bacterium isolated from the root tissue of Brassica oleracea L. grown in soil from Marlborough, New Zealand. Its draft genome of 6,350,161 bp contains genes associated with plant growth promotion and biological control. Copyright © 2017 Laugraud et al.

  14. Genome Sequence of Anoxybacillus geothermalis Strain GSsed3, a Novel Thermophilic Endospore-Forming Species

    Science.gov (United States)

    Filippidou, Sevasti; Jaussi, Marion; Junier, Thomas; Wunderlin, Tina; Roussel-Delif, Ludovic; Jeanneret, Nicole; Vieth-Hillebrand, Andrea; Vetter, Alexandra; Regenspurg, Simona; McMurry, Kim; Gleasner, Cheryl D.; Lo, Chien-Chi; Li, Paul; Vuyisich, Momchilo; Chain, Patrick S.

    2015-01-01

    Anoxybacillus geothermalis strain GSsed3 is an endospore-forming thermophilic bacterium isolated from filter deposits in a geothermal site. This novel species has a larger genome size (7.2 Mb) than that of any other Anoxybacillus species, and it possesses genes that support its phenotypic metabolic characterization and suggest an intriguing link to metals. PMID:26067952

  15. Biodegradation pathway of L-glutamatediacetate by Rhizobium radiobacter strain BG-1

    NARCIS (Netherlands)

    Ginkel, van C.G.; Geerts, R.; Nguyen, P.D.; Plugge, C.M.

    2008-01-01

    An aerobic bacterium was isolated from activated sludge in a medium containing l-glutamate-N,N-diacetate (l-GLDA) as sole carbon and energy source. The isolate was identified as a Rhizobium radiobacter species. Besides l-GLDA, the strain utilized nitrilotriacetate (NTA) and proposed intermediates in

  16. Genome sequences of two Leuconostoc pseudomesenteroides strains isolated from Danish dairy starter cultures

    DEFF Research Database (Denmark)

    Pedersen, Thomas Bæk; Kot, Witold Piotr; Hansen, L.H.

    2014-01-01

    The lactic acid bacterium Leuconostoc pseudomesenteroides can be found in mesophilic cheese starters, where it produces aromatic compounds from, e.g., citrate. Here, we present the draft genome sequences of two L. pseudomesenteroides strains isolated from traditional Danish cheese starters....

  17. Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce).

    Science.gov (United States)

    Suzuki, Wakako; Sugawara, Masayuki; Miwa, Kyoko; Morikawa, Masaaki

    2014-07-01

    Acinetobacter calcoaceticus P23 is a plant growth-promoting bacterium that was isolated from the surface of duckweed (Lemna aoukikusa). The bacterium was observed to colonize on the plant surfaces and increase the chlorophyll content of not only the monocotyledon Lemna minor but also the dicotyledon Lactuca sativa in a hydroponic culture. This effect on the Lactuca sativa was significant in nutrient-poor (×1/100 dilution of H2 medium) and not nutrient-rich (×1 or ×1/10 dilutions of H2 medium) conditions. Strain P23 has the potential to play a part in the future development of fertilizers and energy-saving hydroponic agricultural technologies. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Metabolic Engineering of the Actinomycete Amycolatopsis sp. Strain ATCC 39116 towards Enhanced Production of Natural Vanillin

    OpenAIRE

    Fleige, Christian; Meyer, Florian; Steinbüchel, Alexander

    2016-01-01

    The Gram-positive bacterium Amycolatopsis sp. ATCC 39116 is used for the fermentative production of natural vanillin from ferulic acid on an industrial scale. The strain is known for its outstanding tolerance to this toxic product. In order to improve the productivity of the fermentation process, the strain's metabolism was engineered for higher final concentrations and molar yields. Degradation of vanillin could be decreased by more than 90% through deletion of the vdh gene, which codes for ...

  19. Comparative Phenotype and Genome Analysis of Cellvibrio sp. PR1, a Xylanolytic and Agarolytic Bacterium from the Pearl River

    Directory of Open Access Journals (Sweden)

    Zhangzhang Xie

    2017-01-01

    Full Text Available Cellvibrio sp. PR1 is a xylanolytic and agarolytic bacterium isolated from the Pearl River. Strain PR1 is closely related to Cellvibrio fibrivorans and C. ostraviensis (identity > 98%. The xylanase and agarase contents of strain PR1 reach up to 15.4 and 25.9 U/mL, respectively. The major cellular fatty acids consisted of C16:0 (36.7%, C18:0 (8.8%, C20:0 (6.8%, C15:0 iso 2-OH or/and C16:1ω7c (17.4%, and C18:1ω7c or/and C18:1ω6c (6.7%. A total of 251 CAZyme modules (63 CBMs, 20 CEs, 128 GHs, 38 GTs, and 2 PLs were identified from 3,730 predicted proteins. Genomic analysis suggested that strain PR1 has a complete xylan-hydrolyzing (5 β-xylanases, 16 β-xylosidases, 17 α-arabinofuranosidases, 9 acetyl xylan esterases, 4 α-glucuronidases, and 2 ferulic acid esterases and agar-hydrolyzing enzyme system (2 β-agarases and 2 α-neoagarooligosaccharide hydrolases. In addition, the main metabolic pathways of xylose, arabinose, and galactose are established in the genome-wide analysis. This study shows that strain PR1 contains a large number of glycoside hydrolases.

  20. Isolation and identification of a bacterium from marine shrimp digestive tract: A new degrader of starch and protein

    Science.gov (United States)

    Li, Jiqiu; Tan, Beiping; Mai, Kangsen

    2011-09-01

    It is a practical approach to select candidate probiotic bacterial stains on the basis of their special traits. Production of digestive enzyme was used as a trait to select a candidate probiotic bacterial strain in this study. In order to select a bacterium with the ability to degrade both starch and protein, an ideal bacterial strain STE was isolated from marine shrimp ( Litopenaeus vannamei) intestines by using multiple selective media. The selected isolate STE was identified on the basis of its morphological, physiological, and biochemical characteristics as well as molecular analyses. Results of degradation experiments confirmed the ability of the selected isolate to degrade both starch and casein. The isolate STE was aerobic, Gram-negative, rod-shaped, motile and non-spore-forming, and had catalase and oxidase activities but no glucose fermentation activity. Among the tested carbon/nitrogen sources, only Tween40, alanyl-glycine, aspartyl-glycine, and glycyl-l-glutamic acid were utilized by the isolate STE. Results of homology comparison analyses of the 16S rDNA sequences showed that the isolate STE had a high similarity to several Pseudoalteromonas species and, in the phylogenetic tree, grouped with P. ruthenica with maximum bootstrap support (100%). In conclusion, the isolate STE was characterized as a novel strain belonging to the genus Pseudoalteromonas. This study provides a further example of a probiotic bacterial strain with specific characteristics isolated from the host gastrointestinal tract.

  1. Noncontiguous finished genome sequence and description of Paenibacillus antibioticophila sp. nov. GD11T, the type strain of Paenibacillus antibioticophila

    Directory of Open Access Journals (Sweden)

    G. Dubourg

    2015-11-01

    Full Text Available Paenibacillus antibioticophila strain GD11T sp. nov. is the type strain of a new species within the genus Paenibacillus. This strain, whose genome is described here, was isolated from human faeces of a 63-year-old woman with multidrug-resistant tuberculosis who was receiving numerous antibiotics at the time of stool collection. P. antibioticophila is a Gram-positive aerobic bacterium. We describe here the features of this bacterium, together with the complete genome sequence and annotation. The 5 562 631 bp long genome contains 5084 protein-coding and 71 RNA genes.

  2. Examination of the Anaerobic Growth of Campylobacter concisus Strains

    Directory of Open Access Journals (Sweden)

    Hoyul Lee

    2014-01-01

    Full Text Available Campylobacter concisus is an oral bacterium that is associated with intestinal diseases. C. concisus was previously described as a bacterium that requires H2-enriched microaerobic conditions for growth. The level of H2 in the oral cavity is extremely low, suggesting that C. concisus is unlikely to have a microaerobic growth there. In this study, the anaerobic growth of C. concisus was investigated. The growth of fifty-seven oral C. concisus strains and six enteric C. concisus strains under various atmospheric conditions including anaerobic conditions with and without H2 was examined. The atmospheric conditions were generated using commercially available gas-generation systems. C. concisus putative virulence proteins were identified using mass spectrometry analysis. Under anaerobic conditions, 92% of the oral C. concisus strains (52/57 and all six enteric strains grew without the presence of H2 and the presence of H2 greatly increased C. concisus growth. An oral C. concisus strain was found to express a number of putative virulence proteins and the expression levels of these proteins were not affected by H2. The levels of H2 appeared to affect the optimal growth of C. concisus. This study provides useful information in understanding the natural colonization site and pathogenicity of C. concisus.

  3. Draft Genome Sequence of MCPA-Degrading Sphingomonas sp. Strain ERG5, Isolated from a Groundwater Aquifer in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Tue Kjærgaard; Kot, Witold; Sørensen, Sebastian R

    2015-01-01

    Sphingomonas sp. strain ERG5 was isolated from a bacterial community, originating from a groundwater aquifer polluted with low pesticide concentrations. This bacterium degrades 2-methyl-4-chlorophenoxyacetic acid (MCPA) in a wide spectrum of concentrations and has been shown to function in bioaug......Sphingomonas sp. strain ERG5 was isolated from a bacterial community, originating from a groundwater aquifer polluted with low pesticide concentrations. This bacterium degrades 2-methyl-4-chlorophenoxyacetic acid (MCPA) in a wide spectrum of concentrations and has been shown to function...

  4. Characterization of the arsenite oxidizer Aliihoeflea sp. strain 2WW and its potential application in the removal of arsenic from groundwater in combination with Pf-ferritin

    NARCIS (Netherlands)

    Corsini, A.; Colombo, M.; Muyzer, G.; Cavalca, L.

    2015-01-01

    A heterotrophic arsenite-oxidizing bacterium, strain 2WW, was isolated from a biofilter treating arsenic-rich groundwater. Comparative analysis of 16S rRNA gene sequences showed that it was closely related (98.7 %) to the alphaproteobacterium Aliihoeflea aesturari strain N8T. However, it was

  5. Culture conditions of Roseobacter strain 27-4 affect its attachment and biofilm formation as quantified by real-time PCR

    DEFF Research Database (Denmark)

    Bruhn, Jesper Bartholin; Haagensen, Janus Anders Juul; Bagge-Ravn, D.

    2006-01-01

    The fish probiotic bacterium Roseobacter strain 27-4 grows only as rosettes and produces its antibacterial compound under static growth conditions. It forms three-dimensional biofilms when precultured under static conditions. We quantified attachment of Roseobacter strain 27-4 using a direct real...

  6. Draft Genome Sequence of the Plant Growth–Promoting Rhizobacterium Acinetobacter radioresistens Strain SA188 Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi

    2017-03-03

    Acinetobacter radioresistens strain SA188 is a plant endophytic bacterium, isolated from root nodules of the desert plants Indigofera spp., collected in Jizan, Saudi Arabia. Here, we report the 3.2-Mb draft genome sequence of strain SA188, highlighting characteristic pathways for plant growth–promoting activity and environmental adaptation.

  7. Draft Genome Sequence of the Plant Growth–Promoting Rhizobacterium Acinetobacter radioresistens Strain SA188 Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi; Alam, Intikhab; Bisseling, Ton; Geurts, Rene; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged

    2017-01-01

    Acinetobacter radioresistens strain SA188 is a plant endophytic bacterium, isolated from root nodules of the desert plants Indigofera spp., collected in Jizan, Saudi Arabia. Here, we report the 3.2-Mb draft genome sequence of strain SA188, highlighting characteristic pathways for plant growth–promoting activity and environmental adaptation.

  8. Roseomonas chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from activated sludge.

    Science.gov (United States)

    Chu, Cui-Wei; Chen, Qing; Wang, Cheng-Hong; Wang, Hong-Mei; Sun, Zhong-Guan; He, Qin; He, Jian; Gu, Jin-Gang

    2016-05-01

    A Gram-negative, aerobic, short rod-shaped, pink-pigmented, non-motile bacterium, designated BUT-13(T), was isolated from activated sludge of an herbicide-manufacturing wastewater treatment facility in Jiangsu province, China. Growth was observed at 0-5.5 % NaCl, pH 6.0-9.0 and 12-37 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain BUT-13(T) is a member of the genus Roseomonas, and shows high sequence similarities to R. pecuniae N75(T) (98.0 %) and R. rosea 173-96(T) (97.5 %), and lower (<97 %) sequence similarities to all other Roseomonas species. Chemotaxonomic analysis revealed that strain BUT-13(T) possesses Q-10 as the predominant ubiquinone; summed feature 8 (C18:1 w7c and/or C18:1 w6c; 38.8 %), C18:0 (16.6 %), C16:0 (15.2 %), summed feature 3 (C16:1 ω6c and/or C16:1 ω7; 7.9 %) and C18:1 w9c (4.7 %) as the major fatty acids. The polar lipids were found to consist of two aminolipids, a glycolipid, a phospholipid, a phosphoglycolipid, phosphatidylcholine, phosphatidylethanolamine and diphosphatidylglycerol. Strain BUT-13(T) showed low DNA-DNA relatedness with R. pecuniae N75(T) (45.2 %) and R. rosea 173-96(T) (51.2 %). The DNA G+C content was determined to be 67.6 mol%. Based on the phylogenetic analysis, DNA-DNA hybridization and chemotaxonomic analysis, as well as biochemical characteristics, strain BUT-13(T) can be clearly distinguished from all currently recognised Roseomonas species and should be classified as a novel species of the genus Roseomonas, for which the name Roseomonas chloroacetimidivorans sp. nov. is proposed. The type strain is BUT-13(T) (CCTCC AB 2015299(T) = JCM 31050(T)).

  9. Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa.

    Science.gov (United States)

    Killiny, Nabil; Prado, Simone S; Almeida, Rodrigo P P

    2010-09-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.

  10. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    Science.gov (United States)

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain.

  11. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  12. Complete Genome Sequence of Bacillus vallismortis NBIF-001, a Novel Strain from Shangri-La, China, That Has High Activity against Fusarium oxysporum.

    Science.gov (United States)

    Liu, Xiaoyan; Min, Yong; Huang, Daye; Zhou, Ronghua; Fang, Wei; Liu, Cuijun; Rao, Ben; Zhang, Guangyang; Wang, Kaimei; Yang, Ziwen

    2017-11-30

    Bacillus vallismortis NBIF-001, a Gram-positive bacterium, was isolated from soil in Shangri-La, China. Here, we provide the complete genome sequence of this bacterium, which has a 3,929,787-bp-long genome, including 4,030 protein-coding genes and 195 RNA genes. This strain possesses a number of genes encoding virulence factors of pathogens. Copyright © 2017 Liu et al.

  13. Isolation and characterization of a phosphate solubilizing heavy metal tolerant bacterium from River Ganga, West Bengal, India

    Directory of Open Access Journals (Sweden)

    Dipak Paul

    2015-12-01

    Full Text Available Phosphates solubilizing bacterial (PSB strains were isolated from the jute mill effluent discharge area of the Ganga river water at Bansberia, West Bengal, India. Experimental studies found that the strain KUPSB16 was effective in solubilization of phosphate with phosphate solubilization index (SI = 3.14 in Pikovskaya’s agar plates along with maximum solubilized phosphate production of 208.18 g mL-1 in broth culture. Highest drop in pH value was associated with maximum amount of phosphate solubilization by the PSB strain KUPSB16 where pH decreased to 3.53 from initial value of 7.0±0.2. The isolated PSB strains were tested for tolerance against four heavy metals such as cadmium (Cd, chromium (Cr, lead (Pb and zinc (Zn at concentrations 1-15 mM. The results showed that most of the PSB isolates grew well at low concentrations of heavy metals and their number gradually decreased as the concentration increased. Isolated PSB strain KUPSB16 was tested for its multiple metal resistances. Minimal inhibitory concentrations (MIC for Cd2+, Cr6+, Pb2+ and Zn2+ in tris-minimal broth medium were 4.2, 5.5, 3.6 and 9.5 mM respectively. The MIC values for the metals studied on agar medium was higher than in broth medium and ranged from 4.8-11.0 mM. The isolated bacterial strain KUPSB16 was subjected to morphological, physiological and biochemical characterization and identified as the species of the genus Bacillus. The phosphate solubilizing bacterium possessing the properties of multiple heavy metal tolerance in heavy metal contaminated areas might be exploited for bioremediation studies in future.

  14. First report of a lipopeptide biosurfactant from thermophilic bacterium Aneurinibacillus thermoaerophilus MK01 newly isolated from municipal landfill site.

    Science.gov (United States)

    Sharafi, Hakimeh; Abdoli, Mahya; Hajfarajollah, Hamidreza; Samie, Nima; Alidoust, Leila; Abbasi, Habib; Fooladi, Jamshid; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari

    2014-07-01

    A biosurfactant-producing thermophile was isolated from the Kahrizak landfill of Tehran and identified as a bacterium belonging to the genus Aneurinibacillus. A thermostable lipopeptide-type biosurfactant was purified from the culture medium of this bacterium and showed stability in the temperature range of 20-90 °C and pH range of 5-10. The produced biosurfactant could reduce the surface tension of water from 72 to 43 mN/m with a CMC of 1.21 mg/mL. The strain growing at a temperature of 45 °C produces a substantial amount of 5 g/L of biosurfactant in the medium supplemented with sunflower oil as the sole carbon source. Response surface methodology was employed to optimize the biosurfactant production using sunflower oil, sodium nitrate, and yeast extract as variables. The optimization resulted in 6.75 g/L biosurfactant production, i.e., 35% improved as compared to the unoptimized condition. Thin-layer chromatography, FTIR spectroscopy, 1H-NMR spectroscopy, and biochemical composition analysis confirmed the lipopeptide structure of the biosurfactant.

  15. Study on human intestinal bacterium Blautia sp. AUH-JLD56 for the conversion of arctigenin to (-)-3'-desmethylarctigenin.

    Science.gov (United States)

    Liu, Ming-Yue; Li, Meng; Wang, Xiu-Ling; Liu, Peng; Hao, Qing-Hong; Yu, Xiu-Mei

    2013-12-11

    Arctium lappa L. (A. lappa) is a popularly used vegetable as well as herbal medicine. Human intestinal microflora was reported to convert arctiin, the lignan compound with highest content in the dried fruits of Arctium lappa, to a series of metabolites. However, the specific bacterium responsible for the formation of 3'-desmethylarctigenin (3'-DMAG), the most predominant metabolite of arctiin by rat or human intestinal microflora, has not been isolated yet. In the present study, we isolated one single bacterium, which we named Blautia sp. AUH-JLD56, capable of solely biotransforming arctiin or arctigenin to (-)-3'-DMAG. The structure of the metabolite 3'-DMAG was elucidated by electrospray ionization mass spectrometry (ESI-MS) and (1)H and (13)C nuclear magnetic resonance spectroscopy. The biotransforming kinetics and maximum biotransforming capacity of strain AUH-JLD56 was investigated. In addition, the metabolite 3'-DMAG showed significantly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity than that of the substrate arctigenin at the concentrations tested.

  16. Draft genome sequence of Dethiosulfovibrio salsuginis DSM 21565T an anaerobic, slightly halophilic bacterium isolated from a Colombian saline spring.

    Science.gov (United States)

    Díaz-Cárdenas, Carolina; López, Gina; Alzate-Ocampo, José David; González, Laura N; Shapiro, Nicole; Woyke, Tanja; Kyrpides, Nikos C; Restrepo, Silvia; Baena, Sandra

    2017-01-01

    A bacterium belonging to the phylum Synergistetes , genus Dethiosulfovibrio was isolated in 2007 from a saline spring in Colombia. Dethiosulfovibrio salsuginis USBA 82 T ( DSM 21565 T = KCTC 5659 T ) is a mesophilic, strictly anaerobic, slightly halophilic, Gram negative bacterium with a diderm cell envelope. The strain ferments peptides, amino acids and a few organic acids. Here we present the description of the complete genome sequencing and annotation of the type species Dethiosulfovibrio salsuginis USBA 82 T . The genome consisted of 2.68 Mbp with a 53.7% G + C . A total of 2609 genes were predicted and of those, 2543 were protein coding genes and 66 were RNA genes. We detected in USBA 82 T genome six Synergistetes conserved signature indels (CSIs), specific for Jonquetella, Pyramidobacter and Dethiosulfovibrio . The genome of D. salsuginis contained, as expected, genes related to amino acid transport, amino acid metabolism and thiosulfate reduction. These genes represent the major gene groups of Synergistetes , related with their phenotypic traits, and interestingly, 11.8% of the genes in the genome belonged to the amino acid fermentation COG category. In addition, we identified in the genome some ammonification genes such as nitrate reductase genes. The presence of proline operon genes could be related to de novo synthesis of proline to protect the cell in response to high osmolarity. Our bioinformatics workflow included antiSMASH and BAGEL3 which allowed us to identify bacteriocins genes in the genome.

  17. Study on screening of anti-predator rhizosphere bacterium against Caenorhabditis elegans and its anti predation mechanism

    Directory of Open Access Journals (Sweden)

    HE Qingling

    2016-08-01

    Full Text Available Althoughmicrobial fertilizer is multi-effect,environmental friendly and long-term efficient,its practical application effect is but decreased for being prey by the other creators living in soil frequently.Many bacterium have developed their mechanisms that expel or kill worms to defend themselves from predators.Screening of anti-predator rhizosphere bacterium helps us to find out competitive plant growth promoting rhizobacteria(PGPR.Using Caenorhabditis elegans as sample,this study roughly observed two strains of biocontrol:Pseudomonas aurantiaca JD37 and Pseudomonas fluorescens P13.Using Escherichia coli OP50 as control group,we find the preference order of worms,from highest to lowest,is P13,OP50 and JD37.In slow killing assay,the death rate of worms for JD37 and P13 are 26.12% and 18.66% respectively.The activity and reproduction rate of C.elegans decrease when it is fed on JD37.The results of chemical and micro-biological study show that JD37 cannot produce any currently studied second metabolites which kill worms,while P13 can produce Hydrogen cyanide (HCN.All these results show that JD37 has the ability of anti-predator,and is more competitive under predation pressure,which suggests its broad application prospect as microbial fertilizer.

  18. Preparation of genomic DNA from a single species of uncultured magnetotactic bacterium by multiple-displacement amplification.

    Science.gov (United States)

    Arakaki, Atsushi; Shibusawa, Mie; Hosokawa, Masahito; Matsunaga, Tadashi

    2010-03-01

    Magnetotactic bacteria comprise a phylogenetically diverse group that is capable of synthesizing intracellular magnetic particles. Although various morphotypes of magnetotactic bacteria have been observed in the environment, bacterial strains available in pure culture are currently limited to a few genera due to difficulties in their enrichment and cultivation. In order to obtain genetic information from uncultured magnetotactic bacteria, a genome preparation method that involves magnetic separation of cells, flow cytometry, and multiple displacement amplification (MDA) using phi29 polymerase was used in this study. The conditions for the MDA reaction using samples containing 1 to 100 cells were evaluated using a pure-culture magnetotactic bacterium, "Magnetospirillum magneticum AMB-1," whose complete genome sequence is available. Uniform gene amplification was confirmed by quantitative PCR (Q-PCR) when 100 cells were used as a template. This method was then applied for genome preparation of uncultured magnetotactic bacteria from complex bacterial communities in an aquatic environment. A sample containing 100 cells of the uncultured magnetotactic coccus was prepared by magnetic cell separation and flow cytometry and used as an MDA template. 16S rRNA sequence analysis of the MDA product from these 100 cells revealed that the amplified genomic DNA was from a single species of magnetotactic bacterium that was phylogenetically affiliated with magnetotactic cocci in the Alphaproteobacteria. The combined use of magnetic separation, flow cytometry, and MDA provides a new strategy to access individual genetic information from magnetotactic bacteria in environmental samples.

  19. First report of a cross-kingdom pathogenic bacterium, Achromobacter xylosoxidans isolated from stipe-rot Coprinus comatus.

    Science.gov (United States)

    Ye, Luona; Guo, Mengpei; Ren, Pengfei; Wang, Gangzheng; Bian, Yinbing; Xiao, Yang; Zhou, Yan

    2018-03-01

    Coprinus comatus is an edible mushroom widely cultivated in China as a delicious food. Various diseases have occurred on C. comatus with the cultivated area increasing. In this study, the pathogenic bacterium JTG-B1, identified as Achromobacter xylosoxidans by 16S rDNA and nrdA gene sequencing, was isolated from edible mushroom Coprinus comatus with serious rot disease on its stipe. A. xylosoxidans has been confirmed as an important opportunistic human pathogenic bacterium and has been isolated from respiratory samples from cystic fibrosis. It is widely distributed in the environment. Here, we first report that fungi can also serve as a host for A. xylosoxidans. We confirmed that it can cross-kingdom infect between animals (mice) and fungi (C. comatus). The results of pathogenicity tests, physiological, biochemical and genotyping analysis of A. xylosoxidans from different hosts suggested that different strain of A. xylosoxidans may have pathogenicity differentiation. A. xylosoxidans not only is pathogenic to C. comatus but also may threaten human health. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  1. Intraspecies diversity of Lactobacillus sakei response to oxidative stress and variability of strain performance in mixed strains challenges.

    Science.gov (United States)

    Guilbaud, Morgan; Zagorec, Monique; Chaillou, Stéphane; Champomier-Vergès, Marie-Christine

    2012-04-01

    Lactobacillus sakei is a meat-borne lactic acid bacterium species exhibiting a wide genomic diversity. We have investigated the diversity of response to various oxidative compounds, between L. sakei strains, among a collection representing the genomic diversity. We observed various responses to the different compounds as well as a diversity of response depending on the aeration conditions used for cell growth. A principal component analysis revealed two main phenotypic groups, partially correlating with previously described genomic clusters. We designed strains mixes composed of three different strains, in order to examine the behavior of each strain, when cultured alone or in the presence of other strains. The strains composing the mixtures were chosen as diverse as possible, i.e. exhibiting diverse responses to oxidative stress and belonging to different genomic clusters. Growth and survival rates of each strain were monitored under various aeration conditions, with or without heme supplementation. The results obtained suggest that some strains may act as "helper" or "burden" strains depending on the oxidative conditions encountered during incubation. This study confirms that resistance to oxidative stress is extremely variable within the L. sakei species and that this property should be considered when investigating starter performance in the complex meat bacterial ecosystems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Isolation of a human intestinal anaerobe, Bifidobacterium sp. strain SEN, capable of hydrolyzing sennosides to sennidins.

    Science.gov (United States)

    Akao, T; Che, Q M; Kobashi, K; Yang, L; Hattori, M; Namba, T

    1994-01-01

    A strictly anaerobic bacterium capable of metabolizing sennosides was isolated from human feces and identified as Bifidobacterium sp., named strain SEN. The bacterium hydrolyzed sennosides A and B to sennidins A and B via sennidin A and B 8-monoglucosides, respectively. Among nine species of Bifidobacterium having beta-glucosidase activity, only Bifidobacterium dentium and B. adolescentis metabolized sennoside B to sennidin B, suggesting that the sennoside-metabolizing bacteria produce a novel type of beta-glucosidase capable of hydrolyzing sennosides to sennidins. PMID:8161172

  3. Behavior of the meat-borne bacterium Lactobacillus sakei during its transit through the gastrointestinal tracts of axenic and conventional mice.

    Science.gov (United States)

    Chiaramonte, Fabrizio; Blugeon, Sébastien; Chaillou, Stéphane; Langella, Philippe; Zagorec, Monique

    2009-07-01

    A Lactobacillus sakei strain named FLEC01 was isolated from human feces and characterized genotypically. Comparison of the genetic features of this strain with those of both the meat-borne L. sakei strain 23K and another human isolate, LTH5590, showed that they belong to different but closely related clusters. The three L. sakei strains did not persist and only transited through the gastrointestinal tracts (GITs) of conventional C3H/HeN mice. In contrast, they all colonized the GITs of axenic mice and rapidly reached a population of 10(9) CFU/g of feces, which remained stable until day 51. Five days after mice were fed, a first subpopulation, characterized by small colonies, appeared and reached 50% of the total L. sakei population in mice. Fifteen to 21 days after feeding, a second subpopulation, characterized by rough colonies, appeared. It coexisted with the two other populations until day 51, and its cell shapes were also affected, suggesting a dysfunction of the cell division or cell wall. No clear difference between the behaviors of the meat-borne strain and the two human isolates in both conventional and axenic mice was observed, suggesting that L. sakei is a food-borne bacterium rather than a commensal one and that its presence in human feces originates from diet. Previous observations of Escherichia coli strains suggest that the mouse GIT environment could induce mutations to increase their survival and colonization capacities. Here, we observed similar mutations concerning a food-grade gram-positive bacterium for the first time.

  4. Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area.

    Science.gov (United States)

    Sokolova, Tatyana G; Kostrikina, Nadezhda A; Chernyh, Nikolai A; Kolganova, Tatjana V; Tourova, Tatjana P; Bonch-Osmolovskaya, Elizaveta A

    2005-09-01

    A novel anaerobic, thermophilic, alkalitolerant bacterium, strain 2204(T), was isolated from a hot spring of the Baikal Lake region. The cells of strain 2204(T) were straight rods of variable length, Gram-positive with an S-layer, motile with one to two lateral flagella, and often formed aggregates of 3-15 cells. The isolate was shown to be an obligate anaerobe oxidizing CO and producing equimolar quantities of H(2) and CO(2) according to the equation CO+H(2)O-->CO(2)+H(2). No organic substrates were used as energy sources. For lithotrophic growth on CO, 0.2 g acetate or yeast extract l(-1) was required but did not support growth in the absence of CO. Growth was observed in the temperature range 37-68 degrees C, the optimum being 55 degrees C. The pH range for growth was 6.7-9.5, the optimum pH being 8.0. The generation time under optimal conditions was 1.3 h. The DNA G+C content was 45 mol%. Penicillin, erythromycin, streptomycin, rifampicin, vancomycin and tetracycline completely inhibited both growth and CO utilization by strain 2204(T). Thus, isolate 2204(T) was found to be the first known moderately thermophilic and alkalitolerant H(2)-producing anaerobic carboxydotroph. The novel bacterium fell within the cluster of the family Peptococcaceae within the low-G+C-content Gram-positive bacteria, where it formed a separate branch. On the basis of morphological, physiological and phylogenetic features, strain 2204(T) should be assigned to a novel genus and species, for which the name Thermincola carboxydiphila gen. nov., sp. nov. is proposed. The type strain is strain 2204(T) (=DSM 17129(T)=VKM B-2283(T)=JCM 13258(T)).

  5. Purification and characterization of an extreme halothermophilic protease from a halophilic bacterium Chromohalobacter sp. TVSP101

    Directory of Open Access Journals (Sweden)

    Malashetty Vidyasagar

    2009-03-01

    Full Text Available An extreme halophilic bacterium was isolated from solar saltern samples and identified based on biochemical tests and 16S r RNA sequencing as Chromohalobacter sp. strain TVSP101. The halophilic protease was purified using ultrafiltration, ethanol precipitation, hydrophobic interaction column chromatography and gel permeation chromatography to 180 fold with 22% yield. The molecular mass of the protease determined by SDS PAGE was 66 kDa. The purified enzyme was salt dependent for its activity and stability with an optimum of 4.5 M NaCl. The optimum temperature for maximum protease activity was 75°C. The protease was optimally active at pH 8 and retained more than 80% of its activity in the range of pH 7-10. Sucrose and glycine at 10% (w/v were the most effective osmolytes, retained 100% activity in the absence of NaCl. The activity was completely inhibited by ZnCl2 (2 mM, 0.1% SDS and PMSF (1mM. The enzyme was not inhibited by 1mM of pepstatin, EDTA and PCMB. The protease was active and retained 100% it activity in 10% (v/v DMSO, DMF, ethanol and acetone.

  6. Thymidine uptake, thymidine incorporation, and thymidine kinase activity in marine bacterium isolates

    International Nuclear Information System (INIS)

    Jeffrey, W.H.; Paul, J.H.

    1990-01-01

    One assumption made in bacterial production estimates from [ 3 H]thymidine incorporation is that all heterotrophic bacteria can incorporate exogenous thymidine into DNA. Heterotrophic marine bacterium isolates from Tampa Bay, Fla., Chesapeake Bay, Md., and a coral surface microlayer were examined for thymidine uptake (transport), thymidine incorporation, the presence of thymidine kinase genes, and thymidine kinase enzyme activity. Of the 41 isolates tested, 37 were capable of thymidine incorporation into DNA. The four organisms that could not incorporate thymidine also transported the thymidine poorly and lacked thymidine kinase activity. Attempts to detect thymidine kinase genes in the marine isolates by molecular probing with gene probes made from Escherichia coli and herpes simplex virus thymidine kinase genes proved unsuccessful. To determine if the inability to incorporate thymidine was due to the lack of thymidine kinase, one organism, Vibro sp. strain DI9, was transformed with a plasmid (pGQ3) that contained an E. coli thymidine kinase gene. Although enzyme assays indicated high levels of thymidine kinase activity in transformants, these cells still failed to incorporate exogenous thymidine into DNA or to transport thymidine into cells. These results indicate that the inability of certain marine bacteria to incorporate thymidine may not be solely due to the lack of thymidine kinase activity but may also be due to the absence of thymidine transport systems

  7. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal

    Science.gov (United States)

    Vreeland, Russell H.; Rosenzweig, William D.; Powers, Dennis W.

    2000-10-01

    Bacteria have been found associated with a variety of ancient samples, however few studies are generally accepted due to questions about sample quality and contamination. When Cano and Borucki isolated a strain of Bacillus sphaericus from an extinct bee trapped in 25-30 million-year-old amber, careful sample selection and stringent sterilization techniques were the keys to acceptance. Here we report the isolation and growth of a previously unrecognized spore-forming bacterium (Bacillus species, designated 2-9-3) from a brine inclusion within a 250million-year-old salt crystal from the Permian Salado Formation. Complete gene sequences of the 16S ribosomal DNA show that the organism is part of the lineage of Bacillus marismortui and Virgibacillus pantothenticus. Delicate crystal structures and sedimentary features indicate the salt has not recrystallized since formation. Samples were rejected if brine inclusions showed physical signs of possible contamination. Surfaces of salt crystal samples were sterilized with strong alkali and acid before extracting brines from inclusions. Sterilization procedures reduce the probability of contamination to less than 1 in 10 9.

  8. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Jimmy H [Los Alamos National Laboratory; Mountain, Bruce W [NEW ZEALAND; Feng, Lu [NANKAI UNIV; Omelchenko, Marina V [NCBI/NLM/NIH; Hou, Shaobin [UNIV OF HAWAII; Saito, Jennifer A [UNIV OF HAWAII; Stott, Matthew B [NEW ZEALAND; Li, Dan [NANKAI UNIV; Zhao, Guang [NANKAI UNIV; Wu, Junli [NANKAI UNIV; Galperin, Michael Y [NCBI/NLM/NIH; Koonin, Eugene V [NCBI/NLM/NIH; Makarova, Kira S [NCBI/NLM/NIH; Wolf, Yuri I [NCBI/NLM/NIH; Rigden, Daniel J [UNIV OF LIVERPOOL; Dunfield, Peter F [UNIV OF CALGARY; Wang, Lei [NANKAI UNIV; Alam, Maqsudul [UNIV OF HAWAII

    2008-01-01

    Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.

  9. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori

    International Nuclear Information System (INIS)

    Han Cong; Wang Qi; Dong Lei; Sun Haifang; Peng Shuying; Chen Jing; Yang Yiming; Yue Jianmin; Shen Xu; Jiang Hualiang

    2004-01-01

    Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K cat of 3.4 s -1 , K m of 1.7 mM, and K cat /K m of 2000 M -1 s -1 . HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 deg. C. The enzyme activity of Co 2+ -containing HpPDF is apparently higher than that of Zn 2+ -containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori

  10. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori.

    Science.gov (United States)

    Han, Cong; Wang, Qi; Dong, Lei; Sun, Haifang; Peng, Shuying; Chen, Jing; Yang, Yiming; Yue, Jianmin; Shen, Xu; Jiang, Hualiang

    2004-07-09

    Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K(cat) of 3.4s(-1), K(m) of 1.7 mM, and K(cat) / K(m) of 2000M(-1)s(-1). HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 degrees C. The enzyme activity of Co(2+)-containing HpPDF is apparently higher than that of Zn(2+)-containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori.

  11. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals.

    Science.gov (United States)

    Sneed, Jennifer M; Sharp, Koty H; Ritchie, Kimberly B; Paul, Valerie J

    2014-07-07

    Microbial biofilms induce larval settlement for some invertebrates, including corals; however, the chemical cues involved have rarely been identified. Here, we demonstrate the role of microbial biofilms in inducing larval settlement with the Caribbean coral Porites astreoides and report the first instance of a chemical cue isolated from a marine biofilm bacterium that induces complete settlement (attachment and metamorphosis) of Caribbean coral larvae. Larvae settled in response to natural biofilms, and the response was eliminated when biofilms were treated with antibiotics. A similar settlement response was elicited by monospecific biofilms of a single bacterial strain, Pseudoalteromonas sp. PS5, isolated from the surface biofilm of a crustose coralline alga. The activity of Pseudoalteromonas sp. PS5 was attributed to the production of a single compound, tetrabromopyrrole (TBP), which has been shown previously to induce metamorphosis without attachment in Pacific acroporid corals. In addition to inducing settlement of brooded larvae (P. astreoides), TBP also induced larval settlement for two broadcast-spawning species, Orbicella (formerly Montastraea) franksi and Acropora palmata, indicating that this compound may have widespread importance among Caribbean coral species. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Augmenting Iron Accumulation in Cassava by the Beneficial Soil Bacterium Bacillus subtilis (GBO3

    Directory of Open Access Journals (Sweden)

    Monica A Freitas

    2015-08-01

    Full Text Available Cassava (Manihot esculenta, a major staple food in the developing world, provides a basic carbohydrate diet for over half a billion people living in the tropics. Despite the iron abundance in most soils, cassava provides insufficient iron for humans as the edible roots contain 3-12 times less iron than other traditional food crops such as wheat, maize, and rice. With the recent identification that the beneficial soil bacterium Bacillus subtilis (strain GB03 activates iron acquisition machinery to increase metal ion assimilation in Arabidopsis, the question arises as to whether this plant-growth promoting rhizobacterium (PGPR also augments iron assimilation to increase endogenous iron levels in cassava. Biochemical analyses reveal that shoot-propagated cassava with GB03-inoculation exhibit elevated iron accumulation after 140 days of plant growth as determined by X-ray microanalysis and total foliar iron analysis. Growth promotion and increased photosynthetic efficiency were also observed for greenhouse-grown plants with GB03-exposure. These results demonstrate the potential of microbes to increase iron accumulation in an important agricultural crop and is consistent with idea that microbial signaling can regulate plant photosynthesis.

  13. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum

    Science.gov (United States)

    Tugarova, Anna V.; Mamchenkova, Polina V.; Dyatlova, Yulia A.; Kamnev, Alexander A.

    2018-03-01

    Vibrational (Fourier transform infrared (FTIR) and Raman) spectroscopic techniques can provide unique molecular-level information on the structural and compositional characteristics of complicated biological objects. Thus, their applications in microbiology and related fields are steadily increasing. In this communication, biogenic selenium nanoparticles (Se NPs) were obtained via selenite (SeO32-) reduction by the bacterium Azospirillum thiophilum (strain VKM B-2513) for the first time, using an original methodology for obtaining extracellular NPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed the Se NPs to have average diameters within 160-250 nm; their zeta potential was measured to be minus 18.5 mV. Transmission FTIR spectra of the Se NPs separated from bacterial cells showed typical proteinacious, polysaccharide and lipid-related bands, in line with TEM data showing a thin layer covering the Se NPs surface. Raman spectra of dried Se NPs layer in the low-frequency region (under 500 cm-1 down to 150 cm-1) showed a single very strong band with a maximum at 250 cm-1 which, in line with its increased width (ca. 30 cm-1 at half intensity), can be attributed to amorphous elementary Se. Thus, a combination of FTIR and Raman spectroscopic approaches is highly informative in non-destructive analysis of structural and compositional properties of biogenic Se NPs.

  14. Remediation of contaminated subsurface materials by a metal-reducing bacterium

    International Nuclear Information System (INIS)

    Gorby, Y.A.; Amonette, J.E.; Fruchter, J.S.

    1994-11-01

    A biotic approach for remediating subsurface sediments and groundwater contaminated with carbon tetrachloride (CT) and chromium was evaluated. Cells of the Fe(iii)-reducing bacterium strain BrY were added to sealed, anoxic flasks containing Hanford groundwater, natural subsurface sediments, and either carbon tetrachloride, CT, or oxidized chromium, Cr(VI). With lactate as the electron donor, BrY transformed CT to chloroform (CF), which accumulated to about 1 0 % of the initial concentration of CT. The remainder of the CT was transformed to unidentified, nonvolatile compounds. Transformation of CT by BrY was an indirect process Cells reduced solid phase Fe(ill) to chemically reactive FE(II) that chemically transformed the chlorinated contaminant. Cr(VI), in contrast, was reduced by a direct enzymatic reaction in the presence or absence of Fe(III)-bearing sediments. These results demonstrate that Fe(ill)-reducing bacteria provide potential for transforming CT and for reducing CR(VI) to less toxic Cr(III). Technologies for stimulating indigenous populations of metal-reducing bacteria or for introducing specific metal-reducing bacteria to the subsurface are being investigated

  15. Hsp90 Is Essential under Heat Stress in the Bacterium Shewanella oneidensis

    Directory of Open Access Journals (Sweden)

    Flora Ambre Honoré

    2017-04-01

    Full Text Available The Hsp90 chaperone is essential in eukaryotes and activates a large array of client proteins. In contrast, its role is still elusive in bacteria, and only a few Hsp90 bacterial clients are known. Here, we found that Hsp90 is essential in the model bacterium Shewanella oneidensis under heat stress. A genetic screen for Hsp90 client proteins identified TilS, an essential protein involved in tRNA maturation. Overexpression of TilS rescued the growth defect of the hsp90 deletion strain under heat stress. In vivo, the activity and the amount of TilS were significantly reduced in the absence of Hsp90 at high temperature. Furthermore, we showed that Hsp90 interacts with TilS, and Hsp90 prevents TilS aggregation in vitro at high temperature. Together, our results indicate that TilS is a client of Hsp90 in S. oneidensis. Therefore, our study links the essentiality of bacterial Hsp90 at high temperature with the identification of a client.

  16. Metabolism of nitrodiphenyl ether herbicides by dioxin-degrading bacterium Sphingomonas wittichii RW1.

    Science.gov (United States)

    Keum, Young Soo; Lee, Young Ju; Kim, Jeong-Han

    2008-10-08

    Nitrodiphenyl ether herbicides, including chlomethoxyfen, nitrofen, and oxyfluorfen are potent herbicides. Some metabolites and parent compounds are considered as possible mutagens and endocrine disruptors. Both properties pose serious hygienic and environmental risks. Sphingomonas wittichii RW1 is a well-known degrader of polychlorinated dibenzo- p-dioxins, dibenzofurans, and diphenyl ethers. However, no detailed research of its metabolic activity has been performed against pesticides with a diphenyl ether scaffold. In this study, we report S. wittichii RW1 as a very potent diphenyl ether herbicide-metabolizing bacterium with broad substrate specificity. The structures of metabolites were determined by instrumental analysis and synthetic standards. Most pesticides were rapidly removed from the culture medium in the order of nitrofen > oxyfluorfen > chlomethoxyfen. In general, herbicides were degraded through the initial reduction and N-acetylation of nitro groups, followed by ether bond cleavage. Relatively low concentrations of phenolic and catecholic metabolites throughout the study suggested that these metabolites were rapidly metabolized and incorporated into primary metabolism. These results indicate that strain RW1 has very versatile metabolic activities over a wide range of environmental contaminants.

  17. Antioxidant and DNA Damage Protecting Activity of Exopolysaccharides from the Endophytic Bacterium Bacillus cereus SZ1

    Directory of Open Access Journals (Sweden)

    Li Ping Zheng

    2016-02-01

    Full Text Available An endophytic bacterium was isolated from the Chinese medicinal plant Artemisia annua L. The phylogenetic and physiological characterization indicated that the isolate, strain SZ-1, was Bacillus cereus. The endophyte could produce an exopolysaccharide (EPS at 46 mg/L. The 1,1-diphenyl-2-picrylhydracyl (DPPH radical scavenging activity of the EPS reached more than 50% at 3–5 mg/mL. The EPS was also effective in scavenging superoxide radical in a concentration dependent fashion with an EC50 value of 2.6 mg/mL. The corresponding EC50 for scavenging hydroxyl radical was 3.1 mg/mL. Moreover, phenanthroline-copper complex-mediated chemiluminescent emission of DNA damage was both inhibited and delayed by EPS. The EPS at 0.7–1.7 mg/mL also protected supercoiled DNA strands in plasmid pBR322 against scission induced by Fenton-mediated hydroxyl radical. The preincubation of PC12 cells with the EPS prior to H2O2 exposure increased the cell survival and glutathione (GSH level and catalase (CAT activities, and decreased the level of malondialdehyde (MDA and lactate dehydrogenase (LDH activity in a dose-dependent manner, suggesting a pronounced protective effect against H2O2-induced cytotoxicity. Our study indicated that the EPS could be useful for preventing oxidative DNA damage and cellular oxidation in pharmaceutical and food industries.

  18. Host-adaptation of Francisella tularensis alters the bacterium's surface-carbohydrates to hinder effectors of innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Tiffany M Zarrella

    Full Text Available The gram-negative bacterium Francisella tularensis survives in arthropods, fresh water amoeba, and mammals with both intracellular and extracellular phases and could reasonably be expected to express distinct phenotypes in these environments. The presence of a capsule on this bacterium has been controversial with some groups finding such a structure while other groups report that no capsule could be identified. Previously we reported in vitro culture conditions for this bacterium which, in contrast to typical methods, yielded a bacterial phenotype that mimics that of the bacterium's mammalian, extracellular phase.SDS-PAGE and carbohydrate analysis of differentially-cultivated F. tularensis LVS revealed that bacteria displaying the host-adapted phenotype produce both longer polymers of LPS O-antigen (OAg and additional HMW carbohydrates/glycoproteins that are reduced/absent in non-host-adapted bacteria. Analysis of wildtype and OAg-mutant bacteria indicated that the induced changes in surface carbohydrates involved both OAg and non-OAg species. To assess the impact of these HMW carbohydrates on the access of outer membrane constituents to antibody we used differentially-cultivated bacteria in vitro to immunoprecipitate antibodies directed against outer membrane moieties. We observed that the surface-carbohydrates induced during host-adaptation shield many outer membrane antigens from binding by antibody. Similar assays with normal mouse serum indicate that the induced HMW carbohydrates also impede complement deposition. Using an in vitro macrophage infection assay, we find that the bacterial HMW carbohydrate impedes TLR2-dependent, pro-inflammatory cytokine production by macrophages. Lastly we show that upon host-adaptation, the human-virulent strain, F. tularensis SchuS4 also induces capsule production with the effect of reducing macrophage-activation and accelerating tularemia pathogenesis in mice.F. tularensis undergoes host-adaptation which

  19. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora.

    Science.gov (United States)

    Genicot, Sabine M; Groisillier, Agnès; Rogniaux, Hélène; Meslet-Cladière, Laurence; Barbeyron, Tristan; Helbert, William

    2014-01-01

    Carrageenans are sulfated polysaccharides extracted from the cell wall of some marine red algae. These polysaccharides are widely used as gelling, stabilizing, and viscosifying agents in the food and pharmaceutical industries. Since the rheological properties of these polysaccharides depend on their sulfate content, we screened several isolated marine bacteria for carrageenan specific sulfatase activity, in the aim of developing enzymatic bioconversion of carrageenans. As a result of the screening, an iota-carrageenan sulfatase was detected in the cell-free lysate of the marine bacterium Pseudoalteromonas carrageenovora strain Psc(T). It was purified through Phenyl Sepharose and Diethylaminoethyl Sepharose chromatography. The pure enzyme, Psc ι-CgsA, was characterized. It had a molecular weight of 115.9 kDaltons and exhibited an optimal activity/stability at pH ~8.3 and at 40 ± 5°C. It was inactivated by phenylmethylsulfonyl fluoride but not by ethylene diamine tetraacetic acid. Psc ι-CgsA specifically catalyzes the hydrolysis of the 4-S sulfate of iota-carrageenan. The purified enzyme could transform iota-carrageenan into hybrid iota-/alpha- or pure alpha-carrageenan under controlled conditions. The gene encoding Psc ι-CgsA, a protein of 1038 amino acids, was cloned into Escherichia coli, and the sequence analysis revealed that Psc ι-CgsA has more than 90% sequence identity with a putative uncharacterized protein Q3IKL4 from the marine strain Pseudoalteromonas haloplanktis TAC 125, but besides this did not share any homology to characterized sulfatases. Phylogenetic studies show that P. carrageenovora sulfatase thus represents the first characterized member of a new sulfatase family, with a C-terminal domain having strong similarity with the superfamily of amidohydrolases, highlighting the still unexplored diversity of marine polysaccharide modifying enzymes.

  20. Lentibacillus amyloliquefaciens sp. nov., a halophilic bacterium isolated from saline sediment sample.

    Science.gov (United States)

    Wang, Jing-Li; Ma, Ke-Dong; Wang, Yan-Wei; Wang, Hui-Min; Li, Yan-Bin; Zhou, Shan; Chen, Xiao-Rong; Kong, De-Long; Guo, Xiang; He, Ming-Xiong; Ruan, Zhi-Yong

    2016-02-01

    A Gram-stain positive, non-motile, non-sporogenous, aerobic, rod-shaped and halophilic bacterium, designated LAM0015(T), was isolated from a saline sediment sample collected from Yantai City in China. The isolate was found to be able to grow at NaCl concentrations of 5-25 % (w/v) (optimum: 7-12 %), 15-45 °C (optimum: 35 °C) and pH 5.0-9.0 (optimum: 7.0). The major fatty acids were determined to be anteiso-C15:0 and anteiso-C17:0. The predominant respiratory quinone was identified as MK-7. The cell wall peptidoglycan was determined to contain meso-diaminopimelic acid. The polar lipids were found to be diphosphatidyglycerol, phosphatidylglycerol, five phospholipids and one glycolipid. The DNA G+C content was 43.1 mol% as determined by the T m method. Analysis of the 16S rRNA gene sequence indicated that the isolate belongs within the genus Lentibacillus and is closely related to Lentibacillus persicus DSM 22530(T), Lentibacillus salicampi JCM 11462(T) and Lentibacillus jeotgali JCM 15795(T) with 97.3, 96.7 and 96.4 % sequence similarity, respectively. The DNA-DNA hybridization value between LAM0015(T) and L. persicus DSM 22530(T) was 51.2 ± 1.4 %. Based on its phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM0015(T) is concluded to represent a novel species of the genus Lentibacillus, for which the name Lentibacillus amyloliquefaciens sp. nov. is proposed. The type strain is LAM0015(T) (=ACCC 06401(T) = JCM 19838(T)).

  1. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora

    Directory of Open Access Journals (Sweden)

    Sabine Marie Genicot

    2014-08-01

    Full Text Available Carrageenans are sulfated polysaccharides extracted from the cell wall of some marine red algae. These polysaccharides are widely used as gelling, stabilizing, and viscosifying agents in the food and pharmaceutical industries. Since the rheological properties of these polysaccharides depend on their sulfate content, we screened several isolated marine bacteria for carrageenan specific sulfatase activity, in the aim of developing enzymatic bioconversion of carrageenans. As a result of the screening, an iota-carrageenan sulfatase was detected in the cell-free lysate of the marine bacterium Pseudoalteromonas carrageenovora strain PscT. It was purified through Phenyl Sepharose and Diethylaminoethyl Sepharose chromatography. The pure enzyme, Psc -CgsA, was characterized. It had a molecular weight of 115.9 kDaltons and exhibited an optimal activity/stability at pH ~8.3 and at 40°C ± 5°C. It was inactivated by phenylmethylsulfonyl fluoride but not by ethylene diamine tetraacetic acid. Psc -CgsA specifically catalyzes the hydrolysis of the 4-S sulfate of iota-carrageenan. The purified enzyme could transform iota-carrageenan into hybrid iota-/alpha- or pure alpha-carrageenan under controlled conditions. The gene encoding Psc -CgsA, a protein of 1038 amino acids, was cloned into Escherichia coli, and the sequence analysis revealed that Psc -CgsA has more than 90% sequence identity with a putative uncharacterized protein Q3IKL4 from the marine strain Pseudoalteromonas haloplanktis TAC 125, but besides this did not share any homology to characterized sulfatases. Phylogenetic studies show that P. carrageenovora sulfatase thus represents the first characterized member of a new sulfatase family, with a C-terminal domain having strong similarity with the superfamily of amidohydrolases, highlighting the still unexplored diversity of marine polysaccharide modifying enzymes.

  2. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense.

    Science.gov (United States)

    Spaepen, Stijn; Bossuyt, Stijn; Engelen, Kristof; Marchal, Kathleen; Vanderleyden, Jos

    2014-02-01

    The auxin-producing bacterium Azospirillum brasilense Sp245 can promote the growth of several plant species. The model plant Arabidopsis thaliana was chosen as host plant to gain an insight into the molecular mechanisms that govern this interaction. The determination of differential gene expression in Arabidopsis roots after inoculation with either A. brasilense wild-type or an auxin biosynthesis mutant was achieved by microarray analysis. Arabidopsis thaliana inoculation with A. brasilense wild-type increases the number of lateral roots and root hairs, and elevates the internal auxin concentration in the plant. The A. thaliana root transcriptome undergoes extensive changes on A. brasilense inoculation, and the effects are more pronounced at later time points. The wild-type bacterial strain induces changes in hormone- and defense-related genes, as well as in plant cell wall-related genes. The A. brasilense mutant, however, does not elicit these transcriptional changes to the same extent. There are qualitative and quantitative differences between A. thaliana responses to the wild-type A. brasilense strain and the auxin biosynthesis mutant strain, based on both phenotypic and transcriptomic data. This illustrates the major role played by auxin in the Azospirillum-Arabidopsis interaction, and possibly also in other bacterium-plant interactions. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. Spectroscopic characterization of cell membranes and their constituents of the plant-associated soil bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Antonyuk, L. P.; Matora, L. Yu.; Serebrennikova, O. B.; Sumaroka, M. V.; Colina, M.; Renou-Gonnord, M.-F.; Ignatov, V. V.

    1999-05-01

    Structural and compositional features of bacterial membranes and some of their isolated constituents (cell surface lipopolysaccharide, phospholipids) of the plant-growth-promoting diazotrophic rhizobacterium Azospirillum brasilense (wild-type strain Sp245) were characterized using Fourier transform infrared (FTIR) spectroscopy and some other techniques. FTIR spectra of the cell membranes were shown to comprise the main vibration modes of the relevant lipopolysaccharide and protein components which are believed to be involved in associative plant-bacterium interactions, as well as of phospholipid constituents. The role and functions of metal cations in the structural organization and physicochemical properties of bacterial cell membranes are also discussed considering their accumulation in the membranes from the culture medium.

  4. Fourier transform Raman spectroscopic characterisation of cells of the plant-associated soil bacterium Azospirillum brasilense Sp7

    Science.gov (United States)

    Kamnev, A. A.; Tarantilis, P. A.; Antonyuk, L. P.; Bespalova, L. A.; Polissiou, M. G.; Colina, M.; Gardiner, P. H. E.; Ignatov, V. V.

    2001-05-01

    Structural and compositional features of bacterial cell samples and of lipopolysaccharide-protein complex isolated from the cell surface of the plant-growth-promoting rhizobacterium Azospirillum brasilense (wild-type strain Sp7) were characterised using Fourier transform (FT) Raman spectroscopy. The structural spectroscopic information obtained is analysed and considered together with analytical data on the content of metal cations (Co 2+, Cu 2+ and Zn 2+) in the bacterial cells grown in a standard medium as well as in the presence of each of the cations (0.2 mM). The latter, being taken up by bacterial cells from the culture medium in significant amounts, were shown to induce certain metabolic changes in the bacterium revealed in FT-Raman spectra, which is discussed from the viewpoint of bacterial response to environmental stresses.

  5. Biodegradation of Benzene, Toluene, Ethylbenzene, and o-, m-, and p-Xylenes by the Newly Isolated Bacterium Comamonas sp. JB.

    Science.gov (United States)

    Jiang, Bei; Zhou, Zunchun; Dong, Ying; Tao, Wei; Wang, Bai; Jiang, Jingwei; Guan, Xiaoyan

    2015-07-01

    A bacterium designated strain JB, able to degrade six benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) compounds, was isolated from petroleum-contaminated soil. Taxonomic analyses showed that the isolate belonged to Comamonas, and until now, the genus Comamonas has not included any known BTEX degraders. The BTEX biodegradation rate was slightly low on the mineral salt medium (MSM), but adding a small amount of yeast extract greatly enhanced the biodegradation. The relationship between specific degradation rate and individual BTEX was described well by Michaelis-Menten kinetics. The treatment of petrochemical wastewater containing BTEX mixture and phenol was shown to be highly efficient by BTEX-grown JB. In addition, toxicity assessment indicated the treatment of the petrochemical wastewater by BTEX-grown JB led to less toxicity than untreated wastewater.

  6. Lactic acid production from xylose by Geobacillus stearothermophilus strain 15

    Science.gov (United States)

    Kunasundari, B.; Naresh, S.; Chu, J. E.

    2017-09-01

    Lactic acid is an important compound with a wide range of industrial applications. The present study tested the efficiency of xylose, as a sole carbon source to be converted to lactic acid by Geobacillus stearothermophilus strain 15. To the best of our knowledge, limited information is available on the directed fermentation of xylose to lactic acid by this bacterium. The effects of different parameters such as temperature, pH, incubation time, agitation speed, concentrations of nitrogen and carbon sources on the lactic acid production were investigated statistically. It was found that the bacterium exhibited poor assimilation of xylose to lactic acid. Temperature, agitation rate and incubation time were determined to improve the lactic acid production slightly. The highest lactic acid yield obtained was 8.9% at 45°C, 300 RPM, 96 h, pH of 6.0 with carbon and nitrogen source concentrations were fixed at 5% w/v.

  7. Development of plasmid vector and electroporation condition for gene transfer in sporogenic lactic acid bacterium, Bacillus coagulans.

    Science.gov (United States)

    Rhee, Mun Su; Kim, Jin-Woo; Qian, Yilei; Ingram, L O; Shanmugam, K T

    2007-07-01

    Bacillus coagulans is a sporogenic lactic acid bacterium that ferments glucose and xylose, major components of plant biomass, a potential feedstock for cellulosic ethanol. The temperature and pH for optimum rate of growth of B. coagulans (50 to 55 degrees C, pH 5.0) are very similar to that of commercially developed fungal cellulases (50 degrees C; pH 4.8). Due to this match, simultaneous saccharification and fermentation (SSF) of cellulose to products by B. coagulans is expected to require less cellulase than needed if the SSF is conducted at a sub-optimal temperature, such as 30 degrees C, the optimum for yeast, the main biocatalyst used by the ethanol industry. To fully exploit B. coagulans as a platform organism, we have developed an electroporation method to transfer plasmid DNA into this genetically recalcitrant bacterium. We also constructed a B. coagulans/E. coli shuttle vector, plasmid pMSR10 that contains the rep region from a native plasmid (pMSR0) present in B. coagulans strain P4-102B. The native plasmid, pMSR0 (6823bp), has 9 ORFs, and replicates by rolling-circle mode of replication. Plasmid pNW33N, developed for Geobacillus stearothermophilus, was also transformed into this host and stably maintained while several other Bacillus/Escherichia coli shuttle vector plasmids were not transformed into B. coagulans. The transformation efficiency of B. coagulans strain P4-102B using the plasmids pNW33N or pMSR10 was about 1.5x10(16) per mole of DNA. The availability of shuttle vectors and an electroporation method is expected to aid in genetic and metabolic engineering of B. coagulans.

  8. Description of Paralactobacillus selangorensis gen. nov., sp. nov., a new lactic acid bacterium isolated from chili bo, a Malaysian food ingredient.

    Science.gov (United States)

    Leisner, J J; Vancanneyt, M; Goris, J; Christensen, H; Rusul, G

    2000-01-01

    Paralactobacillus selangorensis gen. nov., sp. nov. is described. This organism, isolated from a Malaysian food ingredient called chili bo, is an obligatory homofermentative, rod-shaped lactic acid bacterium. The G+C content is 46.1-46.2+/-0.3 mol%. Earlier 16S rRNA studies showed that this organism constitutes a new taxon distantly related to the Lactobacillus casei-Pediococcus group. A phenotypic description that distinguishes Paralactobacillus selangorensis from other genera of lactic acid bacteria is presented. The type strain of Paralactobacillus selangorensis is LMG 17710T.

  9. Thermostable hemicellulases of a bacterium, Geobacillus sp. DC3, isolated from the former Homestake gold mine in Lead, South Dakota.

    Science.gov (United States)

    Bergdale, Terran E; Hughes, Stephen R; Bang, Sookie S

    2014-04-01

    A thermophilic strain, Geobacillus sp. DC3, capable of producing hemicellulolytic enzymes was isolated from the 1.5-km depth of the former Homestake gold mine in Lead, South Dakota. The DC3 strain expressed a high level of extracellular endoxylanase at 39.5 U/mg protein with additional hemicellulases including β-xylosidase (0.209 U/mg) and arabinofuranosidase (0.230 U/mg), after the bacterium was grown in xylan for 24 h. Partially purified DC3 endoxylanase exhibited a molecular mass of approximately 43 kDa according to zymography with an optimal pH of 7 and optimal temperature of 70 °C. The kinetic constants, K m and V max, were 13.8 mg/mL and 77.5 μmol xylose/min·mg xylan, respectively. The endoxylanase was highly stable and maintained 70 % of its original activity after 16 h incubation at 70 °C. The thermostable properties and presence of three different hemicellulases of Geobacillus sp. DC3 strain support its potential application for industrial hydrolysis of renewable biomass such as lignocelluloses.

  10. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater.

    Science.gov (United States)

    Duan, Jinming; Fang, Hongda; Su, Bing; Chen, Jinfang; Lin, Jinmei

    2015-03-01

    A novel halophilic bacterium capable of heterotrophic nitrification-aerobic denitrification was isolated from marine sediments and identified as Vibrio diabolicus SF16. It had ability to remove 91.82% of NH4(+)-N (119.77 mg/L) and 99.71% of NO3(-)-N (136.43 mg/L). The nitrogen balance showed that 35.83% of initial NH4(+)-N (119.77 mg/L) was changed to intracellular nitrogen, and 53.98% of the initial NH4(+)-N was converted to gaseous denitrification products. The existence of napA gene further proved the aerobic denitrification ability of strain SF16. The optimum culture conditions were salinity 1-5%, sodium acetate as carbon source, C/N 10, and pH 7.5-9.5. When an aerated biological filter system inoculated with strain SF16 was employed to treat saline wastewater, the average removal efficiency of NH4(+)-N and TN reached 97.14% and 73.92%, respectively, indicating great potential of strain SF16 for future full-scale applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Photobacterium galatheae sp. nov., a bioactive bacterium isolated from a mussel in the Solomon Sea

    DEFF Research Database (Denmark)

    Machado, Henrique; Giubergia, Sonia; Mateiu, Ramona Valentina

    2015-01-01

    A novel, Gram-negative marine bacterium, S2753T, was isolated from a mussel of the Solomon Sea, Solomon Islands. Analysis of the 16S rRNA gene sequence and whole genome sequence data placed strain S2753T in the genus Photobacterium with the closest relative being Photobacterium halotolerans DSM...... 18316T (97.7 % 16S rRNA gene similarity). Strain S2753T was able to grow from 15 to 40 °C and in NaCl concentrations of 0.5 to 9 % (w/v). The predominant fatty acids were 16 : 1ω7c/16 : 1ω6c (27.9 %), 16 : 0 (22.1 %) and 18 : 1ω7c/8 : 1ω6c (21.4 %). The genomic DNA G+C mol content was 49.5 mol%. Based...... is genomically distinct enough to be considered a novel species. The name Photobacterium galatheae is proposed and the type-strain is S2753T( = LMG 28894T = DSM 100496T)....

  12. Growth of hydroxyapatite on the cellular membrane of the bacterium Bacillus thuringiensis for the preparation of hybrid biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Eric Reyes, E-mail: onomaeric@hotmail.com [Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Ave San Claudio, Ciudad Universitaria, Col San Manuel, C.P. 72570 Puebla, Pue (Mexico); Torres, Maykel González, E-mail: mikegcu@fata.unam.mx [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro C.P. 76230 (Mexico); Muñoz, Susana Vargas, E-mail: vmsu@unam.mx [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro C.P. 76230 (Mexico); Rosas, Efraín Rubio, E-mail: efrainrubio@yahoo.com [Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Ave San Claudio, Ciudad Universitaria, Col San Manuel, C.P. 72570 Puebla, Pue (Mexico); and others

    2016-01-01

    This study aimed to grow hydroxyapatite (HAp) crystals on the cellular wall of the Gram-positive bacterium Bacillus thuringiensis using a bio-mimetic method. Several strains were phenotypically and genotypically characterized using multilocus sequence typing (MLST) gene markers to differentiate the strains and confirm the identity of the isolated species to guarantee that the selected species was not harmful to human health or the environment. Three of the analyzed strains were selected because they exhibited the best nucleation and growth of HAp on the bacterial surface. This innovative method to grow HAp crystals on a cellular membrane helps to elucidate the mechanisms by which osseous tissue is formed in nature. The optimum concentration for the simulated physiological fluid (SPF) was 1.5 ×. The hybrid materials were characterized by optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). - Highlights: • HAp crystals are grown on the cellular wall of a GP bacteria Bacillus thuringiensis. • The growing was carried out by using a bio-mimetic method. • Hybrid materials were characterized with morphological and spectroscopic techniques. • The reported method allows understanding the mechanisms to produce osseous tissue. • The membrane of Bacillus thuringiensis can grow more HAp than Bacillus halodurans.

  13. Genetic characterization, nickel tolerance, biosorption, kinetics, and uptake mechanism of a bacterium isolated from electroplating industrial effluent.

    Science.gov (United States)

    Nagarajan, N; Gunasekaran, P; Rajendran, P

    2015-04-01

    Electroplating industries in Madurai city produce approximately 49,000 L of wastewater and 1200 L of sludge every day revealing 687-5569 ppm of nickel (Ni) with other contaminants. Seventeen Ni-tolerant bacterial strains were isolated from nutrient-enriched effluents. Among them one hyper Ni accumulating strain was scored and identified as Bacillus cereus VP17 on the basis of morphology, biochemical tests, 16S rDNA gene sequencing, and phylogenetic analysis. Equilibrium data of Ni(II) ions using the bacterium as sorbent at isothermal conditions (37 °C) and pH 6 were best adjusted by Langmuir (R(2) = 0.6268) and Freundlich models (R(2) = 0.9505). Experimental validation reveals Ni sorption takes place on a heterogeneous surface of the biosorbent, and predicted metal sorption capacity is 434 ppm. The pseudo-second-order kinetic model fitted the biosorption kinetic data better than the pseudo-first-order kinetic model (R(2) = 0.9963 and 0.3625). Scanning electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy studies of the bacterial strain with and without Ni(II) ion reveals the biosorption mechanism. The results conclude possibilities of using B. cereus VP17 for Ni bioremediation.

  14. Differential gene expression in Xylella fastidiosa 9a5c during co-cultivation with the endophytic bacterium Methylobacterium mesophilicum SR1.6/6.

    Science.gov (United States)

    Dourado, Manuella Nóbrega; Santos, Daiene Souza; Nunes, Luiz Roberto; Costa de Oliveira, Regina Lúcia Batista da; de Oliveira, Marcus Vinicius; Araújo, Welington Luiz

    2015-12-01

    Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC), colonizes plant xylem, reducing sap flow, and inducing internerval chlorosis, leaf size reduction, necrosis, and harder and smaller fruits. This bacterium may be transmitted from plant to plant by sharpshooter insects, including Bucephalogonia xanthopis. The citrus endophytic bacterium Methylobacterium mesophilicum SR1.6/6 colonizes citrus xylem and previous studies showed that this strain is also transferred from plant to plant by B. xanthopis (Insecta), suggesting that this endophytic bacterium may interact with X. fastidiosa in planta and inside the insect vector during co-transmission by the same insect vector. To better understand the X. fastidiosa behavior in the presence of M. mesophilicum, we evaluated the X. fastidiosa transcriptional profile during in vitro interaction with M. mesophilicum SR1.6/6. The results showed that during co-cultivation, X. fastidiosa down-regulated genes related to growth and up-regulated genes related to energy production, stress, transport, and motility, suggesting the existence of a specific adaptive response to the presence of M. mesophilicum in the culture medium. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Yasuo; Ishimi, Katsuhiro [Department of General Education, College of Science and Technology, Nihon University, Narashinodai, Chiba 274-8501 (Japan); Tokumoto, Masaru; Aihara, Yasuyuki; Oku, Masayo; Kohno, Hideki [Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Izumi-cho, Chiba 275-8575 (Japan); Wakayama, Tatsuki; Miyake, Jun [Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Nakoji, Amagasaki, Hyogo 661-0974 (Japan); Tomiyama, Masamitsu [Genetic Diversity Department, National Institute of Agrobiological Science, Tsukuba, Ibaraki 305-8602 (Japan)

    2006-09-15

    Hydrogen production with glucose by using co-immobilized cultures of a lactic acid bacterium, Lactobacillus delbrueckii NBRC13953, and a photosynthetic bacterium, Rhodobacter sphaeroides RV, in agar gels was studied. Glucose was converted to hydrogen gas in a yield of 7.1mol of hydrogen per mole of glucose at a maximum under illuminated conditions. (author)

  16. Dense populations of a giant sulfur bacterium in Namibian shelf sediments

    DEFF Research Database (Denmark)

    Schulz, HN; Brinkhoff, T.; Ferdelman, TG

    1999-01-01

    A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA...

  17. Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii.

    Directory of Open Access Journals (Sweden)

    Konstantinos Mavromatis

    Full Text Available Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  18. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  19. The O-antigen structure of bacterium Comamonas aquatica CJG.

    Science.gov (United States)

    Wang, Xiqian; Kondakova, Anna N; Zhu, Yutong; Knirel, Yuriy A; Han, Aidong

    2017-11-01

    Genus Comamonas is a group of bacteria that are able to degrade a variety of environmental waste. Comamonas aquatica CJG (C. aquatica) in this genus is able to absorb low-density lipoprotein but not high-density lipoprotein of human serum. Using 1 H and 13 C NMR spectroscopy, we found that the O-polysaccharide (O-antigen) of this bacterium is comprised of a disaccharide repeat (O-unit) of d-glucose and 2-O-acetyl-l-rhamnose, which is shared by Serratia marcescens O6. The O-antigen gene cluster of C. aquatica, which is located between coaX and tnp4 genes, contains rhamnose synthesis genes, glycosyl and acetyl transferase genes, and ATP-binding cassette transporter genes, and therefore is consistent with the O-antigen structure determined here.

  20. Insights into Brevibacillus borstelensis AK1 through Whole Genome Sequencing: A Thermophilic Bacterium Isolated from a Hot Spring in Saudi Arabia

    KAUST Repository

    Khalil, Amjad B.

    2018-05-24

    Brevibacillus borstelensis AK1 is a thermophile which grows between the temperatures of 45°C and 70°C. The present study is an extended genome report of B. borstelensis AK1 along with the morphological characterization. The strain is isolated from a hot spring in Saudi Arabia (southeast of the city Gazan). It is observed that the strain AK1 is rod-shaped, motile, and strictly aerobic bacterium. The whole genome sequence resulted in 29 contigs with a total length of 5,155,092 bp. In total, 3,946 protein-coding genes and 139 RNA genes were identified. Comparison with the previously submitted strains of B. borstelensis strains illustrates that strain AK1 has a small genome size but high GC content. The strain possesses putative genes for degradation of a wide range of substrates including polyethylene (plastic) and long-chain hydrocarbons. These genomic features may be useful for future environmental/biotechnological applications.

  1. Insights into Brevibacillus borstelensis AK1 through Whole Genome Sequencing: A Thermophilic Bacterium Isolated from a Hot Spring in Saudi Arabia

    KAUST Repository

    Khalil, Amjad B.; Neelamegam, Sivakumar; Arslan, Muhammad; Saleem, Hamna; Alqarawi, Sami

    2018-01-01

    Brevibacillus borstelensis AK1 is a thermophile which grows between the temperatures of 45°C and 70°C. The present study is an extended genome report of B. borstelensis AK1 along with the morphological characterization. The strain is isolated from a hot spring in Saudi Arabia (southeast of the city Gazan). It is observed that the strain AK1 is rod-shaped, motile, and strictly aerobic bacterium. The whole genome sequence resulted in 29 contigs with a total length of 5,155,092 bp. In total, 3,946 protein-coding genes and 139 RNA genes were identified. Comparison with the previously submitted strains of B. borstelensis strains illustrates that strain AK1 has a small genome size but high GC content. The strain possesses putative genes for degradation of a wide range of substrates including polyethylene (plastic) and long-chain hydrocarbons. These genomic features may be useful for future environmental/biotechnological applications.

  2. Sediminibacillus massiliensis sp. nov., a moderately halophilic, Gram-positive bacterium isolated from a stool sample of a young Senegalese man.

    Science.gov (United States)

    Senghor, Bruno; Bassène, Hubert; Khelaifia, Saber; Robert, Catherine; Fournier, Pierre-Edouard; Ruimy, Raymond; Sokhna, Cheikh; Raoult, Didier; Lagier, Jean-Christophe

    2018-07-01

    A Gram-positive, moderately halophilic bacterium, referred to as strain Marseille-P3518 T , was isolated from a stool sample with 2% NaCl concentration from a healthy 15-year-old male living in Dielmo, a village in Senegal. Cells are aerobic, rod-shaped and motile and display endospore formation. Strain Marseille-P3518 T can grow in a medium with 0-20% (w/v) sodium chloride (optimally at 5-7.5% w/v). The major fatty acids were 12-methyl-tetradecanoic acid (45.8%), 13-methyl-tetradecanoic acid (26.9%) and 12-methyl-tridecanoic acid (12.8%). The genome is 4,347,479 bp long with 42.1% G+C content. It contains 4282 protein-coding and 107 RNA genes. Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that strain Marseille-P3518 T is a member of the Bacillaceae family and is closely related to Sediminibacillus albus (97.4% gene sequence similarity). Strain Marseille-P3518 T was clearly differentiated from its phylogenetic neighbors on the basis of phenotypic and genotypic features. Strain Marseille-P3518 T is, therefore, considered to be a novel representative of the genus Sediminibacillus, for which the name Sediminibacillus massiliensis sp. nov. is proposed, and the type strain is Marseille-P3518 T (CSUR P3518T, DSM69894).

  3. Complete genome sequence of the photoautotrophic and bacteriochlorophyll e-synthesizing green sulfur bacterium Chlorobaculum limnaeum DSM 1677T

    DEFF Research Database (Denmark)

    Tank, Marcus; Liu, Zhenfeng; Frigaard, Niels-Ulrik

    2017-01-01

    Chlorobaculum limnaeum DSM 1677T is a mesophilic, brown-colored, chlorophototrophic green sulfur bacterium that produces bacteriochlorophyll e and the carotenoid isorenieratene as major pigments. This bacterium serves as a model organism in molecular research on photosynthesis, sulfur metabolism...

  4. Rhizoxin analogs, orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Drosophila melanogaster

    Science.gov (United States)

    Pseudomonas protegens strain Pf-5 is a soil bacterium that was first described for its activity in biological control of plant diseases and has since been shown to be lethal to certain insects. Among these is the fruit fly Drosophila melanogaster, a well-established model organism for studies evalu...

  5. Draft Genome Sequences of Two Propionibacterium acnes Strains Isolated from Progressive Macular Hypomelanosis Lesions of Human Skin

    DEFF Research Database (Denmark)

    Petersen, Rolf; Lomholt, Hans B.; Scholz, Christian F. P.

    2015-01-01

    Propionibacterium acnes is a Gram-positive bacterium that is prevalent on human skin. It has been associated with skin disorders such as acne vulgaris and progressive macular hypomelanosis (PMH). Here, we report draft genome sequences of two type III P. acnes strains, PMH5 and PMH7, isolated from...

  6. Haloalkane-utilizing Rhodococcus strains isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism

    NARCIS (Netherlands)

    Poelarends, GJ; Bosma, T; Kulakov, LA; Larkin, MJ; Marchesi, [No Value; Weightman, AJ; Janssen, DB; Kulakov, Leonid A.; Larkin, Michael J.; Marchesi, Julian R.; Weightman, Andrew J.

    The sequences of the 16S rRNA and haloalkane dehalogenase (dhaA) genes of five gram-positive haloalkane-utilizing bacteria isolated from contaminated sites in Europe, Japan, and the United States and of the archetypal haloalkane-degrading bacterium Rhodococcus sp. strain NCIMB13064 were compared.

  7. Draft Genome Sequence of the Biocontrol Strain Serratia plymuthica A30, Isolated from Rotting Potato Tuber Tissue

    NARCIS (Netherlands)

    Czajkowski, R.L.; Van der Wolf, J.M.

    2012-01-01

    Serratia plymuthica A30 is a Gram-negative bacterium expressing antagonistic activity toward blackleg- and soft rot-causing Dickeya sp. biovar 3 ("Dickeya solani"). Here, we present the draft genome sequence of strain A30, which has been isolated from rotten potato tuber tissue. [KEYWORDS: biovar 3

  8. Draft Genome Sequence of the Biocontrol Strain Serratia plymuthica A30, Isolated from Rotting Potato Tuber Tissue

    NARCIS (Netherlands)

    Czajkowski, R.L.; Wolf, van der J.M.

    2012-01-01

    Serratia plymuthica A30 is a Gram-negative bacterium expressing antagonistic activity toward blackleg- and soft rot-causing Dickeya sp. biovar 3 (“Dickeya solani”). Here, we present the draft genome sequence of strain A30, which has been isolated from rotten potato tuber tissue

  9. Biomineralization of a calcifying ureolytic bacterium Microbacterium sp. GM-1

    Directory of Open Access Journals (Sweden)

    Guojing Xu

    2017-01-01

    Conclusions: The results of this research provide evidence that Microbacterium sp. GM-1 can biologically induce calcification and suggest that strain GM-1 may play a potential role in the synthesis of new biominerals and in bioremediation or biorecovery.

  10. Studies on fibrolytic bacterium Butyrivibrio fibrisolvens isolated from sheep rumen

    Directory of Open Access Journals (Sweden)

    Sawanon, S.

    2007-03-01

    Full Text Available Fibrolytic Butyrivibrio fibrisolvens was an attractive target for genetic engineering in rumen bacteria. The experiment was initiated in making culture collection of this species, some of which may be useful ascandidate strain in the future. Hay suspended in sheep rumen was used as the source of isolates. The source was enriched with filter paper degradation, diluted with an anaerobic solution and used for pure culturing bya roll tube technique. After colony forming, Gram-negative curved rods bacteria were selected and screened for further identification with volatile fatty acid (VFA profiling and 16S rDNA sequencing. Fibrolyticstrains were selected to find fibrolytic enzymes and attachment to and digestion of various fibers. Fortyseven strains of Gram-negative curved rods were isolated. After determining cellulase, xylanase activities and VFA profile, 2 strains were chosen and employed for 16S rDNA sequencing. Both strains producingbutyrate were B. fibrisolvens. Of these 2 strains, most fibrolytic S-28 was selected. The strain S-28 could degrade natural fibers but not cellulose and showed strong attachment to them. A strong xylanase activitywas detected and presence of cellulase, β-glucosidase, β-xylosidase, α-L-arabinofuranosidase and β- cellobiosidase were also demonstrated.

  11. Comparative proteomic analysis of pathogenic and non-pathogenic strains from the swine pathogen Mycoplasma hyopneumoniae

    Directory of Open Access Journals (Sweden)

    Klein Cátia S

    2009-12-01

    Full Text Available Abstract Background Mycoplasma hyopneumoniae is a highly infectious swine pathogen and is the causative agent of enzootic pneumonia (EP. Following the previous report of a proteomic survey of the pathogenic 7448 strain of swine pathogen, Mycoplasma hyopneumoniae, we performed comparative protein profiling of three M. hyopneumoniae strains, namely the non-pathogenic J strain and the two pathogenic strains 7448 and 7422. Results In 2DE comparisons, we were able to identify differences in expression levels for 67 proteins, including the overexpression of some cytoadherence-related proteins only in the pathogenic strains. 2DE immunoblot analyses allowed the identification of differential proteolytic cleavage patterns of the P97 adhesin in the three strains. For more comprehensive protein profiling, an LC-MS/MS strategy was used. Overall, 35% of the M. hyopneumoniae genome coding capacity was covered. Partially overlapping profiles of identified proteins were observed in the strains with 81 proteins identified only in one strain and 54 proteins identified in two strains. Abundance analysis of proteins detected in more than one strain demonstrates the relative overexpression of 64 proteins, including the P97 adhesin in the pathogenic strains. Conclusions Our results indicate the physiological differences between the non-pathogenic strain, with its non-infective proliferate lifestyle, and the pathogenic strains, with its constitutive expression of adhesins, which would render the bacterium competent for adhesion and infection prior to host contact.

  12. Genome Sequence of Carbon Dioxide-Sequestering Serratia sp. Strain ISTD04 Isolated from Marble Mining Rocks.

    Science.gov (United States)

    Kumar, Manish; Gazara, Rajesh Kumar; Verma, Sandhya; Kumar, Madan; Verma, Praveen Kumar; Thakur, Indu Shekhar

    2016-10-20

    The Serratia sp. strain ISTD04 has been identified as a carbon dioxide (CO 2 )-sequestering bacterium isolated from marble mining rocks in the Umra area, Rajasthan, India. This strain grows chemolithotrophically on media that contain sodium bicarbonate (NaHCO 3 ) as the sole carbon source. Here, we report the genome sequence of 5.07 Mb Serratia sp. ISTD04. Copyright © 2016 Kumar et al.

  13. Draft genome sequence of Bradyrhizobium sp. strain BR 3267, an elite strain recommended for cowpea inoculation in Brazil

    Directory of Open Access Journals (Sweden)

    Jean Luiz Simões-Araújo

    Full Text Available Abstract The strain BR 3267 is a nitrogen-fixing symbiotic bacteria isolated from soil of semi-arid area of Brazilian Northeast using cowpea as the trap plant. This strain is used as commercial inoculant for cowpea and presents high efficient in nitrogen fixation as consequence of its adaptation potential to semi-arid conditions. We report here the draft genome sequence of Bradyrhizobium sp. strain BR 3267, an elite bacterium used as inoculant for cowpea. Whole genome sequencing of BR 3267 using Illumina MiSeq sequencing technology has 55 scaffolds with a total genome size of 7,904,309 bp and C+G 63%. Annotation was added by the RAST prokaryotic genome annotation service and has shown 7314 coding sequences and 52 RNA genes.

  14. Polyphasic analysis of Acidovorax citrulli strains from northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Kirley Michele Marques Silva

    2016-06-01

    Full Text Available ABSTRACT Bacterial fruit blotch (BFB of cucurbit plants is caused by Acidovorax citrulli and represents a serious concern to melon (Cucumis melo L. growers worldwide, including those in Brazil. Thirty-four A. citrulli strains from different melon production areas of northeastern Brazil were characterized for their virulence on melon fruits and their substrate utilization and molecular profiles. Based on the analysis of BFB severity on melon fruits, the A. citrulli strains were divided into three groups, classified as mildly, moderately or highly virulent. Although host-related groups were not observed, the watermelon and ‘melão-pepino’ strains exhibited only low or moderate virulence on melon fruit. Substrate utilization profiles revealed that 94 % of the 95 tested compounds were used by A. citrulli strains as a carbon source. Overall, based on substrate utilization, low variability was observed with no relationship to host of origin. The formation of one group of A. citrulli strains based on Repetitive Sequence-based PCR (rep-PCR analysis confirmed the low variability observed in the substrate utilization analyses. Bayesian inference based on the analysis of 23S rDNA partial sequence data resulted in one well-supported clade and clustered the strains with the A. citrulli-type species with high posterior probability support. Based on the markers used, the Brazilian A. citrulli strains belong to a single group, which corresponds to the previously described Group I for this bacterium in the United States.

  15. An evaluation of the wilt-causing bacterium Ralstonia solanacearum as a potential biological control agent for the alien Kahili ginger (Hedychium gardnerianum) in Hawaiian forests

    Science.gov (United States)

    1999-01-01

    Kahili ginger (Hedychium gardnerianum) is an invasive weed in tropical forests in Hawaii and elsewhere. Bacterial wilt caused by the ginger strain of Ralstonia(=Pseudomonas) solanacearum systemically infects edible ginger (Zingiber officinale) and ornamental gingers (Hedychium spp.), causing wilt in infected plants. The suitability of R. solanacearum as a biological control agent for kahili ginger was investigated by inoculating seedlings and rooted cuttings of native forest plants, ornamental ginger, and solanaceous species to confirm host specificity. Inoculation via stem injection or root wounding with a bacterial–water suspension was followed by observation for 8 weeks. Inoculations on H. gardnerianum were then carried out in ohia-lehua (Metrosideros polymorpha) wet forests of Hawaii Volcanoes National Park to determine the bacterium's efficacy in the field. No native forest or solanaceous species developed wilt or other symptoms during the study. The bacterium caused limited infection near the inoculation site on H. coronarium, Z. zerumbet, Heliconia latispatha, and Musa sapientum. However, infection did not become systemic in any of these species, and normal growth resumed following appearance of initial symptoms. All inoculated H. gardnerianum plants developed irreversible chlorosis and severe wilting 3–4 weeks following inoculation. Systemic infection also caused death and decay of rhizomes. Most plants were completely dead 16–20 weeks following inoculation. The destructiveness of the ginger strain of R. solanacearum to edible ginger has raised questions regarding its use for biological control. However, because locations of kahili ginger infestations are often remote, the risk of contaminating edible ginger plantings is unlikely. The ability of this bacterium to cause severe disease in H. gardnerianum in the field, together with its lack of virulence in other ginger species, contributes to its potential as a biological control agent.

  16. Prior Inoculation with Type B Strains of Francisella tularensis Provides Partial Protection against Virulent Type A Strains in Cottontail Rabbits.

    Directory of Open Access Journals (Sweden)

    Vienna R Brown

    Full Text Available Francisella tularensis is a highly virulent bacterium that is capable of causing severe disease (tularemia in a wide range of species. This organism is characterized into two distinct subspecies: tularensis (type A and holarctica (type B which vary in several crucial ways, with some type A strains having been found to be considerably more virulent in humans and laboratory animals. Cottontail rabbits have been widely implicated as a reservoir species for this subspecies; however, experimental inoculation in our laboratory revealed type A organisms to be highly virulent, resulting in 100% mortality following challenge with 50-100 organisms. Inoculation of cottontail rabbits with the same number of organisms from type B strains of bacteria was found to be rarely lethal and to result in a robust humoral immune response. The objective of this study was to characterize the protection afforded by a prior challenge with type B strains against a later inoculation with a type A strain in North American cottontail rabbits (Sylvilagus spp. Previous infection with a type B strain of organism was found to lengthen survival time and in some cases prevent death following inoculation with a type A2 strain of F. tularensis. In contrast, inoculation of a type A1b strain was uniformly lethal in cottontail rabbits irrespective of a prior type B inoculation. These findings provide important insight about the role cottontail rabbits may play in environmental maintenance and transmission of this organism.

  17. Salirhabdus euzebyi gen. nov., sp. nov., a Gram-positive, halotolerant bacterium isolated from a sea salt evaporation pond.

    Science.gov (United States)

    Albuquerque, Luciana; Tiago, Igor; Rainey, Fred A; Taborda, Marco; Nobre, M Fernanda; Veríssimo, António; da Costa, Milton S

    2007-07-01

    A low-G+C, Gram-positive bacterium, designated CVS-14(T), was recovered from a sea salt evaporation pond on the island of Sal in the Cape Verde Archipelago. This organism was catalase- and oxidase-positive. Cells were motile, spore-forming aerobic rods, with an optimum growth temperature of about 35-40 degrees C and optimum pH between 7.0 and 8.5. Optimal growth occurred in media containing 4-6 % (w/v) NaCl, although the organism was able to grow in medium without added NaCl and in medium containing 16 % NaCl. The cell-wall peptidoglycan was of A1 gamma type and the major respiratory quinone was menaquinone 7 (MK-7). Major fatty acids were iso-15 : 0, anteiso-15 : 0, iso-17 : 0 and anteiso-17 : 0. The DNA G+C content was 37.0 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain CVS-14(T) formed a distinct new branch within the radiation of the moderately halophilic bacilli group, forming a separate lineage from species of the genera Salinibacillus, Paucisalibacillus, Oceanobacillus, Lentibacillus and Virgibacillus. Strain CVS-14(T) showed 16S rRNA gene pairwise similarity values of approximately 95 % with species of the genus Salinibacillus. On the basis of morphological, physiological, chemotaxonomic and phylogenetic characteristics, strain CVS-14(T) is considered to represent a novel species in a new genus, for which the name Salirhabdus euzebyi gen. nov., sp. nov. is proposed. The type strain is CVS-14(T) (=LMG 22839(T)=CIP 108577(T)).

  18. Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough.

    Science.gov (United States)

    Sokolova, T G; González, J M; Kostrikina, N A; Chernyh, N A; Tourova, T P; Kato, C; Bonch-Osmolovskaya, E A; Robb, F T

    2001-01-01

    A new anaerobic, thermophilic, CO-utilizing marine bacterium, strain JMT, was isolated from a submarine hot vent in Okinawa Trough. Cells of strain JMT were non-motile thin straight rods, sometimes branching, with a cell wall of the Gram-positive type, surrounded with an S-layer. Chains of three to five cells were often observed. The isolate grew chemolithotrophically on CO, producing equimolar quantities of H2 and CO2 (according to the equation CO+H2O-->CO2+H2) and organotrophically on peptone, yeast extract, starch, cellobiose, glucose, galactose, fructose and pyruvate, producing H2, acetate and CO2. Growth was observed from 50 to 80 degrees C with an optimum at 70 degrees C. The optimum pH was 6.8-7.1. The optimum concentration of sea salts in the medium was 20.5-25.5 g l(-1). The generation time under optimal conditions was 7.1 h. The DNA G+C content was 33 mol %. Growth of isolate JMT was not inhibited by penicillin, but ampicillin, streptomycin, kanamycin and neomycin completely inhibited growth. The results of 16S rDNA sequence analysis revealed that strain JMT belongs to the Thermoanaerobacter phylogenetic group within the Bacillus-Clostridium subphylum of Gram-positive bacteria but represents a separate branch of this group. On the basis of morphological and physiological features and phylogenetic data, this isolate should be assigned to a new genus, for which the name Carboxydobrachium is proposed. The type species is Carboxydobrachium pacificum; the type strain is JMT (= DSM 12653T).

  19. Stable transformation of the gram-positive phytopathogenic bacterium Clavibacter michiganensis subsp. sepedonicus with several cloning vectors.

    Science.gov (United States)

    Laine, M J; Nakhei, H; Dreier, J; Lehtilä, K; Meletzus, D; Eichenlaub, R; Metzler, M C

    1996-05-01

    In this paper we describe transformation of Clavibacter michiganensis subsp. sepedonicus, the potato ring rot bacterium, with plasmid vectors. Three of the plasmids used, pDM100, pDM302, and pDM306, contain the origin of replication from pCM1, a native plasmid of C. michiganensis subsp. michiganensis. We constructed two new cloning vectors, pHN205 and pHN216, by using the origin of replication of pCM2, another native plasmid of C. michiganensis subsp. michiganensis. Plasmids pDM302, pHN205, and pHN216 were stably maintained without antibiotic selection in various strains of C. michiganensis subsp. sepedonicus. We observed that for a single plasmid, different strains of C. michiganensis subsp. sepedonicus showed significantly different transformation efficiencies. We also found unexplained strain-to-strain differences in stability with various plasmid constructions containing different arrangements of antibiotic resistance genes and origins of replication. We examined the effect of a number of factors on transformation efficiency. The best transformation efficiencies were obtained when C. michiganensis subsp. sepedonicus cells were grown on DM agar plates, harvested during the early exponential growth phase, and used fresh (without freezing) for electroporation. The maximal transformation efficiency obtained was 4.6 x 10(4) CFU/microgram of pHN216 plasmid DNA. To demonstrate the utility of this transformation system, we cloned a beta-1,4-endoglucanase-encoding gene from C. michiganensis subsp. sepedonicus into pHN216. When this construction, pHN216:C8, was electroporated into competent cells of a cellulase-deficient mutant, it restored cellulase production to almost wild-type levels.

  20. Isolation and characterization of Ethanologenbacterium HitB49 gen. nov. sp. nov., an anaerobic, high hydrogen-producing bacterium with a special ethanol-type-fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M. [Harbin Inst. of Technology, Harbin, HL (China). School of Municipal and Environmental Engineering]|[Nanyang Technological Univ., Singapore (Singapore). Inst. of Environmental Science and Engineering; Ren, N.Q.; Wang, A.J. [Harbin Inst. of Technology, Harbin, HL (China). School of Municipal and Environmental Engineering; Liang, D.T.; Tay, J.H. [Nanyang Technological Univ., Singapore (Singapore). Inst. of Environmental Science and Engineering

    2004-07-01

    Hydrogen, an important future energy source, can be produced by several fermentative microorganisms. The factor that prevents widespread biohydrogen production is the difficulty in isolating the ideal high hydrogen-producing bacterium (HPB). In this study, the Hungate technology was used to isolate and cultivate 210 strains of dominant fermentative bacteria. They were isolated from 6 sludges with ethanol-type fermentation (ETF) bioreactors. The study examined the production of hydrogen in pH 4, very low pH in ETF. The maximum rate in the biohydrogen-producing reactor was promising under continuous flow condition. The novel genus of HPB was Ethanologenbacterium Hit, of which strain B49 belonged to the ETF bacteria.

  1. Screening of Mutation High-Yielding Biocontrol Bacterium BJ1 by Ion Beam Irradiation and Effect of Controlling Fusarium oxysporum cucunerinum Disease

    International Nuclear Information System (INIS)

    Ma Shuang; Dong Xicun; Li Wenjian; Wang Jufang; Yu Lixia; Liu Jing

    2010-01-01

    BJ1 of Bacillus subtilis is an important biocontrol factor in control of fungus disease. In order to improve the antagonistic ability of the strain,and obtain high-efficiency strains, 12 C 6+ of different doses and linear energy transfer (LET) was used to irradiate the biocontrol bacterium BJ1. The optimum dose and LET of ion beam irradiation for the BJ1 are 200-400 Gy and 60 keV/μm,respectively. The antagonistic ability is increased by 2%-21%. The control effect of mutation to Fusarium oxysporum f. sp. cucunerinum is increased by 17.48% over that of BJ1, and mutation also has better plant growth-promoting effect. (authors)

  2. Characterization of the radioresistance in the radioresistant bacterium deinococcus radiodurans

    International Nuclear Information System (INIS)

    Kong Xiangrong; Du Zeji

    1999-01-01

    The radioresistance of wild type Deinococcus radiodurans KD8301 and the factors affecting the radioresistance were investigated. KH3111 which was a DNA repair mutant of KD8301 (Zeji Du, 1998) was used to be compared with KD8301. Deinococcus radiodurans was discovered by Anderson et al (1956) in X-ray sterilized canned meat that was found to have undergone spoilage. this bacterium and other species of this genus share extreme resistance to ionizing radiation and other agents that damage DNA. Wild type KD8301 and its sensitive mutant KH3111 were irradiated with 60 Co γ-ray at the dose range 0.5 ∼ 10 kGy. Dose-survival fraction curves were made and the radio resistances were determined by LD 99 . The relative contents of DNA in cells were measured by Fluorescence Spectrophotometry (Freedman and Bruce, 1971). The results indicated that wild type KD8301 possesses more radioresistant than its mutant KH3111, LD99 were 9.5 kGy and 2.4 kGy respectively. KD8301 grown at exponential phase showed a decreased resistance to radiation, and the LD99 was 5.1 kGy. No differences of DNA/protein in cells were found between the exponential phase and the stationary phase. The results could be concluded that wild type KD8301 possesses remarkable radioresistance, but this ability was decreased or disappeared after mutation (in KH3111). None DNA relative content other than the growth stages were determinant factors of radioresistance in Deinococcus radiodurans. This results were different from other report (Dickie N et al, 1990). The cellular mechanisms might be the deference's of the bacterium cell morphology between the exponential phase and the stationary phase. Recently, the mutation site of KH3111 which was mutated chemically from wild type KD8301 was identified (Zeji Du, 1998). One base pair changed in the novel gene pprA which was isolated from KD8301 genomic DNA. This point mutation was confirmed to be responsible for the sensitivity of KH3111 to γ-ray and other DNA

  3. Metabolomic response of a marine bacterium to 3,6-anhydro-l-galactose, the rare sugar from red macroalgae, as the sole carbon source.

    Science.gov (United States)

    Yun, Eun Ju; Yu, Sora; Kim, Sooah; Kim, Kyoung Heon

    2018-03-20

    Marine red macroalgae have received much attention as sustainable resources for producing bio-based products. Therefore, understanding the metabolic pathways of carbohydrates from red macroalgae, in fermentative microorganisms, is crucial for efficient bioconversion of the carbohydrates into bio-based products. Recently, the novel catabolic pathway of 3,6-anhydro-l-galactose (AHG), the main component of red macroalgae, was discovered in a marine bacterium, Vibrio sp. strain EJY3. However, the global metabolic network in response to AHG remains unclear. Here, the intracellular metabolites of EJY3 grown on AHG, glucose, or galactose were comparatively profiled using gas chromatography/time-of-flight mass spectrometry. The global metabolite profiling results revealed that the metabolic profile for AHG significantly differed from those for other common sugars. Specifically, the metabolic intermediate of the AHG pathway, 3,6-anhydrogalactonate, was detected during growth only in the presence of AHG; thus, the recently discovered key steps in AHG catabolism was found not to occur in the catabolism of other common sugars. Moreover, the levels of metabolic intermediates related to glycerolipid metabolism and valine biosynthesis were higher with AHG than those with other sugars. These comprehensive metabolomic analytical results for AHG in this marine bacterium can be used as the basis for having fermentative microbial strains to engineered to efficiently utilize AHG from macroalgal biomass. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Inhibitory activity of an extract from a marine bacterium Halomonas sp. HSB07 against the red-tide microalga Gymnodinium sp. (Pyrrophyta)

    Science.gov (United States)

    Liu, Juan; Li, Fuchao; Liu, Ling; Jiang, Peng; Liu, Zhaopu

    2013-11-01

    In recent years, red tides occurred frequently in coastal areas worldwide. Various methods based on the use of clay, copper sulfate, and bacteria have been successful in controlling red tides to some extent. As a new defensive agent, marine microorganisms are important sources of compounds with potent inhibitory bioactivities against red-tide microalgae, such as Gymnodinium sp. (Pyrrophyta). In this study, we isolated a marine bacterium, HSB07, from seawater collected from Hongsha Bay, Sanya, South China Sea. Based on its 16S rRNA gene sequence and biochemical characteristics, the isolated strain HSB07 was identified as a member of the genus Halomonas. A crude ethyl acetate extract of strain HSB07 showed moderate inhibition activity against Gymnodinium sp. in a bioactive prescreening experiment. The extract was further separated into fractions A, B, and C by silica gel column chromatography. Fractions B and C showed strong inhibition activities against Gymnodinium. This is the first report of inhibitory activity of secondary metabolites of a Halomonas bacterium against a red-tide-causing microalga.

  5. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects.

    Science.gov (United States)

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Milanowski, Janusz

    2016-06-02

    a biocontrol agent permits the decrease of pesticide doses, being a healthy and environmental-friendly procedure. The application of the preparations of this bacterium efficiently protects the stored pome, stone and citrus fruits against invasion of moulds. P. agglomerans strains associated with both rhizosphere and plant tissues (as endophytes) efficiently promote the growth of many plants, including rice and wheat, which are the staple food for the majority of mankind. The promotion mechanisms are diverse and include fixation of atmospheric nitrogen, production of phytohormones, as well as degradation of phytate and phosphate solubilizing which makes the soil phosphorus available for plants. Accordingly, P. agglomerans is regarded as an ideal candidate for an environmental-friendly bioinoculant replacing chemical fertilizers. It has been documented that the Pantoea strains show biodegradation activity on various chemical pollutants of soil and water, including petroleum hydrocarbons and toxic metals. P. agglomerans prevents the penetration of harmful industrial contaminants into deeper parts of soil by biofilm formation, and has an ability to produce hydrogen from waste. Thus, this bacterium appears as a valuable bioremediator which, in some cases, may be acquired as a cheap form of energy. In conclusion, in spite of the proven pathologic role of P. agglomerans in causing occupational diseases of allergic and/or immunotoxic background and accidental infections, the beneficial traits of this species, and of related species of Pantoea genus, are of great value for potential use in many areas of biotechnology. Hence, any restrictions on the use of these organisms and their products should be declined, providing safety precautions at work with the Pantoea biopreparations are maintained.

  6. Pantoea agglomerans : a mysterious bacterium of evil and good. Part IV. Beneficial effects

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2016-06-01

    plant resistance. Its use as a biocontrol agent permits the decrease of pesticide doses, being a healthy and environmental-friendly procedure. The application of the preparations of this bacterium efficiently protects the stored pome, stone and citrus fruits against invasion of moulds. P. agglomerans strains associated with both rhizosphere and plant tissues (as endophytes efficiently promote the growth of many plants, including rice and wheat, which are the staple food for the majority of mankind. The promotion mechanisms are diverse and include fixation of atmospheric nitrogen, production of phytohormones, as well as degradation of phytate and phosphate solubilizing which makes the soil phosphorus available for plants. Accordingly, P. agglomerans is regarded as an ideal candidate for an environmental-friendly bioinoculant replacing chemical fertilizers. It has been documented that the Pantoea strains show biodegradation activity on various chemical pollutants of soil and water, including petroleum hydrocarbons and toxic metals. P. agglomerans prevents the penetration of harmful industrial contaminants into deeper parts of soil by biofilm formation, and has an ability to produce hydrogen from waste. Thus, this bacterium appears as a valuable bioremediator which, in some cases, may be acquired as a cheap form of energy. In conclusion, in spite of the proven pathologic role of P. agglomerans in causing occupational diseases of allergic and/or immunotoxic background and accidental infections, the beneficial traits of this species, and of related species of Pantoea genus, are of great value for potential use in many areas of biotechnology. Hence, any restrictions on the use of these organisms and their products should be declined, providing safety precautions at work with the Pantoea biopreparations are maintained.

  7. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2016-06-01

    production, competition mechanisms or induction of plant resistance. Its use as a biocontrol agent permits the decrease of pesticide doses, being a healthy and environmental-friendly procedure. The application of the preparations of this bacterium efficiently protects the stored pome, stone and citrus fruits against invasion of moulds. [i]P. agglomerans[/i] strains associated with both rhizosphere and plant tissues (as endophytes efficiently promote the growth of many plants, including rice and wheat, which are the staple food for the majority of mankind. The promotion mechanisms are diverse and include fixation of atmospheric nitrogen, production of phytohormones, as well as degradation of phytate and phosphate solubilizing which makes the soil phosphorus available for plants. Accordingly, [i]P. agglomerans[/i] is regarded as an ideal candidate for an environmental-friendly bioinoculant replacing chemical fertilizers. It has been documented that the [i]Pantoea[/i] strains show biodegradation activity on various chemical pollutants of soil and water, including petroleum hydrocarbons and toxic metals. [i]P. agglomerans[/i] prevents the penetration of harmful industrial contaminants into deeper parts of soil by biofilm formation, and has an ability to produce hydrogen from waste. Thus, this bacterium appears as a valuable bioremediator which, in some cases, may be acquired as a cheap form of energy. In conclusion, in spite of the proven pathologic role of [i]P. agglomerans[/i] in causing occupational diseases of allergic and/or immunotoxic background and accidental infections, the beneficial traits of this species, and of related species of [i]Pantoea [/i]genus, are of great value for potential use in many areas of biotechnology. Hence, any restrictions on the use of these organisms and their products should be declined, providing safety precautions at work with the [i]Pantoea[/i] biopreparations are maintained.

  8. An arsenate-reducing and alkane-metabolizing novel bacterium, Rhizobium arsenicireducens sp. nov., isolated from arsenic-rich groundwater.

    Science.gov (United States)

    Mohapatra, Balaram; Sarkar, Angana; Joshi, Swati; Chatterjee, Atrayee; Kazy, Sufia Khannam; Maiti, Mrinal Kumar; Satyanarayana, Tulasi; Sar, Pinaki

    2017-03-01

    A novel arsenic (As)-resistant, arsenate-respiring, alkane-metabolizing bacterium KAs 5-22 T , isolated from As-rich groundwater of West Bengal was characterized by physiological and genomic properties. Cells of strain KAs 5-22 T were Gram-stain-negative, rod-shaped, motile, and facultative anaerobic. Growth occurred at optimum of pH 6.0-7.0, temperature 30 °C. 16S rRNA gene affiliated the strain KAs 5-22 T to the genus Rhizobium showing maximum similarity (98.4 %) with the type strain of Rhizobium naphthalenivorans TSY03b T followed by (98.0 % similarity) Rhizobium selenitireducens B1 T . The genomic G + C content was 59.4 mol%, and DNA-DNA relatedness with its closest phylogenetic neighbors was 50.2 %. Chemotaxonomy indicated UQ-10 as the major quinone; phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol as major polar lipids; C 16:0 , C 17:0 , 2-OH C 10:0 , 3-OH C 16:0 , and unresolved C 18:1 ɷ7C/ɷ9C as predominant fatty acids. The cells were found to reduce O 2 , As 5+ , NO 3 - , SO 4 2- and Fe 3+ as alternate electron acceptors. The strain's ability to metabolize dodecane or other alkanes as sole carbon source using As 5+ as terminal electron acceptor was supported by the presence of genes encoding benzyl succinate synthase (bssA like) and molybdopterin-binding site (mopB) of As 5+ respiratory reductase (arrA). Differential phenotypic, chemotaxonomic, genotypic as well as physiological properties revealed that the strain KAs 5-22 T is separated from its nearest recognized Rhizobium species. On the basis of the data presented, strain KAs 5-22 T is considered to represent a novel species of the genus Rhizobium, for which the name Rhizobium arsenicireducens sp. nov. is proposed as type strain (=LMG 28795 T =MTCC 12115 T ).

  9. Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator.

    Science.gov (United States)

    Grison, Claire M; Jackson, Stephen; Merlot, Sylvain; Dobson, Alan; Grison, Claude

    2015-05-01

    A Gram-stain-negative, aerobic, rod-shaped, non-spore-forming bacterium (ChimEc512(T)) was isolated from 56 host seedlings of the hyperaccumulating Anthyllis vulneraria legume, which was on an old zinc mining site at Les Avinières, Saint-Laurent-Le-Minier, Gard, South of France. On the basis of 16S rRNA gene sequence similarities, strain ChimEc512(T) was shown to belong to the genus Rhizobium and to be most closely related to Rhizobium endophyticum CCGE 2052(T) (98.4%), Rhizobium tibeticum CCBAU 85039(T) (98.1%), Rhizobium grahamii CCGE 502(T) (98.0%) and Rhizobium mesoamericanum CCGE 501(T) (98.0%). The phylogenetic relationships of ChimEc512(T) were confirmed by sequencing and analyses of recA and atpD genes. DNA-DNA relatedness values of strain ChimEc512(T) with R. endophyticum CCGE 2052(T), R. tibeticum CCBAU 85039(T), R. mesoamericanum CCGE 52(T), Rhizobium grahamii CCGE 502(T), Rhizobium etli CCBAU 85039(T) and Rhizobium radiobacter KL09-16-8-2(T) were 27, 22, 16, 18, 19 and 11%, respectively. The DNA G+C content of strain ChimEc512(T) was 58.9 mol%. The major cellular fatty acid was C18 : 1ω7c, characteristic of the genus Rhizobium . The polar lipid profile included phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol and phosphatidylcholine and moderate amounts of aminolipids, phospholipid and sulfoquinovosyl diacylglycerol. Although ChimEc512(T) was able to nodulate A. vulneraria, the nodC and nifH genes were not detected by PCR. The rhizobial strain was tolerant to high concentrations of heavy metals: up to 35 mM Zn and up to 0.5 mM Cd and its growth kinetics was not impacted by Zn. The results of DNA-DNA hybridizations and physiological tests allowed genotypic and phenotypic differentiation of strain ChimEc512(T) from species of the genus Rhizobium with validly published names. Strain ChimEc512(T), therefore, represents a novel species, for which the name Rhizobium metallidurans sp. nov. is proposed, with the type strain

  10. Desulfobacter psychrotolerans sp. nov., a new psychrotolerant sulfate-reducing bacterium and descriptions of its physiological response to temperature changes.

    Science.gov (United States)

    Tarpgaard, Irene H; Boetius, Antje; Finster, Kai

    2006-01-01

    A psychrotrolerant acetate-oxidizing sulfate-reducing bacterium (strain akvb(T)) was isolated from sediment from the northern part of The North Sea with annual temperature fluctuations between 8 and 14 degrees C. Of the various substrates tested, strain akvb(T) grew exclusively by the oxidation of acetate coupled to the reduction of sulfate. The cells were motile, thick rods with round ends and grew in dense aggregates. Strain akvb(T) grew at temperatures ranging from -3.6 to 26.3 degrees C. Optimal growth was observed at 20 degrees C. The highest cell specific sulfate reduction rate of 6.2 fmol cell(-1) d(-1) determined by the (35)SO(2-)(40) method was measured at 26 degrees C. The temperature range of short-term sulfate reduction rates exceeded the temperature range of growth by 5 degrees C. The Arrhenius relationship for the temperature dependence of growth and sulfate reduction was linear, with two distinct slopes below the optimum temperatures of both processes. The critical temperature was 6.4 degrees C. The highest growth yield (4.3-4.5 g dry weight mol(-1) acetate) was determined at temperatures between 5 and 15 degrees C. The cellular fatty acid composition was determined with cultures grown at 4 and 20 degrees C, respectively. The relative proportion of cellular unsaturated fatty acids (e.g. 16:1omega7c) was higher in cells grown at 4 degrees C than in cells grown at 20 degrees C. The physiological responses to temperature changes showed that strain akvb(T) was well adapted to the temperature regime of the environment from which it was isolated. Phylogenetic analysis showed that strain akvb(T) is closest related to Desulfobacter hydrogenophilus, with a 16S rRNA gene sequence similarity of 98.6%. DNA-DNA-hybridization showed a similarity of 32% between D. hydrogenophilus and strain akvb(T). Based on phenotypic and DNA-based characteristics we propose that strain akvb(T) is a member of a new species, Desulfobacter psychrotolerans sp. nov.

  11. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium

    Directory of Open Access Journals (Sweden)

    Xueqian eLei

    2015-01-01

    Full Text Available Harmful algal blooms occur throughout the world, threatening human health and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemical levels to elucidate the mechanism involved in the inhibition of algal growth by the supernatant of the strain BS02. Reactive oxygen species (ROS levels increased following exposure to the BS02 supernatant, indicating that the algal cells had suffered from oxidative damage. The levels of cellular pigments, including chlorophyll a and carotenoids, were significantly decreased, which indicated that the accumulation of ROS destroyed pigment synthesis. The decline of the maximum photochemical quantum yield (Fv/Fm and relative electron transport rate (rETR suggested that the photosynthesis systems of algal cells were attacked by the BS02 supernatant. To eliminate the ROS, the activities of antioxidant enzymes, including superoxide dismutase (SOD and catalase (CAT, increased significantly within a short period of time. Real-time PCR revealed changes in the transcript abundances of two target photosynthesis-related genes (psbA and psbD and two target respiration-related genes (cob and cox. The transcription of the respiration-related genes was significantly inhibited by the treatments, which indicated that the respiratory system was disturbed. Our results demonstrate that the BS02 supernatant can affect the photosynthesis process and might block the PS II electron transport chain, leading to the production of excessive ROS. The increased ROS can further destroy membrane integrity and pigments, ultimately inducing algal cell death.

  12. Global microarray analysis of carbohydrate use in alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5.

    Directory of Open Access Journals (Sweden)

    Yajian Song

    Full Text Available The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources.

  13. Global Microarray Analysis of Carbohydrate Use in Alkaliphilic Hemicellulolytic Bacterium Bacillus sp. N16-5

    Science.gov (United States)

    Song, Yajian; Xue, Yanfen; Ma, Yanhe

    2013-01-01

    The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose) and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose) using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources. PMID:23326578

  14. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species

    Science.gov (United States)

    Rey, Michael W; Ramaiya, Preethi; Nelson, Beth A; Brody-Karpin, Shari D; Zaretsky, Elizabeth J; Tang, Maria; de Leon, Alfredo Lopez; Xiang, Henry; Gusti, Veronica; Clausen, Ib Groth; Olsen, Peter B; Rasmussen, Michael D; Andersen, Jens T; Jørgensen, Per L; Larsen, Thomas S; Sorokin, Alexei; Bolotin, Alexander; Lapidus, Alla; Galleron, Nathalie; Ehrlich, S Dusko; Berka, Randy M

    2004-01-01

    Background Bacillus licheniformis is a Gram-positive, spore-forming soil bacterium that is used in the biotechnology industry to manufacture enzymes, antibiotics, biochemicals and consumer products. This species is closely related to the well studied model organism Bacillus subtilis, and produces an assortment of extracellular enzymes that may contribute to nutrient cycling in nature. Results We determined the complete nucleotide sequence of the B. licheniformis ATCC 14580 genome which comprises a circular chromosome of 4,222,336 base-pairs (bp) containing 4,208 predicted protein-coding genes with an average size of 873 bp, seven rRNA operons, and 72 tRNA genes. The B. licheniformis chromosome contains large regions that are colinear with the genomes of B. subtilis and Bacillus halodurans, and approximately 80% of the predicted B. licheniformis coding sequences have B. subtilis orthologs. Conclusions Despite the unmistakable organizational similarities between the B. licheniformis and B. subtilis genomes, there are notable differences in the numbers and locations of prophages, transposable elements and a number of extracellular enzymes and secondary metabolic pathway operons that distinguish these species. Differences include a region of more than 80 kilobases (kb) that comprises a cluster of polyketide synthase genes and a second operon of 38 kb encoding plipastatin synthase enzymes that are absent in the B. licheniformis genome. The availability of a completed genome sequence for B. licheniformis should facilitate the design and construction of improved industrial strains and allow for comparative genomics and evolutionary studies within this group of Bacillaceae. PMID:15461803

  15. Competitive Interactions in Mixed-Species Biofilms Containing the Marine Bacterium Pseudoalteromonas tunicata

    Science.gov (United States)

    Rao, Dhana; Webb, Jeremy S.; Kjelleberg, Staffan

    2005-01-01

    Pseudoalteromonas tunicata is a biofilm-forming marine bacterium that is often found in association with the surface of eukaryotic organisms. It produces a range of extracellular inhibitory compounds, including an antibacterial protein (AlpP) thought to be beneficial for P. tunicata during competition for space and nutrients on surfaces. As part of our studies on the interactions between P. tunicata and the epiphytic bacterial community on the marine plant Ulva lactuca, we investigated the hypothesis that P. tunicata is a superior competitor compared with other bacteria isolated from the plant. A number of U. lactuca bacterial isolates were (i) identified by 16S rRNA gene sequencing, (ii) characterized for the production of or sensitivity to extracellular antibacterial proteins, and (iii) labeled with a fluorescent color tag (either the red fluorescent protein DsRed or green fluorescent protein). We then grew single- and mixed-species bacterial biofilms containing P. tunicata in glass flow cell reactors. In pure culture, all the marine isolates formed biofilms containing microcolony structures within 72 h. However, in mixed-species biofilms, P. tunicata removed the competing strain unless its competitor was relatively insensitive to AlpP (Pseudoalteromonas gracilis) or produced strong inhibitory activity against P. tunicata (Roseobacter gallaeciensis). Moreover, biofilm studies conducted with an AlpP− mutant of P. tunicata indicated that the mutant was less competitive when it was introduced into preestablished biofilms, suggesting that AlpP has a role during competitive biofilm formation. When single-species biofilms were allowed to form microcolonies before the introduction of a competitor, these microcolonies coexisted with P. tunicata for extended periods of time before they were removed. Two marine bacteria (R. gallaeciensis and P. tunicata) were superior competitors in this study. Our data suggest that this dominance can be attributed to the ability of

  16. Characterization of the surfaceome of the metal-reducing bacterium Desulfotomaculum reducens

    Directory of Open Access Journals (Sweden)

    Elena eDalla Vecchia

    2014-08-01

    Full Text Available Desulfotomaculum reducens strain MI-1 is a Gram-positive, sulfate-reducing bacterium also capable of reducing Fe(III. Metal reduction in Gram-positive bacteria is poorly understood. Here, we investigated Fe(III reduction with lactate, a non-fermentable substrate, as the electron donor. Lactate consumption is concomitant to Fe(III reduction, but does not support significant growth, suggesting that little energy can be conserved from this process and that it may occur fortuitously. D. reducens can reduce both soluble (Fe(III-citrate and insoluble (hydrous ferric oxide, HFO Fe(III. Because physically inaccessible HFO was not reduced, we concluded that reduction requires direct contact under these experimental conditions. This implies the presence of a surface exposed reductase capable of transferring electrons from the cell to the extracellular electron acceptor. With the goal of characterizing the role of surface proteins in D. reducens and of identifying candidate Fe(III reductases, we carried out an investigation of the surface proteome (surfaceome of D. reducens. Cell surface exposed proteins were extracted by trypsin cell shaving or by lysozyme treatment, and analyzed by liquid chromatography-tandem mass spectrometry. This investigation revealed that the surfaceome fulfills many functions, including solute transport, protein export, maturation and hydrolysis, peptidoglycan synthesis and modification, and chemotaxis. Furthermore, a few redox-active proteins were identified. Among these, three are putatively involved in Fe(III reduction, i.e., a membrane-bound hydrogenase 4Fe-4S cluster subunit (Dred_0462, a heterodisulfide reductase subunit A (Dred_0143 and a protein annotated as alkyl hydroperoxide reductase but likely functioning as a thiol-disulfide oxidoreductase (Dred_1533.

  17. [Isolation and characterization of Thermopirellula anaerolimosa gen. nov., sp. nov., an obligate anaerobic hydrogen-producing bacterium of the phylum Planctomycetes].

    Science.gov (United States)

    Liu, Dongying; Liu, Yi; Men, Xuehui; Guo, Qunqun; Guo, Rongbo; Qiu, Yanling

    2012-08-04

    To cultivate various yet-to-be cultured heterotrophs from anaerobic granule sludge, we used a selective culture medium with low concentrations of substrates supplemented a variety of antibiotics. An obligate anaerobic, thermophilic, hydrogen-producing bacterium, strain VM20-7(T), was isolated from an upflow anaerobic sludge blanket (UASB) reactor treating high-strength organic wastewater from isomerized sugar production processes. Cells of strain VM20-7(T) are non-motile, spherical, pear or teardrop shaped, occurring singly(o)r as aggregates (0.7 - 2.0 microm x 0.7 - 2.0 microm). Spore formation was not observed. Growth temperature ranges from 35 - 50 degrees C (optimum 45 degrees C), pH ranges from 6.0 - 8.3 (optimum 7.0 - 7.5) , NaCl tolerant concentration ranges from 0% - 0.5% (w/v, optimum 0% ). Nitrate, sulfate, thiosulfate, sulfite, elemental sulfur and Fe (III)-NTA were not used as terminal electron acceptors. Strain VM20-7(T) utilizes a wide range of carbohydrates, including glucose, maltose, ribose, xylose, sucrose, galactose, mannose, raffinose, pectin, yeast extract and xylan. Acetate and H2 are the main end products of glucose fermentation. The G + C content of the genomic DNA was 60.9 mol%. 16S rRNA gene sequence analysis revealed that it is related to the Pirellula-Rhodopirellula-Blastopirellula (PRB) clade within the order Planctomycetales (82.7 - 84.3% similarity with 16S rRNA genes of other known related species). The first obligate anaerobic bacterium within the phylum Planctomycetes was isolated with low concentration of carbohydrates and antibiotics. On the basis of the physiological and phylogenetic data, the name Thermopirellula anaerolimosa gen. nov. , sp. nov. is proposed for strain VM20-7(T) (= CGMCC 1.5169(T) = JCM 17478(T) = DSM 24165(T)).

  18. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application

    Science.gov (United States)

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil

    2014-05-01

    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and

  19. Isolation and characterization of a mesophilic heavy-metals-tolerant sulfate-reducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulfate source

    International Nuclear Information System (INIS)

    Azabou, Samia; Mechichi, Tahar; Patel, Bharat K.C.; Sayadi, Sami

    2007-01-01

    A sulfate-reducing bacterium, was isolated from a 6 month trained enrichment culture in an anaerobic media containing phosphogypsum as a sulfate source, and, designated strain SA2. Cells of strain SA2 were rod-shaped, did not form spores and stained Gram-negative. Phylogenetic analysis of the 16S rRNA gene sequence of the isolate revealed that it was related to members of the genus Desulfomicrobium (average sequence similarity of 98%) with Desulfomicrobium baculatum being the most closely related (sequence similarity of 99%). Strain SA2 used thiosulfate, sulfate, sulfite and elemental sulfur as electron acceptors and produced sulfide. Strain SA2 reduced sulfate contained in 1-20 g/L phosphogypsum to sulfide with reduction of sulfate contained in 2 g/L phosphogypsum being the optimum concentration. Strain SA2 grew with metalloid, halogenated and non-metal ions present in phosphogypsum and with added high concentrations of heavy metals (125 ppm Zn and 100 ppm Ni, W, Li and Al). The relative order for the inhibitory metal concentrations, based on the IC 50 values, was Cu, Te > Cd > Fe, Co, Mn > F, Se > Ni, Al, Li > Zn

  20. Limnobacter litoralis sp. nov., a thiosulfate-oxidizing, heterotrophic bacterium isolated from a volcanic deposit, and emended description of the genus Limnobacter.

    Science.gov (United States)

    Lu, Hongsheng; Sato, Yoshinori; Fujimura, Reiko; Nishizawa, Tomoyasu; Kamijo, Takashi; Ohta, Hiroyuki

    2011-02-01

    A Gram-negative, aerobic, heterotrophic bacterium, designated KP1-19(T), was isolated from a 22-year-old volcanic deposit at a site lacking vegetation on the island of Miyake, Japan. Strain KP1-19(T) was able to use thiosulfate (optimum concentration 10 mM) as an additional energy source. 16S rRNA gene sequence analysis indicated that strain KP1-19(T) was closely related to Limnobacter thiooxidans CS-K2(T) within the class Betaproteobacteria (97.7 % 16S rRNA gene sequence similarity). The cellular fatty acid profile was characteristic of the genus Limnobacter: the major fatty acids (>5 %) were C(16 : 0), C(16 : 1)ω7c and C(18 : 1)ω7c and minor amounts of C(10 : 0) 3-OH were also found. DNA-DNA relatedness between strain KP1-19(T) and L. thiooxidans LMG 19593(T) was 18 %. Therefore, strain KP1-19(T) represents a novel species, for which the name Limnobacter litoralis sp. nov. is proposed. The type strain is KP1-19(T) (=LMG 24869(T) =NBRC 105857(T) =CIP 109929(T)).

  1. Removal of Chlorpyrifos by Water Hyacinth (Eichhornia crassipes) and the Role of a Plant-Associated Bacterium.

    Science.gov (United States)

    Anudechakul, Choochai; Vangnai, Alisa S; Ariyakanon, Naiyanan

    2015-01-01

    The objective of this research was to study the efficiency of water hyacinth (Eichhornia crassipes) and the role of any plant-associated bacteria in removing chlorpyrifos from water. The relative growth rate (RGR) of E. crassipes in the presence of 0.1 mg/L chlorpyrifos was not significantly different from that in its absence and only slightly decreased at concentrations of 0.5 and 1.0 mg/L by ∼1.1- and ∼1.2-fold, respectively, with an observed dry weight based RGRDW for E. crassipes of 0.036-0.041 mg/g/d. The removal rate constants of chlorpyrifos in the absence of plants were low at 3.52, 2.29 and 1.84 h(-1) for concentrations of 0.1, 0.5 and 1.0 mg/L, respectively, but were some 3.89- to 4.87-fold higher in the presence of E. crassipes. Chlorpyrifos removal was markedly facilitated by the presence of a root-associated bacterium, preliminarily identified as Acinetobacter sp. strain WHA. The interaction of E. crassipes and Acinetobacter sp. strain WHA provide an efficient and ecological alternative to accelerate the removal and degradation of chlorpyrifos pollution from aquatic systems including wastewater.

  2. Virgibacillus ainsalahensis sp. nov., a Moderately Halophilic Bacterium Isolated from Sediment of a Saline Lake in South of Algeria.

    Science.gov (United States)

    Amziane, Meriam; Darenfed-Bouanane, Amel; Abderrahmani, Ahmed; Selama, Okba; Jouadi, Lydia; Cayol, Jean-Luc; Nateche, Farida; Fardeau, Marie-Laure

    2017-02-01

    A Gram-positive, moderately halophilic, endospore-forming bacterium, designated MerV T , was isolated from a sediment sample of a saline lake located in Ain Salah, south of Algeria. The cells were rod shaped and motile. Isolate MerV T grew at salinity interval of 0.5-25% NaCl (optimum, 5-10%), pH 6.0-12.0 (optimum, 8.0), and temperature between 10 and 40 °C (optimum, 30 °C).The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, a glycolipid, a phospholipid, and two lipids, and MK-7 is the predominant menaquinone. The predominant cellular fatty acids were anteiso C 15:0 and anteiso C 17:0 . The DNA G+C content was 45.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain MerV T was most closely related to Virgibacillus halodenitrificans (gene sequence similarity of 97.0%). On the basis of phenotypic, chemotaxonomic properties, and phylogenetic analyses, strain MerV T (=DSM = 28944 T ) should be placed in the genus Virgibacillus as a novel species, for which the name Virgibacillus ainsalahensis is proposed.

  3. Atomic force microscopy study of the structure function relationships of the biofilm-forming bacterium Streptococcus mutans

    Science.gov (United States)

    Cross, Sarah E.; Kreth, Jens; Zhu, Lin; Qi, Fengxia; Pelling, Andrew E.; Shi, Wenyuan; Gimzewski, James K.

    2006-02-01

    Atomic force microscopy (AFM) has garnered much interest in recent years for its ability to probe the structure, function and cellular nanomechanics inherent to specific biological cells. In particular, we have used AFM to probe the important structure-function relationships of the bacterium Streptococcus mutans. S. mutans is the primary aetiological agent in human dental caries (tooth decay), and is of medical importance due to the virulence properties of these cells in biofilm initiation and formation, leading to increased tolerance to antibiotics. We have used AFM to characterize the unique surface structures of distinct mutants of S. mutans. These mutations are located in specific genes that encode surface proteins, thus using AFM we have resolved characteristic surface features for mutant strains compared to the wild type. Ultimately, our characterization of surface morphology has shown distinct differences in the local properties displayed by various S. mutans strains on the nanoscale, which is imperative for understanding the collective properties of these cells in biofilm formation.

  4. Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination.

    Directory of Open Access Journals (Sweden)

    Juan Liu

    Full Text Available A phenanthrene-degrading endophytic bacterium, Pn2, was isolated from Alopecurus aequalis Sobol grown in soils contaminated with polycyclic aromatic hydrocarbons (PAHs. Based on morphology, physiological characteristics and the 16S rRNA gene sequence, it was identified as Massilia sp. Strain Pn2 could degrade more than 95% of the phenanthrene (150 mg · L(-1 in a minimal salts medium (MSM within 48 hours at an initial pH of 7.0 and a temperature of 30 °C. Pn2 could grow well on the MSM plates with a series of other PAHs, including naphthalene, acenaphthene, anthracene and pyrene, and degrade them to different degrees. Pn2 could also colonize the root surface of ryegrass (Lolium multiflorum Lam, invade its internal root tissues and translocate into the plant shoot. When treated with the endophyte Pn2 under hydroponic growth conditions with 2 mg · L(-1 of phenanthrene in the Hoagland solution, the phenanthrene concentrations in ryegrass roots and shoots were reduced by 54% and 57%, respectively, compared with the endophyte-free treatment. Strain Pn2 could be a novel and useful bacterial resource for eliminating plant PAH contamination in polluted environments by degrading the PAHs inside plants. Furthermore, we provide new perspectives on the control of the plant uptake of PAHs via endophytic bacteria.

  5. High production, purification, biochemical characterization and gene analysis of a novel catalase from the thermophilic bacterium Ureibacillus thermosphaericus FZSF03.

    Science.gov (United States)

    Jia, Xianbo; Lin, Xinjian; Tian, Yandan; Chen, Jichen; You, Minsheng

    2017-10-01

    A catalase-producing thermophilic bacterium, Ureibacillus thermosphaericus FZSF03, was isolated from high-temperature compost. Catalase production in this strain increased 31 times and reached 57,630U/mL after optimization in a shake flask, which might represent the highest catalase activity level among reported wild strains. This catalase was further purified and identified. The purified enzyme showed a specific activity of 219,360U/mg, higher than many other catalases. The molecular weight of this enzyme is 52kDa according to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the enzyme was identified as a monofunctional haeme catalase of Ureibacillus thermosphaericus by liquid chromatography-mass spectrometry (LC-MS)/MS. The optimal reaction temperature for this catalase was found to be 60°C. Stability was observed at 60°C and at a pH of 10.0, indicating the superiority of this enzyme at a high temperature and under alkaline conditions. Therefore, this catalase is a prospective candidate for industrial production and applications. The gene encoding this catalase is 1503bp. As the amino acid sequence shows low similarity with other catalases, we suggest that this is a novel monofunctional haeme catalase. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Biodegradation of nicotine by a novel nicotine-degrading bacterium, Pseudomonas plecoglossicida TND35 and its new biotransformation intermediates.

    Science.gov (United States)

    Raman, Gurusamy; Mohan, KasiNadar; Manohar, Venkat; Sakthivel, Natarajan

    2014-02-01

    Tobacco wastes that contain nicotine alkaloids are harmful to human health and the environment. In the investigation, a novel nicotine-biodegrading bacterium TND35 was isolated and identified as Pseudomonas plecoglossicida on the basis of phenotypic, biochemical characteristics and 16S rRNA sequence homology. We have studied the nicotine biodegradation potential of strain TND35 by detecting the intermediate metabolites using an array of approaches such as HPLC, GC-MS, NMR and FT-IR. Biotransformation metabolites, N-methylmyosmine, 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) and other three new intermediate metabolites namely, 3,5-bis (1-methylpyrrolidin-2-yl) pyridine, 2,3-dihydro-1-methyl-5-(pyridin-3-yl)-1H-pyrrol-2-ol and 5-(pyridin-3-yl)-1H-pyrrol-2(3H)-one have been identified. Interestingly, these intermediate metabolites suggest that the strain TND35 employs a novel nicotine biodegradation pathway, which is different from the reported pathways of Aspergillus oryzae 112822, Arthrobacter nicotinovorans pAO1, Agrobacterium tumefaciens S33 and other species of Pseudomonas. The metabolite, HPB reported in this study can also be used as biochemical marker for tobacco related cancer studies.

  7. Electromicrobiology of Dissimilatory Sulfur Reducing Bacterium Desulfuromonas acetexigens

    KAUST Repository

    Bin Bandar, Khaled

    2014-12-01

    Bioelectrochmical systems (BES) are engineered electrochemical devices that harness hidden chemical energy of the wastewater in to the form of electricity or hydrogen. Unique microbial communities enrich in these systems for oxidation of organic matter as well as transfer of resulted electron to anode, known them as “electricigens” communities. Exploring novel electricigenesis microbial communities in the nature and understanding their electromicrobiology is one the important aspect for BES systems scale up. Herein, we report first time the electricigenesis property of an anaerobic, fresh water sediment, sulfur reducing bacterium Desulfuromona acetexigens. The electrochemical behavior of D. acetexigens biofilms grown on graphite-rod electrodes in batch-fed mode under an applied potential was investigated with traditional electroanalytical tools, and correlate the electron transfer from biofilms to electrode with a model electricigen Geobacter sulfurreducens electrochemical behavior. Research findings suggest that D. acetexigens has the ability to use electrode as electron acceptor in BES systems through establishing the direct contact with anode by expressing the membrane bound redox proteins, but not due to the secretion of soluble redox mediators. Preliminary results revealed that D. acetexigens express three distinct redox proteins in their membranes for turnover of the electrons from biofilm to electrode, and the 4 whole electricigenesis process observed to be unique in the D. acetexigens compared to that of well-studied model organism G. sulfurreducens.

  8. Influence of Environmental Parameters on Trichoderma Strains with Biocontrol Potential

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Antal

    2003-01-01

    Full Text Available Several mycoparasitic strains belonging to the filamentous fungal genus Trichoderma are promising candidates for the biological control of plant pathogenic fungi. When planning the application of antagonistic Trichoderma strains for the purposes of biological control, it is very important to consider the environmental parameters affecting the biocontrol agents in the soil. A series of abiotic and biotic environmental parameters has an influence on the biocontrol efficacy of Trichoderma. Some important parameters to be considered are the effects of temperature, water potential and pH, and the presence of pesticides, metal ions and antagonistic bacteria in the soil. Most of the Trichoderma strains are mesophilic. Low temperatures in winter may cause a problem during biological control by influencing the activity of the biocontrol agents. Another problem emerging during the application of Trichoderma strains as biocontrol agents is that they cannot tolerate dry conditions, however, we may need biocontrol agents against plant pathogenic fungi which are able to grow and cause disease even in dry soils. The pH characteristics of the soil also belong to the most important environmental parameters affecting the activities of mycoparasitic Trichoderma strains. Within the frames of a complex integrated plant protection strategy, we may have to combine Trichoderma strains with chemical pesticides or metal compounds, therefore it is important to collect information about the effects of pesticides and metal ions on the biocontrol strains. Antagonistic soil bacteria may also have negative effects on the biocontrol abilities of Trichoderma strains, therefore it may be advantageous if a biocontrol strain possesses bacterium- degrading abilities as well. This review will discuss the literature about the influence of temperature, water potential, pH, pesticides, metal ions and antagonistic bacteria on mycoparasitic Trichoderma strains including the results of our

  9. Genetic characterization of type A enterotoxigenic Clostridium perfringens strains.

    Directory of Open Access Journals (Sweden)

    Agi Deguchi

    2009-05-01

    Full Text Available Clostridium perfringens type A, is both a ubiquitous environmental bacterium and a major cause of human gastrointestinal disease, which usually involves strains producing C. perfringens enterotoxin (CPE. The gene (cpe encoding this toxin can be carried on the chromosome or a large plasmid. Interestingly, strains carrying cpe on the chromosome and strains carrying cpe on a plasmid often exhibit different biological characteristics, such as resistance properties against heat. In this study, we investigated the genetic properties of C. perfringens by PCR-surveying 21 housekeeping genes and genes on representative plasmids and then confirmed those results by Southern blot assay (SB of five genes. Furthermore, sequencing analysis of eight housekeeping genes and multilocus sequence typing (MLST analysis were also performed. Fifty-eight C. perfringens strains were examined, including isolates from: food poisoning cases, human gastrointestinal disease cases, foods in Japan or the USA, or feces of healthy humans. In the PCR survey, eight of eleven housekeeping genes amplified positive reactions in all strains tested. However, by PCR survey and SB assay, one representative virulence gene, pfoA, was not detected in any strains carrying cpe on the chromosome. Genes involved in conjugative transfer of the cpe plasmid were also absent from almost all chromosomal cpe strains. MLST showed that, regardless of their geographic origin, date of isolation, or isolation source, chromosomal cpe isolates, i assemble into one definitive cluster ii lack pfoA and iii lack a plasmid related to the cpe plasmid. Similarly, independent of their origin, strains carrying a cpe plasmid also appear to be related, but are more variable than chromosomal cpe strains, possibly because of the instability of cpe-borne plasmid(s and/or the conjugative transfer of cpe-plasmid(s into unrelated C. perfringens strains.

  10. Cecembia lonarensis gen. nov., sp. nov., a haloalkalitolerant bacterium of the family Cyclobacteriaceae, isolated from a haloalkaline lake and emended descriptions of the genera Indibacter, Nitritalea and Belliella.

    Science.gov (United States)

    Anil Kumar, P; Srinivas, T N R; Madhu, S; Sravan, R; Singh, Shashi; Naqvi, S W A; Mayilraj, S; Shivaji, S

    2012-09-01

    A novel Gram-staining-negative, rod-shaped, non-motile bacterium, designated strain LW9(T), was isolated from a water sample collected from Lonar Lake of Buldhana district, Maharashtra, India. Colonies and broth cultures were reddish orange due to the presence of carotenoid pigments. Strain LW9(T) was positive for catalase, ornithine decarboxylase and lysine decarboxylase activities and negative for gelatinase, oxidase, urease and lipase activities. The predominant fatty acids were iso-C(15 : 0) (31.3 %), iso-C(16 : 0) (9.3 %), anteiso-C(15 : 0) (7.3 %), iso-C(16 : 1) H (6.1 %), summed feature 3 (comprising C(16 : 1)ω7c/C(16 : 1)ω6c; 5.9 %), iso-C(17 : 1)ω9c (5.4 %) and iso-C(17 : 0) 3-OH (5.0 %). Strain LW9(T) contained MK-7 as the major respiratory quinone. The polar lipids consisted of phosphatidylethanolamine, two unidentified aminolipids and seven unidentified lipids. The DNA G+C content of strain LW9(T) was 40.5 mol%. 16S rRNA gene sequence analysis indicated that the type strains of Indibacter alkaliphilus and Aquiflexum balticum, two members of the family Cyclobacteriaceae (phylum 'Bacteroidetes') were the most closely related strains with sequence similarities of 93.0 and 94.0 %, respectively. Other members of the family Cyclobacteriaceae showed sequence similarities <93.0 %. Based on these phenotypic characteristics and on phylogenetic inference, strain LW9(T) is proposed as the representative of novel species in a new genus, Cecembia lonarensis gen. nov., sp. nov. The type strain of the type species, Cecembia lonarensis, is LW9(T) (= CCUG 58316(T) = KCTC 22772(T)). Emended descriptions of the genera Indibacter, Nitritalea and Belliella are also proposed.

  11. Genome Sequence of Rhodoferax antarcticus ANT.BRT; A Psychrophilic Purple Nonsulfur Bacterium from an Antarctic Microbial Mat

    Directory of Open Access Journals (Sweden)

    Jennifer M. Baker

    2017-02-01

    Full Text Available Rhodoferax antarcticus is an Antarctic purple nonsulfur bacterium and the only characterized anoxygenic phototroph that grows best below 20 °C. We present here a high-quality draft genome of Rfx. antarcticus strain ANT.BRT, isolated from an Antarctic microbial mat. The circular chromosome (3.8 Mbp of Rfx. antarcticus has a 59.1% guanine + cytosine (GC content and contains 4036 open reading frames. In addition, the bacterium contains a sizable plasmid (198.6 kbp, 48.4% GC with 226 open reading frames that comprises about 5% of the total genetic content. Surprisingly, genes encoding light-harvesting complexes 1 and 3 (LH1 and LH3, but not light-harvesting complex 2 (LH2, were identified in the photosynthesis gene cluster of the Rfx. antarcticus genome, a feature that is unique among purple phototrophs. Consistent with physiological studies that showed a strong capacity for nitrogen fixation in Rfx. antarcticus, a nitrogen fixation gene cluster encoding a molybdenum-type nitrogenase was present, but no alternative nitrogenases were identified despite the cold-active phenotype of this phototroph. Genes encoding two forms of ribulose 1,5-bisphosphate carboxylase/oxygenase were present in the Rfx. antarcticus genome, a feature that likely provides autotrophic flexibility under varying environmental conditions. Lastly, genes for assembly of both type IV pili and flagella are present, with the latter showing an unusual degree of clustering. This report represents the first genomic analysis of a psychrophilic anoxygenic phototroph and provides a glimpse of the genetic basis for maintaining a phototrophic lifestyle in a permanently cold, yet highly variable, environment.

  12. Lipid transfer proteins and protease inhibitors as key factors in the priming of barley responses to Fusarium head blight disease by a biocontrol strain of Pseudomonas fluorescens.

    Science.gov (United States)

    Petti, Carloalberto; Khan, Mojibur; Doohan, Fiona

    2010-11-01

    Strains of non-pathogenic pseudomonad bacteria, can elicit host defence responses against pathogenic microorganisms. Pseudomonas fluorescens strain MKB158 can protect cereals from pathogenesis by Fusarium fungi, including Fusarium head blight which is an economically important disease due to its association with both yield loss and mycotoxin contamination of grain. Using the 22 K barley Affymetrix chip, trancriptome studies were undertaken to determine the local effect of P. fluorescens strain MKB158 on the transcriptome of barley head tissue, and to discriminate transcripts primed by the bacterium to respond to challenge by Fusarium culmorum, a causal agent of the economically important Fusarium head blight disease of cereals. The bacterium significantly affected the accumulation of 1203 transcripts and primed 74 to positively, and 14 to negatively, respond to the pathogen (P = 0.05). This is the first study to give insights into bacterium priming in the Triticeae tribe of grasses and associated transcripts were classified into 13 functional classes, associated with diverse functions, including detoxification, cell wall biosynthesis and the amplification of host defence responses. In silico analysis of Arabidopsis homologs of bacterium-primed barley genes indicated that, as is the case in dicots, jasmonic acid plays a role in pseudomonad priming of host responses. Additionally, the transcriptome studies described herein also reveal new insights into bacterium-mediated priming of host defences against necrotrophs, including the positive effects on grain filling, lignin deposition, oxidative stress responses, and the inhibition of protease inhibitors and proteins that play a key role in programmed cell death.

  13. Conserved Responses in a War of Small Molecules between a Plant-Pathogenic Bacterium and Fungi.

    Science.gov (United States)

    Spraker, Joseph E; Wiemann, Philipp; Baccile, Joshua A; Venkatesh, Nandhitha; Schumacher, Julia; Schroeder, Frank C; Sanchez, Laura M; Keller, Nancy P

    2018-05-22

    Small-molecule signaling is one major mode of communication within the polymicrobial consortium of soil and rhizosphere. While microbial secondary metabolite (SM) production and responses of individual species have been studied extensively, little is known about potentially conserved roles of SM signals in multilayered symbiotic or antagonistic relationships. Here, we characterize the SM-mediated interaction between the plant-pathogenic bacterium Ralstonia solanacearum and the two plant-pathogenic fungi Fusarium fujikuroi and Botrytis cinerea We show that cellular differentiation and SM biosynthesis in F. fujikuroi are induced by the bacterially produced lipopeptide ralsolamycin (synonym ralstonin A). In particular, fungal bikaverin production is induced and preferentially accumulates in fungal survival spores (chlamydospores) only when exposed to supernatants of ralsolamycin-producing strains of R. solanacearum Although inactivation of bikaverin biosynthesis moderately increases chlamydospore invasion by R. solanacearum , we show that other metabolites such as beauvericin are also induced by ralsolamycin and contribute to suppression of R. solanacearum growth in vitro Based on our findings that bikaverin antagonizes R. solanacearum and that ralsolamycin induces bikaverin biosynthesis in F. fujikuroi , we asked whether other bikaverin-producing fungi show similar responses to ralsolamycin. Examining a strain of B. cinerea that horizontally acquired the bikaverin gene cluster from Fusarium , we found that ralsolamycin induced bikaverin biosynthesis in this fungus. Our results suggest that conservation of microbial SM responses across distantly related fungi may arise from horizontal transfer of protective gene clusters that are activated by conserved regulatory cues, e.g., a bacterial lipopeptide, providing consistent fitness advantages in dynamic polymicrobial networks. IMPORTANCE Bacteria and fungi are ubiquitous neighbors in many environments, including

  14. [Identification, colonization and disease prevention capacity of an antagonistic bacterium against Ralstonia Solanacearum].

    Science.gov (United States)

    Li, Zhikun; Zhu, Honghui

    2010-03-01

    To isolate a bacterial strain YPP-9, dominantly colonizing the rhizosphere of tomato using root exudate medium. In this study, we investigated the antagnism and disease-controling effect against Ralstonia solanacearum, evaluated the ability to colonize the rhizosphere of tomato, and further analyzed the phylogeny of YPP-9. To evaluate the antagnism against R. solanacearum and the biocontrol on tomato bacterial wilt by YPP-9 respectively employing plate culture method and pot experiment in green house. We analyzed the rhizosphere colonization of YPP-9 by PCR-denaturing gradient gel electrophoresis, and also identified the taxonomic position of YPP-9 using morphological and chemotaxonomic characteristics together with 16S rRNA gene phylogenetic analysis. YPP-9 suppressed the growth of R. solanacearum (strains SSF-4) in vitro with the inhibition zone of 5 mm. The disease-control efficiency against tomato bacterial wilt in pot was 63.4%. YPP-9 also colonized the rhizosphere of tomato well. The colonies were cream in colour after 24 h culture. Cells were gram-positive, rods (1.8 -4.1 microm x 0.9 - 1.1 microm) and formed endospores. Endospores were mainly ellipsoidal to cylindrical and lied in subterminal, and occasionally paracentral, positions in no swollen sporangia. No crystal protein. The pH range for YPP-9 growth was 5.5 - 8.5 with the optimum at pH 6.0, and the temperature for YPP-9 growth was 20 to 45 degrees with the optimum at 30 degrees. The results of BIOLOG GP2 showed that YPP-9 was Bacillus. Phylogenetic analysis of the 16S rRNA gene sequence revealed that YPP-9 was the most closely related to Bacillus fumarioli, with the sequence similarity of 97.7%. The sequence number was FJ231500. The DNA G + C content was 41.9%. The major menaquinone was MK-7. The dominant fatty acids in cell wall were C14 : 0 iso, C15 : 0 iso, C16 : 0 iso and C16 : 1omega 7c alcohol, with the contents of 28.27%, 19.59%, 12.93% and 10.88%, respectively. Bacterium YPP-9 strongly

  15. Studies on amylase activity of an amylolytic bacterium isolated from ...

    African Journals Online (AJOL)

    Diverse microscopic, macroscopic and biochemical analysis of a starch degrading amylolytic bacterial strain isolated from the soil sample of Rajakkamangalam estuary, Kanyakumari district, Tamil Nadu, India, revealed its identity to the genus Bacillus. Maximum growth was observed at 12 h when the bacteria was cultured ...

  16. Antagonistic bioactivity of an endophytic bacterium H-6

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... Test phytopathogens and media. Six strains of ... subsequently rinsed three times in sterile demineralized water. Small pieces of ... 4°C. The supernatant was removed to a new centrifuge tube and ... PCR products were cleaned using the PCR Cleanup Kit (Tiangen, ..... New York: John Wiley and Sons, pp.

  17. Characterization of a Neochlamydia-like Bacterium Associated with Epitheliocystis in Cultured Artic Char Salvelinus alpinus

    Science.gov (United States)

    Infections of branchial epithelium by intracellular gram-negative bacteria, termed epitheliocystis, have limited culture of Arctic char (Salvelinus alpinus). To characterize a bacterium associated with epitheliocystis in cultured char, gills were sampled for histopathologic examination, conventional...

  18. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium

    Czech Academy of Sciences Publication Activity Database

    Moon, C. D.; Pacheco, D. M.; Kelly, W. J.; Leahy, S. C.; Li, D.; Kopečný, Jan; Attwood, G. T.

    2008-01-01

    Roč. 58, - (2008), s. 2041-2045 ISSN 1466-5026 Institutional research plan: CEZ:AV0Z50450515 Keywords : Butyrivibrio * ruminal bacterium Subject RIV: EE - Microbiology, Virology Impact factor: 2.222, year: 2008

  19. Septicemia caused by the gram-negative bacterium CDC IV c-2 in an immunocompromised human.

    OpenAIRE

    Dan, M; Berger, S A; Aderka, D; Levo, Y

    1986-01-01

    A 37-year-old man with plasma cell leukemia developed nonfatal septicemia caused by the gram-negative bacterium CDC IV c-2. Recovery followed appropriate treatment with antibiotics. The biochemical features of this organism are reviewed.

  20. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences

    NARCIS (Netherlands)

    Vanfossen, A.L.; Verhaart, M.R.A.; Kengen, S.W.M.; Kelly, R.M.

    2009-01-01

    Co-utilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H2-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on

  1. Evolutionary history of the plant pathogenic bacterium Xanthomonas axonopodis.

    Directory of Open Access Journals (Sweden)

    Nadia Mhedbi-Hajri

    Full Text Available Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes--geographical and ecological speciation--that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25,000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar.

  2. Strain-Modulated Epitaxy

    National Research Council Canada - National Science Library

    Brown, April

    1999-01-01

    Strain-Modulated Epitaxy (SME) is a novel approach, invented at Georgia Tech, to utilize subsurface stressors to control strain and therefore material properties and growth kinetics in the material above the stressors...

  3. Hamstring strain - aftercare

    Science.gov (United States)

    Pulled hamstring muscle; Sprain - hamstring ... There are 3 levels of hamstring strains: Grade 1 -- mild muscle strain or pull Grade 2 -- partial muscle tear Grade 3 -- complete muscle tear Recovery time depends ...

  4. Canthaxanthin production with modified Mucor circinelloides strains.

    Science.gov (United States)

    Papp, Tamás; Csernetics, Arpád; Nagy, Gábor; Bencsik, Ottó; Iturriaga, Enrique A; Eslava, Arturo P; Vágvölgyi, Csaba

    2013-06-01

    Canthaxanthin is a natural diketo derivative of β-carotene primarily used by the food and feed industries. Mucor circinelloides is a β-carotene-accumulating zygomycete fungus and one of the model organisms to study the carotenoid biosynthesis in fungi. In this study, the β-carotene ketolase gene (crtW) of the marine bacterium Paracoccus sp. N81106 fused with fungal promoter and terminator regions was integrated into the M. circinelloides genome to construct stable canthaxanthin-producing strains. Different transformation methods including polyethylene glycol-mediated transformation with linear DNA fragments, restriction enzyme-mediated integration and Agrobacterium tumefaciens-mediated transformation were tested to integrate the crtW gene into the Mucor genome. Mitotic stability, site of integration and copy number of the transferred genes were analysed in the transformants, and several stable strains containing the crtW gene in high copy number were isolated. Carotenoid composition of selected transformants and effect of culturing conditions, such as temperature, carbon sources and application of certain additives in the culturing media, on their carotenoid content were analysed. Canthaxanthin-producing transformants were able to survive at higher growth temperature than the untransformed strain, maybe due to the effect of canthaxanthin on the membrane fluidity and integrity. With the application of glucose, trehalose, dihydroxyacetone and L-aspartic acid as sole carbon sources in minimal medium, the crtW-expressing M. circinelloides strain, MS12+pCA8lf/1, produced more than 200 μg/g (dry mass) of canthaxanthin.

  5. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte.

    Directory of Open Access Journals (Sweden)

    Michele T Hoffman

    Full Text Available Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA, often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales, but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales. Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions.

  6. Degradation of pyrene in soil and in vitro by a Bacillus lentus strain ...

    African Journals Online (AJOL)

    A bacterium isolated from an asphalt plant soil and identified as a strain of Bacillus lentus was tested in vitro and in sterilized and native soils for ability to survive and sustain pyrene degradation over a period of 63 days. The exponential growth rate in vitro was 0.049 d-1 and the doubling time 2.65 d. In the control flask ...

  7. Whole-Genome Sequence of Chlamydia abortus Strain GN6 Isolated from Aborted Yak Fetus

    OpenAIRE

    Li, Zhaocai; Cai, Jinshan; Cao, Xiaoan; Lou, Zhongzi; Chao, Yilin; Kan, Wei; Zhou, Jizhang

    2017-01-01

    ABSTRACT The obligate intracellular Gram-negative bacterium Chlamydia abortus is one of the causative agents of abortion and fetal loss in sheep, goats, and cattle in many countries. It also affects the reproductivity of yaks (Bos grunniens). This study reports the whole-genome sequence of Chlamydia abortus strain GN6, which was isolated from aborted yak fetus in Qinghai-Tibetan Plateau, China.

  8. Whole-Genome Sequence of Chlamydia abortus Strain GN6 Isolated from Aborted Yak Fetus.

    Science.gov (United States)

    Li, Zhaocai; Cai, Jinshan; Cao, Xiaoan; Lou, Zhongzi; Chao, Yilin; Kan, Wei; Zhou, Jizhang

    2017-08-31

    The obligate intracellular Gram-negative bacterium Chlamydia abortus is one of the causative agents of abortion and fetal loss in sheep, goats, and cattle in many countries. It also affects the reproductivity of yaks ( Bos grunniens ). This study reports the whole-genome sequence of Chlamydia abortus strain GN6, which was isolated from aborted yak fetus in Qinghai-Tibetan Plateau, China. Copyright © 2017 Li et al.

  9. Descriptions of Roseiarcus fermentans gen. nov., sp. nov., a bacteriochlorophyll a-containing fermentative bacterium related phylogenetically to alphaproteobacterial methanotrophs, and of the family Roseiarcaceae fam. nov.

    Science.gov (United States)

    Kulichevskaya, Irina S; Danilova, Olga V; Tereshina, Vera M; Kevbrin, Vadim V; Dedysh, Svetlana N

    2014-08-01

    A light-pink-pigmented, microaerophilic bacterium was obtained from a methanotrophic consortium enriched from acidic Sphagnum peat and designated strain Pf56(T). Cells of this bacterium were Gram-negative, non-motile, thick curved rods that contained a vesicular intracytoplasmic membrane system characteristic of some purple non-sulfur alphaproteobacteria. The absorption spectrum of acetone/methanol extracts of cells grown in the light showed maxima at 363, 475, 505, 601 and 770 nm; the peaks at 363 and 770 nm are characteristic of bacteriochlorophyll a. However, in contrast to purple non-sulfur bacteria, strain Pf56(T) was unable to grow phototrophically under anoxic conditions in the light. Best growth occurred on some sugars and organic acids under micro-oxic conditions by means of fermentation. The fermentation products were propionate, acetate and hydrogen. Slow chemo-organotrophic growth was also observed under fully oxic conditions. Light stimulated growth. C1 substrates were not utilized. Strain Pf56(T) grew at pH 4.0-7.0 (optimum pH 5.5-6.5) and at 15-30 °C (optimum 22-28 °C). The major cellular fatty acids were 19 : 0 cyclo ω8c and 18 : 1ω7c; quinones were represented by ubiquinone Q-10. The G+C content of the DNA was 70.0 mol%. Strain Pf56 displays 93.6-94.7 and 92.7-93.7% 16S rRNA gene sequence similarity to members of the families Methylocystaceae and Beijerinckiaceae, respectively, and belongs to a large cluster of environmental sequences retrieved from various wetlands and forest soils in cultivation-independent studies. Phenotypic, genotypic and chemotaxonomic characteristics of strain Pf56(T) suggest that it represents a novel genus and species of bacteriochlorophyll a-containing fermentative bacteria, for which the name Roseiarcus fermentans gen. nov., sp. nov. is proposed. Strain Pf56(T) ( = DSM 24875(T) = VKM B-2876(T)) is the type strain of Roseiarcus fermentans, and is also the first characterized member of a novel family

  10. Analysis of the genetic variation in Mycobacterium tuberculosis strains by multiple genome alignments

    Directory of Open Access Journals (Sweden)

    Morales Juan

    2008-11-01

    Full Text Available Abstract Background The recent determination of the complete nucleotide sequence of several Mycobacterium tuberculosis (MTB genomes allows the use of comparative genomics as a tool for dissecting the nature and consequence of genetic variability within this species. The multiple alignment of the genomes of clinical strains (CDC1551, F11, Haarlem and C, along with the genomes of laboratory strains (H37Rv and H37Ra, provides new insights on the mechanisms of adaptation of this bacterium to the human host. Findings The genetic variation found in six M. tuberculosis strains does not involve significant genomic rearrangements. Most of the variation results from deletion and transposition events preferentially associated with insertion sequences and genes of the PE/PPE family but not with genes implicated in virulence. Using a Perl-based software islandsanalyser, which creates a representation of the genetic variation in the genome, we identified differences in the patterns of distribution and frequency of the polymorphisms across the genome. The identification of genes displaying strain-specific polymorphisms and the extrapolation of the number of strain-specific polymorphisms to an unlimited number of genomes indicates that the different strains contain a limited number of unique polymorphisms. Conclusion The comparison of multiple genomes demonstrates that the M. tuberculosis genome is currently undergoing an active process of gene decay, analogous to the adaptation process of obligate bacterial symbionts. This observation opens new perspectives into the evolution and the understanding of the pathogenesis of this bacterium.

  11. Primary Isolation Strain Determines Both Phage Type and Receptors Recognised by Campylobacter jejuni Bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine C. Holst; Gencay, Yilmaz Emre; Birk, Tina

    2015-01-01

    were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb), host range and morphological appearance correlated with the isolation strain. Thus, according......In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated...... therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages...

  12. Draft genome sequence of Bradyrhizobium sp. strain BR 3262, an effective microsymbiont recommended for cowpea inoculation in Brazil.

    Science.gov (United States)

    Simões-Araújo, Jean Luiz; Leite, Jakson; Marie Rouws, Luc Felicianus; Passos, Samuel Ribeiro; Xavier, Gustavo Ribeiro; Rumjanek, Norma Gouvêa; Zilli, Jerri Édson

    The strain BR 3262 was isolated from nodule of cowpea (Vigna unguiculata L. Walp) growing in soil of the Atlantic Forest area in Brazil and it is reported as an efficient nitrogen fixing bacterium associated to cowpea. Firstly, this strain was assigned as Bradyrhizobium elkanii, however, recently a more detailed genetic and molecular characterization has indicated it could be a Bradyrhizobium pachyrhizi species. We report here the draft genome sequence of B. pachyrhizi strain BR 3262, an elite bacterium used as inoculant for cowpea. The whole genome with 116 scaffolds, 8,965,178bp and 63.8% of C+G content for BR 3262 was obtained using Illumina MiSeq sequencing technology. Annotation was added by the RAST prokaryotic genome annotation service and shown 8369 coding sequences, 52 RNAs genes, classified in 504 subsystems. Published by Elsevier Editora Ltda.

  13. Draft genome sequence of Bradyrhizobium sp. strain BR 3262, an effective microsymbiont recommended for cowpea inoculation in Brazil

    Directory of Open Access Journals (Sweden)

    Jean Luiz Simões-Araújo

    Full Text Available Abstract The strain BR 3262 was isolated from nodule of cowpea (Vigna unguiculata L. Walp growing in soil of the Atlantic Forest area in Brazil and it is reported as an efficient nitrogen fixing bacterium associated to cowpea. Firstly, this strain was assigned as Bradyrhizobium elkanii, however, recently a more detailed genetic and molecular characterization has indicated it could be a Bradyrhizobium pachyrhizi species. We report here the draft genome sequence of B. pachyrhizi strain BR 3262, an elite bacterium used as inoculant for cowpea. The whole genome with 116 scaffolds, 8,965,178 bp and 63.8% of C+G content for BR 3262 was obtained using Illumina MiSeq sequencing technology. Annotation was added by the RAST prokaryotic genome annotation service and shown 8369 coding sequences, 52 RNAs genes, classified in 504 subsystems.

  14. Luciferase inactivation in the luminous marine bacterium Vibrio harveyi.

    Science.gov (United States)

    Reeve, C A; Baldwin, T O

    1981-06-01

    Luciferase was rapidly inactivated in stationary-phase cultures of the wild type of the luminous marine bacterium Vibrio harveyi, but was stable in stationary-phase cultures of mutants of V. harveyi that are nonluminous without exogenous aldehyde, termed the aldehyde-deficient mutants. The inactivation in the wild type was halted by cell lysis and was slowed or stopped by O2 deprivation or by addition of KCN and NaF or of chloramphenicol. If KCN and NaF or chloramphenicol were added to a culture before the onset of luciferase inactivation, then luciferase inactivation did not occur. However, if these inhibitors were added after the onset of luciferase inactivation, then luciferase inactivation continued for about 2 to 3 h before the inactivation process stopped. The onset of luciferase inactivation in early stationary-phase cultures of wild-type cell coincided with a slight drop in the intracellular adenosine 5'-triphosphate (ATP) level from a relatively constant log-phase value of 20 pmol of ATP per microgram of soluble cell protein. Addition of KCN and NaF to a culture shortly after this drop in ATP caused a rapid decrease in the ATP level to about 4 pmol of ATP per microgram whereas chloramphenicol added at this same time caused a transient increase in ATP level to about 25 pmol/microgram. The aldehyde-deficient mutant (M17) showed a relatively constant log-phase ATP level identical with that of the wild-type cells, but rather than decreasing in early stationary phase, the ATP level increased to a value twice that in log-phase cells. We suggest that the inactivation of luciferase is dependent on the synthesis of some factor which is produced during stationary phase and is itself unstable, and whose synthesis is blocked by chloramphenicol or cyanide plus fluoride.

  15. Bioaugmentation with endophytic bacterium E6S homologous to Achromobacter piechaudii enhances metal rhizoaccumulation in host Sedum plumbizincicola

    Directory of Open Access Journals (Sweden)

    Ying eMa

    2016-02-01

    Full Text Available Application of hyperaccumulator–endophyte symbiotic systems is a potential approach to improve phytoremediation efficiency, since some beneficial endophytic bacteria are able to detoxify heavy metals, alter metal solubility in soil and facilitate plant growth. The objective of this study was to isolate multi-metal resistant and plant beneficial endophytic bacteria and to evaluate their role in enhancing plant growth and metal accumulation/translocation. The metal resistant endophytic bacterial strain E6S was isolated from stems of the Zn/Cd hyperaccumulator plant Sedum plumbizincicola growing in metalliferous mine soils using Dworkin and Foster salts minimal agar medium with 1-aminocyclopropane-1-carboxylate (ACC as the sole nitrogen source, and identified as homologous to Achromobacter piechaudii based on morphological and biochemical characteristics, partial 16S rDNA sequence and phylogenetic analysis. Strain E6S showed high level of resistance to various metals (Cd, Zn and Pb. Besides utilizing ACC, strain E6S exhibited plant beneficial traits, such as solubilization of phosphate and production of indole-3-acetic acid. Inoculation with E6S significantly increased the bioavailability of Cd, Zn and Pb in soil. In addition, bacterial cells bound considerable amounts of metal ions in the following order: Zn ˃ Cd ˃ Pb. Inoculation of E6S significantly stimulated plant biomass, uptake and bioaccumulation of Cd, Zn and Pb. However, E6S greatly reduced the root to shoot translocation of Cd and Zn, indicating that bacterial inoculation assisted the host plant to uptake and store heavy metals in its root system. Inoculation with the endophytic bacterium E6S homologous to A. piechaudii can improve phytostabilization of metalliferous soils due to its effective ability to enhance in situ metal rhizoaccumulation in plants.

  16. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site.

    Science.gov (United States)

    Zhang, Kundi; Li, Fuli

    2011-05-01

    A novel bacterium, Cr-10, was isolated from a chromium-contaminated site and capable of removing toxic chromium species from solution by reducing hexavalent chromium to an insoluble precipitate. Sequence analysis of 16S rRNA gene of strain Cr-10 showed that it was most closely related to Serratia rubidaea JCM 1240(T) (97.68%). Physiological and chemotaxonomic data also supported that strain Cr-10 was identified as Serratia sp., a genus which was never specially reported chromate-resistant before. Serratia sp., Cr-10 was tolerant to a concentration of 1,500 mg Cr(VI) L(-1), which was the highest level reported until now. The optimum pH and temperature for reduction of Cr(VI) by Serratia sp. Cr-10 were found to be 7.0 and 37 °C, respectively. The Cr(VI) reduction was significantly influenced by additional carbon sources, and among them fructose and lactose offered maximum reduction, with a rate of 0.28 and 0.25 mg Cr(VI) L(-1) h(-1), respectively. The cell-free extracts and filtrate of the culture were able to reduce Cr(VI) while concentration of total chromium remained stable in the process, indicating that the enzyme-catalyzed mechanism was applied in Cr(VI) reduction by the isolate. Additionally, it was found that there was hardly any chromium on the cell surface of the strain, further supporting that reduction, rather than bioadsorption, plays a major role in the Cr(VI) removal.

  17. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kundi; Li, Fuli [Chinese Academy of Sciences, Qingdao (China). Qingdao Inst. of Bioenergy and Bioprocess Technology

    2011-05-15

    A novel bacterium, Cr-10, was isolated from a chromium-contaminated site and capable of removing toxic chromium species from solution by reducing hexavalent chromium to an insoluble precipitate. Sequence analysis of 16S rRNA gene of strain Cr-10 showed that it was most closely related to Serratia rubidaea JCM 1240{sup T} (97.68%). Physiological and chemotaxonomic data also supported that strain Cr-10 was identified as Serratia sp., a genus which was never specially reported chromate-resistant before. Serratia sp., Cr-10 was tolerant to a concentration of 1,500 mg Cr(VI) L{sup -1}, which was the highest level reported until now. The optimum pH and temperature for reduction of Cr(VI) by Serratia sp. Cr-10 were found to be 7.0 and 37 C, respectively. The Cr(VI) reduction was significantly influenced by additional carbon sources, and among them fructose and lactose offered maximum reduction, with a rate of 0.28 and 0.25 mg Cr(VI) L{sup -1} h{sup -1}, respectively. The cell-free extracts and filtrate of the culture were able to reduce Cr(VI) while concentration of total chromium remained stable in the process, indicating that the enzyme-catalyzed mechanism was applied in Cr(VI) reduction by the isolate. Additionally, it was found that there was hardly any chromium on the cell surface of the strain, further supporting that reduction, rather than bioadsorption, plays a major role in the Cr(VI) removal. (orig.)

  18. Tailoring nutritional and process variables for hyperproduction of catalase from a novel isolated bacterium Geobacillus sp. BSS-7.

    Science.gov (United States)

    Kauldhar, Baljinder Singh; Sooch, Balwinder Singh

    2016-01-14

    Catalase (EC 1.11.1.6) is one of the important industrial enzyme employed in diagnostic and analytical methods in the form of biomarkers and biosensors in addition to their enormous applications in textile, paper, food and pharmaceutical sectors. The present study demonstrates the utility of a newly isolated and adapted strain of genus Geobacillus possessing unique combination of several industrially important extremophilic properties for the hyper production of catalase. The bacterium can grow over a wide range of pH (3-12) and temperature (10-90 °C) with extraordinary capability to produce catalase. A novel extremophilic strain belonging to genus Geobacillus was exploited for the production of catalase by tailoring its nutritional requirements and process variables. One variable at a time traditional approach followed by computational designing was applied to customize the fermentation process. A simple fermentation media containing only three components namely sucrose (0.55 %, w/v), yeast extract (1.0 %, w/v) and BaCl2 (0.08 %, w/v) was designed for the hyperproduction of catalase. A controlled and optimum air supply caused a tremendous increase in the enzyme production on moving the bioprocess from the flask to bioreactor level. The present paper reports high quantum of catalase production (105,000 IU/mg of cells) in a short fermentation time of 12 h. To the best of our knowledge, there is no report in the literature that matches the performance of the developed protocol for the catalase production. This is the first serious study covering intracellular catalase production from thermophilic genus Geobacillus. An increase in intracellular catalase production by 214.72 % was achieved in the optimized medium when transferred from the shake flask to the fermenter level. The extraordinary high production of catalase from Geobacillus sp. BSS-7 makes the isolated strain a prospective candidate for bulk catalase production on an industrial scale.

  19. Sepsis and Hemocyte Loss in Honey Bees (Apis mellifera) Infected with Serratia marcescens Strain Sicaria.

    Science.gov (United States)

    Burritt, Nancy L; Foss, Nicole J; Neeno-Eckwall, Eric C; Church, James O; Hilger, Anna M; Hildebrand, Jacob A; Warshauer, David M; Perna, Nicole T; Burritt, James B

    2016-01-01

    Global loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters. In some hives, greater than 90% of the dying bees detached from the winter cluster were found to contain this bacterium in their hemolymph. Throughout the year, the same organism was rarely found in bees engaged in normal hive activities, but was detected in about half of Varroa destructor mites obtained from colonies that housed the septic bees. Flow cytometry of hemolymph from septic bees showed a significant reduction of plasmatocytes and other types of hemocytes. Interpretation of the16S rRNA sequence of the bacterium indicated that it belongs to the Serratia genus of Gram-negative Gammaproteobacteria, which has not previously been implicated as a pathogen of adult honey bees. Complete genome sequence analysis of the bacterium supported its classification as a novel strain of Serratia marcescens, which was designated as S. marcescens strain sicaria (Ss1). When compared with other strains of S. marcescens, Ss1 demonstrated several phenotypic and genetic differences, including 65 genes not previously found in other Serratia genomes. Some of the unique genes we identified in Ss1 were related to those from bacterial insect pathogens and commensals. Recovery of this organism extends a complex pathosphere of agents which may contribute to failure of honey bee colonies.

  20. Sepsis and Hemocyte Loss in Honey Bees (Apis mellifera) Infected with Serratia marcescens Strain Sicaria

    Science.gov (United States)

    Burritt, Nancy L.; Foss, Nicole J.; Neeno-Eckwall, Eric C.; Church, James O.; Hildebrand, Jacob A.; Warshauer, David M.; Perna, Nicole T.; Burritt, James B.

    2016-01-01

    Global loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters. In some hives, greater than 90% of the dying bees detached from the winter cluster were found to contain this bacterium in their hemolymph. Throughout the year, the same organism was rarely found in bees engaged in normal hive activities, but was detected in about half of Varroa destructor mites obtained from colonies that housed the septic bees. Flow cytometry of hemolymph from septic bees showed a significant reduction of plasmatocytes and other types of hemocytes. Interpretation of the16S rRNA sequence of the bacterium indicated that it belongs to the Serratia genus of Gram-negative Gammaproteobacteria, which has not previously been implicated as a pathogen of adult honey bees. Complete genome sequence analysis of the bacterium supported its classification as a novel strain of Serratia marcescens, which was designated as S. marcescens strain sicaria (Ss1). When compared with other strains of S. marcescens, Ss1 demonstrated several phenotypic and genetic differences, including 65 genes not previously found in other Serratia genomes. Some of the unique genes we identified in Ss1 were related to those from bacterial insect pathogens and commensals. Recovery of this organism extends a complex pathosphere of agents which may contribute to failure of honey bee colonies. PMID:28002470

  1. Desulfomusa hansenii gen. nov., sp. nov., a novel marine propionate-degrading, sulfate-reducing bacterium isolated from Zostera marina roots.

    Science.gov (United States)

    Finster, K; Thomsen, T R; Ramsing, N B

    2001-11-01

    The physiology and phylogeny of a novel sulfate-reducing bacterium, isolated from surface-sterilized roots of the marine macrophyte Zostera marina, are presented. The strain, designated P1T, was enriched and isolated in defined oxygen-free, bicarbonate-buffered, iron-reduced seawater medium with propionate as sole carbon source and electron donor and sulfate as electron acceptor. Strain P1T had a rod-shaped, slightly curved cell morphology and was motile by means of a single polar flagellum. Cells generally aggregated in clumps throughout the growth phase. High CaCl2 (10 mM) and MgCl2 (50 mM) concentrations were required for optimum growth. In addition to propionate, strain P1T utilized fumarate, succinate, pyruvate, ethanol, butanol and alanine. Oxidation of propionate was incomplete and acetate was formed in stoichiometric amounts. Strain P1T thus resembles members of the sulfate-reducing genera Desulfobulbus and Desulforhopalus, which both oxidize propionate incompletely and form acetate in addition to CO2. However, sequence analysis of the small-subunit rDNA and the dissimilatory sulfite reductase gene revealed that strain P1T was unrelated to the incomplete oxidizers Desulfobulbus and Desulforhopalus and that it constitutes a novel lineage affiliated with the genera Desulfococcus, Desulfosarcina, Desulfonema and 'Desulfobotulus'. Members of this branch, with the exception of 'Desulfobotulus sapovorans', oxidize a variety of substrates completely to CO2. Strain P1T (= DSM 12642T = ATCC 700811T) is therefore proposed as Desulfomusa hansenii gen. nov., sp. nov. Strain p1T thus illustrates the difficulty of extrapolating rRNA similarities to physiology and/or ecological function.

  2. Inactivation of the Radiation-Resistant Spoilage Bacterium Micrococcus radiodurans

    Science.gov (United States)

    Duggan, D. E.; Anderson, A. W.; Elliker, P. R.

    1963-01-01

    A simplified technique permitting the pipetting of raw puréed meats for quantitative bacteriological study is described for use in determining survival of these non-sporing bacteria, which are exceptionally resistant to radiation. Survival curves, using gamma radiation as the sterilizing agent, were determined in raw beef with four strains of Micrococcus radiodurans. Survival curves of the R1 strain in other meat substrates showed that survival was significantly greater in raw beef and raw chicken than in raw fish or in cooked beef. Resistance was lowest in the buffer. Cells grown in broth (an artificial growth medium) and resuspended in beef did not differ in resistance from cells that had been grown and irradiated in beef. Survival rate was statistically independent of the initial cell concentration, even though there appeared to be a correlation between lower death rate and lower initial cell concentrations. The initial viable count of this culture of the domesticated R1 strain in beef was reduced by a factor of about 10-5 by 3.0 megarad, and 4.0 megarad reduced the initial count by a factor of more than 10-9. Data suggest that M. radiodurans R1 is more resistant to radiation than spore-forming spoilage bacteria for which inactivation rates have been published. PMID:14063780

  3. A strain gauge

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....

  4. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum.

    Science.gov (United States)

    Svetlitshnyi, V; Rainey, F; Wiegel, J

    1996-10-01

    Three strains of an anaerobic thermophilic organoheterotrophic lipolytic alkalitolerant bacterium, Thermosyntropha lipolytica gen. nov., sp. nov. (type strain JW/VS-265T; DSM 11003), were isolated from alkaline hot springs of Lake Bogoria (Kenya). The cells were nonmotile, non-spore forming, straight or slightly curved rods. At 60 degrees C the pH range for growth determined at 25 degrees C [pH25 degrees C] was 7.15 to 9.5, with an optimum between 8.1 and 8.9 (pH60 degrees C of 7.6 and 8.1). At a pH25 degrees C of 8.5 the temperature range for growth was from 52 to 70 degrees C, with an optimum between 60 and 66 degrees C. The shortest doubling time was around 1 h. In pure culture the bacterium grew in a mineral base medium supplemented with yeast extract, tryptone, Casamino Acids, betaine, and crotonate as carbon sources, producing acetate as a major product and constitutively a lipase. During growth in the presence of olive oil, free long-chain fatty acids were accumulated in the medium but the pure culture could not utilize olive oil, triacylglycerols, short- and long-chain fatty acids, and glycerol for growth. In syntrophic coculture (Methanobacterium strain JW/VS-M29) the lipolytic bacteria grew on triacylglycerols and linear saturated and unsaturated fatty acids with 4 to 18 carbon atoms, but glycerol was not utilized. Fatty acids with even numbers of carbon atoms were degraded to acetate and methane, while from odd-numbered fatty acids 1 mol of propionate per mol of fatty acid was additionally formed. 16S rDNA sequence analysis identified Syntrophospora and Syntrophomonas spp. as closest phylogenetic neighbors.

  5. Complete genome sequence of 'Thermobaculum terrenum' type strain (YNP1).

    Science.gov (United States)

    Kiss, Hajnalka; Cleland, David; Lapidus, Alla; Lucas, Susan; Del Rio, Tijana Glavina; Nolan, Matt; Tice, Hope; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Lu, Megan; Brettin, Thomas; Detter, John C; Göker, Markus; Tindall, Brian J; Beck, Brian; McDermott, Timothy R; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Cheng, Jan-Fang

    2010-10-27

    'Thermobaculum terrenum' Botero et al. 2004 is the sole species within the proposed genus 'Thermobaculum'. Strain YNP1(T) is the only cultivated member of an acid tolerant, extremely thermophilic species belonging to a phylogenetically isolated environmental clone group within the phylum Chloroflexi. At present, the name 'Thermobaculum terrenum' is not yet validly published as it contravenes Rule 30 (3a) of the Bacteriological Code. The bacterium was isolated from a slightly acidic extreme thermal soil in Yellowstone National Park, Wyoming (USA). Depending on its final taxonomic allocation, this is likely to be the third completed genome sequence of a member of the class Thermomicrobia and the seventh type strain genome from the phylum Chloroflexi. The 3,101,581 bp long genome with its 2,872 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  6. Desulfotignum toluenicum sp. nov., a novel toluene-degrading, sulphate-reducing bacterium isolated from an oil-reservoir model column.

    Science.gov (United States)

    Ommedal, Hege; Torsvik, Terje

    2007-12-01

    A Gram-negative, sulphate-reducing bacterium (strain H3(T)) was isolated from an oil-reservoir model column. The new isolate was able to oxidize toluene coupled to hydrogen sulphide production. For growth, the optimum salt concentration was 1.5 % (w/v), the optimum pH was 7.2 and the optimum temperature was 34 degrees C. The cells were straight to slightly curved rods, 0.6-1.0 microm in diameter and 1.4-2.5 microm in length. The predominant fatty acids were C(16 : 0), C(16 : 1)omega7c and C(17 : 0) cyclo, and the cells also contained dimethylacetals. Cloning and sequencing of a 1505 bp long fragment of the 16S rRNA gene showed that strain H3(T) is a member of the Deltaproteobacteria and is related closely to Desulfotignum balticum DSM 7044(T). The G+C content of the DNA was 52.0 mol% and the DNA-DNA similarity to D. balticum DSM 7044(T) was 56.1 %. Based on differences in DNA sequence and the unique property of toluene degradation, it is proposed that strain H3(T) should be designated a member of a novel species within the genus Desulfotignum, for which the name Desulfotignum toluenicum sp. nov. is proposed. The type strain is H3(T) (=DSM 18732(T)=ATCC BAA-1460(T)).

  7. Selection of the N-acylhomoserine lactone-degrading bacterium Alteromonas stellipolaris PQQ-42 and of its potential for biocontrol in aquaculture

    Directory of Open Access Journals (Sweden)

    Marta eTorres

    2016-05-01

    Full Text Available The production of virulence factors by many pathogenic microorganisms depends on the intercellular communication system called quorum sensing (QS, which involves the production and release of signal molecules known as autoinducers. Based on this, new-therapeutic strategies have emerged for the treatment of a variety of infections, such as the enzymatic degradation of signalling molecules, known as quorum quenching (QQ. In this study, we present the screening of QQ activity amongst 450 strains isolated from a bivalve hatchery in Granada (Spain, and the selection of the strain PQQ-42, which degrades a wide range of N-acylhomoserine lactones (AHLs. The selected strain, identified as Alteromonas stellipolaris, degraded the accumulation of AHLs and reduced the production of protease and chitinase and swimming motility of a Vibrio species in co-cultivation experiments in vitro. In the bio-control experiment, strain PQQ-42 significantly reduced the pathogenicity of V. mediterranei VibC-Oc-097 upon the coral Oculina patagonica showing a lower degree of tissue damage (29.25±14.63 % in its presence, compared to when the coral was infected with V. mediterranei VibC-Oc-097 alone (77.53±13.22 %. Our results suggest that this AHL-degrading bacterium may have biotechnological applications in aquaculture.

  8. Detection of misidentifications of species from the Burkholderia cepacia complex and description of a new member, the soil bacterium Burkholderia catarinensis sp. nov.

    Science.gov (United States)

    Bach, Evelise; Sant'Anna, Fernando Hayashi; Magrich Dos Passos, João Frederico; Balsanelli, Eduardo; de Baura, Valter Antonio; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Passaglia, Luciane Maria Pereira

    2017-08-31

    The correct identification of bacteria from the Burkholderia cepacia complex (Bcc) is crucial for epidemiological studies and treatment of cystic fibrosis infections. However, genome-based identification tools are revealing many controversial Bcc species assignments. The aim of this work is to re-examine the taxonomic position of the soil bacterium B. cepacia 89 through polyphasic and genomic approaches. recA and 16S rRNA gene sequence analysis positioned strain 89 inside the Bcc group. However, based on the divergence score of seven concatenated allele sequences, and values of average nucleotide identity, and digital DNA:DNA hybridization, our results suggest that strain 89 is different from other Bcc species formerly described. Thus, we propose to classify Burkholderia sp. 89 as the novel species Burkholderia catarinensis sp. nov. with strain 89T (=DSM 103188T = BR 10601T) as the type strain. Moreover, our results call the attention to some probable misidentifications of Bcc genomes at the National Center for Biotechnology Information database. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Biodegradation of malathion by Bacillus licheniformis strain ML-1

    Directory of Open Access Journals (Sweden)

    Khan Sara

    2016-01-01

    Full Text Available Malathion, a well-known organophosphate pesticide, has been used in agriculture over the last two decades for controlling pests of economically important crops. In the present study, a single bacterium, ML-1, was isolated by soil-enrichment technique and identified as Bacillus licheniformis on the basis of the 16S rRNA technique. The bacterium was grown in carbon-free minimal salt medium (MSM and was found to be very efficient in utilizing malathion as the sole source of carbon. Biodegradation experiments were performed in MSM without carbon source to determine the malathion degradation by the selected strain, and the residues of malathion were determined quantitatively using HPLC techniques. Bacillus licheniformis showed very promising results and efficiently consumed malathion as the sole carbon source via malathion carboxylesterase (MCE, and about 78% malathion was degraded within 5 days. The carboxylesterase activity was determined by using crude extract while using malathion as substrate, and the residues were determined by HPLC. It has been found that the MCE hydrolyzed 87% malathion within 96 h of incubation. Characterization of crude MCE revealed that the enzyme is robust in nature in terms of organic solvents, as it was found to be stable in various concentrations of ethanol and acetonitrile. Similarly, and it can work in a wide pH and temperature range. The results of this study highlighted the potential of Bacillus licheniformis strain ML-1 as a biodegrader that can be used for the bioremediation of malathion-contaminated soil.

  10. Draft Genome Sequence of Rhizobium sp. Strain TBD182, an Antagonist of the Plant-Pathogenic Fungus Fusarium oxysporum, Isolated from a Novel Hydroponics System Using Organic Fertilizer.

    Science.gov (United States)

    Iida, Yuichiro; Fujiwara, Kazuki; Someya, Nobutaka; Shinohara, Makoto

    2017-03-16

    Rhizobium sp. strain TBD182, isolated from a novel hydroponics system, is an antagonistic bacterium that inhibits the mycelial growth of Fusarium oxysporum but does not eliminate the pathogen. We report the draft genome sequence of TBD182, which may contribute to elucidation of the molecular mechanisms of its fungistatic activity. Copyright © 2017 Iida et al.

  11. Draft Genome Sequence of Streptomyces sp. Strain Wb2n-11, a Desert Isolate with Broad-Spectrum Antagonism against Soilborne Phytopathogens

    Energy Technology Data Exchange (ETDEWEB)

    Köberl, Martina; White, Richard A.; Erschen, Sabine; El-Arabi, Tarek F.; Jansson, Janet K.; Berg, Gabriele

    2015-08-06

    Streptomyces sp. strain Wb2n-11, isolated from native desert soil, exhibited broad-spectrum antagonism against plant pathogenic fungi, bacteria and nematodes. The 8.2 Mb draft genome reveals genes putatively responsible for its promising biocontrol activity and genes which enable the soil bacterium to directly interact beneficially with plants.

  12. Draft Genome Sequence of the Plant Growth-Promoting Cupriavidus gilardii Strain JZ4 Isolated from the Desert Plant Tribulus terrestris

    KAUST Repository

    Lafi, Feras Fawzi

    2016-07-28

    We isolated the plant endophytic bacterium Cupriavidus gilardii strain JZ4 from the roots of the desert plant Tribulus terrestris, collected from the Jizan region, Saudi Arabia. We report here the draft genome sequence of JZ4, together with several enzymes related to plant growth-promoting activity, environmental adaption, and antifungal activity.

  13. Draft Genome Sequence of the Plant Growth-Promoting Cupriavidus gilardii Strain JZ4 Isolated from the Desert Plant Tribulus terrestris

    KAUST Repository

    Lafi, Feras Fawzi; Bokhari, Ameerah; Alam, Intikhab; Bajic, Vladimir B.; Hirt, Heribert; Saad, Maged

    2016-01-01

    We isolated the plant endophytic bacterium Cupriavidus gilardii strain JZ4 from the roots of the desert plant Tribulus terrestris, collected from the Jizan region, Saudi Arabia. We report here the draft genome sequence of JZ4, together with several enzymes related to plant growth-promoting activity, environmental adaption, and antifungal activity.

  14. Draft Genome Sequence of Paenibacillus sp. Strain DMB20, Isolated from Alang Ship-Breaking Yard, Which Harbors Genes for Xenobiotic Degradation.

    Science.gov (United States)

    Shah, Binal; Jain, Kunal; Patel, Namrata; Pandit, Ramesh; Patel, Anand; Joshi, Chaitanya G; Madamwar, Datta

    2015-06-11

    Paenibacillus sp. strain DMB20, in cometabolism with other Proteobacteria and Firmicutes, exhibits azoreduction of textile dyes. Here, we report the draft genome sequence of this bacterium, consisting of 6,647,181 bp with 7,668 coding sequences (CDSs). The data presented highlight multiple sets of functional genes associated with xenobiotic compound degradation. Copyright © 2015 Shah et al.

  15. Bacillus halodurans Strain C125 Encodes and Synthesizes Enzymes from Both Known Pathways To Form dUMP Directly from Cytosine Deoxyribonucleotides

    DEFF Research Database (Denmark)

    Oehlenschlæger, Christian Berg; Løvgreen, Monika Nøhr; Reinauer, Eva

    2015-01-01

    Analysis of the genome of Bacillus halodurans strain C125 indicated that two pathways leading from a cytosine deoxyribonucleotide to dUMP, used for dTMP synthesis, were encoded by the genome of the bacterium. The genes that were responsible, the comEB gene and the dcdB gene, encoding dCMP deaminase...

  16. Noncontiguous finished genome sequence and description of Paenibacillus ihumii sp. nov. strain AT5

    Directory of Open Access Journals (Sweden)

    A.H. Togo

    2016-03-01

    Full Text Available Paenibacillus ihumii sp. nov. strain AT5 (= CSUR 1981 = DSM 100664 is the type strain of P. ihumii. This bacterium was isolated from a stool sample from a morbidly obese French patient using the culturomics approach. The genome of this Gram-negative, facultative anaerobic, motile and spore-forming bacillus is 5 924 686 bp long. Genomic analysis identified 253 (5% of 3812 genes as ORFans and at least 2599 (50.03% of 5194 orthologous proteins not shared with the closest phylogenetic species.

  17. Genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812T)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chang, Yun-Juan [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2012-01-01

    Thermodesulfatator indicus Moussard et al. 2004 is a member of the genomically so far poorly characterized family Thermodesulfobacteriaceae in the phylum Thermodesulfobacteria. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  18. Complete genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812(T)).

    Science.gov (United States)

    Anderson, Iain; Saunders, Elizabeth; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Jeffries, Cynthia D; Chang, Yun-Juan; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2012-05-25

    Thermodesulfatator indicus Moussard et al. 2004 is a member of the Thermodesulfobacteriaceae, a family in the phylum Thermodesulfobacteria that is currently poorly characterized at the genome level. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  19. Regiospecific enzymatic oxygenation of cis-vaccenic acid in the marine phototrophic bacterium Erythrobacter sp. strain MG3

    Czech Academy of Sciences Publication Activity Database

    Rontani, J. F.; Koblížek, Michal

    2008-01-01

    Roč. 43, - (2008), s. 1065-1074 ISSN 0024-4201 R&D Projects: GA ČR GA206/07/0241 Institutional research plan: CEZ:AV0Z50200510 Keywords : analytical chemistry * analytical techniques * glc Subject RIV: EE - Microbiology, Virology Impact factor: 1.888, year: 2008

  20. Complete genome sequence of Burkholderia sp. strain PAMC28687, a potential octopine-utilizing bacterium isolated from Antarctica lichen.

    Science.gov (United States)

    Han, So-Ra; Yu, Sang-Cheol; Ahn, Do-Hwan; Park, Hyun; Oh, Tae-Jin

    2016-05-20

    We report the complete genome sequence of Burkholderia sp. PAMC28687, which was isolated from the Antarctica lichen Useea sp., for better understanding of its catabolic traits in utilizing octopine as a source of carbon/nitrogen between Burkholderia and lichen. The genome consists of three circular chromosomes with five circular plasmids for the total 6,881,273bp sized genome with a G+C content of 58.14%. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Involvement of an ATP-dependent carboxylase in a CO2-dependent pathway of acetone metabolism by Xanthobacter strain Py2.

    OpenAIRE

    Sluis, M K; Small, F J; Allen, J R; Ensign, S A

    1996-01-01

    The metabolism of acetone by the aerobic bacterium Xanthobacter strain Py2 was investigated. Cell suspensions of Xanthobacter strain Py2 grown with propylene or glucose as carbon sources were unable to metabolize acetone. The addition of acetone to cultures grown with propylene or glucose resulted in a time-dependent increase in acetone-degrading activity. The degradation of acetone by these cultures was prevented by the addition of rifampin and chloramphenicol, demonstrating that new protein...

  2. Three dimensional strained semiconductors

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  3. Antibacterial Property of a Coral-Associated Bacterium Pseudoalteromonas luteoviolacea Against Shrimp Pathogenic Vibrio harveyi (In Vitro Study)

    OpenAIRE

    OCKY KARNA RADJASA; TORBEN MARTENS; HANS-PETER GROSSART; AGUS SABDONO; MEINHARD SIMON; TONNY BACHTIAR

    2005-01-01

    A coral-associated bacterium was successfully screened for secondary metabolites production based on PCR amplification of the nonribosomal peptide synthetase gene and was identified as closely related to Pseudoalteromonas luteoviolacea based on its 16S rDNA. The bacterium was found to inhibit the growth of shrimp pathogenic bacterium tested, Vibrio harveyi. To characterize the inhibiting metabolite, a 279 bp long DNA fragment was obtained and the deduced amino acid sequence showed conserved s...

  4. Strain measurement technique

    International Nuclear Information System (INIS)

    1987-01-01

    The 10 contributions are concerned with selected areas of application, such as strain measurements in wood, rubber/metal compounds, sets of strain measurements on buildings, reinforced concrete structures without gaps, pipes buried in the ground and measurements of pressure fluctuations. To increase the availability and safety of plant, stress analyses were made on gas turbine rotors with HT-DMS or capacitive HT-DMS (high temperature strain measurements). (DG) [de

  5. Large-scale bioreactor production of the herbicide-degrading Aminobacter sp. strain MSH1

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Knudsen, Berith Elkær; Frkova, Zuzana

    2014-01-01

    The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with ......The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon...... and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (μ =0.1 h−1); slower growth was observed on succinate and acetic...... acid (μ =0.01 h−1). Standard conditions for growth of theMSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from μ =0.1 h−1 on traditional mineral salt medium to μ =0.18 h−1 on the optimized mineral salt...

  6. Screening and Molecular Identification of New Microbial Strains for Production of Enzymes of Biotechnological Interest

    Directory of Open Access Journals (Sweden)

    Imen Ghazala

    Full Text Available ABSTRACT: This research focused on isolation, identification and characterization of new strains of fungi and bacteria, which were able to produce extracellular xylanase, mannanase, pectinase and α-amylase. Fungi isolates were identified on the basis of analyses of 18S gene sequencing and internal transcribed spacer region. The closest phylogenetic neighbors according to 18S gene sequence and ITS region data for the two isolates M1 and SE were Aspergillus fumigatus and Aspergillus sydowii, respectively. I4 was identified as Bacillus mojavensis on the basis of the 16S rRNA gene sequencing and biochemical properties. The enzyme production was evaluated by cultivating the isolated microorganisms in liquid-state bioprocess using wheat bran as carbon source. Two fungi (M1, and SE and one bacterium (I4 strains were found to be xylanase producer, and several were proven to be outstanding producers of microbial xylanase. The strains producing xylanase secreted variable amounts of starch-debranching enzymes and produced low level β-mannan-degrading enzyme systems. The bacterium strain was found to be capable of producing pectinolytic enzymes on wheat bran at high level. Some of the strains have good potential for use as sources of important industrial enzymes.

  7. The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42

    DEFF Research Database (Denmark)

    Aparicio, Tomás; Ingemann Jensen, Sheila; Nielsen, Alex Toftgaard

    2016-01-01

    Some strains of the soil bacterium Pseudomonas putida have become in recent years platforms of choice for hosting biotransformations of industrial interest. Despite availability of many genetic tools for this microorganism, genomic editing of the cell factory P. putida EM42 (a derivative of refer......Some strains of the soil bacterium Pseudomonas putida have become in recent years platforms of choice for hosting biotransformations of industrial interest. Despite availability of many genetic tools for this microorganism, genomic editing of the cell factory P. putida EM42 (a derivative...

  8. Isolation and Characterization of a Bacteriophage Preying an Antifungal Bacterium

    Directory of Open Access Journals (Sweden)

    Aryan Rahimi-Midani

    2016-12-01

    Full Text Available Several Bacillus species were isolated from rice field soils, and 16S rRNA gene sequence analysis showed that Bacillus cereus was the most abundant. A strain named BC1 showed antifungal activity against Rhizoctonia solani. Bacteriophages infecting strain BC1 were isolated from the same soil sample. The isolated phage PK16 had an icosahedral head of 100 ± 5 nm and tail of 200 ± 5 nm, indicating that it belonged to the family Myoviridae. Analysis of the complete linear dsDNA genome revealed a 158,127-bp genome with G + C content of 39.9% comprising 235 open reading frames as well as 19 tRNA genes (including 1 pseudogene. Blastp analysis showed that the proteins encoded by the PK16 genome had the closest hits to proteins of seven different bacteriophages. A neighbor-joining phylogenetic tree based on the major capsid protein showed a robust clustering of phage PK16 with phage JBP901 and BCP8-2 isolated from Korean fermented food.

  9. Study of interaction of the bacterium cupriavidus metallidurans with strontium

    International Nuclear Information System (INIS)

    Boussiga, Rim

    2010-01-01

    Cupriavidus metallidurans strain Ch 34 (previously known as Ralstonia metallidurans, Ralstonia eutropha, and Alcaligenes eutrophus) is an ideal subject to study heavy metal disturbance of cellular processes. Moreover, the capacity of C. metallidurans Ch 34 for in situ bioremediation was assessed and proved to be feasible on pilot scale. In this work, the molecular and physiological response to strontium cations (Sr 2+ ) by C.metallidurans Ch 34 was studied. Results showed that C. metallidurans Ch 34 resisted to high concentrations of Sr (120 m M) and that this resistance is not linked to the presence of its 2 large plasmid pMOL30 or pMOL28. During this study, a tctCBA-dependent tripartite tricarboxylate transport (TTT) system in strain Ch 34 was discovered. Transmission Electron Microscopy (TEM) observation of C.metallidurans challenged with strontium confirms the precipitation of Sr 2+ ) directly onto the surface of cells, inside and in the microenvironment around the cells. These results highlight the potential of C. metalliduras Ch 34 to endure environmental extremes and suggest that in situ bioremediation of Sr-containing waste with Ch 34 might be feasible.

  10. Strained Silicon Photonics

    Directory of Open Access Journals (Sweden)

    Ralf B. Wehrspohn

    2012-05-01

    Full Text Available A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is investigated, which may enable the construction of optically active photonic devices made of silicon.

  11. A new tetracycline efflux gene, tet(40), is located in tandem with tet(O/32/O) in a human gut firmicute bacterium and in metagenomic library clones.

    Science.gov (United States)

    Kazimierczak, Katarzyna A; Rincon, Marco T; Patterson, Andrea J; Martin, Jennifer C; Young, Pauline; Flint, Harry J; Scott, Karen P

    2008-11-01

    The bacterium Clostridium saccharolyticum K10, isolated from a fecal sample obtained from a healthy donor who had received long-term tetracycline therapy, was found to carry three tetracycline resistance genes: tet(W) and the mosaic tet(O/32/O), both conferring ribosome protection-type resistance, and a novel, closely linked efflux-type resistance gene designated tet(40). tet(40) encodes a predicted membrane-associated protein with 42% amino acid identity to tetA(P). Tetracycline did not accumulate in Escherichia coli cells expressing the Tet(40) efflux protein, and resistance to tetracycline was reduced when cells were incubated with an efflux pump inhibitor. E. coli cells carrying tet(40) had a 50% inhibitory concentration of tetracycline of 60 microg/ml. Analysis of a transconjugant from a mating between donor strain C. saccharolyticum K10 and the recipient human gut commensal bacterium Roseburia inulinivorans suggested that tet(O/32/O) and tet(40) were cotransferred on a mobile element. Sequence analysis of a 37-kb insert identified on the basis of tetracycline resistance from a metagenomic fosmid library again revealed a tandem arrangement of tet(O/32/O) and tet(40), flanked by regions with homology to parts of the VanG operon previously identified in Enterococcus faecalis. At least 10 of the metagenomic inserts that carried tet(O/32/O) also carried tet(40), suggesting that tet(40), although previously undetected, may be an abundant efflux gene.

  12. Whole genome sequencing for deciphering the resistome of Chryseobacterium indologenes, an emerging multidrug-resistant bacterium isolated from a cystic fibrosis patient in Marseille, France

    Directory of Open Access Journals (Sweden)

    T. Cimmino

    2016-07-01

    Full Text Available We decipher the resistome of Chryseobacterium indologenes MARS15, an emerging multidrug-resistant clinical strain, using the whole genome sequencing strategy. The bacterium was isolated from the sputum of a hospitalized patient with cystic fibrosis in the Timone Hospital in Marseille, France. Genome sequencing was done with Illumina MiSeq using a paired-end strategy. The in silico analysis was done by RAST, the resistome by the ARG-ANNOT database and detection of polyketide synthase (PKS by ANTISMAH. The genome size of C. indologenes MARS15 is 4 972 580 bp with 36.4% GC content. This multidrug-resistant bacterium was resistant to all β-lactams, including imipenem, and also to colistin. The resistome of C. indologenes MARS15 includes Ambler class A and B β-lactams encoding blaCIA and blaIND-2 genes and MBL (metallo-β-lactamase genes, the CAT (chloramphenicol acetyltransferase gene and the multidrug efflux pump AcrB. Specific features include the presence of an urease operon, an intact prophage and a carotenoid biosynthesis pathway. Interestingly, we report for the first time in C. indologenes a PKS cluster that might be responsible for secondary metabolite biosynthesis, similar to erythromycin. The whole genome sequence analysis provides insight into the resistome and the discovery of new details, such as the PKS cluster.

  13. Whole genome sequencing for deciphering the resistome of Chryseobacterium indologenes, an emerging multidrug-resistant bacterium isolated from a cystic fibrosis patient in Marseille, France.

    Science.gov (United States)

    Cimmino, T; Rolain, J-M

    2016-07-01

    We decipher the resistome of Chryseobacterium indologenes MARS15, an emerging multidrug-resistant clinical strain, using the whole genome sequencing strategy. The bacterium was isolated from the sputum of a hospitalized patient with cystic fibrosis in the Timone Hospital in Marseille, France. Genome sequencing was done with Illumina MiSeq using a paired-end strategy. The in silico analysis was done by RAST, the resistome by the ARG-ANNOT database and detection of polyketide synthase (PKS) by ANTISMAH. The genome size of C. indologenes MARS15 is 4 972 580 bp with 36.4% GC content. This multidrug-resistant bacterium was resistant to all β-lactams, including imipenem, and also to colistin. The resistome of C. indologenes MARS15 includes Ambler class A and B β-lactams encoding bla CIA and bla IND-2 genes and MBL (metallo-β-lactamase) genes, the CAT (chloramphenicol acetyltransferase) gene and the multidrug efflux pump AcrB. Specific features include the presence of an urease operon, an intact prophage and a carotenoid biosynthesis pathway. Interestingly, we report for the first time in C. indologenes a PKS cluster that might be responsible for secondary metabolite biosynthesis, similar to erythromycin. The whole genome sequence analysis provides insight into the resistome and the discovery of new details, such as the PKS cluster.

  14. Immune response of macrophages from young and aged mice to the oral pathogenic bacterium Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Gibson Frank C

    2010-11-01

    Full Text Available Abstract Periodontal disease is a chronic inflammatory gum disease that in severe cases leads to tooth loss. Porphyromonas gingivalis (Pg is a bacterium closely associated with generalized forms of periodontal disease. Clinical onset of generalized periodontal disease commonly presents in individuals over the age of 40. Little is known regarding the effect of aging on inflammation associated with periodontal disease. In the present study we examined the immune response of bone marrow derived macrophages (BMM from young (2-months and aged (1-year and 2-years mice to Pg strain 381. Pg induced robust expression of cytokines; tumor necrosis factor (TNF-α, interleukin (IL-6, and IL-10, chemokines; neutrophil chemoattractant protein (KC, macrophage colony stimulating factor (MCP-1, macrophage inflammatory protein (MIP-1α and regulated upon activation normal T cell expressed and secreted (RANTES, as well as nitric oxide (NO, measured as nitrite, and prostaglandin E2 (PGE2 from BMM of young mice. BMM from the 2-year age group produced significantly less TNF-α, IL-6 and NO in response to Pg as compared with BMM from 2-months and 1-year of age. We did not observe any difference in the levels of IL-1β, IL-10 and PGE2 produced by BMM in response to Pg. BMM from 2-months and 1-year of age produced similar levels of all chemokines measured with the exception of MCP-1, which was reduced in BMM from 1-year of age. BMM from the 2-year group produced significantly less MCP-1 and MIP-1α compared with 2-months and 1-year age groups. No difference in RANTES production was observed between age groups. Employing a Pg attenuated mutant, deficient in major fimbriae (Pg DPG3, we observed reduced ability of the mutant to stimulate inflammatory mediator expression from BMMs as compared to Pg 381, irrespective of age. Taken together these results support senescence as an important facet of the reduced immunological response observed by BMM of aged host to the

  15. Marinobacter lacisalsi sp. nov., a moderately halophilic bacterium isolated from the saline-wetland wildfowl reserve Fuente de Piedra in southern Spain.

    Science.gov (United States)

    Aguilera, Margarita; Jiménez-Pranteda, Maria L; Kharroub, Karima; González-Paredes, Ana; Durban, Juan J; Russell, Nick J; Ramos-Cormenzana, Alberto; Monteoliva-Sánchez, Mercedes

    2009-07-01

    A Gram-negative, non-spore-forming, motile, moderately halophilic, aerobic, rod-shaped bacterium, designated strain FP2.5(T), was isolated from the inland hypersaline lake Fuente de Piedra, a saline-wetland wildfowl reserve located in the province of Málaga in southern Spain. Strain FP2.5(T) was subjected to a polyphasic taxonomic study. It produced colonies with a light-yellow pigment. Strain FP2.5(T) grew at salinities of 3-15 % (w/v) and at temperatures of 20-40 degrees C. The pH range for growth was 5-9. Strain FP2.5(T) was able to utilize various organic acids as sole carbon and energy source. Its major fatty acids were C(16 : 0), C(18 : 1)omega9c and C(16 : 1)omega9c. The DNA G+C content was 58.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain FP2.5(T) appeared to be a member of the genus Marinobacter and clustered closely with the type strains of Marinobacter segnicrescens, Marinobacter bryozoorum and Marinobacter gudaonensis (levels of 16S rRNA gene sequence similarity of 98.1, 97.4 and 97.2 %, respectively). However, DNA-DNA relatedness between the new isolate and the type strains of its closest related Marinobacter species was low; levels of DNA-DNA relatedness between strain FP2.5(T) and M. segnicrescens LMG 23928(T), M. bryozoorum DSM 15401(T) and M. gudaonensis DSM 18066(T) were 36.3, 32.1 and 24.9 %, respectively. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness data, strain FP2.5(T) is considered to represent a novel species of the genus Marinobacter, for which the name Marinobacter lacisalsi sp. nov. is proposed. The type strain is FP2.5(T) (=CECT 7297(T)=LMG 24237(T)).

  16. Olsenella umbonata sp. nov., a microaerotolerant anaerobic lactic acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of Olsenella, Olsenella uli and Olsenella profusa.

    Science.gov (United States)

    Kraatz, Mareike; Wallace, R John; Svensson, Liselott

    2011-04-01

    Strain A2 is an anaerobic, variably Gram-stain-positive, non-spore-forming, small and irregularly rod-shaped bacterium from the ruminal fluid of a sheep that has been described informally as a representative of 'Olsenella (basonym Atopobium) oviles'. Three phenotypically similar bacterial strains (lac15, lac16 and lac31(T)) were isolated in concert with Veillonella magna lac18(T) from the mucosal jejunum of a pig. A phylogenetic analysis based on 16S rRNA gene sequences revealed that strains A2, lac15, lac16 and lac31(T) formed a genetically coherent group (100 % interstrain sequence similarity) within the bigeneric Olsenella-Atopobium branch of the family Coriobacteriaceae, class Actinobacteria. This group was most closely related to the type strains of the two recognized Olsenella species, namely Olsenella uli (sequence similarity of 96.85 %) and Olsenella profusa (sequence similarity of 97.20 %). The sequence similarity to the type strain of Atopobium minutum, the type species of the genus Atopobium, was 92.33 %. Unlike those of O. uli and O. profusa, outgrown colonies of strains A2, lac15, lac16 and lac31(T) were opaque and greyish-white with an umbonate elevation on solid culture media. The four novel strains were characterized as being well-adapted and presumably indigenous to the gastrointestinal tract of homoeothermic vertebrates: they were mesophilic, microaerotolerant, neutrophilic and acidotolerant, bile-resistant, mucin-utilizing and markedly peptidolytic lactic acid bacteria. The results of DNA-DNA hybridizations, cellular fatty acid analysis and other differential phenotypic (physiological and biochemical) tests confirmed that strains A2, lac15, lac16 and lac31(T) represent a novel species of the genus Olsenella. On the basis of the genotypic and phenotypic results, we therefore describe Olsenella umbonata sp. nov., with lac31(T) ( = CCUG 58604(T)  = DSM 22620(T)  = JCM 16156(T)) as the type strain and A2 ( = CCUG 58212

  17. ISOLATION AND CHARACTERIZATION OF A MOLYBDENUM-REDUCING AND AZO-DYE DECOLORIZING SERRATIA MARCESCENS STRAIN NENI-1 FROM INDONESIAN SOIL

    Directory of Open Access Journals (Sweden)

    Neni Gusmanizar

    2016-01-01

    Full Text Available Heavy metals and organic xenobiotics including dyes are important industrial components with their usage amounting to the millions of tonnes yearly. Their presence in the environment is a serious pollution issue globally. Bioremediation of these pollutants using microbes with multiple detoxification capacity is constantly being sought. In this work we screen the ability of a molybdenum-reducing bacterium isolated from contaminated soil to decolorize various azo and triphenyl methane dyes. The bacterium reduces molybdate to molybdenum blue (Mo-blue optimally at pH 6.0, and temperatures of between 25 and 40oC. Glucose was the best electron donor for supporting molybdate reduction followed by sucrose, trehalose, maltose, d-sorbitol, dmannitol, d-mannose, myo-inositol, glycerol and salicin in descending order. Other requirements include a phosphate concentration of between 5.0 and 7.5 mM and a molybdate concentration between 10 and 20 mM. The absorption spectrum of the Moblue produced was similar to previous Mo-reducing bacterium, and closely resembles a reduced phosphomolybdate. Molybdenum reduction was inhibited by copper, silver and mercury at 2 ppm by 43.8%, 42.3% and 41.7%, respectively. We screen for the ability of the bacterium to decolorize various dyes. The bacterium was able to decolorize the dye Congo Red. Biochemical analysis resulted in a tentative identification of the bacterium as Serratia marcescens strain Neni-1. The ability of this bacterium to detoxify molybdenum and decolorize azo dye makes this bacterium an important tool for bioremediation.

  18. Exploitative and hierarchical antagonism in a cooperative bacterium.

    Directory of Open Access Journals (Sweden)

    Francesca Fiegna

    2005-11-01

    Full Text Available Social organisms that cooperate with some members of their own species, such as close relatives, may fail to cooperate with other genotypes of the same species. Such noncooperation may take the form of outright antagonism or social exploitation. Myxococcus xanthus is a highly social prokaryote that cooperatively develops into spore-bearing, multicellular fruiting bodies in response to starvation. Here we have characterized the nature of social interactions among nine developmentally proficient strains of M. xanthus isolated from spatially distant locations. Strains were competed against one another in all possible pairwise combinations during starvation-induced development. In most pairings, at least one competitor exhibited strong antagonism toward its partner and a majority of mixes showed bidirectional antagonism that decreased total spore production, even to the point of driving whole populations to extinction. Differential response to mixing was the primary determinant of competitive superiority rather than the sporulation efficiencies of unmixed populations. In some competitive pairings, the dominant partner sporulated more efficiently in mixed populations than in clonal isolation. This finding represents a novel form of exploitation in bacteria carried out by socially competent genotypes and is the first documentation of social exploitation among natural bacterial isolates. Patterns of antagonistic superiority among these strains form a highly linear dominance hierarchy. At least some competition pairs construct chimeric, rather than segregated, fruiting bodies. The cooperative prokaryote M. xanthus has diverged into a large number of distinct social types that cooperate with clone-mates but exhibit intense antagonism toward distinct social types of the same species. Most lengthy migration events in nature may thus result in strong antagonism between migratory and resident populations, and this antagonism may have large effects on local

  19. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park.

    Science.gov (United States)

    Hamilton-Brehm, Scott D; Mosher, Jennifer J; Vishnivetskaya, Tatiana; Podar, Mircea; Carroll, Sue; Allman, Steve; Phelps, Tommy J; Keller, Martin; Elkins, James G

    2010-02-01

    A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47(T), was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 microm long by 0.2 microm wide and grew at temperatures between 55 and 85 degrees C, with the optimum at 78 degrees C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h(-1). The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47(T) was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47(T) within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073).

  20. Thermodesulfobacterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park.

    Science.gov (United States)

    Hamilton-Brehm, Scott D; Gibson, Robert A; Green, Stefan J; Hopmans, Ellen C; Schouten, Stefan; van der Meer, Marcel T J; Shields, John P; Damsté, Jaap S S; Elkins, James G

    2013-03-01

    A novel sulfate-reducing bacterium designated OPF15(T) was isolated from Obsidian Pool, Yellowstone National Park, Wyoming. The phylogeny of 16S rRNA and functional genes (dsrAB) placed the organism within the family Thermodesulfobacteriaceae. The organism displayed hyperthermophilic temperature requirements for growth with a range of 70-90 °C and an optimum of 83 °C. Optimal pH was around 6.5-7.0 and the organism required the presence of H2 or formate as an electron donor and CO2 as a carbon source. Electron acceptors supporting growth included sulfate, thiosulfate, and elemental sulfur. Lactate, acetate, pyruvate, benzoate, oleic acid, and ethanol did not serve as electron donors. Membrane lipid analysis revealed diacyl glycerols and acyl/ether glycerols which ranged from C14:0 to C20:0. Alkyl chains present in acyl/ether and diether glycerol lipids ranged from C16:0 to C18:0. Straight, iso- and anteiso-configurations were found for all lipid types. The presence of OPF15(T) was also shown to increase cellulose consumption during co-cultivation with Caldicellulosiruptor obsidiansis, a fermentative, cellulolytic extreme thermophile isolated from the same environment. On the basis of phylogenetic, phenotypic, and structural analyses, Thermodesulfobacterium geofontis sp. nov. is proposed as a new species with OPF15(T) representing the type strain.