WorldWideScience

Sample records for bacterioplankton

  1. Marine Bacterioplankton Seasonal Succession Dynamics.

    Science.gov (United States)

    Bunse, Carina; Pinhassi, Jarone

    2017-06-01

    Bacterioplankton (bacteria and archaea) are indispensable regulators of global element cycles owing to their unique ability to decompose and remineralize dissolved organic matter. These microorganisms in surface waters worldwide exhibit pronounced seasonal succession patterns, governed by physicochemical factors (e.g., light, climate, and nutrient loading) that are determined by latitude and distance to shore. Moreover, we emphasize that the effects of large-scale factors are modulated regionally, and over shorter timespans (days to weeks), by biological interactions including molecule exchanges, viral lysis, and grazing. Thus the interplay and scaling between factors ultimately determine the success of particular bacterial populations. Spatiotemporal surveys of bacterioplankton community composition provide the necessary frame for interpreting how the distinct metabolisms encoded in the genomes of different bacteria regulate biogeochemical cycles. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Spatiotemporal pattern of bacterioplankton in Donghu Lake

    Science.gov (United States)

    Zhang, Xiang; Yan, Qingyun; Yu, Yuhe; Dai, Lili

    2014-05-01

    Bacterioplankton play key roles in the biogeochemical cycle and in organic contaminant degradation. The species richness and abundance of bacterial subgroups are generally distinct from each other, and this is attributed to their different functions in aquatic ecosystems. The spatiotemporal variations of eight phylogenetic subgroups (Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, Planctomycetes, alpha-, beta-, and gamma-Proteobacteria) derived from Donghu Lake were investigated using PCR-DGGE fingerprinting, to explore their responses to environmental factors. Results indicate that Actinobacteria and beta-Proteobacteria were the two largest bacterial subgroups detected. These two groups and Bacteroidetes showed clear seasonal patterns in composition of the operational taxonomic unit. Results also suggest that the bacterioplankton subgroups in Donghu Lake were significantly correlated with different environmental factors. In brief, the total nitrogen was one of the major factors regulating all the bacterioplankton except for Actinobacteria. However, total phosphorus, another important eutrophication factor, contributed to the two largest bacterial groups (Actinobacteria and beta-Proteobacteria), as well as to the Cyanobacteria and Firmicutes. Therefore, the responses of bacterioplankton subgroups to environmental factors were different, and this should be attributed to the differences in the functions of different groups.

  3. Oceanic fronts: transition zones for bacterioplankton community composition

    Science.gov (United States)

    Baltar, F.; Currie, K.; Stuck, E.; Roosa, S.; Morales, S.

    2016-02-01

    Oceanic fronts are widespread mesoscale features that exist in the boundary between different water masses. Bacterioplankton (including Bacteria and Archaea) drive oceanic biogeochemical cycles, regulating the composition of Earth's atmosphere and influencing climate. Despite the recognized importance of bacterioplankton on the marine biogeochemical cycles and the ubiquitousness of fronts, the effect of frontal zones on the distribution of bacterioplankton community remains unknown. Using 16S rRNA gene sequencing coupled with a high spatial resolution analysis of the physical properties of the water masses, we demonstrate strong shifts in bacterioplankton community composition (BCC) across the Subtropical Frontal Zone off New Zealand. Transition between water masses resulted in a clear modification of the dominant taxa and a significant increase in community dissimilarity. Our results, linking physical oceanography and marine molecular ecology, support the strong role of oceanic frontal zones in delimiting the distribution of bacterioplankton in the ocean, where fronts serve as clear transition zones, indicating boundaries for bacterioplankton distribution in the ocean. Owing to the widespread abundance of fronts in the marine environment, future efforts should focus on confirming their roles in demarking bacterioplankton distribution and whether they act as indicators of ecosystem process changes. This would allow a better understanding of the forces that control energy flow in the ocean as well as the cycling of compounds that influence climate change, and concomitantly building more accurate models of global biogeochemical cycles.

  4. Coastal bacterioplankton community response to diatom-derived polysaccharide microgels.

    Science.gov (United States)

    Taylor, Joe D; Cunliffe, Michael

    2017-04-01

    Phytoplankton-derived polysaccharide microgels, including transparent exopolymer particles (TEP), are a major component of the marine organic carbon pool. Previous studies have made correlative links between phytoplankton material and bacterioplankton, and performed experiments that assess general responses to phytoplankton, yet there is a lack of direct empirical evidence of specific bacterioplankton responses to natural phytoplankton polysaccharide microgels. In this study, we used diatom produced TEP in controlled incubation experiments to determine the impact of polysaccharide microgels on a coastal bacterioplankton community. Quantification of bacterial 16S rRNA gene transcripts showed that the addition of TEP caused an increase in bacterioplankton activity. Similarly, high-throughput sequencing of RT-PCR amplified bacterial 16S rRNA gene transcripts showed that active bacterioplankton community structure and diversity also changed in response to microgels. Alteromonadales and Rhodobacterales increased in abundance in response to TEP, suggesting that both bacterioplankton taxa utilize diatom-derived microgels. However, through assessing 13 C-labelled TEP uptake via RNA Stable Isotope Probing, we show that only the Alteromonadales (genus Alteromonas) assimilated the TEP carbon. This study adds utilization of diatom-derived TEP to the metabolic repertoire of the archetypal copiotrophic bacterioplankton Alteromonas, and indicates that the Rhodobacterales may utilize TEP for other purposes (e.g. attachment sites). © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Photoheterotrophy of bacterioplankton is ubiquitous in the surface oligotrophic ocean

    Science.gov (United States)

    Evans, Claire; Gómez-Pereira, Paola R.; Martin, Adrian P.; Scanlan, David J.; Zubkov, Mikhail V.

    2015-06-01

    Accurate measurements in the Southern Hemisphere were obtained to test a hypothesis of the ubiquity of photoheterotrophy in the oligotrophic ocean. We present experimental results of light-enhanced uptake of methionine, leucine and ATP by bacterioplankton during two large-scale transects of the South Atlantic. Light increased the uptake of substrates by both dominant bacterioplankton groups, Prochlorococcus and SAR11, as well as for the bulk microbial community. Our consistent experimental evidence strongly indicates that photoheterotrophy is characteristic of dominant bacterioplankton populations in the global oligotrophic ocean.

  6. Oceanic fronts: transition zones for bacterioplankton community composition.

    Science.gov (United States)

    Baltar, Federico; Currie, Kim; Stuck, Esther; Roosa, Stéphanie; Morales, Sergio E

    2016-02-01

    Oceanic fronts are widespread mesoscale features that exist in the boundary between different water masses. Despite the recognized importance of bacterioplankton (including bacteria and archaea) on the marine biogeochemical cycles and the ubiquitousness of fronts, the effect of frontal zones on the distribution of bacterioplankton community remains unknown. Using 16S rRNA gene sequencing coupled with a high spatial resolution analysis of the physical properties of the water masses, we demonstrate strong shifts in bacterioplankton community composition (BCC) across the subtropical frontal zone off New Zealand. The transition between water masses resulted in a clear modification of the dominant taxa and a significant increase in community dissimilarity. Our results, linking physical oceanography and marine molecular ecology, support the strong role of oceanic frontal zones in delimiting the distribution of bacterioplankton in the ocean. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. BACTERIOPLANKTON DYNAMICS IN A SUBTROPICAL ESTUARY: EVIDENCE FOR SUBSTRATE LIMITATION

    Science.gov (United States)

    Bacterioplankton abundance and metabolic characteristics were measured along a transect in Pensacola Bay, Florida, USA, to examine the factors that control microbial water column processes in this subtropical estuary. The microbial measures included 3 H-L-leucine incorporation, e...

  8. [Effects of sediment resuspension on bacterioplankton community composition].

    Science.gov (United States)

    Guo, Liang; Xing, Peng; Jiang, Wei-wei; Liu, Zheng-wen

    2010-08-01

    To determine the response of bacterioplankton community to sediment resuspension we set up two different intensities of the sediment resuspension in experimental microcosms. We employed the terminal restriction fragment length polymorphism (T-RFLP), denaturing gradient gel electrophoresis (DGGE) methods to characterize the bacterial community structure. The result demonstrated that the species richness of the bacterioplankton in the treatment with sediment resuspension was higher than that in the controls without sediment resuspension. The bacterioplankton species richness and community diversity in the treatment with weak sediment resuspension (WR) was higher than that with strong sediment resuspension (SR). The relationship between bacterioplankton and environmental factors were investigated using canonical correspondence analysis (CCA) and redundancy analysis (RDA). The CCA and RDA results showed that there was a high degree of correlation between bacterioplankton community composition with Cladocera and particulate phosphorus (PP). It indicates that the sediment resuspension of shallow lakes has a significant effect on the species richness and diversity of bacterioplankton. We speculate the main reason is the dynamics of zooplankton community structure and the function of nutrient concentration influenced by the sediment resuspension.

  9. Bacterioplankton of the Kara Sea shelf

    Science.gov (United States)

    Romanova, N. D.; Sazhin, A. F.

    2015-11-01

    The principal zones of the Kara Sea shelf are distinguished on the basis of structural and functional characteristics of bacterioplankton. Estuarine regions are characterized by elevated bacterial abundance and production rates, while the adjacent shelf has high abundance but lower production values. The southwestern part of the Kara Sea has relatively low bacterial abundance; here, the activity of microorganisms depends on the availability of allochthonous organic matter. In the northern part of the Kara Sea shelf, high bacterial abundance and growth rates are observed in the upper brackish water layer. The upper water layer above the slope of the St. Anna Trough is characterized by low numbers of bacteria, and production rates decrease almost to zero values. It has been shown that the analysis of bacterial abundance in the upper mixed layer is enough for the characterization of quantitative changes in bacterial community of the shelf zone.

  10. Phytoplankton and bacterioplankton abundances and community dynamics in Lake Erhai.

    Science.gov (United States)

    Mingming, Hu; Yanhui, Li; Yuchun, Wang; Huaidong, Zhou; Yongding, Liu; Gaofeng, Zhao

    2013-01-01

    The composition and seasonal variation of the phytoplankton and bacterioplankton community were investigated, and SPSS and redundancy analysis (RDA) were used to explore the relationship between the phytoplankton and bacterioplankton community dynamics in the typical plateau Lake of Lake Erhai from July 2009 to April 2010. Obvious seasonal variation of phytoplankton was observed, and the abundance of phytoplankton ranged from 2.02 × 10(6) to 57.9 × 10(6) cells/L. The dominant species in autumn and summer was Microcystis sp., Psephonema aenigmaticum Skuja was dominant in winter, and Microcystis sp., Aphanizonmenon flos-aquae, Asterionella sp., P. aenigmaticum, etc. were dominant in spring. The abundance of bacterioplankton in the whole lake changed between 1.93 × 10(9) and 4.61 × 10(9) cells/L showing distinct seasonal variation characteristics. The results of correlation and RDA indicated that the abundance and community diversity of bacterioplankton were significantly correlated with the abundance of phytoplankton, and the group of Bacteroidetes had obvious correlation with Microcystis sp. and other cyanobacteria, which might have some links with the harmful algal blooms in Lake Erhai. Further research is needed to study the mechanisms of interactions between phytoplankton and bacterioplankton communities.

  11. Biogeography of bacterioplankton in the tropical seawaters of Singapore.

    Science.gov (United States)

    Lau, Stanley C K; Zhang, Rui; Brodie, Eoin L; Piceno, Yvette M; Andersen, Gary; Liu, Wen-Tso

    2013-05-01

    Knowledge about the biogeography of marine bacterioplankton on the global scale in general and in Southeast Asia in particular has been scarce. This study investigated the biogeography of bacterioplankton community in Singapore seawaters. Twelve stations around Singapore island were sampled on different schedules over 1 year. Using PCR-DNA fingerprinting, DNA cloning and sequencing, and microarray hybridization of the 16S rRNA genes, we observed clear spatial variations of bacterioplankton diversity within the small area of the Singapore seas. Water samples collected from the Singapore Strait (south) throughout the year were dominated by DNA sequences affiliated with Cyanobacteria and Alphaproteobacteria that were believed to be associated with the influx of water from the open seas in Southeast Asia. On the contrary, water in the relatively polluted Johor Strait (north) were dominated by Betaproteobacteria, Gammaproteobacteria, and Bacteroidetes and that were presumably associated with river discharge and the relatively eutrophic conditions of the waterway. Bacterioplankton diversity was temporally stable, except for the episodic surge of Pseudoalteromonas, associated with algal blooms. Overall, these results provide valuable insights into the diversity of bacterioplankton communities in Singapore seas and the possible influences of hydrological conditions and anthropogenic activities on the dynamics of the communities. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Bacterioplankton assembly and interspecies interaction indicating increasing coastal eutrophication.

    Science.gov (United States)

    Dai, Wenfang; Zhang, Jinjie; Tu, Qichao; Deng, Ye; Qiu, Qiongfen; Xiong, Jinbo

    2017-06-01

    Anthropogenic perturbations impose negative effects on coastal ecosystems, such as increasing levels of eutrophication. Given the biogeochemical significance of microorganisms, understanding the processes and mechanisms underlying their spatial distribution under changing environmental conditions is critical. To address this question, we examined how coastal bacterioplankton communities respond to increasing eutrophication levels created by anthropogenic perturbations. The results showed that the magnitude of changes in the bacterioplankton community compositions (BCCs) and the importance of deterministic processes that constrained bacterial assembly were closely associated with eutrophication levels. Moreover, increasing eutrophication significantly (P bacterioplankton community is limited, with disrupted interspecies interaction occurring under heavy eutrophication. As such, bacterial assemblages are sensitive to changes in environmental conditions and could thus potentially serve as bio-indicators for increasing eutrophication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Consequences of contamination on the interactions between phytoplankton and bacterioplankton.

    Science.gov (United States)

    Marisol, Goni-Urriza; Hélène, Moussard; Céline, Lafabrie; Claire, Carre; Marc, Bouvy; Asma, Sakka Hlaili; Olivier, Pringault

    2018-03-01

    Sediment resuspension can provoke strong water enrichment in nutrients, contaminants, and microorganisms. Microcosm incubations were performed in triplicate for 96 h, with lagoon and offshore waters incubated either with sediment elutriate or with an artificial mixture of contaminants issued from sediment resuspension. Sediment elutriate provoked a strong increase in microbial biomass, with little effects on the phytoplankton and bacterioplankton community structures. Among the pool of contaminants released, few were clearly identified as structuring factors of phytoplankton and bacterioplankton communities, namely simazine, Cu, Sn, Ni, and Cr. Effects were more pronounced in the offshore waters, suggesting a relative tolerance of the lagoon microbial communities to contamination. The impacts of contamination on the microbial community structure were direct or indirect, depending on the nature and the strength of the interactions between phytoplankton and bacterioplankton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Stream hydrological fragmentation drives bacterioplankton community composition.

    Directory of Open Access Journals (Sweden)

    Stefano Fazi

    Full Text Available In Mediterranean intermittent streams, the hydrological fragmentation in summer and the successive water flow re-convergence in autumn allow exploring how local processes shape the microbial community within the same habitat. The objectives of this study were to determine how bacterial community composition responded to hydrological fragmentation in summer, and to evaluate whether the seasonal shifts in community composition predominate over the effects of episodic habitat fragmentation. The bacterial community was assessed along the intermittent stream Fuirosos (Spain, at different levels of phylogenetic resolution by in situ hybridization, fingerprinting, and 16S rRNA gene sequencing. The hydrological fragmentation of the stream network strongly altered the biogeochemical conditions with the depletion of oxidized solutes and caused changes in dissolved organic carbon characteristics. In the isolated ponds, beta-Proteobacteria and Actinobacteria increased their abundance with a gradual reduction of the alpha-diversity as pond isolation time increased. Moreover, fingerprinting analysis clearly showed a shift in community composition between summer and autumn. In the context of a seasonal shift, the temporary stream fragmentation simultaneously reduced the microbial dispersion and affected local environmental conditions (shift in redox regime and quality of the dissolved organic matter tightly shaping the bacterioplankton community composition.

  15. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling.

    Science.gov (United States)

    Lindh, Markus V; Sjöstedt, Johanna; Andersson, Anders F; Baltar, Federico; Hugerth, Luisa W; Lundin, Daniel; Muthusamy, Saraladevi; Legrand, Catherine; Pinhassi, Jarone

    2015-07-01

    Multiyear comparisons of bacterioplankton succession reveal that environmental conditions drive community shifts with repeatable patterns between years. However, corresponding insight into bacterioplankton dynamics at a temporal resolution relevant for detailed examination of variation and characteristics of specific populations within years is essentially lacking. During 1 year, we collected 46 samples in the Baltic Sea for assessing bacterial community composition by 16S rRNA gene pyrosequencing (nearly twice weekly during productive season). Beta-diversity analysis showed distinct clustering of samples, attributable to seemingly synchronous temporal transitions among populations (populations defined by 97% 16S rRNA gene sequence identity). A wide spectrum of bacterioplankton dynamics was evident, where divergent temporal patterns resulted both from pronounced differences in relative abundance and presence/absence of populations. Rates of change in relative abundance calculated for individual populations ranged from 0.23 to 1.79 day(-1) . Populations that were persistently dominant, transiently abundant or generally rare were found in several major bacterial groups, implying evolution has favoured a similar variety of life strategies within these groups. These findings suggest that high temporal resolution sampling allows constraining the timescales and frequencies at which distinct populations transition between being abundant or rare, thus potentially providing clues about physical, chemical or biological forcing on bacterioplankton community structure. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Systems Biology and Ecology of Streamlined Bacterioplankton

    Science.gov (United States)

    Giovannoni, S. J.

    2014-12-01

    The salient feature of streamlined cells is their small genome size, but "streamlining" refers more generally to selection that favors minimization of cell size and complexity. The essence of streamlining theory is that selection is most efficient in organisms that have large effective population sizes, and, in nutrient-limited systems, favors cell architecture that minimizes resources required for replication. Regardless of the cause of genome reduction, lost coding potential eventually dictates loss of function, raising the questions, what genome features are expendable, and how do cells become highly successful with a minimal genomic repertoire? One consequence of reductive evolution in streamlined organisms is atypical patterns of prototrophy, for example the recent discovery of a requirement for the thiamin precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine in some plankton taxa. Examples such as this fit within the framework of the Black Queen Hypothesis, which describes genome reduction that results in reliance on community goods and increased community connectivity. Other examples of genome reduction include losses of regulatory functions, or replacement with simpler regulatory systems, and increased metabolic integration. In one such case, in the order Pelagibacterales, the PII system for regulating responses to N limitation has been replaced with a simpler system composed of fewer genes. Both the absence of common regulatory systems and atypical patterns of prototrophy have been linked to difficulty in culturing Pelagibacterales, lending credibility to the idea that streamlining might broadly explain the phenomenon of the uncultured microbial majority. The success of streamlined osmotrophic bacterioplankton suggests that they successfully compete for labile organic matter and capture a large share of this resource, but an alternative theory postulates they are not good resource competitors and instead prosper by avoiding predation. The answers to these

  17. Relationship between Bacterioplankton Richness, Respiration, and Production in the Southern North Sea

    OpenAIRE

    Reinthaler, Thomas; Winter, Christian; Herndl, Gerhard J.

    2005-01-01

    We investigated the relationship between bacterioplankton production (BP), respiration (BR), and community composition measured by terminal restriction fragment length polymorphism in the southern North Sea over a seasonal cycle. Major changes in bacterioplankton richness were apparent from April to December. While cell-specific BP decreased highly significantly with increasing bacterioplankton richness, cell-specific BR was found to be variable along the richness gradient, suggesting that ba...

  18. Temporal patterns of phyto- and bacterioplankton and their relationships with environmental factors in Lake Taihu, China.

    Science.gov (United States)

    Su, Xiaomei; Steinman, Alan D; Xue, Qingju; Zhao, Yanyan; Tang, Xiangming; Xie, Liqiang

    2017-10-01

    Phytoplankton and bacterioplankton are integral components of aquatic food webs and play essential roles in the structure and function of freshwater ecosystems. However, little is known about how phyto- and bacterioplankton may respond synchronously to changing environmental conditions. Thus, we analyzed simultaneously the composition and structure of phyto- and bacterioplankton on a monthly basis over 12 months in cyanobacteria-dominated areas of Lake Taihu and compared their responses to changes in environmental factors. Metric multi-dimensional scaling (mMDS) revealed that the temporal variations of phyto- and bacterioplankton were significant. Time lag analysis (TLA) indicated that the temporal pattern of phytoplankton tended to exhibit convergent dynamics while bacterioplankton showed highly stable or stochastic variation. A significant directional change was found for bacterioplankton at the genus level and the slopes (rate of change) and regression R 2 (low stochasticity or stability) were greater if Cyanobacteria were included, suggesting a higher level of instability in the bacterial community at lower taxonomy level. Consequently, phytoplankton responded more rapidly to the change in environmental conditions than bacterioplankton when analyzed at the phylum level, while bacterioplankton were more sensitive at the finer taxonomic resolution in Lake Taihu. Redundancy analysis (RDA) results showed that environmental variables collectively explained 51.0% variance of phytoplankton and 46.7% variance of bacterioplankton, suggesting that environmental conditions have a significant influence on the temporal variations of phyto- and bacterioplankton. Furthermore, variance partitioning indicated that the bacterial community structure was largely explained by water temperature and nitrogen, suggesting that these factors were the primary drivers shaping bacterioplankton. Copyright © 2017. Published by Elsevier Ltd.

  19. Redox-specialized bacterioplankton metacommunity in a temperate estuary.

    Science.gov (United States)

    Laas, Peeter; Simm, Jaak; Lips, Inga; Lips, Urmas; Kisand, Veljo; Metsis, Madis

    2015-01-01

    This study explored the spatiotemporal dynamics of the bacterioplankton community composition in the Gulf of Finland (easternmost sub-basin of the Baltic Sea) based on phylogenetic analysis of 16S rDNA sequences acquired from community samples via pyrosequencing. Investigations of bacterioplankton in hydrographically complex systems provide good insight into the strategies by which microbes deal with spatiotemporal hydrographic gradients, as demonstrated by our research. Many ribotypes were closely affiliated with sequences isolated from environments with similar steep physiochemical gradients and/or seasonal changes, including seasonally anoxic estuaries. Hence, one of the main conclusions of this study is that marine ecosystems where oxygen and salinity gradients co-occur can be considered a habitat for a cosmopolitan metacommunity consisting of specialized groups occupying niches universal to such environments throughout the world. These niches revolve around functional capabilities to utilize different electron receptors and donors (including trace metal and single carbon compounds). On the other hand, temporal shifts in the bacterioplankton community composition at the surface layer were mainly connected to the seasonal succession of phytoplankton and the inflow of freshwater species. We also conclude that many relatively abundant populations are indigenous and well-established in the area.

  20. Impact of UV Radiation on Bacterioplankton Community Composition†

    Science.gov (United States)

    Winter, Christian; Moeseneder, Markus M.; Herndl, Gerhard J.

    2001-01-01

    The potential effect of UV radiation on the composition of coastal marine bacterioplankton communities was investigated. Dilution cultures with seawater collected from the surface mixed layer of the coastal North Sea were exposed to different ranges of natural or artificial solar radiation for up to two diurnal cycles. The composition of the bacterioplankton community prior to exposure was compared to that after exposure to the different radiation regimes using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA and 16S ribosomal DNA. Only minor changes in the composition of the bacterial community in the different radiation regimes were detectable. Sequencing of selected bands obtained by DGGE revealed that some species of the Flexibacter-Cytophaga-Bacteroides (FCB) group were sensitive to UV radiation while other species of the FCB group were resistant. Overall, only up to ≈10% of the operational taxonomic units present in the dilution cultures appeared to be affected by UV radiation. Thus, we conclude that UV radiation has little effect on the composition of coastal marine bacterioplankton communities in the North Sea. PMID:11157229

  1. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake

    Science.gov (United States)

    Urbach, Ena; Vergin, Kevin L.; Morse, Ariel

    2001-01-01

    The bacterioplankton assemblage in Crater Lake, Oregon (U.S.A.), is different from communities found in other oxygenated lakes, as demonstrated by four small subunit ribosomal ribonucleic acid (SSU rRNA) gene clone libraries and oligonucleotide probe hybridization to RNA from lake water. Populations in the euphotic zone of this deep (589 m), oligotrophic caldera lake are dominated by two phylogenetic clusters of currently uncultivated bacteria: CL120-10, a newly identified cluster in the verrucomicrobiales, and ACK4 actinomycetes, known as a minor constituent of bacterioplankton in other lakes. Deep-water populations at 300 and 500 m are dominated by a different pair of uncultivated taxa: CL500-11, a novel cluster in the green nonsulfur bacteria, and group I marine crenarchaeota. b-Proteobacteria, dominant in most other freshwater environments, are relatively rare in Crater Lake (bacterioplankton populations may include low concentrations of available trace metals and dissolved organic matter, chemistry of infiltrating hydrothermal waters, and irradiation by high levels of ultraviolet light.

  2. Temporal dynamics of bacterioplankton communities in response to excessive nitrate loading in oligotrophic coastal water.

    Science.gov (United States)

    Dong, Zhiying; Wang, Kai; Chen, Xinxin; Zhu, Jianlin; Hu, Changju; Zhang, Demin

    2017-01-30

    Coastal ecosystems are receiving elevated loads of nitrogen (N) from anthropogenic sources. Understanding how excessive N loading affects bacterioplankton communities is critical to predict the biodiversity of marine ecosystems under conditions of eutrophic disturbance. In this study, oligotrophic coastal water microcosms were perturbed with nitrate in two loading modes: 1) one-off loading at the beginning of the incubation period; and 2) periodic loading every two days for 16days. Turnover in the bacterioplankton community was investigated by 16S rDNA gene amplicon sequencing. The alpha diversity of the bacterioplankton community showed great temporal variability and similar responses to the different treatments. Bacterioplankton community composition was influenced remarkably by time and N loading mode. The effects of N loading on bacterioplankton community structure showed obvious temporal variation, probably because of the great temporal variation in environmental parameters. This study provides insights into the effects of N pollution in anthropogenically perturbed marine environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Bacterioplankton carbon cycling along the Subtropical Frontal Zone off New Zealand

    Science.gov (United States)

    Baltar, Federico; Stuck, Esther; Morales, Sergio; Currie, Kim

    2015-06-01

    Marine heterotrophic bacterioplankton (Bacteria and Archaea) play a central role in ocean carbon cycling. As such, identifying the factors controlling these microbial populations is crucial to fully understanding carbon fluxes. We studied bacterioplankton activities along a transect crossing three water masses (i.e., Subtropical waters [STW], Sub-Antarctic waters [SAW] and neritic waters [NW]) with contrasting nutrient regimes across the Subtropical Frontal Zone. In contrast to bacterioplankton production and community respiration, bacterioplankton respiration increased in the offshore SAW, causing a seaward increase in the contribution of bacteria to community respiration (from 7% to 100%). Cell-specific bacterioplankton respiration also increased in SAW, but cell-specific production did not, suggesting that prokaryotic cells in SAW were investing more energy towards respiration than growth. This was reflected in a 5-fold decline in bacterioplankton growth efficiency (BGE) towards SAW. One way to explain this decrease in BGE could be due to the observed reduction in phytoplankton biomass (and presumably organic matter concentration) towards SAW. However, this would not explain why bacterioplankton respiration was highest in SAW, where phytoplankton biomass was lowest. Another factor affecting BGE could be the iron limitation characteristic of high-nutrient low-chlorophyll (HNLC) regions like SAW. Our field-study based evidences would agree with previous laboratory experiments in which iron stress provoked a decrease in BGE of marine bacterial isolates. Our results suggest that there is a strong gradient in bacterioplankton carbon cycling rates along the Subtropical Frontal Zone, mainly due to the HNLC conditions of SAW. We suggest that Fe-induced reduction of BGE in HNLC regions like SAW could be relevant in marine carbon cycling, inducing bacterioplankton to act as a link or a sink of organic carbon by impacting on the quantity of organic carbon they incorporate

  4. Coastal bacterioplankton community dynamics in response to a natural disturbance.

    Directory of Open Access Journals (Sweden)

    Sara K Yeo

    Full Text Available In order to characterize how disturbances to microbial communities are propagated over temporal and spatial scales in aquatic environments, the dynamics of bacterial assemblages throughout a subtropical coastal embayment were investigated via SSU rRNA gene analyses over an 8-month period, which encompassed a large storm event. During non-perturbed conditions, sampling sites clustered into three groups based on their microbial community composition: an offshore oceanic group, a freshwater group, and a distinct and persistent coastal group. Significant differences in measured environmental parameters or in the bacterial community due to the storm event were found only within the coastal cluster of sampling sites, and only at 5 of 12 locations; three of these sites showed a significant response in both environmental and bacterial community characteristics. These responses were most pronounced at sites close to the shoreline. During the storm event, otherwise common bacterioplankton community members such as marine Synechococcus sp. and members of the SAR11 clade of Alphaproteobacteria decreased in relative abundance in the affected coastal zone, whereas several lineages of Gammaproteobacteria, Betaproteobacteria, and members of the Roseobacter clade of Alphaproteobacteria increased. The complex spatial patterns in both environmental conditions and microbial community structure related to freshwater runoff and wind convection during the perturbation event leads us to conclude that spatial heterogeneity was an important factor influencing both the dynamics and the resistance of the bacterioplankton communities to disturbances throughout this complex subtropical coastal system. This heterogeneity may play a role in facilitating a rapid rebound of regions harboring distinctly coastal bacterioplankton communities to their pre-disturbed taxonomic composition.

  5. Latitudinal patterns in the abundance of major marine bacterioplankton groups

    DEFF Research Database (Denmark)

    Wietz, Matthias; Gram, Lone; Jørgensen, Bo

    2010-01-01

    This study describes the abundance of major marine bacterioplankton taxa and two bacterial genera (Pseudoalteromonas and Vibrio) in surface seawater at 24 stations around the world. Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH) showed that Alphaproteobacteria (average...... relative abundance 37%, average absolute abundance 3.7×105 cells mL-1) including SAR11 (30%/3×105), Gammaproteobacteria (14%/1.2×105), and Bacteroidetes (12%/1.3×105) globally dominated the bacterioplankton. The SAR86 clade (4.6%/4.1×104) and Actinobacteria (4.5%/4×104) were detected ubiquitously, whereas...... Archaea were scarce (0.6%/4.2×103). The Roseobacter clade (averaging 3.8%/3.5×104), Pseudoalteromonas (2.6%/2.1×104), and Vibrio (1.5%/1.3×104) showed cosmopolitan occurrence. Principal Component Analysis revealed a latitudinal pattern in bacterial abundances by clustering samples according to lower...

  6. Structuring of bacterioplankton diversity in a large tropical bay.

    Directory of Open Access Journals (Sweden)

    Gustavo B Gregoracci

    Full Text Available Structuring of bacterioplanktonic populations and factors that determine the structuring of specific niche partitions have been demonstrated only for a limited number of colder water environments. In order to better understand the physical chemical and biological parameters that may influence bacterioplankton diversity and abundance, we examined their productivity, abundance and diversity in the second largest Brazilian tropical bay (Guanabara Bay, GB, as well as seawater physical chemical and biological parameters of GB. The inner bay location with higher nutrient input favored higher microbial (including vibrio growth. Metagenomic analysis revealed a predominance of Gammaproteobacteria in this location, while GB locations with lower nutrient concentration favored Alphaproteobacteria and Flavobacteria. According to the subsystems (SEED functional analysis, GB has a distinctive metabolic signature, comprising a higher number of sequences in the metabolism of phosphorus and aromatic compounds and a lower number of sequences in the photosynthesis subsystem. The apparent phosphorus limitation appears to influence the GB metagenomic signature of the three locations. Phosphorus is also one of the main factors determining changes in the abundance of planktonic vibrios, suggesting that nutrient limitation can be observed at community (metagenomic and population levels (total prokaryote and vibrio counts.

  7. Inoculation history affects community composition in experimental freshwater bacterioplankton communities.

    Science.gov (United States)

    Rummens, Koen; De Meester, Luc; Souffreau, Caroline

    2018-03-01

    Priority effects occur when the arrival order of species or genotypes has a lasting effect on community or population structure. For freshwater bacteria, priority effects have been shown experimentally among individual species, but no experiments have been performed using complex natural communities. We investigated experimentally whether a foreign bacterioplankton community influences the community assembly trajectory when inoculated prior to the local community, whether inoculation time lag affects priority effects, and how the individual OTUs responded to time lag. Two bacterioplankton communities from dissimilar ponds were inoculated into one of the natural media with a time lag of 0, 12, 36 or 60 h, giving advantage in time to the foreign community. All three time lags resulted in priority effects, as the final community composition of these treatments differed significantly from that of the treatment with no time lag, but compositional shifts were not linear to inoculation time lag. The responses of individual OTUs to time lag were highly diverse and not predictable based on their immigration history or relative abundance in the inocula or control. The observed impact and complexity of priority effects in multispecies systems emphasize the importance of this process in structuring both natural and industrial bacterial communities. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Species-Specific Associations Between Bacterioplankton and Photosynthetic Picoeukaryotes

    Science.gov (United States)

    Farnelid, H.; Turk-Kubo, K.; Zehr, J. P.

    2016-02-01

    Photosynthetic picoeukaryotes are significant contributors to marine primary productivity. Interactions between marine bacterioplankton and picoeukaryotes frequently occur and can have large biogeochemical impacts. Currently, partly due to methodological difficulties for studying microbial associations in situ, these ecological interactions are poorly characterized. Here we use flow cytometry sorting to identify novel bacterial phylotypes found in physical association with photosynthetic picoeukaryotes. Samples were collected on eight occasions at the Santa Cruz wharf on Monterey Bay during summer and fall, 2014. The phylogeny of associated microbes was assessed through clone libraries and Illumina MiSeq sequencing of amplicons of the 16S rRNA gene. In addition, 16 bacterial isolates comprised of 14 taxa were obtained from sorted photosynthetic picoeukaryote cells. The most frequently detected bacterioplankton phyla were Alphaproteobacteria, Bacteriodetes, and Gammaproteobacteria. The sequences from the sorted populations were a community distinct from the unsorted seawater samples suggesting species-specific functional associations. These species-specific patterns were further supported by re-occurring patterns between replicates and sampling dates. The finding of sequences from the free-living genera Synechococcus and Pelagibacter also suggest that photosynthetic picoeukaryotes can be bacterivores, possibly feeding on some of the most numerically abundant bacteria. The results show that specific bacterial phylotypes are found in association with photosynthetic picoeukaryotes. Taxonomic identification of these associations is a prerequisite for further characterizing the interactions, their metabolic pathways and ecological functions.

  9. In situ interactions between photosynthetic picoeukaryotes and bacterioplankton in the Atlantic Ocean: evidence for mixotrophy.

    Science.gov (United States)

    Hartmann, Manuela; Zubkov, Mikhail V; Scanlan, Dave J; Lepère, Cécile

    2013-12-01

    Heterotrophic bacterioplankton, cyanobacteria and phototrophic picoeukaryotes (bacterioplankton is often attributed to aplastidic protists, recent evidence suggests that phototrophic picoeukaryotes could be important bacterivores. Here, we present direct visual evidence from the surface mixed layer of the Atlantic Ocean that bacterioplankton are internalized by phototrophic picoeukaryotes. In situ interactions of phototrophic picoeukaryotes and bacterioplankton (specifically Prochlorococcus cyanobacteria and the SAR11 clade) were investigated using a combination of flow cytometric cell sorting and dual tyramide signal amplification fluorescence in situ hybridization. Using this method, we observed plastidic Prymnesiophyceae and Chrysophyceae cells containing Prochlorococcus, and to a lesser extent SAR11 cells. These microscopic observations of in situ microbial trophic interactions demonstrate the frequency and likely selectivity of phototrophic picoeukaryote bacterivory in the surface mixed layer of both the North and South Atlantic subtropical gyres and adjacent equatorial region, broadening our views on the ecological role of the smallest oceanic plastidic protists. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. BACTERIOPLANKTON DYNAMICS IN NORTHERN SAN FRANCISCO BAY: ROLE OF PARTICLE ASSOCIATION AND SEASONAL FRESHWATER FLOW

    Science.gov (United States)

    Bacterioplankton abundance and metabolic characteristics were observed in northern San Francisco Bay, California, during spring and summer 1996 at three sites: Central Bay, Suisun Bay, and the Sacramento River. These sites spanned a salinity gradient from marine to freshwater, an...

  11. Tidal switch on metabolic activity: Salinity induced responses on bacterioplankton metabolic capabilities in a tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Thottathil, S.D.; Balachandran, K.K.; Jayalakshmy, K.V.; Gupta, G.V.M.; Nair, S.

    Biolog plates were used to study the changes in the metabolic capabilities of bacterioplankton over a complete tidal cycle in a tropical ecosystem (Cochin Estuary, Kerala, India) along southwest coast of India. The pattern of utilization of carbon...

  12. Strong variability in bacterioplankton abundance and production in central and western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes; Ramaiah; Paul, J.T.; Sardessai; Jyothibabu; Gauns, M.

    to low or no nutrient injections into the surface, primary production in Bay of Bengal is reportedly low. As a consequence, the Bay of Bengal is considered as a region of low biological productivity. Along with many biological parameters, bacterioplankton...

  13. The sensitivity and stability of bacterioplankton community structure to wind-wave turbulence in a large, shallow, eutrophic lake

    OpenAIRE

    Zhou, Jian; Qin, Boqiang; Han, Xiaoxia; Jin, Decai; Wang, Zhiping

    2017-01-01

    Lakes are strongly influenced by wind-driven wave turbulence. The direct physical effects of turbulence on bacterioplankton community structure however, have not yet been addressed and remains poorly understood. To examine the stability of bacterioplankton communities under turbulent conditions, we simulated conditions in the field to evaluate the responses of the bacterioplankton community to physical forcing in Lake Taihu, using high-throughput sequencing and flow cytometry. A total of 4,52...

  14. Coupling bacterioplankton populations and environment to community function in coastal temperate waters

    DEFF Research Database (Denmark)

    Traving, S. J.; Bentzon-Tilia, Mikkel; Knudsen-Leerbeck, H.

    2016-01-01

    Bacterioplankton play a key role in marine waters facilitating processes important for carbon cycling. However, the influence of specific bacterial populations and environmental conditions on bacterioplankton community performance remains unclear. The aim of the present study was to identify...... surface waters over a full year indicated that specific bacterial populations were linked to measured functions. Namely, Synechococcus (Cyanobacteria) was strongly correlated with protease activity. Both function and community composition showed seasonal variation. However, the pattern of substrate...

  15. Bacterioplankton Populations within the Oxygen Minimum Zone of the Sargasso Sea

    Science.gov (United States)

    Schuler, G.; Parsons, R. J.; Johnson, R. J.

    2016-02-01

    Oxygen minimum zones are present throughout the world's oceans, and occur at depths between 200 to 1000m. Heterotrophic bacteria reduce the dissolved oxygen within this layer through respiration, while metabolizing falling particles. This report studied the bacterioplankton in the oxygen minimum zone at the BATS (Bermuda Atlantic Times-series Study) site from July 2014 until November 2014. Total bacterioplankton populations were enumerated through direct counts. In the transitional zone (400m-800m) of the oxygen minimum zone, a secondary bacterioplankton peak formed. This study used FISH (Fluorescent in situ hybridization) and CARD-FISH (Catalyzed Reporter Deposition-Fluorescent in situ hybridization) to enumerate specific bacterial and archaeal taxa. Crenarchaeota (including Thaumarchaeota) increased in abundance within the upper oxycline. Thaumarchaeota have the ammonia monooxygenase gene that oxidizes ammonium into nitrite in low oxygen conditions. Amplification of the amoA gene confirmed that ammonia oxidizing archaea (AOA) were present within the OMZ. Using Terminal Restriction Fragment Length Polymorphism (T-RFLP), the bacterial community structure showed high similarity based depth zones (0-80m, 160-600m, and 800-4500m). Niskin experiments determined that water collected at 800m had an exponential increase in bacterioplankton over time. While experimental design did not allow for oxygen levels to be maintained, the bacterioplankton community was predominantly bacteria with eubacteria positive cells making up 89.3% of the of the total bacterioplankton community by day 34. Improvements to the experimental design are required to determine which specific bacterial taxa caused this increase at 800m. This study suggests that there are factors other than oxygen influencing bacterioplankton populations at the BATS site, and more analysis is needed once the BATS data is available to determine the key drivers of bacterioplankton dynamics within the BATS OMZ.

  16. Seasonality of freshwater bacterioplankton diversity in two tropical shallow lakes from the Brazilian Atlantic Forest.

    Science.gov (United States)

    Ávila, Marcelo P; Staehr, Peter A; Barbosa, Francisco A R; Chartone-Souza, Edmar; Nascimento, Andréa M A

    2017-01-01

    Bacteria are highly important for the cycling of organic and inorganic matter in freshwater environments; however, little is known about the diversity of bacterioplankton in tropical systems. Studies on carbon and nutrient cycling in tropical lakes suggest a very different seasonality from that of temperate climates. Here, we used 16S rRNA gene next-generation sequencing (NGS) to investigate seasonal changes in bacterioplankton communities of two tropical lakes, which differed in trophic status and mixing regime. Our findings revealed seasonally and depth-wise highly dynamic bacterioplankton communities. Differences in richness and structure appeared strongly related to the physicochemical characteristics of the water column, especially phosphate, pH and oxygen. Bacterioplankton communities were dominated by common taxonomic groups, such as Synechococcus and Actinobacteria acI, as well as rare and poorly characterized taxa such as 'Candidatus Methylacidiphilum' (Verrucomicrobia). Stratification and oxygen depletion during the rainy season promoted the occurrence of anoxygenic phototrophic and methanotrophic bacteria important for carbon and nutrient cycling. Differences in lake mixing regime were associated with seasonal beta diversity. Our study is the first attempt to use NGS for cataloging the diversity of bacterioplankton communities in Brazilian lakes and thus contributes to the ongoing worldwide endeavor to characterize freshwater lake bacterioplankton signatures. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Phytoplankton Communities Exhibit a Stronger Response to Environmental Changes than Bacterioplankton in Three Subtropical Reservoirs.

    Science.gov (United States)

    Liu, Lemian; Yang, Jun; Lv, Hong; Yu, Xiaoqing; Wilkinson, David M; Yang, Jun

    2015-09-15

    The simultaneous analysis of multiple components of ecosystems is crucial for comprehensive studies of environmental changes in aquatic ecosystems, but such studies are rare. In this study, we analyzed simultaneously the bacterioplankton and phytoplankton communities in three Chinese subtropical reservoirs and compared the response of these two components to seasonal environmental changes. Time-lag analysis indicated that the temporal community dynamics of both bacterioplankton and phytoplankton showed significant directional changes, and variance partitioning suggested that the major reason was the gradual improvement of reservoir water quality from middle eutrophic to oligo-mesotrophic levels during the course of our study. In addition, we found a higher level of temporal stability or stochasticity in the bacterioplankton community than in the phytoplankton community. Potential explanations are that traits associated with bacteria, such as high abundance, widespread dispersal, potential for rapid growth rates, and rapid evolutionary adaptation, may underlie the different stability or stochasticity of bacterioplankton and phytoplankton communities to the environmental changes. In addition, the indirect response of bacterioplankton to nitrogen and phosphorus may result in the fact that environmental deterministic selection was stronger for the phytoplankton than for the bacterioplankton communities.

  18. Elevated pCO2 enhances bacterioplankton removal of organic carbon.

    Science.gov (United States)

    James, Anna K; Passow, Uta; Brzezinski, Mark A; Parsons, Rachel J; Trapani, Jennifer N; Carlson, Craig A

    2017-01-01

    Factors that affect the removal of organic carbon by heterotrophic bacterioplankton can impact the rate and magnitude of organic carbon loss in the ocean through the conversion of a portion of consumed organic carbon to CO2. Through enhanced rates of consumption, surface bacterioplankton communities can also reduce the amount of dissolved organic carbon (DOC) available for export from the surface ocean. The present study investigated the direct effects of elevated pCO2 on bacterioplankton removal of several forms of DOC ranging from glucose to complex phytoplankton exudate and lysate, and naturally occurring DOC. Elevated pCO2 (1000-1500 ppm) enhanced both the rate and magnitude of organic carbon removal by bacterioplankton communities compared to low (pre-industrial and ambient) pCO2 (250 -~400 ppm). The increased removal was largely due to enhanced respiration, rather than enhanced production of bacterioplankton biomass. The results suggest that elevated pCO2 can increase DOC consumption and decrease bacterioplankton growth efficiency, ultimately decreasing the amount of DOC available for vertical export and increasing the production of CO2 in the surface ocean.

  19. A comparative hierarchical analysis of bacterioplankton and biofilm metacommunity structure in an interconnected pond system.

    Science.gov (United States)

    Souffreau, Caroline; Busschaert, Pieter; Denis, Carla; Van Wichelen, Jeroen; Lievens, Bart; Vyverman, Wim; De Meester, Luc

    2018-03-01

    It is unknown whether bacterioplankton and biofilm communities are structured by the same ecological processes, and whether they influence each other through continuous dispersal (known as mass effects). Using a hierarchical sampling approach we compared the relative importance of ecological processes structuring the dominant fraction (relative abundance ≥0.1%) of bacterioplankton and biofilm communities from three microhabitats (open water, Nuphar and Phragmites sites) at within- and among-pond scale in a set of 14 interconnected shallow ponds. Our results demonstrate that while bacterioplankton and biofilm communities are highly distinct, a similar hierarchy of ecological processes is acting on them. For both community types, most variation in community composition was determined by pond identity and environmental variables, with no effect of space. The highest β-diversity within each community type was observed among ponds, while microhabitat type (Nuphar, Phragmites, open water) significantly influenced biofilm communities but not bacterioplankton. Mass effects among bacterioplankton and biofilm communities were not detected, as suggested by the absence of within-site covariation of biofilm and bacterioplankton communities. Both biofilm and plankton communities were thus highly structured by environmental factors (i.e., species sorting), with among-lake variation being more important than within-lake variation, whereas dispersal limitation and mass effects were not observed. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Contrasting diversity of epibiotic bacteria and surrounding bacterioplankton of a common submerged macrophyte, Potamogeton crispus, in freshwater lakes.

    Science.gov (United States)

    He, Dan; Ren, Lijuan; Wu, Qinglong L

    2014-12-01

    Epibiotic bacteria on surfaces of submerged macrophytes play important roles in the ecological processes of shallow lakes. However, their community ecology and dynamics are far from understood in comparison with those of bacterioplankton. Here, we conducted a comparative study of the species diversity and composition of epibiotic bacterial and the surrounding bacterioplankton communities of a common submerged macrophyte, Potamogeton crispus, in 12 lakes at a regional scale in China. We found that in different freshwater lakes, epibiotic bacteria possessed higher taxonomic richness than bacterioplankton did. There existed a marked divergence in the community structure between epibiotic bacteria and bacterioplankton. Alphaproteobacteria was the most dominant group for epibiotic bacteria, whereas Actinobacteria dominated bacterioplankton. Although variations in both bacterioplankton and epibiotic bacterial community compositions in different lakes were better explained by environmental than spatial factors, both environment and space had more intensified effects on epibiotic bacteria. This implied more complex and diverse 'microhabitats' for epibiotic bacteria on surfaces of submerged macrophytes, which may lead to higher variations of epibiotic bacteria than bacterioplankton. Our study suggested that epibiotic bacteria exhibited higher diversity and distinct community composition than the surrounding bacterioplankton. More attention should be focused on the productive and diverse microbial habitats on submerged macrophytes. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Quantifying the effects of geographical and environmental factors on distribution of stream bacterioplankton within nature reserves of Fujian, China.

    Science.gov (United States)

    Wang, Yongming; Yang, Jun; Liu, Lemian; Yu, Zheng

    2015-07-01

    Bacterioplankton are important components of freshwater ecosystems and play essential roles in ecological functions and processes; however, little is known about their geographical distribution and the factors influencing their ecology, especially in stream ecosystems. To examine how geographical and environmental factors affect the composition of bacterioplankton communities, we used denaturing gradient gel electrophoresis and clone sequencing to survey bacterioplankton communities in 31 samples of streamwater from seven nature reserves in Fujian province, southeast China. Our results revealed that dominant bacterioplankton communities exhibited a distinct geographical pattern. Further, we provided evidence for distance decay relationships in bacterioplankton community similarity and found similar community gradients in response to elevation and latitude. Both redundancy analyses and Mantel tests showed that bacterioplankton community composition was significantly correlated with both environmental (electrical conductivity, total phosphorus, and PO4-P) and geographical factors (latitude, longitude, and elevation). Variance partitioning further showed that the joint effect of geographical and environmental factors explained the largest proportion of the variation in distribution of bacterioplankton communities (13.6 %), followed by purely geographical factors (11.2 %), and purely environmental factors (0.6 %). The Betaproteobacteria were the most common taxa in the streams, followed by Firmicutes and Gammaproteobacteria. Therefore, our results suggest that the biogeographical patterns of stream bacterioplankton communities across the Fujian nature reserves are more influenced by geographical factors than by local physicochemical properties.

  2. Detection of marine and freshwater bacterioplankton in immersed victims: Post-mortem bacterial invasion does not readily occur.

    Science.gov (United States)

    Kakizaki, Eiji; Kozawa, Shuji; Imamura, Nahoko; Uchiyama, Taketo; Nishida, Sho; Sakai, Masahiro; Yukawa, Nobuhiro

    2011-09-10

    We previously applied our method of detecting marine or freshwater bacterioplankton (bacteria) in the blood of immersed victims as a marker of drowning. However, we did not confirm the absence of post-mortem bacterial invasion during immersion. Here we examined the nature of bacterioplankton in blood samples from 21 immersed and 4 non-immersed cadavers. We found only freshwater bacterioplankton in the blood of two victims that were retrieved from the sea or an estuary inhabited by marine bacterioplankton even though one victim was highly putrefied. The results of diatom testing suggested that these two victims had drowned in fresh or brackish water with low salinity and then flowed out to the estuary or the sea. Two others were submerged in water, but representative bacterioplankton were undetectable in their blood although one victim was highly putrefied. Autopsy findings and the results of diatom tests did not indicate that the cause of death was drowning. As in previous studies, we identified freshwater bacterioplankton in the blood of seven other victims that had drowned in freshwater, marine bacterioplankton in the blood of four victims that had drowned in seawater and none in four victims found on land that had died by means other than drowning. Bacterioplankton in the blood of drowned victims appears to reflect the type of water aspirated and blood does not become easily contaminated with bacteria post-mortem even in decomposed bodies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Thermal discharge-created increasing temperatures alter the bacterioplankton composition and functional redundancy.

    Science.gov (United States)

    Xiong, Jinbo; Xiong, Shangling; Qian, Peng; Zhang, Demin; Liu, Lian; Fei, Yuejun

    2016-12-01

    Elevated seawater temperature has altered the coupling between coastal primary production and heterotrophic bacterioplankton respiration. This shift, in turn, could influence the feedback of ocean ecosystem to climate warming. However, little is known about how natural bacterioplankton community responds to increasing seawater temperature. To investigate warming effects on the bacterioplankton community, we collected water samples from temperature gradients (ranged from 15.0 to 18.6 °C) created by a thermal flume of a coal power plant. The results showed that increasing temperatures significantly stimulated bacterial abundance, grazing rate, and altered bacterioplankton community compositions (BCCs). The spatial distribution of bacterioplankton community followed a distance similarity decay relationship, with a turnover of 0.005. A variance partitioning analysis showed that temperature directly constrained 2.01 % variation in BCCs, while temperature-induced changes in water geochemical and grazing rate indirectly accounted for 4.03 and 12.8 % of the community variance, respectively. Furthermore, the relative abundances of 24 bacterial families were linearly increased or decreased (P < 0.05 in all cases) with increasing temperatures. Notably, the change pattern for a given bacterial family was in concert with its known functions. In addition, community functional redundancy consistently decreased along the temperature gradient. This study demonstrates that elevated temperature, combined with substrate supply and trophic interactions, dramatically alters BCCs, concomitant with decreases in functional redundancy. The responses of sensitive assemblages are temperature dependent, which could indicate temperature departures.

  4. Coupling Bacterioplankton Populations and Environment to Community Function in Coastal Temperate Waters.

    Science.gov (United States)

    Traving, Sachia J; Bentzon-Tilia, Mikkel; Knudsen-Leerbeck, Helle; Mantikci, Mustafa; Hansen, Jørgen L S; Stedmon, Colin A; Sørensen, Helle; Markager, Stiig; Riemann, Lasse

    2016-01-01

    Bacterioplankton play a key role in marine waters facilitating processes important for carbon cycling. However, the influence of specific bacterial populations and environmental conditions on bacterioplankton community performance remains unclear. The aim of the present study was to identify drivers of bacterioplankton community functions, taking into account the variability in community composition and environmental conditions over seasons, in two contrasting coastal systems. A Least Absolute Shrinkage and Selection Operator (LASSO) analysis of the biological and chemical data obtained from surface waters over a full year indicated that specific bacterial populations were linked to measured functions. Namely, Synechococcus ( Cyanobacteria ) was strongly correlated with protease activity. Both function and community composition showed seasonal variation. However, the pattern of substrate utilization capacity could not be directly linked to the community dynamics. The overall importance of dissolved organic matter (DOM) parameters in the LASSO models indicate that bacterioplankton respond to the present substrate landscape, with a particular importance of nitrogenous DOM. The identification of common drivers of bacterioplankton community functions in two different systems indicates that the drivers may be of broader relevance in coastal temperate waters.

  5. Spatiotemporal distribution of bacterioplankton and bacteriobenthos in the Amur Liman and adjacent sea areas

    Science.gov (United States)

    Karetnikova, E. A.; Garetova, L. A.

    2015-09-01

    Data on the abundance and the ecological-trophic structure of bacterioplankton and bacteriobenthos communities in the Amur Liman and adjacent waters collected in June 2007 have been compared to the relevant data of 2006. Interyear changes of bacterioplankton abundance have been found to depend on the intensity of the Amur River runoff. Correlation analysis has revealed a negative dependence of the abundance of bacterioplankton, bacteriobenthos, and their ecological-trophic groups on water salinity, as well as direct relations between these biotic components and organic matter in water and bottom sediments. The microbiological indicators of water quality ranked the studied waters as classes III-IV in 2006 and as classes II-III in 2007. The high total abundance of bacteriobenthos (109-1010 cells/g) is a result of the functioning of a marginal filter rather than the direct pollution of the liman.

  6. Global patterns of marine bacterioplankton diversity and characterisation of bioactive Vibrionaceae isolates

    DEFF Research Database (Denmark)

    Wietz, Matthias

    The purpose of the present study was to analyze the composition of marine bacterial communities around the world, and to investigate bacterial isolates regarding the production of antibiotics. This included molecular analyses of marine bacterioplankton, as well as culture-based studies of marine...... bacterial isolates with antagonistic activity. The work was based on samples collected during the Galathea 3 and LOMROG-II marine research expeditions that have explored many different oceanic regions worldwide. A molecular survey of marine bacterioplankton at 24 worldwide stations investigated...... not produce andrimid and have different biosynthetic temperature optima suggested that V. coralliilyticus may comprise different subspecies with different niches. In summary, the present study shows biogeographical patterns of marine bacterioplankton on a global scale. In addition, the thesis work has...

  7. Distribution, Community Composition, and Potential Metabolic Activity of Bacterioplankton in an Urbanized Mediterranean Sea Coastal Zone.

    Science.gov (United States)

    Richa, Kumari; Balestra, Cecilia; Piredda, Roberta; Benes, Vladimir; Borra, Marco; Passarelli, Augusto; Margiotta, Francesca; Saggiomo, Maria; Biffali, Elio; Sanges, Remo; Scanlan, David J; Casotti, Raffaella

    2017-09-01

    Bacterioplankton are fundamental components of marine ecosystems and influence the entire biosphere by contributing to the global biogeochemical cycles of key elements. Yet, there is a significant gap in knowledge about their diversity and specific activities, as well as environmental factors that shape their community composition and function. Here, the distribution and diversity of surface bacterioplankton along the coastline of the Gulf of Naples (GON; Italy) were investigated using flow cytometry coupled with high-throughput sequencing of the 16S rRNA gene. Heterotrophic bacteria numerically dominated the bacterioplankton and comprised mainly Alphaproteobacteria , Gammaproteobacteria , and Bacteroidetes Distinct communities occupied river-influenced, coastal, and offshore sites, as indicated by Bray-Curtis dissimilarity, distance metric (UniFrac), linear discriminant analysis effect size (LEfSe), and multivariate analyses. The heterogeneity in diversity and community composition was mainly due to salinity and changes in environmental conditions across sites, as defined by nutrient and chlorophyll a concentrations. Bacterioplankton communities were composed of a few dominant taxa and a large proportion (92%) of rare taxa (here defined as operational taxonomic units [OTUs] accounting for bacterioplankton in coastal zones is of critical importance, considering that these areas are highly productive and anthropogenically impacted. Their richness and evenness, as well as their potential activity, are very important to assess ecosystem health and functioning. Here, we investigated bacterial distribution, community composition, and potential metabolic activity in the GON, which is an ideal test site due to its heterogeneous environment characterized by a complex hydrodynamics and terrestrial inputs of varied quantities and quality. Our study demonstrates that bacterioplankton communities in this region are highly diverse and strongly regulated by a combination of

  8. Investigating monsoon and post-monsoon variabilities of bacterioplankton communities in a mangrove ecosystem.

    Science.gov (United States)

    Ghosh, Anwesha; Bhadury, Punyasloke

    2018-02-01

    In mangrove environments, bacterioplankton communities constitute an important component of aquatic biota and play a major role in ecosystem processes. Variability of bacterioplankton communities from Sundarbans mangrove, located in the Indian subcontinent in South Asia and sits on the apex of Bay of Bengal, was investigated over monsoon and post-monsoon seasons. The study was undertaken in two stations in Sundarbans using 16S rRNA clone library and Illumina MiSeq approaches with focus on the functionally important members that participate in coastal biogeochemical cycling. Out of 544 sequenced clones, Proteobacteria dominated the study area (373 sequences) with persistence of two major classes, namely, Gammaproteobacteria and Alphaproteobacteria across both monsoon and post-monsoon seasons in both stations. Several sequences belonging to Sphingomonadales, Chromatiales, Alteromonadales, Oceanospirillales, and Bacteroidetes were encountered that are known to play important roles in coastal carbon cycling. Some sequences showed identity with published uncultured Planctomycetes and Chloroflexi highlighting their role in nitrogen cycling. The detection of two novel clades highlighted the existence of indigenous group of bacterioplankton that may play important roles in this ecosystem. The eubacterial V3-V4 region from environmental DNA extracted from the above two stations, followed by sequencing in Illumina MiSeq system, was also targeted in the study. A congruency between the clone library and Illumina approaches was observed. Strong variability in bacterioplankton community structure was encountered at a seasonal scale in link with precipitation. Drastic increase in sediment associated bacteria such as members of Firmicutes and Desulfovibrio was found in monsoon hinting possible resuspension of sediment-dwelling bacteria into the overlying water column. Principal component analysis (PCA) revealed dissolved ammonium and dissolved nitrate to account for maximum

  9. Energetic differences between bacterioplankton trophic groups and coral reef resistance.

    Science.gov (United States)

    McDole Somera, Tracey; Bailey, Barbara; Barott, Katie; Grasis, Juris; Hatay, Mark; Hilton, Brett J; Hisakawa, Nao; Nosrat, Bahador; Nulton, James; Silveira, Cynthia B; Sullivan, Chris; Brainard, Russell E; Rohwer, Forest

    2016-04-27

    Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance. © 2016 The Author(s).

  10. The sensitivity and stability of bacterioplankton community structure to wind-wave turbulence in a large, shallow, eutrophic lake.

    Science.gov (United States)

    Zhou, Jian; Qin, Boqiang; Han, Xiaoxia; Jin, Decai; Wang, Zhiping

    2017-12-04

    Lakes are strongly influenced by wind-driven wave turbulence. The direct physical effects of turbulence on bacterioplankton community structure however, have not yet been addressed and remains poorly understood. To examine the stability of bacterioplankton communities under turbulent conditions, we simulated conditions in the field to evaluate the responses of the bacterioplankton community to physical forcing in Lake Taihu, using high-throughput sequencing and flow cytometry. A total of 4,520,231 high quality sequence reads and 74,842 OTUs were obtained in all samples with α-proteobacteria, γ-proteobacteria and Actinobacteria being the most dominant taxa. The diversity and structure of bacterioplankton communities varied during the experiment, but were highly similar based on the same time of sampling, suggesting that bacterioplankton communities are insensitive to wind wave turbulence in the lake. This stability could be associated with the traits associated with bacteria. In particular, turbulence favored the growth of bacterioplankton, which enhanced biogeochemical cycling of nutrients in the lake. This study provides a better understanding of bacterioplankton communities in lake ecosystems exposed to natural mixing/disturbances.

  11. pH influences the importance of niche-related and neutral processes in lacustrine bacterioplankton assembly.

    Science.gov (United States)

    Ren, Lijuan; Jeppesen, Erik; He, Dan; Wang, Jianjun; Liboriussen, Lone; Xing, Peng; Wu, Qinglong L

    2015-05-01

    pH is an important factor that shapes the structure of bacterial communities. However, we have very limited information about the patterns and processes by which overall bacterioplankton communities assemble across wide pH gradients in natural freshwater lakes. Here, we used pyrosequencing to analyze the bacterioplankton communities in 25 discrete freshwater lakes in Denmark with pH levels ranging from 3.8 to 8.8. We found that pH was the key factor impacting lacustrine bacterioplankton community assembly. More acidic lakes imposed stronger environmental filtering, which decreased the richness and evenness of bacterioplankton operational taxonomic units (OTUs) and largely shifted community composition. Although environmental filtering was determined to be the most important determinant of bacterioplankton community assembly, the importance of neutral assembly processes must also be considered, notably in acidic lakes, where the species (OTU) diversity was low. We observed that the strong effect of environmental filtering in more acidic lakes was weakened by the enhanced relative importance of neutral community assembly, and bacterioplankton communities tended to be less phylogenetically clustered in more acidic lakes. In summary, we propose that pH is a major environmental determinant in freshwater lakes, regulating the relative importance and interplay between niche-related and neutral processes and shaping the patterns of freshwater lake bacterioplankton biodiversity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Bacterioplankton Community Dynamics and Nutrient Availability in a Shallow Well Mixed Estuary of the Northern Gulf of Mexico.

    Science.gov (United States)

    Hoch, M. P.

    2016-02-01

    Sabine Lake Estuary is a shallow, well mixed, tidal lagoon of the Northern Gulf of Mexico. This study defines the bacterioplankton community composition and factors that may influence its variation in Sabine Lake Estuary. Twenty physicochemical parameters, phytoplankton photopigments, and bacterial 16SrDNA sequences were analyzed seasonally from twelve sites ranging from the inflows of Sabine and Neches Rivers to the Sabine Pass outflow. Photopigments were used to estimate phytoplankton groups via CHEMTAX, and bacterioplankton 16SrDNA sequences of 97% similarity were quantified and taxa identified. Nutrient availability experiments were conducted on bacterioplankton. Notable seasonal differences were seen in six of the ten most common (>3% of total sequences) classes of bacterioplankton. Canonical correspondence analysis (CCA) of common classes was used to explore physiochemical parameters and phytoplankton groups influencing variation in the bacterioplankton. Alphaproteobacteria were most abundant throughout the year. Opitutae, Actinobacteria, Sphingobacteria, and Beta-proteobacteria were strongly influenced by conditions with higher TDN, DOC, turbidity, and Chlorophytes during winter when high river discharges reduced salinity. Planctomycetacia were most prevalent during spring and coincide with predominance of Cryptophytes. In summer and fall the aforementioned classes decline, and there is an increase in Synechococcophycideae. Nitrogen was least available to bacterioplankton during summer and fall. Clearer, warmer and more saline conditions with lower DOC reflect tidal movement of seawater into the estuary when river discharges were low, conditions favorable for Synechococcophycidea. Seasonal fluctuations in physicochemical conditions and certain phytoplankton groups influence the variation in the bacterioplankton community in Sabine Lake Estuary.

  13. Shift in bacterioplankton diversity and structure: Influence of anthropogenic disturbances along the Yarlung Tsangpo River on the Tibetan Plateau, China.

    Science.gov (United States)

    Wang, Peifang; Wang, Xun; Wang, Chao; Miao, Lingzhan; Hou, Jun; Yuan, Qiusheng

    2017-10-02

    River systems have critical roles in the natural water environment and the transportation of nutrients. Anthropogenic activities, including wastewater discharge and river damming, raise adverse impacts on ecosystem and continuum of rivers. An increasing amount of attention has been paid to riverine bacterioplankton as they make vital contributions to biogeochemical nutrient cycle. A comprehensive study was conducted on the bacterioplankton community along the Yarlung Tsangpo River, which is the longest plateau river in China and is suffering from various anthropogenic impacts. The results indicated that nutrient variations corresponded to anthropogenic activities, and silica, nitrogen and phosphorus were retained by the dam. River damming influenced the biomass and diversity of the bacterioplankton, but significant alterations in the community structure were not observed between upstream and downstream of the dam. Moreover, the spatial distribution of the bacterioplankton community changed gradually along the river, and the dominant bacterioplankton in the upstream, midstream and downstream portions of the river were Firmicutes, Bacteroidetes and Proteobacteria, respectively. Soluble reactive phosphorus, elevation, ammonium nitrogen, velocity and turbidity were the main environmental factors that shape the bacterioplankton community. Our study offers the first insights into the variation of a bacterioplankton community of a large river in plateau region.

  14. The Effect of Dreissena polymorpha on Bacterioplankton, Nematode Fauna and their Relations to Environmental Factors in Ogosta Reservoir (Danube Basin

    Directory of Open Access Journals (Sweden)

    Kalcheva Hristina

    2016-04-01

    Full Text Available Spatial, seasonal, and annual bacterioplankton dynamics in recently infested by the species Dreissena polymorpha Ogosta Reservoir were studied for the first time during three year period. Bacterioplankton total number was higher in spring in ecotone zones, than in summer at thermocline. NH4-N, PO4-P, turbidity, dissolved oxygen, COD and chlorophyll-a correlate positively, while transparency and Ca2+ negatively with bacteria. Nematode species composition, included 22 species studied (13 rarely found and Rhabditis brevispina new for Bulgaria belonging to nine families. The D. polymorpha impact is positive on nematodes and phytoplankton, negative on zooplankton and bacterioplankton, but weak positive on larger bacteria, rods and attached bacteria.

  15. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks.

    Science.gov (United States)

    Niño-García, Juan Pablo; Ruiz-González, Clara; Del Giorgio, Paul A

    2016-07-01

    Disentangling the mechanisms shaping bacterioplankton communities across freshwater ecosystems requires considering a hydrologic dimension that can influence both dispersal and local sorting, but how the environment and hydrology interact to shape the biogeography of freshwater bacterioplankton over large spatial scales remains unexplored. Using Illumina sequencing of the 16S ribosomal RNA gene, we investigate the large-scale spatial patterns of bacterioplankton across 386 freshwater systems from seven distinct regions in boreal Québec. We show that both hydrology and local water chemistry (mostly pH) interact to shape a sequential structuring of communities from highly diverse assemblages in headwater streams toward larger rivers and lakes dominated by fewer taxa. Increases in water residence time along the hydrologic continuum were accompanied by major losses of bacterial richness and by an increased differentiation of communities driven by local conditions (pH and other related variables). This suggests that hydrology and network position modulate the relative role of environmental sorting and mass effects on community assembly by determining both the time frame for bacterial growth and the composition of the immigrant pool. The apparent low dispersal limitation (that is, the lack of influence of geographic distance on the spatial patterns observed at the taxonomic resolution used) suggests that these boreal bacterioplankton communities derive from a shared bacterial pool that enters the networks through the smallest streams, largely dominated by mass effects, and that is increasingly subjected to local sorting of species during transit along the hydrologic continuum.

  16. Contrasted effects of diversity and immigration on ecological insurance in marine bacterioplankton communities.

    Directory of Open Access Journals (Sweden)

    Thierry Bouvier

    Full Text Available The ecological insurance hypothesis predicts a positive effect of species richness on ecosystem functioning in a variable environment. This effect stems from temporal and spatial complementarity among species within metacommunities coupled with optimal levels of dispersal. Despite its importance in the context of global change by human activities, empirical evidence for ecological insurance remains scarce and controversial. Here we use natural aquatic bacterial communities to explore some of the predictions of the spatial and temporal aspects of the ecological insurance hypothesis. Addressing ecological insurance with bacterioplankton is of strong relevance given their central role in fundamental ecosystem processes. Our experimental set up consisted of water and bacterioplankton communities from two contrasting coastal lagoons. In order to mimic environmental fluctuations, the bacterioplankton community from one lagoon was successively transferred between tanks containing water from each of the two lagoons. We manipulated initial bacterial diversity for experimental communities and immigration during the experiment. We found that the abundance and production of bacterioplankton communities was higher and more stable (lower temporal variance for treatments with high initial bacterial diversity. Immigration was only marginally beneficial to bacterial communities, probably because microbial communities operate at different time scales compared to the frequency of perturbation selected in this study, and of their intrinsic high physiologic plasticity. Such local "physiological insurance" may have a strong significance for the maintenance of bacterial abundance and production in the face of environmental perturbations.

  17. Effects of UV radiation on DNA photodamage and production in bacterioplankton in the coastal Caribbean Sea

    NARCIS (Netherlands)

    Visser, P.M; Snelder, E; Kop, A.J; Boelen, P.; Buma, A.G.J.; van Duyl, F.C

    1999-01-01

    This study focuses on the effects of ultraviolet radiation (UVR) on bacterioplankton. The effect of different parts of the sunlight spectrum on the leucine and thymidine incorporation and on the induction of DNA damage in natural bacterial populations in the coastal Caribbean Sea off Curacao were

  18. Diversity of bacterioplankton in coastal seawaters of Fildes Peninsula, King George Island, Antarctica.

    Science.gov (United States)

    Zeng, Yin-Xin; Yu, Yong; Qiao, Zong-Yun; Jin, Hai-Yan; Li, Hui-Rong

    2014-02-01

    The bacterioplankton not only serves critical functions in marine nutrient cycles, but can also serve as indicators of the marine environment. The compositions of bacterial communities in the surface seawater of Ardley Cove and Great Wall Cove were analyzed using a 16S rRNA multiplex 454 pyrosequencing approach. Similar patterns of bacterial composition were found between the two coves, in which Bacteroidetes, Alphaproteobacteria, and Gammaproteobacteria were the dominant members of the bacterioplankton communities. In addition, a large fraction of the bacterial sequence reads (on average 5.3 % per station) could not be assigned below the domain level. Compared with Ardley Cove, Great Wall Cove showed higher chlorophyll and particulate organic carbon concentrations and exhibited relatively lower bacterial richness and diversity. Inferred metabolisms of summer bacterioplankton in the two coves were characterized by chemoheterotrophy and photoheterotrophy. Results suggest that some cosmopolitan species (e.g., Polaribacter and Sulfitobacter) belonging to a few bacterial groups that usually dominate in marine bacterioplankton communities may have similar ecological functions in similar marine environments but at different geographic locations.

  19. Annual dynamics of North Sea bacterioplankton: seasonal variability superimposes short-term variation.

    Science.gov (United States)

    Lucas, Judith; Wichels, Antje; Teeling, Hanno; Chafee, Meghan; Scharfe, Mirco; Gerdts, Gunnar

    2015-09-01

    The dynamics of coastal marine microbial communities are driven by seasonally changing abiotic and biotic factors as well as by rapidly occurring short-term changes such as river fresh water influxes or phytoplankton blooms. We examined the variability of the free-living bacterioplankton at Helgoland Roads (German Bight, North Sea) over a period of one year with high temporal and taxonomic resolution to reveal variation patterns and main influencing factors. 16S rRNA gene tag sequencing of the bacterioplankton community hints at annual recurrence and resilience of few main taxa belonging to Alphaproteobacteria, Betaproteobacteria, Flavobacteriia, Acidimicrobiia and Thermoplasmata. Multiple regression analyses with various environmental factors revealed changes in water current patterns and resulting phytoplankton blooms as the main driving factors for short-term variation and temperature as the overlying factor for seasonal variation. Comparison of bacterioplankton successions during spring and summer phytoplankton blooms revealed the same dominating Flavobacteriia operational taxonomic units (OTUs) but shifts in Roseobacter related OTUs (Alphaproteobacteria) and SAR92 clade members (Gammaproteobacteria). Network analysis suggests that during spring and summer phytoplankton blooms temperature-dependent guilds are formed. In conclusion, our data imply that short-term bacterioplankton successions in response to phytoplankton blooms are indirectly affected by temperature, which is a major niche-defining factor in the German Bight. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. INFLUENCE OF LIGHT ON BACTERIOPLANKTON PRODUCTION AND RESPIRATION IN A SUBTROPICAL CORAL REEF

    Science.gov (United States)

    The influence of sunlight on bacterioplankton production (14C-leucine (Leu) and 3H-thymidine (TdR) incorporation; changes in cell abundances) and O2 consumption was investigated in a shallow subtropical coral reef located near Key Largo, Florida. Quartz (light) and opaque (dark) ...

  1. BACTERIOPLANKTON DYNAMICS IN PENSACOLA BAY, FL, USA: ROLE OF PHYTOPLANKTON AND DETRIAL CARBON SOURCES

    Science.gov (United States)

    Bacterioplankton Dynamics in Pensacola Bay, FL, USA: Role of Phytoplankton and Detrital Carbon Sources (Abstract). To be presented at the16th Biennial Conference of the Estuarine Research Foundation, ERF 2001: An Estuarine Odyssey, 4-8 November 2001, St. Pete Beach, FL. 1 p. (ER...

  2. Ubiquity and quantitative significance of bacterioplankton lineages inhabiting the oxygenated hypolimnion of deep freshwater lakes.

    Science.gov (United States)

    Okazaki, Yusuke; Fujinaga, Shohei; Tanaka, Atsushi; Kohzu, Ayato; Oyagi, Hideo; Nakano, Shin-Ichi

    2017-10-01

    The oxygenated hypolimnion accounts for a volumetrically significant part of the global freshwater systems. Previous studies have proposed the presence of hypolimnion-specific bacterioplankton lineages that are distinct from those inhabiting the epilimnion. To date, however, no consensus exists regarding their ubiquity and abundance, which is necessary to evaluate their ecological importance. The present study investigated the bacterioplankton community in the oxygenated hypolimnia of 10 deep freshwater lakes. Despite the broad geochemical characteristics of the lakes, 16S rRNA gene sequencing demonstrated that the communities in the oxygenated hypolimnia were distinct from those in the epilimnia and identified several predominant lineages inhabiting multiple lakes. Catalyzed reporter deposition fluorescence in situ hybridization revealed that abundant hypolimnion-specific lineages, CL500-11 (Chloroflexi), CL500-3, CL500-37, CL500-15 (Planctomycetes) and Marine Group I (Thaumarchaeota), together accounted for 1.5-32.9% of all bacterioplankton in the hypolimnion of the lakes. Furthermore, an analysis of single-nucleotide variation in the partial 16S rRNA gene sequence (oligotyping) suggested the presence of different sub-populations between lakes and water layers among the lineages occurring in the entire water layer (for example, acI-B1 and acI-A7). Collectively, these results provide the first comprehensive overview of the bacterioplankton community in the oxygenated hypolimnion of deep freshwater lakes.

  3. Contrasted Effects of Diversity and Immigration on Ecological Insurance in Marine Bacterioplankton Communities

    Science.gov (United States)

    Bouvier, Corinne; Barbera, Claire; Mouquet, Nicolas

    2012-01-01

    The ecological insurance hypothesis predicts a positive effect of species richness on ecosystem functioning in a variable environment. This effect stems from temporal and spatial complementarity among species within metacommunities coupled with optimal levels of dispersal. Despite its importance in the context of global change by human activities, empirical evidence for ecological insurance remains scarce and controversial. Here we use natural aquatic bacterial communities to explore some of the predictions of the spatial and temporal aspects of the ecological insurance hypothesis. Addressing ecological insurance with bacterioplankton is of strong relevance given their central role in fundamental ecosystem processes. Our experimental set up consisted of water and bacterioplankton communities from two contrasting coastal lagoons. In order to mimic environmental fluctuations, the bacterioplankton community from one lagoon was successively transferred between tanks containing water from each of the two lagoons. We manipulated initial bacterial diversity for experimental communities and immigration during the experiment. We found that the abundance and production of bacterioplankton communities was higher and more stable (lower temporal variance) for treatments with high initial bacterial diversity. Immigration was only marginally beneficial to bacterial communities, probably because microbial communities operate at different time scales compared to the frequency of perturbation selected in this study, and of their intrinsic high physiologic plasticity. Such local “physiological insurance” may have a strong significance for the maintenance of bacterial abundance and production in the face of environmental perturbations. PMID:22701572

  4. Nutrient enrichment during shrimp cultivation alters bacterioplankton assemblies and destroys community stability.

    Science.gov (United States)

    Yang, Wen; Zheng, Cheng; Zheng, Zhongming; Wei, Yiming; Lu, Kaihong; Zhu, Jinyong

    2018-07-30

    Intensive shrimp farming is generally accompanied by nutrient enrichment and gradual eutrophication, which impose major threats to shrimp culture ecosystems. However, little is known about how the bacterioplankton community in a rearing environment responds to increased eutrophication during shrimp culture processes. In this study, we used the MiSeq sequencing technique to explore the impacts of nutrient enrichment on the assembly and stability of the bacterioplankton community. Our results showed that magnitudes of the changes in the bacterioplankton community compositions (BCCs) and diversity were closely associated with eutrophication level. Moreover, a phylogenetic-based mean nearest taxon distance (MNTD) analysis revealed that increased eutrophication significantly (P bacterioplankton ecological processes from deterministic to stochastic. A structural equation model showed that eutrophication indicators affected the BCCs either directly by controlling resources or indirectly by modifying other environmental variables of the shrimp ponds in complex pathways. Furthermore, association network comparisons revealed that nutrient enrichment increased the complexity of interspecies interactions and the proportion of cooperative interactions and decreased the proportion of generalists, which suggest that nutrient enrichment destroyed the community stability. These findings suggest that minimizing nutrient pollution, especially at the end of cultivation, could be an important management tool for establishing a microbially mature water system. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. A metagenomic assessment of winter and summer bacterioplankton from Antarctica Peninsula coastal surface waters.

    Science.gov (United States)

    Grzymski, Joseph J; Riesenfeld, Christian S; Williams, Timothy J; Dussaq, Alex M; Ducklow, Hugh; Erickson, Matthew; Cavicchioli, Ricardo; Murray, Alison E

    2012-10-01

    Antarctic surface oceans are well-studied during summer when irradiance levels are high, sea ice is melting and primary productivity is at a maximum. Coincident with this timing, the bacterioplankton respond with significant increases in secondary productivity. Little is known about bacterioplankton in winter when darkness and sea-ice cover inhibit photoautotrophic primary production. We report here an environmental genomic and small subunit ribosomal RNA (SSU rRNA) analysis of winter and summer Antarctic Peninsula coastal seawater bacterioplankton. Intense inter-seasonal differences were reflected through shifts in community composition and functional capacities encoded in winter and summer environmental genomes with significantly higher phylogenetic and functional diversity in winter. In general, inferred metabolisms of summer bacterioplankton were characterized by chemoheterotrophy, photoheterotrophy and aerobic anoxygenic photosynthesis while the winter community included the capacity for bacterial and archaeal chemolithoautotrophy. Chemolithoautotrophic pathways were dominant in winter and were similar to those recently reported in global 'dark ocean' mesopelagic waters. If chemolithoautotrophy is widespread in the Southern Ocean in winter, this process may be a previously unaccounted carbon sink and may help account for the unexplained anomalies in surface inorganic nitrogen content.

  6. Diel changes in bacteriochlorophyll a concentration suggest rapid bacterioplankton cycling in the Baltic Sea

    Czech Academy of Sciences Publication Activity Database

    Koblížek, Michal; Ston-Egiert, J.; Sagan, S.; Kolber, Z. S.

    2005-01-01

    Roč. 51, - (2005), s. 353-361 ISSN 0168-6496 R&D Projects: GA ČR GP206/03/P079; GA MŠk LN00A141 Institutional research plan: CEZ:AV0Z5020903 Keywords : Aerobic anoxygenic photoheterotrophs * Bacterial mortality * Bacterioplankton turnover Subject RIV: EE - Microbiology, Virology Impact factor: 2.787, year: 2005

  7. Response of bacterioplankton communities to cadmium exposure in coastal water microcosms with high temporal variability.

    Science.gov (United States)

    Wang, Kai; Zhang, Demin; Xiong, Jinbo; Chen, Xinxin; Zheng, Jialai; Hu, Changju; Yang, Yina; Zhu, Jianlin

    2015-01-01

    Multiple anthropogenic disturbances to bacterial diversity have been investigated in coastal ecosystems, in which temporal variability in the bacterioplankton community has been considered a ubiquitous process. However, far less is known about the temporal dynamics of a bacterioplankton community responding to pollution disturbances such as toxic metals. We used coastal water microcosms perturbed with 0, 10, 100, and 1,000 μg liter(-1) of cadmium (Cd) for 2 weeks to investigate temporal variability, Cd-induced patterns, and their interaction in the coastal bacterioplankton community and to reveal whether the bacterial community structure would reflect the Cd gradient in a temporally varying system. Our results showed that the bacterioplankton community structure shifted along the Cd gradient consistently after a 4-day incubation, although it exhibited some resistance to Cd at low concentration (10 μg liter(-1)). A process akin to an arms race between temporal variability and Cd exposure was observed, and the temporal variability overwhelmed Cd-induced patterns in the bacterial community. The temporal succession of the bacterial community was correlated with pH, dissolved oxygen, NO3 (-)-N, NO2 (-)-N, PO4 (3-)-P, dissolved organic carbon, and chlorophyll a, and each of these parameters contributed more to community variance than Cd did. However, elevated Cd levels did decrease the temporal turnover rate of community. Furthermore, key taxa, affiliated to the families Flavobacteriaceae, Rhodobacteraceae, Erythrobacteraceae, Piscirickettsiaceae, and Alteromonadaceae, showed a high frequency of being associated with Cd levels during 2 weeks. This study provides direct evidence that specific Cd-induced patterns in bacterioplankton communities exist in highly varying manipulated coastal systems. Future investigations on an ecosystem scale across longer temporal scales are needed to validate the observed pattern. Copyright © 2015, American Society for Microbiology. All

  8. Phylogenetic shifts of bacterioplankton community composition along Pearl Estuary: the potential impact of hypoxia and nutrients

    Directory of Open Access Journals (Sweden)

    Jiwen eLiu

    2015-02-01

    Full Text Available The significance of salinity in shaping bacterial communities dwelling in estuarine areas has been well documented. However, the influences of other environmental factors such as dissolved oxygen and nutrients in governing bacterioplankton communities inhabited in local estuarine regions remain elusive. Here, bacterioplankton community structure of surface and bottom waters from eight sites along Pearl Estuary were characterized with 16S rRNA genes pyrosequencing. The bacterioplankton community dendrogram partitioned the samples into three groups, i.e., whole water column of freshwater sites, surface water of saltwater sites and bottom water of saltwater sites. In the saltwater sites, Synechococcus dominated the surface water while Oceanospirillales, SAR11 and SAR406 were prevalent in the bottom water. Betaproteobacteria was abundant in the freshwater sites, with no significant difference between water layers. Moreover, occurrence of phylogenetic shifts in taxa affiliated to the same clade was also detected. Dissolved oxygen explained most of the bacterial community variation in the redundancy analysis targeting only freshwater sites, whereas nutrients and salinity explained most of the variation across all the samples in Pearl Estuary. Methylophilales (mainly PE2 clade was positively correlated to dissolved oxygen, whereas Rhodocyclales (mainly R.12up clade was negatively correlated. Moreover, high nutrient inputs to the freshwater area of Pearl Estuary have shifted the bacterial communities towards copiotrophic groups, such as Sphingomonadales. The present study provides a clear outline of bacterioplankton communities in two regions of a subtropical estuary and demonstrates that the overall nutrients and freshwater hypoxia play important roles in determining bacterioplankton compositions

  9. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages.

    Science.gov (United States)

    Nelson, Craig E; Goldberg, Stuart J; Wegley Kelly, Linda; Haas, Andreas F; Smith, Jennifer E; Rohwer, Forest; Carlson, Craig A

    2013-05-01

    Increasing algal cover on tropical reefs worldwide may be maintained through feedbacks whereby algae outcompete coral by altering microbial activity. We hypothesized that algae and coral release compositionally distinct exudates that differentially alter bacterioplankton growth and community structure. We collected exudates from the dominant hermatypic coral holobiont Porites spp. and three dominant macroalgae (one each Ochrophyta, Rhodophyta and Chlorophyta) from reefs of Mo'orea, French Polynesia. We characterized exudates by measuring dissolved organic carbon (DOC) and fractional dissolved combined neutral sugars (DCNSs) and subsequently tracked bacterioplankton responses to each exudate over 48 h, assessing cellular growth, DOC/DCNS utilization and changes in taxonomic composition (via 16S rRNA amplicon pyrosequencing). Fleshy macroalgal exudates were enriched in the DCNS components fucose (Ochrophyta) and galactose (Rhodophyta); coral and calcareous algal exudates were enriched in total DCNS but in the same component proportions as ambient seawater. Rates of bacterioplankton growth and DOC utilization were significantly higher in algal exudate treatments than in coral exudate and control incubations with each community selectively removing different DCNS components. Coral exudates engendered the smallest shift in overall bacterioplankton community structure, maintained high diversity and enriched taxa from Alphaproteobacteria lineages containing cultured representatives with relatively few virulence factors (VFs) (Hyphomonadaceae and Erythrobacteraceae). In contrast, macroalgal exudates selected for less diverse communities heavily enriched in copiotrophic Gammaproteobacteria lineages containing cultured pathogens with increased VFs (Vibrionaceae and Pseudoalteromonadaceae). Our results demonstrate that algal exudates are enriched in DCNS components, foster rapid growth of bacterioplankton and select for bacterial populations with more potential VFs than

  10. An association network analysis among microeukaryotes and bacterioplankton reveals algal bloom dynamics.

    Science.gov (United States)

    Tan, Shangjin; Zhou, Jin; Zhu, Xiaoshan; Yu, Shichen; Zhan, Wugen; Wang, Bo; Cai, Zhonghua

    2015-02-01

    Algal blooms are a worldwide phenomenon and the biological interactions that underlie their regulation are only just beginning to be understood. It is established that algal microorganisms associate with many other ubiquitous, oceanic organisms, but the interactions that lead to the dynamics of bloom formation are currently unknown. To address this gap, we used network approaches to investigate the association patterns among microeukaryotes and bacterioplankton in response to a natural Scrippsiella trochoidea bloom. This is the first study to apply network approaches to bloom dynamics. To this end, terminal restriction fragment (T-RF) length polymorphism analysis showed dramatic changes in community compositions of microeukaryotes and bacterioplankton over the blooming period. A variance ratio test revealed significant positive overall associations both within and between microeukaryotic and bacterioplankton communities. An association network generated from significant correlations between T-RFs revealed that S. trochoidea had few connections to other microeukaryotes and bacterioplankton and was placed on the edge. This lack of connectivity allowed for the S. trochoidea sub-network to break off from the overall network. These results allowed us to propose a conceptual model for explaining how changes in microbial associations regulate the dynamics of an algal bloom. In addition, key T-RFs were screened by principal components analysis, correlation coefficients, and network analysis. Dominant T-RFs were then identified through 18S and 16S rRNA gene clone libraries. Results showed that microeukaryotes clustered predominantly with Dinophyceae and Perkinsea while the majority of bacterioplankton identified were Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. The ecologi-cal roles of both were discussed in the context of these findings. © 2014 Phycological Society of America.

  11. Fish-mediated changes in bacterioplankton community composition: an in situ mesocosm experiment

    Science.gov (United States)

    Luo, Congqiang; Yi, Chunlong; Ni, Leyi; Guo, Longgen

    2017-06-01

    We characterized variations in bacterioplankton community composition (BCC) in mesocosms subject to three different treatments. Two groups contained fish (group one: Cyprinus carpio; group two: Hypophthalmichthys molitrix); and group three, the untreated mesocosm, was the control. Samples were taken seven times over a 49-day period, and BCC was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR). Results revealed that introduction of C. carpio and H. molitrix had a remarkable impact on the composition of bacterioplankton communities, and the BCC was significantly different between each treatment. Sequencing of DGGE bands revealed that the bacterioplankton community in the different treatment groups was consistent at a taxonomic level, but differed in its abundance. H. molitrix promoted the richness of Alphaproteobacteria and Actinobacteria, while more bands affiliated to Cyanobacteria were detected inC. carpio mesocosms. The redundancy analysis (RDA) result demonstrated that the BCC was closely related to the bottom-up (total phosphorus, chlorophyll a, phytoplankton biomass) and top-down forces (biomass of copepods and cladocera) in C. carpio and control mesocosms, respectively. We found no evidence for top-down regulation of BCC by zooplankton in H. molitrix mesocosms, while grazing by protozoa (heterotrophic nanoflagellates, ciliates) became the major way to regulate BCC. Total bacterioplankton abundances were significantly higher in C. carpio mesocosms because of high nutrient concentration and suspended solids. Our study provided insights into the relationship between fish and bacterioplankton at species level, leading to a deep understanding of the function of the microbial loop and the aquatic ecosystem.

  12. Responses of spatial-temporal dynamics of bacterioplankton community to large-scale reservoir operation: a case study in the Three Gorges Reservoir, China

    OpenAIRE

    Li, Zhe; Lu, Lunhui; Guo, Jinsong; Yang, Jixiang; Zhang, Jiachao; He, Bin; Xu, Linlin

    2017-01-01

    Large rivers are commonly regulated by damming, yet the effects of such disruption on bacterioplankton community structures have not been adequately studied. The aim of this study was to explore the biogeographical patterns present under dam regulation and to uncover the major drivers structuring bacterioplankton communities. Bacterioplankton assemblages in the Three Gorges Reservoir (TGR) were analyzed using Illumina Miseq sequencing by comparing seven sites located within the TGR before and...

  13. Freshwater bacterioplankton richness in oligotrophic lakes depends on nutrient availability rather than on species–area relationships

    OpenAIRE

    Logue, Jürg Brendan; Langenheder, Silke; Andersson, Anders F; Bertilsson, Stefan; Drakare, Stina; Lanzén, Anders; Lindström, Eva S

    2011-01-01

    A central goal in ecology is to grasp the mechanisms that underlie and maintain biodiversity and patterns in its spatial distribution can provide clues about those mechanisms. Here, we investigated what might determine the bacterioplankton richness (BR) in lakes by means of 454 pyrosequencing of the 16S rRNA gene. We further provide a BR estimate based upon a sampling depth and accuracy, which, to our knowledge, are unsurpassed for freshwater bacterioplankton communities. Our examination of 2...

  14. Bacterioplankton responses to iron enrichment during the SAGE experiment

    Science.gov (United States)

    Kuparinen, J.; Hall, J.; Ellwood, M.; Safi, K.; Peloquin, J.; Katz, D.

    2011-03-01

    We studied the microbial food web in the upper 100 m of the water column in iron-limited sub-Antarctic HNLC waters south-east of New Zealand in the SAGE experiment in 2004, with focus on bacterioplankton. Samples were collected daily from inside and outside the iron enriched patch. Short term enrichment experiments were conducted on board in 4 L polycarbonate bottles with water outside the iron enriched patch to study single and combined effects of micronutrient additions on microbial food web. Low bacterial growth was recorded in the study area with community turnover times of 50 h or more during the study period. Measurements of bacterial standing stocks and production rates in the study show minor responses to the large scale iron enrichment, with increase in rates and stocks after the first enrichment and at the end of the study period after the third iron enrichment when solar radiation increased and wind mixing decreased. The average daily bacterial production rates were 31.5 and 33.7 mgCm -2 d -1 for the OUT and IN stations, respectively; thus overall there was not a significant difference between the control and the iron-enriched patch. In the bottle experiments bacterial thymidine incorporation showed responses to single iron and silicic acid enrichments and a major growth response to the combined iron and sucrose enrichments. Phytoplankton chlorophyll- a showed clear stimulation by single additions of iron and silicic acid and silicic acid enhanced the iron impact. Cobalt additions had no effect on bacteria growth and a negative effect on phytoplankton growth. Low bacterial in situ growth rates and the enrichment experiments suggest that bacteria are co-limited by iron and carbon, and that bacterial iron uptake is dependent on carbon supply by the food web. With the high iron quota (μmol Fe mol C -1) bacteria may scavenge considerable amounts of the excess iron, and thus influence the relative importance of the microbial food web as a carbon sink.

  15. Regulation of bacterioplankton density and biomass in tropical shallow coastal lagoons

    Directory of Open Access Journals (Sweden)

    Fabiana MacCord

    Full Text Available AIM: Estimating bacterioplankton density and biomass and their regulating factors is important in order to evaluate aquatic systems' carrying capacity, regarding bacterial growth and the stock of matter in the bacterial community, which can be consumed by higher trophic levels. We aim to evaluate the limnological factors which regulate - in space and time - the bacterioplankton dynamics (abundance and biomass in five tropical coastal lagoons in the state of Rio de Janeiro, Brazil. METHOD: The current study was carried out at the following lagoons: Imboassica, Cabiúnas, Comprida, Carapebus and Garças. They differ in morphology and in their main limnological factors. The limnological variables as well as bacterioplankton abundance and biomass were monthly sampled for 14 months. Model selection analyses were performed in order to evaluate the main variables regulating the bacterioplankton's dynamics in these lagoons. RESULT: The salt concentration and the "space" factor (i.e. different lagoons explained great part of the bacterial density and biomass variance in the studied tropical coastal lagoons. When the lagoons were analyzed separately, salinity still explained great part of the variation of bacterial density and biomass in the Imboassica and Garças lagoons. On the other hand, phosphorus concentration was the main factor explaining the variance of bacterial density and biomass in the distrophic Cabiúnas, Comprida and Carapebus lagoons. There was a strong correlation between bacterial density and biomass (r² = 0.70, p < 0.05, indicating that bacterial biomass variations are highly dependent on bacterial density variations. CONCLUSION: (i Different limnological variables regulate the bacterial density and biomass in the studied coastal lagoons, (ii salt and phosphorus concentrations greatly explained the variation of bacterial density and biomass in the saline and distrophic lagoons, respectively, and (iii N-nitrate and chlorophyll

  16. Covariance of bacterioplankton composition and environmental variables in a temperate delta system

    Science.gov (United States)

    Stepanauskas, R.; Moran, M.A.; Bergamaschi, B.A.; Hollibaugh, J.T.

    2003-01-01

    We examined seasonal and spatial variation in bacterioplankton composition in the Sacramento-San Joaquin River Delta (CA) using terminal restriction fragment length polymorphism (T-RFLP) analysis. Cloned 16S rRNA genes from this system were used for putative identification of taxa dominating the T-RFLP profiles. Both cloning and T-RFLP analysis indicated that Actinobacteria, Verrucomicrobia, Cytophaga-Flavobacterium and Proteobacteria were the most abundant bacterioplankton groups in the Delta. Despite the broad variety of sampled habitats (deep water channels, lakes, marshes, agricultural drains, freshwater and brackish areas), and the spatial and temporal differences in hydrology, temperature and water chemistry among the sampling campaigns, T-RFLP electropherograms from all samples were similar, indicating that the same bacterioplankton phylotypes dominated in the various habitats of the Delta throughout the year. However, principal component analysis (PCA) and partial least-squares regression (PLS) of T-RFLP profiles revealed consistent grouping of samples on a seasonal, but not a spatial, basis. ??-Proteobacteria related to Ralstonia, Actinobacteria related to Microthrix, and ??-Proteobacteria identical to the environmental Clone LD12 had the highest relative abundance in summer/fall T-RFLP profiles and were associated with low river flow, high pH, and a number of optical and chemical characteristics of dissolved organic carbon (DOC) indicative of an increased proportion of phytoplankton-produced organic material as opposed to allochthonous, terrestrially derived organic material. On the other hand, Geobacter-related ??-Proteobacteria showed a relative increase in abundance in T-RFLP analysis during winter/spring, and probably were washed out from watershed soils or sediment. Various phylotypes associated with the same phylogenetic division, based on tentative identification of T-RFLP fragments, exhibited diverse seasonal patterns, suggesting that ecological

  17. Characterization of the bacterioplankton community and its antibiotic resistance genes in the Baltic Sea.

    Science.gov (United States)

    Tiirik, Kertu; Nõlvak, Hiie; Oopkaup, Kristjan; Truu, Marika; Preem, Jens-Konrad; Heinaru, Ain; Truu, Jaak

    2014-01-01

    The residues from human environments often contain antibiotics and antibiotic resistance genes (ARGs) that can contaminate natural environments; the clearest consequence of that is the selection of antibiotic-resistant bacteria. The Baltic Sea is the second largest isolated brackish water reservoir on Earth, serving as a drainage area for people in 14 countries, which differ from one another in antibiotic use and sewage treatment policies. The aim of this study was to characterize the bacterioplankton structure and quantify ARGs (tetA, tetB, tetM, ermB, sul1, blaSHV, and ampC) within the bacterioplankton community of the Baltic Sea. Quantitative polymerase chain reaction was applied to quantify ARGs from four different sampling sites of the Baltic Sea over 2 years, and the bacterial communities were profiled sequencing the V6 region of the 16S rRNA gene on Illumina HiSeq2000. The results revealed that all the resistance genes targeted in the study were detectable from the Baltic Sea bacterioplankton. The percentage of tetA, tetB, tetM, ermB, and sul1 genes in the sea bacterial community varied between 0.0077% and 0.1089%, 0.0003% and 0.0019%, 0.0001% and 0.0105%, 0% and 0.0136%, and 0.0001% and 0.0438%, respectively. The most numerous ARG detected was the tetA gene and this gene also had the highest proportion in the whole microbial community. A strong association between bacterioplankton ARGs' abundance data and community phylogenetic composition was found, implying that the abundance of most of the studied ARGs in the Baltic Sea is determined by fluctuations in its bacterial community structure. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  18. Basin-scale seasonal changes in marine free-living bacterioplankton community in the Ofunato Bay

    KAUST Repository

    Reza, Md. Shaheed

    2018-04-26

    The Ofunato Bay in the northeastern Pacific Ocean area of Japan possesses the highest biodiversity of marine organisms in the world and has attracted much attention due to its economic and environmental importance. We report here a shotgun metagenomic analysis of the year-round variation in free-living bacterioplankton collected across the entire length of the bay. Phylogenetic differences among spring, summer, autumn and winter bacterioplankton suggested that members of Proteobacteria tended to decrease at high water temperatures and increase at low temperatures. It was revealed that Candidatus Pelagibacter varied seasonally, reaching as much as 60% of all sequences at the genus level in the surface waters during winter. This increase was more evident in the deeper waters, where they reached up to 75%. The relative abundance of Planktomarina also rose during winter and fell during summer. A significant component of the winter bacterioplankton community was Archaea (mainly represented by Nitrosopumilus), as their relative abundance was very low during spring and summer but high during winter. In contrast, Actinobacteria and Cyanobacteria appeared to be higher in abundance during high-temperature periods. It was also revealed that Bacteroidetes constituted a significant component of the summer bacterioplankton community, being the second largest bacterial phylum detected in the Ofunato Bay. Its members, notably Polaribacter and Flavobacterium, were found to be high in abundance during spring and summer, particularly in the surface waters. Principal component analysis and hierarchal clustering analyses showed that the bacterial communities in the Ofunato Bay changed seasonally, likely caused by the levels of organic matter, which would be deeply mixed with surface runoff in the winter.

  19. Combined Carbohydrates Support Rich Communities of Particle-Associated Marine Bacterioplankton.

    Science.gov (United States)

    Sperling, Martin; Piontek, Judith; Engel, Anja; Wiltshire, Karen H; Niggemann, Jutta; Gerdts, Gunnar; Wichels, Antje

    2017-01-01

    Carbohydrates represent an important fraction of labile and semi-labile marine organic matter that is mainly comprised of exopolymeric substances derived from phytoplankton exudation and decay. This study investigates the composition of total combined carbohydrates (tCCHO; >1 kDa) and the community development of free-living (0.2-3 μm) and particle-associated (PA) (3-10 μm) bacterioplankton during a spring phytoplankton bloom in the southern North Sea. Furthermore, rates were determined for the extracellular enzymatic hydrolysis that catalyzes the initial step in bacterial organic matter remineralization. Concentrations of tCCHO greatly increased during bloom development, while the composition showed only minor changes over time. The combined concentration of glucose, galactose, fucose, rhamnose, galactosamine, glucosamine, and glucuronic acid in tCCHO was a significant factor shaping the community composition of the PA bacteria. The richness of PA bacteria greatly increased in the post-bloom phase. At the same time, the increase in extracellular β-glucosidase activity was sufficient to explain the observed decrease in tCCHO, indicating the efficient utilization of carbohydrates by the bacterioplankton community during the post-bloom phase. Our results suggest that carbohydrate concentration and composition are important factors in the multifactorial environmental control of bacterioplankton succession and the enzymatic hydrolysis of organic matter during phytoplankton blooms.

  20. Identification of polyamine-responsive bacterioplankton taxa in South Atlantic Bight.

    Science.gov (United States)

    Lu, Xinxin; Sun, Shulei; Hollibaugh, James T; Mou, Xiaozhen

    2015-12-01

    Putrescine and spermidine are short-chained aliphatic polyamines (PAs) that are ubiquitously distributed in seawater. These compounds may be important sources of dissolved organic carbon and nitrogen for marine bacterioplankton. Here, we used pyrotag sequencing to quantify the response of bacterioplankton to putrescine and spermidine amendments in microcosms established using surface waters collected at various stations in the South Atlantic Bight in October 2011. Our analysis showed that PA-responsive bacterioplankton consisted of bacterial taxa that are typically dominant in marine systems. Rhodobacteraceae (Alphaproteobacteria) was the taxon most responsive to PA additions at the nearshore site. Gammaproteobacteria of the families Piscirickettsiaceae; Vibrionaceae; and Vibrionaceae and Pseudoalteromonadaceae, were the dominant PA-responsive taxa in samples from the river-influenced coastal station, offshore station and open ocean station, respectively. The spatial variability of PA-responsive taxa may be attributed to differences in composition of the initial bacterial community and variations of in situ physiochemical conditions among sites. Our results also provided the first empirical evidence that Gammaproteobacteria might play an important role in PA transformation in marine systems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Bacterioplankton community shifts associated with epipelagic and mesopelagic waters in the Southern Ocean.

    Science.gov (United States)

    Yu, Zheng; Yang, Jun; Liu, Lemian; Zhang, Wenjing; Amalfitano, Stefano

    2015-08-10

    The Southern Ocean is among the least explored marine environments on Earth, and still little is known about regional and vertical variability in the diversity of Antarctic marine prokaryotes. In this study, the bacterioplankton community in both epipelagic and mesopelagic waters was assessed at two adjacent stations by high-throughput sequencing and quantitative PCR. Water temperature was significantly higher in the superficial photic zone, while higher salinity and dissolved oxygen were recorded in the deeper water layers. The highest abundance of the bacterioplankton was found at a depth of 75 m, corresponding to the deep chlorophyll maximum layer. Both Alphaproteobacteria and Gammaproteobacteria were the most abundant taxa throughout the water column, while more sequences affiliated to Cyanobacteria and unclassified bacteria were identified from surface and the deepest waters, respectively. Temperature was the most significant environmental variable affecting the bacterial community structure. The bacterial community composition displayed significant differences at the epipelagic layers between two stations, whereas those in the mesopelagic waters were more similar to each other. Our results indicated that the epipelagic bacterioplankton might be dominated by short-term environmental variable conditions, whereas the mesopelagic communities appeared to be structured by longer water-mass residence time and relative stable environmental factors.

  2. Spatially uniform but temporally variable bacterioplankton in a semi-enclosed coastal area.

    Science.gov (United States)

    Meziti, Alexandra; Kormas, Konstantinos A; Moustaka-Gouni, Maria; Karayanni, Hera

    2015-07-01

    Studies focusing on the temporal and spatial dynamics of bacterioplankton communities within littoral areas undergoing direct influences from the coast are quite limited. In addition, they are more complicated to resolve compared to communities in the open ocean. In order to elucidate the effects of spatial vs. temporal variability on bacterial communities in a highly land-influenced semi-enclosed gulf, surface bacterioplankton communities from five coastal sites in Igoumenitsa Gulf (Ionian Sea, Greece) were analyzed over a nine-month period using 16S rDNA 454-pyrosequencing. Temporal differences were more pronounced than spatial ones, with lower diversity indices observed during the summer months. During winter and early spring, bacterial communities were dominated by SAR11 representatives, while this pattern changed in May when they were abruptly replaced by members of Flavobacteriales, Pseudomonadales, and Alteromonadales. Additionally, correlation analysis showed high negative correlations between the presence of SAR11 OTUs in relation to temperature and sunlight that might have driven, directly or indirectly, the disappearance of these OTUs in the summer months. The dominance of SAR11 during the winter months further supported the global distribution of the clade, not only in the open-sea, but also in coastal systems. This study revealed that specific bacteria exhibited distinct succession patterns in an anthropogenic-impacted coastal system. The major bacterioplankton component was represented by commonly found marine bacteria exhibiting seasonal dynamics, while freshwater and terrestrial-related phylotypes were absent. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Seasonal assemblages and short-lived blooms in coastal north-west Atlantic Ocean bacterioplankton.

    Science.gov (United States)

    El-Swais, Heba; Dunn, Katherine A; Bielawski, Joseph P; Li, William K W; Walsh, David A

    2015-10-01

    Temperate oceans are inhabited by diverse and temporally dynamic bacterioplankton communities. However, the role of the environment, resources and phytoplankton dynamics in shaping marine bacterioplankton communities at different time scales remains poorly constrained. Here, we combined time series observations (time scales of weeks to years) with molecular analysis of formalin-fixed samples from a coastal inlet of the north-west Atlantic Ocean to show that a combination of temperature, nitrate, small phytoplankton and Synechococcus abundances are best predictors for annual bacterioplankton community variability, explaining 38% of the variation. Using Bayesian mixed modelling, we identified assemblages of co-occurring bacteria associated with different seasonal periods, including the spring bloom (e.g. Polaribacter, Ulvibacter, Alteromonadales and ARCTIC96B-16) and the autumn bloom (e.g. OM42, OM25, OM38 and Arctic96A-1 clades of Alphaproteobacteria, and SAR86, OM60 and SAR92 clades of Gammaproteobacteria). Community variability over spring bloom development was best explained by silicate (32%)--an indication of rapid succession of bacterial taxa in response to diatom biomass--while nanophytoplankton as well as picophytoplankton abundance explained community variability (16-27%) over the transition into and out of the autumn bloom. Moreover, the seasonal structure was punctuated with short-lived blooms of rare bacteria including the KSA-1 clade of Sphingobacteria related to aromatic hydrocarbon-degrading bacteria. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Understanding diversity patterns in bacterioplankton communities from a sub-Antarctic peatland.

    Science.gov (United States)

    Quiroga, María Victoria; Valverde, Angel; Mataloni, Gabriela; Cowan, Don

    2015-06-01

    Bacterioplankton communities inhabiting peatlands have the potential to influence local ecosystem functions. However, most microbial ecology research in such wetlands has been done in ecosystems (mostly peat soils) of the Northern Hemisphere, and very little is known of the factors that drive bacterial community assembly in other regions of the world. In this study, we used high-throughput sequencing to analyse the structure of the bacterial communities in five pools located in a sub-Antarctic peat bog (Tierra del Fuego, Argentina), and tested for relationships between bacterial communities and environmental conditions. Bacterioplankton communities in peat bog pools were diverse and dominated by members of the Proteobacteria, Actinobacteria, Bacteroidetes and Verrucomicrobia. Community structure was largely explained by differences in hydrological connectivity, pH and nutrient status (ombrotrophic versus minerotrophic pools). Bacterioplankton communities in ombrotrophic pools showed phylogenetic clustering, suggesting a dominant role of deterministic processes in shaping these assemblages. These correlations between habitat characteristics and bacterial diversity patterns provide new insights into the factors regulating microbial populations in peatland ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Marine bacterioplankton community turnover within seasonally hypoxic waters of a subtropical sound: Devil's Hole, Bermuda.

    Science.gov (United States)

    Parsons, Rachel J; Nelson, Craig E; Carlson, Craig A; Denman, Carmen C; Andersson, Andreas J; Kledzik, Andrew L; Vergin, Kevin L; McNally, Sean P; Treusch, Alexander H; Giovannoni, Stephen J

    2015-10-01

    Understanding bacterioplankton community dynamics in coastal hypoxic environments is relevant to global biogeochemistry because coastal hypoxia is increasing worldwide. The temporal dynamics of bacterioplankton communities were analysed throughout the illuminated water column of Devil's Hole, Bermuda during the 6-week annual transition from a strongly stratified water column with suboxic and high-pCO2 bottom waters to a fully mixed and ventilated state during 2008. A suite of culture-independent methods provided a quantitative spatiotemporal characterization of bacterioplankton community changes, including both direct counts and rRNA gene sequencing. During stratification, the surface waters were dominated by the SAR11 clade of Alphaproteobacteria and the cyanobacterium Synechococcus. In the suboxic bottom waters, cells from the order Chlorobiales prevailed, with gene sequences indicating members of the genera Chlorobium and Prosthecochloris--anoxygenic photoautotrophs that utilize sulfide as a source of electrons for photosynthesis. Transitional zones of hypoxia also exhibited elevated levels of methane- and sulfur-oxidizing bacteria relative to the overlying waters. The abundance of both Thaumarcheota and Euryarcheota were elevated in the suboxic bottom waters (> 10(9) cells l(-1)). Following convective mixing, the entire water column returned to a community typical of oxygenated waters, with Euryarcheota only averaging 5% of cells, and Chlorobiales and Thaumarcheota absent. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Spatial abundance and diversity of bacterioplankton in a typical stream-forming ecosystem, Huangqian Reservoir, China.

    Science.gov (United States)

    Wei, Guangshan; Li, Jing; Wang, Ningxin; Gao, Zheng

    2014-10-01

    The specific freshwater environment of reservoirs formed by streams has not been well studied. In this paper, the bacterioplankton community in such a reservoir, the Huangqian Reservoir in eastern China, was described using culture-independent molecular methods. We found that the most dominant bacterioplankton were affiliated with Cyanobacteria, followed by Betaproteobacteria, Bacteroidetes, Gammaproteobacteria, and Actinobacteria. Both bacterial abundance and diversity increased along the direction of water flow, and the 16S rRNA gene copy number in the water outlet was nearly an order of magnitude higher than that in the water inlet. Pearson correlation analyses indicated that nitrate had a significantly negative correlation with the bacterial abundance (p bacterioplankton. According to redundancy analysis, nitrate and dissolved oxygen were the major factors influencing the bacterial communities. In addition, we attempted to determine the reasons why such a reservoir could maintain good ecological balance for a period of decades, and we found that the environmental factors and bacterial communities both played critical roles. This research will benefit our understanding of bacterial communities and their surrounding environments in freshwater ecosystems.

  7. Alkaline phosphatases in microbialites and bacterioplankton from Alchichica soda lake, Mexico.

    Science.gov (United States)

    Valdespino-Castillo, Patricia M; Alcántara-Hernández, Rocio J; Alcocer, Javier; Merino-Ibarra, Martín; Macek, Miroslav; Falcón, Luisa I

    2014-11-01

    Dissolved organic phosphorus utilization by different members of natural communities has been closely linked to microbial alkaline phosphatases whose affiliation and diversity is largely unknown. Here we assessed genetic diversity of bacterial alkaline phosphatases phoX and phoD, using highly diverse microbial consortia (microbialites and bacterioplankton) as study models. These microbial consortia are found in an oligo-mesotrophic soda lake with a particular geochemistry, exhibiting a low calcium concentration and a high Mg : Ca ratio relative to seawater. In spite of the relative low calcium concentration in the studied system, our results highlight the diversity of calcium-based metallophosphatases phoX and phoD-like in heterotrophic bacteria of microbialites and bacterioplankton, where phoX was the most abundant alkaline phosphatase found. phoX and phoD-like phylotypes were more numerous in microbialites than in bacterioplankton. A larger potential community for DOP utilization in microbialites was consistent with the TN : TP ratio, suggesting P limitation within these assemblages. A cross-system comparison indicated that diversity of phoX in Lake Alchichica was similar to that of other aquatic systems with a naturally contrasting ionic composition and trophic state, although no phylotypes were shared among systems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Responses of spatial-temporal dynamics of bacterioplankton community to large-scale reservoir operation: a case study in the Three Gorges Reservoir, China.

    Science.gov (United States)

    Li, Zhe; Lu, Lunhui; Guo, Jinsong; Yang, Jixiang; Zhang, Jiachao; He, Bin; Xu, Linlin

    2017-02-13

    Large rivers are commonly regulated by damming, yet the effects of such disruption on bacterioplankton community structures have not been adequately studied. The aim of this study was to explore the biogeographical patterns present under dam regulation and to uncover the major drivers structuring bacterioplankton communities. Bacterioplankton assemblages in the Three Gorges Reservoir (TGR) were analyzed using Illumina Miseq sequencing by comparing seven sites located within the TGR before and after impoundment. This approach revealed ecological and spatial-temporal variations in bacterioplankton community composition along the longitudinal axis. The community was dynamic and dominated by Proteobacteria and Actinobacteria phyla, encompassing 39.26% and 37.14% of all sequences, respectively, followed by Bacteroidetes (8.67%) and Cyanobacteria (3.90%). The Shannon-Wiener index of the bacterioplankton community in the flood season (August) was generally higher than that in the impoundment season (November). Principal Component Analysis of the bacterioplankton community compositions showed separation between different seasons and sampling sites. Results of the relationship between bacterioplankton community compositions and environmental variables highlighted that ecological processes of element cycling and large dam disturbances are of prime importance in driving the assemblages of riverine bacterioplankton communities.

  9. Effects of temperature and nutrients on changes in genetic diversity of bacterioplankton communities in a semi-closed bay, South Korea.

    Science.gov (United States)

    Kim, Hyun Jung; Jung, Seung Won; Lim, Dhong-Il; Jang, Min-Chul; Lee, Taek-Kyun; Shin, Kyoungsoon; Ki, Jang-Seu

    2016-05-15

    Bacterioplankton communities in a semi-closed bay (Jangmok Bay, South Korea) were analysed using a 16S rDNA multiplex 454 pyrosequencing approach. Diversity and operational taxonomic units of bacterioplankton communities in the Jangmok Bay are highest in cold water seasons and lowest in warm water ones. During cold seasons, α-proteobacteria respond rapidly to pulses of the concentration of inorganic nutrients, while γ-proteobacteria during warm water seasons are the most active type of bacterioplankton resent in the prevailing conditions, which include high dissolved organic carbon, chemical oxygen demand and primary production. Cyanobacteria, a minor group constituting 4.58% of the total bacterioplankton, are more abundant at low temperature. Flavobacteria are more abundant in nutrient-rich conditions and the abundance of this group also demonstrated a delayed decline following summer phytoplankton blooms. The pronounced seasonal oscillations in phosphorus concentration and temperature exert strong selection pressure on bacterioplankton communities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Interactive network configuration maintains bacterioplankton community structure under elevated CO2 in a eutrophic coastal mesocosm experiment

    Science.gov (United States)

    Lin, Xin; Huang, Ruiping; Li, Yan; Li, Futian; Wu, Yaping; Hutchins, David A.; Dai, Minhan; Gao, Kunshan

    2018-01-01

    There is increasing concern about the effects of ocean acidification on marine biogeochemical and ecological processes and the organisms that drive them, including marine bacteria. Here, we examine the effects of elevated CO2 on the bacterioplankton community during a mesocosm experiment using an artificial phytoplankton community in subtropical, eutrophic coastal waters of Xiamen, southern China. Through sequencing the bacterial 16S rRNA gene V3-V4 region, we found that the bacterioplankton community in this high-nutrient coastal environment was relatively resilient to changes in seawater carbonate chemistry. Based on comparative ecological network analysis, we found that elevated CO2 hardly altered the network structure of high-abundance bacterioplankton taxa but appeared to reassemble the community network of low abundance taxa. This led to relatively high resilience of the whole bacterioplankton community to the elevated CO2 level and associated chemical changes. We also observed that the Flavobacteria group, which plays an important role in the microbial carbon pump, showed higher relative abundance under the elevated CO2 condition during the early stage of the phytoplankton bloom in the mesocosms. Our results provide new insights into how elevated CO2 may influence bacterioplankton community structure.

  11. Decrease of NH4+-N by bacterioplankton accelerated the removal of cyanobacterial blooms in aerated aquatic ecosystem.

    Science.gov (United States)

    Yang, Xi; Xie, Ping; Ma, Zhimei; Wang, Qing; Fan, Huihui; Shen, Hong

    2013-11-01

    We used aerated systems to assess the influence of the bacterioplankton community on cyanobacterial blooms in algae/post-bloom of Lake Taihu, China. Bacterioplankton community diversity was evaluated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting. Chemical analysis and nitrogen dynamic changes illustrated that NH4+-N was nitrified to NO2--N and NO3--N by bacterioplankton. Finally, NH4+-N was exhausted and NO3--N was denitrified to NO2--N, while the accumulation of NO2--N indicated that bacterioplankton with completely aerobic denitrification ability were lacking in the water samples collected from Lake Taihu. We suggested that adding completely aerobic denitrification bacteria (to denitrify NO2--N to N2) would improve the water quality. PCR-DGGE and sequencing results showed that more than1/3 of the bacterial species were associated with the removal of nitrogen, and Acidovorax temperans was the dominant one. PCR-DGGE, variation of nitrogen, removal efficiencies of chlorophyll-a and canonical correspondence analysis indicated that the bacterioplanktonsignificantly influenced the physiological and biochemical changes of cyanobacteria. Additionally, the unweighted pair-group method with arithmetic means revealed there was no obvious harm to the microecosystem from aeration. The present study demonstrated that bacterioplankton can play crucial roles in aerated ecosystems, which could control the impact of cyanobacterial blooms in eutrophicated fresh water systems.

  12. A Global eDNA Comparison of Freshwater Bacterioplankton Assemblages Focusing on Large-River Floodplain Lakes of Brazil.

    Science.gov (United States)

    Tessler, Michael; Brugler, Mercer R; DeSalle, Rob; Hersch, Rebecca; Velho, Luiz Felipe M; Segovia, Bianca T; Lansac-Toha, Fabio A; Lemke, Michael J

    2017-01-01

    With its network of lotic and lentic habitats that shift during changes in seasonal connection, the tropical and subtropical large-river systems represent possibly the most dynamic of all aquatic environments. Pelagic water samples were collected from Brazilian floodplain lakes (total n = 58) in four flood-pulsed systems (Amazon [n = 21], Araguaia [n = 14], Paraná [n = 15], and Pantanal [n = 8]) in 2011-2012 and sequenced via 454 for bacterial environmental DNA using 16S amplicons; additional abiotic field and laboratory measurements were collected for the assayed lakes. We report here a global comparison of the bacterioplankton makeup of freshwater systems, focusing on a comparison of Brazilian lakes with similar freshwater systems across the globe. The results indicate a surprising similarity at higher taxonomic levels of the bacterioplankton in Brazilian freshwater with global sites. However, substantial novel diversity at the family level was also observed for the Brazilian freshwater systems. Brazilian freshwater bacterioplankton richness was relatively average globally. Ordination results indicate that Brazilian bacterioplankton composition is unique from other areas of the globe. Using Brazil-only ordinations, floodplain system differentiation most strongly correlated with dissolved oxygen, pH, and phosphate. Our data on Brazilian freshwater systems in combination with analysis of a collection of freshwater environmental samples from across the globe offers the first regional picture of bacterioplankton diversity in these important freshwater systems.

  13. Warming and nutrient enrichment in combination increase stochasticity and beta diversity of bacterioplankton assemblages across freshwater mesocosms.

    Science.gov (United States)

    Ren, Lijuan; He, Dan; Chen, Zhen; Jeppesen, Erik; Lauridsen, Torben L; Søndergaard, Martin; Liu, Zhengwen; Wu, Qinglong L

    2017-03-01

    The current climate warming and eutrophication are known to interactively threaten freshwater biodiversity; however, the interactive effects on lacustrine bacterioplankton diversity remain to be determined. Here, we analyzed the spring bacterioplankton community composition (BCC) in 24 outdoor, flow-through mesocosms (mimicking shallow lake environments) under 3 temperature scenarios and 2 nutrient regimes. Our results revealed that neither long-term warming (8.5 years) nor nutrient enrichment had significant effects on bacterioplankton alpha diversity, whereas long-term enhanced warming (elevated 50% above the IPCC A2 climate scenario) and nutrient enrichment in combination increased bacterioplankton beta diversity. We also found that BCC shifted significantly under enhanced warming and nutrient-enriched conditions towards decreased relative abundances of Actinobacteria, Bacteroidetes and Betaproteobacteria, whereas the percentages of Cyanobacteria, total rare phyla and unclassified phyla significantly increased. Null-model tests indicated that deterministic processes played a more important role than stochastic processes in determining BCC. However, the relative importance of stochasticity, primarily ecological drift, was enhanced and contributed to the increased beta diversity of BCC under enhanced warming and nutrient-enriched conditions. Overall, our study suggests that the synergetic effects of warming and nutrient enrichment may result in high variability in the composition of bacterioplankton communities in lacustrine water bodies.

  14. Interactive network configuration maintains bacterioplankton community structure under elevated CO2 in a eutrophic coastal mesocosm experiment

    Directory of Open Access Journals (Sweden)

    X. Lin

    2018-01-01

    Full Text Available There is increasing concern about the effects of ocean acidification on marine biogeochemical and ecological processes and the organisms that drive them, including marine bacteria. Here, we examine the effects of elevated CO2 on the bacterioplankton community during a mesocosm experiment using an artificial phytoplankton community in subtropical, eutrophic coastal waters of Xiamen, southern China. Through sequencing the bacterial 16S rRNA gene V3-V4 region, we found that the bacterioplankton community in this high-nutrient coastal environment was relatively resilient to changes in seawater carbonate chemistry. Based on comparative ecological network analysis, we found that elevated CO2 hardly altered the network structure of high-abundance bacterioplankton taxa but appeared to reassemble the community network of low abundance taxa. This led to relatively high resilience of the whole bacterioplankton community to the elevated CO2 level and associated chemical changes. We also observed that the Flavobacteria group, which plays an important role in the microbial carbon pump, showed higher relative abundance under the elevated CO2 condition during the early stage of the phytoplankton bloom in the mesocosms. Our results provide new insights into how elevated CO2 may influence bacterioplankton community structure.

  15. Are oceanic fronts ecotones? Seasonal changes along the subtropical front show fronts as bacterioplankton transition zones but not diversity hotspots.

    Science.gov (United States)

    Morales, Sergio E; Meyer, Moana; Currie, Kim; Baltar, Federico

    2018-04-01

    Ecotones are regarded as diversity hotspots in terrestrial systems, but it is unknown if this 'ecotone effect' occurs in the marine environment. Oceanic fronts are widespread mesoscale features, present in the boundary between different water masses, and are arguably the best potential examples of ecotones in the ocean. Here we performed the first seasonal study along an oceanic front, combining 16S rRNA gene sequencing coupled with a high spatial resolution analysis of the physical properties of the water masses. Using the Subtropical Frontal Zone off New Zealand we demonstrate that fronts delimit shifts in bacterioplankton community composition between water masses, but that the strength of this effect is seasonally dependent. While creating a transition zone where physicochemical parameters and bacterioplankton communities get mixed, this ecotone does not result in increased diversity. Thus unlike terrestrial ecotones, oceanic fronts are boundaries but not hotspots of bacterioplankton diversity in the ocean. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Spatial and seasonal distributions of bacterioplankton in the Pearl River Estuary: The combined effects of riverine inputs, temperature, and phytoplankton.

    Science.gov (United States)

    Li, Jiajun; Jiang, Xin; Jing, Zhiyou; Li, Gang; Chen, Zuozhi; Zhou, Linbin; Zhao, Chunyu; Liu, Jiaxing; Tan, Yehui

    2017-12-15

    In this study, we used flow cytometry and 16S rRNA gene pyrosequencing to investigate bacterioplankton (heterotrophic bacteria and picocyanobacteria) abundance and community structure in surface waters along the Pearl River Estuary. The results showed significant differences in bacterioplankton dynamics between fresh- and saltwater sites and between wet and dry season. Synechococcus constituted the majority of picocyanobacteria in both seasons. During the wet season, Synechococcus reached extremely high abundance at the mouth of the estuary, and heterotrophic bacteria were highly abundant (>10 6 cellsml -1 ) throughout the studied region. At the same time, bacterioplankton decreased dramatically during the dry season. Pyrosequencing data indicated that salinity was a key parameter in shaping microbial community structure during both seasons. Phytoplankton was also an important factor; the proportion of Synechococcus and Rhodobacteriales was elevated at the frontal zone with higher chlorophyll a during the wet season, whereas Synechococcus were markedly reduced during the dry season. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bacterioplankton diversity and community composition in the Southern Lagoon of Venice.

    Science.gov (United States)

    Simonato, Francesca; Gómez-Pereira, Paola R; Fuchs, Bernhard M; Amann, Rudolf

    2010-04-01

    The Lagoon of Venice is a large water basin that exchanges water with the Northern Adriatic Sea through three large inlets. In this study, the 16S rRNA approach was used to investigate the bacterial diversity and community composition within the southern basin of the Lagoon of Venice and at one inlet in October 2007 and June 2008. Comparative sequence analysis of 645 mostly partial 16S rRNA gene sequences indicated high diversity and dominance of Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes at the lagoon as well as at the inlet station, therefore pointing to significant mixing. Many of these sequences were close to the 16S rRNA of marine, often coastal, bacterioplankton, such as the Roseobacter clade, the family Vibrionaceae, and class Flavobacteria. Sequences of Actinobacteria were indicators of a freshwater input. The composition of the bacterioplankton was quantified by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) with a set of rRNA-targeted oligonucleotide probes. CARD-FISH counts corroborated the dominance of members of the phyla Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. When assessed by a probe set for the quantification of selected clades within Alphaproteobacteria and Gammaproteobacteria, bacterioplankton composition differed between October 2007 and June 2008, and also between the inlet and the lagoon. In particular, members of the readily culturable copiotrophic gammaproteobacterial genera Vibrio, Alteromonas and Pseudoalteromonas were enriched in the southern basin of the Lagoon of Venice. Interestingly, the alphaproteobacterial SAR11 clade and related clusters were also present in high abundances at the inlet and within the lagoon, which was indicative of inflow of water from the open sea.

  18. Distribution and diversity of bacterioplankton communities in subtropical seawater around Xiamen Island, China.

    Science.gov (United States)

    Shan, Dapeng; Wei, Guangshan; Li, Mingcong; Wang, Wanpeng; Li, Xu; Gao, Zheng; Shao, Zongze

    2015-06-01

    Marine bacterioplankton communities have profound impact on global biogeochemical cycles and ecological balances. However, relatively little is known about the bacterioplankton communities and the factors shaping their spatial distribution in subtropical island. Here, the bacterioplankton communities around a typical subtropical island, Xiamen Island, were revealed by analyzing bacterial 16S rRNA gene through quantitative PCR (qPCR) and 454 pyrosequencing methods. The qPCR results indicated that the abundance of 16S rRNA gene ranged from 2.07 × 10(7) to 2.13 × 10(8)copies mL(-1) in surface seawater among eight sampling sites (S1-S8) around Xiamen Island, and the nitrogen and phosphorus-rich sites (S5 and S8) were detected with higher 16S rRNA gene abundance. Pyrosequencing evidenced that a total of 267 genera of 47 classes in 26 different phyla (or candidate phyla) and some unclassified bacteria were obtained from seawater around Xiamen Island. The most dominant phylum was Proteobacteria (49.62-76.84% among sites), followed by Bacteroidetes (6.64-20.88%), Actinobacteria (2.58-9.20%), Firmicutes (0.03-13.30%), Verrucomicrobia (0.23-2.67%) and Planctomycetes (0.14-2.20%). Among eight sites, the nitrogen and phosphorus-rich sites (S5 and S8) exhibited higher proportions of Gammaproteobacteria, Epsilonproteobacteria, Firmicutes and lower proportions of Alphaproteobacteria and Planctomycetes than other sites. S5 and S8 also had more similar β-diversity, and sampling site near the estuary (S8) showed the highest bacterial diversity. Redundancy analysis (RDA) confirmed that total nitrogen and total phosphorus significantly (Pbacterioplankton communities around Xiamen Island. These results will provide insights into bacterial abundance, diversity and distribution patterns, as well as their controlling factors, in subtropical marine ecosystems. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China

    NARCIS (Netherlands)

    Wu, Q.L.; Zwart, G.; Schauer, M.; Kamst-van Agterveld, M.P.; Hahn, M.W.

    2006-01-01

    The influence of altitude and salinity on bacterioplankton community composition (BCC) in 16 high-mountain lakes located at altitudes of 2,817 to 5,134 m on the Eastern Qinghai-Xizang (Tibetan) Plateau, China, spanning a salinity gradient from 0.02% (freshwater) to 22.3% (hypersaline), was

  20. .i.Candidatus./i. Planktophila limnetica, an actinobacterium representing one of the most numerically important taxa in freshwater bacterioplankton

    Czech Academy of Sciences Publication Activity Database

    Jezbera, Jan; Sharma, A. K.; Brandt, U.; Doolittle, W.F.; Hahn, M.W.

    2009-01-01

    Roč. 59, č. 11 (2009), s. 2864-2869 ISSN 1466-5026 Institutional research plan: CEZ:AV0Z60170517 Keywords : Actinobacteria * Planktophila * freshwater * bacterioplankton Subject RIV: EE - Microbiology, Virology Impact factor: 2.113, year: 2009

  1. Discordance Between Resident and Active Bacterioplankton in Free-Living and Particle-Associated Communities in Estuary Ecosystem.

    Science.gov (United States)

    Li, Jia-Ling; Salam, Nimaichand; Wang, Pan-Deng; Chen, Lin-Xing; Jiao, Jian-Yu; Li, Xin; Xian, Wen-Dong; Han, Ming-Xian; Fang, Bao-Zhu; Mou, Xiao-Zhen; Li, Wen-Jun

    2018-03-16

    Bacterioplankton are the major driving force for biogeochemical cycles in estuarine ecosystems, but the communities that mediate these processes are largely unexplored. We sampled in the Pearl River Estuary (PRE) to examine potential differences in the taxonomic composition of resident (DNA-based) and active (RNA-based) bacterioplankton communities in free-living and particle-associated fractions. MiSeq sequencing data showed that the overall bacterial diversity in particle-associated fractions was higher than in free-living communities. Further in-depth analyses of the sequences revealed a positive correlation between resident and active bacterioplankton communities for the particle-associated fraction but not in the free-living fraction. However, a large overlapping of OTUs between free-living and particle-associated communities in PRE suggested that the two fractions may be actively exchanged. We also observed that the positive correlation between resident and active communities is more prominent among the abundant OTUs (relative abundance > 0.2%). Further, the results from the present study indicated that low-abundance bacterioplankton make an important contribution towards the metabolic activity in PRE.

  2. Snowmelt-driven changes in dissolved organic matter and bacterioplankton communities in the Heilongjiang watershed of China.

    Science.gov (United States)

    Qiu, Linlin; Cui, Hongyang; Wu, Junqiu; Wang, Baijie; Zhao, Yue; Li, Jiming; Jia, Liming; Wei, Zimin

    2016-06-15

    Bacterioplankton plays a significant role in the circulation of materials and ecosystem function in the biosphere. Dissolved organic matter (DOM) from dead plant material and surface soil leaches into water bodies when snow melts. In our study, water samples from nine sampling sites along the Heilongjiang watershed were collected in February and June 2014 during which period snowmelt occurred. The goal of this study was to characterize changes in DOM and bacterioplankton community composition (BCC) associated with snowmelt, the effects of DOM, environmental and geographical factors on the distribution of BCC and interactions of aquatic bacterioplankton populations with different sources of DOM in the Heilongjiang watershed. BCC was measured by denaturing gradient gel electrophoresis (DGGE). DOM was measured by excitation-emission matrix (EEM) fluorescence spectroscopy. Bacterioplankton exhibited a distinct seasonal change in community composition due to snowmelt at all sampling points except for EG. Redundancy analysis (RDA) indicated that BCC was more closely related to DOM (Components 1 and 4, dissolved organic carbon, biochemical oxygen demand and chlorophyll a) and environmental factors (water temperature and nitrate nitrogen) than geographical factors. Furthermore, DOM had a greater impact on BCC than environmental factors (29.80 vs. 15.90% of the variation). Overall, spring snowmelt played an important role in altering the quality and quantity of DOM and BCC in the Heilongjiang watershed. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Dissolved organic carbon and relationship with bacterioplankton community composition in 3 lake regions of Lake Taihu, China.

    Science.gov (United States)

    Pang, Xinghong; Shen, Hong; Niu, Yuan; Sun, Xiaoxue; Chen, Jun; Xie, Ping

    2014-10-01

    To clarify the relationships between dissolved organic carbon (DOC) and bacterioplankton community composition (BCC), a 1-year survey (June 2009 - May 2010) was conducted in 3 regions of Lake Taihu (Meiliang Bay, Lake Center, and Eastern Taihu), China. Polymerase chain reaction - denaturing gradient gel electrophoresis was used to analyze the composition and heterogeneity of the bacterioplankton community. Canonical correspondence analysis was used to explore the relationships between DOC concentration and BCC. We found a significant negative correlation between DOC concentration and bacterioplankton community diversity (as measured by the Shannon-Wiener index (H')). The results show that spatial variation in the bacterioplankton population was stronger than the seasonal variation and that DOC concentration influences BCC in Lake Taihu. DOC concentration, followed by macrophyte biomass, water turbidity, and phytoplankton biomass were the most influential factors that account for BCC changes in Lake Taihu. More detailed studies on the relationship between DOC concentration and BCC should focus on differences in DOC concentrations and quality among these lake regions. DOC had a significant impact on BCC in Meiliang Bay. The relationship between DOC and BCC in the 2 other regions studied (Lake Center and Eastern Taihu) was weaker. The results of this study add to our understanding of the BCC in eutrophic lakes, especially regarding the role of the microbial loop in lake ecosystems.

  4. Nearly a decade-long repeatable seasonal diversity patterns of bacterioplankton communities in the eutrophic Lake Donghu (Wuhan, China).

    Science.gov (United States)

    Yan, Qingyun; Stegen, James C; Yu, Yuhe; Deng, Ye; Li, Xinghao; Wu, Shu; Dai, Lili; Zhang, Xiang; Li, Jinjin; Wang, Chun; Ni, Jiajia; Li, Xuemei; Hu, Hongjuan; Xiao, Fanshu; Feng, Weisong; Ning, Daliang; He, Zhili; Van Nostrand, Joy D; Wu, Liyou; Zhou, Jizhong

    2017-07-01

    Uncovering which environmental factors govern community diversity patterns and how ecological processes drive community turnover are key questions related to understand the community assembly. However, the ecological mechanisms regulating long-term variations of bacterioplankton communities in lake ecosystems remain poorly understood. Here we present nearly a decade-long study of bacterioplankton communities from the eutrophic Lake Donghu (Wuhan, China) using 16S rRNA gene amplicon sequencing with MiSeq platform. We found strong repeatable seasonal diversity patterns in terms of both common (detected in more than 50% samples) and dominant (relative abundance >1%) bacterial taxa turnover. Moreover, community composition tracked the seasonal temperature gradient, indicating that temperature is a key environmental factor controlling observed diversity patterns. Total phosphorus also contributed significantly to the seasonal shifts in bacterioplankton composition. However, any spatial pattern of bacterioplankton communities across the main lake areas within season was overwhelmed by their temporal variabilities. Phylogenetic analysis further indicated that 75%-82% of community turnover was governed by homogeneous selection due to consistent environmental conditions within seasons, suggesting that the microbial communities in Lake Donghu are mainly controlled by niche-based processes. Therefore, dominant niches available within seasons might be occupied by similar combinations of bacterial taxa with modest dispersal rates throughout different lake areas. © 2017 John Wiley & Sons Ltd.

  5. Stimulated bacterioplankton growth and selection for certain bacterial taxa in the vicinity of the ctenophore Mnemiopsis leidyi.

    Science.gov (United States)

    Dinasquet, Julie; Granhag, Lena; Riemann, Lasse

    2012-01-01

    Episodic blooms of voracious gelatinous zooplankton, such as the ctenophore Mnemiopsis leidyi, affect pools of inorganic nutrients and dissolved organic carbon by intensive grazing activities and mucus release. This will potentially influence bacterioplankton activity and community composition, at least at local scales; however, available studies on this are scarce. In the present study we examined effects of M. leidyi on bacterioplankton growth and composition in incubation experiments. Moreover, we examined community composition of bacteria associated with the surface and gut of M. leidyi. High release of ammonium and high bacterial growth was observed in the treatments with M. leidyi relative to controls. Deep 454 pyrosequencing of 16 S rRNA genes showed specific bacterial communities in treatments with M. leidyi as well as specific communities associated with M. leidyi tissue and gut. In particular, members of Flavobacteriaceae were associated with M. leidyi. Our study shows that M. leidyi influences bacterioplankton activity and community composition in the vicinity of the jellyfish. In particular during temporary aggregations of jellyfish, these local zones of high bacterial growth may contribute significantly to the spatial heterogeneity of bacterioplankton activity and community composition in the sea.

  6. Bacterioplankton community structure in the Arctic waters as revealed by pyrosequencing of 16S rRNA genes.

    Science.gov (United States)

    Zeng, Yin-Xin; Zhang, Fang; He, Jian-Feng; Lee, Sang H; Qiao, Zong-Yun; Yu, Yong; Li, Hui-Rong

    2013-06-01

    Fjords and open oceans are two typical marine ecosystems in the Arctic region, where glacial meltwater and sea ice meltwater have great effects on the bacterioplankton community structure during the summer season. This study aimed to determine the differences in bacterioplankton communities between these two ecosystems in the Arctic region. We conducted a detailed census of microbial communities in Kongsfjorden (Spitsbergen) and the Chukchi Borderland using high-throughput pyrosequencing of the 16S rRNA gene. Gammaproteobacteria and Bacteroidetes were the dominant members of the bacterioplankton community in Kongsfjorden. By contrast, the most abundant bacterial groups in the surface seawater samples from the Chukchi Borderland were Alphaproteobacteria and Actinobacteria. Differences in bacterial communities were found between the surface and subsurface waters in the investigation area of the Chukchi Borderland, and significant differences in bacterial community structure were also observed in the subsurface water between the shelf and deep basin areas. These results suggest the effect of hydrogeographic conditions on bacterial communities. Ubiquitous phylotypes found in all the investigated samples belonged to a few bacterial groups that dominate marine bacterioplankton communities. The sequence data suggested that changes in environmental conditions result in abundant rare phylotypes and reduced amounts of other phylotypes.

  7. Stimulated bacterioplankton growth and selection for certain bacterial taxa in the vicinity of the ctenophore Mnemiopsis leidyi

    Directory of Open Access Journals (Sweden)

    Julie eDinasquet

    2012-08-01

    Full Text Available Episodic blooms of voracious gelatinous zooplankton, such as the ctenophore Mnemiopsis leidyi, affect pools of inorganic nutrients and dissolved organic carbon by intensive grazing activities and mucus release. This will potentially influence bacterioplankton activity and community composition, at least at local scales; however, available studies on this are scarce. In the present study we examined effects of M. leidyi on bacterioplankton growth and composition in incubation experiments. Moreover, we examined community composition of bacteria associated with the surface and gut of M. leidyi. High release of ammonium and high bacterial growth was observed in the treatments with M. leidyi relative to controls. Deep 454 pyrosequencing of 16S rRNA genes showed specific bacterial communities in treatments with M. leidyi as well as specific communities associated with M. leidyi tissue and gut. In particular, members of Flavobacteriaceae were associated with M. leidyi. Our study shows that M. leidyi influences bacterioplankton activity and community composition in the vicinity of the jellyfish. In particular during temporary aggregations of jellyfish, these local zones of high bacterial growth may contribute significantly to the spatial heterogeneity of bacterioplankton activity and community composition in the sea.

  8. Macrophytes and periphyton carbon subsidies to bacterioplankton and zooplankton in a shallow eutrophic lake in tropical China

    NARCIS (Netherlands)

    De Kluijver, A.; Ning, J.; Liu, Z.; Jeppesen, E.; Gulati, R.D.; Middelburg, J.J.

    2015-01-01

    The subsidy of carbon derived from macrophytes and associated periphyton to bacterioplankton and zooplankton in subtropical shallow eutrophic Huizhou West Lake in China was analyzed using carbon stable isotope signatures. A restored part of the lake dominated by macrophytes was compared with an

  9. Nearly a decade-long repeatable seasonal diversity patterns of bacterioplankton communities in the eutrophic Lake Donghu (Wuhan, China)

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qingyun [Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou China; Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Stegen, James C. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Yu, Yuhe [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Deng, Ye [CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing China; Li, Xinghao [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Wu, Shu [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Dai, Lili [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Zhang, Xiang [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Li, Jinjin [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Wang, Chun [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Ni, Jiajia [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Li, Xuemei [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Hu, Hongjuan [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Xiao, Fanshu [Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou China; Feng, Weisong [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Ning, Daliang [Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; He, Zhili [Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou China; Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; Van Nostrand, Joy D. [Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; Wu, Liyou [Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; Zhou, Jizhong [Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing China; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA

    2017-05-21

    Uncovering which environmental factors have the greatest influence on community diversity patterns and how ecological processes govern community turnover are key questions related to understanding community assembly mechanisms. Although we have good understanding of plant and animal community assembly, the mechanisms regulating diversity patterns of aquatic bacterial communities in lake ecosystems remains poorly understood. Here we present nearly a decade-long time-series study of bacterioplankton communities from the eutrophic Lake Donghu (Wuhan, China) using 16S rRNA gene amplicon sequencing. We found strong repeatable seasonal patterns for the overall community, common (detected in more than 50% samples) and dominant bacterial taxa (relative abundance > 1%). Moreover, community composition tracked the seasonal temperature gradient, indicating that temperature is an important environmental factor controlling observed diversity patterns. Total phosphorus also contributed significantly to the seasonal shifts in bacterioplankton composition. However, any spatial pattern across the main lake areas was overwhelmed by temporal variability in this eutrophic lake system. Phylogenetic analysis further indicated that 75%-82% of community turnover was governed by homogeneous selection, suggesting that the bacterioplankton communities are mainly controlled by niche-based processes. However, dominant niches available within seasons might be occupied by similar combinations of bacterial taxa with modest dispersal rates throughout this lake system. This study gives us important insights into community assembly and seasonal turnover of lake bacterioplankton, it may be also useful to predict temporal patterns of other planktonic communities.

  10. Short-term dynamics of North Sea bacterioplankton-dissolved organic matter coherence on molecular level

    Directory of Open Access Journals (Sweden)

    Judith eLucas

    2016-03-01

    Full Text Available Remineralisation and transformation of dissolved organic matter (DOM by marine microbes shape the DOM composition and thus, have large impact on global carbon and nutrient cycling. However, information on bacterioplankton-DOM interactions on a molecular level is limited. We examined the variation of bacterial community composition at Helgoland Roads (North Sea in relation to variation of molecular DOM composition and various environmental parameters on short-time scales. Surface water samples were taken daily over a period of twenty days. Bacterial community and molecular DOM composition were assessed via 16S rRNA gene tag sequencing and ultrahigh resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS, respectively. Environmental conditions were driven by a coastal water influx during the first half of the sampling period and the onset of a summer phytoplankton bloom towards the end of the sampling period. These phenomena led to a distinct grouping of bacterial communities and DOM composition which was particularly influenced by total dissolved nitrogen concentration, temperature and salinity, as revealed by distance-based linear regression analyses. Bacterioplankton-DOM interaction was demonstrated in strong correlations between specific bacterial taxa and particular DOM molecules, thus, suggesting potential specialization on particular substrates. We propose that a combination of high resolution techniques, as used in this study, may provide substantial information on substrate generalists and specialists and thus, contribute to prediction of bacterial community composition variation.

  11. Relation between presence-absence of a visible nucleoid and metabolic activity in bacterioplankton cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joon, W.; Sherr, E.B.; Sherr, B.F. [Oregon State Univ., Corvallis, OR (United States)

    1996-09-01

    We investigated the report of Zweifel and Hagstroem that only a portion of marine bacteria contain nucleoids--the DNA-containing regions of procaryotic cells-- and that such bacteria correspond to the active or viable fraction of bacterioplankton. In Oregon coastal waters, 21-64% of bacteria had visible nucleoids; number of nucleoid-visible (NV) bacteria were greater than numbers of metabolically active bacteria, based on cells with active electron transport systems (ETS) and intact cell membranes. During log growth of a marine isolate, proportions of NV and ETS-active cells approached 100%. In stationary growth phase, the fraction of ETS-active cells decreased rapidly, while that of NV cells remained high for 7 d. When starved cells of the isolate were resupplied with nutrient (50 mg liter{sup -1} peptone), total cell number did not increase during the initial 6 h, but the proportion of NV cells increased from 27 to 100%, and that of ETS-active cells from 6 to 75%. In an analogous experiment with a bacterioplankton assemblage, a similar trend was observed: the number of NV cells double during the initial 6 h prior to an increase in total cell counts. These results show that some bacteria without visible nucleoids are capable of becoming NV cells, and thus have DNa in a nucleoid region not detectable with the method used here. 18 refs., 4 figs., 1 tab.

  12. Differential impact of lytic viruses on the taxonomical resolution of freshwater bacterioplankton community structure.

    Science.gov (United States)

    Keshri, Jitendra; Pradeep Ram, Angia Sriram; Colombet, Jonathan; Perriere, Fanny; Thouvenot, Antoine; Sime-Ngando, Télesphore

    2017-11-01

    The significance of lytic viral lysis in shaping bacterial communities in temperate freshwater systems is less documented. Here we used Illumina sequencing of 16S rRNA genes to examine bacterial community structure and diversity in relation to variable viral lysis in the euphotic zone of 25 temperate freshwater lakes (French Massif Central). We captured a rich bacterial community that was dominated by a few bacterial classes and operational taxonomic units (OTUs) frequently detected in other freshwater ecosystems. In the investigated lakes with contrasting physico-chemical characteristics, the dominant bacterioplankton community was represented by major taxonomical orders, namely Actinomycetales, Burkholderiales, Sphingobacteriales, Acidimicrobiales, Flavobacteriales and Cytophagales covering about 70% of all sequences. Viral lysis was significantly correlated with the bacterial diversity indices (Chao, Shannon, OTUs) which explained about 33% and 45% of the variation in species diversity and observed richness respectively. Anosim and UniFrac analyses indicated a clear distinction of bacterial community structure among the lakes that exhibited high and low lytic viral infection (FIC) rates. Based on our findings, high FIC (>10%) supported higher species richness, whereas low FIC (bacterioplankton diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Occurrence of Plasmids in the Aromatic Degrading Bacterioplankton of the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Ain Heinaru

    2011-11-01

    Full Text Available Plasmids are mobile genetic elements that provide their hosts with many beneficial traits including in some cases the ability to degrade different aromatic compounds. To fulfill the knowledge gap regarding catabolic plasmids of the Baltic Sea water, a total of 209 biodegrading bacterial strains were isolated and screened for the presence of these mobile genetic elements. We found that both large and small plasmids are common in the cultivable Baltic Sea bacterioplankton and are particularly prevalent among bacterial genera Pseudomonas and Acinetobacter. Out of 61 plasmid-containing strains (29% of all isolates, 34 strains were found to carry large plasmids, which could be associated with the biodegradative capabilities of the host bacterial strains. Focusing on the diversity of IncP-9 plasmids, self-transmissible m-toluate (TOL and salicylate (SAL plasmids were detected. Sequencing the repA gene of IncP-9 carrying isolates revealed a high diversity within IncP-9 plasmid family, as well as extended the assumed bacterial host species range of the IncP-9 representatives. This study is the first insight into the genetic pool of the IncP-9 catabolic plasmids in the Baltic Sea bacterioplankton.

  14. Exploring the Ecological Coherence between the Spatial and Temporal Patterns of Bacterioplankton in Boreal Lakes

    Directory of Open Access Journals (Sweden)

    Juan Pablo Niño-García

    2017-04-01

    Full Text Available One of the major contemporary challenges in microbial ecology has been to discriminate the reactive core from the random, unreactive components of bacterial communities. In previous work we used the spatial abundance distributions of bacterioplankton across boreal lakes of Québec to group taxa into four distinct categories that reflect either hydrology-mediated dispersal along the aquatic network or environmental selection mechanisms within lakes. Here, we test whether this categorization derived from the spatial distribution of taxa is maintained over time, by analyzing the temporal dynamics of the operational taxonomic units (OTUs within those spatially derived categories along an annual cycle in the oligotrophic lake Croche (Québec, Canada, and assessing the coherence in the patterns of abundance, occurrence, and environmental range of these OTUs over space and time. We report that the temporal dynamics of most taxa within a single lake are largely coherent with those derived from their spatial distribution over large spatial scales, suggesting that these properties must be intrinsic of particular taxa. We also identified a set of rare taxa cataloged as having a random occupancy based on their spatial distribution, but which showed clear seasonality and abundance peaks along the year, yet these comprised a very small fraction of the total rare OTUs. We conclude that the presence of most rare bacterioplankton taxa in boreal lakes is random, since both their temporal and spatial dynamics suggest links to passive downstream transport and persistence in freshwater networks, rather than environmental selection.

  15. Detection of bacterioplankton using PCR probes as a diagnostic indicator for drowning; the Leicester experience.

    Science.gov (United States)

    Rutty, Guy N; Bradley, Carina J; Biggs, Mike J P; Hollingbury, Frances E; Hamilton, Stuart J; Malcomson, Roger D G; Holmes, Christopher W

    2015-09-01

    Bodies found immersed in water can pose difficulties to the investigating authorities. Pathologists may be assisted with the diagnosis by the use of tests such as the analysis for diatoms or the levels of strontium in the blood, although there is a recognised level of uncertainty associated with these tests. Recent work from Japan has shown that using molecular approaches, most recently real-time polymerase chain reaction (PCR) assays with TaqMan probes for bacterioplankton, it is possible to undertake rapid, less laborious, high throughput tests to differentiate freshwater from marine bacterioplankton and in doing so provide a molecular diagnostic test to assist in the diagnosis of drowning. We report the experiences of a United Kingdom forensic pathology unit in the use of this PCR based system for the diagnosis of drowning. We applied this technique to 20 adult and child cadavers from 4 bath, 12 freshwater, 2 brackish and 2 salt water scenes both from within the United Kingdom and abroad. Drowning was concluded to be the cause of death in 16 of these 20 cases and the PCR method supported this conclusion in 12 of these 16 cases. The PCR did not provide evidence of drowning in the four cases where death was from other causes. We illustrate that this PCR method provides a rapid diagnostic supportive test for the diagnosis of drowning that can be applied to United Kingdom autopsy practice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Bacterioplankton abundance, biomass and production in a Brazilian coastal lagoon and in two German lakes

    Directory of Open Access Journals (Sweden)

    FURTADO ANDRÉ L. S.

    2001-01-01

    Full Text Available The bacterioplanktonic abundance, biomass, and production within a tropical lagoon (Cabiúnas, Brazil and two temperate lakes (Stechlin and Dagow, Germany were compared. Bacterial abundance and production were significantly different among the three water bodies. The lowest bacterial production ( 0.8mug C l-1 d-1 was observed in the tropical Cabiúnas Lagoon despite its higher mean temperature and dissolved organic carbon concentration. Highest bacterioplankton abundance ( 2.6 x 10(9 cells l-1 and production ( 68.5mug C l-1 d-1 were measured in eutrophic Lake Dagow. In oligotrophic Lake Stechlin, the lowest bacterial biomass ( 48.05mug C l-1 was observed because of lower bacterial biovolume ( 0.248mum³ and lower bacterial abundance. Bacterial populations in the temperate lakes show higher activity (production/biomass ratio than in the tropical lagoon. The meaning of isotopic dilution and leucine incorporation by non-bacterial micro-organisms were evaluated in the oligotrophic temperate system. Leucine uptake by non-bacterial micro-organisms did not have significant influence on bacterial production.

  17. Identification of Associations between Bacterioplankton and Photosynthetic Picoeukaryotes in Coastal Waters

    Directory of Open Access Journals (Sweden)

    Hanna Maria Farnelid

    2016-03-01

    Full Text Available Photosynthetic picoeukaryotes are significant contributors to marine primary productivity. Associations between marine bacterioplankton and picoeukaryotes frequently occur and can have large biogeochemical impacts. We used flow cytometry to sort cells from seawater to identify non-eukaryotic phylotypes that are associated with photosynthetic picoeukaryotes. Samples were collected at the Santa Cruz wharf on Monterey Bay, California during summer and fall, 2014. The phylogeny of associated microbes was assessed through 16S rRNA gene amplicon clone and Illumina MiSeq libraries. The most frequently detected bacterioplankton phyla within the photosynthetic picoeukaryote sorts were Proteobacteria (Alphaproteobacteria and Gammaproteobacteria and Bacteroidetes. Intriguingly, the presence of free-living bacterial genera in the photosynthetic picoeukaryote sorts could suggest that some of the photosynthetic picoeukaryotes were mixotrophs. However, the occurrence of bacterial sequences, which were not prevalent in the corresponding bulk seawater samples, indicates that there was also a selection for specific OTUs in association with photosynthetic picoeukaryotes suggesting specific functional associations. The results show that diverse bacterial phylotypes are found in association with photosynthetic picoeukaryotes. Taxonomic identification of these associations is a prerequisite for further characterizing and to elucidate their metabolic pathways and ecological functions.

  18. Short-Term Dynamics of North Sea Bacterioplankton-Dissolved Organic Matter Coherence on Molecular Level.

    Science.gov (United States)

    Lucas, Judith; Koester, Irina; Wichels, Antje; Niggemann, Jutta; Dittmar, Thorsten; Callies, Ulrich; Wiltshire, Karen H; Gerdts, Gunnar

    2016-01-01

    Remineralization and transformation of dissolved organic matter (DOM) by marine microbes shape the DOM composition and thus, have large impact on global carbon and nutrient cycling. However, information on bacterioplankton-DOM interactions on a molecular level is limited. We examined the variation of bacterial community composition (BCC) at Helgoland Roads (North Sea) in relation to variation of molecular DOM composition and various environmental parameters on short-time scales. Surface water samples were taken daily over a period of 20 days. Bacterial community and molecular DOM composition were assessed via 16S rRNA gene tag sequencing and ultrahigh resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), respectively. Environmental conditions were driven by a coastal water influx during the first half of the sampling period and the onset of a summer phytoplankton bloom toward the end of the sampling period. These phenomena led to a distinct grouping of bacterial communities and DOM composition which was particularly influenced by total dissolved nitrogen (TDN) concentration, temperature, and salinity, as revealed by distance-based linear regression analyses. Bacterioplankton-DOM interaction was demonstrated in strong correlations between specific bacterial taxa and particular DOM molecules, thus, suggesting potential specialization on particular substrates. We propose that a combination of high resolution techniques, as used in this study, may provide substantial information on substrate generalists and specialists and thus, contribute to prediction of BCC variation.

  19. Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton.

    Science.gov (United States)

    Zhao, Dayong; Shen, Feng; Zeng, Jin; Huang, Rui; Yu, Zhongbo; Wu, Qinglong L

    2016-12-15

    Association network approaches have recently been proposed as a means for exploring the associations between bacterial communities. In the present study, high-throughput sequencing was employed to investigate the seasonal variations in the composition of bacterioplankton communities in six eutrophic urban lakes of Nanjing City, China. Over 150,000 16S rRNA sequences were derived from 52 water samples, and correlation-based network analyses were conducted. Our results demonstrated that the architecture of the co-occurrence networks varied in different seasons. Cyanobacteria played various roles in the ecological networks during different seasons. Co-occurrence patterns revealed that members of Cyanobacteria shared a very similar niche and they had weak positive correlations with other phyla in summer. To explore the effect of environmental factors on species-species co-occurrence networks and to determine the most influential environmental factors, the original positive network was simplified by module partitioning and by calculating module eigengenes. Module eigengene analysis indicated that temperature only affected some Cyanobacteria; the rest were mainly affected by nitrogen associated factors throughout the year. Cyanobacteria were dominant in summer which may result from strong co-occurrence patterns and suitable living conditions. Overall, this study has improved our understanding of the roles of Cyanobacteria and other bacterioplankton in ecological networks. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Exploring the Ecological Coherence between the Spatial and Temporal Patterns of Bacterioplankton in Boreal Lakes.

    Science.gov (United States)

    Niño-García, Juan Pablo; Ruiz-González, Clara; Del Giorgio, Paul A

    2017-01-01

    One of the major contemporary challenges in microbial ecology has been to discriminate the reactive core from the random, unreactive components of bacterial communities. In previous work we used the spatial abundance distributions of bacterioplankton across boreal lakes of Québec to group taxa into four distinct categories that reflect either hydrology-mediated dispersal along the aquatic network or environmental selection mechanisms within lakes. Here, we test whether this categorization derived from the spatial distribution of taxa is maintained over time, by analyzing the temporal dynamics of the operational taxonomic units (OTUs) within those spatially derived categories along an annual cycle in the oligotrophic lake Croche (Québec, Canada), and assessing the coherence in the patterns of abundance, occurrence, and environmental range of these OTUs over space and time. We report that the temporal dynamics of most taxa within a single lake are largely coherent with those derived from their spatial distribution over large spatial scales, suggesting that these properties must be intrinsic of particular taxa. We also identified a set of rare taxa cataloged as having a random occupancy based on their spatial distribution, but which showed clear seasonality and abundance peaks along the year, yet these comprised a very small fraction of the total rare OTUs. We conclude that the presence of most rare bacterioplankton taxa in boreal lakes is random, since both their temporal and spatial dynamics suggest links to passive downstream transport and persistence in freshwater networks, rather than environmental selection.

  1. Impact of photochemical processing of DOC on the bacterioplankton respiratory quotient in aquatic ecosystems

    Science.gov (United States)

    Allesson, Lina; Ström, Lena; Berggren, Martin

    2016-07-01

    Many studies assume a respiratory quotient (RQ = molar ratio of CO2 produced to O2 consumed) close to 1 when calculating bacterioplankton respiration. However, evidence suggests that RQ depends on the chemical composition of the respired substrate pool that may be altered by photochemical production of oxygen-rich substrates, resulting in elevated RQs. Here we conducted a novel study of the impact of photochemical processing of dissolved organic carbon (DOC) on RQ. We monitored the bacterial RQ in bioassays of both ultraviolet light irradiated and nonirradiated humic lake water, using optic gas-pressure sensors. In the experimentally irradiated samples the average RQ value was significantly higher (3.4-3.5 [±0.4 standard error (SE)]) than that in the dark controls (1.3 [±0.1 SE]). Our results show that the RQ is systematically higher than 1 when the bacterial metabolism in large part is based on photoproducts. By assuming an RQ of 1, bacterioplankton respiration in freshwater ecosystems may be greatly underestimated.

  2. Spatial-Temporal Changes of Bacterioplankton Community along an Exhorheic River.

    Science.gov (United States)

    Ma, Lili; Mao, Guannan; Liu, Jie; Gao, Guanghai; Zou, Changliang; Bartlam, Mark G; Wang, Yingying

    2016-01-01

    To date, few aquatic microbial ecology studies have discussed the variability of the microbial community in exorheic river ecosystems on both the spatial and seasonal scales. In this study, we examined the spatio-temporal variation of bacterioplankton community composition in an anthropogenically influenced exorheic river, the Haihe River in Tianjin, China, using pyrosequencing analysis of 16S rRNA genes. It was verified by one-way ANOVA that the spatial variability of the bacterioplankton community composition over the whole river was stronger than the seasonal variation. Salinity was a major factor leading to spatial differentiation of the microbial community structure into riverine and estuarial parts. A high temperature influence on the seasonal bacterial community variation was only apparent within certain kinds of environments (e.g., the riverine part). Bacterial community richness and diversity both exhibited significant spatial changes, and their seasonal variations were completely different in the two environments studied here. Furthermore, riverine bacterial community assemblages were subdivided into urban and rural groups due to changes in the nutritional state of the river. In addition, the nutrient-loving group including Limnohabitans, Hydrogenophaga, and Polynucleobacter were abundant in the urbanized Haihe River, indicating the environmental factors in these anthropogenic waterbodies heavily influence the core freshwater community composition.

  3. Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2

    Science.gov (United States)

    Bunse, Carina; Lundin, Daniel; Karlsson, Christofer M. G.; Akram, Neelam; Vila-Costa, Maria; Palovaara, Joakim; Svensson, Lovisa; Holmfeldt, Karin; González, José M.; Calvo, Eva; Pelejero, Carles; Marrasé, Cèlia; Dopson, Mark; Gasol, Josep M.; Pinhassi, Jarone

    2016-05-01

    Human-induced ocean acidification impacts marine life. Marine bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes; hence, understanding their performance under projected climate change scenarios is crucial for assessing ecosystem functioning. Whereas genetic and physiological responses of phytoplankton to ocean acidification are being disentangled, corresponding functional responses of bacterioplankton to pH reduction from elevated CO2 are essentially unknown. Here we show, from metatranscriptome analyses of a phytoplankton bloom mesocosm experiment, that marine bacteria responded to lowered pH by enhancing the expression of genes encoding proton pumps, such as respiration complexes, proteorhodopsin and membrane transporters. Moreover, taxonomic transcript analysis showed that distinct bacterial groups expressed different pH homeostasis genes in response to elevated CO2. These responses were substantial for numerous pH homeostasis genes under low-chlorophyll conditions (chlorophyll a 20 μg l-1) were low. Given that proton expulsion through pH homeostasis mechanisms is energetically costly, these findings suggest that bacterioplankton adaptation to ocean acidification could have long-term effects on the economy of ocean ecosystems.

  4. Phytoplankton, bacterioplankton and virioplankton structure and function across the southern Great Barrier Reef shelf

    Science.gov (United States)

    Alongi, Daniel M.; Patten, Nicole L.; McKinnon, David; Köstner, Nicole; Bourne, David G.; Brinkman, Richard

    2015-02-01

    Bacterioplankton and phytoplankton dynamics, pelagic respiration, virioplankton abundance, and the diversity of pelagic diazotrophs and other bacteria were examined in relation to water-column nutrients and vertical mixing across the southern Great Barrier Reef (GBR) shelf where sharp inshore to offshore gradients in water chemistry and hydrology prevail. A principal component analysis (PCA) revealed station groups clustered geographically, suggesting across-shelf differences in plankton function and structure driven by changes in mixing intensity, sediment resuspension, and the relative contributions of terrestrial, reef and oceanic nutrients. At most stations and sampling periods, microbial abundance and activities peaked both inshore and at channels between outer shelf reefs of the Pompey Reef complex. PCA also revealed that virioplankton numbers and biomass correlated with bacterioplankton numbers and production, and that bacterial growth and respiration correlated with net primary production, suggesting close virus-bacteria-phytoplankton interactions; all plankton groups correlated with particulate C, N, and P. Strong vertical mixing facilitates tight coupling of pelagic and benthic shelf processes as, on average, 37% and 56% of N and P demands of phytoplankton are derived from benthic nutrient regeneration and resuspension. These across-shelf planktonic trends mirror those of the benthic microbial community.

  5. Dispersal timing and drought history influence the response of bacterioplankton to drying-rewetting stress.

    Science.gov (United States)

    Székely, Anna J; Langenheder, Silke

    2017-08-01

    The extent and frequency of drought episodes is expected to increase in the following decades making it a crucial stress factor for smaller water bodies. However, very little is known about how bacterioplankton is affected by increased evaporation and how these communities reassemble after rewetting. Here, we present results from a microcosm experiment that assessed the effect of drying-rewetting stress on bacterioplankton in the light of the stress history and the rate and timing of dispersal after the rewetting. We found that the drying phase resulted mainly in a change of function, whereas the complete desiccation and rewetting processes strongly affected both composition and function, which were, however, influenced by the initial conditions and stress history of the communities. Effects of dispersal were generally stronger when it occurred at an early stage after the rewetting. At this stage, selective establishment of dispersed bacteria coupled with enhanced compositional and functional recovery was found, whereas effects of dispersal were neutral, that is, predictable by dispersal rates, at later stages. Our studies therefore show that both the stress history and the timing of dispersal are important factors that influence the response of bacterial communities to environmental change and stress events.

  6. Post-mortem computed tomography coaxial cutting needle biopsy to facilitate the detection of bacterioplankton using PCR probes as a diagnostic indicator for drowning

    OpenAIRE

    Rutty, Guy N.; Johnson, Christopher; Amoroso, Jasmin; Robinson, Claire; Bradley, Carina J.; Morgan, Bruno

    2016-01-01

    We report for the first time the use of coaxial cutting needle biopsy, guided by post-mortem computed tomography (PMCT), to sample internal body tissues for bacterioplankton PCR analysis to investigate drowning. This technical report describes the biopsy technique, the comparison of the needle biopsy and the invasive autopsy sampling results, as well as the PMCT and autopsy findings. By using this new biopsy sampling approach for bacterioplankton PCR, we have developed on previous papers desc...

  7. Composition of Total and Cell-Proliferating Bacterioplankton Community in Early Summer in the North Sea - Roseobacters Are the Most Active Component.

    Science.gov (United States)

    Bakenhus, Insa; Dlugosch, Leon; Billerbeck, Sara; Giebel, Helge-Ansgar; Milke, Felix; Simon, Meinhard

    2017-01-01

    Heterotrophic bacterioplankton communities play an important role in organic matter processing in the oceans worldwide. In order to investigate the significance of distinct phylogenetic bacterial groups it is not only important to assess their quantitative abundance but also their growth dynamics in relation to the entire bacterioplankton. Therefore bacterial abundance, biomass production and the composition of the entire and cell-proliferating bacterioplankton community were assessed in North Sea surface waters between the German Bight and 58°N in early summer by applying catalyzed reporter deposition (CARD-FISH) and bromodeoxyuridine fluorescence in situ hybridization (BrdU-FISH). Bacteroidetes and the Roseobacter group dominated the cell-proliferating fraction with 10-55 and 8-31% of total BrdU-positive cells, respectively. While Bacteroidetes also showed high abundances in the total bacterial fraction, roseobacters constituted only 1-9% of all cells. Despite abundances of up to 55% of total bacterial cells, the SAR11 clade constituted bacterioplankton whereas those of the SAR11 clade and Gammaproteobacteria were 0.04 and 0.21 day -1 , respectively, and much lower than bulk growth rates. Only numbers of total and cell-proliferating roseobacters but not those of Bacteroidetes and the other groups were significantly correlated to chlorophyll fluorescence and bacterioplankton biomass production. The Roseobacter group, besides Bacteroidetes , appeared to be a major player in processing phytoplankton derived organic matter despite its low partitioning in the total bacterioplankton community.

  8. Composition of Total and Cell-Proliferating Bacterioplankton Community in Early Summer in the North Sea – Roseobacters Are the Most Active Component

    Science.gov (United States)

    Bakenhus, Insa; Dlugosch, Leon; Billerbeck, Sara; Giebel, Helge-Ansgar; Milke, Felix; Simon, Meinhard

    2017-01-01

    Heterotrophic bacterioplankton communities play an important role in organic matter processing in the oceans worldwide. In order to investigate the significance of distinct phylogenetic bacterial groups it is not only important to assess their quantitative abundance but also their growth dynamics in relation to the entire bacterioplankton. Therefore bacterial abundance, biomass production and the composition of the entire and cell-proliferating bacterioplankton community were assessed in North Sea surface waters between the German Bight and 58°N in early summer by applying catalyzed reporter deposition (CARD-FISH) and bromodeoxyuridine fluorescence in situ hybridization (BrdU-FISH). Bacteroidetes and the Roseobacter group dominated the cell-proliferating fraction with 10–55 and 8–31% of total BrdU-positive cells, respectively. While Bacteroidetes also showed high abundances in the total bacterial fraction, roseobacters constituted only 1–9% of all cells. Despite abundances of up to 55% of total bacterial cells, the SAR11 clade constituted bacterioplankton whereas those of the SAR11 clade and Gammaproteobacteria were 0.04 and 0.21 day-1, respectively, and much lower than bulk growth rates. Only numbers of total and cell-proliferating roseobacters but not those of Bacteroidetes and the other groups were significantly correlated to chlorophyll fluorescence and bacterioplankton biomass production. The Roseobacter group, besides Bacteroidetes, appeared to be a major player in processing phytoplankton derived organic matter despite its low partitioning in the total bacterioplankton community. PMID:28959250

  9. Proteomic Stable Isotope Probing Reveals Taxonomically Distinct Patterns in Amino Acid Assimilation by Coastal Marine Bacterioplankton.

    Science.gov (United States)

    Bryson, Samuel; Li, Zhou; Pett-Ridge, Jennifer; Hettich, Robert L; Mayali, Xavier; Pan, Chongle; Mueller, Ryan S

    2016-01-01

    Heterotrophic marine bacterioplankton are a critical component of the carbon cycle, processing nearly a quarter of annual primary production, yet defining how substrate utilization preferences and resource partitioning structure microbial communities remains a challenge. In this study, proteomic stable isotope probing (proteomic SIP) was used to characterize population-specific assimilation of dissolved free amino acids (DFAAs), a major source of dissolved organic carbon for bacterial secondary production in aquatic environments. Microcosms of seawater collected from Newport, Oregon, and Monterey Bay, California, were incubated with 1 µM 13 C-labeled amino acids for 15 and 32 h. The taxonomic compositions of microcosm metaproteomes were highly similar to those of the sampled natural communities, with Rhodobacteriales , SAR11, and Flavobacteriales representing the dominant taxa. Analysis of 13 C incorporation into protein biomass allowed for quantification of the isotopic enrichment of identified proteins and subsequent determination of differential amino acid assimilation patterns between specific bacterioplankton populations. Proteins associated with Rhodobacterales tended to have a significantly high frequency of 13 C-enriched peptides, opposite the trend for Flavobacteriales and SAR11 proteins. Rhodobacterales proteins associated with amino acid transport and metabolism had an increased frequency of 13 C-enriched spectra at time point 2. Alteromonadales proteins also had a significantly high frequency of 13 C-enriched peptides, particularly within ribosomal proteins, demonstrating their rapid growth during incubations. Overall, proteomic SIP facilitated quantitative comparisons of DFAA assimilation by specific taxa, both between sympatric populations and between protein functional groups within discrete populations, allowing an unprecedented examination of population level metabolic responses to resource acquisition in complex microbial communities

  10. Metabolic Roles of Uncultivated Bacterioplankton Lineages in the Northern Gulf of Mexico "Dead Zone".

    Science.gov (United States)

    Thrash, J Cameron; Seitz, Kiley W; Baker, Brett J; Temperton, Ben; Gillies, Lauren E; Rabalais, Nancy N; Henrissat, Bernard; Mason, Olivia U

    2017-09-12

    Marine regions that have seasonal to long-term low dissolved oxygen (DO) concentrations, sometimes called "dead zones," are increasing in number and severity around the globe with deleterious effects on ecology and economics. One of the largest of these coastal dead zones occurs on the continental shelf of the northern Gulf of Mexico (nGOM), which results from eutrophication-enhanced bacterioplankton respiration and strong seasonal stratification. Previous research in this dead zone revealed the presence of multiple cosmopolitan bacterioplankton lineages that have eluded cultivation, and thus their metabolic roles in this ecosystem remain unknown. We used a coupled shotgun metagenomic and metatranscriptomic approach to determine the metabolic potential of Marine Group II Euryarchaeota , SAR406, and SAR202. We recovered multiple high-quality, nearly complete genomes from all three groups as well as candidate phyla usually associated with anoxic environments- Parcubacteria (OD1) and Peregrinibacteria Two additional groups with putative assignments to ACD39 and PAUC34f supplement the metabolic contributions by uncultivated taxa. Our results indicate active metabolism in all groups, including prevalent aerobic respiration, with concurrent expression of genes for nitrate reduction in SAR406 and SAR202, and dissimilatory nitrite reduction to ammonia and sulfur reduction by SAR406. We also report a variety of active heterotrophic carbon processing mechanisms, including degradation of complex carbohydrate compounds by SAR406, SAR202, ACD39, and PAUC34f. Together, these data help constrain the metabolic contributions from uncultivated groups in the nGOM during periods of low DO and suggest roles for these organisms in the breakdown of complex organic matter. IMPORTANCE Dead zones receive their name primarily from the reduction of eukaryotic macrobiota (demersal fish, shrimp, etc.) that are also key coastal fisheries. Excess nutrients contributed from anthropogenic activity

  11. Temporal Patterns in Bacterioplankton Community Composition in Three Reservoirs of Similar Trophic Status in Shenzhen, China

    Directory of Open Access Journals (Sweden)

    Jiancheng Li

    2016-06-01

    Full Text Available The bacterioplankton community composition’s (BCC spatial and temporal variation patterns in three reservoirs (Shiyan, Xikeng, and LuoTian Reservoir of similar trophic status in Bao’an District, Shenzhen (China, were investigated using PCR amplification of the 16S rDNA gene and the denaturing gradient gel electrophoresis (DGGE techniques. Water samples were collected monthly in each reservoir during 12 consecutive months. Distinct differences were detected in band number, pattern, and density of DGGE at different sampling sites and time points. Analysis of the DGGE fingerprints showed that changes in the bacterial community structure mainly varied with seasons, and the patterns of change indicated that seasonal forces might have a more significant impact on the BCC than eutrophic status in the reservoirs, despite the similar Shannon-Weiner index among the three reservoirs. The sequences obtained from excised bands were affiliated with Cyanobacteria, Firmicutes, Bacteriodetes, Acidobacteria, Actinobacteria, Planctomycetes, and Proteobacteria.

  12. Temporal Patterns in Bacterioplankton Community Composition in Three Reservoirs of Similar Trophic Status in Shenzhen, China.

    Science.gov (United States)

    Li, Jiancheng; Chen, Cheng; Lu, Jun; Lei, Anping; Hu, Zhangli

    2016-06-16

    The bacterioplankton community composition's (BCC) spatial and temporal variation patterns in three reservoirs (Shiyan, Xikeng, and LuoTian Reservoir) of similar trophic status in Bao'an District, Shenzhen (China), were investigated using PCR amplification of the 16S rDNA gene and the denaturing gradient gel electrophoresis (DGGE) techniques. Water samples were collected monthly in each reservoir during 12 consecutive months. Distinct differences were detected in band number, pattern, and density of DGGE at different sampling sites and time points. Analysis of the DGGE fingerprints showed that changes in the bacterial community structure mainly varied with seasons, and the patterns of change indicated that seasonal forces might have a more significant impact on the BCC than eutrophic status in the reservoirs, despite the similar Shannon-Weiner index among the three reservoirs. The sequences obtained from excised bands were affiliated with Cyanobacteria, Firmicutes, Bacteriodetes, Acidobacteria, Actinobacteria, Planctomycetes, and Proteobacteria.

  13. Quantification of carbon and phosphorus co-limitation in bacterioplankton: new insights on an old topic.

    Directory of Open Access Journals (Sweden)

    Irene Dorado-García

    Full Text Available Because the nature of the main resource that limits bacterioplankton (e.g. organic carbon [C] or phosphorus [P] has biogeochemical implications concerning organic C accumulation in freshwater ecosystems, empirical knowledge is needed concerning how bacteria respond to these two resources, available alone or together. We performed field experiments of resource manipulation (2×2 factorial design, with the addition of C, P, or both combined in two Mediterranean freshwater ecosystems with contrasting trophic states (oligotrophy vs. eutrophy and trophic natures (autotrophy vs. heterotrophy, measured as gross primary production:respiration ratio. Overall, the two resources synergistically co-limited bacterioplankton, i.e. the magnitude of the response of bacterial production and abundance to the two resources combined was higher than the additive response in both ecosystems. However, bacteria also responded positively to single P and C additions in the eutrophic ecosystem, but not to single C in the oligotrophic one, consistent with the value of the ratio between bacterial C demand and algal C supply. Accordingly, the trophic nature rather than the trophic state of the ecosystems proves to be a key feature determining the expected types of resource co-limitation of bacteria, as summarized in a proposed theoretical framework. The actual types of co-limitation shifted over time and partially deviated (a lesser degree of synergism from the theoretical expectations, particularly in the eutrophic ecosystem. These deviations may be explained by extrinsic ecological forces to physiological limitations of bacteria, such as predation, whose role in our experiments is supported by the relationship between the dynamics of bacteria and bacterivores tested by SEMs (structural equation models. Our study, in line with the increasingly recognized role of freshwater ecosystems in the global C cycle, suggests that further attention should be focussed on the biotic

  14. Quantification of Carbon and Phosphorus Co-Limitation in Bacterioplankton: New Insights on an Old Topic

    Science.gov (United States)

    Dorado-García, Irene; Medina-Sánchez, Juan Manuel; Herrera, Guillermo; Cabrerizo, Marco J.; Carrillo, Presentación

    2014-01-01

    Because the nature of the main resource that limits bacterioplankton (e.g. organic carbon [C] or phosphorus [P]) has biogeochemical implications concerning organic C accumulation in freshwater ecosystems, empirical knowledge is needed concerning how bacteria respond to these two resources, available alone or together. We performed field experiments of resource manipulation (2×2 factorial design, with the addition of C, P, or both combined) in two Mediterranean freshwater ecosystems with contrasting trophic states (oligotrophy vs. eutrophy) and trophic natures (autotrophy vs. heterotrophy, measured as gross primary production:respiration ratio). Overall, the two resources synergistically co-limited bacterioplankton, i.e. the magnitude of the response of bacterial production and abundance to the two resources combined was higher than the additive response in both ecosystems. However, bacteria also responded positively to single P and C additions in the eutrophic ecosystem, but not to single C in the oligotrophic one, consistent with the value of the ratio between bacterial C demand and algal C supply. Accordingly, the trophic nature rather than the trophic state of the ecosystems proves to be a key feature determining the expected types of resource co-limitation of bacteria, as summarized in a proposed theoretical framework. The actual types of co-limitation shifted over time and partially deviated (a lesser degree of synergism) from the theoretical expectations, particularly in the eutrophic ecosystem. These deviations may be explained by extrinsic ecological forces to physiological limitations of bacteria, such as predation, whose role in our experiments is supported by the relationship between the dynamics of bacteria and bacterivores tested by SEMs (structural equation models). Our study, in line with the increasingly recognized role of freshwater ecosystems in the global C cycle, suggests that further attention should be focussed on the biotic interactions that

  15. Transient changes in bacterioplankton communities induced by the submarine volcanic eruption of El Hierro (Canary Islands.

    Directory of Open Access Journals (Sweden)

    Isabel Ferrera

    Full Text Available The submarine volcanic eruption occurring near El Hierro (Canary Islands in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1-V3 regions for Bacteria and V3-V5 for Archaea to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012. Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70-200 m, coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria. Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer

  16. Distinct Seasonal Patterns of Bacterioplankton Abundance and Dominance of Phyla α-Proteobacteria and Cyanobacteria in Qinhuangdao Coastal Waters Off the Bohai Sea.

    Science.gov (United States)

    He, Yaodong; Sen, Biswarup; Zhou, Shuangyan; Xie, Ningdong; Zhang, Yongfeng; Zhang, Jianle; Wang, Guangyi

    2017-01-01

    Qinhuangdao coastal waters in northern China are heavily impacted by anthropogenic and natural activities, and we anticipate a direct influence of the impact on the bacterioplankton abundance and diversity inhabiting the adjacent coastal areas. To ascertain the anthropogenic influences, we first evaluated the seasonal abundance patterns and diversity of bacterioplankton in the coastal areas with varied levels of natural and anthropogenic activities and then analyzed the environmental factors which influenced the abundance patterns. Results indicated distinct patterns in bacterioplankton abundance across the warm and cold seasons in all stations. Total bacterial abundance in the stations ranged from 8.67 × 10 4 to 2.08 × 10 6 cells/mL and had significant ( p bacterioplankton subgroups, α -Proteobacteria (phylum Proteobacteria ) was the dominant one followed by Family II (phylum Cyanobacteria ), representing 19.1-55.2% and 2.3-54.2% of total sequences, respectively. An inverse relationship ( r = -0.82) was observed between the two dominant subgroups, α -Proteobacteria and Family II . A wide range of inverse Simpson index (10.2 to 105) revealed spatial heterogeneity of bacterioplankton diversity likely resulting from the varied anthropogenic and natural influences. Overall, our results suggested that seasonal variations impose substantial influence on shaping bacterioplankton abundance patterns. In addition, the predominance of only a few cosmopolitan species in the Qinhuangdao coastal wasters was probably an indication of their competitive advantage over other bacterioplankton groups in the degradation of anthropogenic inputs. The results provided an evidence of their ecological significance in coastal waters impacted by seasonal inputs of the natural and anthropogenic matter. In conclusion, the findings anticipate future development of effective indicators of coastal health monitoring and subsequent management strategies to control the anthropogenic inputs in

  17. Seasonal Dynamics of Bacterioplankton Community Structure in a Eutrophic Lake as Determined by 5S rRNA Analysis

    Science.gov (United States)

    Höfle, Manfred G.; Haas, Heike; Dominik, Katja

    1999-01-01

    Community structure of bacterioplankton was studied during the major growth season for phytoplankton (April to October) in the epilimnion of a temperate eutrophic lake (Lake Plußsee, northern Germany) by using comparative 5S rRNA analysis. Estimates of the relative abundances of single taxonomic groups were made on the basis of the amounts of single 5S rRNA bands obtained after high-resolution electrophoresis of RNA directly from the bacterioplankton. Full-sequence analysis of single environmental 5S rRNAs enabled the identification of single taxonomic groups of bacteria. Comparison of partial 5S rRNA sequences allowed the detection of changes of single taxa over time. Overall, the whole bacterioplankton community showed two to eight abundant (>4% of the total 5S rRNA) taxa. A distinctive seasonal succession was observed in the taxonomic structure of this pelagic community. A rather-stable community structure, with seven to eight different taxonomic units, was observed beginning in April during the spring phytoplankton bloom. A strong reduction in this diversity occurred at the beginning of the clear-water phase (early May), when only two to four abundant taxa were observed, with one taxon dominating (up to 72% of the total 5S rRNA). The community structure during summer stagnation (June and July) was characterized by frequent changes of different dominating taxa. During late summer, a dinoflagellate bloom (Ceratium hirudinella) occurred, with Comamonas acidovorans (β-subclass of the class Proteobacteria) becoming the dominant bacterial species (average abundance of 43% of the total 5S rRNA). Finally, the seasonal dynamics of the community structure of bacterioplankton were compared with the abundances of other major groups of the aquatic food web, such as phyto- and zooplankton, revealing that strong grazing pressure by zooplankton can reduce microbial diversity substantially in pelagic environments. PMID:10388718

  18. Response of bacterioplankton community structure to an artificial gradient of pCO2 in the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2013-06-01

    Full Text Available In order to test the influences of ocean acidification on the ocean pelagic ecosystem, so far the largest CO2 manipulation mesocosm study (European Project on Ocean Acidification, EPOCA was performed in Kings Bay (Kongsfjorden, Spitsbergen. During a 30 day incubation, bacterial diversity was investigated using DNA fingerprinting and clone library analysis of bacterioplankton samples. Terminal restriction fragment length polymorphism (T-RFLP analysis of the PCR amplicons of the 16S rRNA genes revealed that general bacterial diversity, taxonomic richness and community structure were influenced by the variation of productivity during the time of incubation, but not the degree of ocean acidification. A BIOENV analysis suggested a complex control of bacterial community structure by various biological and chemical environmental parameters. The maximum apparent diversity of bacterioplankton (i.e., the number of T-RFs in high and low pCO2 treatments differed significantly. A negative relationship between the relative abundance of Bacteroidetes and pCO2 levels was observed for samples at the end of the experiment by the combination of T-RFLP and clone library analysis. Our study suggests that ocean acidification affects the development of bacterial assemblages and potentially impacts the ecological function of the bacterioplankton in the marine ecosystem.

  19. Response of bacterioplankton community structure to an artificial gradient of pCO2 in the Arctic Ocean

    Science.gov (United States)

    Zhang, R.; Xia, X.; Lau, S. C. K.; Motegi, C.; Weinbauer, M. G.; Jiao, N.

    2013-06-01

    In order to test the influences of ocean acidification on the ocean pelagic ecosystem, so far the largest CO2 manipulation mesocosm study (European Project on Ocean Acidification, EPOCA) was performed in Kings Bay (Kongsfjorden), Spitsbergen. During a 30 day incubation, bacterial diversity was investigated using DNA fingerprinting and clone library analysis of bacterioplankton samples. Terminal restriction fragment length polymorphism (T-RFLP) analysis of the PCR amplicons of the 16S rRNA genes revealed that general bacterial diversity, taxonomic richness and community structure were influenced by the variation of productivity during the time of incubation, but not the degree of ocean acidification. A BIOENV analysis suggested a complex control of bacterial community structure by various biological and chemical environmental parameters. The maximum apparent diversity of bacterioplankton (i.e., the number of T-RFs) in high and low pCO2 treatments differed significantly. A negative relationship between the relative abundance of Bacteroidetes and pCO2 levels was observed for samples at the end of the experiment by the combination of T-RFLP and clone library analysis. Our study suggests that ocean acidification affects the development of bacterial assemblages and potentially impacts the ecological function of the bacterioplankton in the marine ecosystem.

  20. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains.

    Directory of Open Access Journals (Sweden)

    Vojtěch Kasalický

    Full Text Available Bacteria of the genus Limnohabitans, more precisely the R-BT lineage, have a prominent role in freshwater bacterioplankton communities due to their high rates of substrate uptake and growth, growth on algal-derived substrates and high mortality rates from bacterivory. Moreover, due to their generally larger mean cell volume, compared to typical bacterioplankton cells, they contribute over-proportionally to total bacterioplankton biomass. Here we present genetic, morphological and ecophysiological properties of 35 bacterial strains affiliated with the Limnohabitans genus newly isolated from 11 non-acidic European freshwater habitats. The low genetic diversity indicated by the previous studies using the ribosomal SSU gene highly contrasted with the surprisingly rich morphologies and different patterns in substrate utilization of isolated strains. Therefore, the intergenic spacer between 16S and 23S rRNA genes was successfully tested as a fine-scale marker to delineate individual lineages and even genotypes. For further studies, we propose the division of the Limnohabitans genus into five lineages (provisionally named as LimA, LimB, LimC, LimD and LimE and also additional sublineages within the most diversified lineage LimC. Such a delineation is supported by the morphology of isolated strains which predetermine large differences in their ecology.

  1. Bacterioplankton community responses to key environmental variables in plateau freshwater lake ecosystems: A structural equation modeling and change point analysis.

    Science.gov (United States)

    Cao, Xiaofeng; Wang, Jie; Liao, Jingqiu; Gao, Zhe; Jiang, Dalin; Sun, Jinhua; Zhao, Lei; Huang, Yi; Luan, Shengji

    2017-02-15

    Elevated environmental pressures negatively affect the bacterial community structure. However, little knowledge about the nonlinear responses of spatially related environmental variable across multiple plateau lake ecosystems on bacterioplankton communities has been gathered. Here, we used 454 pyrosequencing of 16S rRNA genes to study the associations of bacterial communities in terms of environmental characteristics as well as the potentially ecological threshold-inducing shifts of the bacterial community structure along the key environmental variables based on hypothesized structural equation models and the SEGMENTED method in 21 plateau lakes. Our results showed that water transparency was the major driving force and that total nitrogen was more significant than total phosphorus in determining the taxon composition of the bacterioplankton community. Significant community threshold estimates for bacterioplankton were observed at 7.36 for pH and 25.6% for the percentage of the agricultural area, while the remarkable change point of the cyanobacteria community structure responding to pH was at 7.74. Furthermore, the findings indicated that increasing nutrient loads can induce a distinct shift in dominance from Proteobacteria to Cyanobacteria, as well as a sharp decrease and adjacent increase when crossing the change point for Actinobacteria and Bacteroidetes along the gradient of the agricultural area. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Modeling the impact of riverine DON removal by marine bacterioplankton on primary production in the Arctic Ocean

    Science.gov (United States)

    Le Fouest, V.; Manizza, M.; Tremblay, B.; Babin, M.

    2014-12-01

    The planktonic and biogeochemical dynamics of the Arctic shelves exhibit a strong variability in response to Arctic warming. In this study, in order to elucidate on the processes regulating the production of phytoplankton (PP) and bacterioplankton (BP) and their interactions, we employ a biogeochemical model coupled to a pan-Arctic ocean-sea ice model (MITgcm) to explicitly simulate and quantify the contribution of usable dissolved organic nitrogen (DON) drained by the major circum-Arctic rivers on PP and BP in a scenario of melting sea ice (1998-2011). Model simulations suggest that on average between 1998 and 2011, the removal of usable RDON by bacterioplankton is responsible of a ~26% increase of the annual BP for the whole Arctic Ocean. With respect to total PP, the model simulates an increase of ~8% on an annual basis and of ~18% in summer. Recycled ammonium is responsible for the PP increase. The recycling of RDON by bacterioplankton promotes higher BP and PP but there is no significant temporal trend in the BP : PP ratio within the ice-free shelves over the 1998-2011 period. This suggests no significant evolution in the balance between autotrophy and heterotrophy in the last decade with a constant annual flux of RDON into the coastal ocean although changes in RDON supply and further reduction in sea ice cover could potentially alter this delicate balance.

  3. Seasonality Affects the Diversity and Composition of Bacterioplankton Communities in Dongjiang River, a Drinking Water Source of Hong Kong

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2017-08-01

    Full Text Available Water quality ranks the most vital criterion for rivers serving as drinking water sources, which periodically changes over seasons. Such fluctuation is believed associated with the state shifts of bacterial community within. To date, seasonality effects on bacterioplankton community patterns in large rivers serving as drinking water sources however, are still poorly understood. Here we investigated the intra-annual bacterial community structure in the Dongjiang River, a drinking water source of Hong Kong, using high-throughput pyrosequencing in concert with geochemical property measurements during dry, and wet seasons. Our results showed that Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla of bacterioplankton communities, which varied in composition, and distribution from dry to wet seasons, and exhibited profound seasonal changes. Actinobacteria, Bacteroidetes, and Cyanobacteria seemed to be more associated with seasonality that the relative abundances of Actinobacteria, and Bacteroidetes were significantly higher in the dry season than those in the wet season (p < 0.01, while the relative abundance of Cyanobacteria was about 10-fold higher in the wet season than in the dry season. Temperature and NO3--N concentration represented key contributing factors to the observed seasonal variations. These findings help understand the roles of various bacterioplankton and their interactions with the biogeochemical processes in the river ecosystem.

  4. Modelling the impact of riverine DON removal by marine bacterioplankton on primary production in the Arctic Ocean

    Science.gov (United States)

    Le Fouest, V.; Manizza, M.; Tremblay, B.; Babin, M.

    2015-06-01

    The planktonic and biogeochemical dynamics of the Arctic shelves exhibit a strong variability in response to Arctic warming. In this study, we employ a biogeochemical model coupled to a pan-Arctic ocean-sea ice model (MITgcm) to elucidate the processes regulating the primary production (PP) of phytoplankton, bacterioplankton (BP), and their interactions. The model explicitly simulates and quantifies the contribution of usable dissolved organic nitrogen (DON) drained by the major circum-Arctic rivers to PP and BP in a scenario of melting sea ice (1998-2011). Model simulations suggest that, on average between 1998 and 2011, the removal of usable riverine dissolved organic nitrogen (RDON) by bacterioplankton is responsible for a ~ 26% increase in the annual BP for the whole Arctic Ocean. With respect to total PP, the model simulates an increase of ~ 8% on an annual basis and of ~ 18% in summer. Recycled ammonium is responsible for the PP increase. The recycling of RDON by bacterioplankton promotes higher BP and PP, but there is no significant temporal trend in the BP : PP ratio within the ice-free shelves over the 1998-2011 period. This suggests no significant evolution in the balance between autotrophy and heterotrophy in the last decade, with a constant annual flux of RDON into the coastal ocean, although changes in RDON supply and further reduction in sea-ice cover could potentially alter this delicate balance.

  5. Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: the potential impact of hypoxia and nutrients.

    Science.gov (United States)

    Liu, Jiwen; Fu, Bingbing; Yang, Hongmei; Zhao, Meixun; He, Biyan; Zhang, Xiao-Hua

    2015-01-01

    The significance of salinity in shaping bacterial communities dwelling in estuarine areas has been well documented. However, the influences of other environmental factors such as dissolved oxygen and nutrients in determining distribution patterns of both individual taxa and bacterial communities inhabited local estuarine regions remain elusive. Here, bacterioplankton community structures of surface and bottom waters from eight sites along the Pearl Estuary were characterized with 16S rRNA gene pyrosequencing. The results showed significant differences of bacterioplankton community between freshwater and saltwater sites, and further between surface and bottom waters of saltwater sites. Synechococcus dominated the surface water of saltwater sites while Oceanospirillales, SAR11 and SAR406 were prevalent in the bottom water. Betaproteobacteria was abundant in freshwater sites, with no significant difference between water layers. Occurrence of phylogenetic shifts in taxa affiliated to the same clade was also detected. Dissolved oxygen explained most of the bacterial community variation in the redundancy analysis targeting only freshwater sites, whereas nutrients and salinity explained most of the variation across all samples in the Pearl Estuary. Methylophilales (mainly PE2 clade) was positively correlated to dissolved oxygen, whereas Rhodocyclales (mainly R.12up clade) was negatively correlated. Moreover, high nutrient inputs to the freshwater area of the Pearl Estuary have shifted the bacterial communities toward copiotrophic groups, such as Sphingomonadales. The present study demonstrated that the overall nutrients and freshwater hypoxia play important roles in determining bacterioplankton compositions and provided insights into the potential ecological roles of specific taxa in estuarine environments.

  6. Seasonality Affects the Diversity and Composition of Bacterioplankton Communities in Dongjiang River, a Drinking Water Source of Hong Kong.

    Science.gov (United States)

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Sun, Guoping

    2017-01-01

    Water quality ranks the most vital criterion for rivers serving as drinking water sources, which periodically changes over seasons. Such fluctuation is believed associated with the state shifts of bacterial community within. To date, seasonality effects on bacterioplankton community patterns in large rivers serving as drinking water sources however, are still poorly understood. Here we investigated the intra-annual bacterial community structure in the Dongjiang River, a drinking water source of Hong Kong, using high-throughput pyrosequencing in concert with geochemical property measurements during dry, and wet seasons. Our results showed that Proteobacteria, Actinobacteria , and Bacteroidetes were the dominant phyla of bacterioplankton communities, which varied in composition, and distribution from dry to wet seasons, and exhibited profound seasonal changes. Actinobacteria, Bacteroidetes , and Cyanobacteria seemed to be more associated with seasonality that the relative abundances of Actinobacteria , and Bacteroidetes were significantly higher in the dry season than those in the wet season ( p bacterioplankton and their interactions with the biogeochemical processes in the river ecosystem.

  7. Distribution of bacterioplankton with active metabolism in waters of the St. Anna Trough, Kara Sea, in autumn 2011

    Science.gov (United States)

    Mosharova, I. V.; Mosharov, S. A.; Ilinskiy, V. V.

    2017-01-01

    The distribution of bacterioplankton with active electron transport chains, as well as bacteria with intact cell membranes, was investigated for the first time in the region of St. Anna Trough in the Kara Sea. The average number of bacteria with active electron transport chains in the waters of the St. Anna Trough was 15.55 × 103 cells mL-1 (the limits of variation were 1.06-92.17 × 103 cells mL-1). The average number of bacteria with intact membranes was 33.46 × 103 cells mL-1 (the limits of variation were 6.78 to 103.18 × 103 cells mL-1). Almost all bacterioplankton microorganisms in the studied area were potentially viable, and the average share of bacteria with intact membranes was 92.1% of the total number of bacterioplankton (TNB) (the limits of variation were 76.2 to 98.4%). The share of bacteria with active metabolisms was 38.2% of the TNB (the limits of variation were 5.6-93.4%). The shares of the bacteria with active metabolisms were maximum in areas with the most stable environmental conditions (on the shelf and in deep water), whereas on the slope, where the gradients of water temperature and salinity were maximum, these values were lower.

  8. Comparative analysis of deep-sea bacterioplankton OMICS revealed the occurrence of habitat-specific genomic attributes.

    Science.gov (United States)

    Smedile, Francesco; Messina, Enzo; La Cono, Violetta; Yakimov, Michail M

    2014-10-01

    Bathyal aphotic ocean represents the largest biotope on our planet, which sustains highly diverse but low-density microbial communities, with yet untapped genomic attributes, potentially useful for discovery of new biomolecules, industrial enzymes and pathways. In the last two decades, culture-independent approaches of high-throughput sequencing have provided new insights into structure and function of marine bacterioplankton, leading to unprecedented opportunities to accurately characterize microbial communities and their interactions with the environments. In the present review we focused on the analysis of relatively few deep-sea OMICS studies, completed thus far, to find the specific genomic patterns determining the lifeway and adaptation mechanisms of prokaryotes thriving in the dark deep ocean below the depth of 1000m. Phylogenomic and omic studies provided clear evidence that the bathyal microbial communities are distinct from the epipelagic counterparts and, along with generally larger genomes, possess their own habitat-specific genomic attributes. The high abundance in the deep ocean OMICS of the systems for environmental sensing, signal transduction and metabolic versatility as compared to the epipelagic counterparts is thought to enable the deep-sea bacterioplankton to rapidly adapt to changing environmental conditions associated with resource scarcity and high diversity of energy and carbon substrates in the bathyal biotopes. Together with a versatile heterotrophy, mixotrophy and anaplerosis are thought to enable the deep-sea bacterioplankton to cope with these environmental conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Vertical partitioning of freshwater bacterioplankton community in a deep mesotrophic lake with a fully oxygenated hypolimnion (Lake Biwa, Japan).

    Science.gov (United States)

    Okazaki, Yusuke; Nakano, Shin-Ichi

    2016-07-12

    In freshwater microbial ecology, extensive studies are attempting to characterize the vast majority of uncultivated bacterioplankton taxa. However, these studies mainly focus on the epilimnion and little is known regarding the bacterioplankton inhabiting the hypolimnion of deep holomictic lakes, despite its biogeochemical importance. In this study, we investigated the bacterioplankton community composition in a deep freshwater lake with a fully oxygenated hypolimnion (Lake Biwa, Japan) using high-throughput 16S rRNA gene amplicon sequencing. Sampling at a pelagic site over 15 months throughout the water column revealed that the community composition in the hypolimnion was significantly different from that in the epilimnion. The bacterial community in the hypolimnion was composed of groups dominating in the whole water layer (e.g., bacI-A1 and acI-B1) and groups that were hypolimnion habitat specialists. Among the hypolimnion specialists, members of Chloroflexi and Planctomycetes were highly represented (e.g., CL500-11, CL500-15 and CL500-37), followed by members of Acidobacteria, Chlorobi and nitrifiers (e.g., Ca. Nitrosoarchaeum, Nitrosospira and Nitrospira). This study identified the number of previously understudied taxa dominating the deep aerobic freshwater habitat, suggesting that the biogeochemical cycling there is driven by the microbial community that are different from that in the epilimnion. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Analysis of composition and structure of coastal to mesopelagic bacterioplankton communities in the northern gulf of Mexico.

    Science.gov (United States)

    King, Gary M; Smith, Conor B; Tolar, Bradley; Hollibaugh, James T

    2012-01-01

    16S rRNA gene amplicons were pyrosequenced to assess bacterioplankton community composition, diversity, and phylogenetic community structure for 17 stations in the northern Gulf of Mexico (nGoM) sampled in March 2010. Statistical analyses showed that samples from depths ≤100 m differed distinctly from deeper samples. SAR 11 α-Proteobacteria and Bacteroidetes dominated communities at depths ≤100 m, which were characterized by high α-Proteobacteria/γ-Proteobacteria ratios (α/γ > 1.7). Thaumarchaeota, Firmicutes, and δ-Proteobacteria were relatively abundant in deeper waters, and α/γ ratios were low (bacterioplankton communities might develop independently of nGoM physical-chemical variables. Phylogenetic community structure as measured by the net relatedness (NRI) and nearest taxon (NTI) indices also did not vary with depth. NRI values indicated that most of the communities were comprised of OTUs more distantly related to each other in whole community comparisons than expected by chance. NTI values derived from phylogenetic distances of the closest neighbor for each OTU in a given community indicated that OTUs tended to occur in clusters to a greater extent than expected by chance. This indicates that "habitat filtering" might play an important role in nGoM bacterioplankton species assembly, and that such filtering occurs throughout the water column.

  11. Environmental rather than spatial factors structure bacterioplankton communities in shallow lakes along a > 6000 km latitudinal gradient in South America.

    Science.gov (United States)

    Souffreau, Caroline; Van der Gucht, Katleen; van Gremberghe, Ineke; Kosten, Sarian; Lacerot, Gissell; Lobão, Lúcia Meirelles; de Moraes Huszar, Vera Lúcia; Roland, Fabio; Jeppesen, Erik; Vyverman, Wim; De Meester, Luc

    2015-07-01

    Metacommunity studies on lake bacterioplankton indicate the importance of environmental factors in structuring communities. Yet most of these studies cover relatively small spatial scales. We assessed the relative importance of environmental and spatial factors in shaping bacterioplankton communities across a > 6000 km latitudinal range, studying 48 shallow lowland lakes in the tropical, tropicali (isothermal subzone of the tropics) and tundra climate regions of South America using denaturing gradient gel electrophoresis. Bacterioplankton community composition (BCC) differed significantly across regions. Although a large fraction of the variation in BCC remained unexplained, the results supported a consistent significant contribution of local environmental variables and to a lesser extent spatial variables, irrespective of spatial scale. Upon correction for space, mainly biotic environmental factors significantly explained the variation in BCC. The abundance of pelagic cladocerans remained particularly significant, suggesting grazer effects on bacterioplankton communities in the studied lakes. These results confirm that bacterioplankton communities are predominantly structured by environmental factors, even over a large-scale latitudinal gradient (6026 km), and stress the importance of including biotic variables in studies that aim to understand patterns in BCC. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Seasonal variations in bacterioplankton community structures in two small rivers in the Himi region of central Japan and their relationships with environmental factors.

    Science.gov (United States)

    Tanaka, Daisuke; Takahashi, Toyo; Yamashiro, Yoko; Tanaka, Hitoshi; Kimochi, Yuzuru; Nishio, Masaki; Sakatoku, Akihiro; Nakamura, Shogo

    2017-11-13

    The aim of this study was to improve our understanding of seasonal variations and the effects of physicochemical conditions on the bacterioplankton communities in two small rivers, the Moo and Nakayachi Rivers in the Himi region of central Japan. These rivers are inhabited by unionid freshwater mussels, which are used for oviposition by the endangered Itasenpara bitterling (Acheilognathus longipinnis). Water samples were collected every month between March 2011 and February 2012. Changes in bacterioplankton community structures were analysed using an approach that did not require cultivating the bacteria and involved PCR and denaturing gradient gel electrophoresis. The bacterioplankton community structures in the two rivers were similar in all seasons except winter. The bacterial sequences identified were dominated by typical freshwater Actinobacteria, Bacteroidetes, Cyanobacteria, α-Proteobacteria, and β-Proteobacteria bacterioplankton. Many β-Proteobacteria species were detected in all seasons, but Bacteroidetes species were dominant in the winter. The bacterioplankton community structures were affected by biochemical oxygen demand, chemical oxygen demand, chlorophyll-a concentration, water depth, and water temperature. These results provide a foundation for a more detailed understanding of the conditions that provide a suitable unionid habitat.

  13. Submerged macrophytes shape the abundance and diversity of bacterial denitrifiers in bacterioplankton and epiphyton in the Shallow Fresh Lake Taihu, China.

    Science.gov (United States)

    Fan, Zhou; Han, Rui-Ming; Ma, Jie; Wang, Guo-Xiang

    2016-07-01

    nirK and nirS genes are important functional genes involved in the denitrification pathway. Recent studies about these two denitrifying genes are focusing on sediment and wastewater microbe. In this study, we conducted a comparative analysis of the abundance and diversity of denitrifiers in the epiphyton of submerged macrophytes Potamogeton malaianus and Ceratophyllum demersum as well as in bacterioplankton in the shallow fresh lake Taihu, China. Results showed that nirK and nirS genes had significant different niches in epiphyton and bacterioplankton. Bacterioplankton showed greater abundance of nirK gene in terms of copy numbers and lower abundance of nirS gene. Significant difference in the abundance of nirK and nirS genes also existed between the epiphyton from different submerged macrophytes. Similar community diversity yet different community abundance was observed between epiphytic bacteria and bacterioplankton. No apparent seasonal variation was found either in epiphytic bacteria or bacterioplankton; however, environmental parameters seemed to have direct relevancy with nirK and nirS genes. Our study suggested that submerged macrophytes have greater influence than seasonal parameters in shaping the presence and abundance of bacterial denitrifiers. Further investigation needs to focus on the potential contact and relative contribution between denitrifiers and environmental factors.

  14. Habitat filtering of bacterioplankton communities above polymetallic nodule fields and sediments in the Clarion-Clipperton zone of the Pacific Ocean.

    Science.gov (United States)

    Lindh, Markus V; Maillot, Brianne M; Smith, Craig R; Church, Matthew J

    2018-04-01

    Deep-sea mining of commercially valuable polymetallic nodule fields will generate a seabed sediment plume into the water column. Yet, the response of bacterioplankton communities, critical in regulating energy and matter fluxes in marine ecosystems, to such disturbances is unknown. Metacommunity theory, traditionally used in general ecology for macroorganisms, offers mechanistic understanding on the relative role of spatial differences compared with local environmental conditions (habitat filtering) for community assembly. We examined bacterioplankton metacommunities using 16S rRNA amplicons from the Clarion-Clipperton Zone (CCZ) in the eastern Pacific Ocean and in global ocean transect samples to determine sensitivity of these assemblages to environmental perturbations. Habitat filtering was the main assembly mechanism of bacterioplankton community composition in the epi- and mesopelagic waters of the CCZ and the Tara Oceans transect. Bathy- and abyssopelagic bacterioplankton assemblages were mainly assembled by undetermined metacommunity types or neutral and dispersal-driven patch-dynamics for the CCZ and the Malaspina transect. Environmental disturbances may alter the structure of upper-ocean microbial assemblages, with potentially even more substantial, yet unknown, impact on deep-sea communities. Predicting such responses in bacterioplankton assemblage dynamics can improve our understanding of microbially-mediated regulation of ecosystem services in the abyssal seabed likely to be exploited by future deep-sea mining operations. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Euphotic zone bacterioplankton sources major sedimentary bacteriohopanepolyols in the Holocene Black Sea

    Science.gov (United States)

    Blumenberg, Martin; Seifert, Richard; Kasten, Sabine; Bahlmann, Enno; Michaelis, Walter

    2009-02-01

    Bacteriohopanepolyols (BHPs) are lipid constituents of many bacterial groups. Geohopanoids, the diagenetic products, are therefore ubiquitous in organic matter of the geosphere. To examine the potential of BHPs as environmental markers in marine sediments, we investigated a Holocene sediment core from the Black Sea. The concentrations of BHPs mirror the environmental shift from a well-mixed lake to a stratified marine environment by a strong and gradual increase from low values (˜30 μg g -1 TOC) in the oldest sediments to ˜170 μg g -1 TOC in sediments representing the onset of a permanently anoxic water body at about 7500 years before present (BP). This increase in BHP concentrations was most likely caused by a strong increase in bacterioplanktonic paleoproductivity brought about by several ingressions of Mediterranean Sea waters at the end of the lacustrine stage (˜9500 years BP). δ 15N values coevally decreasing with increasing BHP concentrations may indicate a shift from a phosphorus- to a nitrogen-limited setting supporting growth of N 2-fixing, BHP-producing bacteria. In sediments of the last ˜3000 years BHP concentrations have remained relatively stable at about 50 μg g -1 TOC. The distributions of major BHPs did not change significantly during the shift from lacustrine (or oligohaline) to marine conditions. Tetrafunctionalized BHPs prevailed throughout the entire sediment core, with the common bacteriohopanetetrol and 35-aminobacteriohopanetriol and the rare 35-aminobacteriohopenetriol, so far only known from a purple non-sulfur α-proteobacterium, being the main components. Other BHPs specific to cyanobacteria and pelagic methanotrophic bacteria were also found but only in much smaller amounts. Our results demonstrate that BHPs from microorganisms living in deeper biogeochemical zones of marine water columns are underrepresented or even absent in the sediment compared to the BHPs of bacteria present in the euphotic zone. Obviously, the assemblage of

  16. Insights into bacterioplankton community structure from Sundarbans mangrove ecoregion using Sanger and Illumina MiSeq sequencing approaches: A comparative analysis.

    Science.gov (United States)

    Ghosh, Anwesha; Bhadury, Punyasloke

    2017-03-01

    Next generation sequencing using platforms such as Illumina MiSeq provides a deeper insight into the structure and function of bacterioplankton communities in coastal ecosystems compared to traditional molecular techniques such as clone library approach which incorporates Sanger sequencing. In this study, structure of bacterioplankton communities was investigated from two stations of Sundarbans mangrove ecoregion using both Sanger and Illumina MiSeq sequencing approaches. The Illumina MiSeq data is available under the BioProject ID PRJNA35180 and Sanger sequencing data under accession numbers KX014101-KX014140 (Stn1) and KX014372-KX014410 (Stn3). Proteobacteria-, Firmicutes- and Bacteroidetes-like sequences retrieved from both approaches appeared to be abundant in the studied ecosystem. The Illumina MiSeq data (2.1 GB) provided a deeper insight into the structure of bacterioplankton communities and revealed the presence of bacterial phyla such as Actinobacteria, Cyanobacteria, Tenericutes, Verrucomicrobia which were not recovered based on Sanger sequencing. A comparative analysis of bacterioplankton communities from both stations highlighted the presence of genera that appear in both stations and genera that occur exclusively in either station. However, both the Sanger sequencing and Illumina MiSeq data were coherent at broader taxonomic levels. Pseudomonas , Devosia , Hyphomonas and Erythrobacter- like sequences were the abundant bacterial genera found in the studied ecosystem. Both the sequencing methods showed broad coherence although as expected the Illumina MiSeq data helped identify rarer bacterioplankton groups and also showed the presence of unassigned OTUs indicating possible presence of novel bacterioplankton from the studied mangrove ecosystem.

  17. Insights into bacterioplankton community structure from Sundarbans mangrove ecoregion using Sanger and Illumina MiSeq sequencing approaches: A comparative analysis

    Directory of Open Access Journals (Sweden)

    Anwesha Ghosh

    2017-03-01

    Full Text Available Next generation sequencing using platforms such as Illumina MiSeq provides a deeper insight into the structure and function of bacterioplankton communities in coastal ecosystems compared to traditional molecular techniques such as clone library approach which incorporates Sanger sequencing. In this study, structure of bacterioplankton communities was investigated from two stations of Sundarbans mangrove ecoregion using both Sanger and Illumina MiSeq sequencing approaches. The Illumina MiSeq data is available under the BioProject ID PRJNA35180 and Sanger sequencing data under accession numbers KX014101-KX014140 (Stn1 and KX014372-KX014410 (Stn3. Proteobacteria-, Firmicutes- and Bacteroidetes-like sequences retrieved from both approaches appeared to be abundant in the studied ecosystem. The Illumina MiSeq data (2.1 GB provided a deeper insight into the structure of bacterioplankton communities and revealed the presence of bacterial phyla such as Actinobacteria, Cyanobacteria, Tenericutes, Verrucomicrobia which were not recovered based on Sanger sequencing. A comparative analysis of bacterioplankton communities from both stations highlighted the presence of genera that appear in both stations and genera that occur exclusively in either station. However, both the Sanger sequencing and Illumina MiSeq data were coherent at broader taxonomic levels. Pseudomonas, Devosia, Hyphomonas and Erythrobacter-like sequences were the abundant bacterial genera found in the studied ecosystem. Both the sequencing methods showed broad coherence although as expected the Illumina MiSeq data helped identify rarer bacterioplankton groups and also showed the presence of unassigned OTUs indicating possible presence of novel bacterioplankton from the studied mangrove ecosystem.

  18. Diversity of bacterioplankton in the surface seawaters of Drake Passage near the Chinese Antarctic station.

    Science.gov (United States)

    Xing, Mengxin; Li, Zhao; Wang, Wei; Sun, Mi

    2015-07-01

    The determination of relative abundances and distribution of different bacterial groups is a critical step toward understanding the functions of various bacteria and its surrounding environment. Few studies focus on the taxonomic composition and functional diversity of microbial communities in Drake Passage. In this study, marine bacterioplankton communities from surface seawaters at five locations in Drake Passage were examined by 16S rRNA gene sequence analyses. The results indicated that psychrophilic bacteria were the most abundant group in Drake Passage, and mainly made up of Bacillus, Aeromonas, Psychrobacter, Pseudomonas and Halomonas. Diversity analysis showed that surface seawater communities had no significant correlation with latitudinal gradient. Additionally, a clear difference among five surface seawater communities was evident, with 1.8% OTUs (only two) belonged to Bacillus consistent across five locations and 71% OTUs (80) existed in only one location. However, the few cosmopolitans had the largest population sizes. Our results support the hypothesis that the dominant bacterial groups appear to be analogous between geographical sites, but significant differences may be detected among rare bacterial groups. The microbial diversity of surface seawaters would be liable to be affected by environmental factors. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton

    KAUST Repository

    Alonso-Sáez, Laura

    2015-04-08

    Summary: Rare microbial taxa are increasingly recognized to play key ecological roles, but knowledge of their spatio-temporal dynamics is lacking. In a time-series study in coastal waters, we detected 83 bacterial lineages with significant seasonality, including environmentally relevant taxa where little ecological information was available. For example, Verrucomicrobia had recurrent maxima in summer, while the Flavobacteria NS4, NS5 and NS2b clades had contrasting seasonal niches. Among the seasonal taxa, only 4 were abundant and persistent, 20 cycled between rare and abundant and, remarkably, most of them (59) were always rare (contributing <1% of total reads). We thus demonstrate that seasonal patterns in marine bacterioplankton are largely driven by lineages that never sustain abundant populations. A fewer number of rare taxa (20) also produced episodic \\'blooms\\', and these events were highly synchronized, mostly occurring on a single month. The recurrent seasonal growth and loss of rare bacteria opens new perspectives on the temporal dynamics of the rare biosphere, hitherto mainly characterized by dormancy and episodes of \\'boom and bust\\', as envisioned by the seed-bank hypothesis. The predictable patterns of seasonal reoccurrence are relevant for understanding the ecology of rare bacteria, which may include key players for the functioning of marine ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Changes of bacterioplankton apparent species richness in two ornamental fish aquaria.

    Science.gov (United States)

    Vlahos, Nikolaos; Kormas, Konstantinos Ar; Pachiadaki, Maria G; Meziti, Alexandra; Hotos, George N; Mente, Eleni

    2013-12-01

    We analysed the 16S rRNA gene diversity within the bacterioplankton community in the water column of the ornamental fish Pterophyllum scalare and Archocentrus nigrofasciatus aquaria during a 60-day growth experiment in order to detect any dominant bacterial species and their possible association with the rearing organisms. The basic physical and chemical parameters remained stable but the bacterial community at 0, 30 and 60 days showed marked differences in bacterial cell abundance and diversity. We found high species richness but no dominant phylotypes were detected. Only few of the phylotypes were found in more than one time point per treatment and always with low relative abundance. The majority of the common phylotypes belonged to the Proteobacteria phylum and were closely related to Acinetobacter junii, Pseudomonas sp., Nevskia ramosa, Vogesella perlucida, Chitinomonas taiwanensis, Acidovorax sp., Pelomonas saccharophila and the rest belonged to the α-Proteobacteria, Bacteroidetes, Actinobacteria, candidate division OP11 and one unaffiliated group. Several of these phylotypes were closely related to known taxa including Sphingopyxis chilensis, Flexibacter aurantiacus subsp. excathedrus and Mycobacterium sp. Despite the high phylogenetic diversity most of the inferred ecophysiological roles of the found phylotypes are related to nitrogen metabolism, a key process for fish aquaria.

  1. Away from darkness: a review on the effects of solar radiation on heterotrophic bacterioplankton activity

    Science.gov (United States)

    Ruiz-González, Clara; Simó, Rafel; Sommaruga, Ruben; Gasol, Josep M.

    2013-01-01

    Heterotrophic bacterioplankton are main consumers of dissolved organic matter (OM) in aquatic ecosystems, including the sunlit upper layers of the ocean and freshwater bodies. Their well-known sensitivity to ultraviolet radiation (UVR), together with some recently discovered mechanisms bacteria have evolved to benefit from photosynthetically available radiation (PAR), suggest that natural sunlight plays a relevant, yet difficult to predict role in modulating bacterial biogeochemical functions in aquatic ecosystems. Three decades of experimental work assessing the effects of sunlight on natural bacterial heterotrophic activity reveal responses ranging from high stimulation to total inhibition. In this review, we compile the existing studies on the topic and discuss the potential causes underlying these contrasting results, with special emphasis on the largely overlooked influences of the community composition and the previous light exposure conditions, as well as the different temporal and spatial scales at which exposure to solar radiation fluctuates. These intricate sunlight-bacteria interactions have implications for our understanding of carbon fluxes in aquatic systems, yet further research is necessary before we can accurately evaluate or predict the consequences of increasing surface UVR levels associated with global change. PMID:23734148

  2. Bacterioplankton community analysis in tilapia ponds by Illumina high-throughput sequencing.

    Science.gov (United States)

    Fan, Li Min; Barry, Kamira; Hu, Geng Dong; Meng, Shun long; Song, Chao; Wu, Wei; Chen, Jia Zhang; Xu, Pao

    2016-01-01

    The changes of microbial community in aquaculture systems under the effects of stocking densities and seasonality were investigated in tilapia ponds. Total DNAs were extracted from the water samples, 16S rRNA gene was amplified and the bacterial community analyzed by Illumina high-throughput sequencing obtaining 3486 OTUs, from a total read of 715,842 sequences. Basing on the analysis of bacterial compositions, richness, diversity, bacterial 16S rRNA gene abundance, water sample comparisons and existence of specific bacterial taxa within three fish ponds in a 4 months period, the study conclusively observed that the dominant phylum in all water samples were similar, and they included; Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacteria, Planctomycetes and Chlorobi, distributed in different proportions in the different months and ponds. The seasonal changes had a more pronounced effect on the bacterioplankton community than the stocking densities; however some differences between the ponds were more likely caused by feed coefficient than by stocking densities. At the same time, most bacterial communities were affected by the nutrient input except phylum Cyanobacteria that was also affected by the feed control of tilapia.

  3. Temporal Analysis of Bacterioplankton Community Structure in the Northeastern Gulf of Mexico

    Science.gov (United States)

    Knight, K. T.; Moss, J. A.; Snyder, R.; Henriksson, N. L.; Jeffrey, W. H.

    2016-02-01

    Bacteria are found in all oceans around the globe and are vital to many processes in the ocean. Evidence shows that bacteria are a dominant taxa in the marine environment with both abundance and contribution to the biological processes. Resource availability and environmental parameters are both key factors in determining bacterioplankton growth and community structure. Understanding temporal changes in the microbial community structure in the Gulf of Mexico has the potential to shed new light on the transfer of energy into and out of the system as well as through higher trophic levels. A two-year seasonal study was conducted at a station 40 km south of Choctawhatchee Bay on the Florida Shelf in the Northeast Gulf of Mexico. Water column samples were collected from surface and bottom waters ( 90 m) and mid-water deep chlorophyll maxima when present. In addition to microbial diversity, chemical, physical, and biological environmental parameters such as production, nutrients, temperature, salinity, chlorophyll a, and bacterial counts were also taken. 16S rDNA clone libraries were used to analyze temporal patterns and community structure of bacteria at fourteen timepoints and compared to the environmental data. Community structure patterns were seasonal in nature. The primary factors driving community structure are under statistical analyses.

  4. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China

    Science.gov (United States)

    Liu, Lemian; Yang, Jun; Yu, Zheng; Wilkinson, David M

    2015-01-01

    Bacteria play key roles in the ecology of both aquatic and terrestrial ecosystems; however, little is known about their diversity and biogeography, especially in the rare microbial biosphere of inland freshwater ecosystems. Here we investigated aspects of the community ecology and geographical distribution of abundant and rare bacterioplankton using high-throughput sequencing and examined the relative influence of local environmental variables and regional (spatial) factors on their geographical distribution patterns in 42 lakes and reservoirs across China. Our results showed that the geographical patterns of abundant and rare bacterial subcommunities were generally similar, and both of them showed a significant distance–decay relationship. This suggests that the rare bacterial biosphere is not a random assembly, as some authors have assumed, and that its distribution is most likely subject to the same ecological processes that control abundant taxa. However, we identified some differences between the abundant and rare groups as both groups of bacteria showed a significant positive relationship between sites occupancy and abundance, but the abundant bacteria exhibited a weaker distance–decay relationship than the rare bacteria. Our results implied that rare subcommunities were mostly governed by local environmental variables, whereas the abundant subcommunities were mainly affected by regional factors. In addition, both local and regional variables that were significantly related to the spatial variation of abundant bacterial community composition were different to those of rare ones, suggesting that abundant and rare bacteria may have discrepant ecological niches and may play different roles in natural ecosystems. PMID:25748371

  5. Susceptibility of bacterioplankton to nutrient enrichment of oligotrophic and ultraoligotrophic lake waters

    Directory of Open Access Journals (Sweden)

    Beatriz MODENUTTI

    2008-08-01

    Full Text Available We carried out laboratory experiments in one ultraoligotrophic pristine Andean lake (Lake Gutiérrez, Argentina and in one subalpine lake that is now at the edge of the oligo- to mesotrophic condition (Lake Maggiore, Italy. Lake water was amended with phosphorus (+P, organic carbon (+C, alone or in combination (+CP, to test for short-term changes (48 hours in bacteria activity and community structure (CARD FISH. Experiments were carried out in spring and summer. Results showed that bacterial production increased in the +CP treatment in both lakes, and in the +P treatment in the ultroligotrophic lake. In both lakes the bacterial activity increased more rapidly in summer (within 24 hours. Bacteria composition changed in both seasons in all the treatments. At the beginning of the experiments the subclass of β-Proteobacteria dominated both lakes, while γ-Proteobacteria showed higher percentage in spring in Lake Maggiore and in summer in Lake Gutiérrez. After incubation, in spring and in particular in the +CP treatment, we observed an increase in the relative importance of γ-Proteobacteria in both lakes, whereas in Lake Maggiore this group declined in the summer experiments following an increase in β-Proteobacteria. All our results indicate the different response of bacterioplankton in systems at the edges of the oligotrophic range.

  6. Community Composition and Diversity of Coastal Bacterioplankton Assemblages in Lakes Michigan, Erie, and Huron.

    Science.gov (United States)

    Olapade, Ola A

    2018-04-01

    The Laurentian Great Lakes, including Lakes Superior, Michigan, Huron, Erie, and Ontario, located in the eastern part of North America are considered the largest of freshwater lakes in the world; however, very little is known about the diversity and distribution of indigenous microbial assemblages within these vast bodies of freshwater systems. Therefore, to delineate the microbial structure and community composition in these aquatic environments, combinations of high-throughput sequencing and fluorescent in situ hybridization (FISH) approaches were utilized to quantitatively characterize the occurrence, diversity, and distribution of bacterioplankton assemblages in six different sites located along the coastal regions of Lakes Michigan, Huron, and Erie. Phylogenetic examination showed a diverse bacterial community belonging to 11 different taxonomic groups. Pyrosequencing results revealed that the majority of the sequences were clustered into four main groups, i.e., Proteobacteria, Bacteriodetes, Actinobacteria, and Cyanobacteria, while fluorescent in situ hybridization also showed the numerical dominance of members of the Gammaproteobacteria and the Cytophaga-Flavobacterium in the six lake sites examined. Overall, the assemblages were shown to be quite diverse in distribution among the lake sites examined, comprising mostly of various heterotrophic populations, with the exception of the Lake Erie-Sandusky Bay site with more than 50% domination by autotrophic Cyanobacteria. This indicates that combinations of factors including water chemistry and various anthropogenic disturbances as well as the lake morphometric characteristics are probably influencing the community structure and diversity of the bacterial assemblages within the systems.

  7. Macrophyte Species Drive the Variation of Bacterioplankton Community Composition in a Shallow Freshwater Lake

    Science.gov (United States)

    Zeng, Jin; Bian, Yuanqi; Xing, Peng

    2012-01-01

    Macrophytes play an important role in structuring aquatic ecosystems. In this study, we explored whether macrophyte species are involved in determining the bacterioplankton community composition (BCC) in shallow freshwater lakes. The BCC in field areas dominated by different macrophyte species in Taihu Lake, a large, shallow freshwater lake, was investigated over a 1-year period. Subsequently, microcosm experiments were conducted to determine if single species of different types of macrophytes in an isolated environment would alter the BCC. Denaturing gradient gel electrophoresis (DGGE), followed by cloning and sequence analysis of selected samples, was employed to analyze the BCC. The DGGE results of the field investigations indicated that the BCC changed significantly from season to season and that the presence of different macrophyte species resulted in lower BCC similarities in the summer and fall. LIBSHUFF analysis of selected clone libraries from the summer demonstrated different BCCs in the water column surrounding different macrophytes. Relative to the field observations, the microcosm studies indicated that the BCC differed more pronouncedly when associated with different species of macrophytes, which was also supported by LIBSHUFF analysis of the selected clone libraries. Overall, this study suggested that macrophyte species might be an important factor in determining the composition of bacterial communities in this shallow freshwater lake and that the species-specific influence of macrophytes on BCC is variable with the season and distance. PMID:22038598

  8. Jellyfish-associated bacterial communities and bacterioplankton in Indonesian Marine lakes.

    Science.gov (United States)

    Cleary, Daniel F R; Becking, Leontine E; Polónia, Ana R M; Freitas, Rossana M; Gomes, Newton C M

    2016-05-01

    In the present study, we compared communities of bacteria in two jellyfish species (the 'golden' jellyfish Mastigias cf.papua and the box jellyfish Tripedalia cf.cystophora) and water in three marine lakes located in the Berau region of northeastern Borneo, Indonesia. Jellyfish-associated bacterial communities were compositionally distinct and less diverse than bacterioplankton communities. Alphaproteobacteria, Gammaproteobacteria, Synechococcophycidae and Flavobacteriia were the most abundant classes in water. Jellyfish-associated bacterial communities were dominated by OTUs assigned to the Gammaproteobacteria (family Endozoicimonaceae), Mollicutes, Spirochaetes and Alphaproteobacteria (orders Kiloniellales and Rhodobacterales). Mollicutes were mainly restricted to Mastigias whereas Spirochaetes and the order Kiloniellales were most abundant in Tripedalia hosts. The most abundant OTU overall in jellyfish hosts was assigned to the family Endozoicimonaceae and was highly similar to organisms in Genbank obtained from various hosts including an octocoral, bivalve and fish species. Other abundant OTUs included an OTU assigned to the order Entomoplasmatales and mainly found in Mastigias hosts and OTUs assigned to the Spirochaetes and order Kiloniellales and mainly found in Tripedalia hosts. The low sequence similarity of the Entomoplasmatales OTU to sequences in Genbank suggests that it may be a novel lineage inhabiting Mastigias and possibly restricted to marine lakes. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Away from darkness: A review on the effects of solar radiation on heterotrophic bacterioplankton activity

    Directory of Open Access Journals (Sweden)

    CLARA eRUIZ GONZALEZ

    2013-05-01

    Full Text Available Heterotrophic bacterioplankton are main consumers of dissolved organic matter in aquatic ecosystems, including the sunlit upper layers of the ocean and freshwater bodies. Their well-known sensitivity to ultraviolet radiation (UVR, together with some recently discovered mechanisms bacteria have evolved to benefit from photosynthetically available radiation (PAR, suggest that natural sunlight plays a relevant, yet difficult to predict role in modulating bacterial biogeochemical functions in aquatic ecosystems. Three decades of experimental work assessing the effects of sunlight on natural bacterial heterotrophic activity reveal responses ranging from high stimulation to total inhibition. In this review, we compile the existing studies on the topic and discuss the potential causes underlying these contrasting results, with special emphasis on the largely overlooked influences of the community composition and the previous light exposure conditions, as well as the different temporal and spatial scales at which exposure to solar radiation fluctuates. These intricate sunlight-bacteria interactions have implications for our understanding of carbon fluxes in aquatic systems, yet further research is necessary before we can accurately evaluate or predict the consequences of increasing surface UVR levels associated with global change.

  10. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains

    Czech Academy of Sciences Publication Activity Database

    Kasalický, Vojtěch; Jezbera, Jan; Hahn, M.W.; Šimek, Karel

    2013-01-01

    Roč. 8, č. 3 (2013), e58209 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GA206/08/0015; GA ČR(CZ) GAP504/10/0566; GA MŠk(CZ) MEB060702; GA MŠk(CZ) MEB060901 Institutional research plan: CEZ:AV0Z60170517 Institutional support: RVO:60077344 Keywords : bacterial microdiversity * aquatic * Limnohabitans * freshwater * bacterioplankton Subject RIV: EE - Microbiology, Virology Impact factor: 3.534, year: 2013

  11. Grazer and virus-induced mortality of bacterioplankton accelerates development of .i.Flectobacillus./i. populations in a freshwater community

    Czech Academy of Sciences Publication Activity Database

    Šimek, Karel; Weinbauer, M.G.; Horňák, Karel; Jezbera, Jan; Nedoma, Jiří; Dolan, J. R.

    2007-01-01

    Roč. 9, č. 3 (2007), s. 789-800 ISSN 1462-2912 R&D Projects: GA ČR(CZ) GA206/05/0007; GA AV ČR(CZ) 1QS600170504 Grant - others:MŠMT(CZ) Barrande 2004-004-2 Institutional research plan: CEZ:AV0Z60170517 Source of funding: V - iné verejné zdroje Keywords : bacterioplankton community composition * virus lysis * flagellate bacterivory * reservoir * FISH analysis of food vacuoles * microautoradiography Subject RIV: EE - Microbiology, Virology Impact factor: 4.929, year: 2007

  12. Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir

    Czech Academy of Sciences Publication Activity Database

    Šimek, Karel; Horňák, Karel; Jezbera, Jan; Nedoma, Jiří; Vrba, Jaroslav; Straškrábová, Viera; Macek, Miroslav; Dolan, J. R.; Hahn, M.W.

    2006-01-01

    Roč. 8, č. 9 (2006), s. 1613-1624 ISSN 1462-2912 R&D Projects: GA ČR(CZ) GA206/05/0007; GA AV ČR(CZ) 1QS600170504 Grant - others:MŠM(CZ) 60076658/01 Institutional research plan: CEZ:AV0Z60170517 Keywords : bacterioplankton community composition * growth of bacteria and flagellates * phosphorus availability * reservoir * top-down and bottom-up control Subject RIV: EE - Microbiology, Virology Impact factor: 4.630, year: 2006

  13. Bacterioplankton features and its relations with doc characteristics and other limnological variables in Paraná river floodplain environments (PR/MS-Brazil).

    Science.gov (United States)

    Teixeira, Mariana Carolina; Santana, Natália Fernanda; de Azevedo, Júlio César Rodrigues; Pagioro, Thomaz Aurélio

    2011-07-01

    Since the introduction of the Microbial Loop concept, many studies aimed to explain the role of bacterioplankton and dissolved organic carbon (DOC) in aquatic ecosystems. Paraná River floodplain system is a very complex environment where these subjects were little explored. The aim of this work was to characterize bacterial community in terms of density, biomass and biovolume in some water bodies of this floodplain and to verify its temporal variation and its relation with some limnological variables, including some indicators of DOC quality, obtained through Ultraviolet-visible (UV-VIS) and fluorescence spectroscopic analysis. Bacterial density, biomass and biovolume are similar to those from other freshwater environments and both density and biomass were higher in the period with less rain. The limnological and spectroscopic features that showed any relation with bacterioplankton were the concentrations of N-NH4 and P-PO4, water transparency, and some indicators of DOC quality and origin. The analysis of these relations showed a possible competition between bacterioplankton and phytoplankton for inorganic nutrients and that the DOC used by bacterioplankton is labile and probably from aquatic macrophytes.

  14. Linking Compositional and Functional Predictions to Decipher the Biogeochemical Significance in DFAA Turnover of Abundant Bacterioplankton Lineages in the North Sea.

    Science.gov (United States)

    Wemheuer, Bernd; Wemheuer, Franziska; Meier, Dimitri; Billerbeck, Sara; Giebel, Helge-Ansgar; Simon, Meinhard; Scherber, Christoph; Daniel, Rolf

    2017-11-05

    Deciphering the ecological traits of abundant marine bacteria is a major challenge in marine microbial ecology. In the current study, we linked compositional and functional predictions to elucidate such traits for abundant bacterioplankton lineages in the North Sea. For this purpose, we investigated entire and active bacterioplankton composition along a transect ranging from the German Bight to the northern North Sea by pyrotag sequencing of bacterial 16S rRNA genes and transcripts. Functional profiles were inferred from 16S rRNA data using Tax4Fun. Bacterioplankton communities were dominated by well-known marine lineages including clusters/genera that are affiliated with the Roseobacter group and the Flavobacteria . Variations in community composition and function were significantly explained by measured environmental and microbial properties. Turnover of dissolved free amino acids (DFAA) showed the strongest correlation to community composition and function. We applied multinomial models, which enabled us to identify bacterial lineages involved in DFAA turnover. For instance, the genus Planktomarina was more abundant at higher DFAA turnover rates, suggesting its vital role in amino acid degradation. Functional predictions further indicated that Planktomarina is involved in leucine and isoleucine degradation. Overall, our results provide novel insights into the biogeochemical significance of abundant bacterioplankton lineages in the North Sea.

  15. Bacterioplankton features and its relations with doc characteristics and other limnological variables in Paraná river floodplain environments (PR/MS-Brazil

    Directory of Open Access Journals (Sweden)

    Mariana Carolina Teixeira

    2011-09-01

    Full Text Available Since the introduction of the Microbial Loop concept, many studies aimed to explain the role of bacterioplankton and dissolved organic carbon (DOC in aquatic ecosystems. Paraná River floodplain system is a very complex environment where these subjects were little explored. The aim of this work was to characterize bacterial community in terms of density, biomass and biovolume in some water bodies of this floodplain and to verify its temporal variation and its relation with some limnological variables, including some indicators of DOC quality, obtained through Ultraviolet-visible (UV-VIS and fluorescence spectroscopic analysis. Bacterial density, biomass and biovolume are similar to those from other freshwater environments and both density and biomass were higher in the period with less rain. The limnological and spectroscopic features that showed any relation with bacterioplankton were the concentrations of N-NH4 and P-PO4, water transparency, and some indicators of DOC quality and origin. The analysis of these relations showed a possible competition between bacterioplankton and phytoplankton for inorganic nutrients and that the DOC used by bacterioplankton is labile and probably from aquatic macrophytes.

  16. Nitrogen and carbon limitation of planktonic primary production and phytoplankton-bacterioplankton coupling in ponds on the McMurdo Ice Shelf, Antarctica

    DEFF Research Database (Denmark)

    Sorrell, B.K.; Hawes, I.; Safi, K.

    2013-01-01

    -limited phytoplanton photosynthesis in some waters. Phytoplankton and bacterioplankton production were extremely closely linked, with no indication of any external nutrient inputs. Most of the large amounts of DOC and DON in the ponds was recalcitrant and not available to plankton. In meromictically stratified ponds...

  17. Linking Compositional and Functional Predictions to Decipher the Biogeochemical Significance in DFAA Turnover of Abundant Bacterioplankton Lineages in the North Sea

    Directory of Open Access Journals (Sweden)

    Bernd Wemheuer

    2017-11-01

    Full Text Available Deciphering the ecological traits of abundant marine bacteria is a major challenge in marine microbial ecology. In the current study, we linked compositional and functional predictions to elucidate such traits for abundant bacterioplankton lineages in the North Sea. For this purpose, we investigated entire and active bacterioplankton composition along a transect ranging from the German Bight to the northern North Sea by pyrotag sequencing of bacterial 16S rRNA genes and transcripts. Functional profiles were inferred from 16S rRNA data using Tax4Fun. Bacterioplankton communities were dominated by well-known marine lineages including clusters/genera that are affiliated with the Roseobacter group and the Flavobacteria. Variations in community composition and function were significantly explained by measured environmental and microbial properties. Turnover of dissolved free amino acids (DFAA showed the strongest correlation to community composition and function. We applied multinomial models, which enabled us to identify bacterial lineages involved in DFAA turnover. For instance, the genus Planktomarina was more abundant at higher DFAA turnover rates, suggesting its vital role in amino acid degradation. Functional predictions further indicated that Planktomarina is involved in leucine and isoleucine degradation. Overall, our results provide novel insights into the biogeochemical significance of abundant bacterioplankton lineages in the North Sea.

  18. Effects of decreased resource availability, protozoan grazing and viral impact on a structure of bacterioplankton assemblage in a canyon-shaped reservoir

    Czech Academy of Sciences Publication Activity Database

    Horňák, Karel; Mašín, Michal; Jezbera, Jan; Bettarel, Y.; Nedoma, Jiří; Sime-Ngando, T.; Šimek, Karel

    2005-01-01

    Roč. 52, č. 3 (2005), s. 315-327 ISSN 0168-6496 R&D Projects: GA ČR(CZ) GA206/02/0003 Grant - others:PICS(FR) project 1111 Institutional research plan: CEZ:AV0Z60170517 Keywords : bacterioplankton * protozoan grazing * viral lysis Subject RIV: EH - Ecology, Behaviour Impact factor: 2.787, year: 2005

  19. Distinct Seasonal Patterns of Bacterioplankton Abundance and Dominance of Phyla α-Proteobacteria and Cyanobacteria in Qinhuangdao Coastal Waters Off the Bohai Sea

    Directory of Open Access Journals (Sweden)

    Yaodong He

    2017-08-01

    Full Text Available Qinhuangdao coastal waters in northern China are heavily impacted by anthropogenic and natural activities, and we anticipate a direct influence of the impact on the bacterioplankton abundance and diversity inhabiting the adjacent coastal areas. To ascertain the anthropogenic influences, we first evaluated the seasonal abundance patterns and diversity of bacterioplankton in the coastal areas with varied levels of natural and anthropogenic activities and then analyzed the environmental factors which influenced the abundance patterns. Results indicated distinct patterns in bacterioplankton abundance across the warm and cold seasons in all stations. Total bacterial abundance in the stations ranged from 8.67 × 104 to 2.08 × 106 cells/mL and had significant (p < 0.01 positive correlation with total phosphorus (TP, which indicated TP as the key monitoring parameter for anthropogenic impact on nutrients cycling. Proteobacteria and Cyanobacteria were the most abundant phyla in the Qinhuangdao coastal waters. Redundancy analysis revealed significant (p < 0.01 influence of temperature, dissolved oxygen and chlorophyll a on the spatiotemporal abundance pattern of α-Proteobacteria and Cyanobacteria groups. Among the 19 identified bacterioplankton subgroups, α-Proteobacteria (phylum Proteobacteria was the dominant one followed by Family II (phylum Cyanobacteria, representing 19.1–55.2% and 2.3–54.2% of total sequences, respectively. An inverse relationship (r = -0.82 was observed between the two dominant subgroups, α-Proteobacteria and Family II. A wide range of inverse Simpson index (10.2 to 105 revealed spatial heterogeneity of bacterioplankton diversity likely resulting from the varied anthropogenic and natural influences. Overall, our results suggested that seasonal variations impose substantial influence on shaping bacterioplankton abundance patterns. In addition, the predominance of only a few cosmopolitan species in the Qinhuangdao coastal

  20. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Cynthia B Silveira

    parameters. Furthermore, this paper reveals for the first time the pristine bacterioplankton communities in a tropical island at the South Atlantic Ocean.

  1. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean.

    Science.gov (United States)

    Silveira, Cynthia B; Vieira, Ricardo P; Cardoso, Alexander M; Paranhos, Rodolfo; Albano, Rodolpho M; Martins, Orlando B

    2011-03-09

    bacterioplankton communities in a tropical island at the South Atlantic Ocean.

  2. Alkane Hydroxylase Gene (alkB Phylotype Composition and Diversity in Northern Gulf of Mexico Bacterioplankton

    Directory of Open Access Journals (Sweden)

    Conor Blake Smith

    2013-12-01

    Full Text Available Natural and anthropogenic activities introduce alkanes into marine systems where they are degraded by alkane hydroxylases expressed by phylogenetically diverse bacteria. Partial sequences for alkB, one of the structural genes of alkane hydroxylase, have been used to assess the composition of alkane-degrading communities, and to determine their responses to hydrocarbon inputs. We present here the first spatially extensive analysis of alkB in bacterioplankton of the northern Gulf of Mexico (nGoM, a region that experiences numerous hydrocarbon inputs. We have analyzed 401 partial alkB gene sequences amplified from genomic extracts collected during March 2010 from 17 water column samples that included surface waters and bathypelagic depths. Previous analyses of 16S rRNA gene sequences for these and related samples have shown that nGoM bacterial community composition and structure stratify strongly with depth, with distinctly different communities above and below 100 m. Although we hypothesized that alkB gene sequences would exhibit a similar pattern, PCA analyses of operational protein units (OPU indicated that community composition did not vary consistently with depth or other major physical-chemical variables. We observed 22 distinct OPUs, one of which was ubiquitous and accounted for 57% of all sequences. This OPU clustered with alkB sequences from known hydrocarbon oxidizers (e.g., Alcanivorax and Marinobacter. Some OPUs could not be associated with known alkane degraders, however, and perhaps represent novel hydrocarbon-oxidizing populations or genes. These results indicate that the capacity for alkane hydrolysis occurs widely in the nGoM, but that alkane degrader diversity varies substantially among sites and responds differently than bulk communities to physical-chemical variables.

  3. Phytoplankton relationship with bacterioplankton, dissolved carbohydrates and water characteristics in a subtropical coastal lagoon

    Directory of Open Access Journals (Sweden)

    Pablo S. Guimarães

    2013-10-01

    Full Text Available Release of carbohydrates by phytoplankton enhances microbial diversity, promoting associations between algae and heterotrophic organisms. Thus, this work aimed to characterise the dissolved carbohydrates at a Brazilian subtropical coastal lagoon (Merin lagoon, in addition to determining their relationships with environmental parameters and phyto/bacterioplankton communities over one year. We analysed the relationships among physical, chemical and biological parameters by a principal component analysis (PCA after normalisation of data as z scores. Chlorophyceae showed the highest richness, although Bacillariophyceae and Cyanophyceae showed the highest densities. These classes are essentially represented by centric diatoms (Aulacoseira cf. muzzanensis and filamentous cyanobacteria (Planktolyngbya limnetica and Planktolyngbya cf. contorta. Merin lagoon showed a strong seasonal behaviour for most of parameters and phytoplanktonic density was mainly correlated with temperature, specific conductance, phosphate and total bright sunshine duration. Only combined dissolved carbohydrates (CDCHOs were found and their main components were glucose (31.6%, mannose/xylose (20.6%, ribose (13.9%, arabinose (8.9% and galacturonic acid (8.1%. The CDCHO amounts were higher in November, March-April and September and the December/January and July/August periods showed lower ones. Ribose was first detected only in the warm months and it gradually decreased with bacterial density. The carbohydrate concentration was coupled to phytoplanktonic density, except in December and January, when the bacterial density was increased. These results supported the significance of dissolved carbohydrates in associations with algae and bacteria in the freshwater planktonic environment. Our data reinforced the influence of phytoplankton community on the natural dissolved carbohydrate pool, besides the significance of such carbon source on the bacterial community dynamic.

  4. Linking phytoplankton and bacterioplankton community dynamics to iron-binding ligand production in a microcosm experiment

    Science.gov (United States)

    Hogle, S. L.; Bundy, R.; Barbeau, K.

    2016-02-01

    Several significant lines of evidence implicate heterotrophic bacterioplankton as agents of iron cycling and sources of iron-binding ligands in seawater, but direct and mechanistic linkages have mostly remained elusive. Currently, it is unknown how microbial community composition varies during the course of biogenic particle remineralization and how shifts in community structure are related to sources and sinks of Fe-binding ligands. In order to simulate the rise, decline, and ultimate remineralization of a phytoplankton bloom, we followed the production of different classes of Fe-binding ligands as measured by electrochemical techniques, Fe concentrations, and macronutrient concentrations in a series of iron-amended whole seawater incubations over a period of six days during a California Current Ecosystem Long Term Ecological Research (CCE-LTER) process cruise. At the termination of the experiment phytoplankton communities were similar across iron treatments, but high iron conditions generated greater phytoplankton biomass and increased nutrient drawdown suggesting that phytoplankton communities were in different phases of bloom development. Strikingly, L1 ligands akin to siderophores in binding strength were only observed in high iron treatments implicating phytoplankton bloom phase as an important control. Using high-throughput 16S rRNA gene surveys, we observed that the abundance of transiently dominant copiotroph bacteria were strongly correlated with L1 concentrations. However, incubations with similar L1 concentrations and binding strengths produced distinct copiotroph community profiles dominated by a few strains. We suggest that phytoplankton bloom maturity influences algal-associated heterotrophic community succession, and that L1 production is either directly or indirectly tied to the appearance and eventual dominance of rarely abundant copiotroph bacterial strains.

  5. Temporal and Vertical Distributions of Bacterioplankton at the Gray's Reef National Marine Sanctuary

    Science.gov (United States)

    Lu, Xinxin; Sun, Shulei; Zhang, Yu-Qin; Hollibaugh, James T.

    2014-01-01

    Large spatial scales and long-term shifts of bacterial community composition (BCC) in the open ocean can often be reliably predicted based on the dynamics of physical-chemical variables. The power of abiotic factors in shaping BCC on shorter time scales in shallow estuarine mixing zones is less clear. We examined the diurnal variation in BCC at different water depths in the spring and fall of 2011 at a station in the Gray's Reef National Marine Sanctuary (GRNMS). This site is located in the transition zone between the estuarine plume and continental shelf waters of the South Atlantic Bight. A total of 234,516 pyrotag sequences of bacterial 16S rRNA genes were recovered; they were taxonomically affiliated with >200 families of 23 bacterial phyla. Nonmetric multidimensional scaling analysis revealed significant differences in BCC between spring and fall samples, likely due to seasonality in the concentrations of dissolved organic carbon and nitrate plus nitrite. Within each diurnal sampling, BCC differed significantly by depth only in the spring and differed significantly between day and night only in the fall. The former variation largely tracked changes in light availability, while the latter was most correlated with concentrations of polyamines and chlorophyll a. Our results suggest that at the GRNMS, a coastal mixing zone, diurnal variation in BCC is attributable to the mixing of local and imported bacterioplankton rather than to bacterial growth in response to environmental changes. Our results also indicate that, like members of the Roseobacter clade, SAR11 bacteria may play an important role in processing dissolved organic material in coastal oceans. PMID:25416764

  6. New insights on resource stoichiometry: assessing availability of carbon, nitrogen, and phosphorus to bacterioplankton

    Science.gov (United States)

    Soares, Ana R. A.; Bergström, Ann-Kristin; Sponseller, Ryan A.; Moberg, Joanna M.; Giesler, Reiner; Kritzberg, Emma S.; Jansson, Mats; Berggren, Martin

    2017-03-01

    Boreal lake and river ecosystems receive large quantities of organic nutrients and carbon (C) from their catchments. How bacterioplankton respond to these inputs is not well understood, in part because we base our understanding and predictions on total pools, yet we know little about the stoichiometry of bioavailable elements within organic matter. We designed bioassays with the purpose of exhausting the pools of readily bioavailable dissolved organic carbon (BDOC), bioavailable dissolved nitrogen (BDN), and bioavailable dissolved phosphorus (BDP) as fast as possible. Applying the method in four boreal lakes at base-flow conditions yielded concentrations of bioavailable resources in the range 105-693 µg C L-1 for BDOC (2 % of initial total DOC), 24-288 µg N L-1 for BDN (31 % of initial total dissolved nitrogen), and 0.2-17 µg P L-1 for BDP (49 % of initial total dissolved phosphorus). Thus, relative bioavailability increased from carbon (C) to nitrogen (N) to phosphorus (P). We show that the main fraction of bioavailable nutrients is organic, representing 80 % of BDN and 61 % of BDP. In addition, we demonstrate that total C : N and C : P ratios are as much as 13-fold higher than C : N and C : P ratios for bioavailable resource fractions. Further, by applying additional bioavailability measurements to seven widely distributed rivers, we provide support for a general pattern of relatively high bioavailability of P and N in relation to C. Altogether, our findings underscore the poor availability of C for support of bacterial metabolism in boreal C-rich freshwaters, and suggest that these ecosystems are very sensitive to increased input of bioavailable DOC.

  7. Bacterioplankton Biogeography of the Atlantic Ocean: A Case Study of the Distance-Decay Relationship.

    Science.gov (United States)

    Milici, Mathias; Tomasch, Jürgen; Wos-Oxley, Melissa L; Decelle, Johan; Jáuregui, Ruy; Wang, Hui; Deng, Zhi-Luo; Plumeier, Iris; Giebel, Helge-Ansgar; Badewien, Thomas H; Wurst, Mascha; Pieper, Dietmar H; Simon, Meinhard; Wagner-Döbler, Irene

    2016-01-01

    In order to determine the influence of geographical distance, depth, and Longhurstian province on bacterial community composition and compare it with the composition of photosynthetic micro-eukaryote communities, 382 samples from a depth-resolved latitudinal transect (51°S-47°N) from the epipelagic zone of the Atlantic ocean were analyzed by Illumina amplicon sequencing. In the upper 100 m of the ocean, community similarity decreased toward the equator for 6000 km, but subsequently increased again, reaching similarity values of 40-60% for samples that were separated by ~12,000 km, resulting in a U-shaped distance-decay curve. We conclude that adaptation to local conditions can override the linear distance-decay relationship in the upper epipelagial of the Atlantic Ocean which is apparently not restrained by barriers to dispersal, since the same taxa were shared between the most distant communities. The six Longhurstian provinces covered by the transect were comprised of distinct microbial communities; ~30% of variation in community composition could be explained by province. Bacterial communities belonging to the deeper layer of the epipelagic zone (140-200 m) lacked a distance-decay relationship altogether and showed little provincialism. Interestingly, those biogeographical patterns were consistently found for bacteria from three different size fractions of the plankton with different taxonomic composition, indicating conserved underlying mechanisms. Analysis of the chloroplast 16S rRNA gene sequences revealed that phytoplankton composition was strongly correlated with both free-living and particle associated bacterial community composition (R between 0.51 and 0.62, p bacterioplankton, most likely because dispersal and evolution occur at drastically different rates in bacteria.

  8. Flow cytometric monitoring of bacterioplankton phenotypic diversity predicts high population-specific feeding rates by invasive dreissenid mussels.

    Science.gov (United States)

    Props, Ruben; Schmidt, Marian L; Heyse, Jasmine; Vanderploeg, Henry A; Boon, Nico; Denef, Vincent J

    2018-02-01

    Species invasion is an important disturbance to ecosystems worldwide, yet knowledge about the impacts of invasive species on bacterial communities remains sparse. Using a novel approach, we simultaneously detected phenotypic and derived taxonomic change in a natural bacterioplankton community when subjected to feeding pressure by quagga mussels, a widespread aquatic invasive species. We detected a significant decrease in diversity within 1 h of feeding and a total diversity loss of 11.6 ± 4.1% after 3 h. This loss of microbial diversity was caused by the selective removal of high nucleic acid populations (29 ± 5% after 3 h). We were able to track the community diversity at high temporal resolution by calculating phenotypic diversity estimates from flow cytometry (FCM) data of minute amounts of sample. Through parallel FCM and 16S rRNA gene amplicon sequencing analysis of environments spanning a broad diversity range, we showed that the two approaches resulted in highly correlated diversity measures and captured the same seasonal and lake-specific patterns in community composition. Based on our results, we predict that selective feeding by invasive dreissenid mussels directly impacts the microbial component of the carbon cycle, as it may drive bacterioplankton communities toward less diverse and potentially less productive states. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Bacterioplankton communities of Crater Lake, OR: Dynamic changes with euphotic zone food web structure and stable deep water populations

    Science.gov (United States)

    Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.

    2007-01-01

    The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.

  10. Freshwater bacterioplankton richness in oligotrophic lakes depends on nutrient availability rather than on species-area relationships.

    Science.gov (United States)

    Logue, Jürg Brendan; Langenheder, Silke; Andersson, Anders F; Bertilsson, Stefan; Drakare, Stina; Lanzén, Anders; Lindström, Eva S

    2012-06-01

    A central goal in ecology is to grasp the mechanisms that underlie and maintain biodiversity and patterns in its spatial distribution can provide clues about those mechanisms. Here, we investigated what might determine the bacterioplankton richness (BR) in lakes by means of 454 pyrosequencing of the 16S rRNA gene. We further provide a BR estimate based upon a sampling depth and accuracy, which, to our knowledge, are unsurpassed for freshwater bacterioplankton communities. Our examination of 22,669 sequences per lake showed that freshwater BR in fourteen nutrient-poor lakes was positively influenced by nutrient availability. Our study is, thus, consistent with the finding that the supply of available nutrients is a major driver of species richness; a pattern that may well be universally valid to the world of both micro- and macro-organisms. We, furthermore, observed that BR increased with elevated landscape position, most likely as a consequence of differences in nutrient availability. Finally, BR decreased with increasing lake and catchment area that is negative species-area relationships (SARs) were recorded; a finding that re-opens the debate about whether positive SARs can indeed be found in the microbial world and whether positive SARs can in fact be pronounced as one of the few 'laws' in ecology.

  11. Near-Bottom Hypoxia Impacts Dynamics of Bacterioplankton Assemblage throughout Water Column of the Gulf of Finland (Baltic Sea)

    Science.gov (United States)

    Laas, Peeter; Šatova, Elina; Lips, Inga; Lips, Urmas; Simm, Jaak; Kisand, Veljo; Metsis, Madis

    2016-01-01

    Over the past century the spread of hypoxia in the Baltic Sea has been drastic, reaching its ‘arm’ into the easternmost sub-basin, the Gulf of Finland. The hydrographic and climatological properties of the gulf offer a broad suite of discrete niches for microbial communities. The current study explores spatiotemporal dynamics of bacterioplankton community in the Gulf of Finland using massively parallel sequencing of 16S rRNA fragments obtained by amplifying community DNA from spring to autumn period. The presence of redoxcline and drastic seasonal changes make spatiotemporal dynamics of bacterioplankton community composition (BCC) and abundances in such estuary remarkably complex. To the best of our knowledge, this is the first study that analyses spatiotemporal dynamics of BCC in relation to phytoplankton bloom throughout the water column (and redoxcline), not only at the surface layer. We conclude that capability to survive (or benefit from) shifts between oxic and hypoxic conditions is vital adaptation for bacteria to thrive in such environments. Our results contribute to the understanding of emerging patterns in BCCs that occupy hydrographically similar estuaries dispersed all over the world, and we suggest the presence of a global redox- and salinity-driven metacommunity. These results have important implications for understanding long-term ecological and biogeochemical impacts of hypoxia expansion in the Baltic Sea (and similar ecosystems), as well as global biogeography of bacteria specialized inhabiting similar ecosystems. PMID:27213812

  12. Freshwater bacterioplankton richness in oligotrophic lakes depends on nutrient availability rather than on species–area relationships

    Science.gov (United States)

    Logue, Jürg Brendan; Langenheder, Silke; Andersson, Anders F; Bertilsson, Stefan; Drakare, Stina; Lanzén, Anders; Lindström, Eva S

    2012-01-01

    A central goal in ecology is to grasp the mechanisms that underlie and maintain biodiversity and patterns in its spatial distribution can provide clues about those mechanisms. Here, we investigated what might determine the bacterioplankton richness (BR) in lakes by means of 454 pyrosequencing of the 16S rRNA gene. We further provide a BR estimate based upon a sampling depth and accuracy, which, to our knowledge, are unsurpassed for freshwater bacterioplankton communities. Our examination of 22 669 sequences per lake showed that freshwater BR in fourteen nutrient-poor lakes was positively influenced by nutrient availability. Our study is, thus, consistent with the finding that the supply of available nutrients is a major driver of species richness; a pattern that may well be universally valid to the world of both micro- and macro-organisms. We, furthermore, observed that BR increased with elevated landscape position, most likely as a consequence of differences in nutrient availability. Finally, BR decreased with increasing lake and catchment area that is negative species–area relationships (SARs) were recorded; a finding that re-opens the debate about whether positive SARs can indeed be found in the microbial world and whether positive SARs can in fact be pronounced as one of the few ‘laws' in ecology. PMID:22170419

  13. Virio- and bacterioplankton in the estuary zone of the Ob River and adjacent regions of the Kara Sea shelf

    Science.gov (United States)

    Kopylov, A. I.; Sazhin, A. F.; Zabotkina, E. A.; Romanenko, A. V.; Romanova, N. D.

    2017-01-01

    The distribution of structural and functional characteristics of virioplankton in the north of the Ob River estuary and the adjacent Kara Sea shelf (between latitudes 71°44'44″ N and 73°45'24″ N) was studied with consideration of the spatial variations in the number ( N B) and productivity ( P B) of bacteria and water properties (temperature, salinity, density) by analyzing samples taken in September 2013. The number of plankton viruses ( N V), the occurrence of visible infected bacteria cells, virus-induced mortality of bacteria, and virioplankton production in the studied region varied within (214-2917) × 103 particles/mL, 0.3-5.6% of NB, 2.2-64.4% of P B, and (6-17248) × 103 particles/(mL day), respectively. These parameters were the highest in water layers with a temperature of +7.3-7.5°C, salinity of 3.75-5.41 psu, and conventional density (στ) of 2.846-4.144. The number of bacterioplankton was (614-822) × 103 cells/mL, and the N V/ N B ratio was 1.1-4.5. A large amount of virus particles were attached to bacterial cells and suspended matter. The data testify to the considerable role of viruses in controlling the number and production of heterotrophic bacterioplankton in the interaction zone of river and sea waters.

  14. Community assembly processes underlying phytoplankton and bacterioplankton across a hydrologic change in a human-impacted river.

    Science.gov (United States)

    Isabwe, Alain; Yang, Jun R; Wang, Yongming; Liu, Lemian; Chen, Huihuang; Yang, Jun

    2018-02-27

    Although the influence of microbial community assembly processes on aquatic ecosystem function and biodiversity is well known, the processes that govern planktonic communities in human-impacted rivers remain largely unstudied. Here, we used multivariate statistics and a null model approach to test the hypothesis that environmental conditions and obstructed dispersal opportunities, dictate a deterministic community assembly for phytoplankton and bacterioplankton across contrasting hydrographic conditions in a subtropical mid-sized river (Jiulong River, southeast China). Variation partitioning analysis showed that the explanatory power of local environmental variables was larger than that of the spatial variables for both plankton communities during the dry season. During the wet season, phytoplankton community variation was mainly explained by local environmental variables, whereas the variance in bacterioplankton was explained by both environmental and spatial predictors. The null model based on Raup-Crick coefficients for both planktonic groups suggested little evidences of the stochastic processes involving dispersal and random distribution. Our results showed that hydrological change and landscape structure act together to cause divergence in communities along the river channel, thereby dictating a deterministic assembly and that selection exceeds dispersal limitation during the dry season. Therefore, to protect the ecological integrity of human-impacted rivers, watershed managers should not only consider local environmental conditions but also dispersal routes to account for the effect of regional species pool on local communities. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Seasonality in molecular and cytometric diversity of marine bacterioplankton: the reshuffling of bacterial taxa by vertical mixing

    KAUST Repository

    García, Francisca C.

    2015-07-17

    The ’cytometric diversity’ of phytoplankton communities has been studied based on single-cell properties, but the applicability of this method to characterize bacterioplankton has been unexplored. Here, we analysed seasonal changes in cytometric diversity of marine bacterioplankton along a decadal time-series at three coastal stations in the Southern Bay of Biscay. Shannon-Weaver diversity estimates and Bray-Curtis similarities obtained by cytometric and molecular (16S rRNA tag sequencing) methods were significantly correlated in samples from a 3.5-year monthly time-series. Both methods showed a consistent cyclical pattern in the diversity of surface bacterial communities with maximal values in winter. The analysis of the highly resolved flow cytometry time-series across the vertical profile showed that water column mixing was a key factor explaining the seasonal changes in bacterial composition and the winter increase in bacterial diversity in coastal surface waters. Due to its low cost and short processing time as compared to genetic methods, the cytometric diversity approach represents a useful complementary tool in the macroecology of aquatic microbes.

  16. Temporal variation in the specific growth rate of bacterioplankton in the River Cauvery and its four down stream tributaries in Karnataka State, India.

    Science.gov (United States)

    Tondoti Sathyanarayana Rao, Harsha; Yamakanamardi, Sadanand Mallappa; Mallaiah, Mahadeveswamy

    2009-07-01

    The temporal variation in the Specific Growth Rate (SGR) of natural population of heterotrophic bacterioplankton of the river Cauvery and its four down stream tributaries in Karnataka State was monitored over a period of two years from February 2000 to January 2002. The SGR was calculated by taking into account only the abundance of bacterioplankton at the beginning (0 h) and at the end (48 h) incubation period, at room or river temperature. The mean SGR was less and significantly different in the surface waters of river Kapila, Shimsha, Suvarnavathy and Arkavathy. But it was more and significantly different in river Cauvery when compared to other tributaries. This suggests that the river Cauvery was more favorable habitat for SGR of bacterioplankton than the other four watercourses studied. Investigation of interrelationship between SGR and other bacterial variables showed presence of only one correlation with direct counts of particle bound bacteria in river Arkavathy. Further, the relationship between SGR of bacterioplankton and other environmental variables showed the presence of six correlations in river Shimsha, five in river Suvarnavathy, three in river Cauvery, and two each in river Kapila and river Arkavathy. Negative SGR were recorded on thirteen occasions in river Cauvery followed by eleven in river Shimsha, nine in river Suvarnavathy, seven in river Arkavathy and five in river Kapila, out of fifty SGR determinations. This negative SGR were a result of decrease in the observed bacterial cell counts after 48 h incubation from that of 0 h count. The probable reason for such negative growth rate and dependency of SGR of bacterioplankton and environmental variables has been discussed.

  17. Complementary Metaproteomic Approaches to Assess the Bacterioplankton Response toward a Phytoplankton Spring Bloom in the Southern North Sea.

    Science.gov (United States)

    Wöhlbrand, Lars; Wemheuer, Bernd; Feenders, Christoph; Ruppersberg, Hanna S; Hinrichs, Christina; Blasius, Bernd; Daniel, Rolf; Rabus, Ralf

    2017-01-01

    Annually recurring phytoplankton spring blooms are characteristic of temperate coastal shelf seas. During these blooms, environmental conditions, including nutrient availability, differ considerably from non-bloom conditions, affecting the entire ecosystem including the bacterioplankton. Accordingly, the emerging ecological niches during bloom transition are occupied by different bacterial populations, with Roseobacter RCA cluster and SAR92 clade members exhibiting high metabolic activity during bloom events. In this study, the functional response of the ambient bacterial community toward a Phaeocystis globosa bloom in the southern North Sea was studied using metaproteomic approaches. In contrast to other metaproteomic studies of marine bacterial communities, this is the first study comparing two different cell lysis and protein preparation methods [using trifluoroethanol (TFE) and in-solution digest as well as bead beating and SDS-based solubilization and in-gel digest (BB GeLC)]. In addition, two different mass spectrometric techniques (ESI-iontrap MS and MALDI-TOF MS) were used for peptide analysis. A total of 585 different proteins were identified, 296 of which were only detected using the TFE and 191 by the BB GeLC method, demonstrating the complementarity of these sample preparation methods. Furthermore, 158 proteins of the TFE cell lysis samples were exclusively detected by ESI-iontrap MS while 105 were only detected using MALDI-TOF MS, underpinning the value of using two different ionization and mass analysis methods. Notably, 12% of the detected proteins represent predicted integral membrane proteins, including the difficult to detect rhodopsin, indicating a considerable coverage of membrane proteins by this approach. This comprehensive approach verified previous metaproteomic studies of marine bacterioplankton, e.g., detection of many transport-related proteins (17% of the detected proteins). In addition, new insights into e.g., carbon and nitrogen

  18. The study of bacterioplankton dynamics in the Berlengas Archipelago (West coast of Portugal by applying the HJ-biplot method

    Directory of Open Access Journals (Sweden)

    Susana Mendes

    2009-01-01

    Full Text Available The relationship between bacterioplankton and environmental forcing in the Berlengas Archipelago (Western Coast of Portugal were studied between February 2006 and February 2007 in two sampling stations: Berlenga and Canal, using an HJ-biplot. The HJ-biplot showed a simultaneous display of the three main metabolic groups of bacteria involved in carbon cycling (aerobic heterotrophic bacteria, sulphate-reducing bacteria and nitrate-reducing bacteria and environmental parameters, in low dimensions. Our results indicated thatbacterial dynamics are mainly affected by temporal gradients (seasonal gradients with a clear winter versus summer opposition, and less by the spatial structure (Berlenga and Canal. The yearly variation in the abundance of aerobic heterotrophic bacteria were positively correlated with those in chlorophyll a concentration, whereas ammonium concentration and temperature decreased with increasing phosphates and nitrites concentration. The relationship between aerobic heterotrophic bacteria, chlorophyll a and ammonium reveals that phytoplankton is an important source of organic substrates for bacteria.

  19. Comparison of Cellular and Biomass Specific Activities of Dominant Bacterioplankton Groups in Stratified Waters of the Celtic Sea

    Science.gov (United States)

    Zubkov, Mikhail V.; Fuchs, Bernhard M.; Burkill, Peter H.; Amann, Rudolf

    2001-01-01

    A flow-sorting technique was developed to determine unperturbed metabolic activities of phylogenetically characterized bacterioplankton groups with incorporation rates of [35S]methionine tracer. According to fluorescence in situ hybridization with rRNA targeted oligonucleotide probes, a clade of α-proteobacteria, related to Roseobacter spp., and a Cytophaga-Flavobacterium cluster dominated the different groups. Cytometric characterization revealed both these groups to have high DNA (HNA) content, while the α-proteobacteria exhibited high light scatter (hs) and the Cytophaga-Flavobacterium cluster exhibited low light scatter (ls). A third abundant group with low DNA (LNA) content contained cells from a SAR86 cluster of γ-proteobacteria. Cellular specific activities of the HNA-hs group were 4- and 1.7-fold higher than the activities in the HNA-ls and LNA groups, respectively. However, the higher cellular protein synthesis by the HNA-hs could simply be explained by their maintenance of a larger cellular protein biomass. Similar biomass specific activities of the different groups strongly support the main assumption that underlies the determination of bacterial production: different bacteria in a complex community incorporate amino acids at a rate proportional to their protein synthesis. The fact that the highest growth-specific rates were determined for the smallest cells of the LNA group can explain the dominance of this group in nutrient-limited waters. The metabolic activities of the three groups accounted for almost the total bacterioplankton activity, indicating their key biogeochemical role in the planktonic ecosystem of the Celtic Sea. PMID:11679347

  20. Drivers of coastal bacterioplankton community diversity and structure along a nutrient gradient in the East China Sea

    Science.gov (United States)

    He, Jiaying; Wang, Kai; Xiong, Jinbo; Guo, Annan; Zhang, Demin; Fei, Yuejun; Ye, Xiansen

    2017-04-01

    Anthropogenic nutrient discharge poses widespread threats to coastal ecosystems and has increased environmental gradients from coast to sea. Bacterioplankton play crucial roles in coastal biogeochemical cycling, and a variety of factors affect bacterial community diversity and structure. We used 16S rRNA gene pyrosequencing to investigate the spatial variation in bacterial community composition (BCC) across five sites on a coast-offshore gradient in the East China Sea. Overall, bacterial alpha-diversity did not differ across sites, except that richness and phylogenetic diversity were lower in the offshore sites, and the highest alpha-diversity was found in the most landward site, with Chl-a being the main factor. BCCs generally clustered into coastal and offshore groups. Chl-a explained 12.3% of the variation in BCCs, more than that explained by either the physicochemical (5.7%) or spatial (8.5%) variables. Nutrients (particularly nitrate and phosphate), along with phytoplankton abundance, were more important than other physicochemical factors, co-explaining 20.0% of the variation in BCCs. Additionally, a series of discriminant families (primarily affiliated with Gammaproteobacteria and Alphaproteobacteria), whose relative abundances correlated with Chl-a, DIN, and phosphate concentrations, were identified, implying their potential to indicate phytoplankton blooms and nutrient enrichment in this marine ecosystem. This study provides insight into bacterioplankton response patterns along a coast-offshore gradient, with phytoplankton abundance increasing in the offshore sites. Time-series sampling across multiple transects should be performed to determine the seasonal and spatial patterns in bacterial diversity and community structure along this gradient.

  1. Bacterioplankton from Two Hungarian Danube River Wetlands (Beda-Karapancsa, Danube-Drava National Park and its Relations to Environmental Variables

    Directory of Open Access Journals (Sweden)

    Kalcheva Hristina

    2016-04-01

    Full Text Available Seasonal and spatial distribution of bacterioplankton from two Hungarian oxbow lake type wetlands, Mocskos-Danube and Riha, was studied. They were both covered by macrophytes and they had different hydrological connectivity to the Danube. The six sampling campaigns from April to October 2014 included parallel samples from the Danube River at Mohács, Hungary. Bacterial abundance was the highest in spring and in Mocskos-Danube, followed by Mohács and Riha. Positive relationships existed between bacterioplankton and temperature on one hand and suspended solids, pH, PO4-P and chl-a on the other. Negative correlations were with DOC, dissolved oxygen and NH4-N.

  2. Post-mortem computed tomography coaxial cutting needle biopsy to facilitate the detection of bacterioplankton using PCR probes as a diagnostic indicator for drowning.

    Science.gov (United States)

    Rutty, Guy N; Johnson, Christopher; Amoroso, Jasmin; Robinson, Claire; Bradley, Carina J; Morgan, Bruno

    2017-01-01

    We report for the first time the use of coaxial cutting needle biopsy, guided by post-mortem computed tomography (PMCT), to sample internal body tissues for bacterioplankton PCR analysis to investigate drowning. This technical report describes the biopsy technique, the comparison of the needle biopsy and the invasive autopsy sampling results, as well as the PMCT and autopsy findings. By using this new biopsy sampling approach for bacterioplankton PCR, we have developed on previous papers describing the minimally invasive PMCT approach for the diagnosis of drowning. When such a system is used, the operator must take all precautions to avoid contamination of the core biopsy samples due to the sensitivity of PCR-based analytic systems.

  3. The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern North Sea assessed by comparative metagenomic and metatranscriptomic approaches.

    Science.gov (United States)

    Wemheuer, Bernd; Wemheuer, Franziska; Hollensteiner, Jacqueline; Meyer, Frauke-Dorothee; Voget, Sonja; Daniel, Rolf

    2015-01-01

    Phytoplankton blooms exhibit a severe impact on bacterioplankton communities as they change nutrient availabilities and other environmental factors. In the current study, the response of a bacterioplankton community to a Phaeocystis globosa spring bloom was investigated in the southern North Sea. For this purpose, water samples were taken inside and reference samples outside of an algal spring bloom. Structural changes of the bacterioplankton community were assessed by amplicon-based analysis of 16S rRNA genes and transcripts generated from environmental DNA and RNA, respectively. Several marine groups responded to bloom presence. The abundance of the Roseobacter RCA cluster and the SAR92 clade significantly increased in bloom presence in the total and active fraction of the bacterial community. Functional changes were investigated by direct sequencing of environmental DNA and mRNA. The corresponding datasets comprised more than 500 million sequences across all samples. Metatranscriptomic data sets were mapped on representative genomes of abundant marine groups present in the samples and on assembled metagenomic and metatranscriptomic datasets. Differences in gene expression profiles between non-bloom and bloom samples were recorded. The genome-wide gene expression level of Planktomarina temperata, an abundant member of the Roseobacter RCA cluster, was higher inside the bloom. Genes that were differently expressed included transposases, which showed increased expression levels inside the bloom. This might contribute to the adaptation of this organism toward environmental stresses through genome reorganization. In addition, several genes affiliated to the SAR92 clade were significantly upregulated inside the bloom including genes encoding for proteins involved in isoleucine and leucine incorporation. Obtained results provide novel insights into compositional and functional variations of marine bacterioplankton communities as response to a phytoplankton bloom.

  4. Contrasting patterns of free-living bacterioplankton diversity in macrophyte-dominated versus phytoplankton blooming regimes in Dianchi Lake, a shallow lake in China

    Science.gov (United States)

    Wang, Yujing; Li, Huabing; Xing, Peng; Wu, Qinglong

    2017-03-01

    Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings: macrophyte-dominated and phytoplankton-dominated water regimes. An ecosystem regime shift from macrophytes to phytoplankton blooming typically reduces the number of species of invertebrates and fishes and results in the homogenization of communities in freshwater lakes. We investigated how microbial biodiversity has responded to a shift of the ecosystem regime in Dianchi Lake, which was previously fully covered with submerged macrophytes but currently harbors both ecological states. We observed marked divergence in the diversity and community composition of bacterioplankton between the two regimes. Although species richness, estimated as the number of operational taxonomic units and phylogenetic diversity (PD), was higher in the phytoplankton dominated ecosystem after this shift, the dissimilarity of bacterioplankton community across space decreased. This decrease in beta diversity was accompanied by loss of planktonic bacteria unique to the macrophyte-dominated ecosystem. Mantel tests between bacterioplankton community distances and Euclidian distance of environmental parameters indicated that this reduced bacterial community differentiation primarily reflected the loss of environmental niches, particularly in the macrophyte regime. The loss of this small-scale heterogeneity in bacterial communities should be considered when assessing long-term biodiversity changes in response to ecosystem regime conversions in freshwater lakes.

  5. Composition influences the pathway but not the outcome of the metabolic response of bacterioplankton to resource shifts.

    Directory of Open Access Journals (Sweden)

    Jérôme Comte

    Full Text Available Bacterioplankton community metabolism is central to the functioning of aquatic ecosystems, and strongly reactive to changes in the environment, yet the processes underlying this response remain unclear. Here we explore the role that community composition plays in shaping the bacterial metabolic response to resource gradients that occur along aquatic ecotones in a complex watershed in Québec. Our results show that the response is mediated by complex shifts in community structure, and structural equation analysis confirmed two main pathways, one involving adjustments in the level of activity of existing phylotypes, and the other the replacement of the dominant phylotypes. These contrasting response pathways were not determined by the type or the intensity of the gradients involved, as we had hypothesized, but rather it would appear that some compositional configurations may be intrinsically more plastic than others. Our results suggest that community composition determines this overall level of community plasticity, but that composition itself may be driven by factors independent of the environmental gradients themselves, such that the response of bacterial communities to a given type of gradient may alternate between the adjustment and replacement pathways. We conclude that community composition influences the pathways of response in these bacterial communities, but not the metabolic outcome itself, which is driven by the environment, and which can be attained through multiple alternative configurations.

  6. Response of marine bacterioplankton to a massive under-ice phytoplankton bloom in the Chukchi Sea (Western Arctic Ocean)

    Science.gov (United States)

    Ortega-Retuerta, E.; Fichot, C. G.; Arrigo, K. R.; Van Dijken, G. L.; Joux, F.

    2014-07-01

    The activity of heterotrophic bacterioplankton and their response to changes in primary production in the Arctic Ocean is essential to understand biogenic carbon flows in the area. In this study, we explored the patterns of bacterial abundance (BA) and bacterial production (BP) in waters coinciding with a massive under-ice phytoplankton bloom in the Chukchi Sea in summer 2011, where chlorophyll a (chl a) concentrations were up to 38.9 mg m-3. Contrary to our expectations, BA and BP did not show their highest values coinciding with the bloom. In fact, bacterial biomass was only 3.5% of phytoplankton biomass. Similarly, average DOC values were similar inside (average 57.2±3.1 μM) and outside (average 64.3±4.8 μM) the bloom patch. Regression analyses showed relatively weak couplings, in terms of slope values, between chl a or primary production and BA or BP. Multiple regression analyses indicated that both temperature and chl a explained BA and BP variability in the Chukchi Sea. This temperature dependence was confirmed experimentally, as higher incubation temperatures (6.6 °C vs. 2.2 °C) enhanced BA and BP, with Q10 values of BP up to 20.0. Together, these results indicate that low temperatures in conjunction with low dissolved organic matter release can preclude bacteria to efficiently process a higher proportion of carbon fixed by phytoplankton, with further consequences on the carbon cycling in the area.

  7. Spatio-temporal patterns of bacterioplankton production and community composition related to phytoplankton composition and protistan bacterivory in a dam reservoir

    Czech Academy of Sciences Publication Activity Database

    Šimek, Karel; Horňák, Karel; Jezbera, Jan; Nedoma, Jiří; Znachor, Petr; Hejzlar, Josef; Seďa, Jaromír

    2008-01-01

    Roč. 51, č. 3 (2008), s. 249-262 ISSN 0948-3055 R&D Projects: GA ČR(CZ) GA206/08/0015; GA ČR(CZ) GA206/05/0007; GA AV ČR(CZ) 1QS600170504 Institutional research plan: CEZ:AV0Z60170517 Keywords : bacterioplankton composition and production * algal-bacterial relationships * extracellular phytoplankton production * protistan bacterivory * phytoplankton community * reservoir * betaproteobacterial groups Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.190, year: 2008

  8. Co-occurrence Analysis of Microbial Taxa in the Atlantic Ocean Reveals High Connectivity in the Free-Living Bacterioplankton

    Science.gov (United States)

    Milici, Mathias; Deng, Zhi-Luo; Tomasch, Jürgen; Decelle, Johan; Wos-Oxley, Melissa L.; Wang, Hui; Jáuregui, Ruy; Plumeier, Iris; Giebel, Helge-Ansgar; Badewien, Thomas H.; Wurst, Mascha; Pieper, Dietmar H.; Simon, Meinhard; Wagner-Döbler, Irene

    2016-01-01

    We determined the taxonomic composition of the bacterioplankton of the epipelagic zone of the Atlantic Ocean along a latitudinal transect (51°S–47°N) using Illumina sequencing of the V5-V6 region of the 16S rRNA gene and inferred co-occurrence networks. Bacterioplankon community composition was distinct for Longhurstian provinces and water depth. Free-living microbial communities (between 0.22 and 3 μm) were dominated by highly abundant and ubiquitous taxa with streamlined genomes (e.g., SAR11, SAR86, OM1, Prochlorococcus) and could clearly be separated from particle-associated communities which were dominated by Bacteroidetes, Planktomycetes, Verrucomicrobia, and Roseobacters. From a total of 369 different communities we then inferred co-occurrence networks for each size fraction and depth layer of the plankton between bacteria and between bacteria and phototrophic micro-eukaryotes. The inferred networks showed a reduction of edges in the deepest layer of the photic zone. Networks comprised of free-living bacteria had a larger amount of connections per OTU when compared to the particle associated communities throughout the water column. Negative correlations accounted for roughly one third of the total edges in the free-living communities at all depths, while they decreased with depth in the particle associated communities where they amounted for roughly 10% of the total in the last part of the epipelagic zone. Co-occurrence networks of bacteria with phototrophic micro-eukaryotes were not taxon-specific, and dominated by mutual exclusion (~60%). The data show a high degree of specialization to micro-environments in the water column and highlight the importance of interdependencies particularly between free-living bacteria in the upper layers of the epipelagic zone. PMID:27199970

  9. Co-occurrence Analysis of Microbial Taxa in the Atlantic Ocean Reveals High Connectivity in the Free-Living Bacterioplankton.

    Science.gov (United States)

    Milici, Mathias; Deng, Zhi-Luo; Tomasch, Jürgen; Decelle, Johan; Wos-Oxley, Melissa L; Wang, Hui; Jáuregui, Ruy; Plumeier, Iris; Giebel, Helge-Ansgar; Badewien, Thomas H; Wurst, Mascha; Pieper, Dietmar H; Simon, Meinhard; Wagner-Döbler, Irene

    2016-01-01

    We determined the taxonomic composition of the bacterioplankton of the epipelagic zone of the Atlantic Ocean along a latitudinal transect (51°S-47°N) using Illumina sequencing of the V5-V6 region of the 16S rRNA gene and inferred co-occurrence networks. Bacterioplankon community composition was distinct for Longhurstian provinces and water depth. Free-living microbial communities (between 0.22 and 3 μm) were dominated by highly abundant and ubiquitous taxa with streamlined genomes (e.g., SAR11, SAR86, OM1, Prochlorococcus) and could clearly be separated from particle-associated communities which were dominated by Bacteroidetes, Planktomycetes, Verrucomicrobia, and Roseobacters. From a total of 369 different communities we then inferred co-occurrence networks for each size fraction and depth layer of the plankton between bacteria and between bacteria and phototrophic micro-eukaryotes. The inferred networks showed a reduction of edges in the deepest layer of the photic zone. Networks comprised of free-living bacteria had a larger amount of connections per OTU when compared to the particle associated communities throughout the water column. Negative correlations accounted for roughly one third of the total edges in the free-living communities at all depths, while they decreased with depth in the particle associated communities where they amounted for roughly 10% of the total in the last part of the epipelagic zone. Co-occurrence networks of bacteria with phototrophic micro-eukaryotes were not taxon-specific, and dominated by mutual exclusion (~60%). The data show a high degree of specialization to micro-environments in the water column and highlight the importance of interdependencies particularly between free-living bacteria in the upper layers of the epipelagic zone.

  10. Co-occurrence analysis of microbial taxa in the Atlantic Ocean reveals high connectivity in the free-living bacterioplankton

    Directory of Open Access Journals (Sweden)

    Mathias eMilici

    2016-05-01

    Full Text Available We determined the taxonomic composition of the bacterioplankton of the epipelagic zone of the Atlantic Ocean along a latitudinal transect (51°S – 47°N using Illumina sequencing of the V5-V6 region of the 16S rRNA gene and inferred co-occurrence networks. Bacterioplankon community composition was distinct for Longhurstian provinces and water depth. Free-living microbial communities (between 0.22-3 µm were dominated by highly abundant and ubiquitous taxa with streamlined genomes (e.g. SAR11, SAR86, OM1, Prochlorococcus and could clearly be separated from particle-associated communities which were dominated by Bacteroidetes, Planktomycetes, Verrucomicrobia and Roseobacters. From a total of 369 different communities we then inferred co-occurrence networks for each size fraction and depth layer of the plankton between bacteria and between bacteria and phototrophic micro-eukaryotes. The inferred networks showed a reduction of edges in the deepest layer of the photic zone. Networks comprised of free-living bacteria had a larger amount of connections per OTU when compared to the particle associated communities throughout the water column. Negative correlations accounted for roughly one third of the total edges in the free-living communities at all depths, while they decreased with depth in the particle associated communities where they amounted for roughly 10% of the total in the last part of the epipelagic zone. Co-occurrence networks of bacteria with phototrophic micro-eukaryotes were not taxon-specific, and dominated by mutual exclusion (~60%. The data show a high degree of specialization to micro-environments in the water column and highlight the importance of interdependencies particularly between free-living bacteria in the upper layers of the epipelagic zone.

  11. Effects of hexavalent chromium on phytoplankton and bacterioplankton of the Río de la Plata estuary: an ex-situ assay.

    Science.gov (United States)

    Sathicq, María Belén; Gómez, Nora

    2018-03-17

    We examined the responses of the phytoplankton and the bacterioplankton of the freshwater zone of the Río de la Plata estuary when exposed to an addition of hexavalent chromium (Cr +6 ). The planktonic community from a coastal site was exposed to a chromium increase of 80 μg L -1 for 72 h in laboratory conditions. The results showed a decrease in the concentration of Cr +6 by 33% in the treatments, along with significant decreases in chlorophyll-a (63%), the chlorophyll-a:pheophytin-a ratio (33%), oxygen production (37%), and in the total density of the phytoplankton (15%). The relative abundance of chlorophytes and diatoms decreased, while the cyanobacteria thrived. Finally, the total bacterial density and the density of viable bacteria decreased. These results show that even small increments in Cr +6 can cause significant effects on the phytoplankton and bacterioplankton, which could potentially affect other trophic levels of the community, risking alterations of the entire ecosystem.

  12. Successional trajectories of bacterioplankton community over the complete cycle of a sudden phytoplankton bloom in the Xiangshan Bay, East China Sea.

    Science.gov (United States)

    Chen, Heping; Zhang, Huajun; Xiong, Jinbo; Wang, Kai; Zhu, Jianlin; Zhu, Xiangyu; Zhou, Xiaoyan; Zhang, Demin

    2016-12-01

    Phytoplankton bloom has imposed ecological concerns worldwide; however, few studies have been focused on the successional trajectories of bacterioplankton community over a complete phytoplankton bloom cycle. Using 16S pyrosequencing, we investigated how the coastal bacterioplankton community compositions (BCCs) respond to a phytoplankton bloom in the Xiangshan Bay, East China Sea. The results showed that BCCs were significantly different among the pre-bloom, bloom, and after-bloom stages, with the lowest bacterial diversity at the bloom phase. The BCCs at the short-term after-bloom phase showed a rapid but incomplete recovery to the pre-bloom phase, evidenced by 69.8% similarity between pre-bloom and after-bloom communities. This recovery was parallel with the dynamics of the operational taxonomic units (OTUs) affiliated with Actinobacteria, Bacteroidetes, Cyanobacteria, Alphaproteobacteria and Gammaproteobacteria, whose abundance enriched when bloom occur, and decreased after-bloom, and vice versa. Collectively, the results showed that the BCCs were sensitive to algal-induced disturbances, but could recover to a certain extent after bloom. In addition, OTUs which enriched or decreased during this process are closely associated with this temporal pattern, thus holding the potential to evaluate and indicate the succession stage of phytoplankton bloom. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Response of bacterioplankton activity in an Arctic fjord system to elevated pCO2: results from a mesocosm perturbation study

    Directory of Open Access Journals (Sweden)

    U. Riebesell

    2013-01-01

    Full Text Available The effect of elevated seawater carbon dioxide (CO2 on the activity of a natural bacterioplankton community in an Arctic fjord system was investigated by a mesocosm perturbation study in the frame of the European Project on Ocean Acidification (EPOCA. A pCO2 range of 175–1085 μatm was set up in nine mesocosms deployed in the Kongsfjorden (Svalbard. The activity of natural extracellular enzyme assemblages increased in response to acidification. Rates of β-glucosidase and leucine-aminopeptidase increased along the gradient of mesocosm pCO2. A decrease in seawater pH of 0.5 units almost doubled rates of both enzymes. Heterotrophic bacterial activity was closely coupled to phytoplankton productivity in this experiment. The bacterioplankton community responded to rising chlorophyll a concentrations after a lag phase of only a few days with increasing protein production and extracellular enzyme activity. Time-integrated primary production and bacterial protein production were positively correlated, strongly suggesting that higher amounts of phytoplankton-derived organic matter were assimilated by heterotrophic bacteria at increased primary production. Primary production increased under high pCO2 in this study, and it can be suggested that the efficient heterotrophic carbon utilisation had the potential to counteract the enhanced autotrophic CO2 fixation. However, our results also show that beneficial pCO2-related effects on bacterial activity can be mitigated by the top-down control of bacterial abundances in natural microbial communities.

  14. Bacterioplankton Responses to Increased Organic Carbon and Nutrient Loading in a Boreal Estuary-Separate and Interactive Effects on Growth and Respiration.

    Science.gov (United States)

    Soares, Ana R A; Kritzberg, Emma S; Custelcean, Ioana; Berggren, Martin

    2017-12-18

    Increases in the terrestrial export of dissolved organic carbon (C) to rivers may be associated with additional loading of organic nitrogen (N) and phosphorus (P) to the coastal zone. However, little is known about how these resources interact in the regulation of heterotrophic bacterioplankton metabolism in boreal coastal ecosystems. Here, we measured changes in bacterioplankton production (BP) and respiration (BR) in response to full-factorial (C, N, and P) enrichment experiments at two sites within the Öre estuary, northern Sweden. The BR was stimulated by single C additions and further enhanced by combined additions of C and other nutrients. Single addition of N or P had no effect on BR rates. In contrast, BP was primarily limited by P at the site close to the river mouth and did not respond to C or N additions. However, at the site further away from the near the river mouth, BP was slightly stimulated by single additions of C. Possibly, the natural inflow of riverine bioavailable dissolved organic carbon induced local P limitation of BP near the river mouth, which was then exhausted and resulted in C-limited BP further away from the river mouth. We observed positive interactions between all elements on all responses except for BP at the site close to the river mouth, where P showed an independent effect. In light of predicted increases in terrestrial P and C deliveries, we expect future increases in BP and increases of BR of terrestrially delivered C substrates at the Öre estuary and similar areas.

  15. Alteration in successional trajectories of bacterioplankton communities in response to co-exposure of cadmium and phenanthrene in coastal water microcosms.

    Science.gov (United States)

    Qian, Jie; Ding, Qifang; Guo, Annan; Zhang, Demin; Wang, Kai

    2017-02-01

    Coexistence of heavy metals and organic contaminants in coastal ecosystems may lead to complicated circumstances in ecotoxicological assessment for biological communities due to potential interactions of contaminants. Consequences of metals and polycyclic aromatic hydrocarbons (PAHs) co-contamination on coastal marine microbes at the community level were paid less attention. We chose cadmium (Cd) and phenanthrene (PHE) as representatives of metals and PAHs, respectively, and mimicked contaminations using coastal water microcosms spiked with Cd (1 mg/L), PHE (1 mg/L), and their mixture over two weeks. 16S rRNA gene amplicon sequencing was used to compare individual and cumulative effects of Cd and PHE on temporal succession of bacterioplankton communities. Although we found dramatic impacts of dimethylsulfoxide (DMSO, used as a carrier solvent for PHE) on bacterial α-diversity and composition, the individual and cumulative effects of Cd and PHE on bacterial α-diversity were temporally variable showing an antagonistic pattern at early stage in the presence of DMSO. Temporal succession of bacterial community composition (BCC) was associated with temporal variability of water physicochemical parameters, each of which explained more variation in BCC than two target contaminants did. However, Cd, PHE, and their mixture distinctly altered the successional trajectories of BCC, while only the effect of Cd was retained at the end of experiment, suggesting certain resilience in BCC after the complete dissipation of PHE along the temporal trajectory. Moreover, bacterial assemblages at the genus level associated with the target contaminants were highly time-dependent and more unpredictable in the co-contamination group, in which some genera possessing hydrocarbon-degrading members might contribute to PHE degradation. These results provide preliminary insights into how co-exposure of Cd and PHE phylogenetically alters successional trajectories of bacterioplankton communities

  16. Photo-degradation effect on dissolved organic carbon availability to bacterioplankton in a lake in the upper Paraná river floodplain - doi: 10.4025/actascibiolsci.v35i1.11054

    Directory of Open Access Journals (Sweden)

    Júlio César Rodrigues de Azevedo

    2012-12-01

    Full Text Available Dissolved organic carbon (DOC is nowadays recognized as the main substrate and source of energy for aquatic microbial community. The great part of available organic carbon for bacterioplankton might be formed after photolytic degradation of humic material, which constitutes the major part of DOC in almost all natural waters. The effects of DOC photo-degradation were evaluated, as was its utilization by bacterioplankton, through a two-step experiment, one involving photo-degradation of DOC and the other bacterial growth on the photo-degraded substrate. Photo-degradation was responsible for the consumption of 19% of DOC, reduced SUVA254, an increase in the E2/E3 and E3/E4 ratios, in addition to modifications in the fluorescence spectra that indicated a rise in the labile fraction of DOC. However, these alterations on DOC were not reflected in differences in bacterioplankton growth, as shown by the fact that there were no significant differences in density, biomass, bacterial production, bacterial respiration and bacterial growth efficiency between treatment and control.  

  17. Seasonal and spatial distribution of Bacterioplankton in a fluvial-lagunar system of a tropical region: density, biomass, cellular volume and morphologic variation

    Directory of Open Access Journals (Sweden)

    Magnólia Fernandes Florêncio de Araújo

    2008-02-01

    Full Text Available The temporal and spatial fluctuations of Bacterioplankton in a fluvial-lagunar system of a tropical region (Pitimbu River and Jiqui Lake, RN were studied during the dry and the rainy periods. The bacterial abundance varied from 2.67 to 5.1 Cells10(7mL-1 and did not show a typical temporal variation, presenting only small oscillations between the rainy and the dry periods. The bacterial biomass varied from 123 µgC L-1 to 269 µgC L-1 in the sampling sites and the average cellular volume varied from 0.12 to 0.54µm³, showing a predominance of the rods. The temperature showed a positive correlation with the cellular volume of the rods (R=0.55; p=0.02 and vibrio (R=0.53; p=0.03. Significant spatial differences of biomass (Mann Whitney: p=0.01 and cellular volume of the morphotypes (Mann Whitney: p=0.003 were found between the sampling sites. The strong positive correlations of the water temperature and oxygen with bacterioplankton showed a probable high bacterial activity in this system.A variação temporal e espacial do bacterioplâncton em um sistema fluvial-lagunar de região tropical foi estudada em períodos seco e chuvoso. As médias da abundância bacteriana variaram de 2,67 a 5,1 x 10(7 e não exibiram uma variação temporal marcante, tendo apresentado apenas pequenas oscilações entre os períodos chuvoso e seco. A biomassa bacteriana variou de 123 µg C L-1 a 269 µg C L-1 entre os locais de coleta e o volume celular médio de 0,12µm³ a 0,54µm³, ocorrendo predominância de bacilos. A temperatura mostrou correlação positiva com o volume celular de bacilos (R=0,55; p=0,02 e de vibriões (R=0,53; p=0,03. Foram encontradas diferenças espaciais significativas de biomassa (Mann Whitney: p=0,01 e volume celular dos morfotipos (Mann Whitney: p= 0,003, entre os locais de coleta. As fortes correlações positivas da temperatura da água e do oxigênio, com o bacterioplâncton, são sugestivas de uma provavelmente elevada atividade

  18. Enhanced viral production and virus-mediated mortality of bacterioplankton in a natural iron-fertilized bloom event above the Kerguelen Plateau

    Science.gov (United States)

    Malits, A.; Christaki, U.; Obernosterer, I.; Weinbauer, M. G.

    2014-12-01

    Above the Kerguelen Plateau in the Southern Ocean natural iron fertilization sustains a large phytoplankton bloom over 3 months during austral summer. During the KEOPS1 project (KErguelen Ocean and Plateau compared Study1) we sampled this phytoplankton bloom during its declining phase along with the surrounding high-nutrient-low-chlorophyll (HNLC) waters to study the effect of natural iron fertilization on the role of viruses in the microbial food web. Bacterial and viral abundances were 1.7 and 2.1 times, respectively, higher within the bloom than in HNLC waters. Viral production and virus-mediated mortality of bacterioplankton were 4.1 and 4.9 times, respectively, higher in the bloom, while the fraction of infected cells (FIC) and the fraction of lysogenic cells (FLC) showed no significant differences between environments. The present study suggests viruses to be more important for bacterial mortality within the bloom and dominate over grazing of heterotrophic nanoflagellates (HNFs) during the late bloom phase. As a consequence, at least at a late bloom stage, viral lysis shunts part of the photosynthetically fixed carbon in iron-fertilized regions into the dissolved organic matter (DOM) pool with potentially less particulate organic carbon transferred to larger members of the food web or exported.

  19. Direct and indirect effects of vertical mixing, nutrients and ultraviolet radiation on the bacterioplankton metabolism in high-mountain lakes from southern Europe

    Science.gov (United States)

    Durán, C.; Medina-Sánchez, J. M.; Herrera, G.; Villar-Argaiz, M.; Villafañe, V. E.; Helbling, E. W.; Carrillo, P.

    2014-05-01

    led to higher HBP. Consequently, EOC satisfied BCD in the clear lakes, particularly in the clearest one [LC]. Our results suggest that the higher vulnerability of bacteria to the damaging effects of UVR may be particularly accentuated in the opaque lakes and further recognizes the relevance of light exposure history and biotic interactions on bacterioplankton metabolism when coping with fluctuating radiation and nutrient inputs.

  20. Biogeochemical cycling and phyto- and bacterioplankton communities in a large and shallow tropical lagoon (Términos Lagoon, Mexico) under 2009-2010 El Niño Modoki drought conditions

    Science.gov (United States)

    Conan, Pascal; Pujo-Pay, Mireille; Agab, Marina; Calva-Benítez, Laura; Chifflet, Sandrine; Douillet, Pascal; Dussud, Claire; Fichez, Renaud; Grenz, Christian; Gutierrez Mendieta, Francisco; Origel-Moreno, Montserrat; Rodríguez-Blanco, Arturo; Sauret, Caroline; Severin, Tatiana; Tedetti, Marc; Torres Alvarado, Rocío; Ghiglione, Jean-François

    2017-03-01

    The 2009-2010 period was marked by an episode of intense drought known as the El Niño Modoki event. Sampling of the Términos Lagoon (Mexico) was carried out in November 2009 in order to understand the influence of these particular environmental conditions on organic matter fluxes within the lagoon's pelagic ecosystem and, more specifically, on the relationship between phyto- and bacterioplankton communities. The measurements presented here concern biogeochemical parameters (nutrients, dissolved and particulate organic matter [POM], and dissolved polycyclic aromatic hydrocarbons [PAHs]), phytoplankton (biomass and photosynthesis), and bacteria (diversity and abundance, including PAH degradation bacteria and ectoenzymatic activities). During the studied period, the water column of the Términos Lagoon functioned globally as a sink and, more precisely, as a nitrogen assimilator. This was due to the high production of particulate and dissolved organic matter (DOM), even though exportation of autochthonous matter to the Gulf of Mexico was weak. We found that bottom-up control accounted for a large portion of the variability of phytoplankton productivity. Nitrogen and phosphorus stoichiometry mostly accounted for the heterogeneity in phytoplankton and free-living prokaryote distribution in the lagoon. In the eastern part, we found a clear decoupling between areas enriched in dissolved inorganic nitrogen near the Puerto Real coastal inlet and areas enriched in phosphate (PO4) near the Candelaria estuary. Such a decoupling limited the potential for primary production, resulting in an accumulation of dissolved organic carbon and nitrogen (DOC and DON, respectively) near the river mouths. In the western part of the lagoon, maximal phytoplankton development resulted from bacterial activity transforming particulate organic phosphorus (PP) and dissolved organic phosphorus (DOP) to available PO4 and the coupling between Palizada River inputs of nitrate (NO3) and PP. The

  1. Impacts of combined overfishing and oil spills on the plankton trophodynamics of the West Florida shelf over the last half century of 1965-2011: A two-dimensional simulation analysis of biotic state transitions, from a zooplankton- to a bacterioplankton-modulated ecosystem.

    Science.gov (United States)

    Walsh, J. J.; Lenes, J. M.; Darrow, B.; Parks, A.; Weisberg, R. H.

    2016-03-01

    Over 50 years of multiple anthropogenic perturbations, Florida zooplankton stocks of the northeastern Gulf of Mexico declined ten-fold, with increments of mainly dominant toxic dinoflagellate harmful algal blooms (HABs), rather than diatoms, and a shift in loci of nutrient remineralization and oxygen depletion by bacterioplankton, from the sea floor to near surface waters. Yet, lytic bacterial biomass and associated ammonification only increased at most five-fold over the same time period, with consequently little indication of new, expanded "dead zones" of diatom-induced hypoxia. After bacterial lysis of intact cells of these increased HABs, the remaining residues of zooplankton biomass decrements evidently instead exited the water column as malign aerosolized HAB asthma triggers, correlated by co-traveling mercury aerosols, within wind-borne sea sprays. To unravel the causal mechanisms of these inferred decadal food web transitions, a 36-state variable plankton model of algal, bacterial, protozoan, and copepod component communities replicated daily time series of each plankton group's representatives on the West Florida shelf (WFS) during 1965-2011. At the lower phytoplankton trophic levels, 52% of the ungrazed HAB increments, between 1965-1967 and 2001-2002 before recent oil spills, remained in the water column to kill fishes and fuel bacterioplankton. But, another 48% of the WFS primary production then left the ocean's surface as a harbinger of increased public health hazards during continuing sea spray exports of salts, HAB toxins, and Hg poisons. Following the Deepwater Horizon petroleum releases in 2010, little additional change of element partition among the altered importance of WFS food web components of the trophic pyramid then pertained between 2001-2002 and 2010-2011, despite when anomalous upwelled nutrient supplies instead favored retrograde benign, oil-tolerant diatoms over the HABs during 2010. Indeed, by 2011 HABs were back, with biomass

  2. Seasonal distribution of nanoflagellates and bacterioplankton and relationship with environmental factors in a brazilian semi-arid reservoir=Distribuição sazonal de nanoflagelados e do bacterioplâncton e relações com fatores ambientais em um reservatório do semiárido brasileiro

    Directory of Open Access Journals (Sweden)

    Magnólia Fernandes Florêncio de Araújo

    2012-10-01

    Full Text Available The semi-arid region of Rio Grande do Norte State, in northeast Brazil exhibits specific physical-climatic aspects: the climate is very hot, with mean annual rainfall of 550 mm, characterized by periodic drought and uneven distribution of rains. Due to these features, is important to study and preserve its water bodies. The purpose of this paper was to characterize and investigate bacterioplankton and heterotrophic nanoflagellates, and their seasonal variations in a reservoir located in the semi-arid region of Rio Grande do Norte State, in 2008. To this aim, four samplings were carried out in the rainy season and three in the dry season to determine the biotic and abiotic variables. Bacterial densities in the reservoirs ranged from 8.98 x 106 to 1.62 x 107 bac mL-1, while total biomass varied between 207 and 262 μgCL-1. The nanoflagellates showed a variation between 1,777 and 8,229 org mL-1 in density, and between 3.0 and 9.6 μgCL-1 in biomass. Statistical analyses presented non-standard results for both biological and physical-chemical variables throughout the study year, revealing the complexity of the reservoir with respect to the mechanisms controlling the microbial populations analyzed.O semiárido norterriograndense apresenta aspectos físico-climáticos bastante específicos: o clima é muito quente, com média pluviométrica de 550 mm ano-1, caracterizado pelo regimento de escassez e desigual distribuição de chuvas. Por isso se torna imprescindível conhecer e preservar os seus corpos d'água. Este trabalho teve como objetivo a caracterização e o conhecimento sobre as comunidades bacterioplanctônica e de nanoflagelados heterotróficos e suas variações sazonais em um reservatório localizado na região semiárida do Estado do Rio Grande do Norte, durante o ano de 2008. Para isto, foram realizadas quatro coletas de amostras para verificar as variáveis bióticas e abióticas no período chuvoso e três no período seco. As

  3. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms

    Science.gov (United States)

    Teeling, Hanno; Fuchs, Bernhard M; Bennke, Christin M; Krüger, Karen; Chafee, Meghan; Kappelmann, Lennart; Reintjes, Greta; Waldmann, Jost; Quast, Christian; Glöckner, Frank Oliver; Lucas, Judith; Wichels, Antje; Gerdts, Gunnar; Wiltshire, Karen H; Amann, Rudolf I

    2016-01-01

    A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. We investigated such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. Dense sampling and high-resolution taxonomic analyses allowed the detection of recurring patterns down to the genus level. Metagenome analyses also revealed recurrent patterns at the functional level, in particular with respect to algal polysaccharide degradation genes. We, therefore, hypothesize that even though there is substantial inter-annual variation between spring phytoplankton blooms, the accompanying succession of bacterial clades is largely governed by deterministic principles such as substrate-induced forcing. DOI: http://dx.doi.org/10.7554/eLife.11888.001 PMID:27054497

  4. Bacterioplankton abundance and production in Indian Ocean Regions

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Fernandes, V.; Rodrigues, V.V.; Paul, J.T.; Gauns, M.

    these depths following JGOFS protocols [UNESCO, 1994]. Four (three light, one dark) 300-mL polycarbonate (Nalgene, Ger- many) bottles were filled with water samples from each depth and one ampoule each of NaH 14 CO 3 (specific activ- ity of 185 kBq; Board..., and other top-order predators) are pivotal in supplying essential nu- trients for photosynthetic activities in the euphotic layers. Hbac, for instance, are primary agents involved in decompo- sition of innumerable complex organic molecules that ulti...

  5. Major effect of hydrogen peroxide on bacterioplankton metabolism in the Northeast Atlantic.

    Directory of Open Access Journals (Sweden)

    Federico Baltar

    Full Text Available Reactive oxygen species such as hydrogen peroxide have the potential to alter metabolic rates of marine prokaryotes, ultimately impacting the cycling and bioavailability of nutrients and carbon. We studied the influence of H2O2 on prokaryotic heterotrophic production (PHP and extracellular enzymatic activities (i.e., β-glucosidase [BGase], leucine aminopeptidase [LAPase] and alkaline phosphatase [APase] in the subtropical Atlantic. With increasing concentrations of H2O2 in the range of 100-1000 nM, LAPase, APase and BGase were reduced by up to 11, 23 and 62%, respectively, in the different water layers. Incubation experiments with subsurface waters revealed a strong inhibition of all measured enzymatic activities upon H2O2 amendments in the range of 10-500 nM after 24 h. H2O2 additions also reduced prokaryotic heterotrophic production by 36-100% compared to the rapid increases in production rates occurring in the unamended controls. Our results indicate that oxidative stress caused by H2O2 affects prokaryotic growth and hydrolysis of specific components of the organic matter pool. Thus, we suggest that oxidative stress may have important consequences on marine carbon and energy fluxes.

  6. Pollution Impacts on Bacterioplankton Diversity in a Tropical Urban Coastal Lagoon System

    Science.gov (United States)

    Salloto, Gigliola R. B.; Cardoso, Alexander M.; Coutinho, Felipe H.; Pinto, Leonardo H.; Vieira, Ricardo P.; Chaia, Catia; Lima, Joyce L.; Albano, Rodolpho M.; Martins, Orlando B.; Clementino, Maysa M.

    2012-01-01

    Despite a great number of published studies addressing estuarine, freshwater and marine bacterial diversity, few have examined urban coastal lagoons in tropical habitats. There is an increasing interest in monitoring opportunistic pathogens as well as indigenous microbial community members in these water bodies by current molecular and microbiological approaches. In this work, bacterial isolates were obtained through selective plate dilution methods to evaluate antibiotic resistances. In addition, 16S rRNA gene libraries were prepared from environmental waters and mixed cultures grown in BHI medium inoculated with Jacarepaguá lagoon waters. Denaturing gradient gel electrophoresis (DGGE) analyses showed distinct community profiles between environmental communities from each studied site and their cultured counterparts. A total of 497 bacterial sequences were analyzed by MOTHUR, yielding 245 operational taxonomic units (OTUs) grouped at 97% similarity. CCA diagrams showcased how several environmental variables affect the distribution of 18 bacterial orders throughout the three distinct habitats. UniFrac metrics and Venn diagrams revealed that bacterial communities retrieved through each experimental approach were significantly different and that only one OTU, closely related to Vibrio cholerae, was shared between them. Potentially pathogenic bacteria were isolated from most sampled environments, fifty percent of which showed antibiotic resistance. PMID:23226484

  7. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea.

    Science.gov (United States)

    Ngugi, David Kamanda; Antunes, André; Brune, Andreas; Stingl, Ulrich

    2012-01-01

    The Red Sea is a unique marine ecosystem with contrasting gradients of temperature and salinity along its north-to-south axis. It is an extremely oligotrophic environment that is characterized by perpetual year-round water column stratification, high annual solar irradiation, and negligible riverine and precipitation inputs. In this study, we investigated whether the contemporary environmental conditions shape community assemblages by pyrosequencing 16S rRNA genes of bacteria in surface water samples collected from the northeastern half of this water body. A combined total of 1855 operational taxonomic units (OTUs) were recovered from the 'small-cell' and 'large-cell' fractions. Here, a few major OTUs affiliated with Cyanobacteria and Proteobacteria accounted for ∼93% of all sequences, whereas a tail of 'rare' OTUs represented most of the diversity. OTUs allied to Surface 1a/b SAR11 clades and Prochlorococcus related to the high-light-adapted (HL2) ecotype were the most widespread and predominant sequence types. Interestingly, the frequency of taxa that are typically found in the upper mesopelagic zone was significantly elevated in the northern transects compared with those in the central, presumably as a direct effect of deep convective mixing in the Gulf of Aqaba and water exchange with the northern Red Sea. Although temperature was the best predictor of species richness across all major lineages, both spatial and environmental distances correlated strongly with phylogenetic distances. Our results suggest that the bacterial diversity of the Red Sea is as high as in other tropical seas and provide evidence for fundamental differences in the biogeography of pelagic communities between the northern and central regions. © 2011 Blackwell Publishing Ltd.

  8. Marine bacterioplankton community turnover within seasonally hypoxic waters of a subtropical sound

    DEFF Research Database (Denmark)

    Parsons, Rachel J.; Nelson, Craig E.; Carlson, Craig A.

    2015-01-01

    changes, including both direct counts and rRNA gene sequencing. During stratification, the surface waters were dominated by the SAR11 clade of Alphaproteobacteria and the cyanobacterium Synechococcus. In the suboxic bottom waters, cells from the order Chlorobiales prevailed, with gene sequences indicating...

  9. Biomass reallocation within freshwater bacterioplankton induced by manipulating phosphorus availability and grazing

    Czech Academy of Sciences Publication Activity Database

    Posch, T.; Mindl, B.; Horňák, Karel; Jezbera, Jan; Salcher, M.M.; Sattler, B.; Sonntag, B.; Vrba, Jaroslav; Šimek, Karel

    2007-01-01

    Roč. 49, č. 3 (2007), s. 223-232 ISSN 0948-3055 R&D Projects: GA ČR(CZ) GA206/05/0007 Grant - others:ASF(AT) FWF P17554-B06 Institutional research plan: CEZ:AV0Z60170517 Keywords : bacterial biomass * bacteria-flagellate interactions * fluorescence in situ hybridization Subject RIV: EH - Ecology, Behaviour Impact factor: 2.385, year: 2007

  10. Bacterioplankton assemblages in coastal ponds reflect the influence of hydrology and geomorphological setting.

    Science.gov (United States)

    Huggett, Megan J; Kavazos, Christopher R J; Bernasconi, Rachele; Czarnik, Robert; Horwitz, Pierre

    2017-06-01

    The factors that shape microbial community assembly in aquatic ecosystems have been widely studied; yet it is still unclear how distinct communities within a connected landscape influence one another. Coastal lakes are recipients of, and thus are connected to, both marine and terrestrial environments. Thus, they may host microbial assemblages that reflect the relative degree of influence by, and connectivity to, either system. In order to address this idea, we interrogated microbial community diversity at 49 sites in seven ponds in two seasons in the Lake MacLeod basin, a system fed by seawater flowing inland through underground karst. Environmental and spatial variation within ponds explain <9% of the community structure, while identity of the pond that samples were taken from explains 50% of community variation. That is, ponds each host distinct assemblages despite similarities in size, environment and position in the landscape, indicating a dominant role for local species sorting. The ponds contain a substantial amount of previously unknown microbial taxa, reflecting the unusual nature of this inland system. Rare marine taxa, possibly dispersed from seawater assemblages via the underground karst connection, are abundant within the inland system, suggesting an important role for regional dispersal within the metacommunities. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Jellyfish-associated bacterial communities and bacterioplankton in Indonesian Marine lakes

    NARCIS (Netherlands)

    Cleary, D.F.R.; Becking, L.E.; Polonia, A.; Freitas, B.M.; Gomes, N.

    2016-01-01

    In the present study, we compared communities of bacteria in two jellyfish species (the ‘golden’ jellyfish Mastigias cf. papua and the box jellyfish Tripedalia cf. cystophora) and water in three marine lakes located in the Berau region of northeastern Borneo, Indonesia. Jellyfish-associated

  12. Pollution impacts on bacterioplankton diversity in a tropical urban coastal lagoon system.

    Directory of Open Access Journals (Sweden)

    Gigliola R B Salloto

    Full Text Available Despite a great number of published studies addressing estuarine, freshwater and marine bacterial diversity, few have examined urban coastal lagoons in tropical habitats. There is an increasing interest in monitoring opportunistic pathogens as well as indigenous microbial community members in these water bodies by current molecular and microbiological approaches. In this work, bacterial isolates were obtained through selective plate dilution methods to evaluate antibiotic resistances. In addition, 16S rRNA gene libraries were prepared from environmental waters and mixed cultures grown in BHI medium inoculated with Jacarepaguá lagoon waters. Denaturing gradient gel electrophoresis (DGGE analyses showed distinct community profiles between environmental communities from each studied site and their cultured counterparts. A total of 497 bacterial sequences were analyzed by MOTHUR, yielding 245 operational taxonomic units (OTUs grouped at 97% similarity. CCA diagrams showcased how several environmental variables affect the distribution of 18 bacterial orders throughout the three distinct habitats. UniFrac metrics and Venn diagrams revealed that bacterial communities retrieved through each experimental approach were significantly different and that only one OTU, closely related to Vibrio cholerae, was shared between them. Potentially pathogenic bacteria were isolated from most sampled environments, fifty percent of which showed antibiotic resistance.

  13. Effects of coral-derived organic matter on the growth of bacterioplankton and heterotrophic nanoflagellates

    Science.gov (United States)

    Nakajima, Ryota; Tanaka, Yasuaki; Guillemette, Ryan; Kurihara, Haruko

    2017-12-01

    Exudates derived from hermatypic corals were incubated with organic matter (DOM). The addition of coral-derived DOM caused significantly higher growth rates and production of bacteria and HNF compared to those in control seawater without coral exudates. During the incubation, HNF exhibited their peak in abundance 24-48 h after the peak abundance of bacteria. The growth efficiencies of both bacteria and HNF were significantly higher with coral-derived DOM, suggesting higher transfer efficiency from bacteria that is fueled by coral organic matter to HNF. Therefore, trophic transfer of coral-derived DOM from bacteria to HNF can contribute to efficient carbon flow through the microbial food web.

  14. Phylotype dynamics of bacterial P utilization genes in microbialites and bacterioplankton of a monomictic endorheic lake

    Czech Academy of Sciences Publication Activity Database

    Valdespino-Castillo, P.M.; Alcantara-Hernandez, R.J.; Merino-Ibarra, M.; Alcocer, J.; Macek, Miroslav; Moreno-Guillen, O.A.; Falcon, L.I.

    2017-01-01

    Roč. 73, č. 2 (2017), s. 296-309 ISSN 0095-3628 Institutional support: RVO:60077344 Keywords : extracellular enzymes * DOP utilization * phytase * P turnover Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.630, year: 2016

  15. Net heterotrophy in Faroe Islands clear-water lakes: causes and consequences for bacterioplankton and phytoplankton

    DEFF Research Database (Denmark)

    Pålsson, C.; Kritzberg, E. S.; Christoffersen, K.

    2005-01-01

    ) and measured the grazing pressure exerted by common mixotrophic species on bacteria. 2. High respiration to primary production (6.6-33.2) and supersaturation of CO2 (830-2140 µatm) implied that the lakes were net heterotrophic and that the pelagic heterotrophic plankton were subsidised by allochthonous organic......1. Five oligotrophic clear-water lakes on the Faroe Islands were studied during August 2000. Algal and bacterial production rates, community respiration, and CO2 saturation were determined. In addition, we examined the plankton community composition (phytoplankton and heterotrophic nanoflagellates...... carbon. However, in spite of the apparent high level of net heterotrophy, primary production exceeded bacterial production and the food base for higher trophic levels appeared to be mainly autotrophic. 3. We suggest that the observed net heterotrophy in these lakes was a result of the oligotrophic...

  16. Major Effect of Hydrogen Peroxide on Bacterioplankton Metabolism in the Northeast Atlantic

    NARCIS (Netherlands)

    Baltar, F.; Reinthaler, T.; Herndl, G.J.; Pinhassi, J.

    2013-01-01

    Reactive oxygen species such as hydrogen peroxide have the potential to alter metabolic rates of marine prokaryotes, ultimately impacting the cycling and bioavailability of nutrients and carbon. We studied the influence of H2O2 on prokaryotic heterotrophic production (PHP) and extracellular

  17. Natural variation in SAR11 marine bacterioplankton genomes inferred from metagenomic data

    Directory of Open Access Journals (Sweden)

    Wilhelm Larry J

    2007-11-01

    Full Text Available Abstract Background One objective of metagenomics is to reconstruct information about specific uncultured organisms from fragmentary environmental DNA sequences. We used the genome of an isolate of the marine alphaproteobacterium SAR11 ('Candidatus Pelagibacter ubique'; strain HTCC1062, obtained from the cold, productive Oregon coast, as a query sequence to study variation in SAR11 metagenome sequence data from the Sargasso Sea, a warm, oligotrophic ocean gyre. Results The average amino acid identity of SAR11 genes encoded by the metagenomic data to the query genome was only 71%, indicating significant evolutionary divergence between the coastal isolates and Sargasso Sea populations. However, an analysis of gene neighbors indicated that SAR11 genes in the Sargasso Sea metagenomic data match the gene order of the HTCC1062 genome in 96% of cases (> 85,000 observations, and that rearrangements are most frequent at predicted operon boundaries. There were no conserved examples of genes with known functions being found in the coastal isolates, but not the Sargasso Sea metagenomic data, or vice versa, suggesting that core regions of these diverse SAR11 genomes are relatively conserved in gene content. However, four hypervariable regions were observed, which may encode properties associated with variation in SAR11 ecotypes. The largest of these, HVR2, is a 48 kb region flanked by the sole 5S and 23S genes in the HTCC1062 genome, and mainly encodes genes that determine cell surface properties. A comparison of two closely related 'Candidatus Pelagibacter' genomes (HTCC1062 and HTCC1002 revealed a number of "gene indels" in core regions. Most of these were found to be polymorphic in the metagenomic data and showed evidence of purifying selection, suggesting that the same "polymorphic gene indels" are maintained in physically isolated SAR11 populations. Conclusion These findings suggest that natural selection has conserved many core features of SAR11 genomes across broad oceanic scales, but significant variation was found associated with four hypervariable genome regions. The data also led to the hypothesis that some gene insertions and deletions might be polymorphisms, similar to allelic polymorphisms.

  18. Zonation of bacterioplankton communities along aging upwelled water in the northern Benguela upwelling

    Directory of Open Access Journals (Sweden)

    Benjamin eBergen

    2015-06-01

    Full Text Available Upwelling areas are shaped by enhanced primary production in surface waters, accompanied by a well-investigated planktonic succession. Although bacteria play an important role in biogeochemical cycles of upwelling systems, little is known about bacterial community composition and its development during upwelling events. The aim of this study was to investigate the succession of bacterial assemblages in aging upwelled water of the Benguela upwelling from coastal to offshore sites. Water from the upper mixed layer at 12 stations was sampled along two transects from the origin of the upwelling to a distance of 220 km. 16S rRNA gene amplicon sequencing was then used in a bacterial diversity analysis and major bacterial taxa were quantified by catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH. Additionally, bacterial cell numbers and bacterial production were assessed . Community statistical analysis revealed a reproducible zonation along the two transects, with four clusters of significantly different microbial assemblages. Clustering was mainly driven by phytoplankton composition and abundance. Similar to the temporal succession that occurs during phytoplankton blooms in temperate coastal waters, operational taxonomic units (OTUs affiliated with Bacteroidetes and Gammaproteobacteria were dominant during algal blooming whereas Pelagibacterales were highly abundant in regions with low algal abundance. The most dominant heterotrophic OTU (9% of all reads was affiliated with Pelagibacterales and showed a strong negative correlation with phytoplankton. By contrast, the second most abundant heterotrophic OTU (6% of all reads was affiliated with the phylum Verrucomicrobia and correlated positively with phytoplankton. Together with the close relation of bacterial production and phytoplankton abundance, our results showed that bacterial community dynamics is strongly driven by the development and composition of the phytoplankton community.

  19. Morphology and LPS content for the estimation of marine bacterioplankton biomass in the Ionian Sea

    Directory of Open Access Journals (Sweden)

    Rosabruna La Ferla

    2004-03-01

    Full Text Available The abundance, morphotypes and biomass of the bacterial assemblages were investigated in the Ionian Sea by using two different methods: the epifluorescent microscopy technique for enumerating and sizing bacterial cells, and the determination of bacterial lipopolysaccharides (LPS. Five bacterial morphotypes were distinguished: cocci, rods, coccobacilli, vibrios and spirillae. The proportions of cocci were higher than those of other morphotypes at every depth, ranging from 39% to 73%. Both rod-shaped bacteria and coccobacilli were homogenously distributed in the water column, while the proportions of vibrios were rather variable. Spirillae occurred only in surface samples and disappeared below 100 m. The two methodologies were compared: LPS concentrations showed a highly significant correlation with the bacterial numbers (P< 0.01; n= 88; r= 0.68, but not with biovolumes, and different ratios between LPS concentrations and bacterial volumes were recorded for the photic and aphotic zones (3.11 ± 1.35 and 0.96 ± 0.37 ng LPS per µm3 respectively. LPS-derived cell carbon content on average was 23 fg C cell-1, similar to the C amount derived by mean cell biovolume (19 fg C cell-1 and the biomass from two highly correlated methods (P< 0.01; n= 95; r= 0.59. Our results confirm that the widely used factor of 20 fg C cell-1 (Lee and Furhman, 1987 should be plausible for studying the biomass of the natural microbial populations in the study area. Nevertheless, the wide variability of the cell size classes, also along the whole water columns, questions the applicability of a constant conversion factor for all the marine ecosystems. Consequently, locally derived biomass estimates of bacteria are essential in order to obtain an accurate evaluation of the bacterial role in biogeochemical cycles.

  20. UV RADIATION EFFECTS ON HETEROTROPHIC BACTERIOPLANKTON AND VIRUSES IN MARINE ECOSYSTEMS.

    Science.gov (United States)

    t is now apparent that there is a great potential for UVR to impact microbial carbon cycling andbiogeochemical processes. Although variability in effects has been observed, all of the organisms involved may be directly damaged by UB-B and may be indirectly damaged by UV-A. By...

  1. Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean

    Science.gov (United States)

    Li, Y.; Luo, T.; Sun, J.; Cai, L.; Liang, Y.; Jiao, N.; Zhang, R.

    2014-05-01

    As the most abundant biological entities in the ocean, viruses influence host mortality and nutrient recycling mainly through lytic infection. Yet, the ecological characteristics of virioplankton and viral impacts on host mortality and biogeochemical cycling in the deep sea are largely unknown. In the present study, viral abundance and lytic infection were investigated throughout the water column in the western Pacific Ocean. Both the prokaryotic and viral abundance and production showed a significantly decreasing trend from epipelagic to meso- and bathypelagic waters. Viral abundance decreased from 0.36-1.05 × 1010 particles L-1 to 0.43-0.80 × 109 particles L-1, while the virus : prokaryote ratio varied from 7.21 to 16.23 to 2.45-23.40, at the surface and 2000 m, respectively. Lytic viral production rates in surface and 2000 m waters were, on average, 1.03 × 1010 L-1 day-1 and 5.74 × 108 L-1 day-1. Relatively high percentages of prokaryotic cells lysed by viruses at 1000 and 2000 m were observed, suggesting a significant contribution of viruses to prokaryotic mortality in the deep ocean. The carbon released by viral lysis in deep western Pacific Ocean waters was from 0.03 to 2.32 μg C L-1 day-1. Our findings demonstrated a highly dynamic and active viral population in these deep waters and suggested that virioplankton play an important role in the microbial loop and subsequently biogeochemical cycling in deep oceans.

  2. Linking Activity and Function to Ecosystem Dynamics in a Coastal Bacterioplankton Community

    Directory of Open Access Journals (Sweden)

    Scott Michael Gifford

    2014-04-01

    Full Text Available For bacterial communities containing hundreds to thousands of distinct populations, connecting functional processes and environmental dynamics at high taxonomic resolution has remained challenging. Here we use the expression of ribosomal proteins (%RP as a proxy for in situ activity of 200 taxa within 20 metatranscriptomic samples in a coastal ocean time series encompassing both seasonal variability and diel dynamics. %RP patterns grouped the taxa into seven activity clusters with distinct profiles in functional gene expression and correlations with environmental gradients. Clusters 1-3 had their highest potential activity in the winter and fall, and included some of the most active taxa, while Clusters 4-7 had their highest potential activity in the spring and summer. Cluster 1 taxa were characterized by gene expression for motility and complex carbohydrate degradation (dominated by Gammaproteobacteria and Bacteroidetes, and Cluster 2 taxa by transcription of genes for amino acid and aromatic compound metabolism and aerobic anoxygenic phototrophy (Roseobacter. Other activity clusters were enriched in transcripts for proteorhodopsin and methylotrophy (Cluster 4; SAR11 and methylotrophs, photosynthesis and attachment (Clusters 5 and 7; Synechococcus, picoeukaryotes, Verucomicrobia, and Planctomycetes, and sulfur oxidation (Cluster 7; Gammaproteobacteria. The seasonal patterns in activity were overlain, and sometimes obscured, by large differences in %RP over shorter day-night timescales. Seventy-eight taxa, many of them heterotrophs, had a higher %RP activity index during the day than night, indicating strong diel activity at this coastal site. Emerging from these taxonomically- and time-resolved estimates of in situ microbial activity are predictions of specific ecological groupings of microbial taxa in a dynamic coastal environment.

  3. Coastal Bacterioplankton Metabolism Is Stimulated Stronger by Anthropogenic Aerosols than Saharan Dust

    Directory of Open Access Journals (Sweden)

    Isabel Marín

    2017-11-01

    Full Text Available In oligotrophic regions, such as the Mediterranean Sea, atmospheric deposition has the potential to stimulate heterotrophic prokaryote growth and production in surface waters, especially during the summer stratification period. Previous studies focused on the role of leaching nutrients from mineral particles of Saharan (S origin, and were restricted to single locations at given times of the year. In this study, we evaluate the effect of atmospheric particles from diverse sources and with a markedly different chemical composition [S dust and anthropogenic (A aerosols] on marine planktonic communities from three locations of the northwestern Mediterranean with contrasted anthropogenic footprint. Experiments were also carried out at different times of the year, considering diverse initial conditions. We followed the dynamics of the heterotrophic community and a range of biogeochemical and physiological parameters in six experiments. While the effect of aerosols on bacterial abundance was overall low, bacterial heterotrophic production was up to 3.3 and 2.1 times higher in the samples amended with A and S aerosols, respectively, than in the controls. Extracellular enzymatic activities [leu-aminopeptidase (AMA and β-glucosidase (β-Gl] were also enhanced with aerosols, especially from A origin. AMA and β-Gl increased up to 7.1 in the samples amended with A aerosols, and up to 1.7 and 2.1 times, respectively, with S dust. The larger stimulation observed with A aerosols might be attributed to their higher content in nitrate. However, the response was variable depending the initial status of the seawater. In addition, we found that both A and S aerosols stimulated bacterial abundance and metabolism significantly more in the absence of competitors and predators.

  4. Experimental incubations elicit profound changes in community transcription in OMZ bacterioplankton.

    Directory of Open Access Journals (Sweden)

    Frank J Stewart

    Full Text Available Sequencing of microbial community RNA (metatranscriptome is a useful approach for assessing gene expression in microorganisms from the natural environment. This method has revealed transcriptional patterns in situ, but can also be used to detect transcriptional cascades in microcosms following experimental perturbation. Unambiguously identifying differential transcription between control and experimental treatments requires constraining effects that are simply due to sampling and bottle enclosure. These effects remain largely uncharacterized for "challenging" microbial samples, such as those from anoxic regions that require special handling to maintain in situ conditions. Here, we demonstrate substantial changes in microbial transcription induced by sample collection and incubation in experimental bioreactors. Microbial communities were sampled from the water column of a marine oxygen minimum zone by a pump system that introduced minimal oxygen contamination and subsequently incubated in bioreactors under near in situ oxygen and temperature conditions. Relative to the source water, experimental samples became dominated by transcripts suggestive of cell stress, including chaperone, protease, and RNA degradation genes from diverse taxa, with strong representation from SAR11-like alphaproteobacteria. In tandem, transcripts matching facultative anaerobic gammaproteobacteria of the Alteromonadales (e.g., Colwellia increased 4-13 fold up to 43% of coding transcripts, and encoded a diverse gene set suggestive of protein synthesis and cell growth. We interpret these patterns as taxon-specific responses to combined environmental changes in the bioreactors, including shifts in substrate or oxygen availability, and minor temperature and pressure changes during sampling with the pump system. Whether such changes confound analysis of transcriptional patterns may vary based on the design of the experiment, the taxonomic composition of the source community, and on the metabolic linkages between community members. These data highlight the impressive capacity for transcriptional changes within complex microbial communities, underscoring the need for caution when inferring in situ metabolism based on transcript abundances in experimental incubations.

  5. Biogeography of pelagic bacterioplankton across an antagonistic temperature-salinity gradient in the Red Sea

    KAUST Repository

    Ngugi, David

    2011-12-01

    The Red Sea is a unique marine ecosystem with contrasting gradients of temperature and salinity along its north-to-south axis. It is an extremely oligotrophic environment that is characterized by perpetual year-round water column stratification, high annual solar irradiation, and negligible riverine and precipitation inputs. In this study, we investigated whether the contemporary environmental conditions shape community assemblages by pyrosequencing 16S rRNA genes of bacteria in surface water samples collected from the northeastern half of this water body. A combined total of 1855 operational taxonomic units (OTUs) were recovered from the \\'small-cell\\' and \\'large-cell\\' fractions. Here, a few major OTUs affiliated with Cyanobacteria and Proteobacteria accounted for â93% of all sequences, whereas a tail of \\'rare\\' OTUs represented most of the diversity. OTUs allied to Surface 1a/b SAR11 clades and Prochlorococcus related to the high-light-adapted (HL2) ecotype were the most widespread and predominant sequence types. Interestingly, the frequency of taxa that are typically found in the upper mesopelagic zone was significantly elevated in the northern transects compared with those in the central, presumably as a direct effect of deep convective mixing in the Gulf of Aqaba and water exchange with the northern Red Sea. Although temperature was the best predictor of species richness across all major lineages, both spatial and environmental distances correlated strongly with phylogenetic distances. Our results suggest that the bacterial diversity of the Red Sea is as high as in other tropical seas and provide evidence for fundamental differences in the biogeography of pelagic communities between the northern and central regions. © 2011 Blackwell Publishing Ltd.

  6. Spatial diversity of bacterioplankton communities in surface water of northern South China Sea.

    Directory of Open Access Journals (Sweden)

    Jialin Li

    Full Text Available The South China Sea is one of the largest marginal seas, with relatively frequent passage of eddies and featuring distinct spatial variation in the western tropical Pacific Ocean. Here, we report a phylogenetic study of bacterial community structures in surface seawater of the northern South China Sea (nSCS. Samples collected from 31 sites across large environmental gradients were used to construct clone libraries and yielded 2,443 sequences grouped into 170 OTUs. Phylogenetic analysis revealed 23 bacterial classes with major components α-, β- and γ-Proteobacteria, as well as Cyanobacteria. At class and genus taxon levels, community structure of coastal waters was distinctively different from that of deep-sea waters and displayed a higher diversity index. Redundancy analyses revealed that bacterial community structures displayed a significant correlation with the water depth of individual sampling sites. Members of α-Proteobacteria were the principal component contributing to the differences of the clone libraries. Furthermore, the bacterial communities exhibited heterogeneity within zones of upwelling and anticyclonic eddies. Our results suggested that surface bacterial communities in nSCS had two-level patterns of spatial distribution structured by ecological types (coastal VS. oceanic zones and mesoscale physical processes, and also provided evidence for bacterial phylogenetic phyla shaped by ecological preferences.

  7. Response of bacterioplankton to iron fertilization of the Southern Ocean, Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, S.K.; Kotakonda, A.; Kapardar, R.K.; Kankipati, H.K.; Rao, P.S.; Sankaranarayanan, P.M.; Vetaikorumagan, S.R.; Gundlapally, S.R.; Ramaiah, N.; Shivaji, S.

    structure following iron fertilization-induced phytoplankton bloom of the seawater from different depths. 16S rRNA gene libraries were constructed using metagenomic DNA from seawater prior to and after iron fertilization and the clones were sequenced...

  8. Relevance of bacterioplankton abundance and production in the oligotrophic equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, V.; Rodrigues, V.; Ramaiah, N.; Paul, J.T.

    , in some regions heterotrophic bacterial respiration (Del Giorgio et al. 1997) and production (Ameryk et al. 2005) sometimes far exceed the primary photosynthetic production. Unlike the Atlantic or Pacific Oceans, the Indian Ocean is landlocked... of the Yellow Sea. Mar Ecol Prog Ser 115:181–190 Cole JJ, Findlay S, Pace ML (1988) Bacterial production in fresh and saltwater ecosystem; a cross-system overview. Mar Ecol Prog Ser 43:1–10 Del Giorgio PA, Cole JJ, Cimbleris A (1997) Respiration rates...

  9. Coupling bacterioplankton populations and environment to community function in coastal temperate waters

    DEFF Research Database (Denmark)

    Traving, S. J.; Bentzon-Tilia, Mikkel; Knudsen-Leerbeck, H.

    2016-01-01

    surface waters over a full year indicated that specific bacterial populations were linked to measured functions. Namely, Synechococcus (Cyanobacteria) was strongly correlated with protease activity. Both function and community composition showed seasonal variation. However, the pattern of substrate...

  10. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton

    KAUST Repository

    Cardenas, Anny

    2017-09-12

    Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (>70%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expression analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations. Sugar-specific induction of virulence factors suggests a mechanistic link for the switch from a commensal to a pathogenic lifestyle, particularly relevant during increased algal cover and human-derived pollution on coral reefs. Although an explicit test remains to be performed, our data support the hypothesis that increased availability of specific sugars changes net microbial community activity in ways that increase the emergence and abundance of opportunistic pathogens, potentially contributing to coral reef degradation.

  11. Stimulation of viral infection of bacterioplankton during a mesoscale iron fertilization experiment in the Southern Ocean

    Science.gov (United States)

    Weinbauer, M. G.; Arrieta, J.-M.; Herndl, G. J.

    2003-04-01

    A mesoscale iron fertilization in the Southern Ocean (Eisenex ) induced a phytoplankton bloom within three weeks observation as well as in an increased bacterial abundance and production. Viral abundance and viral production were stimulated as well. A virus-dilution approach was used to estimate the frequency of infected cells (FIC) and the frequency of lysogenic cells (FLC), i.e. cells with a dormant viral genome. While the FLC did not vary strongly within the iron-enriched patch and did not differ from waters outside the patch, FIC increased significantly within the iron fertilized patch. This suggests that induction of the lytic cycle in lysogenic cells was not significant. Rather, the stimulated bacterial production and abundance within the patch resulted in higher and more successful encounters between viruses and hosts and thus in higher FIC values. Consequently, the iron fertilization enhanced the influence of viral infection in the microbial food web. According to the current model, this should result a stimulation of bacterial production, since lysed bacterial cells cannot be consumed up by protists and transferred to higher trophic level; lysis products can be taken up by bacteria and thus organic carbon spins within this viral loop. Viral infection is a significant and previously overlooked factor in the carbon flow during iron fertilization experiments.

  12. Major effect of hydrogen peroxide on bacterioplankton metabolism in the Northeast Atlantic.

    Science.gov (United States)

    Baltar, Federico; Reinthaler, Thomas; Herndl, Gerhard J; Pinhassi, Jarone

    2013-01-01

    Reactive oxygen species such as hydrogen peroxide have the potential to alter metabolic rates of marine prokaryotes, ultimately impacting the cycling and bioavailability of nutrients and carbon. We studied the influence of H2O2 on prokaryotic heterotrophic production (PHP) and extracellular enzymatic activities (i.e., β-glucosidase [BGase], leucine aminopeptidase [LAPase] and alkaline phosphatase [APase]) in the subtropical Atlantic. With increasing concentrations of H2O2 in the range of 100-1000 nM, LAPase, APase and BGase were reduced by up to 11, 23 and 62%, respectively, in the different water layers. Incubation experiments with subsurface waters revealed a strong inhibition of all measured enzymatic activities upon H2O2 amendments in the range of 10-500 nM after 24 h. H2O2 additions also reduced prokaryotic heterotrophic production by 36-100% compared to the rapid increases in production rates occurring in the unamended controls. Our results indicate that oxidative stress caused by H2O2 affects prokaryotic growth and hydrolysis of specific components of the organic matter pool. Thus, we suggest that oxidative stress may have important consequences on marine carbon and energy fluxes.

  13. Close Link Between Harmful Cyanobacterial Dominance and Associated Bacterioplankton in a Tropical Eutrophic Reservoir

    Directory of Open Access Journals (Sweden)

    Iame A. Guedes

    2018-03-01

    Full Text Available Cyanobacteria tend to become the dominant phytoplankton component in eutrophic freshwater environments during warmer seasons. However, general observations of cyanobacterial adaptive advantages in these circumstances are insufficient to explain the prevalence of one species over another in a bloom period, which may be related to particular strategies and interactions with other components of the plankton community. In this study, we present an integrative view of a mixed cyanobacterial bloom occurring during a warm, rainy period in a tropical hydropower reservoir. We used high-throughput sequencing to follow temporal shifts in the dominance of cyanobacterial genera and shifts in the associated heterotrophic bacteria community. The bloom occurred during late spring-summer and included two distinct periods. The first period corresponded to Microcystis aeruginosa complex (MAC dominance with a contribution from Dolichospermum circinale; this pattern coincided with high water retention time and low transparency. The second period corresponded to Cylindrospermopsis raciborskii and Synechococcus spp. dominance, and the reservoir presented lower water retention time and higher water transparency. The major bacterial phyla were primarily Cyanobacteria and Proteobacteria, followed by Actinobacteria, Bacteroidetes, Verrucomicrobia, and Planctomycetes. Temporal shifts in the dominance of cyanobacterial genera were not only associated with physical features of the water but also with shifts in the associated heterotrophic bacteria. The MAC bloom was associated with a high abundance of Bacteroidetes, particularly Cytophagales. In the second bloom period, Planctomycetes increased in relative abundance, five Planctomycetes OTUs were positively correlated with Synechococcus or C. raciborskii OTUs. Our results suggest specific interactions of the main cyanobacterial genera with certain groups of the heterotrophic bacterial community. Thus, considering biotic interactions may lead to a better understanding of the shifts in cyanobacterial dominance.

  14. Dissolved Compounds Excreted by Copepods Reshape the Active Marine Bacterioplankton Community Composition

    Directory of Open Access Journals (Sweden)

    Valentina P. Valdés

    2017-11-01

    Full Text Available Copepods are important suppliers of bioreactive compounds for marine bacteria through fecal pellet production, sloppy feeding, and the excretion of dissolved compounds. However, the interaction between copepods and bacteria in the marine environment is poorly understood. We determined the nitrogen and phosphorus compounds excreted by copepods fed with two natural size-fractionated diets (<20- and 20–150-μm in the upwelling zone of central/southern Chile in late summer and spring. We then assessed the biogeochemical response of the bacterial community and its structure, in terms of total and active cells, to enrichment by copepod-excreted dissolved compounds. Results revealed that copepods actively excreted nitrogen and phosphorus compounds, mainly in the form of ammonium and dissolved organic phosphorus (DOP, reaching excretion rates of 2.6 and 0.05 μmol L−1h−1, respectively. In both periods, the maximum excretion rates were associated with the 20–150-μm size fraction, but particularly during spring, when a higher organic matter quality was observed in excretion products compared to late summer. There were higher excretion rates of dissolved free amino acids (DFAAs from copepods fed with the <20-μm size fraction, mainly histidine (HIS in late summer and glutamic acid (GLU in spring. A shift in the composition of the active bacterial community was observed between periods and treatments, which was associated with the response of the common seawater surface phyla Proteobacteria and Bacteroidetes. The specific bacterial activity (16S rRNA:rDNA suggested a different response to the two size-fractionated diets. In late summer, Betaproteobacteria and Bacteroidetes were stimulated by the treatment enriched with excretion products derived from the 20–150-μm and <20-μm size fractions, respectively. In spring, Alphaproteobacteria were active in the treatment enriched with the excretion products of copepods fed with the <20-μm size fraction, whereas they were inhibited in the treatment enriched with excretion products in the 20–150-μm size fraction. Our findings indicate that different copepod diets can have a significant impact on the quantity and quality of their excretion compounds, which can subsequently generate shifts in the active bacterial composition. The bacterial response is probably associated with common-opportunistic sea surface microbes that are adapted to rapidly reacting to environmental offers.

  15. The Temporal Dynamics of Coastal Phytoplankton and Bacterioplankton in the Eastern Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Ofrat Raveh

    Full Text Available This study considers variability in phytoplankton and heterotrophic bacterial abundances and production rates, in one of the most oligotrophic marine regions in the world-the Levantine Basin. The temporal dynamics of these planktonic groups were studied in the coastal waters of the southeastern Mediterranean Sea approximately every two weeks for a total of two years. Heterotrophic bacteria were abundant mostly during late summer and midwinter, and were positively correlated with bacterial production and with N2 fixation. Based on size fractionating, picophytoplankton was abundant during the summer, whereas nano-microphytoplankton predominated during the winter and early spring, which were also evident in the size-fractionated primary production rates. Autotrophic abundance and production correlated negatively with temperature, but did not correlate with inorganic nutrients. Furthermore, a comparison of our results with results from the open Levantine Basin demonstrates that autotrophic and heterotrophic production, as well as N2 fixation rates, are considerably higher in the coastal habitat than in the open sea, while nutrient levels or cell abundance are not different. These findings have important ecological implications for food web dynamics and for biological carbon sequestration in this understudied region.

  16. Alkaline phosphatases in microbialites and bacterioplankton from Alchichica soda lake, Mexico

    Czech Academy of Sciences Publication Activity Database

    Valdespino-Castillo, P.M.; Alcantara-Hernandez, R.J.; Alcocer, J.; Merino-Ibarra, M.; Macek, Miroslav; Falcon, L.I.

    2014-01-01

    Roč. 90, č. 2 (2014), s. 504-519 ISSN 0168-6496 Institutional support: RVO:60077344 Keywords : dissolved organic phosphorus utilization * extracellular enzymes * microbial functional diversity Subject RIV: EE - Microbiology, Virology Impact factor: 3.568, year: 2014

  17. Determination of Active Marine Bacterioplankton: a Comparison of Universal 16S rRNA Probes, Autoradiography, and Nucleoid Staining

    OpenAIRE

    Karner, M.; Fuhrman, J. A.

    1997-01-01

    We compared several currently discussed methods for the assessment of bacterial numbers and activity in marine waters, using samples from a variety of marine environments, from aged offshore seawater to rich harbor water. Samples were simultaneously tested for binding to a fluorescently labeled universal 16S rRNA probe; (sup3)H-labeled amino acid uptake via autoradiography; nucleoid-containing bacterial numbers by modified DAPI (4(prm1),6-diamidino-2-phenylindole) staining; staining with 5-cy...

  18. Biomass, production, and control of heterotrophic bacterioplankton during a late phytoplankton bloom in the Amundsen Sea Polynya, Antarctica

    Science.gov (United States)

    Hyun, Jung-Ho; Kim, Sung-Han; Yang, Eun Jin; Choi, Ayeon; Lee, Sang Hoon

    2016-01-01

    We investigated the heterotrophic bacterial biomass and production in February 2012, in four habitats (a polynya, sea-ice zone, ice shelf, and the open sea) in the Amundsen Sea to determine the spatial distribution, controlling factors, and ecological role of the bacteria during a late phytoplankton bloom by Phaeocystis antarctica. Bacterial abundance (BA) and production (BP) were highest at the center of the polynya, and both were significantly correlated with phytoplankton biomass. BP accounted for average 17% of the organic carbon produced by phytoplankton primary production (PP), which is higher than the average BP:PP ratio reported in most open ocean. The abundance of heterotrophic nanoflagellates (HNF) was correlated with the BA, and the average bacteria:HNF ratio (260) was lower than the values reported in most marine environments (400-1000), including the Ross Sea Polynya (800). Evidence for a tight coupling of bacteria and phytoplankton activities on the one hand and intense HNF grazing on bacteria on the other could be found in the high BP:PP and low bacteria:HNF ratios, respectively. Interestingly, these data were accompanied by low particulate carbon export fluxes measured during the late Phaeocystis bloom. Together, these results indicated that the microbial loop plays a significant role in the biogeochemical carbon cycle and food web processes in the Amundsen Sea Polynya.

  19. Betaproteobacteria Limnohabitans strains increase fecundity in the crustacean Daphnia magna: symbiotic relationship between major bacterioplankton and zooplankton in freshwater ecosystem.

    Czech Academy of Sciences Publication Activity Database

    Peerakietkhajorn, S.; Kato, Y.; Kasalický, Vojtěch; Matsuura, T.; Watanabe, H.

    2016-01-01

    Roč. 18, č. 8 (2016), s. 2366-2374 ISSN 1462-2912 R&D Projects: GA ČR(CZ) GA13-00243S Institutional support: RVO:60077344 Keywords : Daphnia * symbiotic bacteria * Limnohabitans * fecundity Subject RIV: EE - Microbiology, Virology Impact factor: 5.395, year: 2016

  20. Influence of environmental variation on the bacterioplankton community and its loss to viral lysis in the Curonian Lagoon

    Science.gov (United States)

    Šulčius, Sigitas; Reunamo, Anna; Paškauskas, Ričardas; Leskinen, Piia

    2018-05-01

    Coastal lagoons are continuously exposed to strong environmental gradients that determine the distribution and trophic interactions of microbial communities. Therefore, in this study we assessed whether and how environmental changes influence the bacterial community and its vulnerability to viral infection and lysis along the major environmental gradient in the Curonian Lagoon. We found significant differences in bacterial community profiles, their richness and evenness between the riverine, freshwater southern part and the Baltic Sea water intrusion-influenced northern part of the lagoon, suggesting strong environmental control of the structure of bacterial communities. Viruses were found to be play an important role in bacterial mortality in the Curonian Lagoon, being responsible for the removal of 20-50% of the bacterial standing stock. We observed differences in virioplankton decay rates and virus burst sizes between the northern and southern parts of the lagoon. However, no relationships were found between viral activity and bacterial communities within the lagoon ecosystem. The frequency of infected cells and virus-mediated bacterial mortality (VMBM) remained constant among the sampling sites irrespective of differences in bacteria community assemblages and environmental conditions. The results indicate that factors determining changes in bacterial diversity are different from the factors limiting their vulnerability to viral infection and lysis. This study also suggests that under changing environmental conditions, virus-bacteria interactions are more stable than the interacting viral and bacterial communities themselves. These findings are important for understanding the functioning of the coastal ecosystems under the rapidly changing local (spatial and temporal) and global (e.g. eutrophication, climate change) conditions.

  1. Distribution and production of plankton communities in the subtropical convergence zone of the Sargasso Sea. I. Phytoplankton and bacterioplankton

    DEFF Research Database (Denmark)

    Riemann, Lasse; Nielsen, Torkel Gissel; Kragh, Theis

    2011-01-01

    . With the aim of improving the understanding of physical and lower trophic level processes in the area, we carried out field studies of physical, chemical and biological characteristics along 3 transects crossing thermal fronts associated with the STCZ in March to April 2007. Thermal and chemical stratification....... Bacterial biomass was roughly equal to half of the phytoplankton biomass. We did not find elevated levels of primary production or biomass of specific phytoplankton groups associated with the STCZ, probably due to a pronounced variability between stations along transects. Nevertheless, distinct increases...

  2. Effects of grazing, phosphorus and light on the growth rates of major bacterioplankton taxa in the coastal NW Mediterranean

    Czech Academy of Sciences Publication Activity Database

    Sánchez, O.; Koblížek, Michal; Gasol, J.M.; Ferrera, I.

    2017-01-01

    Roč. 9, č. 3 (2017), s. 300-309 ISSN 1758-2229 R&D Projects: GA ČR GA13-11281S; GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 Keywords : AEROBIC ANOXYGENIC PHOTOTROPHS * CATALYZED REPORTER DEPOSITION * NATURAL PLANKTONIC BACTERIA Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.363, year: 2016

  3. Latitudinal Trends in Abundant and Rare Bacterioplankton Community Structure and Diversity in Surface Waters of the Pacific Ocean

    Science.gov (United States)

    Jeffrey, W. H.; Moss, J. A.; Snyder, R.; Pakulski, J. D.

    2016-02-01

    To fully comprehend planktonic diversity and the roles of microorganisms in global biogeochemical cycling, we must recognize the distribution patterns of planktonic taxa and phylotypes and their controlling environmental factors. To advance this understanding, Illumina sequencing targeting the 16S rRNA gene was used to evaluate latitudinal patterns of bacterial taxa as well as diversity in surface waters in the Pacific Ocean. Surface water was collected at 37 stations at 370 km intervals in a 16,200 km transect from 71 N to 68 S in the Pacific Ocean from August to November 2003. These samples were collected on Sterivex filters and kept continuously at -80 C until recent processing which produced over 200k reads per site, half of which were discernible down to the genus level. Bray-Curtis analysis of known genera produced 4 major clusters—sub-Arctic/Arctic, tropical, temperate, and sub-Antarctic/Antarctic. Analysis of only the rare (< 1%) genera produced the same 4 major clusters, although the clusters were most congruent in their geographic distribution when only the abundant taxa were included. Key phyla responsible for these groupings include genera of the Proteobacteria and Cyanobacteria, and as expected, include the pronounced presence of Prochlorococcus in the temperate and equatorial regions. However, many robust trends such as unipolar and bipolar distribution in both the abundant (≥1%) and rare (< 1%) genera within phyla Verrucomicrobia, Actinobacteria, and Barteriodetes, were also apparent. The data sheds light on distribution patterns of the Oleibacter, Thalassobius, Olleya, Salegentibacter, Ulvibacter, Bizionia, Pirellula, and many other additional, understudied genera. Of the 655 identified genera, no significant gradients in gamma diversity were apparent when 12 commonly used species and phylogenetic indices were applied.

  4. Specific activity of cell-surface acid phosphatase in different bacterioplankton morphotypes in an acidified mountain lake

    Czech Academy of Sciences Publication Activity Database

    Nedoma, Jiří; Vrba, Jaroslav

    2006-01-01

    Roč. 8, č. 7 (2006), s. 1271-1279 ISSN 1462-2912 R&D Projects: GA AV ČR(CZ) IAA6017202 Institutional research plan: CEZ:AV0Z60170517 Keywords : alkaline phosphatase * bacterial morphorypes * acidified lake Subject RIV: CE - Biochemistry Impact factor: 4.630, year: 2006

  5. Regulation of bacterioplankton activity in Fram Strait (Arctic Ocean) during early summer: The role of organic matter supply and temperature

    Science.gov (United States)

    Piontek, Judith; Sperling, Martin; Nöthig, Eva-Maria; Engel, Anja

    2014-04-01

    The bacterial turnover of organic matter was investigated in Fram Strait at 79°N. Both Atlantic Water (AW) inflow and exported Polar Water (PW) were sampled along a transect from Spitsbergen to the eastern Greenland shelf during a late successional stage of the main annual phytoplankton bloom in summer. AW showed higher concentrations of amino acids than PW, while organic matter in PW was enriched in combined carbohydrates. Bacterial growth and degradation activity in AW and PW were related to compositional differences of organic matter. Bacterial production and leucine-aminopeptidase along the transect were significantly correlated with concentrations of amino acids. Activity ratios between the extracellular enzymes β-glucosidase and leucine-aminopeptidase indicate the hydrolysis potential for polysaccharides relative to proteins. Along the transect, these ratios showed a higher hydrolysis potential for polysaccharides relative to proteins in PW than in AW, thus reflecting the differences in organic matter composition between the water masses. Q10 values for bacterial production ranged from 2.4 (± 0.8) to 6.0 (± 6.8), while those for extracellular enzymes showed a broader range of 1.5 (± 0.5) to 23.3 (± 11.8). Our results show that in addition to low seawater temperature also organic matter availability contributes to the regulation of bacterial growth and enzymatic activity in the Arctic Ocean.

  6. Comparing the effects of resource enrichment and grazing on a bacterioplankton community of a meso-eutrophic reservoir

    Czech Academy of Sciences Publication Activity Database

    Šimek, Karel; Horňák, K.; Mašín, M.; Christaki, U.; Nedoma, Jiří; Weinbauer, M. G.; Dolan, J. R.

    2003-01-01

    Roč. 31, č. 2 (2003), s. 123-135 ISSN 0948-3055 R&D Projects: GA ČR GA206/99/0028; GA ČR GA206/02/0003; GA MŠk KONTAKT 22-2000/9513514 Grant - others:CNRS(FR) PICS 1111 Institutional research plan: CEZ:MSM 123100004 Keywords : reservoir * top-down and bottom-up control * microbial food webs Subject RIV: EE - Microbiology, Virology Impact factor: 2.116, year: 2003

  7. SEASONAL PATTERNS OF SUBSTRATE UTILIZATION BY BACTERIOPLANKTON: CASE STUDIES IN FOUR TEMPERATE LAKES OF DIFFERENT LATITUDES. (R825868)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Comparison of Growth Rates of Aerobic Anoxygenic Phototrophic Bacteria and Other Bacterioplankton Groups in Coastal Mediterranean Waters

    Czech Academy of Sciences Publication Activity Database

    Ferrera, I.; Gasol, J.M.; Sebastian, M.; Hojerová, Eva; Koblížek, Michal

    2011-01-01

    Roč. 77, č. 21 (2011), s. 7451-7458 ISSN 0099-2240 R&D Projects: GA ČR GAP501/10/0221 Institutional research plan: CEZ:AV0Z50200510 Keywords : CATALYZED REPORTER DEPOSITION * NATURAL AQUATIC SYSTEMS * IN-SITU HYBRIDIZATION Subject RIV: EE - Microbiology, Virology Impact factor: 3.829, year: 2011

  9. Estimates of bacterioplankton and Synechococcus spp. mortality from nanoflagellate grazing and viral lysis in the subtropical Danshui River estuary

    Science.gov (United States)

    Tsai, An-Yi; Gong, Gwo-Ching; Huang, Yu Wen; Chao, Chien Fu

    2015-02-01

    To better understand picoplankton dynamics in the surface waters of upriver the Danshui River and its estuary, we assessed nanoflagellate-induced and virus-induced mortality of bacteria and Synechococcus spp. during different seasons (October, 2012 and January, April and July, 2013) using a modified dilution technique. Bacteria and viruses were significantly higher in abundance upriver than at the estuary. The distribution of Synechococcus spp. did not follow this spatial pattern. Abundance of Synechococcus spp. was relatively low during the whole sampling period in the upriver region. Furthermore, bacterial mortality resulting from nanoflagellate grazing were generally higher than those resulting from viral lysis in the upriver region, while Synechococcus spp. losses appeared to be mainly due to viral lysis upriver and in the estuary. Our dilution experiments suggested that nanoflagellates largely depend on bacteria as an important energy source there.

  10. METHODS OF EXPLORING METABOLIC STRUCTURE AND TAXONOMIC DIVERSITY RELATIONSHIPS BETWEEN BACTERIOPLANKTON AND PHYTOPLANKTON IN SALT MARSH TIDAL CREEKS

    Science.gov (United States)

    Bacterial metabolic diversity and phytoplankton community diversity were examined in eight shallow tidal creeks over a two-year period (1997-1998) within North Inlet estuary, South Carolina. The BIOLOG 96-well microplate method was used to assess metabolic diversity of bacteria, ...

  11. Bottom up effects on bacterioplankton growth and composition during summer-autumn transition in the open NW Mediterranean Sea

    Czech Academy of Sciences Publication Activity Database

    Van Wambeke, F.; Ghiglione, J. F.; Nedoma, Jiří; Mével, G.; Raimbault, P.

    2009-01-01

    Roč. 6, č. 4 (2009), s. 705-720 ISSN 1726-4170 Institutional research plan: CEZ:AV0Z60170517 Keywords : bacterial community composition * phosphorus limitation * oligotrophic environment Subject RIV: EE - Microbiology, Virology Impact factor: 3.246, year: 2009 www.biogeosciences.net/6/705/2009

  12. pH Tolerance in Freshwater Bacterioplankton: Trait Variation of the Community as Measured by Leucine Incorporation

    OpenAIRE

    Bååth, Erland; Kritzberg, Emma

    2015-01-01

    pH is an important factor determining bacterial community composition in soil and water. We have directly determined the community tolerance (trait variation) to pH in communities from 22 lakes and streams ranging in pH from 4 to 9 using a growth-based method not relying on distinguishing between individual populations. The pH in the water samples was altered to up to 16 pH values, covering in situ pH ± 2.5 U, and the tolerance was assessed by measuring bacterial growth (Leu incorporation) in...

  13. Carbon demand, utilization, and metabolic diversity of bacterioplankton in the frontal regimes of the Indian sector of the Southern Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnan, K.P.; Sinha, R.K.; Nair, S.; Noronha, S.B.; Chacko, R.; Anilkumar, N.

    Prokaryotic cell count was maximum at PFI and PFII (~109 cells L-1) and minimum at SAF (~107 cells L-1) Furthermore, integrated bacterial production was higher at PFI (1.07 mg C m-2 h-1

  14. QUANTIFICATION OF RECA GENE EXPRESSION AS AN INDICATOR OF REPAIR POTENTIAL IN MARINE BACTERIOPLANKTON COMMUNITIES OF ANTARCTICA.

    Science.gov (United States)

    Marine bacteria in surface waters must cope daily with the damaging effects of exposure to solar radiation (containing both UV-A and UV-B wavelengths), which produces lesions in their DNA. As the stratospheric ozone layer is depleted, these coping mechanisms are likely to play an...

  15. Bottom up effects on bacterioplankton growth and composition during summer-autumn transition in the open NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    F. Van Wambeke

    2009-04-01

    Full Text Available We examined the vertical and temporal dynamics of nutrients, ectoenzymatic activities under late summer-fall transition period (September–October 2004 in NW Mediterranean Sea in relation to temporal change in factors limiting bacterial production. The depth of the mixed layer (12.8±5.3 m was extremely stable until the onset of the destratification period after 11 October, creating a zone where diffusion of nutrient from the much deeper phosphacline (69±12 m and nitracline (50±8 m was probably strongly limited. However after 1st October, a shallowing of nutriclines occured, particularly marked for nitracline. Hence, the nitrate to phosphate ratio within the mixed layer, although submitted to a high short term variability, shifted the last week of the cruise from 1.1±1.2 to 4.6±3.8, and nitrate increased by a factor 2 (0.092±0.049 μM. A corresponding switch from more than one limitation (PN to P-only limitation of bacterial production was observed during the month as detected by enrichment bioassays. Differences in the identity of the limiting nutrient in surface (5 m: N and P at the beginning, strictly P at the end of the study versus 80 m (labile carbon influence greatly bacterial community structure shift between these two layers. The two communities (5 and 80 m reacted rapidly (24 h to changes in nutrient concentrations by drastic modification of total and active population assemblages resulting in changes in activity. For bacterial production values less than 10 ng C l−1 h−1 (associated to deeper layers, aminopeptidase and lipase exhibited higher activity relative to production whereas phosphatase varied in the same proportions than BP on the range of activities tested. Our results illustrate the effect of bottom-up control on bacterial community structure and activities in the epipelagic NW Mediterranean Sea.

  16. Effects of resource availability and bacterivory on leucine incorporation in different groups of freshwater bacterioplankton, assessed using microautoradiography

    Czech Academy of Sciences Publication Activity Database

    Horňák, Karel; Jezbera, Jan; Nedoma, Jiří; Gasol, J.M.; Šimek, Karel

    2006-01-01

    Roč. 45, č. 3 (2006), s. 277-289 ISSN 0948-3055 R&D Projects: GA ČR GA206/05/0007 Grant - others:FRVŠ(CZ) 1062/2004 Institutional research plan: CEZ:AV0Z60170517 Keywords : leucin e incorporation * bacterial structure * bacterial function Subject RIV: EH - Ecology, Behaviour Impact factor: 2.209, year: 2006

  17. The effect of increased loads of dissolved organic matter on estuarine microbial community composition and function

    DEFF Research Database (Denmark)

    Traving, Sachia J.; Rowe, Owen; Jakobsen, Nina M.

    2017-01-01

    pronounced effects on the recipient bacterioplankton, driving compositional changes in response to DOM type. The shifts in bacterioplankton community composition were especially driven by the proliferation of Bacteroidetes, Gemmatimonadetes, Planctomycetes, and Alpha- and Betaproteobacteria populations...

  18. Novel Phylogenetic Approaches to Problems in Microbial Genomics

    Science.gov (United States)

    2010-09-01

    II Contributions 13 1 Resource partitioning and sympatric differentiation among closely related bacterioplankton 15 2 Rapid evolutionary innovation...Contributions 13 Chapter 1 Resource partitioning and sympatric differentiation among closely related bacterioplankton Dana E. Hunt*, Lawrence A. David...differentiation among closely related bacterioplankton Identifying ecologically differentiated populations within complex micro- bial communities remains

  19. ACTIVITIES OF AMMONIA ASSIMILATION ENZYMES AS INDICATORS OF THE RELATIVE SUPPLY OF NITROGEN SUBSTRATES FOR MARINE BACTERIOPLANKTON IN SUB-TROPICAL COASTAL WATER

    Science.gov (United States)

    The supply of nitrogen substrates available for bacterial production in seawater was determined using the activities of ammonia assimilation enzymes, glutamine synthetase (GS) and glutamate dehydrogenase (GDH). Expression of GS and GDH by bacteria in pure culture is generally ind...

  20. Offshore distribution patterns of the cyanobacterium Trichodesmium erythraeum ehrenberg and associated phyto- and bacterioplankton in the southern Atlantic coast (Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Adriana Siqueira

    2006-03-01

    Full Text Available Studies were carried out on Thrichodesmium erythraeum occurring on the inner shelf in the state of Paraná, Brazil. Temperature, salinity, rainfall, wind velocity, total bacteria, bacterial biomass, chlorophyll-a, phytoplankton, Anabaena sp., Merismopedia sp. and T. erythraeum densities were measured in surface water. Centric and pennate diatoms, Anabaena sp. and Merismopedia sp. were most abundant at 15 m isobath, while dinoflagellate abundance was relatively constant among stations. Similarly, total bacterial densities were relatively homogeneous throughout the sampling area, suggesting that blooms of T. erythraeum were not yet in the senescent phase. Results showed that T. erythraeum was capable of surviving in relatively inhospitable environmental conditions, due to its ability to fix nitrogen and to photosynthesis at high light intensities.O propósito principal da presente pesquisa foi investigar as florações de Trichodesmium erythraeum na plataforma continental interna do Estado do Paraná, Brasil. Foram medidas, em águas de superfície a temperatura, salinidade, bactérias totais, biomassa bacteriana, clorofila-a, densidade fitoplanctônica, densidade das cianobactérias Anabaena sp., Merismopedia sp. e T. erythraeum. Ao contrário dos dinoflagelados, cuja abundância foi relativamente constante em todas as estações, as diatomáceas cêntricas e penadas, Anabaena sp. e Merismopedia sp. foram mais abundantes até a isóbata dos 15 m. A densidade de bactérias totais também foi relativamente homogênea na área amostrada, o que sugere que as florações de T. erythraeum não se encontravam em fase senescente. Os resultados confirmam que T. erythraeum é capaz de sobreviver em condições ambientais relativamente inóspitas devido à sua capacidade de fixar nitrogênio e efetuar a fotossíntese em altas intensidades de luz.

  1. Influence of top-down and bottom-up manipulations on the R-BT065 subcluster of Betaproteobacteria, an abundant group in bacterioplankton of a freshwater reservoir

    Czech Academy of Sciences Publication Activity Database

    Šimek, Karel; Horňák, Karel; Jezbera, Jan; Mašín, Michal; Nedoma, Jiří; Gasol, J. M. .; Schauer, M.

    2005-01-01

    Roč. 71, č. 5 (2005), s. 2381-2390 ISSN 0099-2240 R&D Projects: GA ČR(CZ) GA206/05/0007; GA ČR(CZ) GA206/02/0003 Grant - others:CSIC(ES) DGICYT REN2001-2120/MAR; EU(XE) EVK3-CT-2002-00078; Austrian Science Foundation(AT) P15655 Institutional research plan: CEZ:AV0Z60170517 Keywords : reservoir * top-down and bottom-up control * microbial food webs * bacterivory * bacterial community composition Subject RIV: EE - Microbiology, Virology Impact factor: 3.818, year: 2005

  2. Ecology and Population Structure of Vibrionaceae in the Coastal Ocean

    Science.gov (United States)

    2010-02-01

    populations. The members of the Vibrio genus were used as a model system because they are an important part of the bacterioplankton community and extensive...Polz, M.F. (2008) Resource partitioning and sympatric differentiation among closely related bacterioplankton . Science, 320, 1081-1085. Huq, A...Sarma-Rupavtarm, R., Distel, D.L., & Polz, M.F. (2005) Genotypic diversity within a natural coastal bacterioplankton population. Science, 307, 1311

  3. Biology and Potential Biogeochemical Impacts of Novel Predatory Flavobacteria

    Science.gov (United States)

    2010-06-01

    experiments with natural bacterioplankton communities have indicated that at least a portion of marine flavobacteria readily attach to particle surfaces from...the latter two more closely related to the genus Olleya, see Chapter 2) from Southern Ocean bacterioplankton were specifically detected colonizing...the amendment of natural bacterioplankton with protein, though no effect was observed after starch amendment [125]. The use of 131 radioactively

  4. Marine Microbial Community Response to Inorganic and Organic Sediment Amendments in Laboratory Mesocosms

    Science.gov (United States)

    2011-07-23

    limit of an estuarine bacterioplankton community analyzed by denaturing gradient gel electrophoresis (DGGE). Aquat. Microb. Ecol. 42, 7–18. Katz, C...environment. Geochim. Cosmochim. Acta 38, 887–898. |vreås, L., Forney, L., Daae, F.L., Torsvik, V., 1997. Distribution of bacterioplankton in

  5. Effects of COREXIT (registered trademark) EC9500A on Bacteria from a Beach Oiled by the Deepwater Horizon Spill

    Science.gov (United States)

    2011-01-01

    bacterioplankton and microbially labile organic carbon along the salinity gradient of the Potomac River. Estuar Coast 29:40–53 Hamdan LJ, Gillevet PM...black band disease. Dis Aquat Org 87: 79–90 Salter I, Zubkov MV, Warwick PE, Burkill PH (2009) Marine bacterioplankton can increase evaporation and gas

  6. Detection of Subpixel Submerged Mine-Like Targets in WorldView-2 Multispectral Imagery

    Science.gov (United States)

    2012-09-01

    1) Ab so rp tio n Co ef fic ie nt a (m -1 ) Wavelength λ (nm) 31 plant (phytoplankton), animal (zooplankton), or bacteria ( bacterioplankton ...sulfur, and phosphorus, thus further playing a role in what is detected by the sensor. Bacterioplankton decomposes the organic matter created by the 32

  7. Ecotoxicological Response of Marine Organisms to Inorganic and Organic Sediment Amendments in Laboratory Exposures

    Science.gov (United States)

    2011-08-15

    Protein Metabolism. Academic Press, pp. 21–132. Kan, J., Wang, K., Chen, F., 2006. Temporal variation and detection limit of an estuarine bacterioplankton ...38, 887–898. |vreås, L., Forney, L., Daae, F.L., Torsvik, V., 1997. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined

  8. Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York State

    Science.gov (United States)

    Fry, B.; Hayes, J. M. (Principal Investigator)

    1986-01-01

    The trophic importance of bacterioplankton as a source of carbon and sulfur nutrition for consumers in meromictic lakes was tested using stable carbon (delta 13C) and sulfur (delta 34S) isotopic measurements. Studies in three lakes near Syracuse, New York, showed that most consumers ultimately derive their C and S nutrition from a mixture of terrestrial detritus, phytoplankton, and littoral vegetation, rather than from bacterioplankton. Food webs in these meromictic lakes are thus similar to those in other lakes that lack dense populations of bacterioplankton.

  9. The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign

    Czech Academy of Sciences Publication Activity Database

    Salcher, Michaela M.; Neuenschwander, S. M.; Posch, T.; Pernthaler, J.

    2015-01-01

    Roč. 9, č. 11 (2015), s. 2442-2453 ISSN 1751-7362 Institutional support: RVO:60077344 Keywords : in-situ hybridization * genome sequence * bacterioplankton populations Subject RIV: EE - Microbiology, Virology Impact factor: 9.328, year: 2015

  10. SEASONAL DOMINANCE OF CYANOBACTERIA IN PENSACOLA BAY, FLORIDA

    Science.gov (United States)

    A study was conducted during 1999-2000 in Pensacola Bay, Florida, USA to characterize the seasonal dynamics of nutrients, phytoplankton, and bacterioplankton. Monthly samples were collected from 5 sites spanning the salinity gradient. Abundances of non-heterocystous chroococcoid...

  11. Use of molecular approach to verify the influence of a eutrophic lagoon in the nearby ocean's bacterioplankton communities Uso de metodologia molecular para verificar a influência de uma lagoa eutrófica na comunidade bacterioplanctônica do oceano adjacente

    Directory of Open Access Journals (Sweden)

    Rodrigo Gouvêa Taketani

    2003-11-01

    Full Text Available Rodrigo de Freitas lagoon is an eutrophic aquatic environment. The waters from the lagoon are released to the sea at Ipanema and Leblon beaches, through Jardim de Alah channel. In this work, the influence of these waters on the bacterial communities of these beaches was investigated. Eleven sampling stations were set between the lagoon and the beaches, and the samples were analyzed by molecular and microbiological parameters. PCR-DGGE of the DNA extracted from the samples was performed using rpoB primers. Preliminary results indicate that all used approaches could reveal the influence of the lagoon on the beaches bacterial communities.A lagoa Rodrigo de Freitas é um ambiente aquático eutrofizado, cujas águas são lançadas ao mar nas praias de Ipanema e Leblon através do canal do Jardim de Alah. Nesse trabalho, foi estudada a influência desse aporte na comunidade bacteriana dessas praias. Para isso coletou-se água de onze estações distribuídas entre a lagoa e as praias. Essas amostras foram analisadas quanto a parâmetros moleculares e microbiológicos. Foi realizado também PCR-DGGE utilizando-se iniciadores para o gene rpoB, a partir de DNA extraído das amostras de água coletadas. Resultados preliminares mostram que a influência da lagoa na comunidade bacteriana das praias pode ser verificada por todas as abordagens.

  12. Final Technical Report: DOE-Biological Ocean Margins Program. Microbial Ecology of Denitrifying Bacteria in the Coastal Ocean.

    Energy Technology Data Exchange (ETDEWEB)

    Lee Kerkhof

    2013-01-01

    The focus of our research was to provide a comprehensive study of the bacterioplankton populations off the coast of New Jersey near the Rutgers University marine field station using terminal restriction fragment polymorphism analysis (TRFLP) coupled to 16S rRNA genes for large data set studies. Our three revised objectives to this study became: (1) to describe bacterioplankton population dynamics in the Mid Atlantic Bight using TRFLP analysis of 16S rRNA genes. (2) to determine whether spatial and temporal factors are driving bacterioplankton community dynamics in the MAB using monthly samping along our transect line over a 2-year period. (3) to identify dominant members of a coastal bacterioplankton population by clonal library analysis of 16S rDNA genes and sequencing of PCR product corresponding to specific TRFLP peaks in the data set. Although open ocean time-series sites have been areas of microbial research for years, relatively little was known about the population dynamics of bacterioplankton communities in the coastal ocean on kilometer spatial and seasonal temporal scales. To gain a better understanding of microbial community variability, monthly samples of bacterial biomass were collected in 1995-1996 along a 34-km transect near the Long-Term Ecosystem Observatory (LEO-15) off the New Jersey coast. Surface and bottom sampling was performed at seven stations along a transect line with depths ranging from 1 to 35m (n=178). The data revealed distinct temporal patterns among the bacterioplankton communities in the Mid-Atlantic Bight rather than grouping by sample location or depth (figure 2-next page). Principal components analysis models supported the temporal patterns. In addition, partial least squares regression modeling could not discern a significant correlation from traditional oceanographic physical and phytoplankton nutrient parameters on overall bacterial community variability patterns at LEO-15. These results suggest factors not traditionally

  13. Regulation of annual variation in heterotrophic bacterial production in the Schelde estuary (SW Netherlands)

    NARCIS (Netherlands)

    Goosen, N.K.; Van Rijswijk, P.; Kromkamp, J.C.; Peene, J.

    1997-01-01

    Heterotrophic bacterioplankton production (H-3-thymidine incorporation rate) and abundance in the surface water of the Schelde estuary (The Netherlands) were studied during an annual cycle in 1991 along the salinity gradient (0.8 to 33 psu). Bacterial production and numbers increased from the lower

  14. The structure of the pelagic food web in relation to water column structure in the Skagerrak

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Kaas, H.; Kruse, B.

    1990-01-01

    The distribution, composition and activity of phytoplankton, and accompanying changes in specific activities of bacterioplankton and copepods, were related to variations in the vertical structure of the water column along a transect through the Skagerrak in May 1987. The Skagerrak is characterized...

  15. UV radiation and organic matter composition shape bacterial functional diversity in sediments

    NARCIS (Netherlands)

    Hunting, E.R.; White, C.M.; van Gemert, M.; Mes, D.; Stam, E.; van der Geest, H.G.; Kraak, M.H.S.; Admiraal, W.

    2013-01-01

    UV radiation and organic matter (OM) composition are known to influence the species composition of bacterioplankton communities. Potential effects of UV radiation on bacterial communities residing in sediments remain completely unexplored to date. However, it has been demonstrated that UV radiation

  16. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea

    DEFF Research Database (Denmark)

    Carlson, Craig A; Morris, Robert; Parsons, Rachel

    2009-01-01

    Bacterioplankton belonging to the SAR11 clade of a-proteobacteria were counted by fluorescence in situ hybridization (FISH) over eight depths in the surface 300 m at the Bermuda Atlantic Time-series Study (BATS) site from 2003 to 2005. SAR11 are dominant heterotrophs in oligotrophic systems; thus...

  17. 1894 -IJBCS-Article-Bakari Afnabi Haoul

    African Journals Online (AJOL)

    hp

    represent only agents of the bacterioplankton control but also intervene in many ecological and biogeochemical processes such as nutrients recycling (Emma et al., 2012; Tsai et al., 2013), genetic materials transfer. (McDaniel et al., 2010; Anderson et al. (2013) are suspected of affecting the diversity of the whole microbial.

  18. The influence of Indian Ocean Dipole (IOD) on biogeochemistry of ...

    Indian Academy of Sciences (India)

    Ducklow H W 1993 Bacterioplankton distributions and pro- duction in the northwestern Indian Ocean and Gulf of. Oman, September 1986; Deep-Sea Res. II 40 753–771. Feely R A, Wanninkhof R, Takahashi T and Tans P P. 1999 Influence of El Ni˜no on the equatorial Pacific con- tribution to atmospheric CO2 accumulation; ...

  19. Spatial and vertical distribution of bacteria in the Pearl River estuary ...

    African Journals Online (AJOL)

    Yomi

    2012-01-31

    Jan 31, 2012 ... Changes in bacterioplankton metabolic capabilities along a salinity gradient in the york river estuary, virginia,. USA. Aquat. Microb. Ecol. 22: 163-174. King JK, Kostka JE, Frischer ME, Saunders FM (2000). Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments ...

  20. Strong linkages between DOM optical properties and main clades of aquatic bacteria

    DEFF Research Database (Denmark)

    Amaral, Valentina; Graeber, Daniel; Calliari, Danilo

    2016-01-01

    /dislikes, in agreement with evidence derived from genome analysis to single-cell substrate uptake. These results highlight the specificities of the main bacterial clades, providing support for a functional classification of the bacterioplankton regarding DOM processing at the level of bacterial classes....

  1. Cultivated single stranded DNA phages that infect marine Bacteroidetes prove difficult to detect with DNA binding stains

    DEFF Research Database (Denmark)

    Holmfeldt, Karin; Odic, Dusko; Sullivan, Matthew B.

    2012-01-01

    This is the first description of cultivated icosahedral single stranded DNA (ssDNA) phages isolated on heterotrophic marine bacterioplankton and with Bacteroidetes hosts. None of the 8 phages stained well with DNA binding stains, suggesting that in situ abundances of ssDNA phages are drastically...

  2. Active bacteria (CTC+) in temperate lakes: temporal and cross-system variations

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Danielsen, M.

    2001-01-01

    consequence of the low abundance of active bacteria is that in situ growth rates scaled to CTC+ cells are 3- to 7-fold higher than those scaled to DAPI counts. It is suggested that studies on factors controlling bacterioplankton activity at the single-cell level should be investigated scaled to active cells....

  3. Dynamics of transparent exopolymeric particles (TEP) and particle ...

    Indian Academy of Sciences (India)

    Unlike CPCHO, Sal-PCHO concentrations showed a positive trend with Chl a and significant linear correlation with bacterial abundance. (r = 0.44,p< 0.007, n = 48), indicating that Sal-PCHO as carbon source might have supported bacterioplankton abundance. The mean %TEP-C contribution to the annual average organic ...

  4. Temporal variations in the abundance of heterotrophic bacteria in ...

    African Journals Online (AJOL)

    Administrator

    Bacterioplankton may also constitute a significant fraction of total Planktonic biomass (Cho and Azam, 1990; Jonas and Tuttle, 1990; Anderson and Rudehäll, 1993). An understanding of the quantitative importance of bacteria in microbial food webs requires reliable estimates of their biomass. Generally, in the aquatic ...

  5. Comparison of bacterial communities of tilapia fish from Cameroon ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... in Sargasso sea bacterioplankton. Nature, 345: 60-63. Grisez L, Reyniers J, Verdonck L, Swings J, Ollevier F (1997). Dominant intestinal microbiota of sea breeam and sea bass larvae, from two hatcheries, during larval development. Aquaculture, 155: 387-399. Head IM, Saunders JR, Pickup RW (1998).

  6. METAL ION SEQUESTRATION: AN EXCITING DIMENSION FOR ...

    African Journals Online (AJOL)

    101 elements: Meteorite studies. In: Henderson P (ed) Rare earth element geochemistry Elsevier, Amsterdam. c). Tamminen T 1990 Eutrophication and the Baltic sea: Studies on phytoplankton, bacterioplankton and pelagic nutrient cycles. PhD thesis,. Department of Environmental. Conservation, University of Helsinki.

  7. A seasonal comparison of prokaryote numbers, biomass and ...

    African Journals Online (AJOL)

    ... 10–10 g C ml–1 h–1 ) in winter, probably resulting from lowered rates of primary productivity and dissolved organic matter release as well as reduced riverine allochthonous inputs during the winter drought. Keywords: bacteria, bacterioplankton, heterotrophic bacteria, heterotrophic bacterial productivity, microbial ecology ...

  8. Comparative digestive ability and rumen microbial community of N ...

    African Journals Online (AJOL)

    Dual staining of natural bacterioplankton with 4', 6-Diamdino-. 2-Phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl. Environ. Microbiol. 58, 2158-2163. Hooper, L.V., Midtvedt, T. & Gordon, J.I., 2002. How host microbial interactions shape the nutrient environment of the ...

  9. The effect of the Banton 300 oil-spill accident on marine life in Umm ...

    African Journals Online (AJOL)

    ... sponges, acorn barnacles, copepods, echinoderms and fish); sub-lethal disruption of physiological and/or behavioural activities (bacterioplankton, heterotrophic flagellates, and tintinnid ciliates); effects of direct coating (birds and mangroves); incorporation of hydrocarbons in organisms (crabs, scallops, edible mussels, ...

  10. Synechococcus growth in the ocean may depend on the lysis of heterotrophic bacteria

    Czech Academy of Sciences Publication Activity Database

    Weinbauer, M.G.; Bonilla-Findji, O.; Chan, A.M.; Dolan, J. R.; Short, S.M.; Šimek, Karel; Wilhelm, S. W.; Suttle, C.A.

    2011-01-01

    Roč. 33, č. 10 (2011), s. 1465-1476 ISSN 0142-7873 R&D Projects: GA ČR(CZ) GA206/08/0015 Institutional research plan: CEZ:AV0Z60170517 Keywords : viruses * growth control of cyanobacteria * heterotrophic bacterioplankton Subject RIV: EE - Microbiology, Virology Impact factor: 2.079, year: 2011

  11. Determining the availability of phosphate and glucose for bacteria in P-limited mesocosms of NW Mediterranean surface waters

    Czech Academy of Sciences Publication Activity Database

    Tanaka, T.; Thingstad, T. F.; Gasol, J.M.; Cardelús, C.; Jezbera, Jan; Sala, M.M.; Šimek, Karel; Unrein, F.

    2009-01-01

    Roč. 56, č. 1 (2009), s. 81-91 ISSN 0948-3055 R&D Projects: GA ČR(CZ) GA206/08/0015 Institutional research plan: CEZ:AV0Z60170517 Keywords : microbial food -web * dissolved organic-carbon * nutrient limitation * bacterioplankton growth * heterotrophic bacteria Subject RIV: EE - Microbiology, Virology Impact factor: 1.743, year: 2009

  12. Insights into variability of actinorhodopsin genes of the LG1 cluster in two different freshwater habitats

    Czech Academy of Sciences Publication Activity Database

    Jezberová, Jitka; Jezbera, Jan; Hahn, M.W.

    2013-01-01

    Roč. 8, č. 7 (2013), e68542 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GEEEF/10/E011 Institutional support: RVO:60077344 Keywords : actinobacteria * bacteria * bacterioplankton * diversity * sequences * lakes Subject RIV: EE - Microbiology, Virology Impact factor: 3.534, year: 2013

  13. Seasonal dynamics of plankton communities coupled with ...

    African Journals Online (AJOL)

    In this study, we studied the influence of the physical-chemical and biological factors (bacterioplankton and phytoplankton abundances) for zooplankton dynamics in a Sidi Saâd reservoir in Centre of Tunisia. The samplings were carried out in spring, summer, autumn and winter (2005 to 2006) in the deepest station (surface ...

  14. Bacterial biomass in warm-core Gulf Stream ring 82-B: mesoscale distributions, temporal changes and production

    Science.gov (United States)

    Ducklow, Hugh

    1986-11-01

    The distribution of bacterioplankton biomass and productivity in warm-core Gulf Stream ring 82-B generally corresponded to the physical and dynamical structure of the ring. Mean cell volumes were uniform for 4 months, but were larger by a factor of 2-3 in the high velocity (frontal) region (HVR) near the ring edge. As a result of this gradient and higher abundances, water column biomass and production were highest in the front, which appeared to be a local maximum in those properties. In this regard bacterioplankton contrasted strongly to phytoplankton, which exhibited strong local maxima at the center of the ring in June. In April when the water column inside the ring was isothermal to 450 m, bacterial biomass and production were low and uniform to 250 and 50 m, respectively. Bacterioplankton responded dramatically to the vernal restratification of the ring. In June when the surface layer was characterized by a strong pycnocline at 10-40 m, bacterial biomass and production often had strong subsurface maxima, and were 3 and 5 times greater than in April, respectively. Abundance exceeded 1.5 × 10 9 cells l -1 at ring center and exceeded 3 × 10 9 l -1 in the HVR. Turnover rates for the euphotic zone bacterioplankton as a whole were 0.24 d -1 in April, 0.56 d -1 in June, and 0.27 d -1 in August at ring center. Bacterial production averaged 12% of hourly primary production (range 1-32%), suggesting that bacteria control a significant and sometimes large portion of the carbon cycling in the euphotic zone. These data suggest that warm-core rings are sites of enhanced variability of bacterioplankton properties in the open sea. Furthermore, the data strongly support recent work showing that frontal zones are sites of locally enhanced bacterial biomass and production. In the ring system as a whole, the euphotic zone bacterioplankton biomass and production were comparable to and occasionally greater than the biomass and production of the >64 μm zooplankton, especially in

  15. Depleted dissolved organic carbon and distinct bacterial communities in the water column of a rapid-flushing coral reef ecosystem

    Science.gov (United States)

    Nelson, Craig E; Alldredge, Alice L; McCliment, Elizabeth A; Amaral-Zettler, Linda A; Carlson, Craig A

    2011-01-01

    Coral reefs are highly productive ecosystems bathed in unproductive, low-nutrient oceanic waters, where microbially dominated food webs are supported largely by bacterioplankton recycling of dissolved compounds. Despite evidence that benthic reef organisms efficiently scavenge particulate organic matter and inorganic nutrients from advected oceanic waters, our understanding of the role of bacterioplankton and dissolved organic matter (DOM) in the interaction between reefs and the surrounding ocean remains limited. In this study, we present the results of a 4-year study conducted in a well-characterized coral reef ecosystem (Paopao Bay, Moorea, French Polynesia) where changes in bacterioplankton abundance and dissolved organic carbon (DOC) concentrations were quantified and bacterial community structure variation was examined along spatial gradients of the reef:ocean interface. Our results illustrate that the reef is consistently depleted in concentrations of both DOC and bacterioplankton relative to offshore waters (averaging 79 μmol l−1 DOC and 5.5 × 108 cells l−1 offshore and 68 μmol l−1 DOC and 3.1 × 108 cells l−1 over the reef, respectively) across a 4-year time period. In addition, using a suite of culture-independent measures of bacterial community structure, we found consistent differentiation of reef bacterioplankton communities from those offshore or in a nearby embayment across all taxonomic levels. Reef habitats were enriched in Gamma-, Delta-, and Betaproteobacteria, Bacteriodetes, Actinobacteria and Firmicutes. Specific bacterial phylotypes, including members of the SAR11, SAR116, Flavobacteria, and Synechococcus clades, exhibited clear gradients in relative abundance among nearshore habitats. Our observations indicate that this reef system removes oceanic DOC and exerts selective pressures on bacterioplankton community structure on timescales approximating reef water residence times, observations which are notable both because

  16. Microzooplankton grazing on the picophytoplankton and bacteria in the Chukchi Sea and East Siberian Sea, Arctic Ocean

    Science.gov (United States)

    Yang, E. J.

    2016-02-01

    In the summer of 2012, we measured microzooplankton grazing rate on picophytoplankton and bacterioplankton in the Chukchi Sea and East Siberian Sea using the icebreaker R/V Araon as part of the Korean Arctic Research Program. A variety of environmental conditions and trophic condition were encountered, from low chlorophyll-a (diatom bloom (maximum 17.1 ug L-1) in the northern part of the East Siberian Sea which is characterized by high phytoplankton biomass driven by the influx of more productive waters from the river. Of the microzooplankton, naked ciliates dominated in low chlorophyll-a concentration area and small-HDF dominated in high chlorophyll-a concentration sites. Picophytoplankton biomass accounted for 11 to 83% of total phytoplankton and for a greater percentage in the Chukchi borderland (average 70%). Microzooplankton grazing rate varied by the assemblage composition of picoplankton and microzooplankton. Microzooplankton exerted higher grazing pressure on picophytoplankton compared to bacterioplankton. Picophytoplankton growth rate and mortality rate ranged from undetectable (i.e. not significant) to 2.0 d-1 and undetectable to 2.4 d-1, respectively. Microzooplankton removed >100% daily picophytoplankton production, and grazing rate was highest in the Chukchi borderland. Bacterioplankton growth rate and mortality rate ranged from undetectable (i.e. not significant) to 1.74 d-1 and undetectable to 1.07 d-1, respectively. Microzooplankton often removed average 89% of daily bacterioplankton production. Our study suggests the importance of microbial loop in the planktonic ecosytstems of the Arctic Ocean. Therefore, microzooplankton were the major consumers of picoplankton production, and that their grazing is one of the most important losses affecting the piocophytoplankton and bacterioplankton biomass during summer in the Arctic Ocean.

  17. Investigation on some biotic factors in carp fish ponds

    Directory of Open Access Journals (Sweden)

    D. Terziyski

    2016-03-01

    Full Text Available Abstract. Three years studies (2004 – 2006 on the main biotic parameters (chlorophyll-a, phytoplankton biomass, zooplankton biomass and bacterioplankton biomass in carp fish ponds were carried out. The aim of the study was to investigate the biotic factors and the effect of manuring on the fish ponds. The relative -1 changes in these factors in case of fertilization with manure 3000 kg.ha or without fertilization were determined. The impact of fertilization as bottom-up melioration on some biotic factors was proven by means of paired non-parametric Wilcoxon test with following significant differences: higher levels of chlorophyll-a and higher phytoplankton biomass in fertilized ponds. Zooplankton biomass was higher in fertilized ponds, but the differences were statistically insignificant. Bacterioplankton biomass was higher in the fertilized ponds, which is an indication that the applied melioration does not lead to overload of organic matter in the ponds.

  18. Bacterial community structure influenced by Coscinodiscus sp. in the Vistula river plume* This research was carried out with the support of a grant from the Polish Ministry of Science and Higher Education (No. NN304 025334 and statutory activities of the Department of Fisheries Oceanography and Marine Ecology of the National Marine Fisheries Research Institute (project P1-2.

    Directory of Open Access Journals (Sweden)

    Anetta Ameryk

    2014-01-01

    Full Text Available The Gulf of Gdańsk is influenced by freshwater inflow from the River Vistula and by a wind-driven current along the coast. Bacterial communities from five stations along a salinity gradient were sampled during one day and analysed by terminal restriction fragment length polymorphism (T-RFLP, catalysed reporter deposition-fluorescence in situ hybridisation (CARD-FISH and 16S rRNA gene libraries. On the day of sampling, we observed a probable current-driven seawater influx into the inner part of the gulf that separated the gulf into distinct water bodies. Members of the diatom Coscinodiscus sp. dominated one of these water bodies and influenced the bacterial community. The coexistence of typically freshwater and marine bacterioplankton populations in the Vistula river plume suggested an integration of some freshwater populations into the Baltic Sea bacterioplankton.

  19. Artificial Seawater Media Facilitate Cultivating Members of the Microbial Majority from the Gulf of Mexico.

    Science.gov (United States)

    Henson, Michael W; Pitre, David M; Weckhorst, Jessica Lee; Lanclos, V Celeste; Webber, Austen T; Thrash, J Cameron

    2016-01-01

    High-throughput cultivation studies have been successful at bringing numerous important marine bacterioplankton lineages into culture, yet these frequently utilize natural seawater media that can hamper portability, reproducibility, and downstream characterization efforts. Here we report the results of seven experiments with a set of newly developed artificial seawater media and evaluation of cultivation success via comparison with community sequencing data from the inocula. Eighty-two new isolates represent highly important marine clades, including SAR116, OM60/NOR5, SAR92, Roseobacter, and SAR11. For many, isolation with an artificial seawater medium is unprecedented, and several organisms are also the first of their type from the Gulf of Mexico. Community analysis revealed that many isolates were among the 20 most abundant organisms in their source inoculum. This method will expand the accessibility of bacterioplankton cultivation experiments and improve repeatability by avoiding normal compositional changes in natural seawater. IMPORTANCE The difficulty in cultivating many microbial taxa vexes researchers intent on understanding the contributions of these organisms to natural systems, particularly when these organisms are numerically abundant, and many cultivation attempts recover only rare taxa. Efforts to improve this conundrum with marine bacterioplankton have been successful with natural seawater media, but that approach suffers from a number of drawbacks and there have been no comparable artificial alternatives created in the laboratory. This work demonstrates that a newly developed suite of artificial-seawater media can successfully cultivate many of the most abundant taxa from seawater samples and many taxa previously only cultivated with natural-seawater media. This methodology therefore significantly simplifies efforts to cultivate bacterioplankton and greatly improves our ability to perform physiological characterization of cultures postisolation.

  20. Mixotrophy in the marine plankton

    DEFF Research Database (Denmark)

    Stoecker, Diane K.; Hansen, Per Juel; Caron, David

    2017-01-01

    Mixotrophs are important components of the bacterioplankton, phytoplankton, microzooplankton, and (sometimes) zooplankton in coastal and oceanic waters. Bacterivory among the phytoplankton may be important for alleviating inorganic nutrient stress and may increase primary production in oligotroph....... Modeling has indicated that mixotrophy has a profound impact on marine planktonic ecosystems and may enhance primary production, biomass transfer to higher trophic levels, and the functioning of the biological carbon pump....

  1. The trophic status of Suwałki Landscape Park lakes based on selected parameters (NE Poland)

    OpenAIRE

    Jekatierynczuk-Rudczyk, Elżbieta; Zieliński, Piotr; Grabowska, Magdalena; Ejsmont-Karabin, Jolanta; Karpowicz, Maciej; Więcko, Adam

    2014-01-01

    This study describes changes in the trophic status of 12 lakes within Suwałki Landscape Park (SLP). All of the trophic classifications of the lakes were based on the trophic continuum division. Trophic status was determined by means of multiparameter indices using several diverse criteria. In this study, the assessment of the trophic status of lakes included water quality; abundance and biomass of bacterioplankton, phytoplankton, and zooplankton; and primary production of phytoplankton. The C...

  2. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder

    OpenAIRE

    Vincent J. Denef; Hunter J. Carrick; Joann Cavaletto; Edna Chiang; Thomas H. Johengen; Henry A. Vanderploeg; Angela D. Kent

    2017-01-01

    ABSTRACT One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We...

  3. Succession of Pelagic Marine Bacteria during Enrichment: a Close Look at Cultivation-Induced Shifts

    OpenAIRE

    Eilers, Heike; Pernthaler, Jakob; Amann, Rudolf

    2000-01-01

    Enrichment experiments with North Sea bacterioplankton were performed to test if rapid incubation-induced changes in community structure explain the frequent isolation of members of a few particular bacterial lineages or if readily culturable bacteria are common in the plankton but in a state of dormancy. A metabolic inhibitor of cell division (nalidixic acid [NA]) was added to substrate-amended (S+) and unamended (S−) grazer-free seawater samples, and shifts in community composition and per ...

  4. Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study

    DEFF Research Database (Denmark)

    Wakeham, Stuart G.; Amann, Rudi; Freemann, Katherine H.

    2007-01-01

    to date for lipid biomarker analysis and bacterioplankton for enumeration of major prokaryotic groups. Abundances of several prokaryotic groups were estimated using CARD-FISH probes specific for Bacteria, Archaea (Crenarchaeota and Euryarchaeota), epsilonproteobacteria (mainly sulfide oxidizers...... reduction, and sulfide oxidation at the chemocline, and bacterial sulfate reduction and anaerobic oxidation of methane by archaea in the anoxic zone. Cell densities for archaea and sulfate reducing bacteria are estimated based on water column biomarker concentrations and compared with CARD-FISH results....

  5. Genomics and ecophysiology of heterotrophic nitrogen fixing bacteria isolated from estuarine surface water

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel; Severin, Ina; Hansen, Lars H.

    2015-01-01

    heterotrophic organisms are widespread in marine bacterioplankton, but their autecology and ecological significance are unknown. Here, we report genomic and ecophysiology data in relation to N2 fixation by three environmentally relevant heterotrophic bacteria isolated from Baltic Sea surface water: Pseudomonas...... between nitrogenase reductase gene expression and ethylene (C2H4) production indicated tight posttranscriptional-level control. The N2 fixation rates obtained suggested that, given the right conditions, these heterotrophic diazotrophs could contribute significantly to in situ rates. IMP...

  6. Top-down and bottom-up induced shifts in bacterial abundance, production and community composition in an experimentally divided humic lake

    Czech Academy of Sciences Publication Activity Database

    Grossart, H. P.; Jezbera, Jan; Horňák, Karel; Hutalle, K. M. L.; Buck, U.; Šimek, Karel

    2008-01-01

    Roč. 10, č. 3 (2008), s. 635-652 ISSN 1462-2912 R&D Projects: GA ČR(CZ) GA206/05/0007 Institutional research plan: CEZ:AV0Z60170517 Keywords : in situ hybridization * meso-eutrophic reservoir * dissolved organic carbon * fresh-water reservoir * bacterioplankton community * dystrophic lake Subject RIV: EE - Microbiology, Virology Impact factor: 4.707, year: 2008

  7. A transplant experiment to identify the factors controlling bacterial abundance, activity, production and community composition in a eutrophic canyon-shaped reservoir

    Czech Academy of Sciences Publication Activity Database

    Gasol, J. M. .; Comerma, M.; García, J. C.; Armengol, J.; Casamayor, E. O.; Kojecká, Petra; Šimek, Karel

    2002-01-01

    Roč. 47, č. 1 (2002), s. 62-77 ISSN 0024-3590 R&D Projects: GA ČR GA206/99/0028 Grant - others:CICYT(ES) HID99-599-CO2-01; EC(XE) MIDAS MAS3-CT97-0154 Keywords : natural planktonic bacteria * bacterioplankton diversity * assemblages Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.169, year: 2002

  8. Temporal Changes and Altitudinal Distribution of Aerobic Anoxygenic Phototrophs in Mountain Lakes

    Czech Academy of Sciences Publication Activity Database

    Čuperová, Zuzana; Holzer, E.; Salka, I.; Sommaruga, R.; Koblížek, Michal

    2013-01-01

    Roč. 79, č. 20 (2013), s. 6439-6446 ISSN 0099-2240 R&D Projects: GA MŠk MEB060911; GA ČR GA13-11281S; GA MŠk ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : FRESH-WATER BACTERIOPLANKTON * PHOTOHETEROTROPHIC BACTERIA * SURFACE WATERS Subject RIV: EE - Microbiology, Virology Impact factor: 3.952, year: 2013

  9. Mixing of water masses caused by a drifting iceberg affects bacterial activity, community composition and substrate utilization capability in the Southern Ocean.

    Science.gov (United States)

    Dinasquet, Julie; Richert, Inga; Logares, Ramiro; Yager, Patricia; Bertilsson, Stefan; Riemann, Lasse

    2017-06-01

    The number of icebergs produced from ice-shelf disintegration has increased over the past decade in Antarctica. These drifting icebergs mix the water column, influence stratification and nutrient condition, and can affect local productivity and food web composition. Data on whether icebergs affect bacterioplankton function and composition are scarce, however. We assessed the influence of iceberg drift on bacterial community composition and on their ability to exploit carbon substrates during summer in the coastal Southern Ocean. An elevated bacterial production and a different community composition were observed in iceberg-influenced waters relative to the undisturbed water column nearby. These major differences were confirmed in short-term incubations with bromodeoxyuridine followed by CARD-FISH. Furthermore, one-week bottle incubations amended with inorganic nutrients and carbon substrates (a mix of substrates, glutamine, N-acetylglucosamine, or pyruvate) revealed contrasting capacity of bacterioplankton to utilize specific carbon substrates in the iceberg-influenced waters compared with the undisturbed site. Our study demonstrates that the hydrographical perturbations introduced by a drifting iceberg can affect activity, composition, and substrate utilization capability of marine bacterioplankton. Consequently, in a context of global warming, increased frequency of drifting icebergs in polar regions holds the potential to affect carbon and nutrient biogeochemistry at local and possibly regional scales. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Abundance and biomass responses of microbial food web components to hydrology and environmental gradients within a floodplain of the River Danube.

    Science.gov (United States)

    Palijan, Goran

    2012-07-01

    This study investigated the relationships of time-dependent hydrological variability and selected microbial food web components. Samples were collected monthly from the Kopački Rit floodplain in Croatia, over a period of 19 months, for analysis of bacterioplankton abundance, cell size and biomass; abundance of heterotrophic nanoflagellates and nanophytoplankton; and concentration of chlorophyll a. Similar hydrological variability at different times of the year enabled partition of seasonal effects from hydrological changes on microbial community properties. The results suggested that, unlike some other studies investigating sites with different connectivity, bacterioplankton abundance, and phytoplankton abundance and biomass increased during lentic conditions. At increasing water level, nanophytoplankton showed lower sensitivity to disturbance in comparison with total phytoplankton biomass: this could prolong autotrophic conditions within the floodplain. Bacterioplankton biomass, unlike phytoplankton, was not impacted by hydrology. The bacterial biomass less affected by hydrological changes can be an important additional food component for the floodplain food web. The results also suggested a mechanism controlling bacterial cell size independent of hydrology, as bacterial cell size was significantly decreased as nanoflagellate abundance increased. Hydrology, regardless of seasonal sucession, has the potential to structure microbial food webs, supporting microbial development during lentic conditions. Conversely, other components appear unaffected by hydrology or may be more strongly controlled by biotic interactions. This research, therefore, adds to understanding on microbial food web interactions in the context of flood and flow pulses in river-floodplain ecosystems.

  11. Resilience of SAR11 bacteria to rapid acidification in the high-latitude open ocean.

    Science.gov (United States)

    Hartmann, Manuela; Hill, Polly G; Tynan, Eithne; Achterberg, Eric P; Leakey, Raymond J G; Zubkov, Mikhail V

    2016-02-01

    Ubiquitous SAR11 Alphaproteobacteria numerically dominate marine planktonic communities. Because they are excruciatingly difficult to cultivate, there is comparatively little known about their physiology and metabolic responses to long- and short-term environmental changes. As surface oceans take up anthropogenic, atmospheric CO2, the consequential process of ocean acidification could affect the global biogeochemical significance of SAR11. Shipping accidents or inadvertent release of chemicals from industrial plants can have strong short-term local effects on oceanic SAR11. This study investigated the effect of 2.5-fold acidification of seawater on the metabolism of SAR11 and other heterotrophic bacterioplankton along a natural temperature gradient crossing the North Atlantic Ocean, Norwegian and Greenland Seas. Uptake rates of the amino acid leucine by SAR11 cells as well as other bacterioplankton remained similar to controls despite an instant ∼50% increase in leucine bioavailability upon acidification. This high physiological resilience to acidification even without acclimation, suggests that open ocean dominant bacterioplankton are able to cope even with sudden and therefore more likely with long-term acidification effects. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Copper-complexing ligands produced by an intact estuarine microbial community in response to copper stress.

    Science.gov (United States)

    Bingham, J.; Dryden, C.; Gordon, A.

    2002-12-01

    Copper is both an important nutrient and a pollutant in the marine environment. By studying the interactions between microorganisms and copper in the Elizabeth River (VA), home to a major Naval Base, we field tested the hypothesis that picoplankton and/or bacterioplankton produce strong, copper-complexing ligands in response to elevated copper concentrations. A simple light/ dark test was used to distinguish between heterotrophic and phototrophic ligand production. Samples were bottled and moored, submerged one meter, for a week. Direct counts using DAPI stain and epiflourescence were conducted to find concentrations of picoplankton and bacterioplankton. Using cathodic stripping voltammetry, we found the total copper concentrations, and then from a titration of the ligands by copper, the ligand concentrations and conditional stability constants were obtained. The Elizabeth River naturally had between 10-20 nM total dissolved copper concentrations. However when copper complexation was considered we found that the levels of bio-available Cu(II) ions were much lower. In fact in the natural samples the levels were not high enough to affect the relative reproductive rates of several microorganisms. Naturally there was a 50 nM "buffer zone" of ligand to total dissolved copper concentration. Furthermore, when stressed with excess copper, healthy picoplankton produced enough ligand to alleviate toxicity, and rebuild the buffer zone. However bacterioplankton only produced enough ligand so that they were no longer affected. Therefore, intact estuarine communities regulate copper bioavailability and toxicity with ligand production.

  13. Incidence of phytoplankton and environmental conditions on the bacterial ammonium uptake in a subtropical coastal lagoon

    Directory of Open Access Journals (Sweden)

    Germán Pérez

    2014-03-01

    Full Text Available We analyzed the coupling between bacterioplankton and phytoplankton in Laguna de Rocha through an experimental approach. A freshwater zone of high turbidity and macrophytes growth and a brackish zone of higher light penetration and lower macrophytes biomass characterize this coastal lagoon. It has been shown that dissolved inorganic nitrogen, especially NH4+, has decreased to undetectable levels during the last decade. One hypothesis for this trend is the rapid removal by phytoplankton and bacterioplankton uptake. In an attempt to test this, we performed incubations using lagoon water from both zones split in two treatments (pre-filtered by 1.2 µm and unfiltered water and amended with 15N-NH4+. After 4 h incubation we found that in both zones bacterioplankton showed significantly higher NH4+ uptake rates when incubated together with phytoplankton and that uptake rates of both microbial communities were higher in freshwater incubations. These results suggest that bacterial NH4+ uptake would be coupled to phytoplankton-derived exudates and hence that depletion of dissolved NH4+ in this system could be linked to rapid microbial uptake. The degree of this coupling would vary according to hydrological dynamics in this ecosystem.

  14. Autotrophic and heterotrophic metabolism of microbial planktonic communities in an oligotrophic coastal marine ecosystem: seasonal dynamics and episodic events

    Science.gov (United States)

    Bonilla-Findji, O.; Gattuso, J.-P.; Pizay, M.-D.; Weinbauer, M. G.

    2010-11-01

    A 18 month study was performed in the Bay of Villefranche to assess the episodic and seasonal variation of autotrophic and heterotrophic ecosystem processes. A typical spring bloom was encountered, where maximum of gross primary production (GPP) was followed by maxima of bacterial respiration (BR) and production (BP). The trophic balance (heterotrophy vs. autotrophy) of the system did not exhibit any seasonal trend although a strong intra-annual variability was observed. On average, the community tended to be net heterotrophic with a GPP threshold for a balanced metabolism of 1.1 μmol O2 l-1 d-1. Extended forest fires in summer 2003 and a local episodic upwelling in July 2003 likely supplied orthophosphate and nitrate into the system. These events were associated with an enhanced bacterioplankton production (up to 2.4-fold), respiration (up to 4.5-fold) and growth efficiency (up to 2.9-fold) but had no effect on GPP. A Sahara dust wet deposition event in February 2004 stimulated bacterial abundance, production and growth efficiency but not GPP. Our study suggests that short-term disturbances such as wind-driven upwelling, forest fires and Sahara dust depositions can have a significant but previously not sufficiently considered influence on phytoplankton- and bacterioplankton-mediated ecosystem functions and can modify or even mask the seasonal dynamics. The study also indicates that atmospheric deposition of nutrients and particles not only impacts phytoplankton but also bacterioplankton and could, at times, also shift systems stronger towards net heterotrophy.

  15. Testing the Metabolic Theory of Ecology with marine bacteria: Different temperature sensitivity of major phylogenetic groups during the spring phytoplankton bloom

    KAUST Repository

    Arandia-Gorostidi, Nestor

    2017-08-24

    Although temperature is a key driver of bacterioplankton metabolism, the effect of ocean warming on different bacterial phylogenetic groups remains unclear. Here, we conducted monthly short-term incubations with natural coastal bacterial communities over an annual cycle to test the effect of experimental temperature on the growth rates and carrying capacities of four phylogenetic groups: SAR11, Rhodobacteraceae, Gammaproteobacteria and Bacteroidetes. SAR11 was the most abundant group year-round as analysed by CARD-FISH, with maximum abundances in summer, while the other taxa peaked in spring. All groups, including SAR11, showed high temperature-sensitivity of growth rates and/or carrying capacities in spring, under phytoplankton bloom or post-bloom conditions. In that season, Rhodobacteraceae showed the strongest temperature response in growth rates, estimated here as activation energy (E, 1.43 eV), suggesting an advantage to outcompete other groups under warmer conditions. In summer E values were in general lower than 0.65 eV, the value predicted by the Metabolic Theory of Ecology (MTE). Contrary to MTE predictions, carrying capacity tended to increase with warming for all bacterial groups. Our analysis confirms that resource availability is key when addressing the temperature response of heterotrophic bacterioplankton. We further show that even under nutrient-sufficient conditions, warming differentially affected distinct bacterioplankton taxa. This article is protected by copyright. All rights reserved.

  16. An Attempt to Carry out an Ecological Indication of the Plankton Ecosystem Based on Microbiological Indices.

    Science.gov (United States)

    Yakushin, V.; Golovko, T.

    2005-12-01

    Ecological indication of a water reservoir under the influence of anthropogenic factors includes structural and functional analyses of different biota components among which bacteria is one of the most important especially in ecosystem's bioenergy and control of artificial pollution. The main goal of the present study was to investigate the structure and functioning of bacterial population in ecologically different waters of Kanev reservoir to choose the most adequate parameters for evaluation of water ecosystem. The study was carried out on 10 sites of upper Kanev reservoir during summer 2004. The basic factors that influenced its hydrobiology were water flow from Kiev reservoir and discharge of industrial and household sewage from nearby cities. Such structural indices as bacteroplankton's total number and biomass, as well as the number of bacteria that metabolize easy degradable organic compounds did not show clear spatial conformity to natural laws. However, the evaluation of functional status of plankton bacteria happened to be more significant for ecological analysis of water ecosystem. Despite relatively low bacterioplankton content during the study term, its reproductive activity was very high which is typical for ecologic productivity: the speed of growth reaches maximum when nutrients are abundant while population density is low. A very characteristic feature of spatial changes of the functional indices of bacterioplankton was the increase of production intensity after water discharge from Kiev hydroelectric station's dam, terrigenic sewage inflow at recreational sites and inflow of Kiev's industrial and household sewage from river Lybid. Another important ecological characteristic of bacterioplankton was evaluation of matter and energy flow based on productivity and trophologic studies. Consumption of bacteria by zooplankton was seen at all sites and increased significantly with the presence of disturbing factors as a response to quantitative and

  17. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity.

    Directory of Open Access Journals (Sweden)

    Andreas F Haas

    Full Text Available Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata--Ochrophyta; Amansia rhodantha--Rhodophyta; Halimeda opuntia--Chlorophyta, a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii and a dominant hermatypic coral (Porites lobata. Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h⁻¹ dm⁻², stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h⁻¹ and concomitant oxygen drawdown (0.16±0.05 µmol L⁻¹ h⁻¹ dm⁻². Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence

  18. Analysis of bacterial core communities in the central Baltic by comparative RNA-DNA-based fingerprinting provides links to structure-function relationships.

    Science.gov (United States)

    Brettar, Ingrid; Christen, Richard; Höfle, Manfred G

    2012-01-01

    Understanding structure-function links of microbial communities is a central theme of microbial ecology since its beginning. To this end, we studied the spatial variability of the bacterioplankton community structure and composition across the central Baltic Sea at four stations, which were up to 450 km apart and at a depth profile representative for the central part (Gotland Deep, 235 m). Bacterial community structure was followed by 16S ribosomal RNA (rRNA)- and 16S rRNA gene-based fingerprints using single-strand conformation polymorphism (SSCP) electrophoresis. Species composition was determined by sequence analysis of SSCP bands. High similarities of the bacterioplankton communities across several hundred kilometers were observed in the surface water using RNA- and DNA-based fingerprints. In these surface communities, the RNA- and DNA-based fingerprints resulted in very different pattern, presumably indicating large difference between the active members of the community as represented by RNA-based fingerprints and the present members represented by the DNA-based fingerprints. This large discrepancy changed gradually over depth, resulting in highly similar RNA- and DNA-based fingerprints in the anoxic part of the water column below 130 m depth. A conceivable mechanism explaining this high similarity could be the reduced oxidative stress in the anoxic zone. The stable communities on the surface and in the anoxic zone indicate the strong influence of the hydrography on the bacterioplankton community structure. Comparative analysis of RNA- and DNA-based community structure provided criteria for the identification of the core community, its key members and their links to biogeochemical functions.

  19. Autotrophic and heterotrophic metabolism of microbial planktonic communities in an oligotrophic coastal marine ecosystem: seasonal dynamics and episodic events

    Directory of Open Access Journals (Sweden)

    O. Bonilla-Findji

    2010-11-01

    Full Text Available A 18 month study was performed in the Bay of Villefranche to assess the episodic and seasonal variation of autotrophic and heterotrophic ecosystem processes. A typical spring bloom was encountered, where maximum of gross primary production (GPP was followed by maxima of bacterial respiration (BR and production (BP. The trophic balance (heterotrophy vs. autotrophy of the system did not exhibit any seasonal trend although a strong intra-annual variability was observed. On average, the community tended to be net heterotrophic with a GPP threshold for a balanced metabolism of 1.1 μmol O2 l−1 d−1. Extended forest fires in summer 2003 and a local episodic upwelling in July 2003 likely supplied orthophosphate and nitrate into the system. These events were associated with an enhanced bacterioplankton production (up to 2.4-fold, respiration (up to 4.5-fold and growth efficiency (up to 2.9-fold but had no effect on GPP. A Sahara dust wet deposition event in February 2004 stimulated bacterial abundance, production and growth efficiency but not GPP. Our study suggests that short-term disturbances such as wind-driven upwelling, forest fires and Sahara dust depositions can have a significant but previously not sufficiently considered influence on phytoplankton- and bacterioplankton-mediated ecosystem functions and can modify or even mask the seasonal dynamics. The study also indicates that atmospheric deposition of nutrients and particles not only impacts phytoplankton but also bacterioplankton and could, at times, also shift systems stronger towards net heterotrophy.

  20. Relationships between physico-chemical and microbiological parameters in the monimolimnion of a forest meromictic lake

    Directory of Open Access Journals (Sweden)

    Dorota Górniak

    2014-05-01

    Full Text Available The small meromictic Lake Zapadłe in North-Eastern Poland was the subject of our research in the vegetation period between April and November. Our study were to aim a better recognition of meromixis phenomenon and find connections between hydrochemical and microbiological parameters. Here, the monimolimnion layer was below 10 m depth with the chemocline between 13-14 m. Highly significant Spearman’s ranks correlations of P<0.05 were found between conductivity and biochemical oxygen demand (0.91, ammonium nitrogen (0.96, phosphate (0.91, iron (0.77 and manganese (0.82. Favourable conditions for bacterioplankton growth and function here included; the absence of water circulation, the presence of anaerobic conditions and hydrogen sulphide, a constant water temperature and highly significant correlations between total bacterial counts (TBC, bacterial biomass (BB and biochemical oxygen demand (BOD, conductivity, total organic carbon (TOC and dissolved organic carbon (DOC. The pool of bacteria-forming biomass increased significantly in the lower part of the monimolimnion. A highly significant correlation (P<0.05 existed between bacterial biomass (BB and their anaerobic metabolic products: ammonium (r=0.75, hydrogen sulphide (r=0.45 and phosphate (r=0.68 anaerobic metabolic products. This correlation indicated the significant proportion of anaerobic sulfate-reducing bacteria. The impact of physico-chemical parameters on bacterioplankton biomass during the June-November growth season was clearly illustrated in the correspondence canonical analysis (CCA. This recorded its greatest mass at 15 to 17 metres above the lake bed. Although no clear seasonal variations were noted in bacterioplankton composition described by Denaturing Gradient Gel Electrophoresis (DGGE. The monimolimnion lake layer contained 46 Operational Taxonomic Units (OTUs. Subsequent comparison of the upper and lower minimolimnion layers showed 37 of these OTUs were common, while 5 were

  1. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity.

    Science.gov (United States)

    Haas, Andreas F; Nelson, Craig E; Wegley Kelly, Linda; Carlson, Craig A; Rohwer, Forest; Leichter, James J; Wyatt, Alex; Smith, Jennifer E

    2011-01-01

    Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata--Ochrophyta; Amansia rhodantha--Rhodophyta; Halimeda opuntia--Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h⁻¹ dm⁻²), stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h⁻¹) and concomitant oxygen drawdown (0.16±0.05 µmol L⁻¹ h⁻¹ dm⁻²). Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence reef microbial

  2. [Number of bacteria and features of their activity in hypersaline reservoirs of the Crimea].

    Science.gov (United States)

    Dobrynin, E G

    1979-01-01

    The incidence of bacteria, their biomass production, and heterotrophic assimilation of CO2 by bacterioplankton were studied in the Crimean hypersaline water reservoirs from May to October of 1974. The total incidence of bacteria in the natural brine of these reservoirs varied from 20 to 70 x 10(6) cells per 1 ml. Such a high bacterial number may be caused by the combined action of water evaporation which increased the concentration of bacterial cells and active growth of microflora. Low values of bacterial production and heterotrophic CO2 assimilation should be attributed to weak activity of microflora in the reservoirs.

  3. Role of nutrient recycling in upwelling ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Whitledge, T E

    1979-01-01

    The regeneration of nitrogen is an important process that increases the efficiency of the upwelling ecosystem by enlarging their spatial scales. Ammonium regeneration was considered to contribute 42 to 72 percent of phytoplankton nitrogen requirements in the northwest Africa, Peru, and Baja California upwelling systems. Zooplankton are responsible for the largest portion of regenerated nitrogen; however, fish and benthic sediments may be nearly as large. Comparisons of the importance of ammonium regeneration in upwelling areas with coastal and open ocean regions indicate that the percentage contributions are similar. Future nutrient regeneration studies are needed to assess the recycling of benthic sediments, microzooplankton, gelatinous zooplankton, demersal fish, bacterioplankton, and mollusks.

  4. A key role of aluminium in phosphorus availability, food web structure, and plankton dynamics in strongly acidified lakes

    Czech Academy of Sciences Publication Activity Database

    Vrba, Jaroslav; Kopáček, Jiří; Bittl, T.; Nedoma, Jiří; Štrojsová, Alena; Nedbalová, Linda; Kohout, L.; Fott, J.

    2006-01-01

    Roč. 61, Suppl. 20 (2006), S441-S451 ISSN 0006-3088 R&D Projects: GA ČR(CZ) GA206/97/0072; GA ČR(CZ) GA206/00/0063; GA ČR(CZ) GA206/03/1583; GA AV ČR(CZ) IAA6017202 Grant - others:FRVŠ(CZ) G4 1841; MSM(CZ) 6007665801; EC(XE) GOCE-CT-2003-505298 Institutional research plan: CEZ:AV0Z60170517; CEZ:AV0Z60050516 Keywords : extracellular phosphatases * bacterioplankton * phytoplankton * zooplankton * acidification * recovery Subject RIV: EE - Microbiology, Virology Impact factor: 0.213, year: 2006

  5. Abundance of broad bacterial Taxa in the Sargasso Sea explained by environmental conditions but not water mass

    DEFF Research Database (Denmark)

    Sjöstedt, Johanna; Martiny, Jennifer Bellanca Hughes; Munk, Peter

    2014-01-01

    To explore the potential linkage between distribution of marine bacterioplankton groups, environmental conditions, and water mass, we investigated the factors determining the abundance of bacterial taxa across the hydrographically complex Subtropical Convergence Zone in the Sargasso Sea. Based...... of Synechococcus, Prochlorococcus, and picoalgae were determined by flow cytometry. Linear multiple-regression models determining the relative effects of eight environmental variables and of water mass explained 35 to 86% of the variation in abundance of the quantified taxa, even though only one to three variables...... the Sargasso Sea using only a few environmental parameters....

  6. Massive occurrence of heterotrophic filaments in acidified lakes: seasonal dynamics and composition

    Czech Academy of Sciences Publication Activity Database

    Vrba, Jaroslav; Nedoma, Jiří; Kohout, L.; Kopáček, Jiří; Nedbalová, L.; Ráčková, P.; Šimek, Karel

    2003-01-01

    Roč. 46, č. 3 (2003), s. 281-294 ISSN 0168-6496 R&D Projects: GA ČR GA206/97/0072; GA ČR GA206/00/0063; GA ČR GA206/03/1583; GA AV ČR IAA6017202; GA AV ČR IPP1011802 Institutional research plan: CEZ:AV0Z6017912 Keywords : bacterioplankton * phylogenetic identification * heterotrophic filaments Subject RIV: EE - Microbiology, Virology Impact factor: 2.947, year: 2003

  7. The role of ciliates within the microbial food web in the eutrophicated part of Kaštela Bay (Middle Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Natalia Bojanic

    2006-09-01

    Full Text Available Interactions among phytoplankton, bacterioplankton, heterotrophic nanoflagellates (HNF, ciliated protozoa and copepod nauplii were studied in the eutrophicated part of Kas?tela Bay from May 1998 to November 1999. Special emphasis was placed on relationships between size categories of nonloricate ciliates (NLC and other microbial food web components. Biomasses of phytoplankton and bacteria were primarily influenced by abiotic parameters. Temperature indirectly controlled variation in HNF biomass through the changes in biomass of bacteria and the smaller phytoplankton fraction. Besides HNF, bacterial biomass was affected by the NLC

  8. Synergistic and antagonistic effects of viral lysis and protistan grazing on bacterial biomass, production and diversity

    Czech Academy of Sciences Publication Activity Database

    Weinbauer, M.G.; Horňák, Karel; Jezbera, Jan; Nedoma, Jiří; Dolan, J. R.; Šimek, Karel

    2007-01-01

    Roč. 9, č. 3 (2007), s. 777-788 ISSN 1462-2912 R&D Projects: GA ČR(CZ) GA206/05/0007 Grant - others:MGW(FR) ATIPE; MŠMT(CZ) Barrande 2004-004-2 Institutional research plan: CEZ:AV0Z60170517 Source of funding: V - iné verejné zdroje Keywords : in-situ hybridization * bacterioplankton * viruses * community composition * eutrophic reservoir * growth-rate * food webs Subject RIV: EE - Microbiology , Virology Impact factor: 4.929, year: 2007

  9. Dynamics of extracellular DNA in the marine environment

    International Nuclear Information System (INIS)

    Paul, J.H.; Jeffrey, W.H.; DeFlaun, M.F.

    1987-01-01

    The production and turnover of dissolved DNA in subtropical estuarine and oligotrophic oceanic environments were investigated. Actively growing heterotrophic bacterioplankton (i.e., those capable of [ 3 H]thymidine incorporation) were found to produce dissolved DNA, presumably through the processes of death and lysis, grazing by bacteriovores, and excretion. Production of dissolved DNA as determined by [ 3 H]thymidine incorporation was ≤4% of the ambient dissolved DNA concentration per day. In turnover studies, the addition of [ 3 H]DNA (Escherichia coli chromosomal) to seawater resulted in rapid hydrolysis and uptake of radioactivity by microbial populations. DNA was hydrolyzed by both cell-associated and extracellular nucleases, in both estuarine and offshore environments. Kinetic analysis performed for a eutrophic estuary indicated a turnover time for dissolved DNA as short as 6.5 h. Microautoradiographic studies of bacterial populations in Tampa Bay indicated that filamentous and attached bacteria took up most of the radioactivity from [ 3 H]DNA. Dissolved DNA is therefore a dynamic component of the dissolved organic matter in the marine environment, and bacterioplankton play a key role in the cycling of this material

  10. Size distribution of planktonic autotrophy and microheterotrophy in DeGray Reservoir, Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, B.L.; Groeger, A.W.

    1983-01-01

    Naturally occurring assemblages of phytoplankton and bacterioplankton were radiolabelled with sodium /sup 14/C-bicarbonate and sodium /sup 3/H-acetate and size fractionated to determine the size structure of planktonic autotrophy and microheterotrophy in DeGray Reservoir, an oligotrophic impoundment of the Caddo River in south-central Arkansas. Size distributions of autotrophy and microheterotrophy were remarkably uniform seasonally, vertically within the water column, and along the longitudinal axis of the reservoir despite significant changes in environmental conditions. Planktonic autotrophy was dominated by small algal cells with usually >50% of the photosynthetic carbon uptake accounted for by organisms <8.0 ..mu..m. Microheterotrophic activity in the 0.2- to 1.0-..mu..m size fraction, presumably associated with free-living bacterioplankton not attached to suspended particles, usually accounted for >75% of the planktonic microheterotrophy. Longitudinal patterns in autotrophic and microheterotrophic activities associated with >3-..mu..m and >1-..mu..m size fractions, respectively, suggest an uplake to downlake shift from riverine to lacustrine environmental influences within the reservoir. 83 references, 7 figures.

  11. Metatranscriptomic and functional metagenomic analysis of methylphosphonate utilization by marine bacteria

    Directory of Open Access Journals (Sweden)

    Asuncion eMartinez

    2013-11-01

    Full Text Available Aerobic degradation of methylphosphonate (MPn by marine bacterioplankton has been hypothesized to contribute significantly to the ocean’s methane supersaturation, yet little is known about MPn utilization by marine microbes. To identify the microbial taxa and metabolic functions associated with MPn-driven methane production we performed parallel metagenomic, metatranscriptomic, and functional screening of microcosm perturbation experiments using surface water collected in North Pacific Subtropical Gyre. In nutrient amended microcosms containing MPn, a substrate-driven microbial succession occurred. Initially, the addition of glucose and nitrate resulted in a bloom of Vibrionales and a transcriptional profile dominated by glucose-specific PTS transport and polyhydroxyalkanoate biosynthesis. Transcripts associated with phosphorus (P acquisition were also overrepresented and suggested that the addition of glucose and nitrate had driven the community to P depletion. At this point, a second community shift occurred characterized by the increase in C-P lyase containing microbes of the Vibrionales and Rhodobacterales orders. Transcripts associated with C-P lyase components were among the most highly expressed at the community level, and only C-P lyase clusters were recovered in a functional screen for MPn utilization, consistent with this pathway being responsible for the majority, if not all the methane accumulation we observed. Our results identify specific bacterioplankton taxa that can utilize MPn aerobically under conditions of P limitation using the C-P lyase pathway, and thereby elicit a significant increase in the dissolved methane concentration.

  12. Impacts of the Nutrient Inputs from Riverine on the Dynamic and Community Structure of Fungal-like Protists in the Coastal Ocean Ecosystems

    Science.gov (United States)

    Duan, Y.; Wang, G.; Xie, N.

    2016-02-01

    The coastal ocean connects terrestrial (e.g., rivers and estuaries) with oceanic ecosystems and is considered as a major component of global carbon cycles and budgets. The coastal waters are featured with a high biodiversity and high primary production. Because of the excessive primary production, a large fraction of primary organic matter becomes available to consumers as detritus in the coastal waters. Bacterioplankton have long been known to play a key role in the degradation of this detritus, and export and storage of organic matter in the coastal ecosystems. However, the primary and secondary production and the carbon biogeochemical processes in the ecosystems are largely regulated by nutrient inputs from riverine and other anthropogenic activities through heterotrophic microbial communities. Thraustochytrids, commonly known as fungal-like protists, are unicellular heterotrophic protists and are recently acknowledged to play a significant role in ocean carbon cycling. Their abundance exceeds that of bacterioplankton in the most time of the year in the coastal waters of China. Also, their abundance and diversity are largely regulated by nutrients inputs from riverine and other anthropogenic activities. Our findings support that thraustochytrids are a dominant heterotrophic microbial group in the coastal waters. Evidently, thraustochytrids are an import, but neglected, component in microbial carbon biogeochemical processes of the coastal ocean.

  13. Symbiotic prokaryotic communities from different populations of the giant barrel sponge, Xestospongia muta.

    Science.gov (United States)

    Fiore, Cara L; Jarett, Jessica K; Lesser, Michael P

    2013-12-01

    The prokaryotic community composition of the ecologically dominant sponge, Xestospongia muta, and the variability of this community across in different populations of sponges from the Caribbean and Bahamas were quantified using 454 pyrosequencing of the 16S rRNA gene. The symbiotic prokaryotic communities of X. muta were significantly different than the surrounding bacterioplankton communities while an analysis of similarity (ANOSIM) of the sponge prokaryotic symbionts from three geographically distant sites showed that both symbiont and bacterioplankton populations were significantly different between locations. Comparisons of individual sponges based on the UniFrac P-test also revealed significant differences in community composition between individual sponges. The sponges harbored a variety of phylum level operational taxonomic units (OTUs) common to many sponges, including Cyanobacteria, Poribacteria, Acidobacteria, Chloroflexi, and Gemmatimonadetes, but four additional symbiotic phyla, previously not reported for this sponge, were observed. Additionally, a diverse archaeal community was also recovered from X. muta including sequences representing the phyla Euryarchaeota and Thaumarchaeota. These results have important ecological implications for the understanding of host-microbe associations, and provide a foundation for future studies addressing the functional roles these symbiotic prokaryotes have in the biology of the host sponge and the nutrient biogeochemistry of coral reefs. © 2013 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  14. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder.

    Science.gov (United States)

    Denef, Vincent J; Carrick, Hunter J; Cavaletto, Joann; Chiang, Edna; Johengen, Thomas H; Vanderploeg, Henry A

    2017-01-01

    One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptible to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions. IMPORTANCE Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a variety of

  15. Seasonal variability of primary production in a fjord ecosystem of the Chilean Patagonia: Implications for the transfer of carbon within pelagic food webs

    Science.gov (United States)

    Montero, Paulina; Daneri, Giovanni; González, Humberto E.; Iriarte, Jose Luis; Tapia, Fabián J.; Lizárraga, Lorena; Sanchez, Nicolas; Pizarro, Oscar

    2011-03-01

    We characterized the seasonal cycle of productivity in Reloncaví Fjord (41°30'S), Chilean Patagonia. Seasonal surveys that included measurements of gross primary production, community respiration, bacterioplankton secondary production, and sedimentation rates along the fjord were combined with continuous records of water-column temperature variability and wind forcing, as well as satellite-derived data on regional patterns of wind stress, sea surface temperatures, and surface chlorophyll concentrations. The hydrography and perhaps fjord productivity respond to the timing and intensity of wind forcing over a larger region. Seasonal changes in the direction and intensity of winds, along with a late-winter improvement in light conditions, may determine the timing of phytoplankton blooms and potentially modulate productivity cycles in the region. Depth-integrated gross primary production estimates were higher (0.4-3.8 g C m -2 d -1) in the productive season (October, February, and May), and lower (0.1-0.2 g C m -2 d -1) in the non-productive season (August). These seasonal changes were also reflected in community respiration and bacterioplankton production rates, which ranged, respectively, from 0.3 to 4.8 g C m -2 d -1 and 0.05 to 0.4 g C m -2 d -1 during the productive and non-productive seasons and from 0.05 to 0.6 g C m -2 d -1 and 0.05 to 0.2 g C m -2 d -1 during the same two periods. We found a strong, significant correlation between gross primary production and community respiration (Spearman, r=0.95; p100%, suggesting the use of allochthonous carbon sources by bacterioplankton when the levels of gross primary production are low. Low primary production rates were associated with a greater contribution of small cells to autotrophic biomass, highlighting the importance of small-sized plankton and bacteria for carbon cycling and fluxes during the less productive winter months. Fecal pellet sedimentation was minimal during this period, also suggesting that most of

  16. Size distribution of planktonic autotrophy and microheterotrophy in DeGray Reservoir, Arkansas

    International Nuclear Information System (INIS)

    Kimmel, B.L.; Groeger, A.W.

    1983-01-01

    Naturally occurring assemblages of phytoplankton and bacterioplankton were radiolabelled with sodium 14 C-bicarbonate and sodium 3 H-acetate and size fractionated to determine the size structure of planktonic autotrophy and microheterotrophy in DeGray Reservoir, an oligotrophic impoundment of the Caddo River in south-central Arkansas. Size distributions of autotrophy and microheterotrophy were remarkably uniform seasonally, vertically within the water column, and along the longitudinal axis of the reservoir despite significant changes in environmental conditions. Planktonic autotrophy was dominated by small algal cells with usually >50% of the photosynthetic carbon uptake accounted for by organisms 75% of the planktonic microheterotrophy. Longitudinal patterns in autotrophic and microheterotrophic activities associated with >3-μm and >1-μm size fractions, respectively, suggest an uplake to downlake shift from riverine to lacustrine environmental influences within the reservoir. 83 references, 7 figures

  17. Quick stimulation of Alcanivorax sp. by bioemulsificant EPS₂₀₀₃ on microcosm oil spill simulation.

    Science.gov (United States)

    Cappello, Simone; Genovese, Maria; Denaro, Renata; Santisi, Santina; Volta, Anna; Bonsignore, Martina; Mancini, Giuseppe; Giuliano, Laura; Genovese, Lucrezia; Yakimov, Michail M

    2014-01-01

    Oil spill microcosms experiments were carried out to evaluate the effect of bioemulsificant exopolysaccharide (EPS₂₀₀₃) on quick stimulation of hydrocarbonoclastic bacteria. Early hours of oil spill, were stimulated using an experimental seawater microcosm, supplemented with crude oil and EPS₂₀₀₃ (SW+OIL+EPS₂₀₀₃); this system was monitored for 2 days and compared to control microcosm (only oil-polluted seawater, SW+OIL). Determination of bacterial abundance, heterotrophic cultivable and hydrocarbon-degrading bacteria were carried out. Community composition of marine bacterioplankton was determined by 16S rRNA gene clone libraries. Data obtained indicated that bioemulsificant addition stimulated an increase of total bacterial abundance and, in particular, selection of bacteria related to Alcanivorax genus; confirming that EPS₂₀₀₃ could be used for the dispersion of oil slicks and could stimulate the selection of marine hydrocarbon degraders thus increasing bioremediation process.

  18. Quick stimulation of Alcanivorax sp. by bioemulsificant EPS2003 on microcosm oil spill simulation

    Directory of Open Access Journals (Sweden)

    Simone Cappello

    2014-12-01

    Full Text Available Oil spill microcosms experiments were carried out to evaluate the effect of bioemulsificant exopolysaccharide (EPS2003 on quick stimulation of hydrocarbonoclastic bacteria. Early hours of oil spill, were stimulated using an experimental seawater microcosm, supplemented with crude oil and EPS2003 (SW+OIL+EPS2003; this system was monitored for 2 days and compared to control microcosm (only oil-polluted seawater, SW+OIL. Determination of bacterial abundance, heterotrophic cultivable and hydrocarbon-degrading bacteria were carried out. Community composition of marine bacterioplankton was determined by 16S rRNA gene clone libraries. Data obtained indicated that bioemulsificant addition stimulated an increase of total bacterial abundance and, in particular, selection of bacteria related to Alcanivorax genus; confirming that EPS2003 could be used for the dispersion of oil slicks and could stimulate the selection of marine hydrocarbon degraders thus increasing bioremediation process.

  19. Metapopulation theory identifies biogeographical patterns among core and satellite marine bacteria scaling from tens to thousands of kilometers

    DEFF Research Database (Denmark)

    Lindh, Markus V.; Sjöstedt, Johanna; Ekstam, Börje

    2017-01-01

    regional bacterioplankton dynamics from monthly transect sampling in the Baltic Sea Proper using 16S rRNA gene sequencing. A strong positive trend was found between local relative abundance and occupancy of populations. Notably, the occupancy-frequency distributions were significantly bimodal...... the entire Baltic Sea, and was also frequent in globally distributed datasets. Datasets spanning waters with widely different physicochemical characteristics or environmental gradients typically lacked significant bimodal patterns. When such datasets were divided into subsets with coherent environmental...... conditions, bimodal patterns emerged, highlighting the importance of positive feedbacks between local abundance and occupancy within specific biomes. Thus, metapopulation theory applied to microbial biogeography can provide novel insights into the mechanisms governing shifts in biodiversity resulting from...

  20. Genomics and ecophysiology of heterotrophic nitrogen fixing bacteria isolated from estuarine surface water

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel; Severin, Ina; Hansen, Lars H.

    2015-01-01

    heterotrophic organisms are widespread in marine bacterioplankton, but their autecology and ecological significance are unknown. Here, we report genomic and ecophysiology data in relation to N2 fixation by three environmentally relevant heterotrophic bacteria isolated from Baltic Sea surface water: Pseudomonas...... in length and complexity between isolates. All three isolates could sustain growth by N2 fixation in the absence of reactive N, and this fixation was stimulated by low concentrations of oxygen in all three organisms (≈4 to 40 μmol O2 liter-1). P. stutzeri BAL361 did, however, fix N at up to 165 μmol O2...... between nitrogenase reductase gene expression and ethylene (C2H4) production indicated tight posttranscriptional-level control. The N2 fixation rates obtained suggested that, given the right conditions, these heterotrophic diazotrophs could contribute significantly to in situ rates. IMP...

  1. Influence of filtration and glucose amendment on bacterial growth rate at different tidal conditions in the Minho Estuary River (NW Portugal)

    DEFF Research Database (Denmark)

    Anne, I.; Fidalgo, M. L.; Thosthrup, L.

    2006-01-01

    Bacterioplankton abundance, biomass and growth rates were studied in the Minho Estuary River (NW Portugal). The influence of tidal conditions, glucose amendment, and the filtration process on total bacterial abundance, total and faecal coliforms, as well as faecal streptococci, were evaluated...... in laboratory incubation experiments. Physical and chemical conditions, as well as bacterial abundance in this estuary were found to be typical for oligo-mesotrophic coastal ecosystems. Bacterial abundance was higher at high tide, probably due to hydrodynamics and resuspension of bacteria from sediments...... were induced at high tide that led to a lack of bacterial growth and the net disappearance of most of the bacterial populations. Glucose amendment, at used concentration, was not found to stimulate bacterial growth, which instead could be limited by inorganic nutrients....

  2. Identification of major planktonic sulfur oxidizers in stratified freshwater lake.

    Directory of Open Access Journals (Sweden)

    Hisaya Kojima

    Full Text Available Planktonic sulfur oxidizers are important constituents of ecosystems in stratified water bodies, and contribute to sulfide detoxification. In contrast to marine environments, taxonomic identities of major planktonic sulfur oxidizers in freshwater lakes still remain largely unknown. Bacterioplankton community structure was analyzed in a stratified freshwater lake, Lake Mizugaki in Japan. In the clone libraries of 16S rRNA gene, clones very closely related to a sulfur oxidizer isolated from this lake, Sulfuritalea hydrogenivorans, were detected in deep anoxic water, and occupied up to 12.5% in each library of different water depth. Assemblages of planktonic sulfur oxidizers were specifically analyzed by constructing clone libraries of genes involved in sulfur oxidation, aprA, dsrA, soxB and sqr. In the libraries, clones related to betaproteobacteria were detected with high frequencies, including the close relatives of Sulfuritalea hydrogenivorans.

  3. Effects of solar UV-B radiation on aquatic ecosystems

    Science.gov (United States)

    Häder, D.-P.

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO 2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position

  4. Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation.

    Directory of Open Access Journals (Sweden)

    Laura Gómez-Consarnau

    2010-04-01

    Full Text Available Proteorhodopsins are globally abundant photoproteins found in bacteria in the photic zone of the ocean. Although their function as proton pumps with energy-yielding potential has been demonstrated, the ecological role of proteorhodopsins remains largely unexplored. Here, we report the presence and function of proteorhodopsin in a member of the widespread genus Vibrio, uncovered through whole-genome analysis. Phylogenetic analysis suggests that the Vibrio strain AND4 obtained proteorhodopsin through lateral gene transfer, which could have modified the ecology of this marine bacterium. We demonstrate an increased long-term survival of AND4 when starved in seawater exposed to light rather than held in darkness. Furthermore, mutational analysis provides the first direct evidence, to our knowledge, linking the proteorhodopsin gene and its biological function in marine bacteria. Thus, proteorhodopsin phototrophy confers a fitness advantage to marine bacteria, representing a novel mechanism for bacterioplankton to endure frequent periods of resource deprivation at the ocean's surface.

  5. Metagenomes of Mediterranean coastal lagoons.

    Science.gov (United States)

    Ghai, Rohit; Hernandez, Claudia Mella; Picazo, Antonio; Mizuno, Carolina Megumi; Ininbergs, Karolina; Díez, Beatriz; Valas, Ruben; DuPont, Christopher L; McMahon, Katherine D; Camacho, Antonio; Rodriguez-Valera, Francisco

    2012-01-01

    Coastal lagoons, both hypersaline and freshwater, are common, but still understudied ecosystems. We describe, for the first time, using high throughput sequencing, the extant microbiota of two large and representative Mediterranean coastal lagoons, the hypersaline Mar Menor, and the freshwater Albufera de Valencia, both located on the south eastern coast of Spain. We show there are considerable differences in the microbiota of both lagoons, in comparison to other marine and freshwater habitats. Importantly, a novel uncultured sulfur oxidizing Alphaproteobacteria was found to dominate bacterioplankton in the hypersaline Mar Menor. Also, in the latter prokaryotic cyanobacteria were almost exclusively comprised by Synechococcus and no Prochlorococcus was found. Remarkably, the microbial community in the freshwaters of the hypertrophic Albufera was completely in contrast to known freshwater systems, in that there was a near absence of well known and cosmopolitan groups of ultramicrobacteria namely Low GC Actinobacteria and the LD12 lineage of Alphaproteobacteria.

  6. More, smaller bacteria in response to ocean's warming?

    KAUST Repository

    Moran, Xose Anxelu G.

    2015-06-10

    Heterotrophic bacteria play a major role in organic matter cycling in the ocean. Although the high abundances and relatively fast growth rates of coastal surface bacterioplankton make them suitable sentinels of global change, past analyses have largely overlooked this functional group. Here, time series analysis of a decade of monthly observations in temperate Atlantic coastal waters revealed strong seasonal patterns in the abundance, size and biomass of the ubiquitous flow-cytometric groups of low (LNA) and high nucleic acid (HNA) content bacteria. Over this relatively short period, we also found that bacterioplankton cells were significantly smaller, a trend that is consistent with the hypothesized temperature-driven decrease in body size. Although decadal cell shrinking was observed for both groups, it was only LNA cells that were strongly coherent, with ecological theories linking temperature, abundance and individual size on both the seasonal and interannual scale. We explain this finding because, relative to their HNA counterparts, marine LNA bacteria are less diverse, dominated by members of the SAR11 clade. Temperature manipulation experiments in 2012 confirmed a direct effect of warming on bacterial size. Concurrent with rising temperatures in spring, significant decadal trends of increasing standing stocks (3% per year) accompanied by decreasing mean cell size (-1% per year) suggest a major shift in community structure, with a larger contribution of LNA bacteria to total biomass. The increasing prevalence of these typically oligotrophic taxa may severely impact marine foodwebs and carbon fluxes by an overall decrease in the efficiency of the biological pump. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea.

    Science.gov (United States)

    Parsons, Rachel J; Breitbart, Mya; Lomas, Michael W; Carlson, Craig A

    2012-02-01

    There are an estimated 10(30) virioplankton in the world oceans, the majority of which are phages (viruses that infect bacteria). Marine phages encompass enormous genetic diversity, affect biogeochemical cycling of elements, and partially control aspects of prokaryotic production and diversity. Despite their importance, there is a paucity of data describing virioplankton distributions over time and depth in oceanic systems. A decade of high-resolution time-series data collected from the upper 300 m in the northwestern Sargasso Sea revealed recurring temporal and vertical patterns of virioplankton abundance in unprecedented detail. An annual virioplankton maximum developed between 60 and 100 m during periods of summer stratification and eroded during winter convective mixing. The timing and vertical positioning of this seasonal pattern was related to variability in water column stability and the dynamics of specific picophytoplankton and heterotrophic bacterioplankton lineages. Between 60 and 100 m, virioplankton abundance was negatively correlated to the dominant heterotrophic bacterioplankton lineage SAR11, as well as the less abundant picophytoplankton, Synechococcus. In contrast, virioplankton abundance was positively correlated to the dominant picophytoplankton lineage Prochlorococcus, and the less abundant alpha-proteobacteria, Rhodobacteraceae. Seasonally, virioplankton abundances were highly synchronous with Prochlorococcus distributions and the virioplankton to Prochlorococcus ratio remained remarkably constant during periods of water column stratification. The data suggest that a significant fraction of viruses in the mid-euphotic zone of the subtropical gyres may be cyanophages and patterns in their abundance are largely determined by Prochlorococcus dynamics in response to water column stability. This high-resolution, decadal survey of virioplankton abundance provides insight into the possible controls of virioplankton dynamics in the open ocean.

  8. Limno-chemical and microbiology aspects in Uranium Pit Mine Lake (Osamu Utsumi), in Antas and Bortolan reservoirs under the influence of effluent Ore Treatment Unit, Caldas - Minas Gerais State, Brazil

    International Nuclear Information System (INIS)

    Ronqui, Leilane B.; Nasciment, Marcos R.L. do; Roque, Claudio V.; Bruschi, Armando; Borba Junior, Palvo J.; Nascimento, Heliana A. F. do; Almeida, Tito C.M. de

    2013-01-01

    Due to high natural radioactivity there in Pocos de Caldas Plateau (Minas Gerais State, Brazil) and the existence of the first uranium mine in Brazil (Pit Mine Osamu Utsumi - Mineral Treatment Unit/Brazilian Nuclear Industries, MTU/BNI), which is characterized by an open-pit mine presents as increased environmental liability the formation of acid mine drainage, this study was conducted to evaluate the limno-chemicals and microbiology aspects (protozooplankton and bacterioplankton) belonging to uranium pit mine lake (PM) and evaluate the possible effects of acid effluents treated and discharged by MTU/BNI in Antas reservoir-AR and downstream of this, the Bortolan reservoir-BR. Besides the realization of abiotic and microbiology analysis of protozooplankton and bacterioplankton; was held standardization and deployment of the Fluorescence 'In Situ' Hybridization (FISH) technical using oligonucleotide probes for extremophile Archaea and Bacteria. According to the results, the PM showed the highest values for the chemical variables, lower pH values, lower protozooplankton density, however, protozooplanktonic high biomass showing the presence of tolerant species in this extreme environment. Antas and Bortolan reservoirs showed differences in the abiotic and biotic variables, AR showed suffer greater interference of acid effluents released at P41point and downstream of this at P14 point, lower protozooplankton biomass, lower bacterial density and pollution characteristics of inorganic sources. Using the FISH technique standard in this study to water bodies evaluated, it was possible to detect the presence of the extremophile bacteria of the Archaea domain in the three water bodies. The results of this study contribute to the knowledge of the pit mine lakes limnology which have become a major concern due to increased mining in the open. (author)

  9. How interactions between top-down and bottom-up controls on carbon cycling affect fluxes within and from lakes

    Science.gov (United States)

    Sadro, S.; Piovia-Scott, J.; Nelson, C.; Sickman, J. O.; Knapp, R.

    2017-12-01

    While the role of inland waters in global carbon cycling has grown clearer in recent decades, the extent to which top-down and bottom-up mechanisms interact to regulate dynamics at the catchment scale is not well understood. The degree to which lakes process, export, or store terrestrial carbon is influenced by hydrological variability, variation in the magnitude of terrestrial organic matter (t-OM) entering a system, the efficiency with which such material is metabolized by bacterioplankton, the extent to which it is incorporated into secondary consumer biomass, and by the effects of food-web structure, such as the presence or absence of top predators. However, how these processes interact to mediate carbon fluxes between terrestrial, aquatic, and atmospheric reservoirs remains unclear. We develop a conceptual model that explores how interactions among these factors ultimately affects carbon dynamics using data from lakes located in the Sierra Nevada mountains of California. The Sierra are an excellent system for studies of carbon cycling because elevation-induced landscape gradients in soil development and vegetation cover provide large natural variation in terrestrial inputs to lakes, while variation in confounding factors such as lake morphometry or trophic state is comparatively small. Dissolved organic carbon concentrations increase 100 fold in lakes spanning the alpine to montane elevation gradient found in the Sierra, and fluorescence characteristics reflect an increasingly terrestrial signature with decreasing elevation. Bacterioplankton make up a large proportion of total ecosystem metabolism in these systems, and their metabolic efficiency is tightly coupled to the composition of dissolved organic matter. Stable isotope food web data (δ13C, Δ14C, and δ2H) and measurements of pCO2 from lakes indicate the magnitude of allochthony, rates if carbon cycling, and ecosystem heterotrophy all increase with the increasingly terrestrial signature of dissolved

  10. Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    Science.gov (United States)

    Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa

    2017-06-01

    Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  11. Spatio-temporal interdependence of bacteria and phytoplankton during a Baltic Sea spring bloom

    Directory of Open Access Journals (Sweden)

    Carina eBunse

    2016-04-01

    Full Text Available In temperate systems, phytoplankton spring blooms deplete inorganic nutrients and are major sources of organic matter for the microbial loop. In response to phytoplankton exudates and environmental factors, heterotrophic microbial communities are highly dynamic and change their abundance and composition both on spatial and temporal scales. Yet, most of our understanding about these processes comes from laboratory model organism studies, mesocosm experiments or single temporal transects. Spatial-temporal studies examining interactions of phytoplankton blooms and bacterioplankton community composition and function, though being highly informative, are scarce. In this study, pelagic microbial community dynamics (bacteria and phytoplankton and environmental variables were monitored during a spring bloom across the Baltic Proper (two cruises between North Germany to Gulf of Finland. To test to what extent bacterioplankton community composition relates to the spring bloom, we used next generation amplicon sequencing of the 16S rRNA gene, phytoplankton diversity analysis based on microscopy counts and population genotyping of the dominating diatom Skeletonema marinoi. Several phytoplankton bloom related and environmental variables were identified to influence bacterial community composition. Members of Bacteroidetes and Alphaproteobacteria dominated the bacterial community composition but the bacterial groups showed no apparent correlation with direct bloom related variables. The less abundant bacterial phyla Actinobacteria, Planctomycetes, and Verrucomicrobia, on the other hand, were strongly associated with phytoplankton biomass, diatom:dinoflagellate ratio and colored dissolved organic matter (cDOM. Many bacterial operational taxonomic units (OTUs showed high niche specificities. For example, particular Bacteroidetes OTUs were associated with two distinct genetic clusters of S. marinoi. Our study revealed the complexity of interactions of bacterial

  12. Patterns of variation in diversity of the Mississippi river microbiome over 1,300 kilometers.

    Directory of Open Access Journals (Sweden)

    Jason T Payne

    Full Text Available We examined the downriver patterns of variation in taxonomic diversity of the Mississippi River bacterioplankton microbiome along 1,300 river kilometers, or approximately one third the total length of the river. The study section included portions of the Upper, Middle, and Lower Mississippi River, confluences with five tributaries draining distinct sub-basins, river cities, and extended stretches without major inputs to the Mississippi. The composition and proportional abundance of dominant bacterial phyla was distinct for free-living and particle-associated cells, and constant along the entire reach, except for a substantial but transient disturbance near the city of Memphis, Tennessee. At a finer scale of taxonomic resolution (operational taxonomic units, OTUs, however, there were notable patterns in downriver variation in bacterial community alpha diversity (richness within a site and beta diversity (variation in composition among sites. There was a strong and steady increase downriver in alpha diversity of OTUs on suspended particles, suggesting an increase in particle niche heterogeneity, and/or particle colonization. Relatively large shifts in beta diversity of free-living and particle-associated communities occurred following major tributary confluences and transiently at Memphis, while in long stretches between these points diversity typically varied more gradually. We conclude that the Mississippi River possesses a bacterioplankton microbiome distinct in diversity from other large river microbiomes in the Mississippi River Basin, that at major river confluences or urban point sources its OTU diversity may shift abruptly and substantially, presumably by immigration of distinct external microbiomes, but that where environmental conditions are more stable along the downriver gradient, microbiome diversity tends to vary gradually, presumably by a process of successional change in community composition.

  13. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea

    Science.gov (United States)

    Parsons, Rachel J; Breitbart, Mya; Lomas, Michael W; Carlson, Craig A

    2012-01-01

    There are an estimated 1030 virioplankton in the world oceans, the majority of which are phages (viruses that infect bacteria). Marine phages encompass enormous genetic diversity, affect biogeochemical cycling of elements, and partially control aspects of prokaryotic production and diversity. Despite their importance, there is a paucity of data describing virioplankton distributions over time and depth in oceanic systems. A decade of high-resolution time-series data collected from the upper 300 m in the northwestern Sargasso Sea revealed recurring temporal and vertical patterns of virioplankton abundance in unprecedented detail. An annual virioplankton maximum developed between 60 and 100 m during periods of summer stratification and eroded during winter convective mixing. The timing and vertical positioning of this seasonal pattern was related to variability in water column stability and the dynamics of specific picophytoplankton and heterotrophic bacterioplankton lineages. Between 60 and 100 m, virioplankton abundance was negatively correlated to the dominant heterotrophic bacterioplankton lineage SAR11, as well as the less abundant picophytoplankton, Synechococcus. In contrast, virioplankton abundance was positively correlated to the dominant picophytoplankton lineage Prochlorococcus, and the less abundant alpha-proteobacteria, Rhodobacteraceae. Seasonally, virioplankton abundances were highly synchronous with Prochlorococcus distributions and the virioplankton to Prochlorococcus ratio remained remarkably constant during periods of water column stratification. The data suggest that a significant fraction of viruses in the mid-euphotic zone of the subtropical gyres may be cyanophages and patterns in their abundance are largely determined by Prochlorococcus dynamics in response to water column stability. This high-resolution, decadal survey of virioplankton abundance provides insight into the possible controls of virioplankton dynamics in the open ocean

  14. Limno-chemical and microbiology aspects in Uranium Pit Mine Lake (Osamu Utsumi), in Antas and Bortolan reservoirs under the influence of effluent Ore Treatment Unit, Caldas - Minas Gerais State, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ronqui, Leilane B.; Nasciment, Marcos R.L. do; Roque, Claudio V.; Bruschi, Armando; Borba Junior, Palvo J.; Nascimento, Heliana A. F. do, E-mail: leilanebio@yahoo.com.br, E-mail: pmarcos@cnen.gov.br, E-mail: cvroque@cnen.gov.br, E-mail: abruschi@cnen.gov.br, E-mail: jouber_borba@hotmail.com, E-mail: hazevedo@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas; Almeida, Tito C.M. de, E-mail: titoalmeida2008@gmail.com [Universidade do Vale do Itajai (CTT-Mar/UNIVALI), SC (Brazil). Centro de Ciencias Tecnologicas da Terra e do Mar

    2013-07-01

    Due to high natural radioactivity there in Pocos de Caldas Plateau (Minas Gerais State, Brazil) and the existence of the first uranium mine in Brazil (Pit Mine Osamu Utsumi - Mineral Treatment Unit/Brazilian Nuclear Industries, MTU/BNI), which is characterized by an open-pit mine presents as increased environmental liability the formation of acid mine drainage, this study was conducted to evaluate the limno-chemicals and microbiology aspects (protozooplankton and bacterioplankton) belonging to uranium pit mine lake (PM) and evaluate the possible effects of acid effluents treated and discharged by MTU/BNI in Antas reservoir-AR and downstream of this, the Bortolan reservoir-BR. Besides the realization of abiotic and microbiology analysis of protozooplankton and bacterioplankton; was held standardization and deployment of the Fluorescence 'In Situ' Hybridization (FISH) technical using oligonucleotide probes for extremophile Archaea and Bacteria. According to the results, the PM showed the highest values for the chemical variables, lower pH values, lower protozooplankton density, however, protozooplanktonic high biomass showing the presence of tolerant species in this extreme environment. Antas and Bortolan reservoirs showed differences in the abiotic and biotic variables, AR showed suffer greater interference of acid effluents released at P41point and downstream of this at P14 point, lower protozooplankton biomass, lower bacterial density and pollution characteristics of inorganic sources. Using the FISH technique standard in this study to water bodies evaluated, it was possible to detect the presence of the extremophile bacteria of the Archaea domain in the three water bodies. The results of this study contribute to the knowledge of the pit mine lakes limnology which have become a major concern due to increased mining in the open. (author)

  15. The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living polynucleobacter population.

    Directory of Open Access Journals (Sweden)

    Martin W Hahn

    Full Text Available The bacterial taxon Polynucleobacter necessarius subspecies asymbioticus represents a group of planktonic freshwater bacteria with cosmopolitan and ubiquitous distribution in standing freshwater habitats. These bacteria comprise <1% to 70% (on average about 20% of total bacterioplankton cells in various freshwater habitats. The ubiquity of this taxon was recently explained by intra-taxon ecological diversification, i.e. specialization of lineages to specific environmental conditions; however, details on specific adaptations are not known. Here we investigated by means of genomic and experimental analyses the ecological adaptation of a persistent population dwelling in a small acidic pond.The investigated population (F10 lineage contributed on average 11% to total bacterioplankton in the pond during the vegetation periods (ice-free period, usually May to November. Only a low degree of genetic diversification of the population could be revealed. These bacteria are characterized by a small genome size (2.1 Mb, a relatively small number of genes involved in transduction of environmental signals, and the lack of motility and quorum sensing. Experiments indicated that these bacteria live as chemoorganotrophs by mainly utilizing low-molecular-weight substrates derived from photooxidation of humic substances.Evolutionary genome streamlining resulted in a highly passive lifestyle so far only known among free-living bacteria from pelagic marine taxa dwelling in environmentally stable nutrient-poor off-shore systems. Surprisingly, such a lifestyle is also successful in a highly dynamic and nutrient-richer environment such as the water column of the investigated pond, which was undergoing complete mixis and pronounced stratification in diurnal cycles. Obviously, metabolic and ecological versatility is not a prerequisite for long-lasting establishment of abundant bacterial populations under highly dynamic environmental conditions. Caution should be exercised

  16. Heterotrophic bacterial responses to the winter–spring phytoplankton bloom in open waters of the NW Mediterranean

    KAUST Repository

    Gomes, Ana

    2014-12-03

    The response of planktonic heterotrophic prokaryotes to the NW Mediterranean winter–spring offshore phytoplankton bloom was assessed in 3 cruises conducted in March, April–May and September 2009. Bulk measurements of phytoplankton and bacterioplankton biomass and production were complemented with an insight into bacterial physiological structure by single-cell analysis of nucleic acid content [low (LNA) vs. high (HNA)] and membrane integrity (“Live” vs. “Dead” cells). Bacterial production empirical conversion factors (0.82±0.25 SE kg C mol leucine−1) were almost always well below the theoretical value. Major differences in most microbial variables were found among the 3 periods, which varied from extremely high phytoplankton biomass and production during the bloom in March (>1 g C m−2 d−1 primary production) to typically oligotrophic conditions during September stratification (<200 mg C m−2 d−1). In both these periods bacterial production was ~30 mg C m−2 d−1 while very large bacterial production (mean 228, with some stations exceeding 500 mg C m−2 d−1) but low biomass was observed during the April–May post-bloom phase. The contribution of HNA (30–67%) and “Live” cells (47–97%) were temporally opposite in the study periods, with maxima in March and September, respectively. Different relationships were found between physiological structure and bottom-up variables, with HNA bacteria apparently more responsive to phytoplankton only during the bloom, coinciding with larger average cell sizes of LNA bacteria. Moderate phytoplankton–bacterioplankton coupling of biomass and activity was only observed in the bloom and post-bloom phases, while relationships between both compartments were not significant under stratification. With all data pooled, bacteria were only weakly bottom-up controlled. Our analyses show that the biomass and production of planktonic algae and bacteria followed opposite paths in the transition from bloom to

  17. Direct and indirect effects of the glyphosate formulation Glifosato Atanor® on freshwater microbial communities.

    Science.gov (United States)

    Vera, María Solange; Di Fiori, Eugenia; Lagomarsino, Leonardo; Sinistro, Rodrigo; Escaray, Roberto; Iummato, María Mercedes; Juárez, Angela; Ríos de Molina, María del Carmen; Tell, Guillermo; Pizarro, Haydée

    2012-10-01

    Glyphosate-based formulations are among the most widely used herbicides in the world. The effect of the formulation Glifosato Atanor(®) on freshwater microbial communities (phytoplankton, bacterioplankton, periphyton and zooplankton) was assessed through a manipulative experiment using six small outdoor microcosms of small volume. Three of the microcosms were added with 3.5 mg l(-1) of glyphosate whereas the other three were left as controls without the herbicide. The treated microcosms showed a significant increase in total phosphorus, not fully explained by the glyphosate present in the Glifosato Atanor(®). Therefore, part of the phosphorus should have come from the surfactants of the formulation. The results showed significant direct and indirect effects of Glifosato Atanor(®) on the microbial communities. A single application of the herbicide caused a fast increase both in the abundance of bacterioplankton and planktonic picocyanobacteria and in chlorophyll a concentration in the water column. Although metabolic alterations related to oxidative stress were induced in the periphyton community, the herbicide favored its development, with a large contribution of filamentous algae typical of nutrient-rich systems, with shallow and calm waters. An indirect effect of the herbicide on the zooplankton was observed due to the increase in the abundance of the rotifer Lecane spp. as a consequence of the improved food availability given by picocyanobacteria and bacteria. The formulation affected directly a fraction of copepods as a target. It was concluded that the Glifosato Atanor(®) accelerates the deterioration of the water quality, especially when considering small-volume water systems.

  18. SELF-PURIFICATION OF THE DNIPROVS’KE RESERVOIR AS A LEADING FORMING FACTOR FOR THE ECOLOGICALLY SAFE HABITAT OF FISHES

    Directory of Open Access Journals (Sweden)

    А. Dvoretsky

    2014-12-01

    Full Text Available Purpose. To study the development of the water quality of the Dniprovs’ke reservoir, which is a water of body of complex including fisheries importance and is characterized by an increased anthropogenic pressure as a result of the processes of the toxification and self-purification determined based on toxicity index (Іt. Methodology. We used the methods of bioindication (determination of the number and biomass of phytoplankton and heterotrophic bacterioplankton, biotesting (Іt determinaiton with the aid of Daphnia magna, hydrochemistry (determination of main trophic-saprobiological parameters of water quality as well as the correlation analysis of these parameters. Findings. According to the 2012 data, tropho-saprobiologic, algological, microbiological parameters and toxicity index as an integral parameter were analyzed concerning to water quality. Regularities of dynamics and relationship of the indexes were studied. The environmental assessment of water quality of the most polluted upper part of the Dniprovs’ke reservoirs was carried out for each of the parameters studied: in areas where agro-industrial wastes enter, water is classified as «moderately polluted» – «very dirty». The data testify to strong local water pollution of the reservoir and a good renewable ability of the ecosystem. It was shown that in conditions of human toxification the adequate response concerning water quality gives the toxicity index as an integral indicator of toxification and self-purification processes. The dual role of phytoplankton and heterotrophic bacterioplankton in formation of water quality of the anthropogenically loaded reservoir was revealed: these components are involved in the processes of self-purification or toxification in accordance with periods of microalgae development during the season. This is displayed in corresponding changes of TI and the correlation coefficient. It was found that the self-cleaning of the reservoir is a major

  19. ASSESSMENT OF THE DEVELOPMЕNT OF POND FORAGE BASE WHEN REARING CARP (CYPRINUS CARPIO CARPIO FISH SEEDS AT FISH FARM «MERKURIY»

    Directory of Open Access Journals (Sweden)

    B. Grishin

    2015-09-01

    Full Text Available Purpose. To assess the development of main components of natural forage base in nursery ponds during the period of rearing the carp fish seeds in monoculture. Methodology. Hydrobiological (bacterioplankton, phytoplankton, zooplankton, zoobenthos and hydrochemical samples have been collected and processes according to generally accepted methods. Findings. Qualitative and quantitative parameters of the development of bacterio-, phyto-, zooplankton and zoobenthos in nursery ponds have been studied when rearing young-of-the-year Lubin few scale carp, Antoninsko-Zozulenets carp and their reciprocal crosses in monoculture (50 thousand fish/ha. General water mineralization in ponds was 292.7–315.7 mg/dm3 and according to O.A. Alekin’s classification, pond water belonged to hydrocarbonate class of calcium group. Water pH was 7.4–7.5. Permanganate values were 12.5–14.9 mgO/dm3. On average, average ammonium nitrogen content, nitrite nitrogen and nitrate nitrogen, mineral phosphorus, total iron did not exceed normative values. Qualitative and quantitative parameters of phyto-, bacterio-, zooplankton of nursery ponds have been studied. The seasonal development of phytoplankton was within 15.96–20.88 mg/dm3 with the predominance of Chlorococcales in the floristic spectrum. The development of bacterioplankton was within 5.08–5.81 mg/dm3. Zooplankton was dominated by cladoceran-copepod complex with average seasonal values of 5.27–17.20 g/m3. Zoobenthos was formed of Diptera larvae (Chironomidae and Chaoboridae with average seasonal biomasses of 0.51–1.8 g/m2. According to saprobic parameters, pond water belonged to β-mesosabrobic zone and corresponded to the water quality class II (“clean enough” category. Fish productivity of nursery ponds was within 617.2–815.2 kg/ha; output of carp young-of-the-year was within 39.82–43.56%, mean weight of young-of-the-year was 31.0–39.3 g. Originality. For the first time we carried out a

  20. Temporal Dynamics of the Microbial Community Composition with a Focus on Toxic Cyanobacteria and Toxin Presence during Harmful Algal Blooms in Two South German Lakes

    Directory of Open Access Journals (Sweden)

    Pia I. Scherer

    2017-12-01

    Full Text Available Bacterioplankton plays an essential role in aquatic ecosystems, and cyanobacteria are an influential part of the microbiome in many water bodies. In freshwaters used for recreational activities or drinking water, toxic cyanobacteria cause concerns due to the risk of intoxication with cyanotoxins, such as microcystins. In this study, we aimed to unmask relationships between toxicity, cyanobacterial community composition, and environmental factors. At the same time, we assessed the correlation of a genetic marker with microcystin concentration and aimed to identify the main microcystin producer. We used Illumina MiSeq sequencing to study the bacterioplankton in two recreational lakes in South Germany. We quantified a microcystin biosynthesis gene (mcyB using qPCR and linked this information with microcystin concentration to assess toxicity. Microcystin biosynthesis gene (mcyE-clone libraries were used to determine the origin of microcystin biosynthesis genes. Bloom toxicity did not alter the bacterial community composition, which was highly dynamic at the lowest taxonomic level for some phyla such as Cyanobacteria. At the OTU level, we found distinctly different degrees of temporal variation between major bacteria phyla. Cyanobacteria and Bacteroidetes showed drastic temporal changes in their community compositions, while the composition of Actinobacteria remained rather stable in both lakes. The bacterial community composition of Alpha- and Beta-proteobacteria remained stable over time in Lake Klostersee, but it showed temporal variations in Lake Bergknappweiher. The presence of potential microcystin degraders and potential algicidal bacteria amongst prevalent Bacteroidetes and Alphaproteobacteria implied a role of those co-occurring heterotrophic bacteria in cyanobacterial bloom dynamics. Comparison of both lakes studied revealed a large shared microbiome, which was shaped toward the lake specific community composition by environmental factors

  1. Southern Ocean biological iron cycling in the pre-whaling and present ecosystems

    Science.gov (United States)

    Maldonado, Maria T.; Surma, Szymon; Pakhomov, Evgeny A.

    2016-11-01

    This study aimed to create the first model of biological iron (Fe) cycling in the Southern Ocean food web. Two biomass mass-balanced Ecopath models were built to represent pre- and post-whaling ecosystem states (1900 and 2008). Functional group biomasses (tonnes wet weight km-2) were converted to biogenic Fe pools (kg Fe km-2) using published Fe content ranges. In both models, biogenic Fe pools and consumption in the pelagic Southern Ocean were highest for plankton and small nektonic groups. The production of plankton biomass, particularly unicellular groups, accounted for the highest annual Fe demand. Microzooplankton contributed most to biological Fe recycling, followed by carnivorous zooplankton and krill. Biological Fe recycling matched previous estimates, and, under most conditions, could entirely meet the Fe demand of bacterioplankton and phytoplankton. Iron recycling by large baleen whales was reduced 10-fold by whaling between 1900 and 2008. However, even under the 1900 scenario, the contribution of whales to biological Fe recycling was negligible compared with that of planktonic consumers. These models are a first step in examining oceanic-scale biological Fe cycling, highlighting gaps in our present knowledge and key questions for future research on the role of marine food webs in the cycling of trace elements in the sea. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  2. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions.

    Science.gov (United States)

    Zhou, Jin; Lyu, Yihua; Richlen, Mindy; Anderson, Donald M; Cai, Zhonghua

    2016-01-01

    Algae are ubiquitous in the marine environment, and the ways in which they interact with bacteria are of particular interest in marine ecology field. The interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape microbial diversity. Although algal-bacterial interactions are well known and studied, information regarding the chemical-ecological role of this relationship remains limited, particularly with respect to quorum sensing (QS), which is a system of stimuli and response correlated to population density. In the microbial biosphere, QS is pivotal in driving community structure and regulating behavioral ecology, including biofilm formation, virulence, antibiotic resistance, swarming motility, and secondary metabolite production. Many marine habitats, such as the phycosphere, harbour diverse populations of microorganisms and various signal languages (such as QS-based autoinducers). QS-mediated interactions widely influence algal-bacterial symbiotic relationships, which in turn determine community organization, population structure, and ecosystem functioning. Understanding infochemicals-mediated ecological processes may shed light on the symbiotic interactions between algae host and associated microbes. In this review, we summarize current achievements about how QS modulates microbial behavior, affects symbiotic relationships, and regulates phytoplankton chemical ecological processes. Additionally, we present an overview of QS-modulated co-evolutionary relationships between algae and bacterioplankton, and consider the potential applications and future perspectives of QS.

  3. Distribution and diversity of Prochlorococcus ecotypes in the Red Sea.

    Science.gov (United States)

    Shibl, Ahmed A; Thompson, Luke R; Ngugi, David K; Stingl, Ulrich

    2014-07-01

    Photosynthetic prokaryotes of the genus Prochlorococcus play a major role in global primary production in the world's oligotrophic oceans. A recent study on pelagic bacterioplankton communities in the northern and central Red Sea indicated that the predominant cyanobacterial 16S rRNA gene sequence types were from Prochlorococcus cells belonging to a high-light-adapted ecotype (HL II). In this study, we analyzed microdiversity of Prochlorococcus sp. at multiple depths within and below the euphotic zone in the northern, central, and southern regions of the Red Sea, as well as in surface waters in the same locations, but in a different season. Prochlorococcus dominated the communities in clone libraries of the amplified 16S-23S rRNA internal transcribed spacer (ITS) region. Almost no differences were found between samples from coastal or open-water sites, but a high diversity of Prochlorococcus ecotypes was detected at 100-meter depth in the water column. In addition, an unusual dominance of HL II-related sequences was observed in deeper waters. Our results indicate that the Red Sea harbors diverse Prochlorococcus lineages, but no novel ecotypes, despite its unusual physicochemical properties. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Analysis of Lagoonal Ecosystems in the Po River Delta Associated with Intensive Aquaculture

    Science.gov (United States)

    Sorokin, Yu. I.; Sorokin, P. Yu.; Ravagnan, G.

    1999-03-01

    Observations on structure and functioning of coastal lagoon ecosystems experiencing a high level of eutrophication impact were accomplished in three lagoons of Ca'Pisani integrated within an experimental aquaculture enterprise variously fertilized by waste effluents discharged from and intensive fish culture plant. During August and early September an extremely dense bloom of dinoflagellate Alexandrium tamarensewas recorded in these lagoons with the density of phytoplankton up to 190 g m -3of wet biomass, and primary production 2 to 6 mg Cl -1 day -1. The diel dissolved oxygen fluctuations in water column during the bloom reached 15-20 mg O 2 l -1. The wet biomass of bacterioplankton in the lagoons attained 5-9 g m -3. The microzooplankton was dominated by ciliates with biomass 1 to 19 g m -3. The daytime mesozooplankton was dominated by calanoid copepods with a biomass 0·05-0·25 g m -3, while the biomass of the demersal zooplankton at night attained 2 to 14 g m -3. In the lagoon of Ocaro, the phototrophic plankton was dominated by the symbiotic ciliate Mesodinium.The labile sulphides content in the upper layer of the bottom attained over 1 g S dm -3of wet silt. The rate of microbial sulphate reduction was 5-10 mg S dm -3day -1. The data are generalized within the energy balance in these specific anthropogenically transformed pelagic communities.

  5. Size distribution of autotrophy and microheterotrophy in reservoirs: implications for foodweb structure

    International Nuclear Information System (INIS)

    Kimmel, B.L.

    1981-01-01

    Particle size is a primary determinant of resources available to consumers and of the efficiency of energy transfer through planktonic food chains. Dual radioisotopic labeling (with 14 C-bicarbonate and 3 H-acetate) and size fractionation of naturally-occurring phytoplankton-bacterioplankton assemblages were employed to examine the particle size distributions of planktonic autotrophy and microheterotrophy in four limnologically-dissimilar US reservoirs (Lake Mead, Arizona-Nevada, oligo-mesotrophic; Broken Bow Lake, Oklahoma, mesotrophic; Lake Texoma, Oklahoma-Texas, eutrophic; and Normandy Lake, Tennessee, eutrophic). Small nano- and ultraphytoplankton (< 8.0 μm) and free-living bacteria (< 3.0 μm) were primarly responsible for planktonic autotrophy and microheterotrophy, respecitvely, even in eutrophic conditions. Zooplankton grazing experiments indicated that (1) most grazing pressure occurs on 3.0 to 8.0 μm particles, (2) grazer limitation of the occurrence of attached bacteria amd microbial-detrital aggregates is unlikely, and (3) free-living bacteria are inefficiently harvested, relative to algae, by most reservoir zooplankton. Relative to autorophy, the microheterotrophic conversion of allochthonous dissolved organic matter and algal excretion products to bacterial biomass appears unlikely to be a significant source of organic carbon for planktonic grazers in most reservoirs

  6. Invasive lionfish harbor a different external bacterial community than native Bahamian fishes

    Science.gov (United States)

    Stevens, J. L.; Olson, J. B.

    2013-12-01

    The introduction and subsequent spread of lionfish into the Atlantic Ocean and Caribbean Sea has become a worldwide conservation issue. These highly successful invaders may also be capable of introducing non-native microorganisms to the invaded regions. This study compared the bacterial communities associated with lionfish external tissue to those of native Bahamian fishes and ambient water. Terminal restriction fragment length polymorphism analyses demonstrated that lionfish bacterial communities were significantly different than those associated with three native Bahamian fishes. Additionally, all fishes harbored distinct bacterial communities from the ambient bacterioplankton. Analysis of bacterial clone libraries from invasive lionfish and native squirrelfish indicated that lionfish communities were more diverse than those associated with squirrelfish, yet did not contain known fish pathogens. Using microscopy and molecular genetic approaches, lionfish eggs were examined for the presence of bacteria to evaluate the capacity for vertical transmission. Eggs removed from the ovaries of gravid females were free of bacteria, suggesting that lionfish likely acquire bacteria from the environment. This study was the first examination of bacterial communities associated with the invasive lionfish and indicated that they support different communities of environmentally derived bacteria than Caribbean reef fishes.

  7. Decomposition in pelagic marine ecosytems

    International Nuclear Information System (INIS)

    Lucas, M.I.

    1986-01-01

    During the decomposition of plant detritus, complex microbial successions develop which are dominated in the early stages by a number of distinct bacterial morphotypes. The microheterotrophic community rapidly becomes heterogenous and may include cyanobacteria, fungi, yeasts and bactivorous protozoans. Microheterotrophs in the marine environment may have a biomass comparable to that of all other heterotrophs and their significance as a resource to higher trophic orders, and in the regeneration of nutrients, particularly nitrogen, that support 'regenerated' primary production, has aroused both attention and controversy. Numerous methods have been employed to measure heterotrophic bacterial production and activity. The most widely used involve estimates of 14 C-glucose uptake; the frequency of dividing cells; the incorporation of 3 H-thymidine and exponential population growth in predator-reduced filtrates. Recent attempts to model decomposition processes and C and N fluxes in pelagic marine ecosystems are described. This review examines the most sensitive components and predictions of the models with particular reference to estimates of bacterial production, net growth yield and predictions of N cycling determined by 15 N methodology. Directed estimates of nitrogen (and phosphorus) flux through phytoplanktonic and bacterioplanktonic communities using 15 N (and 32 P) tracer methods are likely to provide more realistic measures of nitrogen flow through planktonic communities

  8. Phosphate limitation induces the intergeneric inhibition of Pseudomonas aeruginosa by Serratia marcescens isolated from paper machines

    Science.gov (United States)

    Kuo, Pei-An; Kuo, Chih-Horng; Lai, Yiu-Kay; Graumann, Peter L; Tu, Jenn

    2013-01-01

    Phosphate is an essential nutrient for heterotrophic bacteria, affecting bacterioplankton in aquatic ecosystems and bacteria in biofilms. However, the influence of phosphate limitation on bacterial competition and biofilm development in multispecies populations has received limited attention in existing studies. To address this issue, we isolated 13 adhesive bacteria from paper machine aggregates. Intergeneric inhibition of Pseudomonas aeruginosa WW5 by Serratia marcescens WW4 was identified under phosphate-limited conditions, but not in Luria–Bertani medium or M9 minimal medium. The viable numbers of the pure S. marcescens WW4 culture decreased over 3 days in the phosphate-limited medium; however, the mortality of S. marcescens WW4 was significantly reduced when it was co-cultured with P. aeruginosa WW5, which appeared to sustain the S. marcescens WW4 biofilm. In contrast, viable P. aeruginosa WW5 cells immediately declined in the phosphate-limited co-culture. To identify the genetic/inhibitory element(s) involved in this process, we inserted a mini-Tn5 mutant of S. marcescens WW4 that lacked inhibitory effect. The results showed that an endonuclease bacteriocin was involved in this intergeneric inhibition by S. marcescens WW4 under phosphate limitation. In conclusion, this study highlights the importance of nutrient limitation in bacterial interactions and provides a strong candidate gene for future functional characterisation. PMID:23398522

  9. Distinct responses of bacterial communities to agricultural and urban impacts in temperate southern African estuaries

    Science.gov (United States)

    Matcher, G. F.; Froneman, P. W.; Meiklejohn, I.; Dorrington, R. A.

    2018-01-01

    Worldwide, estuaries are regarded as amongst the most ecologically threatened ecosystems and are increasingly being impacted by urban development, agricultural activities and reduced freshwater inflow. In this study, we examined the influence of different human activities on the diversity and structure of bacterial communities in the water column and sediment in three distinct, temperate permanently open estuarine systems within the same geographic region of southern Africa. The Kariega system is freshwater-deprived and is considered to be relatively pristine; the Kowie estuary is marine-dominated and impacted by urban development, while the Sundays system is fresh-water dominated and impacted by agricultural activity in its catchment. The bacterial communities in all three systems comprise predominantly heterotrophic species belonging to the Bacteroidetes and Proteobacteria phyla with little overlap between bacterioplankton and benthic bacterial communities at the species level. There was overlap between the operational taxonomic units (OTUs) of the Kowie and Kariega, both marine-influenced estuaries. However, lower species richness in the Kowie, likely reflects the impact of human settlements along the estuary. The dominant OTUs in the Sundays River system were distinct from those of the Kariega and Kowie estuaries with an overall decrease in species richness and evenness. This study provides an important snapshot into the microbial population structures of permanently open temperate estuarine systems and the influence of anthropogenic impacts on bacterial diversity and community structure.

  10. Zooplankton community composition of high mountain lakes in the Tatra Mts., the Alps in North Tyrol, and Scotland: relationship to pH, depth, organic carbon, and chlorophyll-a concentration

    Directory of Open Access Journals (Sweden)

    Skála Ivan

    2015-10-01

    Full Text Available The European EMERGE (European Mountain lake Ecosystems: Regionalisation, diaGnostic & socio-economic Evaluation project was a survey of high mountain lakes (above treeline across Europe using unified methods of sampling and analysis. The sampling was carried out in summer or autumn 2000, and comprised biological samples, and samples for chemical analysis. Data from three lake districts are used in this paper: the Tatra Mts. in Slovakia and Poland (45 lakes, the Alps in Tyrol in Austria (22 lakes, and Scotland (30 lakes. As it is shown by multiple regression analysis, DTOC (dissolved or total organic carbon is the key variable for most groups of zooplankton. With increasing DTOC and mostly with chlorophyll-a decreasing, pH increasing and depth decreasing, macrofitrators with coarse filter meshes are replaced by microfiltrators with fine filter meshes. Higher DTOC may increase bacterioplankton production and advantage species able to consume bacteria (microfiltrators. Other zooplankton species also differ in their preference for DTOC, chlorophyll-a, pH and depth, but DTOC being positively correlated with chlorophyll-a and pH positively correlated with depth. It may be caused by their different preference for food quality in terms of C:P ratio.

  11. Effects of Dispersal and Initial Diversity on the Composition and Functional Performance of Bacterial Communities.

    Science.gov (United States)

    Zha, Yinghua; Berga, Mercè; Comte, Jérôme; Langenheder, Silke

    2016-01-01

    Natural communities are open systems and consequently dispersal can play an important role for the diversity, composition and functioning of communities at the local scale. It is, however, still unclear how effects of dispersal differ depending on the initial diversity of local communities. Here we implemented an experiment where we manipulated the initial diversity of natural freshwater bacterioplankton communities using a dilution-to-extinction approach as well as dispersal from a regional species pool. The aim was further to test whether dispersal effects on bacterial abundance and functional parameters (average community growth rates, respiration rates, substrate utilisation ability) differ in dependence of the initial diversity of the communities. First of all, we found that both initial diversity and dispersal rates had an effect on the recruitment of taxa from a regional source, which was higher in communities with low initial diversity and at higher rates of dispersal. Higher initial diversity and dispersal also promoted higher levels of richness and evenness in local communities and affected, both, separately or interactively, the functional performance of communities. Our study therefore suggests that dispersal can influence the diversity, composition and functioning of bacterial communities and that this effect may be enhanced if the initial diversity of communities is depleted.

  12. Do patterns of bacterial diversity along salinity gradients differ from those observed for macroorganisms?

    Directory of Open Access Journals (Sweden)

    Jianjun Wang

    Full Text Available It is widely accepted that biodiversity is lower in more extreme environments. In this study, we sought to determine whether this trend, well documented for macroorganisms, also holds at the microbial level for bacteria. We used denaturing gradient gel electrophoresis (DGGE with phylum-specific primers to quantify the taxon richness (i.e., the DGGE band numbers of the bacterioplankton communities of 32 pristine Tibetan lakes that represent a broad salinity range (freshwater to hypersaline. For the lakes investigated, salinity was found to be the environmental variable with the strongest influence on the bacterial community composition. We found that the bacterial taxon richness in freshwater habitats increased with increasing salinity up to a value of 1‰. In saline systems (systems with >1‰ salinity, the expected decrease of taxon richness along a gradient of further increasing salinity was not observed. These patterns were consistently observed for two sets of samples taken in two different years. A comparison of 16S rRNA gene clone libraries revealed that the bacterial community of the lake with the highest salinity was characterized by a higher recent accelerated diversification than the community of a freshwater lake, whereas the phylogenetic diversity in the hypersaline lake was lower than that in the freshwater lake. These results suggest that different evolutionary forces may act on bacterial populations in freshwater and hypersaline lakes on the Tibetan Plateau, potentially resulting in different community structures and diversity patterns.

  13. Bacterial activity in a reservoir determined by autoradiography and its relationships to phyto- and zooplankton

    International Nuclear Information System (INIS)

    Simek, K.

    1986-01-01

    In the drinking water reservoir Rimov (Southern Bohemia) bacterioplankton was studied during 1983. Special attention was given to the relationships between parameters of bacterial abundance, total and individual activity. Bacterial counts and biomass was assessed and autoradiographic determinations of the proportion of active bacteria incorporating thymidine (Th) and a mixture of amino acids (AA) and total uptake rate of AA were made over a year in the surface layer and during summer stratification from the thermocline and 15 m depth. Specific activity of metabolically active bacteria and specific activity per unit of biomass were negatively correlated with counts of metabolizing cells and with bacterial biomass, respectively. Total and individual heterotrophic activity and counts of bacteria coincided with the changes of phytoplankton biomass, whereas bacteria incorporating Th were more tightly correlated with primary production. The most significant relation of metabolically active bacteria was found to cladoceran biomass. Thus, this part of heterotrophic bacterial activity seems to be stimulated by leakage of dissolved organic matter from phytoplankton being disrupted and incompletely digested by cladocerans rather than from healthy photosynthetizing cells. (author)

  14. Introduced ascidians harbor highly diverse and host-specific symbiotic microbial assemblages.

    Science.gov (United States)

    Evans, James S; Erwin, Patrick M; Shenkar, Noa; López-Legentil, Susanna

    2017-09-08

    Many ascidian species have experienced worldwide introductions, exhibiting remarkable success in crossing geographic borders and adapting to local environmental conditions. To investigate the potential role of microbial symbionts in these introductions, we examined the microbial communities of three ascidian species common in North Carolina harbors. Replicate samples of the globally introduced species Distaplia bermudensis, Polyandrocarpa anguinea, and P. zorritensis (n = 5), and ambient seawater (n = 4), were collected in Wrightsville Beach, NC. Microbial communities were characterized by next-generation (Illumina) sequencing of partial (V4) 16S rRNA gene sequences. Ascidians hosted diverse symbiont communities, consisting of 5,696 unique microbial OTUs (at 97% sequenced identity) from 47 bacterial and three archaeal phyla. Permutational multivariate analyses of variance revealed clear differentiation of ascidian symbionts compared to seawater bacterioplankton, and distinct microbial communities inhabiting each ascidian species. 103 universal core OTUs (present in all ascidian replicates) were identified, including taxa previously described in marine invertebrate microbiomes with possible links to ammonia-oxidization, denitrification, pathogenesis, and heavy-metal processing. These results suggest ascidian microbial symbionts exhibit a high degree of host-specificity, forming intimate associations that may contribute to host adaptation to new environments via expanded tolerance thresholds and enhanced holobiont function.

  15. Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions

    Science.gov (United States)

    Versluis, Dennis; D'Andrea, Marco Maria; Ramiro Garcia, Javier; Leimena, Milkha M.; Hugenholtz, Floor; Zhang, Jing; Öztürk, Başak; Nylund, Lotta; Sipkema, Detmer; Schaik, Willem Van; de Vos, Willem M.; Kleerebezem, Michiel; Smidt, Hauke; Passel, Mark W. J. Van

    2015-07-01

    Antibiotic resistance genes are found in a broad range of ecological niches associated with complex microbiota. Here we investigated if resistance genes are not only present, but also transcribed under natural conditions. Furthermore, we examined the potential for antibiotic production by assessing the expression of associated secondary metabolite biosynthesis gene clusters. Metatranscriptome datasets from intestinal microbiota of four human adults, one human infant, 15 mice and six pigs, of which only the latter have received antibiotics prior to the study, as well as from sea bacterioplankton, a marine sponge, forest soil and sub-seafloor sediment, were investigated. We found that resistance genes are expressed in all studied ecological niches, albeit with niche-specific differences in relative expression levels and diversity of transcripts. For example, in mice and human infant microbiota predominantly tetracycline resistance genes were expressed while in human adult microbiota the spectrum of expressed genes was more diverse, and also included β-lactam, aminoglycoside and macrolide resistance genes. Resistance gene expression could result from the presence of natural antibiotics in the environment, although we could not link it to expression of corresponding secondary metabolites biosynthesis clusters. Alternatively, resistance gene expression could be constitutive, or these genes serve alternative roles besides antibiotic resistance.

  16. Same same but different: ecological niche partitioning of planktonic freshwater prokaryotes

    Directory of Open Access Journals (Sweden)

    Michaela M. Salcher

    2013-08-01

    Full Text Available Lakes and ponds harbour a high number of diverse planktonic microorganisms that are centrally involved in biochemical cycles and aquatic food webs. Although the open water body (pelagial seems to be a uniform and unstructured environment, ecological niche separation of coexisting microbial taxa might be triggered by limiting resources (bottom-up control and mortality factors (top-down control, leading to distinct spatial and temporal distribution patterns of different microbes. This review gives an overview of the most abundant prokaryotic populations by grouping them in specific ecological guilds based on their life strategies. Defense specialists such as very small Actinobacteria or big filamentous bacteria mostly occur at times of highest grazing pressure by heterotrophic nanoflagellates, the main consumers of bacteria. Oligotrophic ultramicrobacteria, on the other hand, seem to be mostly adapted to nutrient depleted water layers during summer stratification, while opportunistic bacteria profit from material released during short-living algal blooms. Seasonal changes in abiotic and biotic factors may be the main causes for periodic reoccurring density maxima of different prokaryotes populations in the pelagial of temperate lakes, reflected in a distinct seasonality of the freshwater bacterioplankton.

  17. Indicators of early successional trends in environmental condition and community function in constructed wetlands of the Athabasca Oilsands region

    Energy Technology Data Exchange (ETDEWEB)

    Ciborowski, J.; Kovalenko, K. [Windsor Univ., ON (Canada); Dixon, G.; Farwell, A. [Waterloo Univ., ON (Canada); Foote, L.; Mollard, F.; Roy, M. [Alberta Univ., Edmonton, AB (Canada); Smits, J.; Turcotte, D. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2010-07-01

    This presentation reported on a study that compared interannual environmental variation in post-mining Athabasca oil sands landscapes. In particular, it compared biological, ecotoxicological and carbon dynamic aspects of sixteen 5 to 30 year old wetlands with different ages, reclamation materials and stockpiled surface materials such as peat. In addition to determining carbon fluxes, standing stocks of hydrocarbons were measured along with organic substrate, bacterioplankton, phytoplankton, biofilm, macrophytes, litter, zoobenthos, and aquatic insect emergence. Gas fluxes, microbial, plant, zoobenthic, amphibian, and tree swallow nestling production, and stable isotope signatures were used to determine carbon pathways, fluxes and budgets. Coarse taxon richness in reference wetlands reached an asymptote in 5 to 7 years. Richness, composition and emergent plant cover of oilsands-affected wetlands converged over a 15 to 20 year period with reference wetland patterns. The development of emergent but not submergent plant cover and associated biota accelerated with the addition of peat. Water chemistry was found to be more important than sediment in terms of regulating submergent biological properties. The study showed that the most important regulator of community composition may be residual salinity. Compared to more temperate biomes, the successional trends were slower.

  18. Study on the Changes of Biotic Variables, Their Influence on the Primary Productivity and the Effect of Manuring of Fish Ponds

    Directory of Open Access Journals (Sweden)

    Doychin I. Terziyski

    2016-12-01

    Full Text Available The experiment was carried out in the period 2004-2006 on seven fish ponds of the Institute for Fishery and Aquaculture in Plovdiv city, Bulgaria with a single area varying from 1.8 to 3.9 daа. Powered fertilization with cattle manure on dose 3000 kg.ha-1 was applied. The aim of the experiment was to studythe relations between the biotic factors (zooplankton, phytoplankton, zoobenthos, chlorophyll a, macrophytes, bacterioplankton, percent of energy utilization by primary productivity (PEU, their influence on the primary productivity and the effect of manuring on the fish ponds. The bigger part of the biotic factor variation was defined by the differences between the monthly samplings compared to the changes between the ponds within the period of investigation (2004/05/06. There was a difference between the first and last months concerning the biotic factors. This great seasonal variability decreases the opportunity for revealing the differences between the manured and the control ponds. The biotic factors as the PP (primary productivity, respiration and PEU in the manured ponds were higher compared to the control ponds during 2005. More macrophytes and higher PP/respiration and PP/chlorophyllа ratioswere detected in the control ponds. Increased biotic variable values of the PP, respiration and chlorophyll а were found in the manured ponds during 2006. The derived relationships might contribute for enhanced productivity of carp ponds and for improvement of existing management practices in the view of better water quality in fish farming.

  19. The Directed Cooperative Assembly of Proteorhodopsin Into 2d And 3d Polarized Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liang, H.; Whited, G.; Nguyen, C.; Stucky, G.D.; /UC, Santa Barbara

    2007-07-12

    Proteorhodopsin is the membrane protein used by marine bacterioplankton as a light-driven proton pump. Here, we describe a rapid cooperative assembly process directed by universal electrostatic interactions that spontaneously organizes proteorhodopsin molecules into ordered arrays with well defined orientation and packing density. We demonstrate the charge density-matching mechanism that selectively controls the assembly process. The interactions among different components in the system are tuned by varying their charge densities to yield different organized transmembrane protein arrays: (i) a bacteriorhodopsin purple membrane-like structure where proteorhodopsin molecules are cooperatively arranged with charged lipids into a 2D hexagonal lattice; (ii) selected liquid-crystalline states in which crystalline lamellae made up of the coassembled proteorhodopsin and charged lipid molecules are coupled three-dimensionally with polarized proteorhodopsin orientation persisting through the macroscopic scale. Understanding this rapid electrostatically driven assembly process sheds light on organizing membrane proteins in general, which is a prerequisite for membrane protein structural and mechanistic studies as well as in vitro applications.

  20. Impact of the inflow of Vistula river waters on the pelagic zone in the Gulf of Gdańsk

    Directory of Open Access Journals (Sweden)

    Nadezhda Torgunova

    2013-11-01

    Full Text Available The biomass, production, composition of autotrophic phytoplankton andhetero-trophic bacteria were studied along with environmental and biologicalparameters. Samples were taken from Vistula river water (at Kiezmark andfrom the river plume to the outer stations in the Gulf of Gdańsk (Baltic Sea in June2005. The phytoplankton biomass gradient appeared to be simply the result ofdilution of the river water in the sea water, whereas the bacterial abundanceand biomass dropped between the river station and the first sea water stations,a decrease that cannot be explained by the dilution effect. The Vistula waterstimulated the production mainly of bacterioplankton but also of phytoplanktonin the river plume as compared to rates measured in Vistula waters and at the opensea stations. However, this stimulation did not result in a measurable increasein biomasses, probably because of the short retention time of water in theriver plume. Phytoplankton production was correlated with phytoplankton biomass(Chl a, while bacterial production was correlated with phytoplanktonproduction and phytoplankton biomass (Chl a.

  1. The microbial plankton of Lake Fryxell, southern Victoria Land, Antarctica during the summers of 1992 and 1994

    Science.gov (United States)

    Laybourn-Parry, J.; James, M.R.; McKnight, Diane M.; Priscu, J.; Spaulding, S.A.; Shiel, R.

    1997-01-01

    Samples collected from Lake Fryxell, southern Victoria Land, Antarctica in January 1992 and 1994 were analysed for the abundance of bacterioplankton and the diversity and abundance of protistan plankton. At the times of sampling, 14 ciliate species and 10 species of autotrophic flagellate were recorded. The samples contained two species of rotifer (Philodina spp.), which formed the first record of planktonic metazoans in the Dry Valley lakes of this region of Antarctica. Bacterial concentrations ranged between 1.0 and 3.8 x 108 l-1 in the upper oxic waters increasing to 20 x 08 l-1 in the anoxic waters. Heterotrophic flagellates decreased in abundance down the oxygenated water column, disappearing completely at 9 m, and ranged between 0.28 and 7.39 x 105 l-1 in abundance. Autotrophic flagellates were much more abundant exhibiting a number of distinct peaks down the water column (1.89 25.3 x 108 l-1). The ciliated protozoa were very abundant (up to 7720 l-1) in relation to flagellate and bacterial numbers, typical of oligotrophic lakes world-wide. The distribution of the protistan plankton showed marked zonation, probably in response to the differing salinity and temperature gradients in the water column. Possible trophic interactions are discussed and comparisons with other continental Antarctic lakes made.

  2. UV radiation and organic matter composition shape bacterial functional diversity in sediments

    Directory of Open Access Journals (Sweden)

    Ellard Roy Hunting

    2013-10-01

    Full Text Available AbstractUV radiation and organic matter (OM composition are known to influence the speciescomposition of bacterioplankton communities. Potential effects of UV radiation onbacterial communities residing in sediments remain completely unexplored to date.However, it has been demonstrated that UV radiation can reach the bottom of shallowwaters and wetlands and alter the OM composition of the sediment, suggesting thatUV radiation may be more important for sediment bacteria than previously anticipated.It is hypothesized here that exposure of shallow OMcontaining sediments to UVradiation induces OMsource dependant shifts in the functional composition ofsediment bacterial communities. This study therefore investigated the combinedinfluence of both UV radiation and OM composition on bacterial functional diversity inlaboratory sediments. Two different organic matter sources, labile and recalcitrantorganic matter (OM, were used and metabolic diversity was measured with BiologGN. Radiation exerted strong negative effects on the metabolic diversity in thetreatments containing recalcitrant OM, more than in treatments containing labile OM.The functional composition of the bacterial community also differed significantlybetween the treatments. Our findings demonstrate that a combined effect of UVradiation and OM composition shapes the functional composition of microbialcommunities developing in sediments, hinting that UV radiation may act as animportant sorting mechanism for bacterial communities and driver for bacterialfunctioning in shallow lakes and wetlands.

  3. High frequency sampling of the 1984 spring bloom within the mid-Atlantic Bight: Synoptic shipboard, aircraft, and in situ perspectives of the SEEP-I experiment

    Science.gov (United States)

    Walsh, J. J.; Wirick, C. D.; Pietrafesa, L. J.; Whitledge, T. E.; Hoge, F. E.; Swift, R. N.

    1986-01-01

    Moorings of current meters, thermistors, transmissometers, and fluorometers on the mid-Atlantic shelf, south of Long Island, suggest a cumulative seaward export of perhaps 0.35 g C/sq m/day between the 80 and 120 m isobaths during February-April 1984. Such a horizontal loss of algal carbon over the lower third of the water column would be 23 to 78% of the March-April 1984 primary production. This physical carbon loss is similar to daily grazing losses from zooplankton of 32-40% of the algal fixation of carbon. Metabolic demands of the benthos could be met by just the estimated fecal pellet flux, without direct consumption of algal carbon, while bacterioplankton needs could be served by excretory release of dissolved organic matter during photosynthesis. Sediment traps tethered 10 m off the bottom at the 120 m isobath and 50 m above the 500 m isobath caught as much as 0.16 to 0.26 g C /sq m/day during March-April 1984, in reasonable agreement with the flux estimated from the other moored instruments.

  4. Evidence for a temperature acclimation mechanism in bacteria: an empirical test of a membrane-mediated trade-off

    Science.gov (United States)

    Hall, Edward K.; Singer, Gabriel A.; Kainz, Martin J.; Lennon, Jay T.

    2010-01-01

    1. Shifts in bacterial community composition along temporal and spatial temperature gradients occur in a wide range of habitats and have potentially important implications for ecosystem functioning. However, it is often challenging to empirically link an adaptation or acclimation that defines environmental niche or biogeography with a quantifiable phenotype, especially in micro-organisms. 2. Here we evaluate a possible mechanistic explanation for shifts in bacterioplankton community composition in response to temperature by testing a previously hypothesized membrane mediated trade-off between resource acquisition and respiratory costs. 3. We isolated two strains of Flavobacterium sp. at two temperatures (cold isolate and warm isolate) from the epilimnion of a small temperate lake in North Central Minnesota. 4. Compared with the cold isolate the warm isolate had higher growth rate, higher carrying capacity, lower lag time and lower respiration at the high temperature and lower phosphorus uptake at the low temperature. We also observed significant differences in membrane lipid composition between isolates and between environments that were consistent with adjustments necessary to maintain membrane fluidity at different temperatures. 5. Our results suggest that temperature acclimation in planktonic bacteria is, in part, a resource-dependent membrane-facilitated phenomenon. This study provides an explicit example of how a quantifiable phenotype can be linked through physiology to competitive ability and environmental niche.

  5. Virioplankton dynamics are related to eutrophication levels in a tropical urbanized bay.

    Directory of Open Access Journals (Sweden)

    Anderson S Cabral

    Full Text Available Virioplankton are an important and abundant biological component of marine and freshwater ecosystems. Often overlooked, aquatic viruses play an important role in biogeochemical cycles on a global scale, infecting both autotrophic and heterotrophic microbes. Viral diversity, abundance, and viral interactions at different trophic levels in aqueous environments are not well understood. Tropical ecosystems are less frequently studied than temperate ecosystems, but could provide new insights into how physical and chemical variability can shape or force microbial community changes. In this study, we found high viral abundance values in Guanabara Bay relative to other estuaries around the world. Viral abundance was positively correlated with bacterioplankton abundance and chlorophyll a concentrations. Moreover, prokaryotic and viral abundance were positively correlated with eutrophication, especially in surface waters. These results provide novel baseline data on the quantitative distribution of aquatic viruses in tropical estuaries. They also provide new information on a complex and dynamic relationship in which environmental factors influence the abundance of bacterial hosts and consequently their viruses. Guanabara Bay is characterized by spatial and seasonal variations, and the eutrophication process is the most important factor explaining the structuring of virioplankton abundance and distribution in this tropical urbanized bay.

  6. Insights into variability of actinorhodopsin genes of the LG1 cluster in two different freshwater habitats.

    Directory of Open Access Journals (Sweden)

    Jitka Jezberová

    Full Text Available Actinorhodopsins (ActRs are recently discovered proteorhodopsins present in Actinobacteria, enabling them to adapt to a wider spectrum of environmental conditions. Frequently, a large fraction of freshwater bacterioplankton belongs to the acI lineage of Actinobacteria and codes the LG1 type of ActRs. In this paper we studied the genotype variability of the LG1 ActRs. We have constructed two clone libraries originating from two environmentally different habitats located in Central Europe; the large alkaline lake Mondsee (Austria and the small humic reservoir Jiřická (the Czech Republic. The 75 yielded clones were phylogenetically analyzed together with all ActR sequences currently available in public databases. Altogether 156 sequences were analyzed and 13 clusters of ActRs were distinguished. Newly obtained clones are distributed over all three LG1 subgroups--LG1-A, B and C. Eighty percent of the sequences belonged to the acI lineage (LG1-A ActR gene bearers further divided into LG1-A1 and LG1-A2 subgroups. Interestingly, the two habitats markedly differed in genotype composition with no identical sequence found in both samples of clones. Moreover, Jiřická reservoir contained three so far not reported clusters, one of them LG1-C related, presenting thus completely new, so far undescribed, genotypes of Actinobacteria in freshwaters.

  7. Vertical and longitudinal gradients in HNA-LNA cell abundances and cytometric characteristics in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    F. Van Wambeke

    2011-07-01

    Full Text Available Heterotrophic bacterioplankton abundance and production were investigated with depth (down to bathypelagic layers and with longitude (from 4.9° E to 32.7° E along a cruise track across the Mediterranean Sea in early summer 2008. Abundances and flow cytometric characteristics (green fluorescence and side scatter signals of high nucleic acid (HNA and low nucleic acid (LNA bacterial cells were determined using flow cytometry. Contrary to what is generally observed, the relative importance of HNA cells, as a percent of total cells, (%HNA, range 30–69 % was inversely related to bacterial production (range 0.15–44 ng C l−1 h−1 although the negative relation was weak (log–log regression r2=0.19. The %HNA as well as the mean side scatter of HNA group increased significantly with depth in the meso and bathypelagic layers. Vertical stratification played an important role in influencing the distribution and characteristics of bacterial cells especially with regard to layers located above, within or below the deep chlorophyll maximum. Within a given layer, the relationships between the flow cytometric characteristics and environmental variables such as chlorophyll-a, nutrients or bacterial production changed. Overall, the relationships between HNA and LNA cells and environmental parameters differed vertically more than longitudinally.

  8. Phylogenetic signals of salinity and season in bacterial community composition across the salinity gradient of the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Daniel PR Herlemann

    2016-11-01

    Full Text Available Understanding the key processes that control bacterial community composition has enabled predictions of bacterial distribution and function within ecosystems. In this study, we used the Baltic Sea as a model system to quantify the phylogenetic signal of salinity and season with respect to bacterioplankton community composition. The abundances of 16S rRNA gene amplicon sequencing reads were analyzed from samples obtained from similar geographic locations in July and February along a brackish to marine salinity gradient in the Baltic Sea. While there was no distinct pattern of bacterial richness at different salinities, the number of bacterial phylotypes in winter was significantly higher than in summer. Bacterial community composition in brackish vs. marine conditions, and in July vs. February was significantly different. Non-metric multidimensional scaling showed that bacterial community composition was primarily separated according to salinity and secondly according to seasonal differences at all taxonomic ranks tested. Similarly, quantitative phylogenetic clustering implicated a phylogenetic signal for both salinity and seasonality. Our results support that global patterns of bacterial community composition with respect to salinity and season are the result of phylogenetically clustered ecological preferences with stronger imprints from salinity.

  9. Microbial Experimental Evolution as a Novel Research Approach in the Vibrionaceae and Squid-Vibrio Symbiosis

    Directory of Open Access Journals (Sweden)

    William eSoto

    2014-12-01

    Full Text Available The Vibrionaceae are a genetically and metabolically diverse family living in aquatic habitats with a great propensity toward developing interactions with eukaryotic microbial and multicellular hosts (as either commensals, pathogens, and mutualists. The Vibrionaceae frequently possess a life history cycle where bacteria are attached to a host in one phase and then another where they are free from their host as either part of the bacterioplankton or adhered to a solid substrate such as marine sediment, riverbeds, lakebeds, or floating particulate debris. These two stages in their life history exert quite distinct and separate selection pressures. When bound to solid substrates or to host cells, the Vibrionaceae can also exist as complex biofilms. The association between bioluminescent Vibrio spp. and sepiolid squids (Cephalopoda: Sepiolidae is an experimentally tractable model to study bacteria and animal host interactions, since the symbionts and squid hosts can be maintained in the laboratory independently of one another. The bacteria can be grown in pure culture and the squid hosts raised gnotobiotically with sterile light organs. The partnership between free-living Vibrio symbionts and axenic squid hatchlings emerging from eggs must be renewed every generation of the cephalopod host. Thus, symbiotic bacteria and animal host can each be studied alone and together in union. Despite virtues provided by the Vibrionaceae and sepiolid squid-Vibrio symbiosis, these assets to evolutionary biology have yet to be fully utilized for microbial experimental evolution. Experimental evolution studies already completed are reviewed, along with exploratory topics for future study.

  10. Carbon dynamics in wetland restoration

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, K.; Ciborowski, J.; Gardner-Costa, J.; Slama, C. [Windsor Univ., ON (Canada); Daly, C.; Hornung, J. [Suncor Energy, Calgary, AB (Canada); Dixon, G.; Farwell, A. [Waterloo Univ., ON (Canada); Foote, L.; Frederick, K.; Roy, M. [Alberta Univ., Edmonton, AB (Canada); Liber, K. [Saskatchewan Univ., Saskatoon, SK (Canada); Smits, J. [Calgary Univ., AB (Canada); Wytrykush, C. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2010-07-01

    This study focused on the reclamation of wetland ecosystems impacted by oil sands development in the boreal wetlands. Although these wetlands play an important role in global carbon balance, their ecosystem function is compromised by direct and regional anthropogenic disturbance and climate change. Large oil sand mining areas that require reclamation generate substantial quantities of extraction process-affected materials. In order to determine if the reclaimed wetlands were restored to equivalent ecosystem function, this study evaluated carbon flows and food web structure in oil sands-affected wetlands. The purpose was to determine whether a prescribed reclamation strategy or topsoil amendment accelerates reclaimed wetland development to produce self-sustaining peatlands. In addition to determining carbon fluxes, this study measured compartment standing stocks for residual hydrocarbons, organic substrate, bacterioplankton, phytoplankton, biofilm, macrophytes, detritus, zoobenthos and aquatic-terrestrial exports. Most biotic 28 compartments differed between oil-sands-affected and reference wetlands, but the difference lessened with age. Macroinvertebrate trophic diversity was lower in oil sands-affected wetlands. Peat amendment seemed to speed convergence for some compartments but not others. These results were discussed in the context of restoration of ecosystem function and optimization of reclamation strategies.

  11. Virus-mediated transfer of nitrogen from heterotrophic bacteria to phytoplankton

    Directory of Open Access Journals (Sweden)

    E. J. Shelford

    2018-02-01

    Full Text Available Lytic infection of bacteria by viruses releases nutrients during cell lysis and stimulates the growth of primary producers, but the path by which these nutrients flow from lysates to primary producers has not been traced. This study examines the remineralisation of nitrogen (N from Vibrio lysates by heterotrophic bacterioplankton and its transfer to primary producers. In laboratory trials, Vibrio sp. strain PWH3a was infected with a lytic virus (PWH3a-P1 and the resulting 36.0 µmol L−1 of dissolved organic N (DON in the lysate was added to cultures containing cyanobacteria (Synechococcus sp. strain DC2 and a natural bacterial assemblage. Based on the increase in cyanobacteria, 74 % (26.5 µmol L−1 N of the DON in the lysate was remineralised and taken up. Lysate from Vibrio sp. strain PWH3a labeled with 15NH4+ was also added to seawater containing natural microbial communities, and in four field experiments, stable isotope analysis indicated that the uptake of 15N was 0.09 to 0.70 µmol N µg−1 of chlorophyll a. The results from these experiments demonstrate that DON from lysate can be efficiently remineralised and transferred to phytoplankton, and they provide further evidence that the viral shunt is an important link in nitrogen recycling in aquatic systems.

  12. Novel analysis of oceanic surface water metagenomes suggests importance of polyphosphate metabolism in oligotrophic environments.

    Directory of Open Access Journals (Sweden)

    Ben Temperton

    Full Text Available Polyphosphate is a ubiquitous linear homopolymer of phosphate residues linked by high-energy bonds similar to those found in ATP. It has been associated with many processes including pathogenicity, DNA uptake and multiple stress responses across all domains. Bacteria have also been shown to use polyphosphate as a way to store phosphate when transferred from phosphate-limited to phosphate-rich media--a process exploited in wastewater treatment and other environmental contaminant remediation. Despite this, there has, to date, been little research into the role of polyphosphate in the survival of marine bacterioplankton in oligotrophic environments. The three main proteins involved in polyphosphate metabolism, Ppk1, Ppk2 and Ppx are multi-domain and have differential inter-domain and inter-gene conservation, making unbiased analysis of relative abundance in metagenomic datasets difficult. This paper describes the development of a novel Isofunctional Homolog Annotation Tool (IHAT to detect homologs of genes with a broad range of conservation without bias of traditional expect-value cutoffs. IHAT analysis of the Global Ocean Sampling (GOS dataset revealed that genes associated with polyphosphate metabolism are more abundant in environments where available phosphate is limited, suggesting an important role for polyphosphate metabolism in marine oligotrophs.

  13. Virus-mediated transfer of nitrogen from heterotrophic bacteria to phytoplankton

    Science.gov (United States)

    Shelford, Emma J.; Suttle, Curtis A.

    2018-02-01

    Lytic infection of bacteria by viruses releases nutrients during cell lysis and stimulates the growth of primary producers, but the path by which these nutrients flow from lysates to primary producers has not been traced. This study examines the remineralisation of nitrogen (N) from Vibrio lysates by heterotrophic bacterioplankton and its transfer to primary producers. In laboratory trials, Vibrio sp. strain PWH3a was infected with a lytic virus (PWH3a-P1) and the resulting 36.0 µmol L-1 of dissolved organic N (DON) in the lysate was added to cultures containing cyanobacteria (Synechococcus sp. strain DC2) and a natural bacterial assemblage. Based on the increase in cyanobacteria, 74 % (26.5 µmol L-1 N) of the DON in the lysate was remineralised and taken up. Lysate from Vibrio sp. strain PWH3a labeled with 15NH4+ was also added to seawater containing natural microbial communities, and in four field experiments, stable isotope analysis indicated that the uptake of 15N was 0.09 to 0.70 µmol N µg-1 of chlorophyll a. The results from these experiments demonstrate that DON from lysate can be efficiently remineralised and transferred to phytoplankton, and they provide further evidence that the viral shunt is an important link in nitrogen recycling in aquatic systems.

  14. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions

    Science.gov (United States)

    Zhou, Jin; Lyu, Yihua; Richlen, Mindy; Anderson, Donald M.; Cai, Zhonghua

    2017-01-01

    Algae are ubiquitous in the marine environment, and the ways in which they interact with bacteria are of particular interest in marine ecology field. The interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape microbial diversity. Although algal-bacterial interactions are well known and studied, information regarding the chemical-ecological role of this relationship remains limited, particularly with respect to quorum sensing (QS), which is a system of stimuli and response correlated to population density. In the microbial biosphere, QS is pivotal in driving community structure and regulating behavioral ecology, including biofilm formation, virulence, antibiotic resistance, swarming motility, and secondary metabolite production. Many marine habitats, such as the phycosphere, harbour diverse populations of microorganisms and various signal languages (such as QS-based autoinducers). QS-mediated interactions widely influence algal-bacterial symbiotic relationships, which in turn determine community organization, population structure, and ecosystem functioning. Understanding infochemicals-mediated ecological processes may shed light on the symbiotic interactions between algae host and associated microbes. In this review, we summarize current achievements about how QS modulates microbial behavior, affects symbiotic relationships, and regulates phytoplankton chemical ecological processes. Additionally, we present an overview of QS-modulated co-evolutionary relationships between algae and bacterioplankton, and consider the potential applications and future perspectives of QS. PMID:28966438

  15. Temperature dependences of growth rates and carrying capacities of marine bacteria depart from metabolic theoretical predictions

    KAUST Repository

    Huete-Stauffer, Tamara Megan

    2015-09-11

    Using the metabolic theory of ecology (MTE) framework, we evaluated over a whole annual cycle the monthly responses to temperature of the growth rates (μ) and carrying capacities (K) of heterotrophic bacterioplankton at a temperate coastal site. We used experimental incubations spanning 6oC with bacterial physiological groups identified by flow cytometry according to membrane integrity (live), nucleic acid content (HNA and LNA) and respiratory activity (CTC+). The temperature dependence of μat the exponential phase of growth was summarized by the activation energy (E), which was variable (-0.52 to 0.72 eV) but followed a seasonal pattern, only reaching the hypothesized value for aerobic heterotrophs of 0.65 eV during the spring bloom for the most active bacterial groups (live, HNA, CTC+). K (i.e. maximum experimental abundance) peaked at 4 × 106 cells mL-1 and generally covaried with μbut, contrary to MTE predictions, it did not decrease consistently with temperature. In the case of live cells, the responses of μand K to temperature were positively correlated and related to seasonal changes in substrate availability, indicating that the responses of bacteria to warming are far from homogeneous and poorly explained by MTE at our site. © FEMS 2015.

  16. Dilution-to-extinction culturing of SAR11 members and other marine bacteria from the Red Sea

    KAUST Repository

    Mohamed, Roslinda B.

    2013-12-01

    Life in oceans originated about 3.5 billion years ago where microbes were the only life form for two thirds of the planet’s existence. Apart from being abundant and diverse, marine microbes are involved in nearly all biogeochemical processes and are vital to sustain all life forms. With the overgrowing number of data arising from culture-independent studies, it became necessary to improve culturing techniques in order to obtain pure cultures of the environmentally significant bacteria to back up the findings and test hypotheses. Particularly in the ultra-oligotrophic Red Sea, the ubiquitous SAR11 bacteria has been reported to account for more than half of the surface bacterioplankton community. It is therefore highly likely that SAR11, and other microbial life that exists have developed special adaptations that enabled them to thrive successfully. Advances in conventional culturing have made it possible for abundant, unculturable marine bacteria to be grown in the lab. In this study, we analyzed the effectiveness of the media LNHM and AMS1 in isolating marine bacteria from the Red Sea, particularly members of the SAR11 clade. SAR11 strains obtained from this study AMS1, and belonged to subgroup 1a and phylotype 1a.3. We also obtained other interesting strains which should be followed up with in the future. In the long run, results from this study will enhance our knowledge of the pelagic ecosystem and allow the impacts of rising temperatures on marine life to be understood.

  17. Metatranscriptomics and Amplicon Sequencing Reveal Mutualisms in Seagrass Microbiomes

    Directory of Open Access Journals (Sweden)

    Byron C. Crump

    2018-03-01

    Full Text Available Terrestrial plants benefit from many well-understood mutualistic relationships with root- and leaf-associated microbiomes, but relatively little is known about these relationships for seagrass and other aquatic plants. We used 16S rRNA gene amplicon sequencing and metatranscriptomics to assess potential mutualisms between microorganisms and the seagrasses Zostera marina and Zostera japonica collected from mixed beds in Netarts Bay, OR, United States. The phylogenetic composition of leaf-, root-, and water column-associated bacterial communities were strikingly different, but these communities were not significantly different between plant species. Many taxa present on leaves were related to organisms capable of consuming the common plant metabolic waste product methanol, and of producing agarases, which can limit the growth of epiphytic algae. Taxa present on roots were related to organisms capable of oxidizing toxic sulfur compounds and of fixing nitrogen. Metatranscriptomic sequencing identified expression of genes involved in all of these microbial metabolic processes at levels greater than typical water column bacterioplankton, and also identified expression of genes involved in denitrification and in bacterial synthesis of the plant growth hormone indole-3-acetate. These results provide the first evidence using metatranscriptomics that seagrass microbiomes carry out a broad range of functions that may benefit their hosts, and imply that microbe–plant mutualisms support the health and growth of aquatic plants.

  18. Saccharides enhance iron bioavailability to Southern Ocean phytoplankton

    Science.gov (United States)

    Hassler, Christel S.; Nichols, Carol Mancuso; Butler, Edward C. V.; Boyd, Philip W.

    2011-01-01

    Iron limits primary productivity in vast regions of the ocean. Given that marine phytoplankton contribute up to 40% of global biological carbon fixation, it is important to understand what parameters control the availability of iron (iron bioavailability) to these organisms. Most studies on iron bioavailability have focused on the role of siderophores; however, eukaryotic phytoplankton do not produce or release siderophores. Here, we report on the pivotal role of saccharides—which may act like an organic ligand—in enhancing iron bioavailability to a Southern Ocean cultured diatom, a prymnesiophyte, as well as to natural populations of eukaryotic phytoplankton. Addition of a monosaccharide (>2 nM of glucuronic acid, GLU) to natural planktonic assemblages from both the polar front and subantarctic zones resulted in an increase in iron bioavailability for eukaryotic phytoplankton, relative to bacterioplankton. The enhanced iron bioavailability observed for several groups of eukaryotic phytoplankton (i.e., cultured and natural populations) using three saccharides, suggests it is a common phenomenon. Increased iron bioavailability resulted from the combination of saccharides forming highly bioavailable organic associations with iron and increasing iron solubility, mainly as colloidal iron. As saccharides are ubiquitous, present at nanomolar to micromolar concentrations, and produced by biota in surface waters, they also satisfy the prerequisites to be important constituents of the poorly defined “ligand soup,” known to weakly bind iron. Our findings point to an additional type of organic ligand, controlling iron bioavailability to eukaryotic phytoplankton—a key unknown in iron biogeochemistry. PMID:21169217

  19. Distribution and diversity of Prochlorococcus ecotypes in the Red Sea

    KAUST Repository

    Shibl, Ahmed A.

    2014-06-19

    Photosynthetic prokaryotes of the genus Prochlorococcus play a major role in global primary production in the world\\'s oligotrophic oceans. A recent study on pelagic bacterioplankton communities in the northern and central Red Sea indicated that the predominant cyanobacterial 16S rRNA gene sequence types were from Prochlorococcus cells belonging to a high-light-adapted ecotype (HL II). In this study, we analyzed microdiversity of Prochlorococcus sp. at multiple depths within and below the euphotic zone in the northern, central, and southern regions of the Red Sea, as well as in surface waters in the same locations, but in a different season. Prochlorococcus dominated the communities in clone libraries of the amplified 16S-23S rRNA internal transcribed spacer (ITS) region. Almost no differences were found between samples from coastal or open-water sites, but a high diversity of Prochlorococcus ecotypes was detected at 100-meter depth in the water column. In addition, an unusual dominance of HL II-related sequences was observed in deeper waters. Our results indicate that the Red Sea harbors diverse Prochlorococcus lineages, but no novel ecotypes, despite its unusual physicochemical properties. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Kwon, Miye; Kim, Mincheol; Takacs-Vesbach, Cristina; Lee, Jaejin; Hong, Soon Gyu; Kim, Sang Jong; Priscu, John C; Kim, Ok-Sun

    2017-06-01

    Perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica, are chemically stratified with depth and have distinct biological gradients. Despite long-term research on these unique environments, data on the structure of the microbial communities in the water columns of these lakes are scarce. Here, we examined bacterial diversity in five ice-covered Antarctic lakes by 16S rRNA gene-based pyrosequencing. Distinct communities were present in each lake, reflecting the unique biogeochemical characteristics of these environments. Further, certain bacterial lineages were confined exclusively to specific depths within each lake. For example, candidate division WM88 occurred solely at a depth of 15 m in Lake Fryxell, whereas unknown lineages of Chlorobi were found only at a depth of 18 m in Lake Miers, and two distinct classes of Firmicutes inhabited East and West Lobe Bonney at depths of 30 m. Redundancy analysis revealed that community variation of bacterioplankton could be explained by the distinct conditions of each lake and depth; in particular, assemblages from layers beneath the chemocline had biogeochemical associations that differed from those in the upper layers. These patterns of community composition may represent bacterial adaptations to the extreme and unique biogeochemical gradients of ice-covered lakes in the McMurdo Dry Valleys. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Seasonal baseline of nutrients and stable isotopes in a saline lake of Argentina: biogeochemical processes and river runoff effects.

    Science.gov (United States)

    Kopprio, Germán A; Kattner, Gerhard; Freije, R Hugo; de Paggi, Susana José; Lara, Rubén J

    2014-05-01

    The seasonal variability of inorganic and organic nutrients and stable isotopes and their relations with plankton and environmental conditions were monitored in Lake Chasicó. Principal component analysis evidenced the strong influence of the river runoff on several biogeochemical variables. Silicate concentrations were controlled by diatom biomass and river discharge. Higher values of nitrate and soluble reactive phosphorus (SRP) indicated agricultural uses in the river basin. Elevated pH values (∼ 9) inhibiting nitrification in the lake explained partially the dominance of ammonium: ∼ 83 % of dissolved inorganic nitrogen (DIN). The low DIN/SRP ratio inferred nitrogen limitation, although the hypotheses of iron and CO2 limitation are relevant in alkaline lakes. Particulate organic matter (POM) and dissolved organic matter (DOM) were mainly of autochthonous origin. The main allochthonous input was imported by the river as POM owning to the arid conditions. Dissolved organic carbon was likely top-down regulated by the bacterioplankton grazer Brachionus plicatilis. The δ(13)C signature was a good indicator of primary production and its values were influenced probably by CO2 limitation. The δ(15)N did not evidence nitrogen fixation and suggested the effects of anthropogenic activities. The preservation of a good water quality in the lake is crucial for resource management.

  2. Distribution and diversity of bacteria in a saline meromictic lake as determined by PCR-DGGE of 16S rRNA gene fragments.

    Science.gov (United States)

    Gugliandolo, Concetta; Lentini, Valeria; Maugeri, Teresa L

    2011-01-01

    The variations in vertical distribution and composition of bacteria in the meromictic Lake Faro (Messina, Italy) were analysed by culture-independent methods in two different mixing conditions. Water samples were collected from a central station from the surface to the bottom (30 m depth) on two different sampling dates--the first characterised by a well-mixed water mass and the second by a marked stratification. A 'red-water' layer, caused by a dense growth of photosynthetic sulphur bacteria, was present at a depth of 25 m in December 2005 and at 15 m in August 2006, defining two different zones in terms of their physicochemical properties. The vertical distribution of bacterioplankton showed that the interface zones were more densely populated than others. In both sampling periods, the highest numbers of live cells were observed within 'red water' layers. The dominant phylotypes of the bacterial community were determined by sequencing the Denaturing Gradient Gel Electrophoresis (DGGE) bands resulting from PCR amplification of 16S rRNA gene fragments. The number of DGGE bands, considered indicative of the total species richness, did not vary predictably across the two different sampling periods. Proteobacteria (α-, γ-, δ- and ε subclass members), Cytophaga-Flavobacterium-Bacteroides, green sulphur bacteria and Cyanobacteria were retrieved from Lake Faro. Most of the bands showed DNA sequences that did not match with other previously described organisms, suggesting the presence of new indigenous bacterial phylotypes.

  3. Filtering activity on a pure culture of Vibrio alginolyticus by the solitary ascidian Styela plicata and the colonial ascidian Polyandrocarpa zorritensis: a potential service to improve microbiological seawater quality economically.

    Science.gov (United States)

    Stabili, Loredana; Licciano, Margherita; Gravina, Maria Flavia; Giangrande, Adriana

    2016-12-15

    We investigated and compared, by laboratory experiments, the filter-feeding activity on bacteria by the solitary ascidian Styela plicata and the colonial ascidian Polyandrocarpa zorritensis. Clearance rates and retention efficiencies were estimated by using, as only food source, the bacterial species Vibrio alginolyticus selected on account of its importance in aquaculture pathogenicity. The Cmax was 1.4±0.17Lh -1 g -1 DW for S. plicata and 1.745Lh -1 g -1 DW for P. zorritensis. The highest retention efficiency was 41% corresponding to a removed bacterial biomass of 16.34+1.71 μgCL -1 g -1 DW for P. zorritensis and 81% corresponding to a bacterial biomass of 32.28+2.15 μgCL -1 g -1 DW for S. plicata. Styela plicata resulted higher efficient than P. zorritensis in removing V. alginolyticus from seawater in experimental tanks, thus representing a more suitable biofilter to restore the quality of microbiologically contaminated waters including those where aquaculture is practiced. Present laboratory experiments represent the first contribution to the comparison of the filtration activity of the two ascidians, as well as to characterize the filtration process on bacterioplankton and pone the basis for future field works aimed to restore bacteriological polluted seawater. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Diversity and Activity of Diazotrophs in Great Barrier Reef Surface Waters.

    Science.gov (United States)

    Messer, Lauren F; Brown, Mark V; Furnas, Miles J; Carney, Richard L; McKinnon, A D; Seymour, Justin R

    2017-01-01

    Discrepancies between bioavailable nitrogen (N) concentrations and phytoplankton growth rates in the oligotrophic waters of the Great Barrier Reef (GBR) suggest that undetermined N sources must play a significant role in supporting primary productivity. One such source could be biological dinitrogen (N 2 ) fixation through the activity of "diazotrophic" bacterioplankton. Here, we investigated N 2 fixation and diazotroph community composition over 10° S of latitude within GBR surface waters. Qualitative N 2 fixation rates were found to be variable across the GBR but were relatively high in coastal, inner and outer GBR waters, reaching 68 nmol L -1 d -1 . Diazotroph assemblages, identified by amplicon sequencing of the nifH gene, were dominated by the cyanobacterium Trichodesmium erythraeum , γ-proteobacteria from the Gamma A clade, and δ-proteobacterial phylotypes related to sulfate-reducing genera. However, diazotroph communities exhibited significant spatial heterogeneity, correlated with shifts in dissolved inorganic nutrient concentrations. Specifically, heterotrophic diazotrophs generally increased in relative abundance with increasing concentrations of phosphate and N, while Trichodesmium was proportionally more abundant when concentrations of these nutrients were low. This study provides the first in-depth characterization of diazotroph community composition and N 2 fixation dynamics within the oligotrophic, N-limited surface waters of the GBR. Our observations highlight the need to re-evaluate N cycling dynamics within oligotrophic coral reef systems, to include diverse N 2 fixing assemblages as a potentially significant source of dissolved N within the water column.

  5. Heterotrophic bacterial production: Relationships to biological and abiological factors in estuarine environments

    International Nuclear Information System (INIS)

    Koepfler, E.T.

    1989-01-01

    Ecotoxicological effects of creosote contamination on benthic bacterial communities in the Elizabeth River, Virginia were investigated using both structural an functional microbial parameters. Results indicated that cell specific and total heterotrophic bacterial production parameters were depressed in a dose-dependent manner with increasing sediment PAH concentrations. Toxicity effects upon production were modified by temporal trends associated with temperature as well as spatial sediment characteristics. Of the parameters employed, the tritiated thymidine production assay was found to be the most sensitive for detection of ecotoxicological effects. Bacterial abundance and production were examined during a destratification event in the lower James River, Virginia. Bacterial abundance, although significantly different between stations, did not change over the study. Bacterial production ( 3 H-Tdr incorporation) in surface waters was significantly less during the mixed period 187 μg C·1-1· d -1 compared to the most stratified state (324μg C·1-1· d -1 ). Correlations between bacteria and chlorophyll were diminished during the mixed period. Total and flagellate specific grazing rates upon bacteria were reduced during the onset of destratification. Relationships between bacterial and nutrient parameters also indicated a strong influence of destratification. These results indicate that destratification changes trophic interactions within the microbial loop, which are not necessarily reflected in temporal patterns of bacterial abundance. Bacterioplankton production, and ammonium assimilation and remineralization were examined between April and August 1988 in the lower York River, Va

  6. Watershed-Induced Limnological and Microbial Status in Two Oligotrophic Andean Lakes Exposed to the Same Climatic Scenario

    Directory of Open Access Journals (Sweden)

    Alex Echeverría-Vega

    2018-03-01

    Full Text Available Laguna Negra and Lo Encañado are two oligotrophic Andean lakes forming part of the system fed by meltwater from distinct glacial tongues of the Echaurren glacier in central Chile, which is in a recession period. The recent increase in temperature and decline in precipitation have led to an increase of glacial meltwater and sediments entering these lakes. Although the lacustrine systems are also hydrogeologically connected, the limnology of the lakes is strongly controlled by the surface processes related to the respective sub-watersheds and hydrology. Watershed characteristics (area and length, slope, lithology, resistance to erosion, among others affect the chemical and physical characteristics of both lakes (e.g., nutrient concentration and turbidity. We studied physical and chemical variables and performed 16S rRNA amplicon sequencing to determine the specific microbial signature of the lakes. The transparency, temperature, turbidity and concentrations of chlorophyll-a, dissolved organic matter, nutrients and the total number of cells, revealed the different status of both lakes at the time of sampling. The predominant bacterial groups in both lakes were Proteobacteria, Verrucomicrobia, and Bacteroidetes. Interestingly, the contribution of phototrophs was significantly higher in LN compared to LE (13 and 4% respectively and the major fraction corresponded to Anoxygenic Phototrophs (AP represented by Chloroflexi, Alpha, and Betaproteobacteria. Multivariate analyses showed that the nutrient levels and the light availability of both lakes, which finally depend on the hydrological characteristics of the respective watersheds, explain the differential community composition/function. The abundance of a diverse photoheterotrophic bacterioplankton community suggests that the ability to utilize solar energy along with organic and inorganic substrates is a key function in these oligotrophic mountain lakes.

  7. Distinct expression of alkaline phosphatase activity in epilimnetic bacteria: Implication for persistent DOC consumption in a P-limited reservoir

    Science.gov (United States)

    Tseng, Y.; Kao, S.; Shiah, F.

    2013-12-01

    In a P-deficient system, P availability usually controls the microbial activity and thus the ecosystem function. Thingstad et al. (1997) first addressed a 'Malfunctioning Microbial-loop' theory, which stated that low bacterial production (BP) caused by insufficient nutrient supply would result in DOC accumulation in an oligotrophic ecosystem. In this study we re-examined the theory by conducting seasonal patterns and correlations among soluble reactive phosphate (SRP) and DOC, microbial abundances (picocyanobacteria, bacteria, and heterotrophic nanoflagellate; HNF) and activities (primary production, bacterial production, and alkaline phosphatase activity; APA) coupled with enzyme-labeled fluorescence (ELF) assays on bacterioplankton in a subtropical reservoir sharing the common features, nitrate-replete and P-deficient, with most natural freshwater system during Oct 2007-Oct 2008. Persistently high APA was recorded during most of time, implying that the system was P-deficient. Size fractionated APA and ELF assay revealed that bacteria were the major APA contributor. However, significantly low epilimnion DOC was recorded during the stratified summer season accompanying with high BP and APA as well as high PP, implying that heterotrophic bacteria can well sustain in P-deficient system by utilizing DOP to rapidly lower down DOC under relatively high PP. Such findings oppose the 'Malfunctioning Microbial-loop' theory. On the other hand, strong epilimnetic DOC accumulation occurred in Oct 2007 under low light and low PP condition accompanying with high abundance of HNF, implying that HNF grazing may contribute to a certain degree of DOC accumulation. Correlation matrix supported our suggestions. This study testified the DOC dynamics in P-deficient ecosystem are tightly coupled with the source (PP and grazing) and sink (BP). We also suggested that in SRP-limited freshwater systems bacteria are capable of breaking down autochthonous DOC to reduce the chance of DOC

  8. Mnemiopsis leidyi Gut Harbors Seasonally Variant and Commensal Microbial Assemblages

    Science.gov (United States)

    Mariita, R. M.; Hossain, M. J.; Liles, M. R.; Moss, A.

    2016-02-01

    Studies have shown that with widespread use of antibiotics in human and domestic animal populations, antibiotic resistance becomes increasingly common in the environment. Estuaries provide ideal conditions for acquisition and dissemination of drug resistance genes because they serve as sinks for pollution. This study aimed to identify M. leidyi microbial diversity and richness and their potential to act as vectors for antibiotic resistance determinants (ARDs). M. leidyi, although native to study area are highly invasive. Metagenomic analyses indicate that there are temporal variations of bacterioplankton assemblages in M. leidyi gut. Overall, Proteobacteria and Actinobacteria are the most abundant phyla. Despite the temporal dynamics in the microbial assemblages in M. leidyi gut, they seem to retain Propionibacterium acnes (gut microbiota in some insects) and select proteobacteria across all seasons. The results contradict previous studies that suggest that M. leidyi does not have constant a microbiota, but only seasonally variant microbial assemblages. Here we reveal the presence of M. leidyi gut ARDs in winter and summer, probably because of the ctenophores' positive geotaxis during rough surface conditions. Genes responsible for resistance to fluoroquinolones, multidrug resistance efflux pumps, mercuric reductase, copper homeostasis and blaR1 genes were observed. This is the first study to demonstrate that M. leidyi harbors constant microbiota and provides a baseline for understanding M. leidyi gut microbial and ARDs ecology. It also suggests that M. leidyi bacterial taxonomic and functional dynamics is influenced by season. Funding: Alabama EPSCoR GRSP fellowship, AU-CMB fellowship, NSF EPS-1158862, USDA-Hatch 370225-310100 (AGM, ML).

  9. Assembling the Marine Metagenome, One Cell at a Time

    Energy Technology Data Exchange (ETDEWEB)

    Woyke, Tanja; Xie, Gary; Copeland, Alex; Gonzalez, Jose M.; Han, Cliff; Kiss, Hajnalka; Saw, Jimmy H.; Senin, Pavel; Yang, Chi; Chatterji, Sourav; Cheng, Jan-Fang; Eisen, Jonathan A.; Sieracki, Michael E.; Stepanauskas, Ramunas

    2010-06-24

    taxa from a complex microbial community of marine bacterioplankton. A combination of single cell genomics and metagenomics enabled us to analyze the genome content, metabolic adaptations, and biogeography of these taxa.

  10. Combined analyses of the ITS loci and the corresponding 16S rRNA genes reveal high micro- and macrodiversity of SAR11 populations in the Red Sea.

    Science.gov (United States)

    Ngugi, David Kamanda; Stingl, Ulrich

    2012-01-01

    Bacteria belonging to the SAR11 clade are among the most abundant prokaryotes in the pelagic zone of the ocean. 16S rRNA gene-based analyses indicate that they constitute up to 60% of the bacterioplankton community in the surface waters of the Red Sea. This extremely oligotrophic water body is further characterized by an epipelagic zone, which has a temperature above 24 °C throughout the year, and a remarkable uniform temperature (~22 °C) and salinity (~41 psu) from the mixed layer (~200 m) to the bottom at over 2000 m depth. Despite these conditions that set it apart from other marine environments, the microbiology of this ecosystem is still vastly understudied. Prompted by the limited phylogenetic resolution of the 16S rRNA gene, we extended our previous study by sequencing the internal transcribed spacer (ITS) region of SAR11 in different depths of the Red Sea's water column together with the respective 16S fragment. The overall diversity captured by the ITS loci was ten times higher than that of the corresponding 16S rRNA genes. Moreover, species estimates based on the ITS showed a highly diverse population of SAR11 in the mixed layer that became diminished in deep isothermal waters, which was in contrast to results of the related 16S rRNA genes. While the 16S rRNA gene-based sequences clustered into three phylogenetic subgroups, the related ITS fragments fell into several phylotypes that showed clear depth-dependent shifts in relative abundances. Blast-based analyses not only documented the observed vertical partitioning and universal co-occurrence of specific phylotypes in five other distinct oceanic provinces, but also highlighted the influence of ecosystem-specific traits (e.g., temperature, nutrient availability, and concentration of dissolved oxygen) on the population dynamics of this ubiquitous marine bacterium.

  11. Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes

    Science.gov (United States)

    Comte, J.; Lovejoy, C.; Crevecoeur, S.; Vincent, W. F.

    2016-01-01

    Permafrost thaw ponds and lakes are widespread across the northern landscape and may play a central role in global biogeochemical cycles, yet knowledge about their microbial ecology is limited. We sampled a set of thaw ponds and lakes as well as shallow rock-basin lakes that are located in distinct valleys along a north-south permafrost degradation gradient. We applied high-throughput sequencing of the 16S rRNA gene to determine co-occurrence patterns among bacterial taxa (operational taxonomic units, OTUs), and then analyzed these results relative to environmental variables to identify variables controlling bacterial community structure. Network analysis was applied to identify possible ecological linkages among the bacterial taxa and with abiotic and biotic variables. The results showed an overall high level of shared taxa among bacterial communities within each valley; however, the bacterial co-occurrence patterns were non-random, with evidence of habitat preferences. There were taxonomic differences in bacterial assemblages among the different valleys that were statistically related to dissolved organic carbon concentration, conductivity and phytoplankton biomass. Co-occurrence networks revealed complex interdependencies within the bacterioplankton communities and showed contrasting linkages to environmental conditions among the main bacterial phyla. The thaw pond networks were composed of a limited number of highly connected taxa. This "small world network" property would render the communities more robust to environmental change but vulnerable to the loss of microbial "keystone species". These highly connected nodes (OTUs) in the network were not merely the numerically dominant taxa, and their loss would alter the organization of microbial consortia and ultimately the food web structure and functioning of these aquatic ecosystems.

  12. Phylogenetic analysis of the composition of bacterial communities in human-exploited coastal environments from Mallorca Island (Spain).

    Science.gov (United States)

    Aguiló-Ferretjans, M M; Bosch, R; Martín-Cardona, C; Lalucat, J; Nogales, B

    2008-08-01

    The phylogenetic analysis of bacterial communities in environments receiving anthropogenic impact could help us to understand its effects and might be useful in the development of monitoring or management strategies. A study of the composition of 16S rDNA clone libraries prepared from bacterial communities in water samples from a marina and a beach on the coast of Mallorca (W. Mediterranean) was undertaken at two time points, corresponding to periods of maximum and minimum anthropogenic use of this area for nautical and recreational activities. Libraries generated from the marina were significantly different from those from the beach and a non-impacted, bay sample. In the marina, a predominance of sequence types was observed related to bacterioplankton from nutrient-enriched environments or typically associated with phytoplankton, such as certain phylotypes of the Roseobacter clade, OM60 clade and Bacteroidetes. Similar results were found in the summer beach library but not in the winter one, in which there was an increase in the number of clones from oligotrophic groups, in agreement with lower chlorophyll content and bacterial counts. Therefore, nutrient enrichment seemed to be an important driver of the composition of bacterial communities in sites receiving direct human impact. Interesting sequence types from the Cryomorphaceae and group agg58 (Bacteroidetes) were exclusively found in beach libraries, and the reasons for this distribution deserve further study. Clones related to putative hydrocarbon-degrading bacteria of the genus Acinetobacter were observed in the marina, in agreement with a certain degree of pollution at this site. Non-marine sequences belonging to the Actinobacteria predominated over marine groups in the summer library from the marina and, therefore, unusual communities might be transiently present in this enclosed environment. Overall, the composition of the bacterial communities in these environments agreed well with the defining

  13. Community biomass and bottom up multivariate nutrient complementarity mediate the effects of bioturbator diversity on pelagic production.

    Directory of Open Access Journals (Sweden)

    Adriano Caliman

    Full Text Available Tests of the biodiversity and ecosystem functioning (BEF relationship have focused little attention on the importance of interactions between species diversity and other attributes of ecological communities such as community biomass. Moreover, BEF research has been mainly derived from studies measuring a single ecosystem process that often represents resource consumption within a given habitat. Focus on single processes has prevented us from exploring the characteristics of ecosystem processes that can be critical in helping us to identify how novel pathways throughout BEF mechanisms may operate. Here, we investigated whether and how the effects of biodiversity mediated by non-trophic interactions among benthic bioturbator species vary according to community biomass and ecosystem processes. We hypothesized that (1 bioturbator biomass and species richness interact to affect the rates of benthic nutrient regeneration [dissolved inorganic nitrogen (DIN and total dissolved phosphorus (TDP] and consequently bacterioplankton production (BP and that (2 the complementarity effects of diversity will be stronger on BP than on nutrient regeneration because the former represents a more integrative process that can be mediated by multivariate nutrient complementarity. We show that the effects of bioturbator diversity on nutrient regeneration increased BP via multivariate nutrient complementarity. Consistent with our prediction, the complementarity effects were significantly stronger on BP than on DIN and TDP. The effects of the biomass-species richness interaction on complementarity varied among the individual processes, but the aggregated measures of complementarity over all ecosystem processes were significantly higher at the highest community biomass level. Our results suggest that the complementarity effects of biodiversity can be stronger on more integrative ecosystem processes, which integrate subsidiary "simpler" processes, via multivariate

  14. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    Science.gov (United States)

    Fortunato, Caroline S; Crump, Byron C

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  15. Plankton assembly in an ultra-oligotrophic Antarctic lake over the summer transition from the ice-cover to ice-free period: A size spectra approach

    Science.gov (United States)

    Rochera, Carlos; Quesada, Antonio; Toro, Manuel; Rico, Eugenio; Camacho, Antonio

    2017-03-01

    Lakes from the Antarctic maritime region experience climate change as a main stressor capable of modifying their plankton community structure and function, essentially because summer temperatures are commonly over the freezing point and the lake's ice cap thaws. This study was conducted in such seasonally ice-covered lake (Lake Limnopolar, Byers Peninsula, Livingston Is., Antarctica), which exhibits a microbial dominated pelagic food web. An important feature is also the occurrence of benthic mosses (Drepanocladus longifolius) covering the lake bottom. Plankton dynamics were investigated during the ice-thawing transition to the summer maximum. Both bacterioplankton and viral-like particles were higher near the lake's bottom, suggesting a benthic support. When the lake was under dim conditions because of the snow-and-ice cover, autotrophic picoplankters dominated at deep layers. The taxa-specific photopigments indicated dominance of picocyanobacteria among them when the light availability was lower. By contrast, larger and less edible phytoplankton dominated at the onset of the ice melting. The plankton size spectra were fitted to the continuous model of Pareto distribution. Spectra evolved similarly at two sampled depths, in surface and near the bottom, with slopes increasing until mid-January. However, slopes were less steep (i.e., size classes more uniformly distributed) at the bottom, thus denoting a more efficient utilization of resources. These findings suggest that microbial loop pathways in the lake are efficiently channelized during some periods to the metazoan production (mainly the copepod Boeckella poppei). Our results point to that trophic interactions may still occur in these lakes despite environmental harshness. This results of interest in a framework of increasing temperatures that may reduce the climatic restrictions and therefore stimulate biotic interactions.

  16. PRODUCTIVITY OF GROWING PONDS WHEN APPLYING THE BACTERIAL FERTILIZER «PHOSPHOBAKTERIN»

    Directory of Open Access Journals (Sweden)

    Т. Hryhorenko

    2017-09-01

    Full Text Available Purpose. To investigate the effect of the bacterial fertilizer "Phosphobacterin" on the formation of the hydrochemical regime, development of the natural food supply and fish productivity in the growing ponds. Methodology. The work was conducted according to generally accepted hydrochemical,, microbiological, hydrobiological and fish farming methods. Findings The article presents the results of a study of the productivity of growing ponds with different methods of the application of the bacterial fertilizer "Phosphobacterin". It was found that the hydrochemical regime of the experimental ponds was formed under the effect of the source of water supply and measures aimed at intensifying the development of the natural food supply and was favorable for the development of feed organisms and the cultivation of fish seeds. Application of the bacterial fertilizer at the beginning of the growing season along the water pond surface proved to be little effective for increasing the productivity of the pond ecosystem as a whole. A more effective method of increasing biological productivity, including fish productivity of growing ponds, was the application of "Phosphobacterin" during the growing season both on the bed and on the water surface in combination with the organic fertilizer - cattle humus. In the experimental pond under complex fertilization, the average phytoplankton biomass during the growing season was 1.5 times, bacterioplankton 1.1 times, zoobenthos 2.6 times higher, and the obtained total fish productivity was 1.2 times higher than in the control pond (when applying only cattle humus. Originality. The peculiarities of formation of hydrochemical and hydrobiological (phyto-, bacterio-, zooplankton, zoobenthos regimes of growing ponds and the fishery indices are studied, both for bacterial fertilizer "Phosphobacterin" independently and together with the traditional organic fertilizer - cattle humus. Practical value. Based on the obtained results

  17. Succession of pelagic marine bacteria during enrichment: a close look at cultivation-induced shifts.

    Science.gov (United States)

    Eilers, H; Pernthaler, J; Amann, R

    2000-11-01

    Enrichment experiments with North Sea bacterioplankton were performed to test if rapid incubation-induced changes in community structure explain the frequent isolation of members of a few particular bacterial lineages or if readily culturable bacteria are common in the plankton but in a state of dormancy. A metabolic inhibitor of cell division (nalidixic acid [NA]) was added to substrate-amended (S+) and unamended (S-) grazer-free seawater samples, and shifts in community composition and per cell DNA and protein content were compared with untreated controls. In addition, starvation survival experiments were performed on selected isolates. Incubations resulted in rapid community shifts towards typical culturable genera rather than in the activation of either dormant cells or the original DNA-rich bacterial fraction. Vibrio spp. and members of the Alteromonas/Colwellia cluster (A/C) were selectively enriched in S+ and S-, respectively, and this trend was even magnified by the addition of NA. These increases corresponded with the rise of cell populations with distinctively different but generally higher protein and DNA content in the various treatments. Uncultured dominant gamma-proteobacteria affiliating with the SAR86 cluster and members of the culturable genus Oceanospirillum were not enriched or activated, but there was no indication of substrate-induced cell death, either. Strains of Vibrio and A/C maintained high ribosome levels in pure cultures during extended periods of starvation, whereas Oceanospirillum spp. did not. The life strategy of rapidly enriched culturable gamma-proteobacteria could thus be described as a "feast and famine" existence involving different activation levels of substrate concentration.

  18. Harmful algal blooms (HABs), dissolved organic matter (DOM), and planktonic microbial community dynamics at a near-shore and a harbour station influenced by upwelling (SW Iberian Peninsula)

    Science.gov (United States)

    Loureiro, Sofia; Reñé, Albert; Garcés, Esther; Camp, Jordi; Vaqué, Dolors

    2011-05-01

    accumulation of harmful species. The associations found between harmful algal species and bacterioplankton and virioplankton call for detailed studies in order to evaluate species-specific interactions.

  19. Leucine Aminopeptidase, β-Glucosidase and Alkaline Phosphatase Activity Rates and Their Significance in Nutrient Cycles in Some Coastal Mediterranean Sites

    Directory of Open Access Journals (Sweden)

    Gabriella Caruso

    2010-03-01

    Full Text Available In aquatic microbial ecology, knowledge of the processes involved in the turnover of organic matter is of utmost importance to understand ecosystem functioning. Microorganisms are major players in the cycling of nutrients (nitrogen, phosphorus and carbon, thanks to their enzymatic activities (leucine aminopeptidase, LAP, alkaline phosphatase, AP, and β-glucosidase, β-GLU on organic polymers (proteins, organic phosphates and polysaccharides, respectively. Estimates of the decomposition rates of organic polymers are performed using fluorogenic compounds, whose hydrolysis rate allow us to obtain information on the “potential” metabolic activity of the prokaryotic community. This paper refers the enzyme patterns measured during recent oceanographic cruises performed in some coastal Mediterranean sites, not yet fully investigated in terms of microbial biogeochemical processes. Mean enzyme activity rates ranged from 5.24 to 5558.1 nM/h, from 12.68 to 244.73 nM/h and from 0.006 to 9.51 nM/h for LAP, AP and β-GLU, respectively. The highest LAP and AP activity rates were measured in the Gulf of Milazzo (Tyrrhenian Sea and in the Straits of Messina, in association with the lowest bacterioplankton abundance; in contrast, the lowest ones were found in the northern Adriatic Sea. β-GLU was more active in the Straits of Messina. Activity rates were analysed in relation to the main environmental variables. Along the northern Adriatic coastal side affected by the Po river, significant inverse relationships linked LAP and AP with salinity, pointing out that fluvial inputs provided organic substrates for microbial metabolism. Both in the Gulf of Manfredonia and in the Straits of Messina, LAP and AP levels were inversely related with the concentration of nitrate and inorganic phosphorus, respectively. In the Gulf of Milazzo, high cell-specific AP measured in spite of phosphorus availability suggested the role of this enzyme not only in phosphorus, but also

  20. Assembling The Marine Metagenome, One Cell At A Time

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gang [Los Alamos National Laboratory; Han, Shunsheng [Los Alamos National Laboratory; Kiss, Hajnalka [Los Alamos National Laboratory; Saw, Jimmy [Los Alamos National Laboratory; Senin, Pavel [Los Alamos National Laboratory; Woyke, Tanja [DOE JOINT GENOME INAT.; Copeland, Alex [DOE JOINT GENSOME INST.; Gonzalez, Jose [UNIV OF LAGUNA, SPAIN; Chatterji, Sourav [DOE JOINT GENSOME INST.; Cheng, Jan - Fang [DOE JOINT GENSOME INST.; Eisen, Jonathan A [DOE JOINT GENOME INST.; Sieracki, Michael E [UNIV OF CA-DAVIS; Stepanauskas, Ramunas [BIGELOW LAB

    2008-01-01

    microbial community of marine bacterioplankton. A combination of single cell genomics and metagenomics enabled us to analyze the genome content, metabolic adaptations, and biogeography of these taxa.

  1. The influence of dissolved organic carbon on bacterial phosphorus uptake and bacteria-phytoplankton dynamics in two Minnesota lakes

    Science.gov (United States)

    Stets, E.G.; Cotner, J.B.

    2008-01-01

    The balance of production in any ecosystem is dependent on the flow of limiting nutrients into either the autotrophic or heterotrophic components of the food web. To understand one of the important controls on the flow of inorganic nutrients between phytoplankton and bacterioplankton in lakes, we manipulated dissolved organic carbon (DOC) in two lakes of different trophic status. We hypothesized that labile DOC additions would increase bacterial phosphorus (P) uptake and decrease the response of phytoplankton to nutrient additions. Supplemental nutrients and carbon (C), nitrogen (N, 1.6 ??mol NH4Cl L-1 d-1), P (0.1 ??mol KH 2PO4 L-1 d-1), and DOC (glucose, 15 ??mol C L-1 d-1) were added twice daily to 8-liter experimental units. We tested the effect of added DOC on chlorophyll concentration, bacterial production, biomass, and P uptake using size-fractionated 33P-PO4 uptake. In the oligotrophic lake, DOC additions stimulated bacterial production and increased bacterial biomass-specific P uptake. Bacteria consumed added DOC, and chlorophyll concentrations were significantly lower in carboys receiving DOC additions. In the eutrophic lake, DOC additions had less of a stimulatory effect on bacterial production and biomass-specific P uptake. DOC accumulated over the time period, and there was little evidence for a DOC-induced decrease in phytoplankton biomass. Bacterial growth approached the calculated ??max and yet did not accumulate biomass, indicating significant biomass losses, which may have constrained bacterial DOC consumption. Excess bacterial DOC consumption in oligotrophic lakes may result in greater bacterial P affinity and enhanced nutrient uptake by the heterotrophic compartment of the food web. On the other hand, constraints on bacterial biomass accumulation in eutrophic lakes, from either viral lysis or bacterial grazing, can allow labile DOC to accumulate, thereby negating the effect of excess DOC on the planktonic food web. ?? 2008, by the American

  2. Turbulence-driven shifts in holobionts and planktonic microbial assemblages in St Peter & St Paul Archipelago, Mid-Atlantic Ridge, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Paula B. Moreira

    2015-10-01

    Full Text Available The aim of this study was to investigate the planktonic and the holobiont Madracis decactis (Scleractinia microbial diversity along a turbulence-driven upwelling event, in the world´s most isolated tropical island, St Peter and St Paul Archipelago (SPSPA, Brazil. Twenty one metagenomes were obtained for seawater (N=12, healthy and bleached holobionts (N=9 before, during and after the episode of high seawater turbulence and upwelling. Microbial assemblages differed between low turbulence-low nutrient (LLR and high-turbulence-high nutrient (HHR regimes in seawater. During LLR there was a balance between autotrophy and heterotrophy in the bacterioplankton and the ratio cyanobacteria:heterotrophs ~1 (C:H. Prochlorales, unclassified Alphaproteobacteria and Euryarchaeota were the dominant bacteria and archaea, respectively. Basic metabolisms and cyanobacterial phages characterized the LLR. During HHR C:H << 0.05 and Gammaproteobacteria approximated 50% of the most abundant organisms in seawater. Alteromonadales, Oceanospirillales and Thaumarchaeota were the dominant bacteria and archaea. Prevailing metabolisms were related to membrane transport, virulence, disease and defense. Phages targeting heterotrophs and virulence factor genes characterized HHR. Shifts were also observed in coral microbiomes, according to both annotation–indepent and -dependent methods. HHR bleached corals metagenomes were the most dissimilar and could be distinguished by their di- and tetranucleotides frequencies, Iron Acquision metabolism and virulence genes, such as V. cholerae-related virulence factors. The healthy coral holobiont was shown to be less sensitive to transient seawater-related perturbations than the diseased animals. A conceptual model for the turbulence-induced shifts is put forward.

  3. Sources, bioavailability, and photoreactivity of dissolved organic carbon in the Sacramento-San Joaquin River Delta

    Science.gov (United States)

    Stepanauskas, R.; Moran, M.A.; Bergamaschi, B.A.; Hollibaugh, J.T.

    2005-01-01

    We analyzed bioavailability, photoreactivity, fluorescence, and isotopic composition of dissolved organic carbon (DOC) collected at 13 stations in the Sacramento-San Joaquin River Delta during various seasons to estimate the persistence of DOC from diverse shallow water habitat sources. Prospective large-scale wetland restorations in the Delta may change the amount of DOC available to the food web as well as change the quality of Delta water exported for municipal use. Our study indicates that DOC contributed by Delta sources is relatively refractory and likely mostly the dissolved remnants of vascular plant material from degrading soils and tidal marshes rather than phytoplankton production. Therefore, the prospective conversion of agricultural land into submerged, phytoplankton-dominated habitats may reduce the undesired export of DOC from the Delta to municipal users. A median of 10% of Delta DOC was rapidly utilizable by bacterioplankton. A moderate dose of simulated solar radiation (286 W m-2 for 4 h) decreased the DOC bioavailability by an average of 40%, with a larger relative decrease in samples with higher initial DOC bioavailability. Potentially, a DOC-based microbial food web could support ???0.6 ?? 109 g C of protist production in the Delta annually, compared to ???17 ?? 109 g C phytoplankton primary production. Thus, DOC utilization via the microbial food web is unlikely to play an important role in the nutrition of Delta zooplankton and fish, and the possible decrease in DOC concentration due to wetland restoration is unlikely to have a direct effect on Delta fish productivity. ?? Springer 2005.

  4. Environmental dynamics as a structuring factor for microbial carbon utilization in a subtropical coastal lagoon

    Directory of Open Access Journals (Sweden)

    Cecilia eAlonso

    2013-02-01

    Full Text Available Laguna de Rocha belongs to a series of shallow coastal lagoons located along South America. It is periodically connected to the sea through a sand bar, exhibiting a hydrological cycle where physicochemical and biological gradients are rapidly established and destroyed. Its most frequent state is the separation of a Northern zone with low salinity, high turbidity and nutrient load, and extensive macrophyte growth, and a Southern zone with higher salinity and light penetration, and low nutrient content and macrophyte biomass. This zonation is reflected in microbial assemblages with contrasting abundance, activity and community composition. The physicochemical conditions exerted a strong influence on community composition, and transplanted assemblages rapidly transformed to resembling the community of the recipient environment. Moreover, the major bacterial groups responded differently to their passage between the zones, being either stimulated or inhibited by the environmental changes, and exhibiting contrasting sensitivities to gradients. Addition of allochthonous carbon sources induced pronounced shifts in the bacterial communities, which in turn affected the microbial trophic web by stimulating heterotrophic flagellates and virus production. By contrast, addition of organic and inorganic nutrient sources (P or N did not have significant effects. Altogether, our results suggest that i the planktonic microbial assemblage of this lagoon is predominantly carbon limited, ii different bacterial groups cope differently with this constraint, and iii the hydrological cycle of the lagoon plays a key role for the alleviation or aggravation of bacterial carbon limitation. Based on these findings we propose a model of how hydrology affects the composition of bacterioplankton and of carbon processing in Laguna de Rocha. This might serve as a starting hypothesis for further studies about the microbial ecology of this lagoon, and of comparable transitional

  5. Structures of dimethylsulfoniopropionate-dependent demethylase from the marine organism Pelagabacter ubique

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, David J.; Reisch, Chris R.; Moran, Mary Ann; Whitman, William B.; Lanzilotta, William N. (Cornell); (Georgia)

    2012-01-20

    Dimethylsulfoniopropionate (DMSP) is a ubiquitous algal metabolite and common carbon and sulfur source for marine bacteria. DMSP is a precursor for the climatically active gas dimethylsulfide that is readily oxidized to sulfate, sulfur dioxide, methanesulfonic acid, and other products that act as cloud condensation nuclei. Although the environmental importance of DMSP metabolism has been known for some time, the enzyme responsible for DMSP demethylation by marine bacterioplankton, dimethylsufoniopropionate-dependent demethylase A (DmdA, EC 2.1.1.B5), has only recently been identified and biochemically characterized. In this work, we report the structure for the apoenzyme DmdA from Pelagibacter ubique (2.1 {angstrom}), as well as for DmdA co-crystals soaked with substrate DMSP (1.6 {angstrom}) or the cofactor tetrahydrofolate (THF) (1.6 {angstrom}). Surprisingly, the overall fold of the DmdA is not similar to other enzymes that typically utilize the reduced form of THF and in fact is a triple domain structure similar to what has been observed for the glycine cleavage T protein or sarcosine oxidase. Specifically, while the THF binding fold appears conserved, previous biochemical studies have shown that all enzymes with a similar fold produce 5,10-methylene-THF, while DmdA catalyzes a redox-neutral methyl transfer reaction to produce 5-methyl-THF. On the basis of the findings presented herein and the available biochemical data, we outline a mechanism for a redox-neutral methyl transfer reaction that is novel to this conserved THF binding domain.

  6. Summer microbial community composition governed by upper-ocean stratification and nutrient availability in northern Marguerite Bay, Antarctica

    Science.gov (United States)

    Rozema, Patrick D.; Biggs, Tristan; Sprong, Pim A. A.; Buma, Anita G. J.; Venables, Hugh J.; Evans, Claire; Meredith, Michael P.; Bolhuis, Henk

    2017-05-01

    The Western Antarctic Peninsula warmed significantly during the second half of the twentieth century, with a concurrent retreat of the majority of its glaciers, and marked changes in the sea-ice field. These changes may affect summertime upper-ocean stratification, and thereby the seasonal dynamics of phytoplankton and bacteria. In the present study, we examined coastal Antarctic microbial community dynamics by pigment analysis and applying molecular tools, and analysed various environmental parameters to identify the most important environmental drivers. Sampling focussed on the austral summer of 2009-2010 at the Rothera oceanographic and biological Time Series (RaTS) site in northern Marguerite bay, Antarctica. The Antarctic summer was characterized by a salinity decrease (measured at 15 m depth) coinciding with increased meteoric water fraction. Maximum Chl-a values of 35 μg l-1 were observed during midsummer and mainly comprised of diatoms. Microbial community fingerprinting revealed four distinct periods in phytoplankton succession during the summer while bacteria showed a delayed response to the phytoplankton community. Non-metric multidimensional scaling analyses showed that phytoplankton community dynamics were mainly directed by temperature, mixed layer depth and wind speed. Both high and low N/P ratios might have influenced phytoplankton biomass accumulation. The bacterioplankton community composition was mainly governed by Chl-a, suggesting a link to phytoplankton community changes. High-throughput 16S and 18S rRNA amplicon sequencing revealed stable eukaryotic and bacterial communities with regards to observed species, yet varying temporal relative contributions. Eukaryotic sequences were dominated by pennate diatoms in December followed by polar centric diatoms in January and February. Our results imply that the reduction of mixed layer depth during summer, caused by meltwater-related surface stratification, promotes a succession in diatoms rather

  7. Combined analyses of the ITS loci and the corresponding 16S rRNA genes reveal high micro- and macrodiversity of SAR11 populations in the Red Sea.

    Directory of Open Access Journals (Sweden)

    David Kamanda Ngugi

    Full Text Available Bacteria belonging to the SAR11 clade are among the most abundant prokaryotes in the pelagic zone of the ocean. 16S rRNA gene-based analyses indicate that they constitute up to 60% of the bacterioplankton community in the surface waters of the Red Sea. This extremely oligotrophic water body is further characterized by an epipelagic zone, which has a temperature above 24 °C throughout the year, and a remarkable uniform temperature (~22 °C and salinity (~41 psu from the mixed layer (~200 m to the bottom at over 2000 m depth. Despite these conditions that set it apart from other marine environments, the microbiology of this ecosystem is still vastly understudied. Prompted by the limited phylogenetic resolution of the 16S rRNA gene, we extended our previous study by sequencing the internal transcribed spacer (ITS region of SAR11 in different depths of the Red Sea's water column together with the respective 16S fragment. The overall diversity captured by the ITS loci was ten times higher than that of the corresponding 16S rRNA genes. Moreover, species estimates based on the ITS showed a highly diverse population of SAR11 in the mixed layer that became diminished in deep isothermal waters, which was in contrast to results of the related 16S rRNA genes. While the 16S rRNA gene-based sequences clustered into three phylogenetic subgroups, the related ITS fragments fell into several phylotypes that showed clear depth-dependent shifts in relative abundances. Blast-based analyses not only documented the observed vertical partitioning and universal co-occurrence of specific phylotypes in five other distinct oceanic provinces, but also highlighted the influence of ecosystem-specific traits (e.g., temperature, nutrient availability, and concentration of dissolved oxygen on the population dynamics of this ubiquitous marine bacterium.

  8. Seasonal and spatial distribution of bacterial biomass and the percentage of viable cells in a reservoir of Alabama

    Science.gov (United States)

    Tietjen, T.E.; Wetzel, R.G.

    2003-01-01

    Spatial community dynamics of bacterioplankton were evaluated along the length of the former stream channel of Elledge Lake, a small reservoir in western Alabama. The reservoir was strongly stratified from April to October with up to a 10??C temperature difference across the 1 m deep metalimnion. Bacterial biomass was highest during late summer, with a general pattern of increasing abundance from the inflowing river (???10 ??g C l-1) to the dam (???20-30 ??g C l-1). Bacterial numbers also increased following a >10-fold increase in turbidity associated with a major precipitation event, although only ???10% of these cells were viable. The percentage of viable cells generally increased through the stratified period with 50-70% viable cells in late summer. Overall, an average of 38% of bacterial cells were viable, with a range from <20 to 70%. Although these values were similar to those found by others, additional patterns were identified that have not been previously observed: a marked decline in viable cells was found following turbid storm inflows and increases in the percentage of viable cells occurred during spring warming and following autumnal mixing events. Although a modest increase in abundance occurred along the gradient from inflow down-reservoir to the dam, bacterial abundance did not increase near the dam in a pattern coincident with the commonly observed increased algal biomass in the lacustrine portion of reservoir ecosystems. The increases observed in bacterial viability moving from the inflowing rivers towards the dam and later in stratified periods stress the importance of differences in environmental conditions in time and space in regulating bacterial biomass and development, as well as of shifts that would be anticipated accompanying altered hydrological regimes under climatic change.

  9. Assembling the marine metagenome, one cell at a time.

    Directory of Open Access Journals (Sweden)

    Tanja Woyke

    taxa from a complex microbial community of marine bacterioplankton. A combination of single cell genomics and metagenomics enabled us to analyze the genome content, metabolic adaptations, and biogeography of these taxa.

  10. Phylogenomic analysis of marine Roseobacters.

    Directory of Open Access Journals (Sweden)

    Kai Tang

    2010-07-01

    Full Text Available Members of the Roseobacter clade which play a key role in the biogeochemical cycles of the ocean are diverse and abundant, comprising 10-25% of the bacterioplankton in most marine surface waters. The rapid accumulation of whole-genome sequence data for the Roseobacter clade allows us to obtain a clearer picture of its evolution.In this study about 1,200 likely orthologous protein families were identified from 17 Roseobacter bacteria genomes. Functional annotations for these genes are provided by iProClass. Phylogenetic trees were constructed for each gene using maximum likelihood (ML and neighbor joining (NJ. Putative organismal phylogenetic trees were built with phylogenomic methods. These trees were compared and analyzed using principal coordinates analysis (PCoA, approximately unbiased (AU and Shimodaira-Hasegawa (SH tests. A core set of 694 genes with vertical descent signal that are resistant to horizontal gene transfer (HGT is used to reconstruct a robust organismal phylogeny. In addition, we also discovered the most likely 109 HGT genes. The core set contains genes that encode ribosomal apparatus, ABC transporters and chaperones often found in the environmental metagenomic and metatranscriptomic data. These genes in the core set are spread out uniformly among the various functional classes and biological processes.Here we report a new multigene-derived phylogenetic tree of the Roseobacter clade. Of particular interest is the HGT of eleven genes involved in vitamin B12 synthesis as well as key enzynmes for dimethylsulfoniopropionate (DMSP degradation. These aquired genes are essential for the growth of Roseobacters and their eukaryotic partners.

  11. Taxonomic and Environmental Variability in the Elemental Composition and Stoichiometry of Individual Dinoflagellate and Diatom Cells from the NW Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Mariona Segura-Noguera

    Full Text Available Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA, a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp. collected from different sites of the Catalan coast (NW Mediterranean Sea. As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20-23. The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical

  12. Watershed-Induced Limnological and Microbial Status in Two Oligotrophic Andean Lakes Exposed to the Same Climatic Scenario

    Science.gov (United States)

    Echeverría-Vega, Alex; Chong, Guillermo; Serrano, Antonio E.; Guajardo, Mariela; Encalada, Olga; Parro, Victor; Blanco, Yolanda; Rivas, Luis; Rose, Kevin C.; Moreno-Paz, Mercedes; Luque, José A.; Cabrol, Nathalie A.; Demergasso, Cecilia S.

    2018-01-01

    Laguna Negra and Lo Encañado are two oligotrophic Andean lakes forming part of the system fed by meltwater from distinct glacial tongues of the Echaurren glacier in central Chile, which is in a recession period. The recent increase in temperature and decline in precipitation have led to an increase of glacial meltwater and sediments entering these lakes. Although the lacustrine systems are also hydrogeologically connected, the limnology of the lakes is strongly controlled by the surface processes related to the respective sub-watersheds and hydrology. Watershed characteristics (area and length, slope, lithology, resistance to erosion, among others) affect the chemical and physical characteristics of both lakes (e.g., nutrient concentration and turbidity). We studied physical and chemical variables and performed 16S rRNA amplicon sequencing to determine the specific microbial signature of the lakes. The transparency, temperature, turbidity and concentrations of chlorophyll-a, dissolved organic matter, nutrients and the total number of cells, revealed the different status of both lakes at the time of sampling. The predominant bacterial groups in both lakes were Proteobacteria, Verrucomicrobia, and Bacteroidetes. Interestingly, the contribution of phototrophs was significantly higher in LN compared to LE (13 and 4% respectively) and the major fraction corresponded to Anoxygenic Phototrophs (AP) represented by Chloroflexi, Alpha, and Betaproteobacteria. Multivariate analyses showed that the nutrient levels and the light availability of both lakes, which finally depend on the hydrological characteristics of the respective watersheds, explain the differential community composition/function. The abundance of a diverse photoheterotrophic bacterioplankton community suggests that the ability to utilize solar energy along with organic and inorganic substrates is a key function in these oligotrophic mountain lakes. PMID:29556224

  13. Leucine aminopeptidase, beta-glucosidase and alkaline phosphatase activity rates and their significance in nutrient cycles in some coastal Mediterranean sites.

    Science.gov (United States)

    Caruso, Gabriella

    2010-03-29

    In aquatic microbial ecology, knowledge of the processes involved in the turnover of organic matter is of utmost importance to understand ecosystem functioning. Microorganisms are major players in the cycling of nutrients (nitrogen, phosphorus) and carbon, thanks to their enzymatic activities (leucine aminopeptidase, LAP, alkaline phosphatase, AP, and beta-glucosidase, beta-GLU) on organic polymers (proteins, organic phosphates and polysaccharides, respectively). Estimates of the decomposition rates of organic polymers are performed using fluorogenic compounds, whose hydrolysis rate allow us to obtain information on the "potential" metabolic activity of the prokaryotic community. This paper refers the enzyme patterns measured during recent oceanographic cruises performed in some coastal Mediterranean sites, not yet fully investigated in terms of microbial biogeochemical processes. Mean enzyme activity rates ranged from 5.24 to 5558.1 nM/h, from 12.68 to 244.73 nM/h and from 0.006 to 9.51 nM/h for LAP, AP and beta-GLU, respectively. The highest LAP and AP activity rates were measured in the Gulf of Milazzo (Tyrrhenian Sea) and in the Straits of Messina, in association with the lowest bacterioplankton abundance; in contrast, the lowest ones were found in the northern Adriatic Sea. beta-GLU was more active in the Straits of Messina. Activity rates were analysed in relation to the main environmental variables. Along the northern Adriatic coastal side affected by the Po river, significant inverse relationships linked LAP and AP with salinity, pointing out that fluvial inputs provided organic substrates for microbial metabolism. Both in the Gulf of Manfredonia and in the Straits of Messina, LAP and AP levels were inversely related with the concentration of nitrate and inorganic phosphorus, respectively. In the Gulf of Milazzo, high cell-specific AP measured in spite of phosphorus availability suggested the role of this enzyme not only in phosphorus, but also in carbon

  14. Leucine Aminopeptidase, β-Glucosidase and Alkaline Phosphatase Activity Rates and Their Significance in Nutrient Cycles in Some Coastal Mediterranean Sites

    Science.gov (United States)

    Caruso, Gabriella

    2010-01-01

    In aquatic microbial ecology, knowledge of the processes involved in the turnover of organic matter is of utmost importance to understand ecosystem functioning. Microorganisms are major players in the cycling of nutrients (nitrogen, phosphorus) and carbon, thanks to their enzymatic activities (leucine aminopeptidase, LAP, alkaline phosphatase, AP, and β-glucosidase, β-GLU) on organic polymers (proteins, organic phosphates and polysaccharides, respectively). Estimates of the decomposition rates of organic polymers are performed using fluorogenic compounds, whose hydrolysis rate allow us to obtain information on the “potential” metabolic activity of the prokaryotic community. This paper refers the enzyme patterns measured during recent oceanographic cruises performed in some coastal Mediterranean sites, not yet fully investigated in terms of microbial biogeochemical processes. Mean enzyme activity rates ranged from 5.24 to 5558.1 nM/h, from 12.68 to 244.73 nM/h and from 0.006 to 9.51 nM/h for LAP, AP and β-GLU, respectively. The highest LAP and AP activity rates were measured in the Gulf of Milazzo (Tyrrhenian Sea) and in the Straits of Messina, in association with the lowest bacterioplankton abundance; in contrast, the lowest ones were found in the northern Adriatic Sea. β-GLU was more active in the Straits of Messina. Activity rates were analysed in relation to the main environmental variables. Along the northern Adriatic coastal side affected by the Po river, significant inverse relationships linked LAP and AP with salinity, pointing out that fluvial inputs provided organic substrates for microbial metabolism. Both in the Gulf of Manfredonia and in the Straits of Messina, LAP and AP levels were inversely related with the concentration of nitrate and inorganic phosphorus, respectively. In the Gulf of Milazzo, high cell-specific AP measured in spite of phosphorus availability suggested the role of this enzyme not only in phosphorus, but also in carbon

  15. Small Boreal Lake Ecosystem Evolution under the Influence of Natural and Anthropogenic Factors: Results of Multidisciplinary Long-Term Study

    Directory of Open Access Journals (Sweden)

    Liudmila Shirokova

    2016-07-01

    Full Text Available Small aquatic ecosystems of the boreal zone are known to be most sensitive indicators of on-going environmental change as well as local anthropogenic pressure, while being highly vulnerable to external impacts. Compared to rather detailed knowledge of the evolution of large and small lakes in Scandinavia and Canada, and large lakes in Eurasia, highly abundant small boreal lakes of northwest Russia have received very little attention, although they may become important centers of attraction of growing rural population in the near future. Here we present the results of a multidisciplinary, multi-annual study of a small boreal humic lake of NW Russia. A shallow (3 m and a deep (16 m site of this lake were regularly sampled for a range of chemical and biological parameters. Average multi-daily, summer-time values of the epilimnion (upper oxygenated layer of the lake provided indications of possible trends in temperature, nutrients, and bacterio-plankton concentration that revealed the local pollution impact in the shallow zone and overall environmental trend in the deep sampling point of the lake. Organic phosphorus, nitrate, and lead were found to be most efficient tracers of local anthropogenic pollution, especially visible in the surface layer of the shallow site of the lake. Cycling of trace elements between the epilimnion and hypolimnion is tightly linked to dissolved organic matter speciation and size fractionation due to the dominance of organic and organo-ferric colloids. The capacity of lake self-purification depends on the ratio of primary productivity to mineralization of organic matter. This ratio remained >1 both during winter and summer periods, which suggests a high potential of lake recovery from the input of allochthonous dissolved organic matter and local anthropogenic pollution.

  16. Combined analyses of the ITS loci and the corresponding 16S rRNA genes reveal high micro- and macrodiversity of SAR11 populations in the Red Sea.

    KAUST Repository

    Ngugi, David

    2012-11-20

    Bacteria belonging to the SAR11 clade are among the most abundant prokaryotes in the pelagic zone of the ocean. 16S rRNA gene-based analyses indicate that they constitute up to 60% of the bacterioplankton community in the surface waters of the Red Sea. This extremely oligotrophic water body is further characterized by an epipelagic zone, which has a temperature above 24 °C throughout the year, and a remarkable uniform temperature (~22 °C) and salinity (~41 psu) from the mixed layer (~200 m) to the bottom at over 2000 m depth. Despite these conditions that set it apart from other marine environments, the microbiology of this ecosystem is still vastly understudied. Prompted by the limited phylogenetic resolution of the 16S rRNA gene, we extended our previous study by sequencing the internal transcribed spacer (ITS) region of SAR11 in different depths of the Red Sea\\'s water column together with the respective 16S fragment. The overall diversity captured by the ITS loci was ten times higher than that of the corresponding 16S rRNA genes. Moreover, species estimates based on the ITS showed a highly diverse population of SAR11 in the mixed layer that became diminished in deep isothermal waters, which was in contrast to results of the related 16S rRNA genes. While the 16S rRNA gene-based sequences clustered into three phylogenetic subgroups, the related ITS fragments fell into several phylotypes that showed clear depth-dependent shifts in relative abundances. Blast-based analyses not only documented the observed vertical partitioning and universal co-occurrence of specific phylotypes in five other distinct oceanic provinces, but also highlighted the influence of ecosystem-specific traits (e.g., temperature, nutrient availability, and concentration of dissolved oxygen) on the population dynamics of this ubiquitous marine bacterium.

  17. Food web structure in oil sands reclaimed wetlands.

    Science.gov (United States)

    Kovalenko, K E; Ciborowski, J J H; Daly, C; Dixon, D G; Farwell, A J; Foote, A L; Frederick, K R; Costa, J M Gardner; Kennedy, K; Liber, K; Roy, M C; Slama, C A; Smits, J E G

    2013-07-01

    Boreal wetlands play an important role in global carbon balance. However, their ecosystem function is threatened by direct anthropogenic disturbance and climate change. Oil sands surface mining in the boreal regions of Western Canada denudes tracts of land of organic materials, leaves large areas in need of reclamation, and generates considerable quantities of extraction process-affected materials. Knowledge and validation of reclamation techniques that lead to self-sustaining wetlands has lagged behind development of protocols for reclaiming terrestrial systems. It is important to know whether wetlands reclaimed with oil sands process materials can be restored to levels equivalent to their original ecosystem function. We approached this question by assessing carbon flows and food web structure in naturally formed and oil sands-affected wetlands constructed in 1970-2004 in the postmining landscape. We evaluated whether a prescribed reclamation strategy, involving organic matter amendment, accelerated reclaimed wetland development, leading to wetlands that were more similar to their natural marsh counterparts than wetlands that were not supplemented with organic matter. We measured compartment standing stocks for bacterioplankton, microbial biofilm, macrophytes, detritus, and zoobenthos; concentrations of dissolved organic carbon and residual naphthenic acids; and microbial production, gas fluxes, and aquatic-terrestrial exports (i.e., aquatic insect emergence). The total biomass of several biotic compartments differed significantly between oil sands and reference wetlands. Submerged macrophyte biomass, macroinvertebrate trophic diversity, and predator biomass and richness were lower in oil sands-affected wetlands than in reference wetlands. There was insufficient evidence to conclude that wetland age and wetland amendment with peat-mineral mix mitigate effects of oil sands waste materials on the fully aquatic biota. Although high variability was observed within

  18. Glyphosate input modifies microbial community structure in clear and turbid freshwater systems.

    Science.gov (United States)

    Pizarro, H; Vera, M S; Vinocur, A; Pérez, G; Ferraro, M; Menéndez Helman, R J; Dos Santos Afonso, M

    2016-03-01

    Since it was commercially introduced in 1974, glyphosate has been one of the most commonly used herbicides in agriculture worldwide, and there is growing concern about its adverse effects on the environment. Assuming that glyphosate may increase the organic turbidity of water bodies, we evaluated the effect of a single application of 2.4 ± 0.1 mg l(-1) of glyphosate (technical grade) on freshwater bacterioplankton and phytoplankton (pico, micro, and nanophytoplankton) and on the physical and chemical properties of the water. We used outdoor experimental mesocosms under clear and oligotrophic (phytoplanktonic chlorophyll a = 2.04 μg l(-1); turbidity = 2.0 NTU) and organic turbid and eutrophic (phytoplanktonic chlorophyll a = 50.3 μg l(-1); turbidity = 16.0 NTU) scenarios. Samplings were conducted at the beginning of the experiment and at 1, 8, 19, and 33 days after glyphosate addition. For both typologies, the herbicide affected the abiotic water properties (with a marked increase in total phosphorus), but it did not affect the structure of micro and nanophytoplankton. In clear waters, glyphosate treatment induced a trend toward higher bacteria and picoeukaryotes abundances, while there was a 2 to 2.5-fold increase in picocyanobacteria number. In turbid waters, without picoeukaryotes at the beginning of the experiment, glyphosate decreased bacteria abundance but increased the number of picocyanobacteria, suggesting a direct favorable effect. Moreover, our results show that the impact of the herbicide was observed in microorganisms from both oligo and eutrophic conditions, indicating that the impact would be independent of the trophic status of the water body.

  19. Prokaryotic diversity in one of the largest hypersaline coastal lagoons in the world.

    Science.gov (United States)

    Clementino, M M; Vieira, R P; Cardoso, A M; Nascimento, A P A; Silveira, C B; Riva, T C; Gonzalez, A S M; Paranhos, R; Albano, R M; Ventosa, A; Martins, O B

    2008-07-01

    Araruama Lagoon is an environment characterized by high salt concentrations. The low raining and high evaporation rates in this region favored the development of many salty ponds around the lagoon. In order to reveal the microbial composition of this system, we performed a 16S rRNA gene survey. Among archaea, most clones were related to uncultured environmental Euryarchaeota. In lagoon water, we found some clones related to Methanomicrobia and Methanothermococcus groups, while in the saline pond water members related to the genus Haloarcula were detected. Bacterial community was dominated by clones related to Gamma-proteobacteria, Actinobacteria, and Synechococcus in lagoon water, while Salinibacter ruber relatives dominated in saline pond. We also detected the presence of Alpha-proteobacteria, Pseudomonas-like bacteria and Verrucomicrobia. Only representatives of the genus Ralstonia were cosmopolitan, being observed in both systems. The detection of a substantial number of clones related to uncultured archaea and bacteria suggest that the hypersaline waters of Araruama harbor a pool of novel prokaryotic phylotypes, distinct from those observed in other similar systems. We also observed clones related to halophilic genera of cyanobacteria that are specific for each habitat studied. Additionally, two bacterioplankton molecular markers with ecological relevance were analyzed, one is linked to nitrogen fixation (nifH) and the other is linked to carbon fixation by bacterial photosynthesis, the protochlorophyllide genes, revealing a specific genetic distribution in this ecosystem. This is the first study of the biogeography and community structure of microbial assemblages in Brazilian tropical hypersaline environments. This work is directed towards a better understanding of the free-living prokaryotic diversity adapted to life in hypersaline waters.

  20. Ecosystem element transport model for Lake Eckarfjaerden

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, L.; Bradshaw, C. [The Department of Ecology, Environment and Plant Sciences, Stockholm University (Sweden); Andersson, E.; Kautsky, U. [Swedish Nuclear Fuel and Waste Management Co. - SKB (Sweden)

    2014-07-01

    The ecosystem transport model of elements was developed for Lake Eckarfjaerden located in the Forsmark area in Sweden. Forsmark has currently a low level repository (SFR) and a repository for spent fuel is planned. A large number of data collected during site-investigation program 2002-2009 for planning the repository were available for the creation of the compartment model based on carbon circulation, physical and biological processes (e.g. primary production, consumption, respiration). The model is site-specific in the sense that the food web model is adapted to the actual food web at the site, and most estimates of biomass and metabolic rates for the organisms and meteorological data originate from site data. The functional organism groups of Lake Eckarfjaerden were considered as separate compartments: bacterio-plankton, benthic bacteria, macro-algae, phytoplankton, zooplankton, fish, benthic fauna. Two functional groups of bacteria were taken into account for the reason that they have the highest biomass of all functional groups during the winter, comprising 36% of the total biomass. Effects of ecological parameters, such as bacteria and algae biomass, on redistribution of a hypothetical radionuclide release in the lake were examined. The ecosystem model was used to estimate the environmental transfer of several elements (U, Th, Ra) and their isotopes (U-238, U-234,Th-232, Ra-226) to various aquatic organisms in the lake, using element-specific distribution coefficients for suspended particle and sediment. Results of chemical analyses of the water, sediment and biota were used for model validation. The model gives estimates of concentration factors for fish based on modelling rather on in situ measurement, which reduces the uncertainties for many radionuclides with scarce of data. Document available in abstract form only. (authors)

  1. Characterization of biocenoses in the storage reservoirs of liquid radioactive wastes of Mayak PA. Initial descriptive report

    International Nuclear Information System (INIS)

    Pryakhin, E.A.; Mokrov, Yu.G.; Tryapitsina, G.A.; Ivanov, I.A.; Osipov, D.I.; Atamanyuk, N.I.; Deryabina, L.V.; Shaposhnikova, I.A.; Shishkina, E.A.; Obvintseva, N.A.; Egoreichenkov, E.A.; Styazhkina, E.V.; Osipova, O.F.; Mogilnikova, N.I.; Andreev, S.S.; Tarasov, O.V.; Geras'kin, S.A.; Trapeznikov, A.V.; Akleyev, A.V.

    2016-01-01

    As a result of operation of the Mayak Production Association (Mayak PA), Chelyabinsk Oblast, Russia, an enterprise for production and separation of weapon-grade plutonium in the Soviet Union, ecosystems of a number of water bodies have been radioactively contaminated. The article presents information about the current state of ecosystems of 6 special industrial storage reservoirs of liquid radioactive waste from Mayak PA: reservoirs R-3, R-4, R-9, R-10, R-11 and R-17. At present the excess of the radionuclide content in the water of the studied reservoirs and comparison reservoirs (Shershnyovskoye and Beloyarskoye reservoirs) is 9 orders of magnitude for 90 Sr and 137 Cs, and 6 orders of magnitude for alpha-emitting radionuclides. According to the level of radioactive contamination, the reservoirs of the Mayak PA could be arranged in the ascending order as follows: R-11, R-10, R-4, R-3, R-17 and R-9. In 2007–2012 research of the status of the biocenoses of these reservoirs in terms of phytoplankton, zooplankton, bacterioplankton, zoobenthos, aquatic plants, ichthyofauna, avifauna parameters was performed. The conducted studies revealed decrease in species diversity in reservoirs with the highest levels of radioactive and chemical contamination. This article is an initial descriptive report on the status of the biocenoses of radioactively contaminated reservoirs of the Mayak PA, and is the first article in a series of publications devoted to the studies of the reaction of biocenoses of the fresh-water reservoirs of the Mayak PA to a combination of natural and man-made factors, including chronic radiation exposure. - Highlights: • The current state of storage reservoirs of liquid radioactive waste of the Mayak Production Association is presented. • Radionuclides contents in water and sediments of the reservoirs of Mayak PA are presented. • The status of the major ecological groups of hydrobionts of the given reservoirs is described.

  2. SAR202 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant Dissolved Organic Matter.

    Science.gov (United States)

    Landry, Zachary; Swan, Brandon K; Herndl, Gerhard J; Stepanauskas, Ramunas; Giovannoni, Stephen J

    2017-04-18

    Deep-ocean regions beyond the reach of sunlight contain an estimated 615 Pg of dissolved organic matter (DOM), much of which persists for thousands of years. It is thought that bacteria oxidize DOM until it is too dilute or refractory to support microbial activity. We analyzed five single-amplified genomes (SAGs) from the abundant SAR202 clade of dark-ocean bacterioplankton and found they encode multiple families of paralogous enzymes involved in carbon catabolism, including several families of oxidative enzymes that we hypothesize participate in the degradation of cyclic alkanes. The five partial genomes encoded 152 flavin mononucleotide/F420-dependent monooxygenases (FMNOs), many of which are predicted to be type II Baeyer-Villiger monooxygenases (BVMOs) that catalyze oxygen insertion into semilabile alicyclic alkanes. The large number of oxidative enzymes, as well as other families of enzymes that appear to play complementary roles in catabolic pathways, suggests that SAR202 might catalyze final steps in the biological oxidation of relatively recalcitrant organic compounds to refractory compounds that persist. IMPORTANCE Carbon in the ocean is massively sequestered in a complex mixture of biologically refractory molecules that accumulate as the chemical end member of biological oxidation and diagenetic change. However, few details are known about the biochemical machinery of carbon sequestration in the deep ocean. Reconstruction of the metabolism of a deep-ocean microbial clade, SAR202, led to postulation of new biochemical pathways that may be the penultimate stages of DOM oxidation to refractory forms that persist. These pathways are tied to a proliferation of oxidative enzymes. This research illuminates dark-ocean biochemistry that is broadly consequential for reconstructing the global carbon cycle. Copyright © 2017 Landry et al.

  3. Role of environmental factors for the vertical distribution (0–1000 m of marine bacterial communities in the NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    J. F. Ghiglione

    2008-12-01

    Full Text Available Bacterioplankton plays a central role in energy and matter fluxes in the sea, yet the factors that constrain its variation in marine systems are still poorly understood. Here we use the explanatory power of direct multivariate gradient analysis to evaluate the driving forces exerted by environmental parameters on bacterial community distribution in the water column. We gathered and analysed data from a one month sampling period from the surface to 1000 m depth at the JGOFS-DYFAMED station (NW Mediterranean Sea. This station is characterized by very poor horizontal advection currents which makes it an ideal model to test hypotheses on the causes of vertical stratification of bacterial communities. Capillary electrophoresis single strand conformation polymorphism (CE-SSCP fingerprinting profiles analyzed using multivariate statistical methods demonstrated a vertical zonation of bacterial assemblages in three layers, above, in or just below the chlorophyll maximum and deeper, that remained stable during the entire sampling period. Through the use of direct gradient multivariate ordination analyses we demonstrate that a complex array of biogeochemical parameters is the driving force behind bacterial community structure shifts in the water column. Physico-chemical parameters such as phosphate, nitrate, salinity and to a lesser extent temperature, oxygen, dissolved organic carbon and photosynthetically active radiation acted in synergy to explain bacterial assemblages changes with depth. Analysis of lipid biomarkers of organic matter sources and fates suggested that bacterial community structure in the surface layers was in part explained by lipids of chloroplast origin. Further detailed analysis of pigment-based phytoplankton diversity gave evidence of a compartmentalized influence of several phytoplankton groups on bacterial community structure in the first 150 m depth.

  4. Open source approaches to establishing Roseobacter clade bacteria as synthetic biology chassis for biogeoengineering

    Directory of Open Access Journals (Sweden)

    Yanika Borg

    2016-07-01

    Full Text Available Aim. The nascent field of bio-geoengineering stands to benefit from synthetic biologists’ efforts to standardise, and in so doing democratise, biomolecular research methods. Roseobacter clade bacteria comprise 15–20% of oceanic bacterio-plankton communities, making them a prime candidate for establishment of synthetic biology chassis for bio-geoengineering activities such as bioremediation of oceanic waste plastic. Developments such as the increasing affordability of DNA synthesis and laboratory automation continue to foster the establishment of a global ‘do-it-yourself’ research community alongside the more traditional arenas of academe and industry. As a collaborative group of citizen, student and professional scientists we sought to test the following hypotheses: (i that an incubator capable of cultivating bacterial cells can be constructed entirely from non-laboratory items, (ii that marine bacteria from the Roseobacter clade can be established as a genetically tractable synthetic biology chassis using plasmids conforming to the BioBrickTM standard and finally, (iii that identifying and subcloning genes from a Roseobacter clade species can readily by achieved by citizen scientists using open source cloning and bioinformatic tools. Method. We cultivated three Roseobacter species, Roseobacter denitrificans, Oceanobulbus indolifexand Dinoroseobacter shibae. For each species we measured chloramphenicol sensitivity, viability over 11 weeks of glycerol-based cryopreservation and tested the effectiveness of a series of electroporation and heat shock protocols for transformation using a variety of plasmid types. We also attempted construction of an incubator-shaker device using only publicly available components. Finally, a subgroup comprising citizen scientists designed and attempted a procedure for isolating the cold resistance anf1 gene from Oceanobulbus indolifexcells and subcloning it into a BioBrickTM formatted plasmid. Results. All

  5. Open source approaches to establishing Roseobacter clade bacteria as synthetic biology chassis for biogeoengineering.

    Science.gov (United States)

    Borg, Yanika; Grigonyte, Aurelija Marija; Boeing, Philipp; Wolfenden, Bethan; Smith, Patrick; Beaufoy, William; Rose, Simon; Ratisai, Tonderai; Zaikin, Alexey; Nesbeth, Darren N

    2016-01-01

    Aim. The nascent field of bio-geoengineering stands to benefit from synthetic biologists' efforts to standardise, and in so doing democratise, biomolecular research methods. Roseobacter clade bacteria comprise 15-20% of oceanic bacterio-plankton communities, making them a prime candidate for establishment of synthetic biology chassis for bio-geoengineering activities such as bioremediation of oceanic waste plastic. Developments such as the increasing affordability of DNA synthesis and laboratory automation continue to foster the establishment of a global 'do-it-yourself' research community alongside the more traditional arenas of academe and industry. As a collaborative group of citizen, student and professional scientists we sought to test the following hypotheses: (i) that an incubator capable of cultivating bacterial cells can be constructed entirely from non-laboratory items, (ii) that marine bacteria from the Roseobacter clade can be established as a genetically tractable synthetic biology chassis using plasmids conforming to the BioBrick(TM) standard and finally, (iii) that identifying and subcloning genes from a Roseobacter clade species can readily by achieved by citizen scientists using open source cloning and bioinformatic tools. Method. We cultivated three Roseobacter species, Roseobacter denitrificans, Oceanobulbus indolifexand Dinoroseobacter shibae. For each species we measured chloramphenicol sensitivity, viability over 11 weeks of glycerol-based cryopreservation and tested the effectiveness of a series of electroporation and heat shock protocols for transformation using a variety of plasmid types. We also attempted construction of an incubator-shaker device using only publicly available components. Finally, a subgroup comprising citizen scientists designed and attempted a procedure for isolating the cold resistance anf1 gene from Oceanobulbus indolifexcells and subcloning it into a BioBrick(TM) formatted plasmid. Results. All species were stable

  6. Effects of increased solar ultraviolet radiation on biogeochemical cycles

    International Nuclear Information System (INIS)

    Zepp, R.G.; Callaghan, T.V.; Erickson, D.J.

    1995-01-01

    Increases in solar UV radiation could affect terrestrial and aquatic biogeochemical cycles thus altering both sources and sinks of greenhouse and chemically important trace gases (e.g., carbon dioxide (CO2), carbon monoxide (CO), carbonyl sulfide (COS). In terrestrial ecosystems, increased UV-B could modify both the production and decomposition of plant matter with concomitant changes in the uptake and release of atmospherically important trace gases. Decomposition processes can be accelerated when UV-B photodegrades surface litter, or retarded when the dominant effect involves changes in the chemical composition of living tissues that reduce the biodegradability of buried litter. These changes in decomposition can affect microbial production of CO2 and other trace gases and also may affect the availability of nutrients essential for plant growth. Primary production can be reduced by enhanced UV-B, but the effect is variable between species and even cultivars of some crops. Likewise, the effects of enhanced UV-B on photoproduction of CO from plant matter is species-dependent and occurs more efficiently from dead than from living matter. Aquatic ecosystems studies in several different locations have shown that reductions in current levels of solar UV-B result in enhanced primary production, and Antarctic experiments under the ozone hole demonstrated that primary production is inhibited by enhanced UV-B. In addition to its effects on primary production, solar UV radiation can reduce bacterioplankton growth in the upper ocean with potentially important effects on marine biogeochemical cycles. Decomposition processes can be retarded when bacterial activity is suppressed by enhanced UV-B radiation or stimulated when solar UV radiation photodegrades aquatic dissolved organic matter. Photodegradation of DOM results in loss of UV absorption and formation of dissolved inorganic carbon, CO, and organic substrates that are readily mineralized or taken up by aquatic

  7. Comparative Metagenomics Reveals the Distinctive Adaptive Features of the Spongia officinalis Endosymbiotic Consortium

    Directory of Open Access Journals (Sweden)

    Elham Karimi

    2017-12-01

    Full Text Available Current knowledge of sponge microbiome functioning derives mostly from comparative analyses with bacterioplankton communities. We employed a metagenomics-centered approach to unveil the distinct features of the Spongia officinalis endosymbiotic consortium in the context of its two primary environmental vicinities. Microbial metagenomic DNA samples (n = 10 from sponges, seawater, and sediments were subjected to Hiseq Illumina sequencing (c. 15 million 100 bp reads per sample. Totals of 10,272 InterPro (IPR predicted protein entries and 784 rRNA gene operational taxonomic units (OTUs, 97% cut-off were uncovered from all metagenomes. Despite the large divergence in microbial community assembly between the surveyed biotopes, the S. officinalis symbiotic community shared slightly greater similarity (p < 0.05, in terms of both taxonomy and function, to sediment than to seawater communities. The vast majority of the dominant S. officinalis symbionts (i.e., OTUs, representing several, so-far uncultivable lineages in diverse bacterial phyla, displayed higher residual abundances in sediments than in seawater. CRISPR-Cas proteins and restriction endonucleases presented much higher frequencies (accompanied by lower viral abundances in sponges than in the environment. However, several genomic features sharply enriched in the sponge specimens, including eukaryotic-like repeat motifs (ankyrins, tetratricopeptides, WD-40, and leucine-rich repeats, and genes encoding for plasmids, sulfatases, polyketide synthases, type IV secretion proteins, and terpene/terpenoid synthases presented, to varying degrees, higher frequencies in sediments than in seawater. In contrast, much higher abundances of motility and chemotaxis genes were found in sediments and seawater than in sponges. Higher cell and surface densities, sponge cell shedding and particle uptake, and putative chemical signaling processes favoring symbiont persistence in particulate matrices all may act as

  8. Functional Gene Diversity and Metabolic Potential of the Microbial Community in an Estuary-Shelf Environment

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2017-06-01

    Full Text Available Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C, nitrogen (N, and phosphorus (P cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip, we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon–Weaner’s H and reciprocal of Simpson’s 1/(1-D] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism (amyA and nplT showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation (nifH, transformation of hydroxylamine to nitrite (hao and ammonification (gdh genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated

  9. The trophic status of Suwałki Landscape Park lakes based on selected parameters (NE Poland).

    Science.gov (United States)

    Jekatierynczuk-Rudczyk, Elżbieta; Zieliński, Piotr; Grabowska, Magdalena; Ejsmont-Karabin, Jolanta; Karpowicz, Maciej; Więcko, Adam

    2014-08-01

    This study describes changes in the trophic status of 12 lakes within Suwałki Landscape Park (SLP). All of the trophic classifications of the lakes were based on the trophic continuum division. Trophic status was determined by means of multiparameter indices using several diverse criteria. In this study, the assessment of the trophic status of lakes included water quality; abundance and biomass of bacterioplankton, phytoplankton, and zooplankton; and primary production of phytoplankton. The Carlson trophic state index (TSI) describes the level of water fertility and indicated the dominance of moderately eutrophic waters. Lakes Perty, Jeglówek, and Hańcza have a trophic status that indicates mesotrophy (TSI trophic status of the studied lakes was determined based on the bacterial abundance and clearly showed a lack of oligotrophic lakes in SLP. Based on the number of bacteria, only Lake Szurpiły can be classified as β-mesotrophic, whereas Lake Linówek can be characterized as hypertrophic with some features typical for humic waters. The greatest value of gross primary production was observed in Lake Linówek (126.4 mg C/m(3)/h). The phytoplankton trophy index varied from 1.59 to 2.28, and its highest value, which indicated eutrophy, was determined for Lake Udziejek. In the case of Lakes Hańcza, Szurpiły, Perty, Jeglówek, and Kojle, the index ranged from 1.25 to 1.74, which indicated mesotrophy. The majority of the lakes were classified as mesoeutrophic (1.75-2.24). The highest trophic status was assessed for lakes with a marked dominance of cyanobacteria (Lake Przechodnie, Lake Krajwelek, Lake Udziejek, and Lake Pogorzałek), which is commonly recognized as an indicator of high trophic status. Considering all of the indices of trophic status, the analysis of rotifer community structure indicates that the studied group of lakes is mesoeutrophic or eutrophic. The values of crustacean zooplankton indices indicated that the trophic status of the studied lakes

  10. Functional Gene Diversity and Metabolic Potential of the Microbial Community in an Estuary-Shelf Environment.

    Science.gov (United States)

    Wang, Yu; Zhang, Rui; He, Zhili; Van Nostrand, Joy D; Zheng, Qiang; Zhou, Jizhong; Jiao, Nianzhi

    2017-01-01

    Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C), nitrogen (N), and phosphorus (P) cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS) is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip), we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon-Weaner's H and reciprocal of Simpson's 1/(1- D )] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism ( amyA and nplT ) showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation ( nifH ), transformation of hydroxylamine to nitrite ( hao ) and ammonification ( gdh ) genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated with

  11. B-Vitamin Competition: Intracellular and Dissolved B-Vitamins Provide Insight into Marine Microbial Community Dynamics

    Science.gov (United States)

    Suffridge, C.; Gomez-Consarnau, L.; Qu, P.; Tenenbaum, N.; Fu, F.; Hutchins, D. A.; Sanudo-Wilhelmy, S. A.

    2016-02-01

    The availability of B-vitamins has the ability to directly affect the dynamics of the marine microbial community. Here we show, for the first time, the connection between dissolved and intracellular B-vitamins in a marine environmental community. Two incubation experiments were conducted at a long-term study site (SPOT) in the San Pedro Basin off the coast of Los Angeles, CA. Experiments were conducted in oligotrophic, preupwelling conditions. Due to the 2015 El Niño event, the seasonal upwelling at SPOT did not occur, creating unusually nutrient depleted conditions. Vitamins B1, B7, and B12 were added in addition to macronutrients at concentrations similar to typical SPOT upwelling conditions. Intracellular and dissolved B-vitamin analyses were conducted to determine shifts in cellular B-vitamin requirements as a function of growth rate. We observed a significant bacterioplankton and phytoplankton growth responses with the addition of B-vitamins in a manner that appears to match the enzymatic requirements for these compounds (e.g. B1>B7>B12). Intracellular B-vitamin analysis of T0 samples support this observation, as all four forms of B12 were not detectable within cells, yet multiple forms of B1 and B7 were detected at or near levels previously reported. Treatments with B12 and macronutrients were observed to have the greatest growth rates. This finding, in addition to the apparent lack of intracellular B12 in the initial community, appears to indicate that the initial microbial community was limited by B12. The addition of each vitamin caused a distinct shift in the blooming microbial community. Our results demonstrate that B-vitamins strongly influence not only the growth rate, but also the species composition and species succession of the microbial community as a whole. Large-scale changes to upwelling regimes are predicted in the future ocean; our results indicate that B-vitamins will have a substantial role in controlling microbial community dynamics under

  12. Biogeochemical dynamics of Flores Island aquatic systems, Azores

    Science.gov (United States)

    Aguiar, P.; Antunes, P.; Raposeiro, P.; Mestre, R.; Costa, A.; Cruz, V.

    2009-04-01

    The present work was developed during the 2009 Flores and Corvo expedition organized by the Department of Biology, University of the Azores. The main goal was to conduct a robust ecosystem analysis in which the microbial community composition assessment of the lakes water column and of the adjacent bottom sediments was integrated with the environmental characterization of specific Flores Island freshwater habitats. For this, three lake systems and three mineral springs were studied. Water and sediment samples were collected at each site. Additionally, microbial biofilm samples were also collected where detected and the community was studied using a culture independent integrated approach. The Azores archipelago is located within the North Atlantic, between the boundary of three tectonic plates (American, Eurasia, and African plates), and it is composed of nine volcanic islands spread along a general WNW-ESSE direction, between 37° to 40° N and 25° to 31° W. The islands correspond to the emerged portions of the Azores plateau defined by the 2000 m bathimetry line Flores and Corvo form the western islands group, with Flores being the western most island of the archipelago. These islands genesis would have started during the Miocenico Flores island subaereal phase is dated of 0.7 M BP and the island volcanic actividade is thought to stop around 3000 years A.C. All lakes included in the study are of volcanic origins and are subject to vulcanic contamination. Hydrogeochemical studies can be used as an insight to the volcanic systems since vulcanic gases condensation and/or thermal fluids mixing can occur at these sites. Most microbial community studies within azorean freshwater systems were restricted to phytoplanktonic community studies or were conducted at hydrothermal sites solely. This is the first work that integrates microbial community composition studies of the lakes water column (phytoplankton as well as bacterioplankton) and of the adjacent bottom

  13. Microbiome of Trichodesmium Colonies from the North Pacific Subtropical Gyre

    Directory of Open Access Journals (Sweden)

    Mary R. Gradoville

    2017-07-01

    RNA gene sequence analyses suggested that lineages typically associated with a copiotrophic lifestyle comprised a large fraction of colony-associated epibionts, in contrast to the streamlined genomes typical of bacterioplankton in these oligotrophic waters. Additionally, epibiont metagenomes were enriched in specific genes involved in phosphate and iron acquisition and denitrification pathways relative to surface seawater metagenomes. We propose that the unique microbial consortium inhabiting colonies has a significant impact on the biogeochemical functioning of Trichodesmium colonies in pelagic environments.

  14. Microbial Diversity and Cyanobacterial Production in Dziani Dzaha Crater Lake, a Unique Tropical Thalassohaline Environment.

    Directory of Open Access Journals (Sweden)

    Christophe Leboulanger

    Full Text Available This study describes, for the first time, the water chemistry and microbial diversity in Dziani Dzaha, a tropical crater lake located on Mayotte Island (Comoros archipelago, Western Indian Ocean. The lake water had a high level of dissolved matter and high alkalinity (10.6-14.5 g L-1 eq. CO32-, i.e. 160-220 mM compare to around 2-2.5 in seawater, with salinity up to 52 psu, 1.5 higher than seawater. Hierarchical clustering discriminated Dziani Dzaha water from other alkaline, saline lakes, highlighting its thalassohaline nature. The phytoplankton biomass was very high, with a total chlorophyll a concentration of 524 to 875 μg chl a L-1 depending on the survey, homogeneously distributed from surface to bottom (4 m. Throughout the whole water column the photosynthetic biomass was dominated (>97% of total biovolume by the filamentous cyanobacteria Arthrospira sp. with a straight morphotype. In situ daily photosynthetic oxygen production ranged from 17.3 to 22.2 g O2 m-2 d-1, consistent with experimental production / irradiance measurements and modeling. Heterotrophic bacterioplankton was extremely abundant, with cell densities up to 1.5 108 cells mL-1 in the whole water column. Isolation and culture of 59 Eubacteria strains revealed the prevalence of alkaliphilic and halophilic organisms together with taxa unknown to date, based on 16S rRNA gene analysis. A single cloning-sequencing approach using archaeal 16S rDNA gene primers unveiled the presence of diverse extremophilic Euryarchaeota. The water chemistry of Dziani Dzaha Lake supports the hypothesis that it was derived from seawater and strongly modified by geological conditions and microbial activities that increased the alkalinity. Dziani Dzaha has a unique consortium of cyanobacteria, phytoplankton, heterotrophic Eubacteria and Archaea, with very few unicellular protozoa, that will deserve further deep analysis to unravel its uncommon diversity. A single taxon, belonging to the genus

  15. Effect of permafrost thawing on organic carbon and trace element colloidal speciation in the thermokarst lakes of western Siberia

    Directory of Open Access Journals (Sweden)

    O. S. Pokrovsky

    2011-03-01

    Full Text Available To examine the mechanisms of carbon mobilization and biodegradation during permafrost thawing and to establish a link between organic carbon (OC and other chemical and microbiological parameters in forming thermokarst (thaw lakes, we studied the biogeochemistry of OC and trace elements (TEs in a chronosequence of small lakes that are being formed due to permafrost thawing in the northern part of western Siberia. Twenty lakes and small ponds of various sizes and ages were sampled for dissolved and colloidal organic carbon, metals and culturable heterotrophic bacterial cell number. We observed a sequence of ecosystems from peat thawing and palsa degradation due to permafrost subsidence in small ponds to large, km-size lakes that are subject to drainage to, finally, the khasyrey (drained lake formation. There is a systematic evolution of both total dissolved and colloidal concentration of OC and TEs in the lake water along with the chronosequence of lake development that may be directly linked to the microbial mineralization of dissolved organic matter and the liberation of the inorganic components (Fe, Al, and TEs from the organo-mineral colloids.

    In this chronosequence of lake development, we observed an apparent decrease in the relative proportion of low molecular weight <1 kDa (1 kDa ~ 1 nm OC concentration along with a decrease in the concentration of total dissolved (<0.45 μm OC. This decrease was accompanied by an increase in the small size organic ligands (probably autochthonous exometabolites produced by the phytoplankton and a simultaneous decrease in the proportion of large-size organic (humic complexes of allochthonous (soil origin. This evolution may be due to the activity of heterotrophic bacterioplankton that use allochthonous organic matter and dissolved nutrients originating from peat lixiviation. Most insoluble TEs demonstrate a systematic decrease in concentration during filtration (5 μm, 0.45 μm exhibiting a similar

  16. Response of the Eastern Mediterranean microbial ecosystem to dust and dust affected by acid processing in the atmosphere

    Directory of Open Access Journals (Sweden)

    Michael David Krom

    2016-08-01

    Full Text Available Acid processes in the atmosphere, particularly those caused by anthropogenic acid gases, increase the amount of bioavailable P in dust and hence are predicted to increase microbial biomass and primary productivity when supplied to oceanic surface waters. This is likely to be particularly important in the Eastern Mediterranean Sea (EMS, which is P limited during the winter bloom and N&P co-limited for phytoplankton in summer. However, it is not clear how the acid processes acting on Saharan dust will affect the microbial biomass and primary productivity in the EMS. Here, we carried out bioassay manipulations on EMS surface water on which Saharan dust was added as dust (Z, acid treated dust (ZA, dust plus excess N (ZN and acid treated dust with excess N (ZNA during springtime (May 2012 and measured bacterioplankton biomass, metabolic and other relevant chemical and biological parameters. We show that acid treatment of Saharan dust increased the amount of bioavailable P supplied by a factor of ~40 compared to non-acidified dust (18.4 nmoles P mg-1 dust vs. 0.45 nmoles P mg-1 dust, respectively. The increase in chlorophyll, primary and bacterial productivity for treatments Z and ZA were controlled by the amount of N added with the dust while those for treatments ZN and ZNA (in which excessive N was added were controlled by the amount of P added. These results confirm that the surface waters were N&P co-limited for phytoplankton during springtime. However, total chlorophyll and primary productivity in the acid treated dust additions (ZA and ZNA were less than predicted from that calculated from the amount of the potentially limiting nutrient added. This biological inhibition was interpreted as being due to labile trace metals being added with the acidified dust. A probable cause for this biological inhibition was the addition of dissolved Al, which forms potentially toxic Al nanoparticles when added to seawater. Thus, the effect of anthropogenic acid

  17. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    C. Jeanthon

    2011-07-01

    Full Text Available Aerobic anoxygenic phototrophic (AAP bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a, the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 54 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94 % was affiliated to the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies

  18. How do Bacteria Adapt to the Red Sea? Cultivation and Genomic and Physiological Characterization of Oligotrophic Bacteria of the PS1, OM43, and SAR11 Clades

    KAUST Repository

    Jimenez Infante, Francy M.

    2015-05-01

    isolates from the Ia (RS39) and Ib (RS40) subgroups, principally revealed unique putative systems for iron uptake and myo-inositol utilization in RS39, and a potential phosphonates biosynthetic pathway present in RS40. The findings presented here reflect how environments influence the genomic repertoire of microbial communities and shows novel metabolisms and putative pathways as unique adaptive qualities in diverse microbes encompassing from rare to predominant bacterioplankton groups from the Red Sea.

  19. Distribution of Prochlorococcus Ecotypes in the Red Sea Basin Based on Analyses of rpoC1 Sequences

    KAUST Repository

    Shibl, Ahmed A.

    2016-06-25

    The marine picocyanobacteria Prochlorococcus represent a significant fraction of the global pelagic bacterioplankton community. Specifically, in the surface waters of the Red Sea, they account for around 91% of the phylum Cyanobacteria. Previous work suggested a widespread presence of high-light (HL)-adapted ecotypes in the Red Sea with the occurrence of low-light (LL)-adapted ecotypes at intermediate depths in the water column. To obtain a more comprehensive dataset over a wider biogeographical scope, we used a 454-pyrosequencing approach to analyze the diversity of the Prochlorococcus rpoC1 gene from a total of 113 samples at various depths (up to 500 m) from 45 stations spanning the Red Sea basin from north to south. In addition, we analyzed 45 metagenomes from eight stations using hidden Markov models based on a set of reference Prochlorococcus genomes to (1) estimate the relative abundance of Prochlorococcus based on 16S rRNA gene sequences, and (2) identify and classify rpoC1 sequences as an assessment of the community structure of Prochlorococcus in the northern, central and southern regions of the basin without amplification bias. Analyses of metagenomic data indicated that Prochlorococcus occurs at a relative abundance of around 9% in samples from surface waters (25, 50, 75 m), 3% in intermediate waters (100 m) and around 0.5% in deep-water samples (200–500 m). Results based on rpoC1 sequences using both methods showed that HL II cells dominate surface waters and were also present in deep-water samples. Prochlorococcus communities in intermediate waters (100 m) showed a higher diversity and co-occurrence of low-light and high-light ecotypes. Prochlorococcus communities at each depth range (surface, intermediate, deep sea) did not change significantly over the sampled transects spanning most of the Saudi waters in the Red Sea. Statistical analyses of rpoC1 sequences from metagenomes indicated that the vertical distribution of Prochlorococcus in the water

  20. Variations in Microbial Community Structure through the Stratified Water Column in the Tyrrhenian Sea (Central Mediterranean

    Directory of Open Access Journals (Sweden)

    Francesco Smedile

    2015-08-01

    Full Text Available The central Mediterranean Sea is among the most oligotrophic habitats in the marine environment. In this study, we investigated the abundance, diversity and activity of prokaryoplankton in the water column (25–3000-m depth at Station Vector (Tyrrhenian Sea, 39°32.050′ N; 13°22.280′ E. This specific water column consists of three different water masses (Modified Atlantic Water (MAW, Levantine Intermediate Water (LIW and Tyrrhenian Deep Water (TDW, possessing a typical stratification of the Central Mediterranean basin. CARD-FISH showed that the metabolically-active fraction of bacterial populations exceeded the archaeal fraction along the whole water column, except at the deepest water masses. 16S rDNA and 16S rRNA clone libraries obtained from each type of water mass were used to analyse the prokaryoplankton community structure and to distinguish between active and “less active” microbial fractions. Our results showed that the rRNA-derived bacterial libraries seemed to be more depth specific compared to 16S rDNA-derived counterparts. Major differences were detected between the active fractions of bacterioplankton thriving in photic (25 m, MAW and aphotic layers (500–3000 m, LIW and TDW respectively, whereas no statistically-significant differences were detected within the deep, aphotic layers (500–3000 m, LIW and TDW. Archaeal communities possessed more depth-specific distribution patterns with both total and active fractions showing depth stratification. Cyanobacteria and Marine Group II MAGII of Euryarchaea dominated the MAW prokaryoplankton. A notable fraction of Geitlerinema-related cyanobacteria was detected among the metabolically-active bacterial population recovered from the mesopelagic (500 m, LIW aphotic layer, which is indicative of their mixotrophic behaviour. Heterotrophic Gammaproteobacteria and members of Marine Group 1.1a and the PSL12-related ALOHA group of Thaumarchaeota were both abundant in the aphotic layers