WorldWideScience

Sample records for bacteriocytes

  1. Developmental origin and evolution of bacteriocytes in the aphid-Buchnera symbiosis.

    Directory of Open Access Journals (Sweden)

    Christian Braendle

    2003-10-01

    Full Text Available Symbiotic relationships between bacteria and insect hosts are common. Although the bacterial endosymbionts have been subjected to intense investigation, little is known of the host cells in which they reside, the bacteriocytes. We have studied the development and evolution of aphid bacteriocytes, the host cells that contain the endosymbiotic bacteria Buchnera aphidicola. We show that bacteriocytes of Acyrthosiphon pisum express several gene products (or their paralogues: Distal-less, Ultrabithorax/Abdominal-A, and Engrailed. Using these markers, we find that a subpopulation of the bacteriocytes is specified prior to the transmission of maternal bacteria to the embryo. In addition, we discovered that a second population of cells is recruited to the bacteriocyte fate later in development. We experimentally demonstrate that bacteriocyte induction and proliferation occur independently of B. aphidicola. Major features of bacteriocyte development, including the two-step recruitment of bacteriocytes, have been conserved in aphids for 80-150 million years. Furthermore, we have investigated two cases of evolutionary loss of bacterial symbionts: in one case, where novel extracellular, eukaryotic symbionts replaced the bacteria, the bacteriocyte is maintained; in another case, where symbionts are absent, the bacteriocytes are initiated but not maintained. The bacteriocyte represents an evolutionarily novel cell fate, which is developmentally determined independently of the bacteria. Three of five transcription factors we examined show novel expression patterns in bacteriocytes, suggesting that bacteriocytes may have evolved to express many additional transcription factors. The evolutionary transition to a symbiosis in which bacteria and an aphid cell form a functional unit, similar to the origin of plastids, has apparently involved extensive molecular adaptations on the part of the host cell.

  2. Bacteriocyte dynamics during development of a holometabolous insect, the carpenter ant Camponotus floridanus

    Directory of Open Access Journals (Sweden)

    Fraunholz Martin J

    2010-12-01

    Full Text Available Abstract Background The carpenter ant Camponotus floridanus harbors obligate intracellular mutualistic bacteria (Blochmannia floridanus in specialized cells, the bacteriocytes, intercalated in their midgut tissue. The diffuse distribution of bacteriocytes over the midgut tissue is in contrast to many other insects carrying endosymbionts in specialized tissues which are often connected to the midgut but form a distinct organ, the bacteriome. C. floridanus is a holometabolous insect which undergoes a complete metamorphosis. During pupal stages a complete restructuring of the inner organs including the digestive tract takes place. So far, nothing was known about maintenance of endosymbionts during this life stage of a holometabolous insect. It was shown previously that the number of Blochmannia increases strongly during metamorphosis. This implicates an important function of Blochmannia in this developmental phase during which the animals are metabolically very active but do not have access to external food resources. Previous experiments have shown a nutritional contribution of the bacteria to host metabolism by production of essential amino acids and urease-mediated nitrogen recycling. In adult hosts the symbiosis appears to degenerate with increasing age of the animals. Results We investigated the distribution and dynamics of endosymbiotic bacteria and bacteriocytes at different stages during development of the animals from larva to imago by confocal laser scanning microscopy. The number of bacteriocytes in relation to symbiont-free midgut cells varied strongly over different developmental stages. Especially during metamorphosis the relative number of bacteria-filled bacteriocytes increased strongly when the larval midgut epithelium is shed. During this developmental stage the midgut itself became a huge symbiotic organ consisting almost exclusively of cells harboring bacteria. In fact, during this phase some bacteria were also found in midgut

  3. Proton-dependent glutamine uptake by aphid bacteriocyte amino acid transporter ApGLNT1.

    Science.gov (United States)

    Price, Daniel R G; Wilson, Alex C C; Luetje, Charles W

    2015-10-01

    Aphids house large populations of the gammaproteobacterial symbiont Buchnera aphidicola in specialized bacteriocyte cells. The combined biosynthetic capability of the holobiont (Acyrthosiphon pisum and Buchnera) is sufficient for biosynthesis of all twenty protein coding amino acids, including amino acids that animals alone cannot synthesize; and that are present at low concentrations in A. pisum's plant phloem sap diet. Collaborative holobiont amino acid biosynthesis depends on glutamine import into bacteriocytes, which serves as a nitrogen-rich amino donor for biosynthesis of other amino acids. Recently, we characterized A. pisum glutamine transporter 1 (ApGLNT1), a member of the amino acid/auxin permease family, as the dominant bacteriocyte plasma membrane glutamine transporter. Here we show ApGLNT1 to be structurally and functionally related to mammalian proton-dependent amino acid transporters (PATs 1-4). Using functional expression in Xenopus laevis oocytes, combined with two-electrode voltage clamp electrophysiology we demonstrate that ApGLNT1 is electrogenic and that glutamine induces large inward currents. ApGLNT1 glutamine induced currents are dependent on external glutamine concentration, proton (H+) gradient across the membrane, and membrane potential. Based on these transport properties, ApGLNT1-mediated glutamine uptake into A. pisum bacteriocytes can be regulated by changes in either proton gradients across the plasma membrane or membrane potential. PMID:26028424

  4. Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2.

    Science.gov (United States)

    Guo, Huijuan; Sun, Yucheng; Li, Yuefei; Tong, Bin; Harris, Marvin; Zhu-Salzman, Keyan; Ge, Feng

    2013-10-01

    Rising atmospheric CO(2) levels can dilute the nitrogen (N) resource in plant tissue, which is disadvantageous to many herbivorous insects. Aphids appear to be an exception that warrants further study. The effects of elevated CO(2) (750 ppm vs. 390 ppm) were evaluated on N assimilation and transamination by two Medicago truncatula genotypes, a N-fixing-deficient mutant (dnf1) and its wild-type control (Jemalong), with and without pea aphid (Acyrthosiphon pisum) infestation. Elevated CO(2) increased population abundance and feeding efficiency of aphids fed on Jemalong, but reduced those on dnf1. Without aphid infestation, elevated CO(2) increased photosynthetic rate, chlorophyll content, nodule number, biomass, and pod number for Jemalong, but only increased pod number and chlorophyll content for dnf1. Furthermore, aphid infested Jemalong plants had enhanced activities of N assimilation-related enzymes (glutamine synthetase, Glutamate synthase) and transamination-related enzymes (glutamate oxalate transaminase, glutamine phenylpyruvate transaminase), which presumably increased amino acid concentration in leaves and phloem sap under elevated CO(2). In contrast, aphid infested dnf1 plants had decreased activities of N assimilation-related enzymes and transmination-related enzymes and amino acid concentrations under elevated CO(2). Furthermore, elevated CO(2) up-regulated expression of genes relevant to amino acid metabolism in bacteriocytes of aphids associated with Jemalong, but down-regulated those associated with dnf1. Our results suggest that pea aphids actively elicit host responses that promote amino acid metabolism in both the host plant and in its bacteriocytes to favor the population growth of the aphid under elevated CO(2).

  5. Cellular and molecular remodelling of a host cell for vertical transmission of bacterial symbionts

    Science.gov (United States)

    Luan, Jun-Bo; Shan, Hong-Wei; Isermann, Philipp; Huang, Jia-Hsin; Lammerding, Jan; Liu, Shu-Sheng; Douglas, Angela E.

    2016-01-01

    Various insects require intracellular bacteria that are restricted to specialized cells (bacteriocytes) and are transmitted vertically via the female ovary, but the transmission mechanisms are obscure. We hypothesized that, in the whitefly Bemisia tabaci, where intact bacteriocytes (and not isolated bacteria) are transferred to oocytes, the transmission mechanism would be evident as cellular and molecular differences between the nymph (pre-adult) and adult bacteriocytes. We demonstrate dramatic remodelling of bacteriocytes at the developmental transition from nymph to adulthood. This transition involves the loss of cell–cell adhesion, high division rates to constant cell size and onset of cell mobility, enabling the bacteriocytes to crawl to the ovaries. These changes are accompanied by cytoskeleton reorganization and changes in gene expression: genes functioning in cell–cell adhesion display reduced expression and genes involved in cell division, cell motility and endocytosis/exocytosis have elevated expression in adult bacteriocytes, relative to nymph bacteriocytes. This study demonstrates, for the first time, how developmentally orchestrated remodelling of gene expression and correlated changes in cell behaviour underpin the capacity of bacteriocytes to mediate the vertical transmission and persistence of the symbiotic bacteria on which the insect host depends. PMID:27358364

  6. Distribution of the Primary Endosymbiont (Candidatus Uzinura Diaspidicola Within Host Insects from the Scale Insect Family Diaspididae

    Directory of Open Access Journals (Sweden)

    Katharina Dittmar

    2012-02-01

    Full Text Available It has long been known that armored scale insects harbor endosymbiotic bacteria inside specialized cells called bacteriocytes. Originally, these endosymbionts were thought to be fungal symbionts but they are now known to be bacterial and have been named Uzinura diaspidicola. Bacteriocyte and endosymbiont distribution patterns within host insects were visualized using in situ hybridization via 16S rRNA specific probes. Images of scale insect embryos, eggs and adult scale insects show patterns of localized bacteriocytes in embryos and randomly distributed bacteriocytes in adults. The symbiont pocket was not found in the armored scale insect eggs that were tested. The pattern of dispersed bacteriocytes in adult scale insects suggest that Uzinura and Blattabacteria may share some homologous traits that coincide with similar life style requirements, such as dispersal in fat bodies and uric acid recycling.

  7. Distribution of the Primary Endosymbiont (Candidatus Uzinura Diaspidicola) Within Host Insects from the Scale Insect Family Diaspididae.

    Science.gov (United States)

    Gruwell, Matthew E; Flarhety, Meghan; Dittmar, Katharina

    2012-01-01

    It has long been known that armored scale insects harbor endosymbiotic bacteria inside specialized cells called bacteriocytes. Originally, these endosymbionts were thought to be fungal symbionts but they are now known to be bacterial and have been named Uzinura diaspidicola. Bacteriocyte and endosymbiont distribution patterns within host insects were visualized using in situ hybridization via 16S rRNA specific probes. Images of scale insect embryos, eggs and adult scale insects show patterns of localized bacteriocytes in embryos and randomly distributed bacteriocytes in adults. The symbiont pocket was not found in the armored scale insect eggs that were tested. The pattern of dispersed bacteriocytes in adult scale insects suggest that Uzinura and Blattabacteria may share some homologous traits that coincide with similar life style requirements, such as dispersal in fat bodies and uric acid recycling.

  8. Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts.

    Science.gov (United States)

    Price, Daniel R G; Feng, Honglin; Baker, James D; Bavan, Selvan; Luetje, Charles W; Wilson, Alex C C

    2014-01-01

    Endosymbiotic associations have played a major role in evolution. However, the molecular basis for the biochemical interdependence of these associations remains poorly understood. The aphid-Buchnera endosymbiosis provides a powerful system to elucidate how these symbioses are regulated. In aphids, the supply of essential amino acids depends on an ancient nutritional symbiotic association with the gamma-proteobacterium Buchnera aphidicola. Buchnera cells are densely packed in specialized aphid bacteriocyte cells. Here we confirm that five putative amino acid transporters are highly expressed and/or highly enriched in Acyrthosiphon pisum bacteriocyte tissues. When expressed in Xenopus laevis oocytes, two bacteriocyte amino acid transporters displayed significant levels of glutamine uptake, with transporter ACYPI001018, LOC100159667 (named here as Acyrthosiphon pisum glutamine transporter 1, ApGLNT1) functioning as the most active glutamine transporter. Transporter ApGLNT1 has narrow substrate selectivity, with high glutamine and low arginine transport capacity. Notably, ApGLNT1 has high binding affinity for arginine, and arginine acts as a competitive inhibitor for glutamine transport. Using immunocytochemistry, we show that ApGLNT1 is localized predominantly to the bacteriocyte plasma membrane, a location consistent with the transport of glutamine from A. pisum hemolymph to the bacteriocyte cytoplasm. On the basis of functional transport data and localization, we propose a substrate feedback inhibition model in which the accumulation of the essential amino acid arginine in A. pisum hemolymph reduces the transport of the precursor glutamine into bacteriocytes, thereby regulating amino acid biosynthesis in the bacteriocyte. Structural similarities in the arrangement of hosts and symbionts across endosymbiotic systems suggest that substrate feedback inhibition may be mechanistically important in other endosymbioses.

  9. Tissue localization of the endosymbiotic bacterium "Candidatus Blochmannia floridanus" in adults and larvae of the carpenter ant Camponotus floridanus.

    Science.gov (United States)

    Sauer, Christina; Dudaczek, Dieter; Hölldobler, Bert; Gross, Roy

    2002-09-01

    The distribution of endosymbiotic bacteria in different tissues of queens, males, and workers of the carpenter ant Camponotus floridanus was investigated by light and electron microscopy and by in situ hybridization. A large number of bacteria could be detected in bacteriocytes within the midguts of workers, young virgin queens, and males. Large amounts of bacteria were also found in the oocytes of workers and queens. In contrast, bacteria were not present in oocyte-associated cells or in the spermathecae of mature queens, although occasionally a small number of bacteria could be detected in the testis follicles of males. Interestingly, the number of bacteriocytes in mature queens was strongly reduced and the bacteriocytes contained only very few or no bacteria at all, although the endosymbionts were present in huge amounts in the ovaries of the same animals. During embryogenesis of the deposited egg, the bacteria were concentrated in a ring of endodermal tissue destined to become the midgut in later developmental stages. However, during larval development, bacteria could also be detected in other tissues although to a lesser extent. Only in the last-instar larvae were bacteria found exclusively in the midgut tissue within typical bacteriocytes. Tetracycline and rifampin efficiently cleansed C. floridanus workers of their symbionts and the bacteriocytes of these animals still remained empty several months after treatment had ceased. Despite the lack of their endosymbionts, these adult animals were able to survive without any obvious negative effect under normal cultivation conditions. PMID:12200264

  10. Symbiosis in the green leafhopper, Cicadella viridis (Hemiptera, Cicadellidae). Association in statu nascendi?

    Science.gov (United States)

    Michalik, Anna; Jankowska, Władysława; Kot, Marta; Gołas, Aniela; Szklarzewicz, Teresa

    2014-11-01

    The green leafhopper, Cicadella viridis lives in symbiotic association with microorganisms. The ultrastructural and molecular analyses have shown that in the body of the C. viridis two types of bacteriocyte endosymbionts are present. An amplification and sequencing of 16S rRNA genes revealed that large, pleomorphic bacteria display a high similarity (94-100%) to the endosymbiont 'Candidatus Sulcia muelleri' (phylum Bacteroidetes), whereas long, rod-shaped microorganisms are closely related to the γ-proteobacterial symbiont Sodalis (97-99% similarity). Both endosymbionts may be harbored in their own bacteriocytes as well as may co-reside in the same bacteriocytes. The ultrastructural observations have revealed that the Sodalis-like bacteria harboring the same bacteriocytes as bacterium Sulcia may invade the cells of the latter. Bacteria Sulcia and Sodalis-like endosymbionts are transovarially transmitted from one generation to the next. However, Sodalis-like endosymbionts do not invade the ovaries individually, but only inside Sulcia cells. Apart from bacteriocyte endosymbionts, in the body of C. viridis small, rod-shaped bacteria have been detected, and have been identified as being closely related to γ-proteobacterial microorganism Pectobacterium (98-99% similarity). The latter are present in the sheath cells of the bacteriomes containing bacterium Sulcia as well as in fat body cells.

  11. Tissue localization of the endosymbiotic bacterium "Candidatus Blochmannia floridanus" in adults and larvae of the carpenter ant Camponotus floridanus.

    Science.gov (United States)

    Sauer, Christina; Dudaczek, Dieter; Hölldobler, Bert; Gross, Roy

    2002-09-01

    The distribution of endosymbiotic bacteria in different tissues of queens, males, and workers of the carpenter ant Camponotus floridanus was investigated by light and electron microscopy and by in situ hybridization. A large number of bacteria could be detected in bacteriocytes within the midguts of workers, young virgin queens, and males. Large amounts of bacteria were also found in the oocytes of workers and queens. In contrast, bacteria were not present in oocyte-associated cells or in the spermathecae of mature queens, although occasionally a small number of bacteria could be detected in the testis follicles of males. Interestingly, the number of bacteriocytes in mature queens was strongly reduced and the bacteriocytes contained only very few or no bacteria at all, although the endosymbionts were present in huge amounts in the ovaries of the same animals. During embryogenesis of the deposited egg, the bacteria were concentrated in a ring of endodermal tissue destined to become the midgut in later developmental stages. However, during larval development, bacteria could also be detected in other tissues although to a lesser extent. Only in the last-instar larvae were bacteria found exclusively in the midgut tissue within typical bacteriocytes. Tetracycline and rifampin efficiently cleansed C. floridanus workers of their symbionts and the bacteriocytes of these animals still remained empty several months after treatment had ceased. Despite the lack of their endosymbionts, these adult animals were able to survive without any obvious negative effect under normal cultivation conditions.

  12. Expression of genes involved in the uptake of inorganic carbon in the gill of a deep-sea vesicomyid clam harboring intracellular thioautotrophic bacteria.

    Science.gov (United States)

    Hongo, Yuki; Ikuta, Tetsuro; Takaki, Yoshihiro; Shimamura, Shigeru; Shigenobu, Shuji; Maruyama, Tadashi; Yoshida, Takao

    2016-07-10

    Deep-sea vesicomyid clams, including the genus Phreagena (formerly Calyptogena), harbor thioautotrophic bacterial symbionts in the host symbiosome, which consists of cytoplasmic vacuoles in gill epithelial cells called bacteriocytes. The symbiont requires inorganic carbon (Ci), such as CO2, HCO3(-), and CO3(2-), to synthesize organic compounds, which are utilized by the host clam. The dominant Ci in seawater is HCO3(-), which is impermeable to cell membranes. Within the bacteriocyte, cytoplasmic carbonic anhydrase (CA) from the host, which catalyzes the inter-conversion between CO2 and HCO3(-), has been shown to be abundant and is thought to supply intracellular CO2 to symbionts in the symbiosome. However, the mechanism of Ci uptake by the host gill from seawater is poorly understood. To elucidate the influx pathway of Ci into the bacteriocyte, we isolated the genes related to Ci uptake via the pyrosequencing of cDNA from the gill of Phreagena okutanii, and investigated their expression patterns. Using phylogenetic and amino acid sequence analyses, three solute carrier family 4 (SLC4) bicarbonate transporters (slc4co1, slc4co2, and slc4co4) and two membrane-associated CAs (mcaco1 and mcaco2) were identified as candidate genes for Ci uptake. In an in situ hybridization analysis of gill sections, the expression of mcaco1 and mcaco2 was detected in the bacteriocytes and asymbiotic non-ciliated cells, respectively, and the expression of slc4co1 and slc4co2 was detected in the asymbiotic cells, including the intermediate cells of the inner area and the non-ciliated cells of the external area. Although subcellular localizations of the products of these genes have not been fully elucidated, they may play an important role in the uptake of Ci into the bacteriocytes. These findings will improve our understanding of the Ci transport system in the symbiotic relationships of chemosynthetic bivalves. PMID:27016297

  13. Symbiotic Bacteria Associated with Stomach Discs of Human Lice▿ †

    OpenAIRE

    Sasaki-Fukatsu, Kayoko ; Koga, Ryuichi; Nikoh, Naruo; Yoshizawa, Kazunori; Kasai, Shinji; Mihara, Minoru; Kobayashi, Mutsuo; Tomita, Takashi; Fukatsu, Takema

    2006-01-01

    The symbiotic bacteria associated with the stomach disc, a large aggregate of bacteriocytes on the ventral side of the midgut, of human body and head lice were characterized. Molecular phylogenetic analysis of 16S rRNA gene sequences showed that the symbionts formed a distinct and well-defined clade in the Gammaproteobacteria. The sequences exhibited AT-biased nucleotide composition and accelerated molecular evolution. In situ hybridization revealed that in nymphs and adult males, the symbion...

  14. Symbiotic bacteria associated with stomach discs of human lice

    OpenAIRE

    Sasaki-Fukatsu, Kayoko; Koga, Ryuichi; Nikoh, Naruo; Yoshizawa, Kazunori; Kasai, Shinji; Mihara, Minoru; Kobayashi, Mutsuo; Tomita, Takashi; Fukatsu, Takema

    2006-01-01

    The symbiotic bacteria associated with the stomach disc, a large aggregate of bacteriocytes on the ventral side of the midgut, of human body and head lice were characterized. Molecular phylogenetic analysis of 16S rRNA gene sequences showed that the symbionts formed a distinct and well-defined clade in the Gammaproteobacteria. The sequences exhibited AT-biased nucleotide composition and accelerated molecular evolution. In situ hybridization revealed that in nymphs and adult males, the symbion...

  15. Aspects of the life history strategies of the Teredinidae

    OpenAIRE

    Shipway, John Reuben

    2013-01-01

    The Teredinidae are a major economic pest of wooden coastal structures, causing billions of Dollars worth of damage per annum. To fully understand the threat posed by teredinids it is necessary to examine their biology at a number of different levels. These include: the anatomical adaptations which facilitate their wood-boring and wood- feeding life-style; the mechanism of cellulose digestion, which is aided by cellulolytic symbionts retained in bacteriocytes on the teredinid gill; the early ...

  16. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization.

    Science.gov (United States)

    Schröder, D; Deppisch, H; Obermayer, M; Krohne, G; Stackebrandt, E; Hôlldobler, B; Goebel, W; Gross, R

    1996-08-01

    Intracellular endosymbiotic bacteria inherent to ants of the genus Camponotus were characterized. The bacteria were localized in bacteriocytes, which are specialized cells of both workers and queen ants; these cells are intercalated between epithelial cells of the midgut. The bacteriocytes show a different morphology from the normal epithelial cells and carry a large number of the rod-shaped Gram-negative bacteria free in the cytoplasm. The bacteria were never observed in the neighbouring epithelial cells, but they were found intracellularly in oocytes, strongly indicating a maternal transmission of the bacteria. The 16S DNA encoding rrs loci of the endosymbionts of four species of the genus Camponotus derived either from Germany (C. herculeanus and C. ligniperdus), North America (C. floridanus) or South America (C. rufipes) were cloned after polymerase chain reaction (PCR) amplification using oligonucleotides complementary to all so far known eubacterial rrs sequences. The DNA sequences of the rrs loci of the four endosymbionts were determined, and, using various genus- and species-specific oligonucleotides derived from variable regions in the rrs sequences, the identity of the bacteria present in the bacteriocytes and the ovarian cells was confirmed by PCR and in situ hybridization techniques. Comparison of the 16S DNA sequences with the available database showed the endosymbiotic bacteria to be members of the gamma-subclass of Proteobacteria. They formed a distinct taxonomic group, a sister taxon of the taxons defined by the tsetse fly and aphid endosymbionts. Within the gamma-subclass, the cluster of the ant, tsetse fly and aphid endosymbionts are placed adjacent to the family of Enterobacteriaceae. The evolutionary tree of the ant endosymbionts reflects the systematic classification and geographical distribution of their host insects, indicating an early co-evolution of the symbiotic partners and a vertical transmission of the bacteria. PMID:8866472

  17. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization.

    Science.gov (United States)

    Schröder, D; Deppisch, H; Obermayer, M; Krohne, G; Stackebrandt, E; Hôlldobler, B; Goebel, W; Gross, R

    1996-08-01

    Intracellular endosymbiotic bacteria inherent to ants of the genus Camponotus were characterized. The bacteria were localized in bacteriocytes, which are specialized cells of both workers and queen ants; these cells are intercalated between epithelial cells of the midgut. The bacteriocytes show a different morphology from the normal epithelial cells and carry a large number of the rod-shaped Gram-negative bacteria free in the cytoplasm. The bacteria were never observed in the neighbouring epithelial cells, but they were found intracellularly in oocytes, strongly indicating a maternal transmission of the bacteria. The 16S DNA encoding rrs loci of the endosymbionts of four species of the genus Camponotus derived either from Germany (C. herculeanus and C. ligniperdus), North America (C. floridanus) or South America (C. rufipes) were cloned after polymerase chain reaction (PCR) amplification using oligonucleotides complementary to all so far known eubacterial rrs sequences. The DNA sequences of the rrs loci of the four endosymbionts were determined, and, using various genus- and species-specific oligonucleotides derived from variable regions in the rrs sequences, the identity of the bacteria present in the bacteriocytes and the ovarian cells was confirmed by PCR and in situ hybridization techniques. Comparison of the 16S DNA sequences with the available database showed the endosymbiotic bacteria to be members of the gamma-subclass of Proteobacteria. They formed a distinct taxonomic group, a sister taxon of the taxons defined by the tsetse fly and aphid endosymbionts. Within the gamma-subclass, the cluster of the ant, tsetse fly and aphid endosymbionts are placed adjacent to the family of Enterobacteriaceae. The evolutionary tree of the ant endosymbionts reflects the systematic classification and geographical distribution of their host insects, indicating an early co-evolution of the symbiotic partners and a vertical transmission of the bacteria.

  18. Bacterial symbionts of the leafhopper Evacanthus interruptus (Linnaeus, 1758) (Insecta, Hemiptera, Cicadellidae: Evacanthinae).

    Science.gov (United States)

    Szklarzewicz, Teresa; Grzywacz, Beata; Szwedo, Jacek; Michalik, Anna

    2016-03-01

    Plant sap-feeding hemipterans harbor obligate symbiotic microorganisms which are responsible for the synthesis of amino acids missing in their diet. In this study, we characterized the obligate symbionts hosted in the body of the xylem-feeding leafhopper Evacanthus interruptus (Cicadellidae: Evacanthinae: Evacanthini) by means of histological, ultrastructural and molecular methods. We observed that E. interruptus is associated with two types of symbiotic microorganisms: bacterium 'Candidatus Sulcia muelleri' (Bacteroidetes) and betaproteobacterium that is closely related to symbionts which reside in two other Cicadellidae representatives: Pagaronia tredecimpunctata (Evacanthinae: Pagaronini) and Hylaius oregonensis (Bathysmatophorinae: Bathysmatophorini). Both symbionts are harbored in their own bacteriocytes which are localized between the body wall and ovaries. In E. interruptus, both Sulcia and betaproteobacterial symbionts are transovarially transmitted from one generation to the next. In the mature female, symbionts leave the bacteriocytes and gather around the posterior pole of the terminal oocytes. Then, they gradually pass through the cytoplasm of follicular cells surrounding the posterior pole of the oocyte and enter the space between them and the oocyte. The bacteria accumulate in the deep depression of the oolemma and form a characteristic 'symbiont ball'. In the light of the results obtained, the phylogenetic relationships within modern Cicadomorpha and some Cicadellidae subfamilies are discussed.

  19. Co-infection and localization of secondary symbionts in two whitefly species

    Directory of Open Access Journals (Sweden)

    Kontsedalov Svetlana

    2010-05-01

    Full Text Available Abstract Background Whiteflies are cosmopolitan phloem-feeding pests that cause serious damage to many crops worldwide due to direct feeding and vectoring of many plant viruses. The sweetpotato whitefly Bemisia tabaci (Gennadius and the greenhouse whitefly Trialeurodes vaporariorum (Westwood are two of the most widespread and damaging whitefly species. To complete their unbalanced diet, whiteflies harbor the obligatory bacterium Portiera aleyrodidarum. B. tabaci further harbors a diverse array of secondary symbionts, including Hamiltonella, Arsenophonus, Cardinium, Wolbachia, Rickettsia and Fritschea. T. vaporariorum is only known to harbor P. aleyrodidarum and Arsenophonus. We conducted a study to survey the distribution of whitefly species in Croatia, their infection status by secondary symbionts, and the spatial distribution of these symbionts in the developmental stages of the two whitefly species. Results T. vaporariorum was found to be the predominant whitefly species across Croatia, while only the Q biotype of B. tabaci was found across the coastal part of the country. Arsenophonus and Hamiltonella were detected in collected T. vaporariorum populations, however, not all populations harbored both symbionts, and both symbionts showed 100% infection rate in some of the populations. Only the Q biotype of B. tabaci was found in the populations tested and they harbored Hamiltonella, Rickettsia, Wolbachia and Cardinium, while Arsenophonus and Fritschea were not detected in any B. tabaci populations. None of the detected symbionts appeared in all populations tested, and multiple infections were detected in some of the populations. All endosymbionts tested were localized inside the bacteriocyte in both species, but only Rickettsia and Cardinium in B. tabaci showed additional localization outside the bacteriocyte. Conclusions Our study revealed unique co-infection patterns by secondary symbionts in B. tabaci and T. vaporariorum. Co-sharing of the

  20. New insight into the RNA interference response against cathepsin-L gene in the pea aphid, Acyrthosiphon pisum

    DEFF Research Database (Denmark)

    Sapountzis, Panagiotis; Duport, Gabrielle; Balmand, Séverine;

    2014-01-01

    RNA interference (RNAi) has been widely and successfully used for gene inactivation in insects, including aphids, where dsRNA administration can be performed either by feeding or microinjection. However, several aspects related to the aphid response to RNAi, as well as the influence......-L gene in the pea aphid, Acyrthosiphon pisum. In order to maximize the possibility of discovering specific phenotypes, the effect of the treatment was analyzed in single individual aphids at the level of five body compartments: the bacteriocytes, the gut, the embryonic chains, the head and the remaining...... body carcass. Our analysis revealed that gene expression knockdown effect in each single body compartment was dependent on the administration method used, and allowed us to discover new functions for the cathepsin-L gene in aphids. Injection of cathepsin-L dsRNA was much more effective on carcass...

  1. Molecular phylogeny of the genus Dactylopius (Hemiptera: Dactylopiidae) and identification of the symbiotic bacteria.

    Science.gov (United States)

    Ramírez-Puebla, S T; Rosenblueth, M; Chávez-Moreno, C K; de Lyra, M C Catanho Pereira; Tecante, A; Martínez-Romero, E

    2010-08-01

    Phylogenetic analyses, from polymerase chain reaction (PCR)-amplified 12S rRNA and 18S rRNA gene sequences from cochineal insects of the genus Dactylopius present in Mexico, showed that D. ceylonicus, D. confusus, and D. opuntiae are closely related. D. coccus constitutes a separate clade, and D. tomentosus is the most distantly related. Bacterial 16S rRNA sequences from all the Dactylopius species sampled showed a common β-proteobacteria, related to Azoarcus, also found in eggs and in bacteriocytes in D. coccus. We propose the name "Candidatus Dactylopiibacterium carminicum" for this endosymbiont. Other bacterial sequences recovered from the samples were close to those from soil or plant associated bacteria, like Massilia, Herbaspirillum, Acinetobacter, Mesorhizobium, and Sphingomonas, suggesting a possible horizontal transmission from Cactaceae plant sap to Dactylopius spp. during feeding. This is the first molecular analysis of Dactylopius species and of their associated bacteria. PMID:22127169

  2. LNA probes substantially improve the detection of bacterial endosymbionts in whole mount of insects by fluorescent in-situ hybridization

    Directory of Open Access Journals (Sweden)

    Priya Natarajan

    2012-05-01

    Full Text Available Abstract Background Detection of unculturable bacteria and their localization in the host, by fluorescent in-situ hybridization (FISH, is a powerful technique in the study of host-bacteria interaction. FISH probes are designed to target the 16 s rRNA region of the bacteria to be detected. LNA probes have recently been used in FISH studies and proven to be more efficient. To date no report has employed LNA probes for FISH detection of bacterial endosymbiont in the whole mount tissues. Further, though speculated, bacteriocytes have not been reported from males of Bemisia tabaci. Results In this study, we compared the efficiency in detecting bacteria by fluorescent DNA oligonucleotides versus modified probes containing Locked Nucleic Acid (LNA substitution in their structure. We used the insect Bemisia tabaci as the experimental material since it carried simultaneous infection by two bacteria: one a primary endosymbiont, Portiera (and present in more numbers while the other a secondary endosymbiont Arsenophonus (and present in less numbers. Thus a variation in the abundance of bacteria was expected. While detecting both the bacteria, we found a significant increase in the signal whenever LNA probes were used. However, the difference was more pronounced in detecting the secondary endosymbiont, wherein DNA probes gave weak signals when compared to LNA probes. Also, signal to noise ratio for LNA probes was higher than DNA probes. We found that LNA considerably improved sensitivity of FISH, as compared to the commonly used DNA oligonucleotide probe. Conclusion By employing LNA probes we could detect endosymbiotic bacteria in males, which have never been reported previously. We were able to detect bacteriocytes containing Portiera and Arsenophonus in the males of B. tabaci. Thus, employing LNA probes at optimized conditions will help to significantly improve detection of bacteria at the lowest concentration and may give a comprehensible depiction

  3. Snapshots of a shrinking partner: Genome reduction in Serratia symbiotica.

    Science.gov (United States)

    Manzano-Marín, Alejandro; Latorre, Amparo

    2016-01-01

    Genome reduction is pervasive among maternally-inherited endosymbiotic organisms, from bacteriocyte- to gut-associated ones. This genome erosion is a step-wise process in which once free-living organisms evolve to become obligate associates, thereby losing non-essential or redundant genes/functions. Serratia symbiotica (Gammaproteobacteria), a secondary endosymbiont present in many aphids (Hemiptera: Aphididae), displays various characteristics that make it a good model organism for studying genome reduction. While some strains are of facultative nature, others have established co-obligate associations with their respective aphid host and its primary endosymbiont (Buchnera). Furthermore, the different strains hold genomes of contrasting sizes and features, and have strikingly disparate cell shapes, sizes, and tissue tropism. Finally, genomes from closely related free-living Serratia marcescens are also available. In this study, we describe in detail the genome reduction process (from free-living to reduced obligate endosymbiont) undergone by S. symbiotica, and relate it to the stages of integration to the symbiotic system the different strains find themselves in. We establish that the genome reduction patterns observed in S. symbiotica follow those from other dwindling genomes, thus proving to be a good model for the study of the genome reduction process within a single bacterial taxon evolving in a similar biological niche (aphid-Buchnera). PMID:27599759

  4. Horizontal gene acquisition of Liberibacter plant pathogens from a bacteriome-confined endosymbiont of their psyllid vector.

    Science.gov (United States)

    Nakabachi, Atsushi; Nikoh, Naruo; Oshima, Kenshiro; Inoue, Hiromitsu; Ohkuma, Moriya; Hongoh, Yuichi; Miyagishima, Shin-ya; Hattori, Masahira; Fukatsu, Takema

    2013-01-01

    he Asian citrus psyllid Diaphorina citri is a notorious agricultural pest that transmits the phloem-inhabiting alphaproteobacterial 'Candidatus Liberibacter asiaticus' and allied plant pathogens, which cause the devastating citrus disease called Huanglongbing or greening disease. D. citri harbors two distinct bacterial mutualists in the symbiotic organ called bacteriome: the betaproteobacterium 'Candidatus Profftella armatura' in the syncytial cytoplasm at the center of the bacteriome, and the gammaproteobacterium 'Candidatus Carsonella ruddii' in uninucleate bacteriocytes. Here we report that a putative amino acid transporter LysE of Profftella forms a highly supported clade with proteins of L. asiaticus, L. americanus, and L. solanacearum. L. crescens, the most basal Liberibacter lineage currently known, lacked the corresponding gene. The Profftella-Liberibacter subclade of LysE formed a clade with proteins from betaproteobacteria of the order Burkholderiales, to which Profftella belongs. This phylogenetic pattern favors the hypothesis that the Liberibacter lineage acquired the gene from the Profftella lineage via horizontal gene transfer (HGT) after L. crescens diverged from other Liberibacter lineages. K A/K S analyses further supported the hypothesis that the genes encoded in the Liberibacter genomes are functional. These findings highlight the possible evolutionary importance of HGT between plant pathogens and their insect vector's symbionts that are confined in the symbiotic organ and seemingly sequestered from external microbial populations. PMID:24349319

  5. Ultrastructural and molecular characterization of a bacterial symbiosis in the ecologically important scale insect family Coelostomidiidae.

    Science.gov (United States)

    Dhami, Manpreet K; Turner, Adrian P; Deines, Peter; Beggs, Jacqueline R; Taylor, Michael W

    2012-09-01

    Scale insects are important ecologically and as agricultural pests. The majority of scale insect taxa feed exclusively on plant phloem sap, which is carbon rich but deficient in essential amino acids. This suggests that, as seen in the related aphids and psyllids, scale insect nutrition might also depend upon bacterial symbionts, yet very little is known about scale insect-bacteria symbioses. We report here the first identification and molecular characterization of symbiotic bacteria associated with the New Zealand giant scale Coelostomidia wairoensis, using fluorescence in situ hybridization (FISH), transmission electron microscopy (TEM) and 16S rRNA gene-based analysis. Dissection and FISH confirmed the location of the bacteria in large, paired, multilobate organs in the abdominal region of the insect. TEM indicated that the dominant pleomorphic bacteria were confined to bacteriocytes in the sheath-enclosed bacteriome. Phylogenetic analysis revealed the presence of three distinct bacterial types, the bacteriome-associated B-symbiont (Bacteroidetes), an Erwinia-related symbiont (Gammaproteobacteria) and Wolbachia sp. (Alphaproteobacteria). This study extends the current knowledge of scale insect symbionts and is the first microbiological investigation of the ecologically important coelostomidiid scales.

  6. Identification and expression analysis of aquaporins in the potato psyllid, Bactericera cockerelli.

    Directory of Open Access Journals (Sweden)

    Freddy Ibanez

    Full Text Available Aquaporin (AQPs proteins transport water and uncharged low molecular-weight solutes across biological membranes. Six to 8 AQP genes have been identified in many insect species, but presently only three aquaporins have been characterized in phloem feeding insects. The objective of this study was to identify candidate AQPs in the potato psyllid, Bactericera cockerelli. Herein, we identified four candidate aquaporin cDNAs in B. cockerelli transcriptome. Phylogenetic analysis showed that candidate BcAQP2-like had high similarity to PRIP aquaporins; while candidates BcAQP4-like, BcAQP5-like and BcAQP9-like clustered within clade B. In particular, candidates BcAQP4-like and BcAQP5-like clustered with functionally validated insect aquaglyceroporin proteins. Expression analyses using RT-qPCR showed that all candidates were expressed in all life stages and tissues. Candidates BcAQP4-like and BcAQP5-like were highly expressed in bacteriocytes, while BcAQP9-like appeared to be expressed at high levels in whole body but not in the assayed tissues. This study is the first global attempt to identify putative aquaporins in a phloem feeding insect.

  7. Exploration for facultative endosymbionts of glassy-wingedsharpshooter (Hemiptera: Cicadellidae)

    Energy Technology Data Exchange (ETDEWEB)

    Montllor-Curley, C.; Brodie, E.L.; Lechner, M.G.; Purcell, A.H.

    2006-07-01

    Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae),glassy-winged sharpshooter, was collected in California and severalstates in the southeastern United States in 2002 and 2003 and analyzedfor endosymbiotic bacteria. Hemolymph, eggs, and bacteriomes wereexamined for the presence of bacteria by polymerase chain reaction. Asubset of hemolymph and egg samples had their 16S rRNA gene ampliconscloned and sequenced or analyzed by restriction digest patterns ofsamples compared with known bacterial DNA. Baumannia cicadellinicola, oneof the primary symbionts of glassy-winged sharpshooter, was found in themajority of hemolymph samples, although it has been considered until nowto reside primarily inside the specialized host bacteriocytes. Wolbachiasp., a common secondary symbiont in many insect taxa investigated todate, was the second most frequently detected bacterium in hemolymphsamples. In addition, we detected bacteria that were most closely related(by 16S rRNA gene sequence) to Pseudomonas, Stenotrophomonas, andAcinetobacter in hemolymph samples of one and/or two glassy-wingedsharpshooters, but their origin is uncertain.

  8. Genome sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a blood sucking fly Lipoptena cervi (Diptera: Hippoboscidae).

    Science.gov (United States)

    Nováková, Eva; Hypša, Václav; Nguyen, Petr; Husník, Filip; Darby, Alistair C

    2016-01-01

    Candidatus Arsenophonus lipopteni (Enterobacteriaceae, Gammaproteobacteria) is an obligate intracellular symbiont of the blood feeding deer ked, Lipoptena cervi (Diptera: Hippoboscidae). The bacteria reside in specialized cells derived from host gut epithelia (bacteriocytes) forming a compact symbiotic organ (bacteriome). Compared to the closely related complex symbiotic system in the sheep ked, involving four bacterial species, Lipoptena cervi appears to maintain its symbiosis exclusively with Ca. Arsenophonus lipopteni. The genome of 836,724 bp and 24.8 % GC content codes for 667 predicted functional genes and bears the common characteristics of sequence economization coupled with obligate host-dependent lifestyle, e.g. reduced number of RNA genes along with the rRNA operon split, and strongly reduced metabolic capacity. Particularly, biosynthetic capacity for B vitamins possibly supplementing the host diet is highly compromised in Ca. Arsenophonus lipopteni. The gene sets are complete only for riboflavin (B2), pyridoxine (B6) and biotin (B7) implying the content of some B vitamins, e.g. thiamin, in the deer blood might be sufficient for the insect metabolic needs. The phylogenetic position within the spectrum of known Arsenophonus genomes and fundamental genomic features of Ca. Arsenophonus lipopteni indicate the obligate character of this symbiosis and its independent origin within Hippoboscidae. PMID:27660670

  9. Horizontal gene acquisition of Liberibacter plant pathogens from a bacteriome-confined endosymbiont of their psyllid vector.

    Directory of Open Access Journals (Sweden)

    Atsushi Nakabachi

    Full Text Available he Asian citrus psyllid Diaphorina citri is a notorious agricultural pest that transmits the phloem-inhabiting alphaproteobacterial 'Candidatus Liberibacter asiaticus' and allied plant pathogens, which cause the devastating citrus disease called Huanglongbing or greening disease. D. citri harbors two distinct bacterial mutualists in the symbiotic organ called bacteriome: the betaproteobacterium 'Candidatus Profftella armatura' in the syncytial cytoplasm at the center of the bacteriome, and the gammaproteobacterium 'Candidatus Carsonella ruddii' in uninucleate bacteriocytes. Here we report that a putative amino acid transporter LysE of Profftella forms a highly supported clade with proteins of L. asiaticus, L. americanus, and L. solanacearum. L. crescens, the most basal Liberibacter lineage currently known, lacked the corresponding gene. The Profftella-Liberibacter subclade of LysE formed a clade with proteins from betaproteobacteria of the order Burkholderiales, to which Profftella belongs. This phylogenetic pattern favors the hypothesis that the Liberibacter lineage acquired the gene from the Profftella lineage via horizontal gene transfer (HGT after L. crescens diverged from other Liberibacter lineages. K A/K S analyses further supported the hypothesis that the genes encoded in the Liberibacter genomes are functional. These findings highlight the possible evolutionary importance of HGT between plant pathogens and their insect vector's symbionts that are confined in the symbiotic organ and seemingly sequestered from external microbial populations.

  10. Microbial distribution and abundance in the digestive system of five shipworm species (Bivalvia: Teredinidae.

    Directory of Open Access Journals (Sweden)

    Meghan A Betcher

    Full Text Available Marine bivalves of the family Teredinidae (shipworms are voracious consumers of wood in marine environments. In several shipworm species, dense communities of intracellular bacterial endosymbionts have been observed within specialized cells (bacteriocytes of the gills (ctenidia. These bacteria are proposed to contribute to digestion of wood by the host. While the microbes of shipworm gills have been studied extensively in several species, the abundance and distribution of microbes in the digestive system have not been adequately addressed. Here we use Fluorescence In-Situ Hybridization (FISH and laser scanning confocal microscopy with 16S rRNA directed oligonucleotide probes targeting all domains, domains Bacteria and Archaea, and other taxonomic groups to examine the digestive microbiota of 17 specimens from 5 shipworm species (Bankia setacea, Lyrodus pedicellatus, Lyrodus massa, Lyrodus sp. and Teredo aff. triangularis. These data reveal that the caecum, a large sac-like appendage of the stomach that typically contains large quantities of wood particles and is considered the primary site of wood digestion, harbors only very sparse microbial populations. However, a significant number of bacterial cells were observed in fecal pellets within the intestines. These results suggest that due to low abundance, bacteria in the caecum may contribute little to lignocellulose degradation. In contrast, the comparatively high population density of bacteria in the intestine suggests a possible role for intestinal bacteria in the degradation of lignocellulose.

  11. Snapshots of a shrinking partner: Genome reduction in Serratia symbiotica

    Science.gov (United States)

    Manzano-Marín, Alejandro; Latorre, Amparo

    2016-01-01

    Genome reduction is pervasive among maternally-inherited endosymbiotic organisms, from bacteriocyte- to gut-associated ones. This genome erosion is a step-wise process in which once free-living organisms evolve to become obligate associates, thereby losing non-essential or redundant genes/functions. Serratia symbiotica (Gammaproteobacteria), a secondary endosymbiont present in many aphids (Hemiptera: Aphididae), displays various characteristics that make it a good model organism for studying genome reduction. While some strains are of facultative nature, others have established co-obligate associations with their respective aphid host and its primary endosymbiont (Buchnera). Furthermore, the different strains hold genomes of contrasting sizes and features, and have strikingly disparate cell shapes, sizes, and tissue tropism. Finally, genomes from closely related free-living Serratia marcescens are also available. In this study, we describe in detail the genome reduction process (from free-living to reduced obligate endosymbiont) undergone by S. symbiotica, and relate it to the stages of integration to the symbiotic system the different strains find themselves in. We establish that the genome reduction patterns observed in S. symbiotica follow those from other dwindling genomes, thus proving to be a good model for the study of the genome reduction process within a single bacterial taxon evolving in a similar biological niche (aphid-Buchnera). PMID:27599759

  12. Microbial Distribution and Abundance in the Digestive System of Five Shipworm Species (Bivalvia: Teredinidae)

    Science.gov (United States)

    Betcher, Meghan A.; Fung, Jennifer M.; Han, Andrew W.; O’Connor, Roberta; Seronay, Romell; Concepcion, Gisela P.; Distel, Daniel L.; Haygood, Margo G.

    2012-01-01

    Marine bivalves of the family Teredinidae (shipworms) are voracious consumers of wood in marine environments. In several shipworm species, dense communities of intracellular bacterial endosymbionts have been observed within specialized cells (bacteriocytes) of the gills (ctenidia). These bacteria are proposed to contribute to digestion of wood by the host. While the microbes of shipworm gills have been studied extensively in several species, the abundance and distribution of microbes in the digestive system have not been adequately addressed. Here we use Fluorescence In-Situ Hybridization (FISH) and laser scanning confocal microscopy with 16S rRNA directed oligonucleotide probes targeting all domains, domains Bacteria and Archaea, and other taxonomic groups to examine the digestive microbiota of 17 specimens from 5 shipworm species (Bankia setacea, Lyrodus pedicellatus, Lyrodus massa, Lyrodus sp. and Teredo aff. triangularis). These data reveal that the caecum, a large sac-like appendage of the stomach that typically contains large quantities of wood particles and is considered the primary site of wood digestion, harbors only very sparse microbial populations. However, a significant number of bacterial cells were observed in fecal pellets within the intestines. These results suggest that due to low abundance, bacteria in the caecum may contribute little to lignocellulose degradation. In contrast, the comparatively high population density of bacteria in the intestine suggests a possible role for intestinal bacteria in the degradation of lignocellulose. PMID:23028923

  13. Gene expression analysis of the endosymbiont-bearing midgut tissue during ontogeny of the carpenter ant Camponotus floridanus.

    Science.gov (United States)

    Ratzka, Carolin; Gross, Roy; Feldhaar, Heike

    2013-06-01

    Insects have frequently evolved mutualistic relationships with extracellular and/or intracellular bacterial endosymbionts. Infection with endosymbionts seems to affect several cellular functions of the host such as immune pathways, oxidative stress regulation and autophagy. Our current knowledge about specific host factors leading to endosymbiont tolerance and/or control is still scarce and is based on very few associations between insect hosts and bacteria only. Camponotus floridanus ants harbour the obligate intracellular bacterium Blochmannia floridanus within specialized midgut cells called bacteriocytes. The number of Blochmannia endosymbionts within the midgut tissue increases strongly during host development and reaches a maximum at the late pupal stage, where the entire midgut is transformed into a symbiotic organ. After eclosion of workers the number of Blochmannia strongly decreases again. We chose 15 candidate genes from C. floridanus likely to be involved in host-symbiont interactions based on their significant homology to previously investigated symbiosis-relevant genes from other insects. We determined the expression of these genes in the endosymbiont-bearing midgut tissue in comparison to the residual body tissue at different developmental stages of C. floridanus in order to reveal changes in gene expression correlating with changes in endosymbiont number per host. Strikingly, two pattern recognition receptors (amidase PGRP-LB and PGRP-SC2) were highly expressed in the midgut tissue at the pupal stage, potentially down-modulating the IMD pathway to enable endosymbiont tolerance. Moreover, we investigated the immune gene expression in response to bacterial challenge at the pupal stage. Results showed that the midgut tissue differs in expression pattern in contrast to the residual body. Our results support a key role for amidase PGRPs, especially PGRP-LB, in regulation of the immune response towards endosymbionts in C. floridanus and suggest an

  14. Populations of Stored Product Mite Tyrophagus putrescentiae Differ in Their Bacterial Communities

    Science.gov (United States)

    Erban, Tomas; Klimov, Pavel B.; Smrz, Jaroslav; Phillips, Thomas W.; Nesvorna, Marta; Kopecky, Jan; Hubert, Jan

    2016-01-01

    Background: Tyrophagus putrescentiae colonizes different human-related habitats and feeds on various post-harvest foods. The microbiota acquired by these mites can influence the nutritional plasticity in different populations. We compared the bacterial communities of five populations of T. putrescentiae and one mixed population of T. putrescentiae and T. fanetzhangorum collected from different habitats. Material: The bacterial communities of the six mite populations from different habitats and diets were compared by Sanger sequencing of cloned 16S rRNA obtained from amplification with universal eubacterial primers and using bacterial taxon-specific primers on the samples of adults/juveniles or eggs. Microscopic techniques were used to localize bacteria in food boli and mite bodies. The morphological determination of the mite populations was confirmed by analyses of CO1 and ITS fragment genes. Results: The following symbiotic bacteria were found in compared mite populations: Wolbachia (two populations), Cardinium (five populations), Bartonella-like (five populations), Blattabacterium-like symbiont (three populations), and Solitalea-like (six populations). From 35 identified OTUs97, only Solitalea was identified in all populations. The next most frequent and abundant sequences were Bacillus, Moraxella, Staphylococcus, Kocuria, and Microbacterium. We suggest that some bacterial species may occasionally be ingested with food. The bacteriocytes were observed in some individuals in all mite populations. Bacteria were not visualized in food boli by staining, but bacteria were found by histological means in ovaria of Wolbachia-infested populations. Conclusion: The presence of Blattabacterium-like, Cardinium, Wolbachia, and Solitalea-like in the eggs of T. putrescentiae indicates mother to offspring (vertical) transmission. Results of this study indicate that diet and habitats influence not only the ingested bacteria but also the symbiotic bacteria of T. putrescentiae. PMID

  15. Gene expression analysis of the endosymbiont-bearing midgut tissue during ontogeny of the carpenter ant Camponotus floridanus.

    Science.gov (United States)

    Ratzka, Carolin; Gross, Roy; Feldhaar, Heike

    2013-06-01

    Insects have frequently evolved mutualistic relationships with extracellular and/or intracellular bacterial endosymbionts. Infection with endosymbionts seems to affect several cellular functions of the host such as immune pathways, oxidative stress regulation and autophagy. Our current knowledge about specific host factors leading to endosymbiont tolerance and/or control is still scarce and is based on very few associations between insect hosts and bacteria only. Camponotus floridanus ants harbour the obligate intracellular bacterium Blochmannia floridanus within specialized midgut cells called bacteriocytes. The number of Blochmannia endosymbionts within the midgut tissue increases strongly during host development and reaches a maximum at the late pupal stage, where the entire midgut is transformed into a symbiotic organ. After eclosion of workers the number of Blochmannia strongly decreases again. We chose 15 candidate genes from C. floridanus likely to be involved in host-symbiont interactions based on their significant homology to previously investigated symbiosis-relevant genes from other insects. We determined the expression of these genes in the endosymbiont-bearing midgut tissue in comparison to the residual body tissue at different developmental stages of C. floridanus in order to reveal changes in gene expression correlating with changes in endosymbiont number per host. Strikingly, two pattern recognition receptors (amidase PGRP-LB and PGRP-SC2) were highly expressed in the midgut tissue at the pupal stage, potentially down-modulating the IMD pathway to enable endosymbiont tolerance. Moreover, we investigated the immune gene expression in response to bacterial challenge at the pupal stage. Results showed that the midgut tissue differs in expression pattern in contrast to the residual body. Our results support a key role for amidase PGRPs, especially PGRP-LB, in regulation of the immune response towards endosymbionts in C. floridanus and suggest an

  16. Reinventing the Wheel and Making It Round Again: Evolutionary Convergence in Buchnera–Serratia Symbiotic Consortia between the Distantly Related Lachninae Aphids Tuberolachnus salignus and Cinara cedri

    Science.gov (United States)

    Manzano-Marín, Alejandro; Simon, Jean-Christophe; Latorre, Amparo

    2016-01-01

    Virtually all aphids (Aphididae) harbor Buchnera aphidicola as an obligate endosymbiont to compensate nutritional deficiencies arising from their phloem diet. Many species within the Lachninae subfamily seem to be consistently associated also with Serratia symbiotica. We have previously shown that both Cinara (Cinara) cedri and Cinara (Cupressobium) tujafilina (Lachninae: Eulachnini tribe) have indeed established co-obligate associations with both Buchnera and S. symbiotica. However, while Buchnera genomes of both Cinara species are similar, genome degradation differs greatly between the two S. symbiotica strains. To gain insight into the essentiality and degree of integration of S. symbiotica within the Lachninae, we sequenced the genome of both Buchnera and S. symbiotica endosymbionts from the distantly related aphid Tuberolachnus salignus (Lachninae: Tuberolachnini tribe). We found a striking level of similarity between the endosymbiotic system of this aphid and that of C. cedri. In both aphid hosts, S. symbiotica possesses a highly reduced genome and is found exclusively intracellularly inside bacteriocytes. Interestingly, T. salignus’ endosymbionts present the same tryptophan biosynthetic metabolic complementation as C. cedri’s, which is not present in C. tujafilina’s. Moreover, we corroborate the riboflavin-biosynthetic-role take-over/rescue by S. symbiotica in T. salignus, and therefore, provide further evidence for the previously proposed establishment of a secondary co-obligate endosymbiont in the common ancestor of the Lachninae aphids. Finally, we propose that the putative convergent split of the tryptophan biosynthetic role between Buchnera and S. symbiotica could be behind the establishment of S. symbiotica as an obligate intracellular symbiont and the triggering of further genome degradation. PMID:27190007

  17. Influence of parasitism in controlling the health, reproduction and PAH body burden of petroleum seep mussels

    Science.gov (United States)

    Powell, Eric N.; Barber, Robert D.; Kennicutt, Mahlon C., II; Ford, Susan E.

    1999-12-01

    Petroleum seep mussels are often exposed to high hydrocarbon concentrations in their natural habitat and, thus, offer the opportunity to examine the relationship between parasitism, disease and contaminant exposure under natural conditions. This is the first report on the histopathology of cold-seep mussels. Seep mussels were collected by submersible from four primary sites in the Gulf of Mexico, lease blocks Green Canyon (GC) 184, GC-234, GC-233, and Garden Banks 425 in 550-650 m water depth. Five types of parasites were identified in section: (1) gill "rosettes" of unknown affinity associated with the gill bacteriocytes, (2) gill "inclusions" similar to chlamydia/rickettsia inclusions, (3) extracellular gill ciliates, (4) body "inclusions" that also resemble chlamydial/rickettsial inclusions, and (5) Bucephalus-like trematodes. Comparison to shallow-water mytilids demonstrates that: (1) both have similar parasite faunas; (2) seep mytilids are relatively heavily parasitized; and (3) infection intensities are extremely high in comparison to shallow-water mytilids for Bucephalus and chlamydia/rickettsia. In this study, the lowest prevalence for chlamydia/rickettsia was 67%. Prevalences of 100% were recorded from three populations. Bucephalus prevalence was ⩾70% in three of 10 populations. The parasite fauna was highly variable between populations. Some important parasites were not observed in some primary sites. Even within primary sites, some important parasites were not observed in some populations. Bucephalus may exert a significant influence on seep mussel population dynamics. Forty percent of the populations in this study are severely reproductively compromised by Bucephalus infection. Only a fraction of petroleum seep mussel populations are maintaining the entire beta-level population structure of this species. Variation in two parasites, gill ciliates and Bucephalus, explained most of the variation in PAH body burden between mussel populations. PAHs are

  18. One nutritional symbiosis begat another: Phylogenetic evidence that the ant tribe Camponotini acquired Blochmannia by tending sap-feeding insects

    Directory of Open Access Journals (Sweden)

    Brady Seán G

    2009-12-01

    Full Text Available Abstract Background Bacterial endosymbiosis has a recurring significance in the evolution of insects. An estimated 10-20% of insect species depend on bacterial associates for their nutrition and reproductive viability. Members of the ant tribe Camponotini, the focus of this study, possess a stable, intracellular bacterial mutualist. The bacterium, Blochmannia, was first discovered in Camponotus and has since been documented in a distinct subgenus of Camponotus, Colobopsis, and in the related genus Polyrhachis. However, the distribution of Blochmannia throughout the Camponotini remains in question. Documenting the true host range of this bacterial mutualist is an important first step toward understanding the various ecological contexts in which it has evolved, and toward identifying its closest bacterial relatives. In this study, we performed a molecular screen, based on PCR amplification of 16S rDNA, to identify bacterial associates of diverse Camponotini species. Results Phylogenetic analyses of 16S rDNA gave four important insights: (i Blochmannia occurs in a broad range of Camponotini genera including Calomyrmex, Echinopla, and Opisthopsis, and did not occur in outgroups related to this tribe (e.g., Notostigma. This suggests that the mutualism originated in the ancestor of the tribe Camponotini. (ii The known bacteriocyte-associated symbionts of ants, in Formica, Plagiolepis, and the Camponotini, arose independently. (iii Blochmannia is nestled within a diverse clade of endosymbionts of sap-feeding hemipteran insects, such as mealybugs, aphids, and psyllids. In our analyses, a group of secondary symbionts of mealybugs are the closest relatives of Blochmannia. (iv Blochmannia has cospeciated with its known hosts, although deep divergences at the genus level remain uncertain. Conclusions The Blochmannia mutualism occurs in Calomyrmex, Echinopla, and Opisthopsis, in addition to Camponotus, and probably originated in the ancestral lineage leading

  19. Hydrogen may be an energy source for endosymbiotic bacteria of the vent mussel Bathymodiolus puteoserpentis

    Science.gov (United States)

    Zielinski, F.; Pape, T.; Wenzhöfer, F.; Seifert, R.; Dubilier, N.

    2005-12-01

    The ultramafic hosted Logatchev hydrothermal vent field at the slow spreading Mid-Atlantic Ridge (MAR) exhibits unusually high hydrogen concentrations due to serpentinization of ultramafic rocks. Endmember H2-concentrations here have been calculated to be as high as 12 mM which is significantly higher than at most other vent sites along the MAR. Hydrogen is a potential energy source for bacteria providing an energy yield of roughly 240 kJ/mol if oxidized with oxygen. Hence, the energy yield is even higher than for conventional aerobic respiration which liberates 220 kJ/mol. The ability to use H2 as an energy source has been shown for a variety of free-living bacteria. However, to date no other energy sources besides methane and sulfide have been identified for vent (or seep) symbionts. Here we show that H2 is consumed by endosymbiotic bacteria of the Logatchev vent mussel Bathymodiolus puteoserpentis. B. puteoserpentis is known to live in dual symbiosis with methane- and sulfide-oxidizing bacteria that occur intracellularly in specialized gill cells called bacteriocytes. The methanotrophic symbionts use methane as both an energy and carbon source whereas the thiotrophic symbionts use H2S as an energy and dissolved CO2 as a carbon source. Hydrothermal fluids carrying methane and sulfide provide the energy for the bacteria and the bacteria in turn provide the mussel with carbon compounds. The mussel on the other hand supplies its symbionts with a constant fluid flow and, by hosting them offers an ideal ecological niche. Freshly dissected gill pieces of B. puteoserpentis incubated in chilled sea water containing hydrogen gas readily consumed H2. The consumption of H2 over time was significantly higher in gill tissues than in symbiont-free mussel tissue indicating that the symbiotic bacteria are responsible for the observed activity. H2-consumption rates were similar in mussels from two different sampling sites, Irina II: 37 nmol h-1 (ml gill)-1 and Quest: 31 nmol h-1