WorldWideScience

Sample records for bacteriocins

  1. Bacteriocin Inducer Peptides

    Science.gov (United States)

    Novel peptides produced by bacteriocin-producing bacteria stimulate the production of bacteriocins in vitro. The producer bacteria are cultured in the presence of a novel inducer bacteria and a peptide having a carboxy terminal sequence of VKGLT in order to achieve an increase in bacteriocin produc...

  2. New type non-lantibiotic bacteriocins: circular and leaderless bacteriocins.

    Science.gov (United States)

    Masuda, Y; Zendo, T; Sonomoto, K

    2012-03-01

    Bacteriocins are antimicrobial peptides that are ribosomally synthesised by bacteria. Bacteriocins produced by Gram-positive bacteria, including lactic acid bacteria, are under focus as the next generation of safe natural biopreservatives and as therapeutic alternatives to antibiotics. Recently, two novel types of non-lantibiotic class II bacteriocins have been reported with unique characteristics in their structure and biosynthesis mechanism. One is a circular bacteriocin that contains a head-to-tail structure in the mature form, and the other is a leaderless bacteriocin without an N-terminal extension in the precursor peptide. A circular structure can provide the peptide with remarkable stability against various stresses; indeed, circular bacteriocins are known to possess higher stability than general linear bacteriocins. Leaderless bacteriocins are distinct from general bacteriocins, because they do not contain N-terminal leader sequences, which are responsible for the recognition process during secretion and for inactivation of bacteriocins inside producer cells. Leaderless bacteriocins do not require any post-translational processing for activity. These two novel types of bacteriocins are promising antimicrobial compounds, and their biosynthetic mechanisms are expected to be applied in synthetic biology to design new peptides and for new mass production systems. However, many questions remain about their biosynthesis. In this review, we introduce recent studies on these types of bacteriocins and their potential to open a new world of antimicrobial peptides.

  3. Class IIa Bacteriocins: Current Knowledge and Perspectives

    Science.gov (United States)

    Belguesmia, Yanath; Naghmouchi, Karim; Chihib, Nour-Eddine; Drider, Djamel

    Lactic acid bacteria (LAB) are known to produce antibacterial peptides and small proteins called bacteriocins, which enable them to compete against other bacteria in the environment. Bacteriocins fall structurally and chemically into three different classes, I, II, and III. Bacteriocins are ribosomally synthesized peptides with antagonism against closely related bacteria. This late observation has evolved because bacteriocins active against Gram-negative bacteria have recently been reported. Members of class IIa bacteriocins, referred to as pediocin-like bacteriocins, are among the most studied bacteriocins. This chapter is aimed at providing an updated review on the biology of class IIa bacteriocins.

  4. The Continuing Story of Class IIa Bacteriocins

    OpenAIRE

    Drider, Djamel; Fimland, Gunnar; Héchard, Yann; McMullen, Lynn M.; Prévost, Hervé

    2006-01-01

    Many bacteria produce antimicrobial peptides, which are also referred to as peptide bacteriocins. The class IIa bacteriocins, often designated pediocin-like bacteriocins, constitute the most dominant group of antimicrobial peptides produced by lactic acid bacteria. The bacteriocins that belong to this class are structurally related and kill target cells by membrane permeabilization. Despite their structural similarity, class IIa bacteriocins display different target cell specificities. In the...

  5. Bacteriocins: safe, natural antimicrobials for food preservation.

    Science.gov (United States)

    Cleveland, J; Montville, T J; Nes, I F; Chikindas, M L

    2001-12-01

    Bacteriocins are antibacterial proteins produced by bacteria that kill or inhibit the growth of other bacteria. Many lactic acid bacteria (LAB) produce a high diversity of different bacteriocins. Though these bacteriocins are produced by LAB found in numerous fermented and non-fermented foods, nisin is currently the only bacteriocin widely used as a food preservative. Many bacteriocins have been characterized biochemically and genetically, and though there is a basic understanding of their structure-function, biosynthesis, and mode of action, many aspects of these compounds are still unknown. This article gives an overview of bacteriocin applications, and differentiates bacteriocins from antibiotics. A comparison of the synthesis. mode of action, resistance and safety of the two types of molecules is covered. Toxicity data exist for only a few bacteriocins, but research and their long-time intentional use strongly suggest that bacteriocins can be safely used.

  6. Bacteriocins as potential anticancer agents

    Directory of Open Access Journals (Sweden)

    Sukhraj eKaur

    2015-11-01

    Full Text Available Cancer remains one of the leading causes of deaths worldwide, despite advances in its treatment and detection. The conventional chemotherapeutic agents used for the treatment of cancer have nonspecific toxicity towards normal body cells that cause various side effects. Secondly, cancer cells are known to develop chemotherapy resistance in due course of treatment. Thus, the demand for novel anti-cancer agents is increasing day by day. Some of the experimental studies have reported the therapeutic potential of bacteriocins against various types of cancer cell lines. Bacteriocins are ribosomally-synthesized cationic peptides secreted by almost all groups of bacteria. Some bacteriocins have shown selective cytotoxicity towards cancer cells as compared to normal cells. This makes them promising candidates for further investigation and clinical trials. In this review article, we present the overview of the various cancer cell-specific cytotoxic bacteriocins, their mode of action and efficacies.

  7. Class IIc or Circular Bacteriocins

    Science.gov (United States)

    Martin-Visscher, Leah A.; van Belkum, Marco J.; Vederas, John C.

    The circular bacteriocins produced by Gram-positive bacteria represent a diverse class of antimicrobial peptides. These bacteriocins display enhanced stability compared to linear bacteriocins, which arises from their characteristic circular backbone. Currently, eight unique circular bacteriocins have been identified, and analysis of their gene clusters indicates that they likely utilize complex mechanisms for maturation and secretion, as well as for immunity. These bacteriocins target the cytoplasmic membrane of sensitive cells, leading to pore formation that results in loss of ions, dissipation of membrane potential, and ultimately, cell death. Structural studies suggest that despite variation in their sequences, most of these bacteriocins likely adopt a common three-dimensional architecture, consisting of four or five tightly packed helices encompassing a hydrophobic core. There are many mysteries surrounding the biosynthesis of these peptides, particularly in regard to the mechanism by which they are cyclized. Elucidation of such a mechanism may provide exciting new approaches to the bioengineering of new, stable, and antimicrobially active circular peptides.

  8. Lactococcal bacteriocins : mode of action and immunity

    NARCIS (Netherlands)

    Venema, Koen; Venema, Gerard; Kok, Jan

    1995-01-01

    Bacteriocins are antimicrobial peptides produced by bacteria. Some of those synthesized by Lactococcus lactis have been characterized in great detail recently. The lactococcal bacteriocins are hydrophobic cationic peptides, which form pores in the cytoplasmic membrane of sensitive cells.

  9. LACTOCOCCAL BACTERIOCINS - MODE OF ACTION AND IMMUNITY

    NARCIS (Netherlands)

    VENEMA, K; KOK, J; Venema, Gerhardus

    1995-01-01

    Bacteriocins are antimicrobial peptides produced by bacteria. Some of those synthesized by Lactococcus lactis have been characterized in great detail recently. The lactococcal bacteriocins are hydrophobic cationic peptides, which form pores in the cytoplasmic membrane of sensitive cells.

  10. Bacteriocin producers from traditional food products

    OpenAIRE

    Thonart P.; Destain J.; Tine E.; Ngom A.; Diop MB.; Dubois-Dauphin R.

    2007-01-01

    A total of 220 strains of LAB isolated from 32 samples of traditional fermented food from Senegal were screened for bacteriocin production. Two bacteriocin producers, Lactococcus lactis subsp. lactis and Enterococcus faecium, were identifi ed from 12 bacteriocin-producing isolates on the basis of phenotypic analyses and 16S rDNA sequence. Both bacteriocins produced by new isolates show antimicrobial activity against Listeria monocytogenes and Bacillus coagulans whereas only that produced by L...

  11. Using Bacteriocins in Milk and Dairy Products

    Directory of Open Access Journals (Sweden)

    Evrim Güneş Altuntaş

    2010-01-01

    Full Text Available Bacteriocins produced by bacteria are ribosomally synthesed and antimicrobial peptides. Lots of strains of bacteria can produce bacteriocin. There are lots of researchs on using bacteriocins produced by lactic acid bacteria (LAB which are known as safe (GRAS in foods. With this respect bacteriocin experiments have been generally in meat and dairy products where can become spoilage easily. It is allowed to use nisin in cheese a dairy product, and with cheese the experiments about using nisin, pediocin, lacticin, variacin etc. are going on the other dairy products. In this review some experiments on using bacteriocins and their results on milk and dairy products are reported.

  12. Natural and Heterologous Production of Bacteriocins

    Science.gov (United States)

    Cintas, Luis M.; Herranz, Carmen; Hernández, Pablo E.

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, and their use as natural and nontoxic food preservatives has been the source of considerable interest for the research community. In addition, bacteriocins have been investigated for their potential use in human and veterinary applications and in the animal production field. In the native bacterial strain, most bacteriocins are synthesized as biologically inactive precursors, with N-terminal extensions, that are cleaved concomitantly during export of the bacteriocin by dedicated ABC transporters, or the general secretory pathway (GSP) or Sec-dependent pathway. However, a few bacteriocins are synthesized without an N-terminal extension, and others are circularized through a head-to-tail peptide bond, complicating the elucidation of their processing and transport across the cytoplasmic membrane. The high cost of synthetic bacteriocin synthesis and their low yields from many natural producers recommends the exploration of recombinant microbial systems for the heterologous production of bacteriocins. Other advantages of such systems include production of bacteriocins in safer hosts, increased bacteriocin production, control of bacteriocin gene expression, production of food ingredients with antimicrobial activity, construction of multibacteriocinogenic strains with a wider antagonistic spectrum, a better adaptation of the selected hosts to food environments, and providing antagonistic properties to lactic acid bacteria (LAB) used as starter, protective, or probiotic cultures. The recombinant production of bacteriocins mostly relies on the use of expression vectors that replicate in Gram-negative bacteria, Gram-positive bacteria, and yeasts, whereas the production of bacteriocins in heterologous LAB hosts may be essentially based on the expression of native biosynthetic genes, by exchanging or replacing leader peptides and/or dedicated processing and secretion systems (ABC transporters

  13. Peptide Bacteriocins--Structure Activity Relationships.

    Science.gov (United States)

    Etayash, Hashem; Azmi, Sarfuddin; Dangeti, Ramana; Kaur, Kamaljit

    2015-01-01

    With the growing concerns in the scientific and health communities over increasing levels of antibiotic resistance, antimicrobial peptide bacteriocins have emerged as promising alternatives to conventional small molecule antibiotics. A substantial attention has recently focused on the utilization of bacteriocins in food preservation and health safety. Despite the fact that a large number of bacteriocins have been reported, only a few have been fully characterized and structurally elucidated. Since knowledge of the molecular structure is a key for understanding the mechanism of action and therapeutic effects of peptide, we centered our focus in this review on the structure-activity relationships of bacteriocins with a particular focus in seven bacteriocins, namely, nisin, microcin J25, microcin B17, microcin C, leucocin A, sakacin P, and pediocin PA-1. Significant structural changes responsible for the altered activity of the recent bacteriocin analogues are discussed here.

  14. [Characteristic, properties, prospect of application of bacteriocins].

    Science.gov (United States)

    Balko, A B

    2012-01-01

    Literary data and own research results dedicated to bacteriocin investigations have been analysed. Bacteriocins as one of the most widespread factors of bacterial antagonism, which are distinguished by the majority of microorganisms and characterized by bactericidal action in respect of representatives of phylogenetically related species have been considered. Allowing for their high lytic activity and narrow action specificity, the prospects for the use of the bacteriocins as possible alternative antibacterial remedies are examined. The basic approaches to bacteriocin classification, their variety, structure, killer properties and mechanisms of lytic action are presented. The perspective trends of the use and possible significance of these antibacterial substances in medicine are indicated.

  15. Bacteriocin-based strategies for food biopreservation.

    Science.gov (United States)

    Gálvez, Antonio; Abriouel, Hikmate; López, Rosario Lucas; Ben Omar, Nabil

    2007-11-30

    Bacteriocins are ribosomally-synthesized peptides or proteins with antimicrobial activity, produced by different groups of bacteria. Many lactic acid bacteria (LAB) produce bacteriocins with rather broad spectra of inhibition. Several LAB bacteriocins offer potential applications in food preservation, and the use of bacteriocins in the food industry can help to reduce the addition of chemical preservatives as well as the intensity of heat treatments, resulting in foods which are more naturally preserved and richer in organoleptic and nutritional properties. This can be an alternative to satisfy the increasing consumers demands for safe, fresh-tasting, ready-to-eat, minimally-processed foods and also to develop "novel" food products (e.g. less acidic, or with a lower salt content). In addition to the available commercial preparations of nisin and pediocin PA-1/AcH, other bacteriocins (like for example lacticin 3147, enterocin AS-48 or variacin) also offer promising perspectives. Broad-spectrum bacteriocins present potential wider uses, while narrow-spectrum bacteriocins can be used more specifically to selectively inhibit certain high-risk bacteria in foods like Listeria monocytogenes without affecting harmless microbiota. Bacteriocins can be added to foods in the form of concentrated preparations as food preservatives, shelf-life extenders, additives or ingredients, or they can be produced in situ by bacteriocinogenic starters, adjunct or protective cultures. Immobilized bacteriocins can also find application for development of bioactive food packaging. In recent years, application of bacteriocins as part of hurdle technology has gained great attention. Several bacteriocins show additive or synergistic effects when used in combination with other antimicrobial agents, including chemical preservatives, natural phenolic compounds, as well as other antimicrobial proteins. This, as well as the combined use of different bacteriocins may also be an attractive approach to

  16. Bacteriocins and Their Applications in Food Preservation.

    Science.gov (United States)

    Ramu, Ramith; Shirahatti, Prithvi S; Devi, Aishwarya T; Prasad, Ashwini; J, Kumuda; M S, Lochana; F, Zameer; B L, Dhananjaya; M N, Nagendra Prasad

    2015-07-20

    Bacteriocins are ribosomally-synthesized antimicrobial peptides or proteinaceous compounds produced by bacterial strains. They are generally effective in inhibiting the growth of similar or closely related bacterial strains. A high diversity of various bacteriocins is produced by many lactic acid bacteria (LAB) and is found in numerous fermented and non-fermented foods. Several bacteriocins from LAB extend potential applications in food preservation, thus help foods to be naturally preserved and richer in organoleptic and nutritional properties. Though chemical preservatives for the preservation of food are successful to some extent, their quality is not as satisfying as fresh food. Hence, an alternative is required and bacteriocins serve the purpose. Nisin is currently the only bacteriocin widely used as a food preservative. Numerous bacteriocins have been characterized chemically, biochemically, genetically and also at the molecular level to understand their basic mode of action. This article gives an overview of classification of bacteriocins, isolation & characterization, and mode of action. Besides, article highlights the optimized parameters for growth of bacteria in the production of bacteriocins and various bioassays for their determination. Special emphasis has been provided on explaining the beneficial aspects of nisin.

  17. Bacteriocin producers from traditional food products

    Directory of Open Access Journals (Sweden)

    Thonart P.

    2007-01-01

    Full Text Available A total of 220 strains of LAB isolated from 32 samples of traditional fermented food from Senegal were screened for bacteriocin production. Two bacteriocin producers, Lactococcus lactis subsp. lactis and Enterococcus faecium, were identified from 12 bacteriocin-producing isolates on the basis of phenotypic analyses and 16S rDNA sequence. Both bacteriocins produced by new isolates show antimicrobial activity against Listeria monocytogenes and Bacillus coagulans whereas only that produced by Lactococcus lactis has an activity against Bacillus cereus. Bacteriocin-producing Lactococcus lactis strains were found in a variety of traditional foods indicating a high potential of growth of this strain in variable ecological complex environment. Partial 16S rDNA of the two bacteriocin producers obtained in this study has been registered to Genbank databases under the accession number AY971748 for Lactococcus lactis subsp. lactis (named CWBI-B1410 and AY971749 for Enterococcus faecium (named CWBI-B1411. The new bacteriocin-producing Lactococcus lactis subsp. lactis strain has been selected for identification and application of the bacteriocin to food preservation.

  18. AS-48 bacteriocin : close to perfection

    NARCIS (Netherlands)

    Sánchez-Hidalgo, Marina; Montalbán-López, Manuel; Cebrián, Rubén; Valdivia, Eva; Martínez-Bueno, Manuel; Maqueda, Mercedes

    2011-01-01

    Bacteriocin AS-48 is an intriguing molecule because of its unique structural characteristics, genetic regulation, broad activity spectrum, and potential biotechnological applications. It was the first reported circular bacteriocin and has been undoubtedly the best characterized for the last 25 years

  19. Screening and characterization of novel bacteriocins from lactic acid bacteria.

    Science.gov (United States)

    Zendo, Takeshi

    2013-01-01

    Bacteriocins produced by lactic acid bacteria (LAB) are expected to be safe antimicrobial agents. While the best studied LAB bacteriocin, nisin A, is widely utilized as a food preservative, various novel ones are required to control undesirable bacteria more effectively. To discover novel bacteriocins at the early step of the screening process, we developed a rapid screening system that evaluates bacteriocins produced by newly isolated LAB based on their antibacterial spectra and molecular masses. By means of this system, various novel bacteriocins were identified, including a nisin variant, nisin Q, a two-peptide bacteriocin, lactococcin Q, a leaderless bacteriocin, lacticin Q, and a circular bacteriocin, lactocyclicin Q. Moreover, some LAB isolates were found to produce multiple bacteriocins. They were characterized as to their structures, mechanisms of action, and biosynthetic mechanisms. Novel LAB bacteriocins and their biosynthetic mechanisms are expected for applications such as food preservation and peptide engineering.

  20. Circular bacteriocins: biosynthesis and mode of action.

    Science.gov (United States)

    Gabrielsen, Christina; Brede, Dag A; Nes, Ingolf F; Diep, Dzung B

    2014-11-01

    Circular bacteriocins are a group of N-to-C-terminally linked antimicrobial peptides, produced by Gram-positive bacteria of the phylum Firmicutes. Circular bacteriocins generally exhibit broad-spectrum antimicrobial activity, including against common food-borne pathogens, such as Clostridium and Listeria spp. These peptides are further known for their high pH and thermal stability, as well as for resistance to many proteolytic enzymes, properties which make this group of bacteriocins highly promising for potential industrial applications and their biosynthesis of particular interest as a possible model system for the synthesis of highly stable bioactive peptides. In this review, we summarize the current knowledge on this group of bacteriocins, with emphasis on the recent progress in understanding circular bacteriocin genetics, biosynthesis, and mode of action; in addition, we highlight the current challenges and future perspectives for the application of these peptides.

  1. Structure and genetics of circular bacteriocins.

    Science.gov (United States)

    van Belkum, Marco J; Martin-Visscher, Leah A; Vederas, John C

    2011-08-01

    Circular bacteriocins are antimicrobial peptides produced by a variety of Gram-positive bacteria. They are part of a growing family of ribosomally synthesized peptides with a head-to-tail cyclization of their backbone that are found in mammals, plants, fungi and bacteria and are exceptionally stable. These bacteriocins permeabilize the membrane of sensitive bacteria, causing loss of ions and dissipation of the membrane potential. Most circular bacteriocins probably adopt a common 3D structure consisting of four or five α-helices encompassing a hydrophobic core. This review compares the various structures, as well as the gene clusters that encode circular bacteriocins, and discusses the biogenesis of this unique class of bacteriocins.

  2. Diversity and applications of Bacillus bacteriocins.

    Science.gov (United States)

    Abriouel, Hikmate; Franz, Charles M A P; Ben Omar, Nabil; Gálvez, Antonio

    2011-01-01

    Members of the genus Bacillus are known to produce a wide arsenal of antimicrobial substances, including peptide and lipopeptide antibiotics, and bacteriocins. Many of the Bacillus bacteriocins belong to the lantibiotics, a category of post-translationally modified peptides widely disseminated among different bacterial clades. Lantibiotics are among the best-characterized antimicrobial peptides at the levels of peptide structure, genetic determinants and biosynthesis mechanisms. Members of the genus Bacillus also produce many other nonmodified bacteriocins, some of which resemble the pediocin-like bacteriocins of the lactic acid bacteria (LAB), while others show completely novel peptide sequences. Bacillus bacteriocins are increasingly becoming more important due to their sometimes broader spectra of inhibition (as compared with most LAB bacteriocins), which may include Gram-negative bacteria, yeasts or fungi, in addition to Gram-positive species, some of which are known to be pathogenic to humans and/or animals. The present review provides a general overview of Bacillus bacteriocins, including primary structure, biochemical and genetic characterization, classification and potential applications in food preservation as natural preservatives and in human and animal health as alternatives to conventional antibiotics. Furthermore, it addresses their environmental applications, such as bioprotection against the pre- and post-harvest decay of vegetables, or as plant growth promoters.

  3. Application of bacteriocins in vegetable food biopreservation.

    Science.gov (United States)

    Settanni, Luca; Corsetti, Aldo

    2008-01-31

    Bacteriocins are generally recognized as "natural" compounds able to influence the safety and quality of foods. In the past years, a lot of works have been aimed to the detection, purification and characterisation of bacteriocins, as well as to their use in food preservation strategies. A list of review articles dealing with the application of bacteriocins to the protection of foods of animal origin is also available in literature, but it lacks for a summary on the utilization of bacteriocins in vegetable foods. These biopreservatives can be used in a number of ways in food systems and this paper mainly focuses on the state-of-the-art application of bacteriocins from lactic acid bacteria (LAB) to promote the microbial stability of both fermented and non-fermented vegetable food products using bacteriocinogenic strains as starter cultures, protective cultures or co-cultures and the employment of pure bacteriocins as food additives. In addition, applications of bacteriocins from non-LAB are also reviewed. The scopes of future directions of research are summarised.

  4. Bacteriocins - a viable alternative to antibiotics?

    Science.gov (United States)

    Cotter, Paul D; Ross, R Paul; Hill, Colin

    2013-02-01

    Solutions are urgently required for the growing number of infections caused by antibiotic-resistant bacteria. Bacteriocins, which are antimicrobial peptides produced by certain bacteria, might warrant serious consideration as alternatives to traditional antibiotics. These molecules exhibit significant potency against other bacteria (including antibiotic-resistant strains), are stable and can have narrow or broad activity spectra. Bacteriocins can even be produced in situ in the gut by probiotic bacteria to combat intestinal infections. Although the application of specific bacteriocins might be curtailed by the development of resistance, an understanding of the mechanisms by which such resistance could emerge will enable researchers to develop strategies to minimize this potential problem.

  5. Bacteriocins: Recent Trends and Potential Applications.

    Science.gov (United States)

    Bali, Vandana; Panesar, Parmjit S; Bera, Manab B; Kennedy, John F

    2016-01-01

    In the modern era, there is great need for food preservation in both developing and developed countries due to increasing demand for extending shelf life and prevention of spoilage of food material. With the emergence of new pathogens and ability of micro-organisms to undergo changes, exploration of new avenues for the food preservation has gained importance. Moreover, awareness among consumers regarding harmful effects of chemical preservatives has been increased. Globally, altogether there is increasing demand by consumers for chemical-free and minimal processed food products. Potential of bacteriocin and its application in reducing the microbiological spoilages and in the preservation of food is long been recognized. Bacteriocins are normally specific to closely related species without disrupting the growth of other microbial populations. A number of applications of bacteriocin have been reported for humans, live stock, aquaculture etc. This review is focused on recent trends and applications of bacteriocins in different areas in addition to their biopreservative potential.

  6. [Bacteriocins produced by lactic acid bacteria].

    Science.gov (United States)

    Bilková, Andrea; Sepova, Hana Kinová; Bilka, Frantisek; Balázová, Andrea

    2011-04-01

    Lactic acid bacteria comprise several genera of gram-positive bacteria that are known for the production of structurally different antimicrobial substances. Among them, bacteriocins are nowadays in the centre of scientific interest. Bacteriocins, proteinaceous antimicrobial substances, are produced ribosomally and have usually a narrow spectrum of bacterial growth inhibition. According to their structure and the target of their activity, they are divided into four classes, although there are some suggestions for a renewed classification. The most interesting and usable class are lantibiotics. They comprise the most widely commercially used and well examined bacteriocin, nisin. The non-pathogenic character of lactic acid bacteria is advantageous for using their bacteriocins in food preservation as well as in feed supplements or in veterinary medicine.

  7. Development of Class IIa Bacteriocins as Therapeutic Agents

    OpenAIRE

    Lohans, Christopher T.; Vederas, John C.

    2012-01-01

    Class IIa bacteriocins have been primarily explored as natural food preservatives, but there is much interest in exploring the application of these peptides as therapeutic antimicrobial agents. Bacteriocins of this class possess antimicrobial activity against several important human pathogens. Therefore, the therapeutic development of these bacteriocins will be reviewed. Biological and chemical modifications to both stabilize and increase the potency of bacteriocins are discussed, as well as ...

  8. Bacteriocins From Lactic Acid Bacteria: Interest For Food Products Biopreservation

    OpenAIRE

    Dortu, C.; Thonart, Philippe

    2009-01-01

    Bacteriocins from lactic acid bacteria: interest for food products biopreservation. Bacteriocins from lactic acid bacteria are low molecular weight antimicrobial peptides. They have inhibitory activity against the bacteria that are closed related to the producer strains and a narrow inhibitory spectrum. Nevertheless, most of them have activity against some food-born pathogenic bacteria as Listeria monocytogenes. The application of bacteriocins or bacteriocin producing lactic acid bacteria in ...

  9. Are bacteriocins underexploited? : Novel applications for old antimicrobials

    NARCIS (Netherlands)

    Montalbán-López, Manuel; Sánchez-Hidalgo, Marina; Valdivia, Eva; Martínez-Bueno, Manuel; Maqueda, Mercedes

    2011-01-01

    Bacteriocins are ribosomally synthesized (poly)peptides produced by almost all prokaryotic lineages. Bacteriocins from lactic acid bacteria (LAB) and bacteriocin-producer probiotic organisms have been thoroughly studied due to their wide spectra of action, the long-term use in food fermentations and

  10. Structural characterization of thioether-bridged bacteriocins.

    Science.gov (United States)

    Lohans, Christopher T; Vederas, John C

    2014-01-01

    Bacteriocins are a group of ribosomally synthesized antimicrobial peptides produced by bacteria, some of which are extensively post-translationally modified. Some bacteriocins, namely the lantibiotics and sactibiotics, contain one or more thioether bridges. However, these modifications complicate the structural elucidation of these bacteriocins using conventional techniques. This review will discuss the techniques and strategies that have been applied to determine the primary structures of lantibiotics and sactibiotics. A major challenge is to identify the topology of thioether bridges in these peptides (i.e., which amino-acid residues are involved in which bridges). Edman degradation, NMR spectroscopy and tandem MS have all been commonly applied to characterize these bacteriocins, but can be incompatible with the post-translational modifications present. Chemical modifications to the modified residues, such as desulfurization and reduction, make the treated bacteriocins more compatible to analysis by these standard peptide analytical techniques. Despite their differences in structure, similar strategies have proved useful to study the structures of both lantibiotics and sactibiotics.

  11. Lactobacillus salivarius: bacteriocin and probiotic activity.

    Science.gov (United States)

    Messaoudi, S; Manai, M; Kergourlay, G; Prévost, H; Connil, N; Chobert, J-M; Dousset, X

    2013-12-01

    Lactic acid bacteria (LAB) antimicrobial peptides typically exhibit antibacterial activity against food-borne pathogens, as well as spoilage bacteria. Therefore, they have attracted the greatest attention as tools for food biopreservation. In some countries LAB are already extensively used as probiotics in food processing and preservation. LAB derived bacteriocins have been utilized as oral, topical antibiotics or disinfectants. Lactobacillus salivarius is a promising probiotic candidate commonly isolated from human, porcine, and avian gastrointestinal tracts (GIT), many of which are producers of unmodified bacteriocins of sub-classes IIa, IIb and IId. It is a well-characterized bacteriocin producer and probiotic organism. Bacteriocins may facilitate the introduction of a producer into an established niche, directly inhibit the invasion of competing strains or pathogens, or modulate the composition of the microbiota and influence the host immune system. This review gives an up-to-date overview of all L. salivarius strains, isolated from different origins, known as bacteriocin producing and/or potential probiotic.

  12. Import of periplasmic bacteriocins targeting the murein.

    Science.gov (United States)

    Braun, Volkmar; Helbig, Stephanie; Patzer, Silke I

    2012-12-01

    Colicins are the only proteins imported by Escherichia coli and thus serve as tools to study the protein import mechanism. Most of the colicins studied degrade DNA, 16S RNA or tRNA in the cytoplasm, or form pores in the cytoplasmic membrane. Two bacteriocins, Cma (colicin M) and Pst (pesticin), affect the murein structure in the periplasm. These two bacteriocins must be imported only across the outer membrane and therefore represent the simplest system for studying protein import. Cma can be reversibly translocated across the outer membrane. Cma and Pst unfold during import. The crystal structure of Pst reveals a phage T4L (T4 lysozyme) fold of the activity domain. Both bacteriocins require energy for import which is translocated from the cytoplasmic membrane into the outer membrane by the Ton system. Cma kills cells only when the periplasmic FkpA PPIase (peptidylprolyl cis-trans isomerase)/chaperone is present.

  13. Bacteriocins active against plant pathogenic bacteria.

    Science.gov (United States)

    Grinter, Rhys; Milner, Joel; Walker, Daniel

    2012-12-01

    Gram-negative phytopathogens cause significant losses in a diverse range of economically important crop plants. The effectiveness of traditional countermeasures, such as the breeding and introduction of resistant cultivars, is often limited by the dearth of available sources of genetic resistance. An alternative strategy to reduce loss to specific bacterial phytopathogens is to use narrow-spectrum protein antibiotics such as colicin-like bacteriocins as biocontrol agents. A number of colicin-like bacteriocins active against phytopathogenic bacteria have been described previously as have strategies for their application to biocontrol. In the present paper, we discuss these strategies and our own recent work on the identification and characterization of candidate bacteriocins and how these potent and selective antimicrobial agents can be effectively applied to the control of economically important plant disease.

  14. Applications of the bacteriocin, nisin.

    Science.gov (United States)

    Delves-Broughton, J; Blackburn, P; Evans, R J; Hugenholtz, J

    1996-02-01

    Nisin was first introduced commercially as a food preservative in the UK approximately 30 years ago. First established use was as a preservative in processed cheese products and since then numerous other applications in foods and beverages have been identified. It is currently recognised as a safe food preservative in approximately 50 countries. The established uses of nisin as a preservative in processed cheese, various pasteurised dairy products, and canned vegetables will be briefly reviewed. More recent applications of nisin include its use as a preservative in high moisture, hot baked flour products (crumpets) and pasteurised liquid egg. Renewed interest is evident in the use of nisin in natural cheese production. Considerable research has been carried out on the antilisterial properties of nisin in foods and a number of applications have been proposed. Uses of nisin to control spoilage lactic acid bacteria have been identified in beer, wine, alcohol production and low pH foods such as salad dressings. Further developments of nisin are likely to include synergistic action of nisin with chelators and other bacteriocins, and its use as an adjunct in novel food processing technology such as higher pressure sterilisation and electroporation. Production of highly purified nisin preparations and enhancement by chelators has led to interest in the use of nisin for human ulcer therapy, and mastitis control in cattle.

  15. Class IIa bacteriocins: diversity and new developments.

    Science.gov (United States)

    Cui, Yanhua; Zhang, Chao; Wang, Yunfeng; Shi, John; Zhang, Lanwei; Ding, Zhongqing; Qu, Xiaojun; Cui, Hongyu

    2012-12-06

    Class IIa bacteriocins are heat-stable, unmodified peptides with a conserved amino acids sequence YGNGV on their N-terminal domains, and have received much attention due to their generally recognized as safe (GRAS) status, their high biological activity, and their excellent heat stability. They are promising and attractive agents that could function as biopreservatives in the food industry. This review summarizes the new developments in the area of class IIa bacteriocins and aims to provide uptodate information that can be used in designing future research.

  16. Class IIa Bacteriocins: Diversity and New Developments

    Science.gov (United States)

    Cui, Yanhua; Zhang, Chao; Wang, Yunfeng; Shi, John; Zhang, Lanwei; Ding, Zhongqing; Qu, Xiaojun; Cui, Hongyu

    2012-01-01

    Class IIa bacteriocins are heat-stable, unmodified peptides with a conserved amino acids sequence YGNGV on their N-terminal domains, and have received much attention due to their generally recognized as safe (GRAS) status, their high biological activity, and their excellent heat stability. They are promising and attractive agents that could function as biopreservatives in the food industry. This review summarizes the new developments in the area of class IIa bacteriocins and aims to provide uptodate information that can be used in designing future research. PMID:23222636

  17. Class IIa Bacteriocins: Diversity and New Developments

    Directory of Open Access Journals (Sweden)

    Yanhua Cui

    2012-12-01

    Full Text Available Class IIa bacteriocins are heat-stable, unmodified peptides with a conserved amino acids sequence YGNGV on their N-terminal domains, and have received much attention due to their generally recognized as safe (GRAS status, their high biological activity, and their excellent heat stability. They are promising and attractive agents that could function as biopreservatives in the food industry. This review summarizes the new developments in the area of class IIa bacteriocins and aims to provide uptodate information that can be used in designing future research.

  18. Bacteriocin-producing Enterococci from Rabbit Meat

    Directory of Open Access Journals (Sweden)

    Szabóová, R.

    2012-01-01

    Full Text Available Aims: Enterococci are lactic acid bacteria belonging to the division Firmicutes. They occur in different ecosystems, rabbits including. Enterococci can possess probiotic properties and produce antimicrobial substances-bacteriocins. Rabbit meat as nutritionally healthy food offers novel source to study bacteriocin-producing and/or probiotic enterococci. Methodology and results: Enterococci were detected from rabbit meat samples (42. Most of the isolates were allotted to the species Enterococcus faecium by PCR method. The isolates have possessed the structural genes for enterocins A, P, B production. The inhibitory substances produced by the isolated enterococci inhibited the growth of 12 indicators. Of 34 isolates, 15 strains have shown the antimicrobial activity against L. monocytogenes CCM 4699, 12 strains against S. aureus 3A3, 10 strains against S. aureus 5A2 as well as Salmonella enterica serovar Enteritidis PT4. Moreover, enterococci have tolerated 5 % bile, low pH; they have produced lactid acid in the amount from 0.740 ± 0.091 to 1.720 ± 0.095 mmol/l. The isolates were mostly sensitive to antibiotics. Conclusion, significance and impact of study: Bacteriocin-producing strain E. faecium M3a has been selected for more detail characterization of its bacteriocin and probiotic properties with the aim for its further application as an additive.

  19. Are bacteriocins underexploited? Novel applications for old antimicrobials.

    Science.gov (United States)

    Montalbán-López, Manuel; Sánchez-Hidalgo, Marina; Valdivia, Eva; Martínez-Bueno, Manuel; Maqueda, Mercedes

    2011-08-01

    Bacteriocins are ribosomally synthesized (poly)peptides produced by almost all prokaryotic lineages. Bacteriocins from lactic acid bacteria (LAB) and bacteriocin-producer probiotic organisms have been thoroughly studied due to their wide spectra of action, the long-term use in food fermentations and the consideration of these microorganisms as beneficial for human beings. Most of the studies on the biotechnological application of diverse bacteriocins have been focused on their use as food preservatives, nisin being the prototype successfully used in alimentation. However, bacteriocins from LAB have demonstrated a remarkable potential as therapeutics for medical or veterinary uses, alone or in combination with classical antimicrobials. Their interest is even higher now that the resistance to the antibacterials used in therapeutics is growing. In this review we explore exciting opportunities for bacteriocin and probiotic applications, highlighting the possibilities for new and innovative research in order to give the necessary attention to this type of natural molecules that exhibit a great potential.

  20. Anti-infective properties of bacteriocins: an update.

    Science.gov (United States)

    Hammami, Riadh; Fernandez, Benoit; Lacroix, Christophe; Fliss, Ismail

    2013-08-01

    Bacteriocin production is a widespread phenomenon among bacteria. Bacteriocins hold great promise for the treatment of diseases caused by pathogenic bacteria and could be used in the future as alternatives to existing antibiotics. The anti-infective potential of bacteriocins for inhibiting pathogens has been shown in various food matrices including cheese, meat, and vegetables. However, their inhibition of pathogens in vivo remains unclear and needs more investigation, due mainly to difficulties associated with demonstrating their health benefits. Many bacteriocins produced by established or potential probiotic organisms have been evaluated as potential therapeutic agents and interesting findings have been documented in vitro as well as in a few in vivo studies. Some recent in vivo studies point to the efficacy of bacteriocin-based treatments of human and animal infections. While further investigation remains necessary before the possibilities for bacteriocins in clinical practice can be described more fully, this review provides an overview of their potential applications to human and veterinary health.

  1. Classification of Bacteriocins from Gram-Positive Bacteria

    Science.gov (United States)

    Rea, Mary C.; Ross, R. Paul; Cotter, Paul D.; Hill, Colin

    Bacteriocins are ribosomally synthesised antimicrobial peptides produced by bacteria, including many Gram-positive species. The classification of bacteriocins from Gram-positive bacteria is complicated by their heterogeneity and thus, as the number of Gram-positive bacteriocins identified has continued to increase, classification schemes have had to continuously evolve. Here, we review the various classification approaches, both historical and current, their underlying scientific basis and their relative merit, and suggest a rational scheme given the state of the art.

  2. Class IId or Linear and Non-Pediocin-Like Bacteriocins

    Science.gov (United States)

    Iwatani, Shun; Zendo, Takeshi; Sonomoto, Kenji

    Class IId bacteriocins are one of the subclasses of class II bacteriocins produced by lactic acid bacteria. This class of bacteriocins, however, show a great diversity in their primary structures and modes of action. This chapter focuses on two aspects: (1) the description of those heterogeneous bacteriocins with the concept of three potential subgroups and (2) the modes of action of lactococcin A, lactococcin 972, and lacticin Q, each of which belongs to a different subgroup and is well characterized in its unique mode of action.

  3. Antimicrobial Activity of Bacteriocins and Their Applications

    Science.gov (United States)

    Drosinos, Eleftherios H.; Mataragas, Marios; Paramithiotis, Spiros

    Bacteriocins are peptides or proteins that exert an antimicrobial action against a range of microorganisms. Their production can be related to the antagonism within a certain ecological niche, as the producer strain, being itself immune to its action, generally gains a competitive advantage. Many Gram-positive and Gram-negative microorganisms have been found to produce bacteriocins. The former, and especially the ones produced by lactic acid bacteria, has been the field of intensive research during the last decades mainly due to their properties that account for their suitability in food preservation and the benefits arising from that, and secondarily due to the broader inhibitory spectrum compared to the ones produced by Gramnegative microorganisms.

  4. The sactibiotic subclass of bacteriocins: an update.

    Science.gov (United States)

    Mathur, Harsh; Rea, Mary C; Cotter, Paul D; Hill, Colin; Ross, R Paul

    2015-01-01

    The sactibiotics are a recently designated subclass of bacteriocins that contain characteristic cysteine sulphur to α -carbon linkages mediated through post-translational modifications. They are a relatively small subclass of bacteriocins compared to the most thoroughly studied lantibiotics. The sactibiotics that have been extensively studied thus far are thuricin CD, subtilosin A, thurincin H, and propionicin F. Despite their recent discovery, there have already been significant advances made in the study of sactibiotics, most notably the discovery of the narrow spectrum anti-Clostridium difficile sactibiotic, thuricin CD. In addition, scientists have gained insights into the mechanisms of action of the sactibiotic subtilosin A, which targets Listeria monocytogenes,Gardnerella vaginalis, and other pathogens. Also, the development of heterologous host systems and homologous expression and site-directed mutagenesis systems for the sactibiotic thurincin H have opened up many opportunities for further studies on this sactibiotic. These and other recent studies concerning the molecular biology, 3D structural elucidation, mode of action, self-protection mechanisms, and antimicrobial spectrum of the sactibiotic subgroup of bacteriocins are discussed in this review.

  5. Bacteriocins : mechanism of membrane insertion and pore formation

    NARCIS (Netherlands)

    Moll, Gert N.; Konings, Wil N.; Driessen, Arnold J.M.

    1999-01-01

    Lactic acid bacteria produce several types of pore forming peptides. Class I bacteriocins are lantibiotics that contain (methyl)lanthionine residues that may form intramolecular thioether rings. These peptides generally have a broad spectrum of activity and form unstable pores. Class II bacteriocins

  6. Resistance to bacteriocins produced by Gram-positive bacteria.

    Science.gov (United States)

    Bastos, Maria do Carmo de Freire; Coelho, Marcus Lívio Varella; Santos, Olinda Cabral da Silva

    2015-04-01

    Bacteriocins are prokaryotic proteins or peptides with antimicrobial activity. Most of them exhibit a broad spectrum of activity, inhibiting micro-organisms belonging to different genera and species, including many bacterial pathogens which cause human, animal or plant infections. Therefore, these substances have potential biotechnological applications in either food preservation or prevention and control of bacterial infectious diseases. However, there is concern that continuous exposure of bacteria to bacteriocins may select cells resistant to them, as observed for conventional antimicrobials. Based on the models already investigated, bacteriocin resistance may be either innate or acquired and seems to be a complex phenomenon, arising at different frequencies (generally from 10(-9) to 10(-2)) and by different mechanisms, even amongst strains of the same bacterial species. In the present review, we discuss the prevalence, development and molecular mechanisms involved in resistance to bacteriocins produced by Gram-positive bacteria. These mechanisms generally involve changes in the bacterial cell envelope, which result in (i) reduction or loss of bacteriocin binding or insertion, (ii) bacteriocin sequestering, (iii) bacteriocin efflux pumping (export) and (iv) bacteriocin degradation, amongst others. Strategies that can be used to overcome this resistance are also addressed.

  7. Bacteriocin-mediated competition in cystic fibrosis lung infections

    DEFF Research Database (Denmark)

    Ghoul, Melanie; West, Stuart A.; Johansen, Helle Krogh

    2015-01-01

    Bacteriocins are toxins produced by bacteria to kill competitors of the same species. Theory and laboratory experiments suggest that bacteriocin production and immunity play a key role in the competitive dynamics of bacterial strains. The extent to which this is the case in natural populations, e...

  8. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    Science.gov (United States)

    Egan, Kevin; Field, Des; Rea, Mary C.; Ross, R. Paul; Hill, Colin; Cotter, Paul D.

    2016-01-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more

  9. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?

    Directory of Open Access Journals (Sweden)

    Kevin eEgan

    2016-04-01

    Full Text Available Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB. Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural, approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable

  10. Therapeutic enhancement of newly derived bacteriocins against Giardia lamblia.

    Science.gov (United States)

    Amer, Eglal I; Mossallam, Shereen F; Mahrous, Hoda

    2014-11-01

    Trials for identifying efficient anti-giardial agents are still ongoing. Nowadays, bacteriocins have attracted the attention as potential antimicrobial compounds. For the first time, the current study evaluated the therapeutic efficacy of bacteriocins derived from newly isolated Egyptian strains of probiotics Lactobacilli; L. acidophilus (P106) and L. plantarum (P164) against Giardia lamblia. Bacteriocins' efficacy was evaluated both in vitro; by growth inhibition and adherence assays, and in vivo; through estimation of parasite density, intestinal histopathological examination and ultrastructural analysis of Giardia trophozoites. In vivo bacteriocins' clinical safety was assessed. In vitro results proved that 50 µg of L. acidophilus bacteriocin induced reduction of the mean Giardia lamblia trophozoites by 58.3 ± 4.04%, while at lower concentrations of 10 and 20 µg of both L. acidophilus and L. plantarum, non significant reduction of the mean parasite density was achieved. In vitro trophozoites adherence was susceptible to the tested bacteriocins at all studied concentrations with variable degrees, while the highest adherence reduction was demonstrated using 50 µg of L acidophilus bacteriocin. In vivo, oral inoculation of 50 µg/mouse L. acidophilus bacteriocin for 5 successive days resulted in a noteworthy decline of the intestinal parasite density, along with amelioration of intestinal pathology of infected mice. Ultrastructural examination proved thatfive doses of L. acidophilus bacteriocin showed marked changes in cellular architecture of the trophozoites with evident disorganization of the cell membrane, adhesive disc and cytoplasmic components. This is the first reported study of the safe anti-giardial efficacy of L. acidophilus (P106) derived bacteriocin, hence highlighting its great promise as a potential therapeutic safe alternative to existing commercial drugs.

  11. Identification of Lactococcus-Specific Bacteriocins Produced by Lactococcal Isolates, and the Discovery of a Novel Bacteriocin, Lactococcin Z.

    Science.gov (United States)

    Ishibashi, Naoki; Seto, Hiromi; Koga, Shoko; Zendo, Takeshi; Sonomoto, Kenji

    2015-09-01

    Lactic acid bacteria that produce Lactococcus-specific bacteriocins were isolated and identified as Lactococcus lactis from fresh corn or lettuce. Among them, four isolates were identified as lactococcin Q producers. Seven isolates showed antimicrobial activity against a lactococcin Q producer, L. lactis QU 4, as well as against nisin Z and lacticin Q producers belonging to L. lactis. Strain QU 7 was selected as a standard strain and showed no cross-immunity to lactococcin Q or other lactococcal bacteriocins. The bacteriocin produced by strain QU 7 was purified in three chromatographic steps, and its molecular mass was determined to be 5041.35 Da. The amino acid sequence analysis revealed that it is a novel class IId bacteriocin, referred to as lactococcin Z. It consisted of 45 amino acid residues. The lczA gene encoding the prepeptide of lactococcin Z showed homology to lactococcins A, B, and M. Thus, this report demonstrates a new example of Lactococcus-specific bacteriocins.

  12. CHARACTERIZATION OF BACTERIOCIN FROM PROBIOTIC LACTOBACILLUS PLANTARUM

    Directory of Open Access Journals (Sweden)

    A. Jayachitra*, C.M. Sukanya and N. Krithiga

    2012-11-01

    Full Text Available In our study, the sample (cheese was selected for isolation and identification of Lactobacillus species as local probiotic isolate. The strain was subjected to microscopic and macroscopic investigations for probiotic selection. The world health organization criteria (WHO were applied to all Lactobacillus species against E. coli, P. areoginosa, S. aerus, Chromobacterium, Serratia and A. flavus, antibiotic sensitivity test, acid and bile tolerance test, heamolytic activity. Antimicrobial compound called bacteriocin was partially purified. The Lactobacillus species was identified by 16S rRNA gene sequencing and specific catalase gene was also amplified. Data showed that Lactobacillus plantarum has a high inhibitory activity, tolerant to bile and acid, highly resistant to many antibiotics. Antimicrobial peptide was partially purified, characterized and bacteriocin produced by L. plantarum remained constant activity after heating at 121oC for 10 min. L. plantarum may be an alternative and promising way for eradicating many diseases. L. plantarum produces antimicrobial metabolites can give reasonable assurance of the control of pathogenic microorganisms. Increase the number of food-poisoning patients, the inhibition of the bacterial growth or production of enterotoxin such as verotoxins by administrating Lactobacilli bacteriocins would be of great importance. Lactobacillus fulfills the basic criteria required for probiotic strains which survive in in-vitro condition. The experimental strain exhibited strong antibacterial and antifungal activities against the pathogens. L. plantarum has high probiotic potential for eradicating many diseases, mainly the suppression of A. flavus which produce Aflatoxin. Pharmaceutical and nutritional industries are exploring more natural treatments for health conscious consumers as natural treatments have been effective.

  13. Bacteriocins synthesized by Bacillus thuringiensis: generalities and potential applications

    Science.gov (United States)

    Salazar-Marroquín, Elma Laura; Galán-Wong, Luis J.; Moreno-Medina, Víctor Ricardo; Reyes-López, Miguel Ángel; Pereyra-Alférez, Benito

    2016-01-01

    The members of the Bacillus thuringiensis group, commonly known as Bt, produce a huge number of metabolites, which show biocidal and antagonistic activity. B. thuringiensis is widely known for synthesizing Cry, Vip and Cyt proteins, active against insects and other parasporins with biocidal activity against certain types of cancerous cells. Nevertheless, B. thuringiensis also synthesizes compounds with antimicrobial activity, especially bacteriocins. Some B. thuringiensis bacteriocins resemble lantibiotics and other small linear peptides (class IIa) from the lactic acid bacteria bacteriocins classification system. Although many bacteriocins produced by Bt have been reported, there is no proper classification for them. In this work, we have grouped these based on molecular weight and functionality. Bacteriocins are small peptides synthesized by bacteria, presenting inhibitory activity against Gram-positive and Gram-negative bacteria and to a lesser extent against fungi. These molecules represent a good study model in the search for microbial control alternatives. Lactic acid bacteria produces a huge number of these types of molecules with great potential. Nonetheless, members of the Bacillus, cereus group, especially B. thuringiensis, emerge as an attractive alternative for obtaining bacteriocins showing novel activities. This review describes the potential applications of B. thuringiensis bacteriocins in the control of foodborne pathogens, environment and medical area. PMID:27340340

  14. The role of bacteriocins as selfish genetic elements.

    Science.gov (United States)

    Inglis, R Fredrik; Bayramoglu, Bihter; Gillor, Osnat; Ackermann, Martin

    2013-06-23

    Bacteria produce a wide arsenal of toxic compounds in order to kill competing species. Bacteriocins, protein-based toxins produced by nearly all bacteria, have generally been considered a ubiquitous anti-competitor strategy, used to kill competing bacterial strains. Some of these bacteriocins are encoded on plasmids, which also code for closely linked immunity compounds (thereby rendering toxin producing cells immune to their own toxin). However, the production of bacteriocins can also be interpreted as a means to promote plasmid stability by preferentially selecting for cells carrying the plasmid. If, for example, a cell were to lose the plasmid, it would no longer produce the immunity compound and would be killed by its bacteriocin-producing clone mates. In this respect, bacteriocins can be regarded as similar to previously described toxin-antitoxin systems that are able promote the stable transmission of plasmids to daughter cells. In order to test this prediction, we carried out an experimental evolution study using the bacterium Escherichia coli, finding that bacteriocins can indeed select for the stable maintenance of plasmids. This suggests that bacteriocins can act primarily as selfish genetic elements promoting their own transmission in the population, which may help explain their unique ecology and evolution.

  15. Diversity and dynamics of bacteriocins from human microbiome.

    Science.gov (United States)

    Zheng, Jinshui; Gänzle, Michael G; Lin, Xiaoxi B; Ruan, Lifang; Sun, Ming

    2015-06-01

    Human commensal microbiota are an important determinant of health and disease of the host. Different human body sites harbour different bacterial microbiota, bacterial communities that maintain a stable balance. However, many of the factors influencing the stabilities of bacterial communities associated with humans remain unknown. In this study, we identified putative bacteriocins produced by human commensal microbiota. Bacteriocins are peptides or proteins with antimicrobial activity that contribute to the stability and dynamics of microbial communities. We employed bioinformatic analyses to identify putative bacteriocin sequences in metagenomic sequences obtained from different human body sites. Prevailing bacterial taxa of the putative bacteriocins producers matched the most abundant organisms in each human body site. Remarkably, we found that samples from different body sites contain different density of putative bacteriocin genes, with the highest in samples from the vagina, the airway, and the oral cavity and the lowest in those from gut. Inherent differences of different body sites thus influence the density and types of bacteriocins produced by commensal bacteria. Our results suggest that bacteriocins play important roles to allow different bacteria to occupy several human body sites, and to establish a long-term commensal relationship with human hosts.

  16. Genome level analysis of bacteriocins of lactic acid bacteria.

    Science.gov (United States)

    Singh, Neetigyata Pratap; Tiwari, Abhay; Bansal, Ankiti; Thakur, Shruti; Sharma, Garima; Gabrani, Reema

    2015-06-01

    Bacteriocins are antimicrobial peptides which are ribosomally synthesized by mainly all bacterial species. LABs (lactic acid bacteria) are a diverse group of bacteria that include around 20 genera of various species. Though LABs have a tremendous potential for production of anti-microbial peptides, this group of bacteria is still underexplored for bacteriocins. To study the diversity among bacteriocin encoding clusters and the putative bacteriocin precursors, genome mining was performed on 20 different species of LAB not reported to be bacteriocin producers. The phylogenetic tree of gyrB, rpoB, and 16S rRNA were constructed using MEGA6 software to analyze the diversity among strains. Putative bacteriocins operons identified were found to be diverse and were further characterized on the basis of physiochemical properties and the secondary structure. The presence of at least two cysteine residues in most of the observed putative bacteriocins leads to disulphide bond formation and provide stability. Our data suggests that LABs are prolific source of low molecular weight non modified peptides.

  17. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation.

    Science.gov (United States)

    Ahmad, Varish; Khan, Mohd Sajid; Jamal, Qazi Mohammad Sajid; Alzohairy, Mohammad A; Al Karaawi, Mohammad A; Siddiqui, Mughees Uddin

    2017-01-01

    Due to the appearance of antibiotic resistance and the toxicity associated with currently used antibiotics, peptide antibiotics are the need of the hour. Thus, demand for new antimicrobial agents has brought great interest in new technologies to enhance safety. One such antimicrobial molecule is bacteriocin, synthesised by various micro-organisms. Bacteriocins are widely used in agriculture, veterinary medicine as a therapeutic, and as a food preservative agent to control various infectious and food-borne pathogens. In this review, we highlight the potential therapeutic and food preservative applications of bacteriocin.

  18. Nanotechnology: A Valuable Strategy to Improve Bacteriocin Formulations

    Science.gov (United States)

    Fahim, Hazem A.; Khairalla, Ahmed S.; El-Gendy, Ahmed O.

    2016-01-01

    Bacteriocins are proteinaceous antibacterial compounds, produced by diverse bacteria, which have been successfully used as: (i) food biopreservative; (ii) anti-biofilm agents; and (iii) additives or alternatives to the currently existing antibiotics, to minimize the risk of emergence of resistant strains. However, there are several limitations that challenge the use of bacteriocins as biopreservatives/antibacterial agents. One of the most promising avenues to overcome these limitations is the use of nanoformulations. This review highlights the practical difficulties with using bacteriocins to control pathogenic microorganisms, and provides an overview on the role of nanotechnology in improving the antimicrobial activity and the physicochemical properties of these peptides. PMID:27695440

  19. Partial characterization of bacteriocins produced by Lactobacillus acidophilus and Pediococcus acidilactici

    Directory of Open Access Journals (Sweden)

    Nallusamy Sivakumar

    2010-10-01

    Full Text Available Bacteriocin producing Lactobacillus acidophilus and Pediococcus acidilactici were isolated from milk and meat samples, respectively. An attempt was made to produce bacteriocin in a Dairy Based (DB medium using these organisms. Higher bacteriocin activity was shown by L. acidophilus in the DB medium. Bacteriocins of both the organisms were effective against food pathogens. The bacteriocins were stable at pH 3 - 9 up to 24 h and active at 100ºC. The bacteriocins could be stored at -20ºC for at least 45 days, at 4ºC for 20 days and at 37ºC for 5 days.

  20. Bacteriocins of lactic acid bacteria: extending the family.

    Science.gov (United States)

    Alvarez-Sieiro, Patricia; Montalbán-López, Manuel; Mu, Dongdong; Kuipers, Oscar P

    2016-04-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are proteinaceous antimicrobial molecules with a diverse genetic origin, posttranslationally modified or not, that can help the producer organism to outcompete other bacterial species. In this review, we focus on the various types of bacteriocins that can be found in LAB and the organization and regulation of the gene clusters responsible for their production and biosynthesis, and consider the food applications of the prototype bacteriocins from LAB. Furthermore, we propose a revised classification of bacteriocins that can accommodate the increasing number of classes reported over the last years.

  1. New developments and applications of bacteriocins and peptides in foods.

    Science.gov (United States)

    Mills, S; Stanton, C; Hill, C; Ross, R P

    2011-01-01

    There is an increased desire for sophisticated foods, whereby consumers harbor higher expectations of health-promoting benefits above basic nutrition. Moreover, there is a move from the adulteration of foods with chemical preservatives toward biopreservation. Such expectations have led scientists to identify novel approaches to satisfy both demands, which utilize bacteriocin and peptide-based solutions. The best known examples of biopreservation involve bacteriocins. However, with the exception of nisin, bacteriocins have received limited use in the food industry. Peptides can be added to foods to improve consumer health. Some of the best known examples are angiotensin I-converting enzyme (ACE)-inhibitory peptides, which inhibit ACE, a key enzyme involved in blood pressure (BP) regulation. To be effective, these peptides must be bioavailable, but by their nature, peptides are degraded by digestion with proteolytic enzymes. This review critically discusses the use and potential of peptides and bacteriocins in food systems in terms of safety, quality, and improvement of human health.

  2. Potentials for bacteriocin development to control Campylobacter in broilers

    Science.gov (United States)

    Dramatically enhanced biosecurity, enhanced fly screen control, competitive exclusion, immunization and phage therapies may hold suggestions to experimentally control flock infections but have yet to be demonstrated as commercially plausible or effective. Alternatively, bacteriocins (BCN) which are...

  3. Bacteriocins synthesized by Bacillus thuringiensis: generalities and potential applications

    OpenAIRE

    Salazar-Marroquín, Elma Laura; Galán-Wong, Luis J.; Moreno-Medina, Víctor Ricardo; Reyes-López, Miguel Ángel; Pereyra-Alférez, Benito

    2016-01-01

    The members of the Bacillus thuringiensis group, commonly known as Bt, produce a huge number of metabolites, which show biocidal and antagonistic activity. B. thuringiensis is widely known for synthesizing Cry, Vip and Cyt proteins, active against insects and other parasporins with biocidal activity against certain types of cancerous cells. Nevertheless, B. thuringiensis also synthesizes compounds with antimicrobial activity, especially bacteriocins. Some B. thuringiensis bacteriocins resembl...

  4. Utilization of bacteriocin-producing bacteria in dairy products

    Directory of Open Access Journals (Sweden)

    Matěj Patrovský

    2016-07-01

    Full Text Available Lactic acid bacteria have been used since ancient times for food preparation and for bio-conservation by fermentation. Selected strains are capable of producing antimicrobial peptides - bacteriocins, which can be natural preservatives, especially in products with short shelf lives. The present study is focused on inhibitory effects of the bacteriocin-producing bacteria strains Enterococcus faecium, Pediococccus acidilactici and Lactobacillus plantarum against Listeria innocua as an indicator microorganism. Freeze-dried preparations of bacterial strains producing particular bacteriocins were tested by agar well-diffusion assay and by the traditional spread plate method. Plantaricin exhibited the highest anti-listerial effect among the tested bacteriocins. Pediocin also demonstrated a distinct inhibitory effect, but enterocin appeared to be heat labile and its efficiency was also suppressed under cold storage conditions. Plantaricin reduced Listeria innocua counts by 1 log in dairy spread made from cheese and quark. The formation of bacteriocins by various Lactobacillus plantarum strains were substantially influenced by the cultivation conditions of the mother culture and by the microbial preparation process before freeze-drying. Bacteriocins introduced into foodstuffs via protective cultures in situ offer new perspectives on enhancing food quality and safety.

  5. Mechanisms of resistance to bacteriocins targeting the mannose phosphotransferase system.

    Science.gov (United States)

    Kjos, Morten; Nes, Ingolf F; Diep, Dzung B

    2011-05-01

    The membrane proteins IIC and IID of the mannose phosphotransferase system (Man-PTS) together form a membrane-located complex that serves as a receptor for several different bacteriocins, including the pediocin-like class IIa bacteriocins and the class IIc bacteriocin lactococcin A. Bacterial strains sensitive to class IIa bacteriocins readily give rise to resistant mutants upon bacteriocin exposure. In the present study, we have therefore investigated lactococcin A-resistant mutants of Lactococcus lactis as well as natural food isolates of Listeria monocytogenes with different susceptibilities to class IIa bacteriocins. We found two major mechanisms of resistance. The first involves downregulation of Man-PTS gene expression, which takes place both in spontaneous resistant mutants and in natural resistant isolates. The second involves normal expression of the Man-PTS system, but the underlying mechanism of resistance for these cells is unknown. In some cases, the resistant phenotype was linked to a shift in the metabolism; i.e., reduced growth on glucose due to reduction in Man-PTS expression was accompanied by enhanced growth on another sugar, such as galactose. The implications of these findings in terms of metabolic heterogeneity are discussed.

  6. Purification and partial characterization of bacteriocin produced by Lactococcus lactis ssp. lactis LL171.

    Science.gov (United States)

    Kumari, Archana; Akkoç, Nefise; Akçelik, Mustafa

    2012-04-01

    Lactic acid bacteria (LAB) are possessing ability to synthesize antimicrobial compounds (like bacteriocin) during their growth. In this regard, novel bacteriocin compound secreting capability of LAB isolated from Tulum Cheese in Turkey was demonstrated. The synthesized bacteriocin was purified by ammonium sulphate precipitation, dialysis and gel filtration. The molecular weight (≈3.4 kDa) of obtained bacteriocin was confirmed by SDS-PAGE, which revealed single peptide band. Molecular identification of LAB strain isolated from Tulum Cheese was conducted using 16S rDNA gene sequencing as Lactococcus lactis ssp. lactis LL171. The amino acid sequences (KKIDTRTGKTMEKTEKKIELSLKNMKTAT) of the bacteriocin from Lactococcus lactis ssp. lactis LL171 was found unique and novel than reported bacteriocins. Further, the bacteriocin was possessed the thermostable property and active at wide range of pH values from 1 to 11. Thus, bacteriocin reported in this study has the potential applications property as food preservative agent.

  7. BACTERIOCINS AND BACTERIOPHAGE LYTIC PROTEINS AS ALTERNATIVES TO ANTIBIOTICS FROM RUSSIAN FEDERATION AND USA COLLABORATIONS

    Science.gov (United States)

    Novel anti-microbial peptides (bacteriocins) were isolated and characterized in collaborative research between PMSRU, ARS-USDA scientists and representatives of the State Research Center for Applied Microbiology and Biotechnology (SRCAMB) in Obolensk, Russian Federation. The bacteriocins are effect...

  8. Potentiated anti-microsporidial activity of Lactobacillus acidophilus CH1 bacteriocin using gold nanoparticles.

    Science.gov (United States)

    Mossallam, Shereen F; Amer, Eglal I; Diab, Radwa G

    2014-09-01

    Through increased awareness and improved diagnostics, microsporidiosis has now been identified in a broader range of human populations; however current therapies are inconsistently effective. Recently, probiotics were determined as means for the control of intestinal parasitic infections through their secretory products; bacteriocins. This is the first study on the effect of bacteriocin produced by Lactobacillus acidophilus CH1 bacteriocin, with or without gold nanoparticles (Au-NPs), against intestinal microsporidiosis in immunosuppressed mice. Fecal and intestinal spore loads, besides viability, extrusion and infectivity of spores from treated animals were assessed. Results showed that the anti-microsporidial effects of bacteriocin were significantly potent. This efficiency was further potentiated upon conjugating bacteriocins with Au-NPs, as it induced a strikingly sustained reduction in fecal spore shedding after cessation of therapy by 1 week (94.26%). Furthermore, reduction in intestinal spore load was highest in bacteriocin/Au-NPs-inoculated mice (89.7%) followed by bacteriocin-inoculated group (73.5%). Spores encountered from stool of bacteriocin/Au-NPs group showed 92.4% viability, versus 93.7% in bacteriocin group. Spore extrusion and infectivity were most inhibited by exposure to bacteriocin/Au-NPs. Safety of bacteriocin/Au-NPs was also verified. Thus, considering the results of the present work, L. acidophilus CH1-derived bacteriocin can present a powerful safe therapy against intestinal microsporidiosis.

  9. A new structure-based classification of gram-positive bacteriocins.

    Science.gov (United States)

    Zouhir, Abdelmajid; Hammami, Riadh; Fliss, Ismail; Hamida, Jeannette Ben

    2010-08-01

    Bacteriocins are ribosomally-synthesized peptides or proteins produced by a wide range of bacteria. The antimicrobial activity of this group of natural substances against foodborne pathogenic and spoilage bacteria has raised considerable interest for their application in food preservation. Classifying these bacteriocins in well defined classes according to their biochemical properties is a major step towards characterizing these anti-infective peptides and understanding their mode of action. Actually, the chosen criteria for bacteriocins' classification lack consistency and coherence. So, various classification schemes of bacteriocins resulted various levels of contradiction and sorting inefficiencies leading to bacteriocins belonging to more than one class at the same time and to a general lack of classification of many bacteriocins. Establishing a coherent and adequate classification scheme for these bacteriocins is sought after by several researchers in the field. It is not straightforward to formulate an efficient classification scheme that encompasses all of the existing bacteriocins. In the light of the structural data, here we revisit the previously proposed contradictory classification and we define new structure-based sequence fingerprints that support a subdivision of the bacteriocins into 12 groups. The paper lays down a resourceful and consistent classification approach that resulted in classifying more than 70% of bacteriocins known to date and with potential to identify distinct classes for the remaining unclassified bacteriocins. Identified groups are characterized by the presence of highly conserved short amino acid motifs. Furthermore, unclassified bacteriocins are expected to form an identified group when there will be sufficient sequences.

  10. Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria.

    Science.gov (United States)

    Kaškonienė, Vilma; Stankevičius, Mantas; Bimbiraitė-Survilienė, Kristina; Naujokaitytė, Gintarė; Šernienė, Loreta; Mulkytė, Kristina; Malakauskas, Mindaugas; Maruška, Audrius

    2017-02-01

    The scientific interest for the search of natural means of microbial inhibitors has not faded for several years. A search of natural antibiotics, so-called bacteriocins which are produced by lactic acid bacteria (LAB), gains a huge attention of the scientists in the last century, in order to reduce the usage of synthetic food additives. Pure bacteriocins with wide spectra of antibacterial activity are promising among the natural biopreservatives. The usage of bacteriocin(s) producing LAB as starter culture for the fermentation of some food products, in order to increase their shelf-life, when synthetic preservatives are not allowable, is also possible. There are a lot of studies focusing on the isolation of new bacteriocins from traditional fermented food, dairy products and other foods or sometimes even from unusual non-food matrices. Bacteriocins producing bacteria have been isolated from different sources with the different antibacterial activity against food-borne microorganisms. This review covers the classification of bacteriocins, diversity of sources of bacteriocin(s) producing LAB, antibacterial spectra of isolated bacteriocins and analytical methods for the bacteriocin purification and analysis within the last 15 years.

  11. Antibacterial peptides "bacteriocins": an overview of their diverse characteristics and applications.

    Science.gov (United States)

    Nishie, Mami; Nagao, Jun-Ichi; Sonomoto, Kenji

    2012-03-01

    Bacteriocins are ribosomally synthesized antibacterial peptides produced by bacteria that inhibit the growth of similar or closely related bacterial strains. A number of bacteriocins from a wide variety of bacteria have been discovered, and their diverse structures have been reported. Growing evidence suggests that bacteriocins have diverse structures, modes of action, mechanisms of biosynthesis and self-immunity, and gene regulation. Bacteriocins are considered as an attractive compound in food and pharmaceutical industries to prevent food spoilage and pathogenic bacterial growth. Furthermore, elucidation of their biosynthesis has led to the use of bacteriocin-controlled gene-expression systems and the biosynthetic enzymes of lantibiotics, a class of bacteriocins, as tools to design novel peptides. In this review, we summarize and discuss currently known information on bacteriocins produced by Gram-positive bacteria and their applications.

  12. Actinomycetemcomitin: a new bacteriocin produced by Aggregatibacter (Actinobacillus) actinomycetemcomitans.

    Science.gov (United States)

    Lima, Francisca Lúcia; de Carvalho, Maria Auxiliadora Roque; Apolônio, Ana Carolina Morais; Bemquerer, Marcelo Porto; Santoro, Marcelo Matos; Oliveira, Jamil Silvano; Alviano, Celuta Sales; Farias, Luiz de Macêdo

    2008-02-01

    Aggregatibacter (Actinobacillus) actinomycetemcomitans P(7-20) strain isolated from a periodontally diseased patient has produced a bacteriocin (named as actinomycetemcomitin) that is active against Peptostreptococcus anaerobius ATCC 27337. Actinomycetemcomitin was produced during exponential and stationary growth phases, and its amount decreased until it disappeared during the decline growth phase. It was purified by ammonium sulphate precipitation (30-60% saturation), and further by FPLC (mono-Q ionic exchange and Phenyl Superose hydrophobic interaction) and HPLC (C-18 reversed-phase). This bacteriocin loses its activity after incubation at a pH below 7.0 or above 8.0, following heating for 30 min at 45 degrees C, and after treatment with proteolytic enzymes such as trypsin, alpha-chymotrypsin, and papain. Actinomycetemcomitin has a molecular mass of 20.3 KDa and it represents a new bacteriocin from A. actinomycetemcomitans.

  13. Bacteriocin-Mediated Competitive Interactions of Bacterial Populations and Communities

    Science.gov (United States)

    Riley, Margaret A.

    Explaining the coexistence of competing species is a major challenge in community ecology. In bacterial systems, competition is often driven by the production of bacteriocins; narrow spectrum proteinaceous toxins that serve to kill closely related species providing the producer better access to limited resources. Bacteriocin producers have been shown to competitively exclude sensitive, nonproducing strains. However, the interaction dynamics between bacteriocin producers, each lethal to its competitor, are largely unknown. Several recent studies have revealed some of the complexity of these interactions, employing a suite of in vitro, in vivo, and in silico bacterial model systems. This chapter describes the current state of knowledge regarding the population and community ecology of this potent family of toxins.

  14. Lantibiotics, class I bacteriocins from the genus Bacillus.

    Science.gov (United States)

    Lee, Hyungjae; Kim, Hae-Yeong

    2011-03-01

    Antimicrobial peptides exhibit high levels of antimicrobial activity against a broad range of spoilage and pathogenic microorganisms. Compared with bacteriocins produced by lactic acid bacteria, antimicrobial peptides from the genus Bacillus have been relatively less recognized despite their broad antimicrobial spectra. These peptides can be classified into two different groups based on whether they are ribosomally (bacteriocins) or nonribosomally (polymyxins and iturins) synthesized. Because of their broad spectra and high activity, antimicrobial peptides from Bacillus spp. may have great potential for applications in the food, agricultural, and pharmaceutical industries to prevent or control spoilage and pathogenic microorganisms. In this review, we introduce ribosomally synthesized antimicrobial peptides, the lantibiotic bacteriocins produced by members of Bacillus. In addition, the biosynthesis, genetic organization, mode of action, and regulation of subtilin, a well-investigated lantibiotic from Bacillus subtilis, are discussed.

  15. Bacteriocins from Gram-Negative Bacteria: A Classification?

    Science.gov (United States)

    Rebuffat, Sylvie

    Bacteria produce an arsenal of toxic peptides and proteins, which are termed bacteriocins and play a role in mediating the dynamics of microbial populations and communities. Bacteriocins from Gram-negative bacteria arise mainly from Enterobacteriaceae. They assemble into two main families: high molecular mass modular proteins (30-80 kDa) termed colicins and low molecular mass peptides (between 1 and 10 kDa) termed microcins. The production of colicins is mediated by the SOS response regulon, which plays a role in the response of many bacteria to DNA damages. Microcins are highly stable hydrophobic peptides that are produced under stress conditions, particularly nutrient depletion. Colicins and microcins are found essentially in Escherichia coli, but several other Gram-negative species also produce bacteriocin-like substances. This chapter presents the basis of a classification of colicins and microcins.

  16. Bacteriocins produced by lactic acid bacteria: A review

    Directory of Open Access Journals (Sweden)

    Vesković-Moračanin Slavica M.

    2014-01-01

    Full Text Available Lactic acid bacteria (LAB have an essential role in the production of fermented products. With their metabolic activity, they influence the ripening processes - leading to desired sensory qualities while at the same time inhibiting the growth of undesired microorganisms. Because of their dominant role during fermentation and because of a long tradition of utilization, Lhave been designated as “safe microbiota”. Biological protection of LAB, as a naturally present and/or selected and intentionally added microflora, is realized through the production of non-specific (lactic acid, acetic acid and other volatile organic acids, hydrogen peroxide, diacetyl, etc and specific metabolites, bacteriocins. Bacteriocins are extracellularly released proteins or peptides which possess certain antibacterial activity towards certain types of microorganisms, usually related to the producing bacteria. Today, bacteriocins represent a very interesting potential for their application in the food industry. Their application can reduce the use of synthetic preservatives and/or the intensity of thermal treatment during food production consumer’s need for safe, fresh and minimally-processed food. With the intention of realizing this potential to the fullest, it is necessary to understand the nature of bacteriocins, their production mechanisms, regulations and actions, as well as the influence of external factors on the their antimicrobial activity. The composition of food, i.e. its characteristics (pH, temperature, ingredients and additives, types and quantities of epiphytic microbiota and the actual technological process used in production, can all influence the stability and activity of the added bacteriocins. The future research in this field should also aim to clarify this unknown aspect of the application of bacteriocins, to provide the necessary knowledge about the optimization of the external conditions and open up the possibility of discovering their new

  17. Using the overlay assay to qualitatively measure bacterial production of and sensitivity to pneumococcal bacteriocins.

    Science.gov (United States)

    Maricic, Natalie; Dawid, Suzanne

    2014-09-30

    Streptococcus pneumoniae colonizes the highly diverse polymicrobial community of the nasopharynx where it must compete with resident organisms. We have shown that bacterially produced antimicrobial peptides (bacteriocins) dictate the outcome of these competitive interactions. All fully-sequenced pneumococcal strains harbor a bacteriocin-like peptide (blp) locus. The blp locus encodes for a range of diverse bacteriocins and all of the highly conserved components needed for their regulation, processing, and secretion. The diversity of the bacteriocins found in the bacteriocin immunity region (BIR) of the locus is a major contributor of pneumococcal competition. Along with the bacteriocins, immunity genes are found in the BIR and are needed to protect the producer cell from the effects of its own bacteriocin. The overlay assay is a quick method for examining a large number of strains for competitive interactions mediated by bacteriocins. The overlay assay also allows for the characterization of bacteriocin-specific immunity, and detection of secreted quorum sensing peptides. The assay is performed by pre-inoculating an agar plate with a strain to be tested for bacteriocin production followed by application of a soft agar overlay containing a strain to be tested for bacteriocin sensitivity. A zone of clearance surrounding the stab indicates that the overlay strain is sensitive to the bacteriocins produced by the pre-inoculated strain. If no zone of clearance is observed, either the overlay strain is immune to the bacteriocins being produced or the pre-inoculated strain does not produce bacteriocins. To determine if the blp locus is functional in a given strain, the overlay assay can be adapted to evaluate for peptide pheromone secretion by the pre-inoculated strain. In this case, a series of four lacZ-reporter strains with different pheromone specificity are used in the overlay.

  18. Bacteriocins from the rhizosphere microbiome – from an agriculture perspective

    Directory of Open Access Journals (Sweden)

    Sowmyalakshmi eSubramanian

    2015-10-01

    Full Text Available Bacteria produce and excrete a versatile and dynamic suit of compounds to defend against microbial competitors and mediate local population dynamics. These include a wide range of broad-spectrum non-ribosomally synthesized antibiotics, lytic enzymes, metabolic by-products, proteinaceous exotoxins and ribosomally produced antimicrobial peptides (bacteriocins. Most bacteria produce at least one bacteriocin. Bacteriocins are of interest in the food industry as natural preservatives and in the probiotics industry, leading to extensive studies on lactic acid bacteria (colicin produced by Escherichia coli is a model bacteriocin. Recent studies have projected use of bacteriocins in veterinary medicine and in agriculture, as a biostimulants of plant growth and development and as biocontrol agents. For example, bacteriocins such as Cerein 8A, Bac-GM17, putidacin, Bac 14B, amylocyclicin have been studied for their mechanisms of anti-microbial activity. Bac IH7 promotes tomato and musk melon plant growth. Thuricin 17 (Th17 is the only bacteriocin studied extensively for plant growth promotion and at the molecular level. Th17 functions as a bacterial signal compound, promoting plant growth in legumes and non-legumes. In Arabidopsis thaliana and Glycine max Th17 increased phytohormones IAA and SA at 24 h post treatment. At the proteome level Th17 treatment of 3-week-old A. thaliana rosettes led to > 2-fold changes in activation of the carbon and energy metabolism pathway proteins, 24 h post treatment. At 250 mM NaCl stress, the control plants under osmotic-shock shut down most of carbon-metabolism and activated energy-metabolism and antioxidant pathways. Th17 treated plants, at 250 mM NaCl, retained meaningful levels of the light harvesting complex, photosystem I and II proteins and energy and antioxidant pathways were activated, so that rosettes could better withstand the salt stress. In Glycine max, Th17 helped seeds germinate in the presence of Na

  19. Spontaneous bacteriocin resistance in Listeria monocytogenes as a susceptibility screen for identifying different mechanisms of resistance and modes of action by bacteriocins of lactic acid bacteria.

    Science.gov (United States)

    Macwana, Sunita; Muriana, Peter M

    2012-01-01

    A practical system was devised for grouping bacteriocins of lactic acid bacteria (LAB) based on mode of action as determined by changes in inhibitory activity to spontaneously-acquired bacteriocin resistance (Bac(R)). Wild type Listeria monocytogenes 39-2 was sensitive to five bacteriocins produced by 3 genera of LAB: pediocin PA-1 and pediocin Bac3 (Pediococcus), lacticin FS97 and lacticin FS56 (Lactococcus), and curvaticin FS47 (Lactobacillus). A spontaneous Bac(R) derivative of L. monocytogenes 39-2 obtained by selective recovery against lacticin FS56 provided complete resistance to the bacteriocin made by Lactococcus lactis FS56. The lacticin FS56-resistant strain of L. monocyotgenes 39-2 was also cross-resistant to curvaticin FS47 and pediocin PA-1, but not to lacticin FS97 or pediocin Bac3. The same pattern of cross-resistance was also observed with Bac(R) isolates obtained with L. monocytogenes Scott A-2. A spontaneous mutation that renders a strain cross-resistant to different bacteriocins indicates that they share a common mechanism of resistance due to similar modes of action of the bacteriocins. Spontaneous resistance was acquired to other bacteriocins (in aggregate) by following the same procedure against which the Bac(R) strain was still sensitive. In subsequent challenge assays, mixtures of bacteriocins of different modes of action provided greater inhibition than mixtures of bacteriocins of the same mode of action (as determined by our screening method). This study identifies a methodical approach to classify bacteriocins into functional groups based on mechanism of resistance (i.e., mode of action) that could be used for identifying the best mixture of bacteriocins for use as biopreservatives.

  20. Bacteriocins from lactic acid bacteria: production, purification, and food applications.

    Science.gov (United States)

    De Vuyst, Luc; Leroy, Frédéric

    2007-01-01

    In fermented foods, lactic acid bacteria (LAB) display numerous antimicrobial activities. This is mainly due to the production of organic acids, but also of other compounds, such as bacteriocins and antifungal peptides. Several bacteriocins with industrial potential have been purified and characterized. The kinetics of bacteriocin production by LAB in relation to process factors have been studied in detail through mathematical modeling and positive predictive microbiology. Application of bacteriocin-producing starter cultures in sourdough (to increase competitiveness), in fermented sausage (anti-listerial effect), and in cheese (anti-listerial and anti-clostridial effects), have been studied during in vitro laboratory fermentations as well as on pilot-scale level. The highly promising results of these studies underline the important role that functional, bacteriocinogenic LAB strains may play in the food industry as starter cultures, co-cultures, or bioprotective cultures, to improve food quality and safety. In addition, antimicrobial production by probiotic LAB might play a role during in vivo interactions occurring in the human gastrointestinal tract, hence contributing to gut health.

  1. BAGEL2 : mining for bacteriocins in genomic data

    NARCIS (Netherlands)

    de Jong, Anne; van Heel, Auke J.; Kok, Jan; Kuipers, Oscar P.

    2010-01-01

    Mining bacterial genomes for bacteriocins is a challenging task due to the substantial structure and sequence diversity, and generally small sizes, of these antimicrobial peptides. Major progress in the research of antimicrobial peptides and the ever-increasing quantities of genomic data, varying fr

  2. Bacteriocins of lactic acid bacteria : extending the family

    NARCIS (Netherlands)

    Alvarez-Sieiro, Patricia; Montalbán-López, Manuel; Mu, Dongdong; Kuipers, Oscar P

    2016-01-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are proteinaceo

  3. Different bacteriocin activities of Streptococcus mutans reflect distinct phylogenetic lineages

    DEFF Research Database (Denmark)

    Balakrishnan, M; Simmonds, RS; Kilian, Mogens;

    2002-01-01

    Bacteriocins produced by mutans streptococci are known as mutacins. In this study 16 broadly active mutacin-producing Streptococcus mutans strains from New Zealand, North America and Europe were classified into four groups (A-D) on the basis of differences in their activity in deferred antagonism...

  4. Production of antilisterial bacteriocins by staphylococci isolated from bovine milk

    Science.gov (United States)

    A collection of 111 staphylococcal isolates recovered from healthy cows in 41 dairy herds in Brazil was surveyed for the production of bacteriocins. The group included 94 coagulase positive and 17 coagulase negative strains of staphylococci. All cultures were grown in tryptic soy broth for 18 h at ...

  5. Antimycobacterial activity of bacteriocins and their complexes with liposomes

    Science.gov (United States)

    Bacteriocins (Bcn) are natural peptides that are secreted by taxonomically distinct bacteria which exert bactericidal activity against other bacterial species. Their capacity to inhibit growth of virulent Mycobacterium tuberculosis H37Rv was evaluated in this study. Five Bcn were purified from sel...

  6. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm.

    Science.gov (United States)

    Okuda, Ken-ichi; Zendo, Takeshi; Sugimoto, Shinya; Iwase, Tadayuki; Tajima, Akiko; Yamada, Satomi; Sonomoto, Kenji; Mizunoe, Yoshimitsu

    2013-11-01

    Control of biofilms formed by microbial pathogens is an important subject for medical researchers, since the development of biofilms on foreign-body surfaces often causes biofilm-associated infections in patients with indwelling medical devices. The present study examined the effects of different kinds of bacteriocins, which are ribosomally synthesized antimicrobial peptides produced by certain bacteria, on biofilms formed by a clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA). The activities and modes of action of three bacteriocins with different structures (nisin A, lacticin Q, and nukacin ISK-1) were evaluated. Vancomycin, a glycopeptide antibiotic used in the treatment of MRSA infections, showed bactericidal activity against planktonic cells but not against biofilm cells. Among the tested bacteriocins, nisin A showed the highest bactericidal activity against both planktonic cells and biofilm cells. Lacticin Q also showed bactericidal activity against both planktonic cells and biofilm cells, but its activity against biofilm cells was significantly lower than that of nisin A. Nukacin ISK-1 showed bacteriostatic activity against planktonic cells and did not show bactericidal activity against biofilm cells. Mode-of-action studies indicated that pore formation leading to ATP efflux is important for the bactericidal activity against biofilm cells. Our results suggest that bacteriocins that form stable pores on biofilm cells are highly potent for the treatment of MRSA biofilm infections.

  7. Development and stability of bacteriocin resistance 1 in Campylobacter spp

    Science.gov (United States)

    Aims: Several bacteriocins (BCNs) identified from chicken commensal bacteria dramatically reduced Campylobacter colonization in poultry and aredirected toward on farm control of this important food-borne human pathogen. BCN resistance in C. jejuni is very difficult to develop in vitro. In this study...

  8. Structure and uptake mechanism of bacteriocins targeting peptidoglycan renewal.

    Science.gov (United States)

    Zeth, Kornelius

    2012-12-01

    Bacteriocins are narrow-spectrum protein antibiotics released to kill related bacteria of the same niche. Uptake of bacteriocins depends critically on the presence of an uptake receptor in the outer membrane, a translocation pore and an energy-dependent activating system of the inner membrane. Most bacteriocins act on the inner membrane as pore-forming toxins or they target cytoplasmic DNA/RNA and ribosomal synthesis respectively. Only two bacteriocins are known to become activated in the periplasmic space and to inhibit the renewal process of the peptidoglycan structure. In Escherichia coli, the Cma (colicin M) phosphatase is activated in the periplasmic space by the FkpA chaperone and subsequently degrades the C55-PP precursor unit of the peptidoglycan. Pst (pesticin) from Yersinia pestis carries a lysozyme homology domain to degrade peptidoglycan. Import of Pst is only achieved if the N-terminal translocation domain can span the outer membrane and if extensive unfolding of the protein during membrane passage is permitted. There is considerable plasticity in the import pathway since a chimaera comprising the activity domain replaced by T4 lysozyme is also translocated and active in killing those bacteria carrying the FyuA receptor.

  9. Prevalence, development, and molecular mechanisms of bacteriocin resistance in Campylobacter.

    Science.gov (United States)

    Bacteriocins (BCNs) are antimicrobial peptides produced by lactic acid bacteria (LAB) with narrow or broad spectra of antimicrobial activity. Recently, several unique anti-Campylobacter BCNs have been identified from commensal LAB isolated from chicken intestines. These BCNs dramatically reduced C. ...

  10. Purification of bacteriocins using size-exclusion chromatography

    Directory of Open Access Journals (Sweden)

    Vivek K. Bajpai

    2016-06-01

    Full Text Available The bacteriocin purification involves following main steps. a. Extraction of cell-free-supernatant of bacteria. b. Ammonium sulfate precipitation. c. Dialysis. d. Diafiltration using PVP and e. Size-exclusion chromatography. However, depending on the nature of work, the compound could be further analyzed by reverse-phase HPLC, NMR, mass spectrometry and sequencing.

  11. The Circular Bacteriocins Gassericin A and Circularin A

    NARCIS (Netherlands)

    Kawai, Yasushi; Kemperman, Rober; Kok, Jan; Saito, Tadao

    2004-01-01

    Gassericin A, a bacteriocin produced by Lactobacillus gasseri LA39, shows antibacterial activity against a number of Gram-positive food-borne pathogenic bacteria. Circularin A produced by Clostridium beijerinckii ATCC25752 is active against C. tyrobutyricum, a known cheese-spoilage bacterium. Both b

  12. Characterization of putative class II bacteriocins identified from a non-bacteriocin-producing strain Lactobacillus casei ATCC 334.

    Science.gov (United States)

    Kuo, Yang-Cheng; Liu, Cheng-Feng; Lin, Jhao-Fen; Li, An-Chieh; Lo, Ta-Chun; Lin, Thy-Hou

    2013-01-01

    Several putative class II bacteriocin-like genes were identified in Lactobacillus casei ATCC 334, all of which might encode peptides with a double-glycine leader. Six peptides encoded by these genes were heterologously expressed in Escherichia coli and then partially purified in order to test their bacteriocin activity. The results revealed that the mature LSEI_2163 peptide was a class IId bacteriocin that exhibited antimicrobial activity against some lactobacilli and several Listeria species. Similarly, mature LSEI_2386 was a putative pheromone peptide that also had significant bacteriocin activity against several Listeria species. The activities of both peptides tolerated 121°C for 30 min but not treatment with proteinase K or trypsin. The two Cys residues located at positions 4 and 24 in the mature LSEI_2163 peptide were shown by mass spectrometry to form a disulfide bridge, which was required for optimal antibacterial activity. However, replacement of one or both Cys with Ser would cause significant reduction of the antibacterial activity, the reduction being greater when only one of the Cys residues (C4S) was replaced than when both (C4S/C24S) were replaced.

  13. Purification and Characterization of a Bacteriocin Produced by Lactobacillus lactis Isolated from Marine Environment

    Directory of Open Access Journals (Sweden)

    P. Manivasagan

    2010-03-01

    Full Text Available Bacteriocin producing Lactobacillus lactis strain isolated from marine environment, showed broadrange of antibacterial activity against some major food borne pathogens. Maximum bacteriocin production wasobserved at 30°C , pH 6.0 and 1.5% sodium chloride solution. In addition of enzymes, "-amylase, DNase,RNase and lipase were slightly positive effect bacteriocin production. Proteinase K and pepsin were stronglyinhibited bacteriocin production. Among detergents, Sodium dodecyl sulphate (SDS, Tween 80 and TritoneX-100 stimulated bacteriocin production and strongly inhibited by EDTA and urea. The bacteriocin has purifiedby ammonium sulphate precipitate and ion exchange (DEAE cellulose chromatography. Biochemically it waspure protein moiety and the molecular weight was 94 kDa. The study revealed the possibility of usingbacteriocin as a food preservative and the L. lactis strain as probiotic.

  14. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications.

    Science.gov (United States)

    Perez, Rodney H; Zendo, Takeshi; Sonomoto, Kenji

    2014-08-29

    Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed.

  15. The Two-Peptide (Class-IIb) Bacteriocins: Genetics, Biosynthesis, Structure, and Mode of Action

    Science.gov (United States)

    Nissen-Meyer, Jon; Oppegård, Camilla; Rogne, Per; Haugen, Helen Sophie; Kristiansen, Per Eugen

    The two-peptide (class-IIb) bacteriocins consist of two different peptides, both of which are required to obtain high antimicrobial activity. These bacteriocins kill target-cells by inducing membrane-leakage and they seem to display some specificity with respect to the molecules they transfer across membranes. The genes encoding the two peptides of two-peptide bacteriocins are next to each other on the same operon. In the same or a nearby operon are genes encoding (i) the immunity protein that protects the bacteriocin-producer from its own bacteriocin, (ii) a dedicated ABC-transporter that exports the bacteriocin from cells and cleaves off the N-terminal bacteriocin leader sequence, and (iii) an accessory protein whose exact function has not been fully clarified. Some two-peptide bacteriocins appear to be produced constitutively, whereas the production of other two-peptide bacteriocins is regulated through a three-component regulatory system that consists of a peptide pheromone, a membrane-associated histidine protein kinase, and response regulators. It has recently been proposed that the two peptides of (some) two-peptide bacteriocins may form a membrane-penetrating helix-helix structure involving helix-helix interacting GxxxG-motifs present in all currently characterized two-peptide bacteriocins. It has also been suggested that the helix-helix structure interacts with an integrated membrane (transport) protein, thus inducing a conformational change in the protein, which in turn causes membrane-leakage. This proposed mode-of-action is similar to that of the pediocin-like (class-IIa) bacteriocins and lactococcin A, which bind to a part of the mannose phosphotransferase permease that is embedded in the cell membrane, thereby altering the conformation of the ­permease in a manner that causes membrane-leakage and cell death.

  16. History, Current Knowledge, and Future Directions on Bacteriocin Research in Lactic Acid Bacteria

    Science.gov (United States)

    Nes, Ingolf F.

    All organisms, both eukaryotic organisms and bacteria, are able to produce ribosomally antimicrobial peptides. In bacteria, such compounds are referred to as bacteriocins. The history of bacteriocins goes back to the early 1920s. One has experienced many disappointments in the efforts how to put these compounds into practical use despite being one of the most promising groups of antimicrobial agents to fight bacterial pathogens. However, today, we see new possibilities how to take advantage of such peptides for the benefit of man and animals. Bacteriocin production has become an important property of probiotic bacteria, and targeted use of bacteriocins to fight certain pathogens may have a future.

  17. Bacteriocins from lactic acid bacteria and their applications in meat and meat products.

    Science.gov (United States)

    Woraprayote, Weerapong; Malila, Yuwares; Sorapukdee, Supaluk; Swetwiwathana, Adisorn; Benjakul, Soottawat; Visessanguan, Wonnop

    2016-10-01

    Meat and meat products have always been an important part of human diet, and contain valuable nutrients for growth and health. Nevertheless, they are perishable and susceptible to microbial contamination, leading to an increased health risk for consumers as well as to the economic loss in meat industry. The utilization of bacteriocins produced by lactic acid bacteria (LAB) as a natural preservative has received a considerable attention. Inoculation of bacteriocin-producing LAB cell as starter or protective cultures is suitable for fermented meats, whilst the direct addition of bacteriocin as food additive is more preferable when live cells of LAB could not produce bacteriocin in the real meat system. The incorporation of bacteriocins in packaging is another way to improve meat safety to avoid direct addition of bacteriocin to meat. Utilization of bacteriocins can effectively contribute to food safety, especially when integrated into hurdle concepts. In this review, LAB bacteriocins and their applications in meat and meat products are revisited. The molecular structure and characteristics of bacteriocins recently discovered, as well as exemplary properties are also discussed.

  18. Native and heterologous production of bacteriocins from gram-positive microorganisms.

    Science.gov (United States)

    Muñoz, Mabel; Jaramillo, Diana; Melendez, Adelina Del Pilar; J Alméciga-Diaz, Carlos; Sánchez, Oscar F

    2011-12-01

    In nature, microorganisms can present several mechanisms for setting intercommunication and defense. One of these mechanisms is related to the production of bacteriocins, which are peptides with antimicrobial activity. Bacteriocins can be found in Gram-positive and Gram-negative bacteria. Nevertheless, bacteriocins produced by Gram-positive bacteria are of particular interest due to the industrial use of several strains that belong to this group, especially lactic acid bacteria (LAB), which have the status of generally recognized as safe (GRAS) microorganisms. In this work, we will review recent tendencies in the field of invention and state of art related to bacteriocin production by Gram-positive microorganism. Hundred-eight patents related to Gram-positive bacteriocin producers have been disclosed since 1965, from which 57% are related bacteriocins derived from Lactococcus, Lactobacillus, Streptococcus, and Pediococcus strains. Surprisingly, patents regarding heterologous bacteriocins production were mainly presented just in the last decade. Although the major application of bacteriocins is concerned to food industry to control spoilage and foodborne bacteria, during the last years bacteriocin applications have been displacing to the diagnosis and treatment of cancer, and plant disease resistance and growth promotion.

  19. Improved adsorption-desorption extraction applied to the partial characterization of the antilisterial bacteriocin produced by Carnobacterium maltaromaticum C2

    OpenAIRE

    Tulini,F. L; E.C.P De Martinis

    2010-01-01

    Bacteriocins are ribosomally produced peptides useful for food biopreservation. An improved adsorption-desorption process is proposed for the partial purification of the bacteriocin produced by the fish isolate Carnobacterium maltaromaticum C2. Analyzis of extract by SDS-PAGE indicated this method may offer an alternative to improve the yield of purification of bacteriocins.

  20. Improved adsorption-desorption extraction applied to the partial characterization of the antilisterial bacteriocin produced by Carnobacterium maltaromaticum C2.

    Science.gov (United States)

    Tulini, F L; De Martinis, E C P

    2010-04-01

    Bacteriocins are ribosomally produced peptides useful for food biopreservation. An improved adsorption-desorption process is proposed for the partial purification of the bacteriocin produced by the fish isolate Carnobacterium maltaromaticum C2. Analyzis of extract by SDS-PAGE indicated this method may offer an alternative to improve the yield of purification of bacteriocins.

  1. Improved adsorption-desorption extraction applied to the partial characterization of the antilisterial bacteriocin produced by Carnobacterium maltaromaticum C2

    Directory of Open Access Journals (Sweden)

    F. L Tulini

    2010-06-01

    Full Text Available Bacteriocins are ribosomally produced peptides useful for food biopreservation. An improved adsorption-desorption process is proposed for the partial purification of the bacteriocin produced by the fish isolate Carnobacterium maltaromaticum C2. Analyzis of extract by SDS-PAGE indicated this method may offer an alternative to improve the yield of purification of bacteriocins.

  2. Food biopreservation: Promising strategies using bacteriocins, bacteriophages and endolysins

    OpenAIRE

    García Suárez, María Pilar; Rodríguez,Lorena; Rodríguez González, Ana; Martínez Fernández, Beatriz

    2010-01-01

    The interest in biopreservation of food has prompted the quest for new natural antimicrobial compounds from different origins. Bacteriocins have been widely recognized as natural food biopreservatives but lastest advances on bateriocin biology have opened new fields to explore. On the contrary, the use of bacteriophages and endolysins has only been considered in the last five years and recent developments have produced promising perspectives. This review provides an overview of the current an...

  3. Isolation and partial characterization of bacteriocins from Pediococcus species.

    Science.gov (United States)

    Jamuna, M; Jeevaratnam, K

    2004-09-01

    Lactic acid bacteria have received increased attention as a potential food preservative due to their strong antagonistic activity against many food-spoilage and pathogenic organisms. Three Pediococcus species, P. acidilactici NCIM 2292 , P. pentosaceous. NCIM 2296 and P. cervisiae NCIM 2171, were evaluated for bacteriocin production. Inhibitory substance were produced during the late growth phase and maximum production occurred at 37 degrees after 36-48 h of incubation. Bacteriocins partially purified from these species by cold-acetone precipitation at 0 degrees C and cell adsorption desorption techniques have a broad inhibitory spectrum against microorganisms, including gram-negative bacteria such as Escherichia coli and Pseudomonas. Proteolytic enzymes inactivated these peptides, but amylase and lipase did not show any effect. The bacteriocins were stable over a wide pH range (3-8) and apparently most active at pH 4.0-5.0. They were heat-stable (1 h at approximately 80 degrees C and autoclaving) at pH 5.0. No loss in activity was observed when stored under refrigeration (4-8 degrees C). Tris-Tricine SDS-PAGE revealed the molecular masses of these peptides to be between 3.5 and 5.0 kDa.

  4. Recent patents on bacteriocins: food and biomedical applications.

    Science.gov (United States)

    Benmechernene, Zineb; Fernandez-No, Inmaculada; Kihal, Mebrouk; Böhme, Karola; Calo-Mata, Pilar; Barros-Velazquez, Jorge

    2013-04-01

    Most types of bacteria produce bacteriocins, which are proteinaceous extracellular compounds that can inhibit the growth of other undesirable microorganisms. Bacteriocins are receiving increasing attention, due to their many applications, ranging from their initial application in strategies for food preservation to more recent proposed uses in biomedical strategies aimed at fighting certain bacterial infections. Thus, while nisin has a long history of use as a safe additive in certain food products for the purpose of food preservation, certain bacteriocin-producing lactic acid bacteria, which are generally recognised as safe microorganisms, or their extracellular extracts are receiving increased attention as protective cultures or antimicrobial extracts in minimally processed food products. More recently, a number of these bacteriocinproducing cultures have been proposed for use in other applications, such as in probiotics, for the inhibition of biofilms in the food industry, or even as coadjuvants of combined therapeutical strategies along with other antimicrobial agents in biomedical applications. This review aims to provide a brief overview of the most relevant recent patents in this field.

  5. Antagonistic activity expressed by Shigella sonnei: identification of a putative new bacteriocin.

    Science.gov (United States)

    Sousa, Mireille Ângela Bernardes; Farias, Luiz de Macêdo; Oliveira, Patrícia Luciana de; Moreira, Jaqueline Silvana; Apolônio, Ana Carolina Morais; Oliveira, Jamil Silvano; Santoro, Marcelo Matos; Mendes, Edilberto Nogueira; Magalhães, Paula Prazeres

    2013-09-01

    Bacteriocins are antibacterial, proteinaceous substances that mediate microbial dynamics. Bacteriocin production is a highly disseminated property among all major lineages of bacteria, including Shigella. In this paper, we addressed the purification and characterisation of a bacteriocin produced by a Shigella sonnei strain (SS9) isolated from a child with acute diarrhoea. The substance was purified through ammonium-sulphate precipitation and sequential steps of chromatography. The intracellular fraction obtained at 75% ammonium sulphate maintained activity following exposure to pH values from 1-11 and storage at -80ºC for more than two years and was inactivated by high temperatures and proteases. The molecular mass of the purified bacteriocin was determined by mass spectrometry to be 18.56 kDa. The N-terminal sequence of the bacteriocin did not match any other antibacterial proteins described. A putative new bacteriocin produced by S. sonnei has been detected. This bacteriocin may represent a newly described protein or a previously described protein with a newly detected function. Considering that SS9 expresses antagonism against other diarrhoeagenic bacteria, the bacteriocin may contribute to S. sonnei virulence and is potentially applicable to either preventing or controlling diarrhoeal disease.

  6. Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium.

    Science.gov (United States)

    Todorov, Svetoslav Dimitrov; Wachsman, Monica; Tomé, Elisabetta; Dousset, Xavier; Destro, Maria Teresa; Dicks, Leon Milner Theodore; Franco, Bernadette Dora Gombossy de Melo; Vaz-Velho, Manuella; Drider, Djamel

    2010-10-01

    The bacteriocin-producing strain Enterococcus faecium ST5Ha was isolated from smoked salmon and identified by biomolecular techniques. Ent. faecium ST5Ha produces a pediocin-like bacteriocin with activity against several lactic acid bacteria, Listeria spp. and some other human and food pathogens, and remarkably against HSV-1 virus. Bacteriocin ST5Ha was produced at high levels in MRS broth at 30 degrees C and 37 degrees C, reaching a maximum production of 1.0 x 10(9) AU/ml, checked against Listeria ivanovii ATCC19119 as target strain and surrogate of pathogenic strain Listeria monocytogenes. The molecular weight of bacteriocin ST5Ha was estimated to be 4.5 kDa according to tricine-SDS-PAGE data. Ent. faecium ST5Ha harbors a 1.044 kb chromosomal DNA fragment fitting in size to that of pediocin PA-1/AcH. In addition, the sequencing of bacteriocin ST5Ha gene indicated 99% of DNA homology to pediocin PA-1/AcH. The combined application of low levels (below MIC) of ciprofloxacin and bacteriocin ST5Ha resulted in a synergetic effect in the inhibition of target strain L. ivanovii ATCC19119. Bacteriocin ST5Ha displayed antiviral activity against HSV-1, an important human pathogen, with a selectivity index of 173. To the best of our knowledge, this is the first report on Ent. faecium as a potential producer of pediocin-like bacteriocin with antiviral activity.

  7. Antagonistic activity expressed by Shigella sonnei: identification of a putative new bacteriocin

    Directory of Open Access Journals (Sweden)

    Mireille Angela Bernardes Sousa

    2013-09-01

    Full Text Available Bacteriocins are antibacterial, proteinaceous substances that mediate microbial dynamics. Bacteriocin production is a highly disseminated property among all major lineages of bacteria, including Shigella. In this paper, we addressed the purification and characterisation of a bacteriocin produced by a Shigella sonnei strain (SS9 isolated from a child with acute diarrhoea. The substance was purified through ammonium-sulphate precipitation and sequential steps of chromatography. The intracellular fraction obtained at 75% ammonium sulphate maintained activity following exposure to pH values from 1-11 and storage at -80ºC for more than two years and was inactivated by high temperatures and proteases. The molecular mass of the purified bacteriocin was determined by mass spectrometry to be 18.56 kDa. The N-terminal sequence of the bacteriocin did not match any other antibacterial proteins described. A putative new bacteriocin produced by S. sonnei has been detected. This bacteriocin may represent a newly described protein or a previously described protein with a newly detected function. Considering that SS9 expresses antagonism against other diarrhoeagenic bacteria, the bacteriocin may contribute to S. sonnei virulence and is potentially applicable to either preventing or controlling diarrhoeal disease.

  8. Production, purification and characterization of bacteriocin from Lactobacillus murinus AU06 and its broad antibacterial spectrum

    Institute of Scientific and Technical Information of China (English)

    Sivaramasamy Elayaraja; Neelamegam Annamalai; Packiyam Mayavu; Thangavel Balasubramanian

    2014-01-01

    Objective: To study the production, purification and characterization of bacteriocin fromLactobacillus murinus against fish pathogens.Methods:AU06 isolated from marine sediments and its broad spectrum of inhibition bacteriocin. In addition, purified bacteriocin was tested for its antimicrobial activity against fish pathogens.Results:In the present study, the bacteriocin production was found to be higher at 35 °C, pH The selected strain was used in production, purification and characterized of 6.0 and was purified to 4.74 fold with 55. 38 U/mg of specific activity with the yield of 28.92%. The molecular weight of the purified bacteriocin was estimated as 21 kDa. The purified bacteriocin exhibited complete inactivation of antimicrobial activity when treated with proteinase K, pronase, chymotrypsin, trypsin, pepsin and papain. The purified bacteriocin exhibited broad inhibitory spectrum against both Gram positive and negative bacteria.Conclusions:It is concluded that the ability of bacteriocin in inhibiting a wide-range of pathogenic bacteria is of potential interest for food safety and may have future applications in food preservative.

  9. Incidence of Bacteriocins Produced by Food-Related Lactic Acid Bacteria Active towards Oral Pathogens

    Directory of Open Access Journals (Sweden)

    Konstantinos Papadimitriou

    2013-02-01

    Full Text Available In the present study we investigated the incidence of bacteriocins produced by 236 lactic acid bacteria (LAB food isolates against pathogenic or opportunistic pathogenic oral bacteria. This set of LAB contained several strains (≥17% producing bacteriocins active against food-related bacteria. Interestingly only Streptococcus macedonicus ACA-DC 198 was able to inhibit the growth of Streptococcus oralis, Streptococcus sanguinis and Streptococcus gordonii, while Lactobacillus fermentum ACA-DC 179 and Lactobacillus plantarun ACA-DC 269 produced bacteriocins solely against Streptococcus oralis. Thus, the percentage of strains that were found to produce bacteriocins against oral bacteria was ~1.3%. The rarity of bacteriocins active against oral LAB pathogens produced by food-related LAB was unexpected given their close phylogenetic relationship. Nevertheless, when tested in inhibition assays, the potency of the bacteriocin(s of S. macedonicus ACA-DC 198 against the three oral streptococci was high. Fourier-transform infrared spectroscopy combined with principal component analysis revealed that exposure of the target cells to the antimicrobial compounds caused major alterations of key cellular constituents. Our findings indicate that bacteriocins produced by food-related LAB against oral LAB may be rare, but deserve further investigation since, when discovered, they can be effective antimicrobials.

  10. Production of multiple bacteriocins from a single locus by gastrointestinal strains of Lactobacillus salivarius.

    Science.gov (United States)

    O'Shea, Eileen F; O'Connor, Paula M; Raftis, Emma J; O'Toole, Paul W; Stanton, Catherine; Cotter, Paul D; Ross, R Paul; Hill, Colin

    2011-12-01

    Bacteriocins produced by Lactobacillus salivarius isolates derived from a gastrointestinal origin have previously demonstrated efficacy for in vivo protection against Listeria monocytogenes infection. In this study, comparative genomic analysis was employed to investigate the intraspecies diversity of seven L. salivarius isolates of human and porcine intestinal origin, based on the genome of the well-characterized bacteriocin-producing strain L. salivarius UCC118. This revealed a highly conserved megaplasmid-borne gene cluster in these strains involved in the regulation and secretion of two-component class IIb bacteriocins. However, considerable intraspecific variation was observed in the structural genes encoding the bacteriocin peptides. They ranged from close relatives of abp118, such as salivaricin P, which differs by 2 amino acids, to completely novel bacteriocins, such as salivaricin T, which is characterized in this study. Salivaricin T inhibits closely related lactobacilli and bears little homology to previously characterized salivaricins. Interestingly, the two peptides responsible for salivaricin T activity, SalTα and SalTβ, share considerable identity with the component peptides of thermophilin 13, a bacteriocin produced by Streptococcus thermophilus. Furthermore, the salivaricin locus of strain DPC6488 also encodes an additional novel one-component class IId anti-listerial bacteriocin, salivaricin L. These findings suggest a high level of redundancy in the bacteriocins that can be produced by intestinal L. salivarius isolates using the same enzymatic production and export machinery. Such diversity may contribute to their ability to dominate and compete within the complex microbiota of the mammalian gut.

  11. Method for Rapid Purification of Class IIa Bacteriocins and Comparison of Their Activities

    OpenAIRE

    Guyonnet, D.; Fremaux, C; Cenatiempo, Y; Berjeaud, J. M.

    2000-01-01

    A three-step method was developed for the purification of mesentericin Y105 (60% yield) from the culture supernatant of Leuconostoc mesenteroides Y105. The same procedure was successfully applied to the purification of five other anti-Listeria bacteriocins identified by mass spectrometry. Specific activities of the purified bacteriocins were compared.

  12. Phage Tail-Like (High-Molecular-Weight) Bacteriocins of Budvicia aquatica and Pragia fontium (Enterobacteriaceae)

    OpenAIRE

    Šmarda, Jan; Benada, Oldřich

    2005-01-01

    Electron microscopic analysis of contractile phage tail-like bacteriocins of three Pragia fontium strains and one Budvicia aquatica strain was performed. Fonticin and aquaticin are remarkably heat sensitive but trypsin resistant. Simultaneous production of contractile and flexible phage tail-like bacteriocins in the P. fontium 64613 strain is shown for the first time.

  13. Identification, purification and characterization of laterosporulin, a novel bacteriocin produced by Brevibacillus sp. strain GI-9.

    Directory of Open Access Journals (Sweden)

    Pradip Kumar Singh

    Full Text Available BACKGROUND: Bacteriocins are antimicrobial peptides that are produced by bacteria as a defense mechanism in complex environments. Identification and characterization of novel bacteriocins in novel strains of bacteria is one of the important fields in bacteriology. METHODOLOGY/FINDINGS: The strain GI-9 was identified as Brevibacillus sp. by 16 S rRNA gene sequence analysis. The bacteriocin produced by strain GI-9, namely, laterosporulin was purified from supernatant of the culture grown under optimal conditions using hydrophobic interaction chromatography and reverse-phase HPLC. The bacteriocin was active against a wide range of Gram-positive and Gram-negative bacteria. MALDI-TOF experiments determined the precise molecular mass of the peptide to be of 5.6 kDa and N-terminal sequencing of the thermo-stable peptide revealed low similarity with existing antimicrobial peptides. The putative open reading frame (ORF encoding laterosporulin and its surrounding genomic region was fished out from the draft genome sequence of GI-9. Sequence analysis of the putative bacteriocin gene did not show significant similarity to any reported bacteriocin producing genes in database. CONCLUSIONS: We have identified a bacteriocin producing strain GI-9, belonging to the genus Brevibacillus sp. Biochemical and genomic characterization of laterosporulin suggests it as a novel bacteriocin with broad spectrum antibacterial activity.

  14. Examination of Lactic Acid Bacteria to Secretion of Bacteriocins

    Directory of Open Access Journals (Sweden)

    Maira Urazova

    2014-01-01

    Full Text Available Introduction: Bacteriocins produced by lactic acid bacteria (LAB have the potential to cover a very broad field of applications, including the food industry and the medical sector. In the food industry, bacteriocinogenic LAB strains can be used as starter cultures, co-cultures, and bioprotective cultures, which would be used to improve food quality and safety. In the medical sector, bacteriocins of probiotic LAB might play a role in interactions, which take place in human gastrointestinal tract, and contribute to gut health. The aim of this study was the examine the effect of LAB antimicrobial activity. Methods: LAB were isolated from different commercial and home made products, such as kazy and sour cream. To screen for bacteriocin producing LAB, we used an agar diffusion bioassay, described in a previous study by Dr. Yang, with three modifications in cell-free supernatant (CFS. First we had a clear supernatant, second we adjusted the CFS to pH 6.0 to eliminate acids antimicrobial effects, and third the CFS pH 6.0 was treated with catalase to exclude the action of H2O2 and confirm action of bacteriocin-like substances. Pathogenic S.marcescens, E. coli, S.aureus cultures were used as indicators. Results: Screening of 95 strains of LAB through deferred antagonism to six indicator cultures showed that all of the selected strains had a high value of antibacterial activity. However, CFS of only 50 strains retained their antimicrobial activity, and 10 of them lost this activity in the second modification of CFS with pH 6.0 to test culture S.marcescens, which confirmed the acidic nature of antimicrobial activity of CFS. Lb.rhamnosus (P-1, Lb.fermentum (N-6, and Lc.lactis (7M lost antibacterial activity in the presence of the catalase. All modifications of CFS of three strains: Lb.pentosus (16al, Lb.pentosus (P-2, and Pediococcusacidilactici (8 retained inhibitory activity to E.coli and S. aureus. Supernatants of only Lactococcusgarvieae (10a and

  15. Structure of the atypical bacteriocin pectocin M2 implies a novel mechanism of protein uptake.

    Science.gov (United States)

    Grinter, Rhys; Josts, Inokentijs; Zeth, Kornelius; Roszak, Aleksander W; McCaughey, Laura C; Cogdell, Richard J; Milner, Joel J; Kelly, Sharon M; Byron, Olwyn; Walker, Daniel

    2014-07-01

    The colicin-like bacteriocins are potent protein antibiotics that have evolved to efficiently cross the outer membrane of Gram-negative bacteria by parasitizing nutrient uptake systems. We have structurally characterized the colicin M-like bacteriocin, pectocin M2, which is active against strains of Pectobacterium spp. This unusual bacteriocin lacks the intrinsically unstructured translocation domain that usually mediates translocation of these bacteriocins across the outer membrane, containing only a single globular ferredoxin domain connected to its cytotoxic domain by a flexible α-helix, which allows it to adopt two distinct conformations in solution. The ferredoxin domain of pectocin M2 is homologous to plant ferredoxins and allows pectocin M2 to parasitize a system utilized by Pectobacterium to obtain iron during infection of plants. Furthermore, we identify a novel ferredoxin-containing bacteriocin pectocin P, which possesses a cytotoxic domain homologous to lysozyme, illustrating that the ferredoxin domain acts as a generic delivery module for cytotoxic domains in Pectobacterium.

  16. Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria.

    Science.gov (United States)

    Kjos, Morten; Borrero, Juan; Opsata, Mona; Birri, Dagim J; Holo, Helge; Cintas, Luis M; Snipen, Lars; Hernández, Pablo E; Nes, Ingolf F; Diep, Dzung B

    2011-12-01

    Due to their very potent antimicrobial activity against diverse food-spoiling bacteria and pathogens and their favourable biochemical properties, peptide bacteriocins from Gram-positive bacteria have long been considered promising for applications in food preservation or medical treatment. To take advantage of bacteriocins in different applications, it is crucial to have detailed knowledge on the molecular mechanisms by which these peptides recognize and kill target cells, how producer cells protect themselves from their own bacteriocin (self-immunity) and how target cells may develop resistance. In this review we discuss some important recent progress in these areas for the non-lantibiotic (class II) bacteriocins. We also discuss some examples of how the current wealth of genome sequences provides an invaluable source in the search for novel class II bacteriocins.

  17. Bacteriocins and their position in the next wave of conventional antibiotics.

    Science.gov (United States)

    Cavera, Veronica L; Arthur, Timothy D; Kashtanov, Dimitri; Chikindas, Michael L

    2015-11-01

    Micro-organisms are capable of producing a range of defence mechanisms, including antibiotics, bacteriocins, lytic agents, protein exotoxins, etc. Such mechanisms have been identified in nearly 99% of studied bacteria. The multiplicity and diversity of bacteriocins and the resultant effects of their interactions with targeted bacteria on microbial ecology has been thoroughly studied and remains an area of investigation attracting many researchers. However, the incorporation of bacteriocins into drug delivery systems used in conjunction with, or as potential alternatives to, conventional antibiotics is only a recent, although rapidly expanding, field. The extensive array of bacteriocins positions them as one of the most promising options in the next wave of antibiotics. The goal of this review was to explore bacteriocins as novel antimicrobials, alone and in combination with established antibiotics, and thus position them as a potential tool for addressing the current antibiotic crisis.

  18. Detection, partial purification and characterization of bacteriocin produced by Lactobacillus brevis FPTLB3 isolated from freshwater fish: Bacteriocin from Lb. brevis FPTLB3.

    Science.gov (United States)

    Banerjee, Shiba Prosad; Dora, Krushna Chandra; Chowdhury, Supratim

    2013-02-01

    Lactobacillus brevis FPTLB3 was isolated from freshwater fish, capable of producing bacteriocin that had broad spectrum of inhibition (3200 AU/ml) against Escherichia coli MTCC 1563, Enterococcus faecalis MTCC 2729, Lactobacillus casei MTCC 1423, Lactobacillus sakei ATCC 15521 and Staphylococcus aureus ATCC 25923. The antimicrobial activity of crude supernatant fluid was stable after heating at 121 °C for 60 min and declined thereafter. Stability of antimicrobial activity was observed at pH range of 2.0 to 8.0. Its active principle was proteinaceous in nature since the bacteriocin was inactivated by proteolytic enzymes, but not by other non-proteolytic enzymes. Mitomycin C and UV light did not affect the activity of the bacteriocin, while chloroform extraction completely destroyed their activity. Exposure to surfactant resulted in an increase in titre, except Nonidet P-40, which led to total loss of activity. No bacteriocin adsorption was detected at pH 1 to 2, whereas 100% bacteriocin adsorption was found at pH 6.5. Based on Tricine SDS-PAGE the estimated molecular mass of bacteriocin was 54 kDa. No plasmid was found to present in the isolate.

  19. Effects of the bacteriocin PsVP-10 produced by Pseudomonas sp. on sensitive bacterial strains.

    Science.gov (United States)

    Padilla, Carlos; Lobos, Olga; Brevis, Pedro; Abaca, Paulina; Hubert, Elizabeth

    2002-01-01

    The bacteriocin PsVP-10 is a 2.6 Kda peptide which was isolated and purified from Pseudomonas sp. This bacteriocin possesses lethal activity over Enterococcus faecalis, Salmonella typhimurium and Shigella flexneri. The experimental assays showed that the bacteriocin is able to be adsorbed by all cells of these bacterial species and also by their isolated cell walls. It was observed that the resistant mutants and their respective cell walls are unable to adsorb the bacteriocin. Assays performed with spheroplasts obtained from sensitive bacterial species and their resistant mutants show a rapid lethal effect of the bacteriocin PsVP-10. This results indicated furthermore, it is also shown that the optimal pH and temperature for the adsorption were 7.2 and 37 degrees C, respectively. The study carried out with organic solvents like methanol, ethanol, isopropanol and the detergents sodium dodecyl sulfate and triton X-100 showed a moderate inhibition of the bacteriocin lethal action for the Gram negative cells. The enzymes lysozime, protease XIV and trypsine type III-S did not present any effect over the adsorption capacity of the bacteriocin with any of the bacterial species studied.

  20. Bacteriocin activity against various pathogens produced by Pediococcus pentosaceus VJ13 isolated from Idly batter.

    Science.gov (United States)

    Vidhyasagar, Venkatasubramanian; Jeevaratnam, Kadirvelu

    2013-11-01

    Bacteriocins, an antimicrobial peptide, is known to have wide spectrum antimicrobial activity against various pathogens. Because they are easily digested in the intestine, they are considered as safe and are widely used as food preservatives. Hence their purification and characterization have attracted considerable attraction, especially for those having activity against human pathogens. In this study, the bacteriocin produced by Pediococcus pentosaceus VJ13 was precipitated with cold acetone and purified by gel permeation chromatography and hydrophobic interaction chromatography. The bacteriocin exhibited antimicrobial activity against various pathogens, like Mycobacterium smegmatis, Klebsiella pneumonia, Clostridium perfringens and Staphylococcus epidermidis. The activity of bacteriocin was lost completely after treatment with protease, which revealed its proteinaceous nature. The bacteriocin was stable up to 100°C and exhibited antilisterial property which is a characteristic feature of class IIa bacteriocins. It was active within the pH range of 2-8 and stable against various chemicals and denaturants. Tricine SDS-PAGE revealed its molecular weight to be 4.0 kDa, where the corresponding activity against Listeria monocytogenes was also noted. Treatment of L. monocytogenes with bacteriocin decreased the viable cell count, and scanning electron microscope analysis revealed membrane pore formation that resulted in the release of intracellular content, suggesting its bactericidal effect.

  1. Lactococcus lactis LMG2081 Produces Two Bacteriocins, a Nonlantibiotic and a Novel Lantibiotic.

    Science.gov (United States)

    Mirkovic, Nemanja; Polovic, Natalija; Vukotic, Goran; Jovcic, Branko; Miljkovic, Marija; Radulovic, Zorica; Diep, Dzung B; Kojic, Milan

    2016-04-01

    Bacteriocin producers normally possess dedicated immunity systems to protect themselves from their own bacteriocins.Lactococcus lactis strains LMG2081 and BGBM50 are known as lactococcin G producers. However, BGBM50 was sensitive to LMG2081, which indicated that LMG2081 might produce additional bacteriocins that are not present in BGBM50. Therefore, whole-genome sequencing of the two strains was performed, and a lantibiotic operon (called lctLMG) was identified in LMG2081 but not in BGBM50. The lctLMG operon contains six open reading frames; the first three genes,lmgA ,lmgM, and lmgT, are involved in the biosynthesis and export of bacteriocin, while the other three genes,lmgF,lmgE, and lmgG, are involved in lantibiotic immunity. Mutational analysis confirmed that the lctLMG operon is responsible for the additional antimicrobial activity. Specifically, site-directed mutation within this operon rendered LMG2081 inactive toward BGBM50. Subsequent purification and electrospray ionization-time of flight mass spectrometric analysis confirmed that the lantibiotic bacteriocin called lacticin LMG is exported as a 25-amino-acid peptide. Lacticin LMG is highly similar to the lacticin 481 group. It is interesting that a bacteriocin producer produces two different classes of bacteriocins, whose operons are located in the chromosome and a plasmid.

  2. Characterization of some bacteriocins produced by lactic acid bacteria isolated from fermented foods.

    Science.gov (United States)

    Grosu-Tudor, Silvia-Simona; Stancu, Mihaela-Marilena; Pelinescu, Diana; Zamfir, Medana

    2014-09-01

    Lactic acid bacteria (LAB) isolated from different sources (dairy products, fruits, fresh and fermented vegetables, fermented cereals) were screened for antimicrobial activity against other bacteria, including potential pathogens and food spoiling bacteria. Six strains have been shown to produce bacteriocins: Lactococcus lactis 19.3, Lactobacillus plantarum 26.1, Enterococcus durans 41.2, isolated from dairy products and Lactobacillus amylolyticus P40 and P50, and Lactobacillus oris P49, isolated from bors. Among the six bacteriocins, there were both heat stable, low molecular mass polypeptides, with a broad inhibitory spectrum, probably belonging to class II bacteriocins, and heat labile, high molecular mass proteins, with a very narrow inhibitory spectrum, most probably belonging to class III bacteriocins. A synergistic effect of some bacteriocins mixtures was observed. We can conclude that fermented foods are still important sources of new functional LAB. Among the six characterized bacteriocins, there might be some novel compounds with interesting features. Moreover, the bacteriocin-producing strains isolated in our study may find applications as protective cultures.

  3. Novel Immunity Proteins Associated with Colicin M-like Bacteriocins Exhibit Promiscuous Protection in Pseudomonas

    Science.gov (United States)

    Ghequire, Maarten G. K.; Kemland, Lieselore; De Mot, René

    2017-01-01

    Bacteriocins related to colicin M, acting via cleavage of the cell wall precursor lipid II, have been characterized in γ- and β-proteobacteria. Depending on the species, immunity is provided by either an inner membrane-anchored periplasmic protein or by an integral membrane protein. In Pseudomonas however, the immunity partner of colicin M-like bacteriocins remains unknown. Based on an in silico analysis in pseudomonad genomes, we here identify a gene encoding a putative immunity partner that represents a novel type of integral membrane protein (PmiA, Pseudomonas colicin M-like immunity type A). By heterologous expression of pmiA genes in susceptible strains, we show that immunity to colicin M-like bacteriocins is indeed provided by the cognate PmiA. Sequence homology among PmiA proteins is essentially absent, except for a short motif with a conserved periplasm-exposed aspartate residue. However, PmiA's protective function is not abolished by changing this acidic residue to the uncharged alanine. Immunity by PmiAs appears promiscuous to the extent that PmiA homologs from a clade sharing bacteriocin linked to the original PmiA. This study shows that multiple immunity factors have evolved independently to silence lipid II-targeting enzymatic bacteriocins. Their relaxed bacteriocin immunization capacity contrasts to the strict specificity of immunity proteins shielding the enzymatic domain of nuclease bacteriocins. The nature of associated immune functions needs consideration when using such natural protein antibiotics or designing novel variants. PMID:28194143

  4. Nisin and class IIa bacteriocin resistance among Listeria and other foodborne pathogens and spoilage bacteria.

    Science.gov (United States)

    Kaur, Gurpreet; Malik, Ravinder Kumar; Mishra, Santosh Kumar; Singh, Tejinder Pal; Bhardwaj, Arun; Singroha, Garima; Vij, Shilpa; Kumar, Naresh

    2011-06-01

    Food safety has been an important issue globally due to increasing foodborne diseases and change in food habits. To inactivate foodborne pathogens, various novel technologies such as biopreservation systems have been studied. Bacteriocins are ribosomally synthesized peptides or proteins with antimicrobial activity produced by different groups of bacteria, but the bacteriocins produced by many lactic acid bacteria offer potential applications in food preservation. The use of bacteriocins in the food industry can help reduce the addition of chemical preservatives as well as the intensity of heat treatments, resulting in foods that are more naturally preserved. However, the development of highly tolerant and/or resistant strains may decrease the efficiency of bacteriocins as biopreservatives. Several mechanisms of bacteriocin resistance development have been proposed among various foodborne pathogens. The acquiring of resistance to bacteriocins can significantly affect physiological activity profile of bacteria, alter cell-envelope lipid composition, and also modify the antibiotic susceptibility/resistance profile of bacteria. This article presents a brief review on the scientific research about the various possible mechanisms involved in the development of resistance to nisin and Class IIa bacteriocins among the foodborne pathogens.

  5. Bacteriocins - exploring alternatives to antibiotics in mastitis treatment.

    Science.gov (United States)

    Pieterse, Reneé; Todorov, Svetoslav D

    2010-07-01

    Mastitis is considered to be the most costly disease affecting the dairy industry. Management strategies involve the extensive use of antibiotics to treat and prevent this disease. Prophylactic dosages of antibiotics used in mastitis control programmes could select for strains with resistance to antibiotics. In addition, a strong drive towards reducing antibiotic residues in animal food products has lead to research in finding alternative antimicrobial agents. In this review we have focus on the pathogenesis of the mastitis in dairy cows, existing antibiotic treatments and possible alternative for application of bacteriocins from lactic acid bacteria in the treatment and prevention of this disease.

  6. THE IMPORTANCE OF BACTERIOCINS IN MEAT AND MEAT PRODUCTS

    Directory of Open Access Journals (Sweden)

    Meltem SERDAROĞLU

    2000-03-01

    Full Text Available There is an increasing consumer demand for food products which are free of chemical additives, reduced in salt and processed as little as possible. These minimally processed foods require special application to assure their microbiological safety. The use of microorganisms and enzymes for food preservatives is called biopreservation. The most important group of microorganisms with antimicrobial effect used in the production of foods is the lactic acid bacteria. In meats although lactic acid bacteria constitue apart of the initial microflora, they become dominant during the processing of meats. In this research bacteriocins of lactic acid bacteria and their usage in meat and meat products for biopreservation are discussed.

  7. Bacteriocins: exploring alternatives to antibiotics in mastitis treatment

    Directory of Open Access Journals (Sweden)

    Reneé Pieterse

    2010-10-01

    Full Text Available Mastitis is considered to be the most costly disease affecting the dairy industry. Management strategies involve the extensive use of antibiotics to treat and prevent this disease. Prophylactic dosages of antibiotics used in mastitis control programmes could select for strains with resistance to antibiotics. In addition, a strong drive towards reducing antibiotic residues in animal food products has lead to research in finding alternative antimicrobial agents. In this review we have focus on the pathogenesis of the mastitis in dairy cows, existing antibiotic treatments and possible alternative for application of bacteriocins from lactic acid bacteria in the treatment and prevention of this disease.

  8. Isolation of Lactobacillus salivarius from Children and Purification of Bacteriocin to Inhibition Cancer Cell in Vitro

    Directory of Open Access Journals (Sweden)

    Waleed K. M. Al-Tememy

    2011-01-01

    Full Text Available Bacteria being used to make anticancer agents could provide an extra source of lead compounds for the pharmaceutical industry.  Bacterium Lactobacillus salivarius produce compounds that selectively inhibit growth of human cancer cells Lactobacillus salivarius naturally produces a compound called Bacteriocins.  Bacteriocins are bacterial proteins produced to prevent the growth of competing microorganisms in a particular biological niche and we can use it as antineoplastic. The aim of this study was to isolate bacteriocin produced by lactic acid bacteria. A preparation of bacteriocin from a strain Lactobacillus salivarius has long been shown to have antineoplastic activity against a variety of human tumor and animal tumor cell lines in vitro. A total of 60 LAB  were isolated from children stool 45 isolate showed a clear antimicrobial activity against indicator strain Streptococcus aureus and by used sodium phosphate buffer (pH8 from an 80% ammonium sulfate precipitate. The inhibition  activity was determent by well diffusion assay method technique, Bacteriocin purification processes were carried out by using ion-exchange (Trisacryl SP and gel filtration chromatography (Sephacryl – S300. The apparent molecular mass of partially purified bacteriocin was 15. 848 kDa,  Cell Culture was maintained in RPMI 1640 medium supplemented with 10% (vol/vol fetal calf serum,  Cytotoxicity of bacteriocin was assessed on human cell line (RD and animal cell line (MDCK cell viability after incubation for 48 h in medium containing 500AU/ml (1.15 mg/ml. Both cell types used in this study were sensitive to bacteriocin and the bacteriocin appeared to inhibit proliferation of tumor cell line. The animal cell line was more sensitivity than human cell line.

  9. Bacteriocin-Producing Lactic Acid Bacteria Isolated from Traditional Fermented Food

    Science.gov (United States)

    Kormin, Salasiah; Rusul, Gulam; Radu, Son; Ling, Foo Hooi

    2001-01-01

    Lactic Acid Bacteria (LAB) isolated from several traditional fermented foods such as “tempeh”, “tempoyak” and “tapai” were screened for the production of bacteriocin. One strain isolated from “tempeh” gives an inhibitory activity against several LAB. The strain was later identified as Lactobacillus plantarum BS2. Study shows that the inhibitory activity was not caused by hydrogen peroxide, organic acids or bacteriophage. The bacteriocin production was maximum after 10 hours of incubation with an activity of 200 AU/ml. The bacteriocin was found to be sensitive towards trypsin, α-chymotrypsin, β-chymotrypsin, α-amylase and lysozyme. PMID:22973159

  10. Lactobacillus farciminis MD, a newer strain with potential for bacteriocin and antibiotic assay.

    Science.gov (United States)

    Halami, P M; Chandrashekar, A; Nand, K

    2000-03-01

    A native isolate Lactobacillus farciminis MD isolated from fermenting mushroom exhibited a high degree of sensitivity to the majority of the bacteriocins produced by strains of lactobacilli, leuconostoc and pediococci. Also, the efficacy of Lact. farciminis MD as a sensitive strain for antibiotic assay was established against different antibiotics including ampicillin, cefazoline, chloramphenicol and nitrofurantoin at concentrations of 30 microg each, showing an inhibition zone of 30 mm diameter. The high degree of sensitivity towards bacteriocins and antibiotics provide potential for the exploitation of Lact. farciminis MD in establishing very well-defined bacteriocin producers.

  11. An evaluation and partial characterization of a bacteriocin produced by Lactococcus lactis subsp lactis ST1 isolated from goat milk

    Directory of Open Access Journals (Sweden)

    Parinaz Taheri

    2012-12-01

    Full Text Available A bacteriocin-like inhibitory substance producing Lactococcus lactis subsp lactis strain, ST1, isolated from goat milk of Iranian origin and with broad spectrum of activity and desirable technical properties was used for evaluating some futures of bacteriocin inhibitory activity. Cell growth and bacteriocin production studies were carried out in MRS medium incubated statically under uncontrolled pH condition. The antibacterial activity presented a primary metabolite pattern and showed a rapid decrease at the stationary phase. Microaerobiosis and capnophily growth conditions resulted in higher bacteriocin production while aerobiosis showed negative effect on both cell growth and bacteriocin production. Bacteriocin production, on the other hand, was favored in MRS broth (pH; 6.5 inoculated with 0.1 ml l-1 fresh culture when incubation was carried out at 30 °C. This indicated that the conditions resulted in higher levels of growth were frequently favoring bacteriocin production by ST1 as well. Decrease in activity, at the stationary growth phase, was much pronounced in favored growth condition. Nutrient depletion, deferent effect of low pH on bacteriocin production and/or protein degradation seemed more responsible for this phenomenon. The study also provided further data on new method for bacteriocin release from the cell wall of producer. It was clearly shown that both heating and ultrasound shock for 5 min at pH 2 could increase bacteriocin activity significantly. The release was more pronounced in the presence of 0.5% Tween80.

  12. In vitro Characterization of Bacteriocin Produced by Lactic Acid Bacteria Isolated from Nem Chua, a Traditional Vietnamese Fermented Pork.

    Science.gov (United States)

    Pilasombut, Komkhae; Rumjuankiat, Kittaporn; Ngamyeesoon, Nualphan; Duy, Le Nguyen Doan

    2015-01-01

    The aim of this study was to screen and In vitro characterize the properties of bacteriocin produced by lactic acid bacteria isolated from Vietnamese fermented pork (Nem chua). One hundred and fifty LAB were isolated from ten samples of Nem chua and screened for bacteriocin-producing lactic acid bacteria. Antimicrobial activity of bacteriocin was carried out by spot on lawn method against both gram positive and gram negative bacteria. One isolate, assigned as KL-1, produced bacteriocin and showed inhibitory activity against Lactobacillus sakei, Leuconostoc mesenteroides and Enterococcus faecalis. To characterize the bacteriocin-producing strain, optimum temperature, incubation period for maximum bacteriocin production and identification of bacteriocin-producing strain were determined. It was found that the optimum cultivation temperature of the strain to produce the maximum bacteriocin activity (12,800 AU/mL) was obtained at 30℃. Meanwhile, bacteriocin production at 6,400 AU/mL was found when culturing the strain at 37℃ and 42℃. The isolate KL-1 was identified as L. plantarum. Antimicrobial activity of cell-free supernatant was completely inhibited by proteolytic enzyme of trypsin, alpha-chymotrypsin and proteinase K. Bacteriocin activity was stable at high temperature up to 100℃ for 10 min and at 4℃ storage for 2 d. However, the longer heating at 100℃ and 4℃ storage, its activity was reduced.

  13. Enterococcus faecium RZS C5, an interesting bacteriocin producer to be used as a co-culture in food fermentation.

    Science.gov (United States)

    Leroy, F; Foulquié Moreno, M R; De Vuyst, L

    2003-12-01

    Enterocins, bacteriocins produced by enterococci, are gaining interest because of their industrial potential. Due to its bacteriocin production, Enterococcus faecium RZS C5, a natural cheese isolate, has a strong activity towards Listeria monocytogenes. For this reason, the strain may be applicable as a bacteriocin-producing co-culture in food fermentation in order to reduce the risk on Listeria outgrowth. The strain displays remarkable bacteriocin production kinetics. Whereas most lactic acid bacteria produce bacteriocin in a growth-associated way until the beginning of the stationary phase, bacteriocin production by E. faecium RZS C5 in MRS broth at controlled pH values below 7.5 is characterised by a boost of bacteriocin activity levels in the very early growth phase. In addition, bacteriocin production kinetics are closely linked to the environmental and cultural conditions. However, no straightforward statement about the effect of environmental stress on bacteriocin production can be made since the effect is dependent on the type of stress applied. Kinetic experiments in milk and on pilot scale, applying Cheddar cheese-making conditions, have indicated that the strain may be effective as a bacteriocin-producing co-culture. Further research is needed to evaluate the use of E. faecium RZS C5 as a co-culture for the production of fermented sausage.

  14. Enterococcus faecium isolated from Lombo, a Portuguese traditional meat product: characterisation of antibacterial compounds and factors affecting bacteriocin production.

    Science.gov (United States)

    Todorov, S D; Favaro, L; Gibbs, P; Vaz-Velho, M

    2012-12-01

    Strain ST211CH, identified as a strain of Enterococcus faecium, isolated from Lombo produced a bacteriocin that inhibited the growth of Enterococcus spp., Listeria spp., Klebsiella spp., Lactobacillus spp., Pseudomonas spp., Staphylococcus spp. and Streptococcus spp. The mode of action of the bacteriocin named as bacteriocin ST211Ch was bactericidal against Enterococcus faecalis ATCC19443. As determined by Tricine-SDS-PAGE, the approximate molecular mass of the bacteriocin was 8.0 kDa. Loss in antimicrobial activity was recorded after treatment with proteolytic enzymes. Maximum activity of bacteriocin ST211Ch was measured in broth cultures of E. faecium strain ST211Ch after 24 h; thereafter, the activity was reduced. Bacteriocin ST211Ch remained active after exposure to various temperatures and pHs, as well as to Triton X-100, Tween-80, Tween-20, sodium dodecyl sulfate, NaCl, urea and EDTA. Effect of media components on production of bacteriocin ST211Ch was also studied. On the basis of PCR reactions targeting different bacteriocin genes, i.e. enterocins, curvacins and sakacins, no evidences for the presence of these genes in the total DNA of E. faecium strain ST211Ch was obtained. The bacterium most probably produced a bacteriocin different from those mentioned above. Based on the antimicrobial spectrum, stability and mode of action of bacteriocin ST211CH, E. faecium strain ST211Ch might be considered as a potential candidate with beneficial properties for use in biopreservation to control food spoilage bacteria.

  15. Virulence factors and bacteriocins in faecal enterococci of wild boars.

    Science.gov (United States)

    Poeta, Patricia; Igrejas, Gilberto; Costa, Daniela; Sargo, Roberto; Rodrigues, Jorge; Torres, Carmen

    2008-10-01

    The production of antimicrobial, haemolytic and gelatinase activities was tested in 67 enterococci (39 E. faecium, 24 E. hirae, 2 E. faecalis, and 2 Enterococcus spp.), recovered from faecal samples of wild boars. In addition, the presence of genes encoding bacteriocin and virulence factors was also analysed by PCR and sequencing. Production of antimicrobial activity was checked in all enterococci against 9 indicator bacteria and it was detected in 11 E. faecium isolates (16.5%); eight and two of them harboured the genes encoding enterocin A + enterocin B and enterocin L50A/B, respectively. Sixty-seven per cent of our enterococci harboured different combinations of genes of the cyl operon, but none of them contained the complete cyl L(L)L(S)ABM operon, necessary for cytolysin expression. The presence of gel E gene, associated with the fsr ABC locus, was identified in 4 E. faecium and two E. faecalis isolates, exhibiting all of them gelatinase activity. beta -hemolytic activity was not found in our isolates. Both cpd and ace genes, encoding respectively the accessory colonisation factor and pheromone, were detected in two E. faecalis isolates, and the hyl gene, encoding hyalorunidase, in two E. faecium isolates, one of them gelatinase-positive. Genes encoding bacteriocins and virulence factors are widely disseminated among faecal enterococci of wild boars and more studies should be carried out to know the global distribution of these determinants in enterococci of different ecosystems.

  16. Pediocins: The bacteriocins of Pediococci. Sources, production, properties and applications

    Directory of Open Access Journals (Sweden)

    Anastasiadou Sofia

    2009-01-01

    Full Text Available Abstract Class IIa bacteriocins from lactic acid bacteria are small, cationic proteins with antilisterial activity. Within this class, the pediocins are those bacteriocins that share a highly conserved hydrophilic and charged N-terminal part harboring the consensus sequence -YGNGV- and a more variable hydrophobic and/or amphiphilic C-terminal part. Several pediocins have been isolated and characterized. Despite the structural similarities, their molecular weight varies, as well as their spectrum of antimicrobial activity. They exhibit important technological properties, e.g. thermostability and retaining of activity at a wide pH range, which along with the bactericidal action against Gram-positive food spoilage and pathogenic bacteria, make them an important class of biopreservatives. Much new information regarding the pediocins has emerged during the last years. In this review, we summarize and discuss all the available information regarding the sources of pediocins, the characteristics of their biosynthesis and production in fermentation systems, the characteristics of the known pediocin molecules, and their antibacterial action. The advances made by genetic engineering in improving the features of pediocins are also discussed, as well as their perspectives for future applications.

  17. Encapsulation of Lactobacillus plantarum 423 and its Bacteriocin in Nanofibers.

    Science.gov (United States)

    Heunis, T D J; Botes, M; Dicks, L M T

    2010-03-01

    Plantaricin 423, produced by Lactobacillus plantarum 423, was encapsulated in nanofibers that were produced by the electrospinning of 18% (w/v) polyethylene oxide (200 000 Da). The average diameter of the nanofibers was 288 nm. Plantaricin 423 activity decreased from 51 200 AU/ml to 25 600 AU/ml and from 204 800 AU/ml to 51 200 AU/ml after electrospinning, as determined against Lactobacillus sakei DSM 20017 and Enterococcus faecium HKLHS, respectively. Cells of L. plantarum 423 encapsulated in nanofibers decreased from 2.3 × 10(10) cfu/ml before electrospinning to 4.7 × 10(8) cfu/ml thereafter. Cells entrapped in the nanofibers continued to produce plantaricin 423. This is the first report on the encapsulation of a bacteriocin and cells of L. plantarum in nanofibers. The method may be used to design a drug delivery system for bacteriocins and the encapsulation of probiotic lactic acid bacteria. The technology is currently being optimized.

  18. Isolation of a bacteriocin-producing lactococcus lactis and application of its bacteriocin to manage spoilage bacteria in high-value marine fish under different storage temperatures.

    Science.gov (United States)

    Sarika, A R; Lipton, A P; Aishwarya, M S; Dhivya, R S

    2012-07-01

    The bacteriocins of lactic acid bacteria have considerable potential for biopreservation. The Lactococcus lactis strain PSY2 (GenBank account no. JF703669) isolated from the surface of marine perch Perca flavescens produced antibacterial activity against pathogenic and spoilage-causing Gram-positive and Gram-negative bacteria viz. Arthrobacter sp., Acinetobacter sp., Bacillus subtilis, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus and possessed broad inhibitory spectrum. The biopreservative efficacy of the bacteriocin PSY2 was evaluated using fillets of reef cod, Epinephelus diacanthus. The fillets (10 g) were sprayed with 2.0 ml of 1,600 AU/ml bacteriocin, wrapped and kept under different storage temperatures viz., 4, 0 and -18 °C. The biopreservative extended the shelf-life of fillets stored at 4 °C to >21 days as against bacteriocin-treated samples stored for 21 days at 4 °C while the untreated samples became unacceptable by the 14th day. The biopreservative gave no significant effect at -18 °C. Thus, the bacteriocin derived from L. lactis PSY2 gave increased protection against spoilage bacteria and offers an alternative for the preservation of high-value sea foods.

  19. Genetic analysis of acidocin B : a novel bacteriocin produced by Lactobacillus acidophilus

    NARCIS (Netherlands)

    Leer, R.J.; Vossen, J.M.B.M. van der; Giezen, M. van; Noort, J.M. van; Pouwels, P.H.

    1995-01-01

    The genes encoding the production of acidocin B, a bacteriocin produced by Lactobacillus acidophilus strain M46 which is active against Listeria monocytogenes, Clostridium sporogenes, Brochothrix thermosphacta, Lactobacillus fermentum and Lactobacillus delbrueckii subsp. bulgaricus, but inactive aga

  20. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    Science.gov (United States)

    Saavedra, Lucila; Sesma, Fernando

    The search for new antimicrobial peptides produced by lactic acid ­bacteria and other Gram-positive microorganisms has become an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic host systems makes them attractive candidates for biotechnological applications. However, before suggesting or choosing a new bacteriocin for future technology developments, it is necessary to elucidate its biochemical structure and its mode of action, which may be carried out once the bacteriocin is purified to homogeneity. This chapter focuses on describing the main strategies used for the purification of numerous bacteriocins.

  1. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: characterization of the bacteriocin.

    Science.gov (United States)

    Furtado, Danielle N; Todorov, Svetoslav D; Landgraf, Mariza; Destro, Maria T; Franco, Bernadette D G M

    2014-01-01

    Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi) was isolated from goat milk, and studied for its antimicrobial activity. The bacteriocin presented a broad spectrum of activity, was sensitive to proteolytic enzymes, resistant to heat and pH extremes, and not affected by the presence of SDS, Tween 20, Tween 80, EDTA or NaCl. Bacteriocin production was dependent on the components of the culture media, especially nitrogen source and salts. When tested by PCR, the bacteriocin gene presented 100% homology to nisin Z gene. These properties indicate that this L. lactis subsp. lactis DF4Mi can be used for enhancement of dairy foods safety and quality.

  2. Importance in dairy technology of bacteriocins produced by dairy starter cultures

    Directory of Open Access Journals (Sweden)

    Bedia Şimşek

    2002-03-01

    Full Text Available Bacteriocins produced by Lactic acid bacteria (LAB and propionic acid bacteria (PAB are heterogeneous group of peptide inhibitors which include lantibiotics (class I, e. g. nisin, small heat-stable peptides (class II, e. g. pediocin PA-1 and large heat-labile proteins (class III, e. g. helveticin J. Many bacteriocins belonging to the first two groups can be successfully used to inhibit undesirable microorganisms in foods, but only nisin is produced industrially and is used as a food preservative. LAB and PAB develops easily in milk and milk products. LAB and PAB growth in dairy products can cause microbial interference to spoilage and pathogenic bacteria through several metabolits, specially bacteriocins. The review deals with the description of milk-borne bacteriocins and their application in milk and milk products either to extend the shelf life or to inhibit milk pathogens.

  3. Inducer bacteria, unique signal peptides and nutrient limitation stimulate in-vitro bacteriocin production

    Science.gov (United States)

    Bacteriocins (BCN) provide enormous potential for controlling bacterial infections in human and veterinary medicine, in feedstuffs and human foods, and in cosmetic applications. To successfully apply such antimicrobial proteins, adequate commercial quantities of these valuable BCN must be efficient...

  4. Lyophilized Carnobacterium divergens AS7 bacteriocin preparation improves performance of broiler chickens challenged with Clostridium perfringens

    DEFF Research Database (Denmark)

    Jozefiak, D; Sip, A; Rutkowski, A;

    2012-01-01

    The present study aimed to investigate the effects of Carnobacterium divergens AS7 bacteriocin (divercin AS7) on growth performance, digestibility, fermentation processes, selected microbial populations, and histomorphology in broiler chickens challenged with a mixture of 3 Clostridium perfringens...

  5. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: characterization of the bacteriocin

    Directory of Open Access Journals (Sweden)

    Danielle N. Furtado

    2014-12-01

    Full Text Available Lactic acid bacteria capable of producing bacteriocins and presenting probiotic potential open innovative technological applications in the dairy industry. In this study, a bacteriocinogenic strain (Lactococcus lactis subsp. lactis DF4Mi was isolated from goat milk, and studied for its antimicrobial activity. The bacteriocin presented a broad spectrum of activity, was sensitive to proteolytic enzymes, resistant to heat and pH extremes, and not affected by the presence of SDS, Tween 20, Tween 80, EDTA or NaCl. Bacteriocin production was dependent on the components of the culture media, especially nitrogen source and salts. When tested by PCR, the bacteriocin gene presented 100% homology to nisin Z gene. These properties indicate that this L. lactis subsp. lactis DF4Mi can be used for enhancement of dairy foods safety and quality.

  6. Isolation and characterization of bacteriocin-producing lactic acid bacteria from ready-to-eat food products.

    Science.gov (United States)

    Kelly, W J; Asmundson, R V; Huang, C M

    1996-12-01

    Lactic acid bacteria isolated from a range of foods sold in ready-to-eat form were screened for bacteriocin production. Twenty-two bacteriocin-producing cultures were isolated from 14 of the 41 foods sampled. Bacteriocin-producing isolates from meat, fish and dairy products were Lactobacillus and Leuconostoc species typically found associated with these products. Most of these isolates gave only a narrow inhibitory spectrum although two showed activity against Listeria monocytogenes. Fruit and vegetable products gave a broader range of organisms but most of the bacteriocin-producing cultures were found to be strains of Lactococcus. Several lactococci produced a nisin-like activity, and showed a broad inhibitory spectrum against the indicator strains tested. The ease with which bacteriocin-producing strains could be isolated implies that they are already being safely consumed in food, and highlights the potential for using bacteriocin-producing cultures for biopreservation, especially in association with minimally processed products.

  7. Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products.

    Science.gov (United States)

    Barbosa, Ana Andréa Teixeira; Mantovani, Hilário Cuquetto; Jain, Sona

    2017-01-03

    Bacteriocins produced by lactic acid bacteria (LAB) are well-recognized for their potential as natural food preservatives. These antimicrobial peptides usually do not change the sensorial properties of food products and can be used in combination with traditional preservation methods to ensure microbial stability. In recent years, fruit products are increasingly being associated with food-borne pathogens and spoilage microorganisms, and bacteriocins are important candidates to preserve these products. Bacteriocins have been extensively studied to preserve foods of animal origin. However, little information is available for their use in vegetable products, especially in minimally processed ready-to-eat fruits. Although, many bacteriocins possess useful characteristics that can be used to preserve fruit products, to date, only nisin, enterocin AS-48, bovicin HC5, enterocin 416K1, pediocin and bificin C6165 have been tested for their activity against spoilage and pathogenic microorganisms in these products. Among these, only nisin and pediocin are approved to be commercially used as food additives, and their use in fruit products is still limited to certain countries. Considering the increasing demand for fresh-tasting fruit products and concern for public safety, the study of other bacteriocins with biochemical characteristics that make them candidates for the preservation of these products are of great interest. Efforts for their approval as food additives are also important. In this review, we discuss why the study of bacteriocins as an alternative method to preserve fruit products is important; we detail the biotechnological approaches for the use of bacteriocins in fruit products; and describe some bacteriocins that have been tested and have potential to be tested for the preservation of fruit products.

  8. Diverse Ecological Strategies Are Encoded by Streptococcus pneumoniae Bacteriocin-Like Peptides.

    Science.gov (United States)

    Miller, Eric L; Abrudan, Monica I; Roberts, Ian S; Rozen, Daniel E

    2016-04-13

    The opportunistic pathogen Streptococcus pneumoniae is commonly carried asymptomatically in the human nasopharynx. Due to high rates of cocolonization with other pneumococcus strains, intraspecific competitive interactions partly determine the carriage duration of strains and thereby their potential to cause disease. These interactions may be mediated by bacteriocins, such as the type IIb bacteriocins encoded by the blp (bacteriocin-like peptide) locus. To understand blp diversity and evolution, we undertook a bioinformatic analysis of 4,418 pneumococcal genomes, including 168 newly sequenced genomes. We describe immense variation at all levels of genomic organization: Gene presence/absence, gene order, and allelic diversity. If we make the extreme and naive hypothesis that assumes all genes in this operon can assort randomly, this variation could lead to 10(15) distinct bacteriocin-related phenotypes, each potentially representing a unique ecological strategy; however, we provide several explanations for why this extreme is not realized. Although rarefaction analysis indicates that the number of unique strategies is not saturated, even after sampling thousands of genomes, we show that the variation is neither unbounded nor random. We delimit three bacteriocin groups, which contain group-specific bacteriocins, immunity genes, and blp operon gene order, and argue that this organization places a constraint on realized ecological strategies. We additionally show that ecological strategy diversity is significantly constrained by pneumococcal phylogeny and clonal structure. By examining patterns of association between alleles within the blp operon, we show that bacteriocin genes, which were believed to function in pairs, can be found with a broad diversity of partner alleles and immunity genes; this overall lack of allelic fidelity likely contributes to the fluid structure of this operon. Our results clarify the diversity of antagonistic ecological strategies in the

  9. Surface glycosaminoglycans protect eukaryotic cells against membrane-driven peptide bacteriocins.

    Science.gov (United States)

    Martín, Rebeca; Escobedo, Susana; Martín, Carla; Crespo, Ainara; Quiros, Luis M; Suarez, Juan E

    2015-01-01

    Enzymatic elimination of surface glycosaminoglycans or inhibition of their sulfation provokes sensitizing of HT-29 and HeLa cells toward the peptide bacteriocins nisin A, plantaricin C, and pediocin PA-1/AcH. The effect can be partially reversed by heparin, which also lowers the susceptibility of Lactococcus lactis to nisin A. These data indicate that the negative charge of the glycosaminoglycan sulfate residues binds the positively charged bacteriocins, thus protecting eukaryotic cells from plasma membrane damage.

  10. Growth-inhibition of hiochi bacteria in namazake (raw sake) by bacteriocins from lactic acid bacteria.

    Science.gov (United States)

    Taniguchi, Masayuki; Ishiyama, Yohei; Takata, Takeomi; Nakanishi, Toshihiro; Kaneoke, Mitsuoki; Watanabe, Ken-ichi; Yanagida, Fujitoshi; Chen, Yi-sheng; Kouya, Tomoaki; Tanaka, Takaaki

    2010-06-01

    The bacteriocins produced by Lactococcus lactis subsp. lactis C101910 (C101910) and NBRC 12007 (NBRC 12007) were used to prevent the growth of sake spoiling hiochi bacteria (Lactobacillus hilgardii, Lactobacillus fructivorans, and Lactobacillus paracasei) in namazake, which is raw (unpasteurized) sake. The bacteriocin concentrations required for decreasing the viable cell concentrations of L. hilgardii and L. fructivorans below the detection limit (1.0 x 10(2) cells/ml) in 24 h from the initial concentration of 4.0-9.5 x 10(5) cells/ml in the namazake at pH 4.5 and at 4 degrees C, were 18-35 U/ml and 5.6 U/ml for the bacteriocin from C101910 and NBRC 12007, respectively. To decrease the viable cell concentration of L. paracasei from the initial concentration of 7.5 x 10(5) cells/ml to below the detection limit (1.0 x 10(2) cells/ml) in 24 h, 350 U/ml bacteriocin from C101910 and 140 U/ml bacteriocin from NBRC 12007 were required. In experiments using McIlvaine buffer (pH 4.5) with 15% ethanol instead of namazake as the medium, the viable cell concentrations of L. hilgardii and L. paracasei decreased to less than 1.0 x 10(2) cells/ml, whereas those of L. fructivorans decreased to less than 1.0 x 10(3) cells/ml, when bacteriocins were added at the concentrations that had proven effective in namazake. The membrane depolarization assay using a fluorescent probe showed that the presence of ethanol stimulated the collapse of the membrane potential induced by bacteriocins. The ethanol induced collapse of the membrane potential suggests that the application of bacteriocins at the storage stage of namazake is more beneficial than when used in other stages of the sake brewing process.

  11. Microcins from Enterobacteria: On the Edge Between Gram-Positive Bacteriocins and Colicins

    Science.gov (United States)

    Rebuffat, Sylvie

    Most bacteria and archaea produce gene-encoded antimicrobial peptides/proteins called bacteriocins, which are secreted by the producing bacteria to compete against other microorganisms in a given niche. They are considered important mediators of intra- and interspecies interactions and therefore a factor in ­maintaining the microbial diversity and stability. They are ribosomally synthesized, and most of them are produced as inactive precursor proteins, which in some cases are further enzymatically modified. Bacteriocins generally exert potent antibacterial activities directed against bacterial species closely related to the producing bacteria. Bacteriocins are abundant and diverse in Gram-negative and Gram-positive bacteria. This chapter focuses on colicins and microcins from enterobacteria (mainly Escherichia coli) and on bacteriocins from lactic acid bacteria (LAB). Microcins are the lower-molecular-mass bacteriocins produced by Gram-negative bacteria with a repertoire of only 14 representatives. They form a very restricted family of bacteriocins, compared to the huge family of LAB bacteriocins that is constituted of several hundreds of peptides, with which microcins share common characteristics. Nevertheless, microcins also show similarities, particularly in their uptake mechanisms, with the higher-molecular-mass colicins, also produced by E. coli strains. On the edge between LAB bacteriocins and colicins, microcins appear to combine highly efficient strategies developed by both Gram-positive and Gram-negative bacteria at different levels, including uptake, translocation, killing of target cells, and immunity of the producing bacteria, making them important actors of bacterial competitions and fascinating models for novel concepts toward antimicrobial strategies and against resistance mechanisms.

  12. Interactions between Oral Bacteria: Inhibition of Streptococcus mutans Bacteriocin Production by Streptococcus gordonii

    OpenAIRE

    Wang, Bing-Yan; Kuramitsu, Howard K.

    2005-01-01

    Streptococcus mutans has been recognized as an important etiological agent in human dental caries. Some strains of S. mutans also produce bacteriocins. In this study, we sought to demonstrate that bacteriocin production by S. mutans strains GS5 and BM71 was mediated by quorum sensing, which is dependent on a competence-stimulating peptide (CSP) signaling system encoded by the com genes. We also demonstrated that interactions with some other oral streptococci interfered with S. mutans bacterio...

  13. Comparison of antibacterial effects between antimicrobial peptide and bacteriocins isolated from Lactobacillus plantarum on three common pathogenic bacteria

    OpenAIRE

    Ming, Liu; Zhang, Qian; Yang, Le; Huang, Jian-An

    2015-01-01

    New strategies for the prevention or treatment of infections are required. The purpose of this study is to evaluate the effects of antimicrobial peptides and bacteriocins isolated from Lactobacillus plantarum on growth and biofilm formation of three common pathogenic microbes. The antibacterial properties of the antimicrobial peptide Tet213 and bacteriocins were tested by the disc diffusion method. Tet213 and bacteriocins showed inhibitory effects on biofilm formation for the three organisms,...

  14. Determination of bacteriocin activity with bioassays carried out on solid and liquid substrates: assessing the factor "indicator microorganism"

    OpenAIRE

    Ambrosiadis Ioannis; Dasiou Despina; Filioussis George; Avramidis Nicholaos; Papagianni Maria

    2006-01-01

    Abstract Background Successful application of growth inhibition techniques for quantitative determination of bacteriocins relies on the sensitivity of the applied indicator microorganism to the bacteriocin to which is exposed. However, information on indicator microorganisms' performance and comparisons in bacteriocin determination with bioassays is almost non-existing in the literature. The aim of the present work was to evaluate the parameter "indicator microorganism" in bioassays carried o...

  15. Production and Characterization of Bacteriocin Produced by Lactobacillus Viridescence(NICM 2167

    Directory of Open Access Journals (Sweden)

    Sure KP

    Full Text Available The present study focused on the production optimization of bacteriocin by Lactobacillus viridescence NICM 2167 followed by its purification and characterization. The bacteriocins are antimicrobial peptides produced by many Gram positive and Gram negative bacteria.The bacteriocin produced by LAB (lactic acid bacteria received attention in recent years due to their potential application as natural preservatives in food. Bacteriocinproduced by Lactobacillus viridescence showed broad range of antimicrobial activity against food borne pathogens. Production parameters were optimized showing highest production of bacteriocinin MRS broth with pH= 7.0 incubated at 37°C for 48 h. Bacteriocin was purified in two steps involving ammonium sulphate precipitation followed by gel filtration using Sephadex G-100. Purified bacteriocin with single band on SDS-PAGE showed molecular weight of 8.3 kDa. This purified bacteriocin was stable over wide range of pH (4-10 as well as temperatures (4°C-121°C suggesting it as a potent candidate for preservation of various foods.

  16. Isolation and biochemical characterisation of a bacteriocin-like substance produced by Bacillus amyloliquefaciens An6.

    Science.gov (United States)

    Ayed, Hanen Ben; Maalej, Hana; Hmidet, Noomen; Nasri, Moncef

    2015-12-01

    This study focuses on the isolation and characterisation of a peptide with bacteriocin-like properties from Bacillus amyloliquefaciens An6. Incubation conditions were optimised, and the effects of the incubation period and of carbon and nitrogen sources were investigated. The produced bacteriocin was partially purified with ammonium sulphate precipitation, dialysis and ultrafiltration and was then biochemically characterised. Maximum bacteriocin production was achieved after 48h of incubation in a culture medium containing 20g/L starch and 10g/L yeast extract, with an initial pH 8.0 at 30°C under continuous agitation at 200rpm. The bacteriocin was sequentially purified and its molecular weight was determined to be 11kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The bacteriocin was relatively heat-resistant and was not sensitive to acid and alkaline conditions (pH 4.0-10.0). Its inhibitory activity was sensitive to proteinase K but was resistant to the proteolytic action of alcalase, trypsin, chymotrypsin and pepsin. In conclusion, bacteriocin An6, owing its wide spectrum of activity as well as its high tolerance to acidic and alkaline pH values, temperature and proteases shows great potential for use as a food biopreservative.

  17. Bacteriocins produced by L. fermentum and L .acidophilus can inhibit cephalosporin resistant E .coli.

    Directory of Open Access Journals (Sweden)

    Saba Riaz

    2010-10-01

    Full Text Available Reemerging infections occur due to resistant bacteria. Such infections create restrictions for clinicians and microbiologists in drug selection. Such problems demand new strategies for solution. Use of bacteriocins for this purpose may be fruitful. In the present research work, the inhibitory effects of bactericins on cephalosporin resistant Escherichia coli are used as model system for the control of antibiotic resistant pathogenic bacteria. Cephalosporin resistant Escherichia coli strain was isolated from pus by using conventional methodology. For bacteriocin production, Lactobacilli strains were selected by using selective media. Out of seventy two strains isolated from yogurt, fecal materials of human, chick, parrot and cat, only two strains (strain 45 and strain 52 were found to produce bacteriocins having antimicrobial potential against cephalosporin resistant Escherichia coli. Biochemical characterization showed that strain 45 belonged to group of Lactobacillus fermentum and strain 52 to Lactobacillus acidophilus. Both strains showed maximum growth at 25°C and 35°C respectively. Suitable pH was 5.5 and 6.0 for Lactobacillus fermentum and Lactobacillus acidophilus respectively. Bacteriocins produced by both strains were found stable at 50, 75 and 100°C for 60min. Function of bacteriocin was also not disturbed due to change in pH. These findings suggest that bacteriocin produced by Lactobacillus fermentum and Lactobacillus acidophilus can be used for the infection control of cephalosporin resistant Escherichia coli.

  18. The study of effect bacteriocin producing Lactoco ccus lactis on Listeria monocytogenes and Bacillus cereus

    Directory of Open Access Journals (Sweden)

    M. Mirhossieni, M.Sc

    2007-01-01

    Full Text Available AbstractBackground and purpose: Dairy products often associated with problems such as short shelf life and poor hygiene control. A novel approach is to utilize bacteriocin or bacteriocin producer strains, to control undesirable micro flora as Listeria monocytogenes and Bacillus cereus in foods. Hence, we studied the effect of nisin like producing Lactococcus lactis against Listeria monocytogenes and Bacillus cereus, in order to compare the isolated strain within different countries.Materials and Methods: In this research we studied the effect of nisin like producing Lactococcus lactis, with producer spot test method. We also used supernatant from 24 h culture of Lactoccus lactis. Moreover, we studied the effect of bacteriocin on Listeria monocytogenes and Bacillus cereus growth curves.Results: The growth of both strains was inhibited by the bacteriocin. Conclusion: According to our results, the bacteriocin could be used in liquid food with bacteriocin added directly or as a starter culture in fermentation. This would inhibit the growth of Listeria monocytogenes; furthermore, Bacillus cereus is used to reduce food poisoning for fermented food products.

  19. Expression of bacteriocin divercin AS7 in Escherichia coli and its functional analysis.

    Science.gov (United States)

    Olejnik-Schmidt, Agnieszka K; Schmidt, Marcin T; Sip, Anna; Szablewski, Tomasz; Grajek, Włodzimierz

    2014-01-01

    Bacteriocins are small peptides with antimicrobial activity, that are produced by bacteria. Four classes of bacteriocins produced by lactic acid bacteria have been defined. Class IIa bacteriocins are promising candidates for industrial applications due to their high biological activity and their physicochemical properties. Divercin AS7 is a class IIa bacteriocin produced by Carnobacterium divergens AS7. It shows antibacterial activity against pathogens and food spoilage flora including Listeria spp. Little is known about the impact of class IIa bacteriocins upon eukaryotic cells. The safe use of bacteriocins as food biopreservatives requires the absence of cytotoxicity to human cells. To analyze the impact of divercin AS7 on human enterocytes, we expressed the recombinant divercin AS7 in the Escherichia coli BL21DE3pLys strain and conducted in vitro studies to evaluate the safety of recombinant divercin AS7. No cytotoxic effect on differentiated monolayer Caco-2 cells and no apoptotic appearance were observed when recombinant divercin AS7 was used at a concentration of 2 μg ml(-1). In our study, divercin AS7 also did not interfere with differentiated Caco-2 cells monolayer integrity. The obtained results suggest that divercin AS7 is a promising peptide for the food industry.

  20. Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate.

    Science.gov (United States)

    de Souza Barbosa, Matheus; Todorov, Svetoslav Dimitrov; Ivanova, Iskra; Chobert, Jean-Marc; Haertlé, Thomas; de Melo Franco, Bernadette Dora Gombossy

    2015-04-01

    The aims of this study were to isolate LAB with anti-Listeria activity from salami samples, characterize the bacteriocin/s produced by selected isolates, semi-purify them and evaluate their effectiveness for the control of Listeria monocytogenes during manufacturing of salami in a pilot scale. Two isolates (differentiated by RAPD-PCR) presented activity against 22 out of 23 L. monocytogenes strains for bacteriocin MBSa2, while the bacteriocin MBSa3 inhibited all 23 strains in addition to several other Gram-positive bacteria for both antimicrobials and were identified as Lactobacillus curvatus based on 16S rRNA sequencing. A three-step purification procedure indicated that both strains produced the same two active peptides (4457.9 Da and 4360.1 Da), homlogous to sakacins P and X, respectively. Addition of the semi-purified bacteriocins produced by Lb. curvatus MBSa2 to the batter for production of salami, experimentally contaminated with L. monocytogenes (10(4)-10(5) CFU/g), caused 2 log and 1.5 log reductions in the counts of the pathogen in the product after 10 and 20 days respectively, highlighting the interest for application of these bacteriocins to improve safety of salami during its manufacture.

  1. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens

    Institute of Scientific and Technical Information of China (English)

    Baby Joseph; Berlina Dhas; Vimalin Hena; Justin Raj

    2013-01-01

    Objective:To isolate and identify Bacillus subtilis (B. subtilis) from soil and to characterize and partially purify the bacteriocin. To evaluate the antimicrobial activity against four diabetic foot ulcer bacterial pathogens. Methods:Genotypic identification was done based on Bergey’s manual of systemic bacteriology. Antimicrobial susceptibility test was done by Kirby-Bauer disc diffusion method. Colonies were identified by colony morphology and biochemical characterization and also compared with MTCC 121 strain. Further identification was done by 16S rRNA sequencing. Inhibitory activities of partially purified bacteriocin on all the DFU isolates were done by agar well diffusion method. The strain was identified to produce bacteriocin by stab overlay assay. Bacteriocin was extracted by organic solvent extraction using chloroform, further purified by HPLC and physical, and chemical characterization was performed. Results: The four isolates showed high level of resistance to amoxyclav and sensitivity to ciprofloxacin. HPLC purification revealed that the extracts are bacteriocin. The phylogenetic tree analysis results showed that the isolate was 99%related to B. subtilis BSF01. The results reveled activity to all the four isolates and high level of activity was seen in case of Klebsiella sp. Conclusions:Partially purified bacteriocin was found to have antimicrobial activity against the four diabetic foot ulcer bacterial pathogens, which can thus be applied as a better drug molecule on further studies. The strain B. subtilis are found to be safe for use and these antimicrobial peptides can be used as an antimicrobial in humans to treat DFU bacterial pathogens.

  2. Ureaplasma urealyticum and Mycoplasma hominis sensitivity to bacteriocins produced by two Lactobacilli strains.

    Science.gov (United States)

    Daniele, M; Ruiz, F; Pascual, L; Barberis, L

    2011-10-01

    The purpose of the present study was to determine the inhibitory activities of two bacteriocins, produced by lactobacilli, against genital mycoplasmas. In this study, infections produced by genital mycoplasmas were studied; of these, 1.3% were caused by Mycoplasma hominis, 10.7% by Ureaplasma urealyticum and 5.6% by U. urealyticum + M. hominis. U. urealyticum was isolated from 75 out of 123 patients with genital mycoplasmas, while M. hominis was isolated from 9 patients (7.3%) and both U. urealyticum and M. hominis from 39 patients (31.7%). Bacteriocins, L23 and L60, produced by Lactobacillus fermentum and L. rhamnosus, respectively, appear to be two novel inhibitors of bacterial infection with potential antibacterial activity. Both bacteriocins proved to be active against 100% of strains tested; MICs of bacteriocin L23 ranged between 320 and 160 UA ml(-1) for 78% of the M. hominis strains and between 320 and 80 UA ml(-1) for 95% of the U. urealyticum strains. In addition, bacteriocin L60 was still active at 160 UA ml(-1) for a high percentage (56%) of M. hominis strains, and at 80 UA ml(-1) for 53% of the U. urealyticum strains. Interestingly, these antimicrobial substances produced by lactobacilli showed an inhibitory activity against genital mycoplasmas even when diluted. Altogether, our study indicates that the bacteriocins, L23 and L60, are good candidates for the treatment or prevention of genital infections in women.

  3. Optimization and partial characterization of bacteriocin produced by Lactobacillus bulgaricus -TLBFT06 isolated from Dahi.

    Science.gov (United States)

    Mahmood, Talat; Masud, Tariq; Ali, Sartaj; Abbasi, Kashif Sarfraz; Liaquat, Muhammad

    2015-03-01

    Lactobacillus bulgaricus is one of the predominant lactic acid bacteria of dahi, conferring technological and functional attributes. In the present study thirty dahi samples were investigated for bacteriocin producing L. bulgaricus. Fourteen different isolates were obtained and five were scrutinized for antibacterial activities against food born pathogens. Amongst, a strain TLB06FT was found to have a wide array of antibacterial activities against Gram positive and negative bacteria was selected for further characterization. Growth media optimization for this strain revealed maximum bacteriocin production on MRS media supplemented with glucose (2%), sodium chloride (1%), Tween-80 (0.5%) and yeast extract (1 %). In addition, optimization of growth conditions revealed maximum bacteriocin production at pH 5.5 and temperature of 30-37°C. Bacteriocin showed thermo stability at 90°C and remained highly active in the pH range of 3.5-7.5, inactive by protein catalyzing enzymes and showed no change in activity (800AumL(-1)) when treated with organic solvents and surfactants. The obtained bacteriocin was purified to 1600AU mL(-1) by ammonium sulfate precipitation (80%) by using dialyzing tubing. In the same way, a single peak was obtained by RP-HPLC having antibacterial activity of 6400AU mL(-1). Thus, wild strains of L. bulgaricus have great potential for the production new and novel type of bacteriocins.

  4. Elimination of Listeria monocytogenes in sausage meat by combination treatment: Radiation and radiation-resistant bacteriocins

    Science.gov (United States)

    Turgis, Mélanie; Stotz, Viviane; Dupont, Claude; Salmieri, Stéphane; Khan, Ruhul A.; Lacroix, Monique

    2012-08-01

    Two new bacteria were isolated from human feces and were designated MT 104 and MT 162. They were able to produce bacteriocins that are active against five strains of Listeria monocytogenes. Bacteriocins produced by these isolated strains had 100% and 82.35% residual activity when they were treated by gamma radiation at doses of 4 and 40 kGy, respectively. A reduction of 1.0, 1.5 and 3 log CFU/g of L. monocytogenes was observed in sausage meat when treated with bacteriocins from MT 104, MT 162, and nisin, respectively. For synergic effect, the D10 value in presence of the bacteriocins produced by MT 104 showed a 1.08 fold increased relative sensitivity of L. monocytogenes as compared to control after 5 days. The highest synergic effect was observed in presence of nisin which led to 1.61 fold increased relative sensitivity. Combined treatments with nisin and γ-irradiation showed a synergic antimicrobial effect in meat after 24 h and 5 days of storage. A synergic effect was observed only after 5 days at 4 °C for the bacteriocin from MT 104, as compared to the bacteriocin produced by MT 162 that had only an additive antimicrobial effect in all conditions.

  5. Influence of media and temperature on bacteriocin production by Bacillus cereus 8A during batch cultivation.

    Science.gov (United States)

    Bizani, D; Brandelli, A

    2004-08-01

    Cerein 8A is a bacteriocin produced by the soil bacterium Bacillus cereus 8A, isolated from native woodlands of Brazil. The influence of temperature and media on the growth of B. cereus 8A and the production of this bacteriocin was studied during batch cultivation. Maximum activity was detected by cultivation in brain/heart infusion broth, reaching 3200 activity units ml(-1). Bacteriocin was also produced in peptone, MRS, Mueller-Hinton and nutrient broth, while no activity was observed during cultivation in thioglycollate or tryptic soy broth. Temperature had a strong influence on bacteriocin production, which was higher at 30 degrees C than at 25 degrees C. An important decrease in bacteriocin activity was observed at 37 degrees C. The relationship between growth and specific production rates, as a function of the temperature, showed different kinetics of production and there were several peaks in the specific production rates during growth. Bacteriocin was produced at the stationary phase, indicating it is synthesized as a secondary metabolite.

  6. Antiviral potential of lactic acid bacteria and their bacteriocins.

    Science.gov (United States)

    Al Kassaa, I; Hober, D; Hamze, M; Chihib, N E; Drider, D

    2014-12-01

    Emerging resistance to antiviral agents is a growing public health concern worldwide as it was reported for respiratory, sexually transmitted and enteric viruses. Therefore, there is a growing demand for new, unconventional antiviral agents which may serve as an alternative to the currently used drugs. Meanwhile, published literature continues shedding the light on the potency of lactic acid bacteria (LAB) and their bacteriocins as antiviral agents. Health-promoting LAB probiotics may exert their antiviral activity by (1) direct probiotic-virus interaction; (2) production of antiviral inhibitory metabolites; and/or (3) via stimulation of the immune system. The aim of this review was to highlight the antiviral activity of LAB and substances they produce with antiviral activity.

  7. A Natural Chimeric Pseudomonas Bacteriocin with Novel Pore-Forming Activity Parasitizes the Ferrichrome Transporter.

    Science.gov (United States)

    Ghequire, Maarten G K; Kemland, Lieselore; Anoz-Carbonell, Ernesto; Buchanan, Susan K; De Mot, René

    2017-02-21

    Modular bacteriocins represent a major group of secreted protein toxins with a narrow spectrum of activity, involved in interference competition between Gram-negative bacteria. These antibacterial proteins include a domain for binding to the target cell and a toxin module at the carboxy terminus. Self-inhibition of producers is provided by coexpression of linked immunity genes that transiently inhibit the toxin's activity through formation of bacteriocin-immunity complexes or by insertion in the inner membrane, depending on the type of toxin module. We demonstrate strain-specific inhibitory activity for PmnH, a Pseudomonas bacteriocin with an unprecedented dual-toxin architecture, hosting both a colicin M domain, potentially interfering with peptidoglycan synthesis, and a novel colicin N-type domain, a pore-forming module distinct from the colicin Ia-type domain in Pseudomonas aeruginosa pyocin S5. A downstream-linked gene product confers PmnH immunity upon susceptible strains. This protein, ImnH, has a transmembrane topology similar to that of Pseudomonas colicin M-like and pore-forming immunity proteins, although homology with either of these is essentially absent. The enhanced killing activity of PmnH under iron-limited growth conditions reflects parasitism of the ferrichrome-type transporter for entry into target cells, a strategy shown here to be used as well by monodomain colicin M-like bacteriocins from pseudomonads. The integration of a second type of toxin module in a bacteriocin gene could offer a competitive advantage against bacteria displaying immunity against only one of both toxic activities.IMPORTANCE In their continuous struggle for ecological space, bacteria face a huge load of contenders, including phylogenetically related strains that compete for the same niche. One important group of secreted antibacterial proteins assisting in eliminating these rivals are modular bacteriocins of Gram-negative bacteria, comprising a domain for docking onto the

  8. Factors affecting production of an antilisterial bacteriocin by Carnobacterium piscicola strain A9b in laboratory media and model fish systems

    DEFF Research Database (Denmark)

    Himelbloom, B.; Nilsson, Lilian; Gram, Lone

    2001-01-01

    Aims: To investigate factors influencing bacteriocin production and bacteriocin stability of the bioprotective culture Carnobacterium piscicola strain A9b. Methods and Results: Maximum activity was obtained in MRS7 broth (MRS adjusted to pH 7.2), with or without glucose. No bacteriocin was produc....... Significance and Impact of the Study: The influence of NaCl on bacteriocin production may negate the inhibitory effect of C. piscicola A9b against Listeria monocytogenes in salty foods....

  9. Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis

    NARCIS (Netherlands)

    Kjos, Morten; Oppegård, Camilla; Diep, Dzung B; Nes, Ingolf F; Veening, Jan-Willem; Nissen-Meyer, Jon; Kristensen, Tom

    2014-01-01

    Most bacterially produced antimicrobial peptides (bacteriocins) are thought to kill target cells by a receptor-mediated mechanism. However, for most bacteriocins the receptor is unknown. For instance, no target receptor has been identified for the two-peptide bacteriocins (class IIb), whose activity

  10. The structure of pyogenecin immunity protein, a novel bacteriocin-like immunity protein from streptococcus pyogenes.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.; Coggill, P.; Bateman, A.; Finn, R.; Cymborowski, M.; Otwinowski, Z.; Minor, W.; Volkart, L.; Joachimiak, A.; Wellcome Trust Sanger Inst.; Univ. of Virginia; UT Southwestern Medical Center

    2009-12-17

    Many Gram-positive lactic acid bacteria (LAB) produce anti-bacterial peptides and small proteins called bacteriocins, which enable them to compete against other bacteria in the environment. These peptides fall structurally into three different classes, I, II, III, with class IIa being pediocin-like single entities and class IIb being two-peptide bacteriocins. Self-protective cognate immunity proteins are usually co-transcribed with these toxins. Several examples of cognates for IIa have already been solved structurally. Streptococcus pyogenes, closely related to LAB, is one of the most common human pathogens, so knowledge of how it competes against other LAB species is likely to prove invaluable. We have solved the crystal structure of the gene-product of locus Spy-2152 from S. pyogenes, (PDB: 2fu2), and found it to comprise an anti-parallel four-helix bundle that is structurally similar to other bacteriocin immunity proteins. Sequence analyses indicate this protein to be a possible immunity protein protective against class IIa or IIb bacteriocins. However, given that S. pyogenes appears to lack any IIa pediocin-like proteins but does possess class IIb bacteriocins, we suggest this protein confers immunity to IIb-like peptides. Combined structural, genomic and proteomic analyses have allowed the identification and in silico characterization of a new putative immunity protein from S. pyogenes, possibly the first structure of an immunity protein protective against potential class IIb two-peptide bacteriocins. We have named the two pairs of putative bacteriocins found in S. pyogenes pyogenecin 1, 2, 3 and 4.

  11. Bioprotective potential of bacteriocinogenic Enterococcus gallinarum strains isolated from some Nigerian fermented foods, and of their bacteriocins.

    Science.gov (United States)

    Oladipo, Iyabo C; Sanni, Abiodun I; Writachit, Chakraborty; Chakravorty, Somnath; Jana, Sayantan; Rudra, Deep S; Gacchui, Ratan; Swarnakar, Snehasikta

    2014-01-01

    Enterococcus gallinarum strains isolated from some Nigerian fermented foods were found to produce bacteriocins. The bacteriocins had a broad spectrum of activity against both Gram-positive and negative bacteria. The effects of the bacteriocins and bacteriocinogenic organ- isms on Staphylococcus aureus infections in rats were evaluated. Sprague-Dawley rats were infected with S. aureus MTCC 737 and treated with E. gallinarum T71 and different concentrations of the bacteriocins from E. gallinarum W211 and T71. Staphylococcus aureus infection caused significant upregulation of aspartate aminotransferase and alanine aminotransferase levels in sera of the infected rats. Moreover, gelatin zymography revealed that infected gastric tissues showed elevated matrix metalloproteinase-9 activity. Bacteriocin treatments reduced the MMP-9 activity and inhibited the expressions of both Tumour Necrosis Factor Alpha (TNF-α) and Interleukin-1 Beta (IL-1β) dose dependently, pointing to a potential role of the bacteriocins in attenuating inflammatory responses to Staphylococcus aureus infec- tion. Gastric and GIT damage caused by staphylococcal infection were reduced in the Enterococcus gallinarum T71 and bacteriocin-treated groups also dose dependently. We conclude that these bacteriocins may have useful biomedical applications.

  12. Streptococcus thermophilus 580 produces a bacteriocin potentially suitable for inhibition of Clostridium tyrobutyricum in hard cheese.

    Science.gov (United States)

    Mathot, A G; Beliard, E; Thuault, D

    2003-10-01

    A strain of Streptococcus thermophilus that inhibits Clostridium tyrobutyricum has been isolated from raw milk. The active compound produced disappears after a treatment with protease. However, unlike most bacteriocins, it is not thermoresistant, and the activity is completely lost after 1 h at 60 degrees C. Its inhibitory spectrum is limited to other thermophilic streptococci, Brochothrix, and sporulated gram-positive rods. So this bacteriocin could be different from those already described. This bacteriocin-producing strain could be used in thermophilic starter for hard cheese making because the bacteriocin is not active against thermophilic lactobacilli. It is produced in M17 medium during the decreasing temperature phase of the hard cheese-making process temperature cycle and is also produced in milk. Moreover, when Streptococcus thermophilus was cocultured with a Lactobacillus delbrueckii subsp. lactis starter strain, it seems to enhance the bacteriocin production. However the level of activity always decreases drastically during the stationary phase. But inhibition of Clostridium tyrobutyricum spores can be obtained in small-scale curds.

  13. [Characteristics and identification of bacteriocins produced by Lactococcus lactis subsp. lactis 194-K].

    Science.gov (United States)

    Ustiugova, E A; Timofeeva, A V; Stoianova, L G; Netrusov, A I; Katrukha, G S

    2012-01-01

    The Lactococcus lactis subsp. lactis 194-K strain has been established to be able to produce two bacteriocins, one of which was identified as the known lantibiotic nisin A, and the other 194-D bacteriocin represents a polypeptide with a 2589-Da molecular mass and comprises 20 amino acid residues. Both bacteriocins were produced in varying proportions in all of the studied nutrient media, which support the growth of the producer. Depending on the cultivation medium, the nisin A content was 380- to 1123-fold lower in the 194-K stain culture fluid than that of the 194-D peptide. In comparision to to nisin A Bacteriocin 194-D possessed a wide range of antibacterial activity and suppressed the growth of both Gram-positive and Gram-negative bacteria. An optimal medium for 194-D bacteriocin synthesis was shown to be a fermentation medium which contained yeast extract, casein hydrolysate, and potassium phosphate. The biosynthesis ofbacteriocin 194-D by the 194-K strain in these media occurred parallel to producer growth, and its maximal accumulation in the culture fluid was observed at 14-20 h of the strain's growth.

  14. Purification and Characterization of Bacteriocin Produced by Weissella confusa A3 of Dairy Origin.

    Directory of Open Access Journals (Sweden)

    Hweh Fen Goh

    Full Text Available A dramatic increase in bacterial resistance towards currently available antibiotics has raised worldwide concerns for public health. Therefore, antimicrobial peptides (AMPs have emerged as a promisingly new group of therapeutic agents for managing infectious diseases. The present investigation focusses on the isolation and purification of a novel bacteriocin from an indigenous sample of cow milk and it's mode of action. The bacteriocin was isolated from Weissella confusa A3 that was isolated from the sample and was shown to have inhibitory activity towards pathogenic bacteria namely Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa and Micrococcus luteus. The bacteriocin was shown to be heat stable and functioned well at low pH (2 to 6. Reduction of activity was shown after treatment with proteinase K, trypsin and peptidase that confirmed the proteinaceous nature of the compound. MALDI-TOF analysis of the sample gave a mass approximating 2.7 kDa. The membrane of the bacteria was disrupted by the bacteriocin causing SYTOX® green dye to enter the cell and bind to the bacterial DNA giving fluorescence signal. Bacterial cell treated with the bacteriocin also showed significant morphological changes under transmission electron microscope. No virulence and disease related genes can be detected from the genome of the strain.

  15. Use of synthetic genes for cloning, production and functional expression of the bacteriocins enterocin A and bacteriocin E 50-52 by Pichia pastoris and Kluyveromyces lactis.

    Science.gov (United States)

    Jiménez, Juan J; Borrero, Juan; Gútiez, Loreto; Arbulu, Sara; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2014-06-01

    The use of synthetic genes may constitute a successful approach for the heterologous production and functional expression of bacterial antimicrobial peptides (bacteriocins) by recombinant yeasts. In this work, synthetic genes with adapted codon usage designed from the mature amino acid sequence of the bacteriocin enterocin A (EntA), produced by Enterococcus faecium T136, and the mature bacteriocin E 50-52 (BacE50-52), produced by E. faecium NRRL B-32746, were synthesized. The synthetic entA and bacE50-52 were cloned into the protein expression vectors pPICZαA and pKLAC2 for transformation of derived vectors into Pichia pastoris X-33 and Kluyveromyces lactis GG799, respectively. The recombinant vectors were linearized and transformed into competent cells selecting for P. pastoris X-33EAS (entA), P. pastoris X-33BE50-52S (bacE50-52), K. lactis GG799EAS (entA), and K. lactis GG799BE50-52S (bacE50-52). P. pastoris X-33EAS and K. lactis GG799EAS, but not P. pastoris X-33BE50-52S and K. lactis GG799BE50-52S, showed antimicrobial activity in their supernatants. However, purification of the supernatants of the producer yeasts permitted recovery of the bacteriocins EntA and BacE50-52. Both purified bacteriocins were active against Gram-positive bacteria such as Listeria monocytogenes but not against Gram-negative bacteria, including Campylobacter jejuni.

  16. Characterization of a bacteriocin produced by Enterococcus faecalis N1-33 and its application as a food preservative.

    Science.gov (United States)

    Hata, Tomomi; Alemu, Melaku; Kobayashi, Miho; Suzuki, Chise; Nitisinprasert, Sunee; Ohmomo, Sadahiro

    2009-03-01

    A bacteriocin-producing strain, N1-33, isolated from fermented bamboo shoot was identified as Enterococcus faecalis. The pH-adjusted culture supernatant of this strain consisted of several peptides with bacteriocin activity, and the supernatant inhibited the growth of pathogenic bacteria such as Listeria monocytogenes. The major peptide with bacteriocin activity was purified, and the first 39 amino acid residues of the bacteriocin were found to be identical to enterocin MR10A produced by E. faecalis MRR10-3. Addition of the pH-adjusted and concentrated culture supernatant of strain N1-33 caused a marked reduction in the growth of Bacillus cereus in custard cream and L. monocytogenes in pickled cucumber. These results suggest the potential use of the bacteriocin produced by strain N1-33 in food biopreservation.

  17. Partial purification and characterization of a bacteriocin produced by Enterococcus faecium 130 isolated from mozzarella cheese

    Directory of Open Access Journals (Sweden)

    Fabrício Luiz Tulini

    2011-03-01

    Full Text Available Lactic acid bacteria are important in foods as potential probiotics and also due to the ability to produce antimicrobial compounds that can contribute for biopreservation. In this work, the bacteriocin produced by the food isolate Enterococcus faecium 130 was partially purified and characterized. The compound was active against Gram-positive bacteria, including Listeria monocytogenes. It was produced after 4 days of storage at a broad temperature range (4 to 37 °C; it was stable at pH ranging from 2 to 10 with no loss of activity after heating at 100 °C for 15 minutes. Bacteriocin was partially purified by the adsorption-desorption technique, and the analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE showed a molecular mass of 3.5 to 6.5 kDa. These data encourage studies on application of this bacteriocin in food systems as an additional hurdle to microbial growth.

  18. Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins.

    Science.gov (United States)

    Stepper, Judith; Shastri, Shilpa; Loo, Trevor S; Preston, Joanne C; Novak, Petr; Man, Petr; Moore, Christopher H; Havlíček, Vladimír; Patchett, Mark L; Norris, Gillian E

    2011-02-18

    O-Glycosylation is a ubiquitous eukaryotic post-translational modification, whereas early reports of S-linked glycopeptides have never been verified. Prokaryotes also glycosylate proteins, but there are no confirmed examples of sidechain glycosylation in ribosomal antimicrobial polypeptides collectively known as bacteriocins. Here we show that glycocin F, a bacteriocin secreted by Lactobacillus plantarum KW30, is modified by an N-acetylglucosamine β-O-linked to Ser18, and an N-acetylhexosamine S-linked to C-terminal Cys43. The O-linked N-acetylglucosamine is essential for bacteriostatic activity, and the C-terminus is required for full potency (IC(50) 2 nM). Genomic context analysis identified diverse putative glycopeptide bacteriocins in Firmicutes. One of these, the reputed lantibiotic sublancin, was shown to contain a hexose S-linked to Cys22.

  19. Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety.

    Science.gov (United States)

    Snyder, Abigail B; Worobo, Randy W

    2014-01-15

    Antimicrobial peptides are produced across all domains of life. Among these diverse compounds, those produced by bacteria have been most successfully applied as agents of biocontrol in food and agriculture. Bacteriocins are ribosomally synthesized, proteinaceous compounds that inhibit the growth of closely related bacteria. Even within the subcategory of bacteriocins, the peptides vary significantly in terms of the gene cluster responsible for expression, and chemical and structural composition. The polycistronic gene cluster generally includes a structural gene and various combinations of immunity, secretion, and regulatory genes and modifying enzymes. Chemical variation can exist in amino acid identity, chain length, secondary and tertiary structural features, as well as specificity of active sites. This diversity posits bacteriocins as potential antimicrobial agents with a range of functions and applications. Those produced by food-grade bacteria and applied in normally occurring concentrations can be used as GRAS-status food additives. However, successful application requires thorough characterization.

  20. Bacteriocins active against multi-resistant gram negative bacteria implicated in nosocomial infections.

    Science.gov (United States)

    Ghodhbane, Hanen; Elaidi, Sabrine; Sabatier, Jean-Marc; Achour, Sami; Benhmida, Jeannette; Regaya, Imed

    2015-01-01

    Multiresistant Gram-negative bacteria are the prime mover of nosocomial infections. Some are naturally resistant to antibiotics, their genetic makes them insensitive to certain families of antibiotics and they transmit these resistors to their offspring. Moreover, when bacteria are subjected to antibiotics, they eventually develop resistance against drugs to which they were previously sensitive. In recent years, many bacteriocins active against gram-negative bacteria have been identified proving their efficacy in treating infections. While further investigation remains necessary before the possibilities for bacteriocins in clinical practice can be described more fully, this review provides an overview of bacteriocins acting on the most common infectious gram negative bacteria (Klebsiella, Acinetobacter, Pseudomonas aeruginosa and E. coli).

  1. The Potential of Class II Bacteriocins to Modify Gut Microbiota to Improve Host Health

    Science.gov (United States)

    Umu, Özgün C. O.; Bäuerl, Christine; Oostindjer, Marije; Pope, Phillip B.; Hernández, Pablo E.; Pérez-Martínez, Gaspar; Diep, Dzung B.

    2016-01-01

    Production of bacteriocins is a potential probiotic feature of many lactic acid bacteria (LAB) as it can help prevent the growth of pathogens in gut environments. However, knowledge on bacteriocin producers in situ and their function in the gut of healthy animals is still limited. In this study, we investigated five bacteriocin-producing strains of LAB and their isogenic non-producing mutants for probiotic values. The LAB bacteriocins, sakacin A (SakA), pediocin PA-1 (PedPA-1), enterocins P, Q and L50 (enterocins), plantaricins EF and JK (plantaricins) and garvicin ML (GarML), are all class II bacteriocins, but they differ greatly from each other in terms of inhibition spectrum and physicochemical properties. The strains were supplemented to mice through drinking water and changes on the gut microbiota composition were interpreted using 16S rRNA gene analysis. In general, we observed that overall structure of the gut microbiota remained largely unaffected by the treatments. However, at lower taxonomic levels, some transient but advantageous changes were observed. Some potentially problematic bacteria were inhibited (e.g., Staphylococcus by enterocins, Enterococcaceae by GarML, and Clostridium by plantaricins) and the proportion of LAB was increased in the presence of SakA-, plantaricins- and GarML-producing bacteria. Moreover, the treatment with GarML-producing bacteria co-occurred with decreased triglyceride levels in the host mice. Taken together, our results indicate that several of these bacteriocin producers have potential probiotic properties at diverse levels as they promote favorable changes in the host without major disturbance in gut microbiota, which is important for normal gut functioning. PMID:27695121

  2. Coculture-inducible bacteriocin biosynthesis of different probiotic strains by dairy starter culture Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Blaženka Kos

    2011-12-01

    Full Text Available Bacteriocins produced by probiotic strains effectively contribute to colonization ability of probiotic strains and facilitate their establishment in the competitive gut environment and also protect the gut from gastrointestinal pathogens. Moreover, bacteriocins have received considerable attention due to their potential application as biopreservatives, especially in dairy industry. Hence, the objective of this research was to investigate antimicrobial activity of probiotic strains Lactobacillus helveticus M92, Lactobacillus plantarum L4 and Enterococcus faecium L3, with special focus on their bacteriocinogenic activity directed towards representatives of the same or related bacterial species, and towards distant microorganisms including potential food contaminants or causative agents of gut infections. In order to induce bacteriocin production, probiotic cells were cocultivated with Lactococcus lactis subsp. lactis LMG 9450, one of the most important starter cultures in cheese production. The presence of bacteriocin coding genes was investigated by PCR amplification with sequence-specific primers for helveticin and was confirmed for probiotic strain L. helveticus M92. All examined probiotic strains have shown bacteriocinogenic activity against Staphylococcus aureus 3048, Staphylococcus aureus K-144, Escherichia coli 3014, Salmonella enterica serovar Typhimurium FP1, Bacillus subtilis ATCC 6633, Bacillus cereus TM2, which is an important functional treat of probiotic strains significant in competitive exclusion mechanism which provides selective advantage of probiotic strains against undesirable microorganisms in gastrointestinal tract of the host. According to obtained results, living cells of starter culture Lc. lactis subsp. lactis LMG 9450 induced bacteriocin production by examined probiotic strains but starter culture itself was not sensitive to bacteriocin activity.

  3. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives

    Directory of Open Access Journals (Sweden)

    José Luis Parada

    2007-05-01

    Full Text Available Biopreservation systems in foods are of increasing interest for industry and consumers. Bacteriocinogenic lactic acid bacteria and/or their isolated bacteriocins are considered safe additives (GRAS, useful to control the frequent development of pathogens and spoiling microorganisms in foods and feed. The spreading of bacterial antibiotic resistance and the demand for products with fewer chemicals create the necessity of exploring new alternatives, in order to reduce the abusive use of therapeutic antibiotics. In this context, bacteriocins are indicated to prevent the growth of undesirable bacteria in a food-grade and more natural way, which is convenient for health and accepted by the community. According to their properties, structure, molecular weight (MW, and antimicrobial spectrum, bacteriocins are classified in three different groups: lantibiotics and non-lantibiotics of low MW, and those of higher MW. Several strategies for isolation and purification of bacteriocins from complex cultivation broths to final products were described. Biotechnological procedures including salting-out, solvent extraction, ultrafiltration, adsorption-desortion, ion-exchange, and size exclusion chromatography are among the most usual methods. Peptide structure-function studies of bacteriocins and bacterial genetic advances will help to understand the molecular basis of their specificity and mode of action. Nisin is a good example of commercial success, and a good perspective is open to continue the study and development of new bacteriocins and their biotechnological applications. These substances in appropriate concentrations may be used in veterinary medicine and as animal growth promoter instead usual antibiotics, as well as an additional hurdle factor for increasing the shelf life of minimal processed foods.

  4. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Eliette Riboulet-Bisson

    Full Text Available Lactobacilli are gram-positive bacteria that are a subdominant element in the human gastrointestinal microbiota, and which are commonly used in the food industry. Some lactobacilli are considered probiotic, and have been associated with health benefits. However, there is very little culture-independent information on how consumed probiotic microorganisms might affect the entire intestinal microbiota. We therefore studied the impact of the administration of Lactobacillus salivarius UCC118, a microorganism well characterized for its probiotic properties, on the composition of the intestinal microbiota in two model animals. UCC118 has anti-infective activity due to production of the bacteriocin Abp118, a broad-spectrum class IIb bacteriocin, which we hypothesized could impact the microbiota. Mice and pigs were administered wild-type (WT L. salivarius UCC118 cells, or a mutant lacking bacteriocin production. The microbiota composition was determined by pyrosequencing of 16S rRNA gene amplicons from faeces. The data show that L. salivarius UCC118 administration had no significant effect on proportions of major phyla comprising the mouse microbiota, whether the strain was producing bacteriocin or not. However, L. salivarius UCC118 WT administration led to a significant decrease in Spirochaetes levels, the third major phylum in the untreated pig microbiota. In both pigs and mice, L. salivarius UCC118 administration had an effect on Firmicutes genus members. This effect was not observed when the mutant strain was administered, and was thus associated with bacteriocin production. Surprisingly, in both models, L. salivarius UCC118 administration and production of Abp118 had an effect on gram-negative microorganisms, even though Abp118 is normally not active in vitro against this group of microorganisms. Thus L. salivarius UCC118 administration has a significant but subtle impact on mouse and pig microbiota, by a mechanism that seems at least partially

  5. Analysis of natural isolates of Lactobacilli resistant to bacteriocin nisin

    Directory of Open Access Journals (Sweden)

    Strahinić Ivana D.

    2005-01-01

    Full Text Available The collection of lactic acid bacteria (LAB was made by isolation of microorganisms from fermented products traditionally manufactured in different geographical regions (high mountains, river valleys, seaside, etc. Among collected LAB, 51 isolates were identified as Lactobacillus sp. Results showed that all isolated lactobacilli were mesophilic strains, since they grew at 15°C and 30°C but not at 45°C. Testing the ability of isolated lactobacilli to grow in the presence of nisin revealed that Lactobacillus sp. isolates designed BGCGK4, BGHN40, BGBUK2-8, BGBUK2-7 and BGBUK2-16 were resistant to nisin. Determination of the minimal inhibitory concentrations (MIC for nisin revealed that the most resistant isolate was Lactobacillus sp. BGCGK4. Isolate BGBUK2-16, determined as Lactobacillus paracasei subsp. paracasei, produces bacteriocin, named Bac217 and showed a resistance to 8000 IU/ml of nisin. Plasmid curing of BGBUK2-16 resulted in derivatives BGBUK2-16/K2 and BGBUK2-16/K4. Derivative BGBUK2-16/K2 retained resistance to Bac217 and nisin, but lost the ability to synthesise Bac217. Derivative BGBUK2-16/K4 lost concomitantly the resistance to both Bac217 and nisin.

  6. Production of Antilisterial Bacteriocins from Lactic Acid Bacteria in Dairy-Based Media: A Comparative Study.

    Science.gov (United States)

    Ünlü, Gülhan; Nielsen, Barbara; Ionita, Claudia

    2015-12-01

    One hundred and eight strains of lactic acid bacteria (LAB) were screened for bacteriocin production by the modified deferred antagonism and agar well diffusion methods. When the modified deferred antagonism method was employed, 82 LAB strains showed inhibitory action against Listeria monocytogenes v7 ½a, whereas 26 LAB strains expressed no inhibition. Only 12 LAB strains exhibited inhibitory activity when the agar well diffusion method was used, 11 of which had been previously recognized as bacteriocin production positive (Bac(+)). Lactobacillus viridescens NRRL B-1951 was determined, for the first time, to produce an inhibitory compound with a proteinaceous nature. The inhibitory activity was observed in the presence of lipase, α-chymotrypsin, and trypsin, but no inhibition zone could be detected in the presence of proteinase K, indicating the proteinaceous nature of the inhibitory compound. The inhibitory compound was active against Lact. sake ATCC 15521 and Lact. plantarum NCDO 995. Bacteriocin production by the Bac(+) LAB strains was assessed in Lactobacillus MRS Broth as well as in dairy-based media such as nonfat milk, demineralized whey powder, and cheddar cheese whey supplemented with complex nutrient sources that are rich in nitrogen. Lact. sake ATCC 15521 and L. monocytogenes CWD 1002, CWD 1092, CWD 1157, CWD 1198, and v7 ½a were used as indicators. The inhibitory activities of the bacteriocins varied depending on the indicator strains and the growth media used. The LAB indicator strains were found to be more sensitive to inhibition by bacteriocins when compared to the listerial indicator strains. Among the listerial indicators, L. monocytogenes CWD 1002 and CWD 1198 were the most sensitive strains to the bacteriocins investigated in this study. Media composition had a significant influence on bacteriocin production and activity. When compared to demineralized whey powder medium and cheddar cheese whey medium supplemented with whey protein concentrate

  7. Purification and characterization of bacteriocin produced by strain of Lactobacillus brevis MTCC 7539.

    Science.gov (United States)

    Gautam, Neha; Sharma, Nivedita

    2009-08-01

    Bacteriocin, an antimicrobial agent having potential for food biopreservation was purified from Lactobacillus brevis (a safe food-grade bacteria isolated from Vari Kandal, a traditional fermented food of Himachal Pradesh by adopting a novel repeated washing method. Its purity was confirmed by SDS-PAGE and Native-PAGE. The relative molecular mass of bacteriocin was 93.74 kD, while specific activity and recovery were 35.52 folds and 17.13%, respectively. It showed high thermal stability and was active over wide range of pH and exhibited sensitivity to trypsin.

  8. [Enterocin-35, a bacteriocin with activity against Listeria monocytogenes. Possible use in the food industry].

    Science.gov (United States)

    Concha, R; Farías, M E; Kümmerlin, R; Sesma, F

    1999-01-01

    The in vitro inhibitory activity of enterocin-35 produced by Enterococcus faecium CRL 35, was studied against Listeria monocytogenes, isolated from seafoods. Optimal growth conditions of the enterocin-35 producing strain, for higher bacteriocin production and improve the extraction and purification of these peptides, were applied. A crude extract of enterocin-35 was assayed in a frozen seafood artificially contaminated with Listeria monocytogenes isolate, simulating at laboratory scale an eventual application of this biopreservant in a routine production process at factory level. The feasibility of biopreservation of seafoods by means of bacteriocins is proposed and discussed.

  9. Physical chemical and biological characterization of a new bacteriocin produced byBacillus cereusNS02

    Institute of Scientific and Technical Information of China (English)

    Senbagam D; Gurusamy R; Senthilkumar B

    2013-01-01

    Objective:To screen the bacteriocinogenic isolate from buffalo milk and to characterize it on physical, chemical and biological aspects for the application in biopreservation.Methods:Bacillus cereus(B. cereus) was isolated and assessed for its baceteriocinogenic activity. Bacteriocin was produced and purified by ammonium sulphate precipitation, dialysis and gel filtration chromatography.Purified bacteriocin was used to check its antimicrobial activity against food borne bacteria.Effect and stability of bacteriocin was determined with the respect to temperature, pH, enzymes, organic solvents and chemicals.Bacteriocin was also subjected toSDSPAGE analysis to determine its molecular weight.In addition, functional groups exist in the bacteriocin was determined byFTIR analysis.Results:B. cereus was identified by16S rRNA sequence analysis.Bacteriocin showed increased activity against all the bacteria used and its activity unit was found to be51,200AU/mL.It was stable to high temperature(100 ℃) and wide range of pH(3-10), sensitive to proteolytic enzymes and resistant to nonproteolytic enzymes.It was low molecular weight(3.5 -6KDa) protein andFTIR study revealed the presence of amide group andNH stretching.Conclusions:Bacteriocin produced in this study possesses the highest antimicrobial activity against both gram positive and gram negative bacteria thereby it has immense application as biopreservative agent.FTIR proved its peptide nature.

  10. ANTIMICROBIAL ACTIVITY OF BACTERIOCIN FROM INDIGENOUS Lactobacillus plantarum 2C12 AND ITS APPLICATION ON BEEF MEATBALL AS BIOPRESERVATIVE

    Directory of Open Access Journals (Sweden)

    I.I. Arief

    2014-10-01

    Full Text Available One purpose of food preservation is to extend the shelf life of foods. Biological preservations canbe conducted by adding antimicrobial substances, such as bacteriocin produced by lactic acid bacteriaand has been characterized as biopreservatives. The aims of this research were to evaluate antimicrobialactivity of bacteriocin produced by indigenous lactic acid bacteria Lactobacillus plantarum 2C12isolated from local beef and to study the quality of beef meatball with 0.3% bacteriocin asbiopreservative at different storage times (0, 3, and 6 days in cold temperature (4oC, compared to 0.3%nitrite and control (without preservative. The results showed that bacteriocin from L. plantarum 2C12could inhibit pathogenic bacteria such as Escherichia coli, Staphylococcus aureus and SalmonellaTyphimurium. Bacteriocin was effective as well as nitrite as biopreservatives of meatballs by inhibitingthe growth of total microbes and E. coli. The addition of bacteriocin did not lead the physical andnutritional changes in the meatballs. The quality of meatball with bacteriocin treatment conformed withIndonesia National Standard of meatball.

  11. ANTIMICROBIAL ACTIVITY OF BACTERIOCIN FROM INDIGENOUS Lactobacillus plantarum 2C12 AND ITS APPLICATION ON BEEF MEATBALL AS BIOPRESERVATIVE

    Directory of Open Access Journals (Sweden)

    T. Suryati

    2012-06-01

    Full Text Available One purpose of food preservation is to extend the shelf life of foods. Biological preservations can be conducted by adding antimicrobial substances, such as bacteriocin produced by lactic acid bacteria and has been characterized as biopreservatives. The aims of this research were to evaluate antimicrobial activity of bacteriocin produced by indigenous lactic acid bacteria Lactobacillus plantarum 2C12 isolated from local beef and to study the quality of beef meatball with 0.3% bacteriocin as biopreservative at different storage times (0, 3, and 6 days in cold temperature (4oC, compared to 0.3% nitrite and control (without preservative. The results showed that bacteriocin from L. plantarum 2C12 could inhibit pathogenic bacteria such as Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. Bacteriocin was effective as well as nitrite as biopreservatives of meatballs by inhibiting the growth of total microbes and E. coli. The addition of bacteriocin did not lead the physical and nutritional changes in the meatballs. The quality of meatball with bacteriocin treatment conformed with Indonesia National Standard of meatball.

  12. The partial characterization of the antibacterial peptide bacteriocin G2 produced by the probiotic bacteria Lactobacillus plantarum G2

    Directory of Open Access Journals (Sweden)

    SVETLANA L. ŠEATOVIĆ

    2011-05-01

    Full Text Available The aim of this study was the partial characterization of the antimicrobial peptide bacteriocin G2 produced by probiotic bacteria Lactobacillus plantarum G2, which was isolated from a clinical sample of a healthy person. Antimicrobial substance was secreted in the supernatant of an L. plantarum G2 culture, and showed a diverse spectrum of antimicrobial activity of all the tested strains of the genera Lactobacillus and the pathogenic bacteria Staphylococcus aureus and Salmonella аbony. Isoelectric focusing revealed that bacteriocin G2 is a cationic peptide (pI about 10 with a molecular mass of 2.2 kDa according to tricine–sodium dodecyl sulphate–polyacrylamide gel electrophoresis, SDS-PAGE. The antimicrobial activity of bacteriocin G2 was diminished by the proteolytic action of trypsin and proteinase K. Bacteriocin G2 preserved its biological activity in the temperature range 40–60 °C (15 min, which was lost at 80 °C. Bacteriocin G2 was stable in the pH range 2–9, while treatment with 1 % Tween 80 and 1 % urea resulted in increased antimicrobial activity. The probiotic strain L. plantarum G2 produces the antimicrobial substance proteinaceous in nature with bacteriocin characteristics. Bacteriocin production is one of the key properties of probiotic bacteria with clinical potential as anti-infective agents, which will increase the likelihood of its in vivo efficacy.

  13. Isolation and purification of two bacteriocins 3D produced by Enterococcus faecium with inhibitory activity against Listeria monocytogenes.

    Science.gov (United States)

    Bayoub, Kaoutar; Mardad, Ilham; Ammar, Emna; Serrano, Aurelio; Soukri, Abdelaziz

    2011-02-01

    Strain 3D, isolated from fermented traditional Moroccan dairy product, and identified as Enterococcus faecium, was studied for its capability to produce two bacteriocins acting against Listeria monocytogenes. Bacteriocins 3 Da and 3Db were heat stable inactivated by proteinase K, pepsin, and trypsin but not when treated with catalase. The evidenced bacteriocins were stable in a wide pH range from 2 to 11 and bactericidal activity was kept during storage at 4°C. However, the combination of temperature and pH exhibited a stability of the bacteriocins. RP-HPLC purification of the anti-microbial compounds shows two active fractions eluted at 16 and 30.5 min, respectively. Mass spectrometry analysis showed that E. faecium 3D produce two bacteriocins Enterocin 3 Da (3893.080 Da) and Enterocin 3Db (4203.350 Da). This strain is food-grade organism and its bacteriocins were heat-stable peptides at basic, neutral, and acid pH: such bacteriocins may be of interest as food preservatives.

  14. Two-Component Regulatory Systems – implication in the quorum sensing mechanisms and bacteriocin production in lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Lia–Mara Ditu

    2014-08-01

    Full Text Available For lactic acid bacteria, the mechanisms of quorum sensing and response are mediated by peptides or pheromones that interfere with the synthesis of antimicrobial peptides (AMP called bacteriocins, when these molecules reach a certain critical level of concentration. Generally, the synthesis and activity of pheromones is adjusted by means of a two-component regulatory system. The observation that some microorganisms, in particular lactic acid bacteria, produce bacteriocins according to the cell density, has led to the discovery of the involvement of QS mechanisms in the synthesis of these peptides. Bacteriocins synthesis is inducible, the process requiring the extracellular accumulation of peptides that functions as chemical messengers activators of bacteriocins synthesis. This minireview presents the molecular architecture and functions of two-component regulatory systems and ABC transporters implicated in the synthesis and secretion of nisin, one of the most studied bacteriocin. The elucidation of the intimate mechanisms of bacteriocins synthesis is equally of biotechnological and medical importance, opening interesting perspectives for the development of improved technologies for the production of bacteriocins with good yields, and also, for increasing the beneficial anti-infective roles of probiotic bacteria when administered in vivo.

  15. Development of Freeze-Dried Bacteriocin-Containing Preparations from Lactic Acid Bacteria to Inhibit Listeria monocytogenes and Staphylococcus aureus.

    Science.gov (United States)

    Dimitrieva-Moats, Galina Yu; Ünlü, Gülhan

    2012-03-01

    There has been a recent movement to produce and consume "minimally processed" and more "natural" foods through the use of fewer chemical preservatives. The shift to more "natural" foods has resulted in a great interest in the use of bacteriocins from lactic acid bacteria as natural biopreservatives. The objective of this comparative study was to identify bacteriocins that can be produced in low-cost or no-cost dairy-based media (DBM), concentrated using freeze-drying, and applied to Cheddar cheese samples to concurrently inhibit Listeria monocytogenes and Staphylococcus aureus. Select bacteriocin producers were grown in DBM, their cell-free supernatants (CFS) were frozen, and the frozen CFS samples were freeze-dried to produce bacteriocin-containing powders. Cheddar cheese samples were challenged with L. monocytogenes or Staph. aureus cells. The challenged samples were exposed to buffered solutions of freeze-dried powders containing bacteriocins, incubated at 4 °C for 24-72 h, and plated onto appropriate selective media. All freeze-dried bacteriocin-containing powders tested were active against L. monocytogenes and Staph. aureus. Our research findings indicated that low-cost or no-cost DBM could successfully be used for production of bacteriocin-containing preparations. In addition, freeze-drying was determined to be a feasible approach to prepare concentrated and stable bacteriocin-containing powders for prospective food applications. The prevention of even a very small percentage of foodborne illnesses via the use of bacteriocins as natural biopreservatives would help reduce the number of foodborne illness-related hospitalizations, deaths, and financial loss due to medical expenses, lost income/productivity, cost of litigation/penalties, and loss of trade.

  16. Complete genome sequence of Lactobacillus paraplantarum L-ZS9, a probiotic starter producing class II bacteriocins.

    Science.gov (United States)

    Liu, Lei; Li, Pinglan

    2016-03-20

    Lactobacillus paraplantarum L-ZS9 is a probiotic starter isolated from fermented sausage and it is a great producer of class II bacteriocins. To the best of our knowledge, this is the first complete sequenced genome of L. paraplantarum deposited in GenBank database. The size of the complete genome of L. paraplantarum L-ZS9 is 3,139,729 bp. The genomic sequence revealed that this strain includes 19 genes involved in class II bacteriocins production and regulation. The information fill the gaps of the L. paraplantarum genome information and contribute to the improvement of class II bacteriocins research.

  17. Genotyping by randomly amplified polymorphic DNA of bacteriocin producing Lactobacillus acidophilus strains from Nigeria.

    Science.gov (United States)

    Alli, John Adeolu; Iwalokun, Bamidele A; Oluwadun, Afolabi; Okonko, Iheanyi Omezuruike

    2015-01-01

    Yogurt and starter culture producers are still searching strains of Lactobacillus acidophilus to produce healthier yogurt with a longer shelf life and better texture, taste, and quality. This study determined the genotyping of bacteriocin producing Lactobacillus acidophilus strains recovered from Nigerian yogurts. Yogurt samples were collected from four different states of South West regions of Nigeria. Isolates were obtained from MRS Medium and biochemically characterized. This was further confirmed by API50CH. The bacteriocin positivity and activity was determined. Genomic characterization of our Lactobacillus acidophilus strains was done with randomly amplified polymorphic DNA-PCR. All yogurt samples containing Lactobacillus acidophilus strains meet the probiotic requirement of ≥10(6) cfu/mL. The gel picture revealed 6 RAPD clonal types of Lactobacillus acidophilus strains with RAPD type C observed to be more common. Significant differences existed in the mean growth inhibition zone (t = -7.32, P 0.05 Staphylococcus aureus). No correlation between the bacteriocin production, activity, and their RAPD clonal division (X(2) = 7.49, P = 0.1610, df = 5). In conclusion, L. acidophilus isolated in Nigeria samples met the probiotic requirements of ≥10(6) cfu/mL and produce bacteriocins with good spectrum of activity.

  18. Biochemical characterisation and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus.

    Science.gov (United States)

    Netz, Daili Jacqueline Aguilar; Pohl, Regula; Beck-Sickinger, Annette G; Selmer, Thorsten; Pierik, Antonio J; Bastos, Maria do Carmo de Freire; Sahl, Hans-Georg

    2002-06-07

    Aureocin A53 is produced by Staphylococcus aureus A53. It is encoded on a 10.4 kb plasmid, pRJ9, and is active against Listeria monocytogenes. Aureocin A53 is a highly cationic 51-residue peptide containing ten lysine and five tryptophan residues. Aureocin A53 was purified to homogeneity by hydrophobic-interaction, cation-exchange, and reverse-phase chromatography. MALDI-TOF mass spectrometry yielded a molecular mass of 6012.5 Da, which was 28 Da higher than predicted from the structural gene sequence of the bacteriocin. The mass increment resulted from an N-formylmethionine residue, indicating that the aureocin A53 is synthesised and secreted without a typical bacteriocin leader sequence or sec-dependent signal peptide. The structural identity of aureocin A53 was verified by Edman sequencing after de-blocking with cyanogen bromide and extensive mass spectrometry analysis of enzymatically and laser-generated fragments. The complete sequence of pRJ9 was determined and none of the open reading frames identified in the vicinity of the structural gene aucA showed similarity to genes that are typically found in bacteriocin gene clusters. Thus, neither a dedicated protease or transporter, nor modifying enzymes and regulatory elements seemed to be involved in the production of aureocin A53. Further unique features that distinguish aureocin A53 from other peptide bacteriocins include remarkable protease stability and a defined, rigid structure in aqueous solution.

  19. Genome mining demonstrates the widespread occurrence of gene clusters encoding bacteriocins in cyanobacteria.

    Science.gov (United States)

    Wang, Hao; Fewer, David P; Sivonen, Kaarina

    2011-01-01

    Cyanobacteria are a rich source of natural products with interesting biological activities. Many of these are peptides and the end products of a non-ribosomal pathway. However, several cyanobacterial peptide classes were recently shown to be produced through the proteolytic cleavage and post-translational modification of short precursor peptides. A new class of bacteriocins produced through the proteolytic cleavage and heterocyclization of precursor proteins was recently identified from marine cyanobacteria. Here we show the widespread occurrence of bacteriocin gene clusters in cyanobacteria through comparative analysis of 58 cyanobacterial genomes. A total of 145 bacteriocin gene clusters were discovered through genome mining. These clusters encoded 290 putative bacteriocin precursors. They ranged in length from 28 to 164 amino acids with very little sequence conservation of the core peptide. The gene clusters could be classified into seven groups according to their gene organization and domain composition. This classification is supported by phylogenetic analysis, which further indicated independent evolutionary trajectories of gene clusters in different groups. Our data suggests that cyanobacteria are a prolific source of low-molecular weight post-translationally modified peptides.

  20. Genome mining demonstrates the widespread occurrence of gene clusters encoding bacteriocins in cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Hao Wang

    Full Text Available Cyanobacteria are a rich source of natural products with interesting biological activities. Many of these are peptides and the end products of a non-ribosomal pathway. However, several cyanobacterial peptide classes were recently shown to be produced through the proteolytic cleavage and post-translational modification of short precursor peptides. A new class of bacteriocins produced through the proteolytic cleavage and heterocyclization of precursor proteins was recently identified from marine cyanobacteria. Here we show the widespread occurrence of bacteriocin gene clusters in cyanobacteria through comparative analysis of 58 cyanobacterial genomes. A total of 145 bacteriocin gene clusters were discovered through genome mining. These clusters encoded 290 putative bacteriocin precursors. They ranged in length from 28 to 164 amino acids with very little sequence conservation of the core peptide. The gene clusters could be classified into seven groups according to their gene organization and domain composition. This classification is supported by phylogenetic analysis, which further indicated independent evolutionary trajectories of gene clusters in different groups. Our data suggests that cyanobacteria are a prolific source of low-molecular weight post-translationally modified peptides.

  1. Novel mechanism of bacteriocin secretion and immunity carried out by lactococcal multidrug resistance proteins

    NARCIS (Netherlands)

    Gajic, O; Buist, G; Kojic, M; Topisirovic, L; Kuipers, OP; Kok, J

    2003-01-01

    A natural isolate of Lactococcus lactis was shown to produce two narrow spectrum class II bacteriocins, designated LsbA and LsbB. The cognate genes are located on a 5.6-kb plasmid within a gene cluster specifying LmrB, an ATP-binding cassette-type multidrug resistance transporter protein. LsbA is a

  2. Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574

    NARCIS (Netherlands)

    Kemperman, R; Kuipers, A; Karsens, H; Nauta, A; Kuipers, O; Kok, J

    2003-01-01

    Two novel antibacterial peptides of clostridiall species were purified, N-terminally sequenced, and characterized. Moreover, their structural genes were identified. Closticin 574 is an 82-amino-acid bacteriocin produced by Clostridium tyrobutyricum ADRIAT 932. The supernatant of the producing strain

  3. Complementary and Overlapping Selectivity of the Two-Peptide Bacteriocins Plantaricin EF and JK

    NARCIS (Netherlands)

    Moll, Gert N.; Akker, Emile van den; Hauge, Håvard H.; Nissen-Meyer, Jon; Nes, Ingolf F.; Konings, Wil N.; Driessen, Arnold J.M.

    1999-01-01

    Plantaricin EF and JK are both two-peptide bacteriocins produced by Lactobacillus plantarum C11. The mechanism of plantaricin EF and JK action was studied on L. plantarum 965 cells. Both plantaricins form pores in the membranes of target cells and dissipate the transmembrane electrical potential (Δψ

  4. Bacteriocins with a broader antimicrobial spectrum prevail in enterococcal symbionts isolated from the hoopoe's uropygial gland.

    Science.gov (United States)

    Ruiz-Rodríguez, Magdalena; Martínez-Bueno, Manuel; Martín-Vivaldi, Manuel; Valdivia, Eva; Soler, Juan J

    2013-09-01

    The use of compounds produced by symbiotic bacteria against pathogens in animals is one of the most exciting discoveries in ecological immunology. The study of those antibiotic metabolites will enable an understanding of the defensive strategies against pathogenic infections. Here, we explore the role of bacteriocins explaining the antimicrobial properties of symbiotic bacteria isolated from the uropygial gland of the hoopoe (Upupa epops). The antagonistic activity of 187 strains was assayed against eight indicator bacteria, and the presence of six bacteriocin genes was detected in the genomic DNA. The presence of bacteriocin genes correlated with the antimicrobial activity of isolates. The most frequently detected bacteriocin genes were those encoding for the MR10 and AS-48 enterocins, which confer the highest inhibition capacity. All the isolates belonged to the genus Enterococcus, with E. faecalis as the most abundant species, with the broadest antimicrobial spectrum and the highest antagonistic activity. The vast majority of E. faecalis strains carried the genes of MR10 and AS-48 in their genome. Therefore, we suggest that fitness-related benefits for hoopoes associated with harbouring the most bactericidal symbionts cause the highest frequency of strains carrying MR10 and AS-48 genes. The study of mechanisms associated with the acquisition and selection of bacterial symbionts by hoopoes is necessary, however, to reach further conclusions.

  5. Bacteriocins and other bioactive substances of probiotic lactobacilli as biological weapons against Neisseria gonorrhoeae.

    Science.gov (United States)

    Ruíz, Francisco O; Pascual, Liliana; Giordano, Walter; Barberis, Lucila

    2015-04-01

    In the search of new antimicrobial agents against Neisseria gonorrhoeae, the bacteriocins-producing probiotic lactobacilli deserve special attention. The inhibitory effects of biosubstances such as organic acids, hydrogen peroxide and each bacteriocin-like inhibitory substance (BLIS) L23 and L60 on the growth of different gonococcal strains were investigated. Different non-treated and treated cell-free supernatants of two probiotic lactobacilli containing these metabolites were used. The aims of this work were (i) to evaluate the antimicrobial activity of the biosubstances produced by two probiotic lactobacilli, estimating the proportion in which each of them is responsible for the inhibitory effect, (ii) to define their minimum inhibitory concentrations (MICs) and, (iii) to determine the potential interactions between these biosubstances against N. gonorrhoeae. The main antimicrobial metabolites were the BLIS-es L23 and L60 in comparison with other biosubstances. Proportionally, their contributions to the inhibition on the gonococcal growth were 87.28% and 80.66%, respectively. The MIC values of bacteriocins were promising since these substances, when diluted, showed considerable inhibitory activity for all gonococci. In the interaction between bacteriocins, 100% of synergism was found on the gonococcal growth. In summary, this study indicates that both L23 and L60 could potentially serve to design new bioproducts against N. gonorrhoeae.

  6. Genetic features of circular bacteriocins produced by Gram-positive bacteria

    NARCIS (Netherlands)

    Maqueda, Mercedes; Sánchez-Hidalgo, Marina; Fernández, Matilde; Montalbán-López, Manuel; Valdivia, Eva; Martínez-Bueno, Manuel

    2008-01-01

    This review highlights the main genetic features of circular bacteriocins, which require the co-ordinated expression of several genetic determinants. In general terms, it has been demonstrated that the expression of such structural genes must be combined with the activity of proteins involved in mat

  7. Applications of Bacteriocins in Broiler Chickens to Reduce Carriage of Campylobacter and Salmonella

    Science.gov (United States)

    The paper will review studies which have used a variety of bacteriocins to treat Campylobacter jejuni and Salmonella enteritidis colonized broiler chickens. Antagonistic bacteria were chosen by selecting those isolates which produced zones of inhibition among confluent C. jejuni growth. From the...

  8. Draft Genome Sequence of Carnobacterium divergens V41, a Bacteriocin-Producing Strain

    Science.gov (United States)

    Remenant, Benoît; Borges, Frédéric; Cailliez-Grimal, Catherine; Revol-Junelles, Anne-Marie; Marché, Laurent; Lajus, Aurélie; Médigue, Claudine; Pilet, Marie-France; Prévost, Hervé

    2016-01-01

    In this study, we present the draft genome sequence of Carnobacterium divergens V41. This strain was previously reported as producing divercin V41, a bacteriocin of interest for food biopreservation. Its genome revealed also the presence of a gene cluster putatively involved in polyketide production, which is unique in lactic acid bacteria. PMID:27738030

  9. Diversity of Streptococcus thermophilus in bacteriocin production; inhibitory spectrum and occurrence of thermophilin genes.

    Science.gov (United States)

    Rossi, Franca; Marzotto, Marta; Cremonese, Silvia; Rizzotti, Lucia; Torriani, Sandra

    2013-08-01

    The bacteriocin-producing Streptococcus thermophilus strains that can dominate in natural dairy ecosystems, may also enhance safety in products obtained from natural cultures. In this study, we sought to identify bacteriocin production and bacteriocin genes in 75 strains of dairy and plant origin. The strains were tested for antimicrobial activity against pathogens or pathogen models, spoiling bacteria, and lactic acid bacteria associated with dairy products. All strains moderately inhibited Staphylococcus aureus P310, none inhibited Listeria innocua LMG 11387(T) or Clostridium tyrobutyricum LMG 1285(T). In addition, 14 were active against one or more indicators in addition to S. aureus P310. Inhibition of other starter bacteria was more common than the inhibition of unwanted microorganisms. The involvement of a proteinaceous compound was ascertained in all cases. Results suggested that the selection of bacteriocinogenic S. thermophilus strains for use in biopreservation must take into account the effects exerted on other lactic acid bacteria. PCR detection of thermophilin genes proved unreliable in predicting antimicrobial activity. For S. thermophilus PRI36 and PRI45, with relevant inhibitory features, the identity of the bacteriocin genes present in the thermophilin 9 cluster was defined, thus revealing novel variants for this genome region.

  10. Topology of LcnD, a protein implicated in the transport of bacteriocins from Lactococcus lactis

    NARCIS (Netherlands)

    Franke, Christian M.; Leenhouts, Kees J.; Haandrikman, Alfred J.; Kok, Jan; Venema, Gerard; Venema, Koen

    1996-01-01

    Four in-frame translational fusions to both the reporter proteins beta-galactosidase and alkaline phosphatase support a topological model of LcnD, a protein implicated in the transport of several bacteriocins from Lactococcus lactis, in which the N-terminal part is located intracellularly and one tr

  11. Coordinated Bacteriocin Expression and Competence in Streptococcus pneumoniae Contributes to Genetic Adaptation through Neighbor Predation.

    Science.gov (United States)

    Wholey, Wei-Yun; Kochan, Travis J; Storck, David N; Dawid, Suzanne

    2016-02-01

    Streptococcus pneumoniae (pneumococcus) has remained a persistent cause of invasive and mucosal disease in humans despite the widespread use of antibiotics and vaccines. The resilience of this organism is due to its capacity for adaptation through the uptake and incorporation of new genetic material from the surrounding microbial community. DNA uptake and recombination is controlled by a tightly regulated quorum sensing system that is triggered by the extracellular accumulation of competence stimulating peptide (CSP). In this study, we demonstrate that CSP can stimulate the production of a diverse array of blp bacteriocins. This cross stimulation occurs through increased production and secretion of the bacteriocin pheromone, BlpC, and requires a functional competence regulatory system. We show that a highly conserved motif in the promoter of the operon encoding BlpC and its transporter mediates the upregulation by CSP. The accumulation of BlpC following CSP stimulation results in augmented activation of the entire blp locus. Using biofilm-grown organisms as a model for competition and genetic exchange on the mucosal surface, we demonstrate that DNA exchange is enhanced by bacteriocin secretion suggesting that co-stimulation of bacteriocins with competence provides an adaptive advantage. The blp and com regulatory pathways are believed to have diverged and specialized in a remote ancestor of pneumococcus. Despite this, the two systems have maintained a regulatory connection that promotes competition and adaptation by targeting for lysis a wide array of potential competitors while simultaneously providing the means for incorporation of their DNA.

  12. Coordinated Bacteriocin Expression and Competence in Streptococcus pneumoniae Contributes to Genetic Adaptation through Neighbor Predation.

    Directory of Open Access Journals (Sweden)

    Wei-Yun Wholey

    2016-02-01

    Full Text Available Streptococcus pneumoniae (pneumococcus has remained a persistent cause of invasive and mucosal disease in humans despite the widespread use of antibiotics and vaccines. The resilience of this organism is due to its capacity for adaptation through the uptake and incorporation of new genetic material from the surrounding microbial community. DNA uptake and recombination is controlled by a tightly regulated quorum sensing system that is triggered by the extracellular accumulation of competence stimulating peptide (CSP. In this study, we demonstrate that CSP can stimulate the production of a diverse array of blp bacteriocins. This cross stimulation occurs through increased production and secretion of the bacteriocin pheromone, BlpC, and requires a functional competence regulatory system. We show that a highly conserved motif in the promoter of the operon encoding BlpC and its transporter mediates the upregulation by CSP. The accumulation of BlpC following CSP stimulation results in augmented activation of the entire blp locus. Using biofilm-grown organisms as a model for competition and genetic exchange on the mucosal surface, we demonstrate that DNA exchange is enhanced by bacteriocin secretion suggesting that co-stimulation of bacteriocins with competence provides an adaptive advantage. The blp and com regulatory pathways are believed to have diverged and specialized in a remote ancestor of pneumococcus. Despite this, the two systems have maintained a regulatory connection that promotes competition and adaptation by targeting for lysis a wide array of potential competitors while simultaneously providing the means for incorporation of their DNA.

  13. Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology.

    Science.gov (United States)

    Prudêncio, Cláudia Vieira; Dos Santos, Miriam Teresinha; Vanetti, Maria Cristina Dantas

    2015-09-01

    Bacteriocins are ribosomally synthesized peptides that have bacteriostatic or bactericidal effects on other bacteria. The use of bacteriocins has emerged as an important strategy to increase food security and to minimize the incidence of foodborne diseases, due to its minimal impact on the nutritional and sensory properties of food products. Gram-negative bacteria are naturally resistant to the action of bacteriocins produced by Gram-positive bacteria, which are widely explored in foods. However, these microorganisms can be sensitized by mild treatments, such as the use of chelating agents, by treatment with plant essential oils or by physical treatments such as heating, freezing or high pressure processing. This sensitization is important in food microbiology, because most pathogens that cause foodborne diseases are Gram-negative bacteria. However, the effectiveness of these treatments is influenced by several factors, such as pH, temperature, the composition of the food and target microbiota. In this review, we comment on the main methods used for the sensitization of Gram-negative bacteria, especially Salmonella, to improve the action of bacteriocins produced by Gram-positive bacteria.

  14. Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria

    NARCIS (Netherlands)

    Rodriguez, JM; Martinez, MI; Kok, J

    2002-01-01

    Pediocin PA-1 is a broad-spectrum lactic acid bacteria bacteriocin that shows a particularly strong activity against Listeria monocytogenes, a foodborne pathogen of special concern among the food industries. This antimicrobial peptide is the most extensively studied class IIa (or pediocin family) ba

  15. New bacteriocin from Bacillus clausii strainGM17: purification, characterization, and biological activity.

    Science.gov (United States)

    Mouloud, Ghadbane; Daoud, Harzallah; Bassem, Jaouadi; Laribi Atef, Ibn; Hani, Belhadj

    2013-12-01

    A bacteriocin-producing strain (9,000 AU/ml) was isolated from the rhizosphere of Algerian healthy plants Ononis angustissima Lam. and identified as Bacillus clausii strain GM17. The bacteriocin, called Bac-GM17, was purified from the culture supernatant after heat treatment, ammonium sulfate precipitation, Sephadex G-50 chromatography and Mono Q fast-performance liquid chromatography (FPLC). Based on matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis, the purified Bac-GM17 is a monomer protein with a molecular mass of 5,158.11 Da. The N-terminal sequencing allowed for the straightforward identification of its first 20 residues, which were of pure bacteriocin. It also revealed that this bacteriocin contained a unique sequence, namely DWTCSKWSCLVCDDCSVELT, which suggests the identification of a novel compound. Bac-GM17 was extremely heat stable (20 min at 120 °C) and was stable within the pH range (3-9). It was found to be resistant to the proteolytic action of trypsin, pepsin, papain, pronase E, and proteinase K. It was also noted to display a bactericidal mode of action against Agrobacterium tumefaciens C58 and a fungistatic mode of action against Candida tropicalis R2 CIP203.

  16. Isolation and Characterization of a Broad Spectrum Bacteriocin from Bacillus amyloliquefaciens RX7.

    Science.gov (United States)

    Lim, Kong Boon; Balolong, Marilen P; Kim, Sang Hoon; Oh, Ju Kyoung; Lee, Ji Yoon; Kang, Dae-Kyung

    2016-01-01

    We isolated a Bacillus strain, RX7, with inhibitory activity against Listeria monocytogenes from soil and identified it as Bacillus amyloliquefaciens based on 16S rRNA gene sequencing. The inhibitory activity was stable over a wide range of pH and was fully retained after 30 min at 80°C, after which it decreased gradually at higher temperatures. The activity was sensitive to the proteolytic action of α-chymotrypsin, proteinase-K, and trypsin, indicating its proteinaceous nature. This bacteriocin was active against a broad spectrum of bacteria and the fungus Candida albicans. Direct detection of antimicrobial activity on a sodium dodecyl sulfate-polyacrylamide gel suggested an apparent molecular mass of approximately 5 kDa. Ammonium sulfate precipitation and anion-exchange and gel permeation chromatography integrated with reverse phase-high-performance liquid chromatography were used for bacteriocin purification. Automated N-terminal Edman degradation of the purified RX7 bacteriocin recognized the first 15 amino acids as NH2-X-Ala-Trp-Tyr-Asp-Ile-Arg-Lys-Leu-Gly-Asn-Lys-Gly-Ala, where the letter X in the sequence indicates an unknown or nonstandard amino acid. Based on BLAST similarity search and multiple alignment analysis, the obtained partial sequence showed high homology with the two-peptide lantibiotic haloduracin (HalA1) from Bacillus halodurans, although at least two amino acids differed between the sequences. A time-kill study demonstrated a bactericidal mode of action of RX7 bacteriocin.

  17. Partial purification and characterization of bacteriocin produced by Enterococcus faecalis DU10 and its probiotic attributes.

    Science.gov (United States)

    Perumal, Venkatesh; Repally, Ayyanna; Dasari, Ankaiah; Venkatesan, Arul

    2016-10-01

    A novel bacteriocin produced by avian duck isolated lactic acid bacterium Enterococcus faecalis DU10 was isolated. This bacteriocin showed a broad spectrum of antibacterial activity against important food-borne pathogens and was purified by size exclusion chromatography followed by reverse-phase high-performance liquid chromatography in a C-18 column. Tricine-SDS PAGE revealed the presence of a band with an estimated molecular mass of 6.3 kDa. The zymogram clearly linked the antimicrobial activity with this band. This result was further confirmed by mass-assisted laser desorption ionization time-of-flight mass spectrometry, since a sharp peak corresponding to 6.313 kDa was detected and the functional groups were revealed by Fourier transform infrared spectroscopy. Bacteriocin DU10 activity was found sensitive to proteinase-K and pepsin and partially affected by trypsin and α-chymotrypsin. The activity of bacteriocin DU10 was partially resistant to heat treatments ranging from 30 to 90°C for 30 min. It also withstood a treatment at 121°C for 10 min. Cytotoxicity of bacteriocin DU10 by methyl-thiazolyl-diphenyl-tetrazolium bromide assay showed that the viability of HT-29 and HeLa cells decreased 60 ± 0.7% and 43 ± 4.8%, respectively, in the presence of 3,200 AU/mL of bacteriocin. The strain withstood 0.3% w/v of bile oxgall and pH 2 affected the bacterial growth between 2 and 4 hr of incubation. Adhesion properties examined with HT-29 cell line showed 69.85% initial population of strain E. faecalis DU10, which was found to be strongly adhered to this cell line. These results conclude bacteriocin DU10 may be used as a potential biopreservative and E. faecalis DU10 may be used as a potential probiont to control Salmonella infections.

  18. Variable characteristics of bacteriocin-producing Streptococcus salivarius strains isolated from Malaysian subjects.

    Directory of Open Access Journals (Sweden)

    Abdelahhad Barbour

    Full Text Available BACKGROUND: Salivaricins are bacteriocins produced by Streptococcus salivarius, some strains of which can have significant probiotic effects. S. salivarius strains were isolated from Malaysian subjects showing variable antimicrobial activity, metabolic profile, antibiotic susceptibility and lantibiotic production. METHODOLOGY/PRINCIPAL FINDINGS: In this study we report new S. salivarius strains isolated from Malaysian subjects with potential as probiotics. Safety assessment of these strains included their antibiotic susceptibility and metabolic profiles. Genome sequencing using Illumina's MiSeq system was performed for both strains NU10 and YU10 and demonstrating the absence of any known streptococcal virulence determinants indicating that these strains are safe for subsequent use as probiotics. Strain NU10 was found to harbour genes encoding salivaricins A and 9 while strain YU10 was shown to harbour genes encoding salivaricins A3, G32, streptin and slnA1 lantibiotic-like protein. Strain GT2 was shown to harbour genes encoding a large non-lantibiotic bacteriocin (salivaricin-MPS. A new medium for maximum biomass production buffered with 2-(N-morpholinoethanesulfonic acid (MES was developed and showed better biomass accumulation compared with other commercial media. Furthermore, we extracted and purified salivaricin 9 (by strain NU10 and salivaricin G32 (by strain YU10 from S. salivarius cells grown aerobically in this medium. In addition to bacteriocin production, S. salivarius strains produced levan-sucrase which was detected by a specific ESI-LC-MS/MS method which indicates additional health benefits from the developed strains. CONCLUSION: The current study established the bacteriocin, levan-sucrase production and basic safety features of S. salivarius strains isolated from healthy Malaysian subjects demonstrating their potential for use as probiotics. A new bacteriocin-production medium was developed with potential scale up application for

  19. Rapid and efficient purification method for small, hydrophobic, cationic bacteriocins : Purification of lactococcin B and pediocin PA-1

    NARCIS (Netherlands)

    Venema, Koen; Chikindas, Michael L.; Seegers, Jos F.M.L.; Haandrikman, Alfred J.; Leenhouts, Kees J.; Venema, Gerard; Kok, Jan

    1997-01-01

    The bacteriocins lactococcin B and pediocin PA 1 were purified by ethanol precipitation, preparative isoelectric focusing, and ultrafiltration. The procedure reproducibly leads to high final yields in comparison to the generally low yields obtained by column chromatography. Specifically, during isoe

  20. Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K TO Listeria sp.

    Science.gov (United States)

    Todorov, Svetoslav D

    2008-01-01

    Bacteriocin AMA-K produced by Lactobacillus plantarum AMA-K inhibits the growth of Enterococcus spp., Escherichia coli, Klebsiella pneumoniae and Listeria spp. Growth of strain AMA-K in BHI, M17, soy milk and molasses was similar to growth in MRS. The effect of organic nitrogen sources, carbohydrates, glycerol, K2HPO4 and KH2PO4, MgSO4, MnSO4, tri-ammonium citrate, Tween 80, vitamins and initial pH on bacteriocin AMA-K was determined. The mode of action of bacteriocin AMA-K was studied. The effect of bacteriocin AMA-K to actively growing Listeria innocua LMG13568, L. ivanovii subsp. ivanovii ATCC19119 and L. monocytogenes ScottA was determined. Adsorption of bacteriocin AMA-K to target cells at different temperatures, pH and in presence of Tween 20, Tween 80, ascorbic acid, potassium sorbate, sodium nitrate and sodium chloride were studied. Bacteriocin AMA-K shares high homology to pediocin PA-1.

  1. In vitro evaluation of the antimicrobial effect of a raw bacteriocin extract in combination with chemical preservatives employed in meat industry

    OpenAIRE

    Luis A. Aguado Bautista; Yenizey M. Álvarez Cisneros; Edith Ponce Alquicira

    2010-01-01

    Biopreservation can be defined as the foods shelf life extension employing antibacterial products like bacteriocins. The objective of this work was to determinate the efficacy of E. faecium MXVK29 bacteriocin in combination with chemical preservatives against spoilage and pathogens microorganisms. Bacteriocin raw extrac antimicrobial activity was 46.34 UA/g of protein. Growth of Pseudomonas putida was not affected by the preservatives employed at the conditions employed. Antimicrobial respon...

  2. EFFECT OF CULTURE MEDIUM ON BACTERIOCIN PRODUCTION BY LACTOBACILLUS RHAMNOSUS HN001 AND LACTOBACILLUS REUTERI ATCC 53608

    Directory of Open Access Journals (Sweden)

    Aguilar-Uscanga B. R.

    2013-06-01

    Full Text Available The aim of this study was to evaluate the effect of media on bacteriocin production by Lactobacillus rhamnosus HN001 and Lactobacillus reuteri ATCC 53608 using three different media: YPM, YPF and MRS supplemented with glucose and K2HPO4. The optimum temperature was 37°C and initial pH 6.5. Bacteriocin-like substances produced by tested bacteria in MRS medium supplemented with glucose and K2HPO4 exhibited a broad antimicrobial spectrum determined by well diffusion assay against indicator bacteria Listeria monocytogenes, Lactobacillus sakei, Enterococcus faecium, Lactobacillus delbrueckii, Lactobacillus acidophilus, but no antimicrobial spectrum against E. coli O157:H7, Salmonella typhimurium, Staphylococcus aureus, Bacillus cereus was detected. Bacteriocin was sensitive to protease IV, trypsin, pepsin and -amylases, but resistant to lipase. It was also resistant to detergents such as Tween 80, Triton-X and SDS. This bacteriocin was thermo-stable (resistant at 60°C, 90°C and 100°C for 30 min. Tested bacteria showed the best antimicrobial (bacteriocin-like activity after growth in MRS medium. Bacteriocin substances produced by tested bacteria showed promising thermo-stable technological properties.

  3. Characterization of a heat stable anti-listerial bacteriocin produced by vancomycin sensitive Enterococcus faecium isolated from idli batter.

    Science.gov (United States)

    Vijayendra, S V N; Rajashree, K; Halami, Prakash M

    2010-06-01

    Lactic acid bacteria (LAB) are known to produce various types of bacteriocins, ribosomally synthesized polypeptides, which have antibacterial spectrum against many food borne pathogens. Listeria monocytogenes, a pathogenic bacterium, is of particular concern to the food industry because of its ability to grow even at refrigeration temperatures and its tolerance to preservative agents. Some of the bacteriocins of LAB are known to have anti-listerial property. In the present study, the bacteriocin produced by vancomycin sensitive Enterococcus faecium El and J4 isolated from idli batter samples was characterized. The isolates were found to tolerate high temperatures of 60°C for 15 and 30 min and 70°C for 15 min. The bacteriocin was found to be heat stable and had anti-listerial activity. The bacteriocin did not lost anti-listerial activity when treated at 100°C for 30 min or at 121°C for 15 min. The bacteriocin lost its antimicrobial activity after treating with trypsin, protinase-K, protease and peptidase.

  4. Inhibitory effect of bacteriocin-producing lactic acid bacteria against histamine-forming bacteria isolated from Myeolchi-jeot

    Directory of Open Access Journals (Sweden)

    Eun-Seo Lim

    2016-12-01

    Full Text Available Abstract The objectives of this study were to identify the histamine-forming bacteria and bacteriocin- producing lactic acid bacteria (LAB isolated from Myeolchi-jeot according to sequence analysis of the 16S rRNA gene, to evaluate the inhibitory effects of the bacteriocin on the growth and histamine accumulation of histamine-forming bacteria, and to assess the physico-chemical properties of the bacteriocin. Based on 16S rRNA gene sequences, histamine-forming bacteria were identified as Bacillus licheniformis MCH01, Serratia marcescens MCH02, Staphylococcus xylosus MCH03, Aeromonas hydrophila MCH04, and Morganella morganii MCH05. The five LAB strains identified as Pediococcus acidilactici MCL11, Leuconostoc mesenteroides MCL12, Enterococcus faecium MCL13, Lactobacillus sakei MCL14, and Lactobacillus acidophilus MCL15 were found to produce an antibacterial compound with inhibitory activity against the tested histamine-producing bacteria. The inhibitory activity of these bacteriocins obtained from the five LAB remained stable after incubation at pH 4.0–8.0 and heating for 10 min at 80 °C; however, the bacteriocin activity was destroyed after treatment with papain, pepsin, proteinase K, α-chymotrypsin, or trypsin. Meanwhile, these bacteriocins produced by the tested LAB strains also exhibited histamine-degradation ability. Therefore, these antimicrobial substances may play a role in inhibiting histamine formation in the fermented fish products and preventing seafood-related food-borne disease caused by bacterially generated histamine.

  5. The activity of bacteriocins from Carnobacterium maltaromaticum UAL307 against gram-negative bacteria in combination with EDTA treatment.

    Science.gov (United States)

    Martin-Visscher, Leah A; Yoganathan, Sabesan; Sit, Clarissa S; Lohans, Christopher T; Vederas, John C

    2011-04-01

    Bacteriocins from gram-positive bacteria are potent antimicrobial peptides that inhibit pathogenic and food-spoilage bacteria. They are usually ineffective against gram-negative bacteria because they cannot penetrate the outer membrane (OM). Disruption of the OM of some gram-negative bacteria was reported to sensitize them to certain bacteriocins. This study evaluates the activity of three purified bacteriocins [carnocyclin A (CclA), carnobacteriocin BM1 (CbnBM1) and piscicolin 126 (PisA)] produced by Carnobacterium maltaromaticum UAL307, which has been approved for preservation of food in United States and Canada, against three gram-negative bacteria (Escherichia coli DH5α, Pseudomonas aeruginosa ATCC 14207 and Salmonella Typhimurium ATCC 23564). Their efficacy is compared with bacteriocins of other classes: the lantibiotics nisin A (positive control) and gallidermin, and the cyclic peptide subtilosin A (SubA). In combination with EDTA, CclA inhibited both E. coli and Pseudomonas. PisA inhibited Pseudomonas, but CbnBM1 showed weak activity toward Pseudomonas. In comparison, nisin and gallidermin inhibited the growth of all three strains, whereas SubA was active against E. coli and Pseudomonas only at high concentrations. The results reveal that UAL307 bacteriocins can inhibit gram-negative bacteria if the OM is weakened, and that the different classes of bacteriocins in this study exert unique modes of action toward such bacteria.

  6. Solution structures of the linear leaderless bacteriocins enterocin 7A and 7B resemble carnocyclin A, a circular antimicrobial peptide.

    Science.gov (United States)

    Lohans, Christopher T; Towle, Kaitlyn M; Miskolzie, Mark; McKay, Ryan T; van Belkum, Marco J; McMullen, Lynn M; Vederas, John C

    2013-06-11

    Leaderless bacteriocins are a class of ribosomally synthesized antimicrobial peptides that are produced by certain Gram-positive bacteria without an N-terminal leader section. These bacteriocins are of great interest due to their potent inhibition of many Gram-positive organisms, including food-borne pathogens such as Listeria and Clostridium spp. We now report the NMR solution structures of enterocins 7A and 7B, leaderless bacteriocins recently isolated from Enterococcus faecalis 710C. These are the first three-dimensional structures to be reported for bacteriocins of this class. Unlike most other linear Gram-positive bacteriocins, enterocins 7A and 7B are highly structured in aqueous conditions. Both peptides are primarily α-helical, adopting a similar overall fold. The structures can be divided into three separate α-helical regions: the N- and C-termini are both α-helical, separated by a central kinked α-helix. The overall structures bear an unexpected resemblance to carnocyclin A, a 60-residue peptide that is cyclized via an amide bond between the C- and N-termini and has a saposin fold. Because of synergism observed for other two-peptide leaderless bacteriocins, it was of interest to probe possible binding interactions between enterocins 7A and 7B. However, despite synergistic activity observed between these peptides, no significant binding interaction was observed based on NMR and isothermal calorimetry.

  7. The Crystal Structure of the Lipid II-degrading Bacteriocin Syringacin M Suggests Unexpected Evolutionary Relationships between Colicin M-like Bacteriocins

    Science.gov (United States)

    Grinter, Rhys; Roszak, Aleksander W.; Cogdell, Richard J.; Milner, Joel J.; Walker, Daniel

    2012-01-01

    Colicin-like bacteriocins show potential as next generation antibiotics with clinical and agricultural applications. Key to these potential applications is their high potency and species specificity that enables a single pathogenic species to be targeted with minimal disturbance of the wider microbial community. Here we present the structure and function of the colicin M-like bacteriocin, syringacin M from Pseudomonas syringae pv. tomato DC3000. Syringacin M kills susceptible cells through a highly specific phosphatase activity that targets lipid II, ultimately inhibiting peptidoglycan synthesis. Comparison of the structures of syringacin M and colicin M reveals that, in addition to the expected similarity between the homologous C-terminal catalytic domains, the receptor binding domains of these proteins, which share no discernible sequence homology, share a striking structural similarity. This indicates that the generation of the novel receptor binding and species specificities of these bacteriocins has been driven by diversifying selection rather than diversifying recombination as suggested previously. Additionally, the structure of syringacin M reveals the presence of an active site calcium ion that is coordinated by a conserved aspartic acid side chain and is essential for catalytic activity. We show that mutation of this residue to alanine inactivates syringacin M and that the metal ion is absent from the structure of the mutant protein. Consistent with the presence of Ca2+ in the active site, we show that syringacin M activity is supported by Ca2+, along with Mg2+ and Mn2+, and the protein is catalytically inactive in the absence of these ions. PMID:22995910

  8. Antibacterial activity of bacteriocin-like substance P34 on Listeria monocytogenes in chicken sausage.

    Science.gov (United States)

    Sant'Anna, Voltaire; Quadros, Deoni A F; Motta, Amanda S; Brandelli, Adriano

    2013-12-01

    The antimicrobial activity of the bacteriocin-like substance (BLS) P34 against Listeria monocytogenes was investigated in chicken sausage. The BLS was applied to chicken sausages (256 AU g(-1)) previously inoculated with a suspension of 10(2) cfu g(-1) of L. monocytogenes. BLS P34 inhibited the indicator microorganism in situ in all incubation times for up to 10 days at 5 °C. The effectiveness of BLS P34 was increased when it was added in combination with nisin. The bacteriocin was also tested in natural eatable natural bovine wrapping (salty semi-dried tripe) against the same indicator microorganism, also showing inhibitory capability in vitro. BLS P34 showed potential to control L. monocytogenes in refrigerated meat products.

  9. Antibacterial activity of bacteriocin-like substance P34 on Listeria monocytogenes in chicken sausage

    Directory of Open Access Journals (Sweden)

    Voltaire Sant'Anna

    2013-12-01

    Full Text Available The antimicrobial activity of the bacteriocin-like substance (BLS P34 against Listeria monocytogenes was investigated in chicken sausage. The BLS was applied to chicken sausages (256 AU g-1 previously inoculated with a suspension of 10² cfu g-1 of L. monocytogenes. BLS P34 inhibited the indicator microorganism in situ in all incubation times for up to 10 days at 5 °C. The effectiveness of BLS P34 was increased when it was added in combination with nisin. The bacteriocin was also tested in natural eatable natural bovine wrapping (salty semi-dried tripe against the same indicator microorganism, also showing inhibitory capability in vitro. BLS P34 showed potential to control L. monocytogenes in refrigerated meat products.

  10. Isolation, screening and characterization of bacteriocin-producing lactic acid bacteria isolated from traditional fermented food.

    Science.gov (United States)

    El-Shafei, H A; Abd-El-Sabour, H; Ibrahim, N; Mostafa, Y A

    2000-03-01

    100 lactic acid bacterial strains isolated from traditional fermented foods (yoghurt, milk cream, sour dough and milk) were screened for bacteriocin production. Twenty six strains producing a nisin-like bacteriocin were selected. Most of these isolates gave only a narrow inhibitory spectrum, although one showed a broad inhibitory spectrum against the indicator strains tested, this strain was determined as Lactococcus lactis. The influence of several parameters on the fermentative production of nisin by Lactococcus lactis was studied. Production of nisin was optimal at 30 degrees C and in the pH range 5.5-6.3. The effect of different sulphur and nitrogen sources on Lactococcus lactis growth and nisin production was studied. Magnesium sulfate and manganese sulfate were found to be the best sulphur sources while triammonium citrate was the best inorganic nitrogen source and meat extract, peptone and yeast extract were the best organic nitrogen source for nisin production.

  11. Application of anti-listerial bacteriocins: monitoring enterocin expression by multiplex relative reverse transcription-PCR.

    Science.gov (United States)

    Williams, D Ross; Chanos, Panagiotis

    2012-12-01

    Listeriosis is a deadly food-borne disease, and its incidence may be limited through the biotechnological exploitation of a number of anti-listerial biocontrol agents. The most widely used of these agents are bacteriocins and the Class II enterocins are characterized by their activity against Listeria. Enterocins are primarily produced by enterococci, particularly Enterococcus faecium and many strains have been described, often encoding multiple bacteriocins. The use of these strains in food will require that they are free of virulence functions and that they exhibit a high level expression of anti-listerial enterocins in fermentation conditions. Multiplex relative RT (reverse transcription)-PCR is a technique that is useful in the discovery of advantageous expression characteristics among enterocin-producing strains. It allows the levels of individual enterocin gene expression to be monitored and determination of how expression is altered under different growth conditions.

  12. Trends in utilization of agro-industrial byproducts for production of bacteriocins and their biopreservative applications.

    Science.gov (United States)

    Bali, Vandana; Panesar, Parmjit S; Bera, Manab B

    2016-01-01

    Bacteriocins are proteinaceous, ribosomally synthesized bio-molecules having major roles in food preservation due to their antimicrobial action against food spoilage microorganisms. These have gained importance in the last decades because of increasing interest in natural products and their applications in the field of biopreservation, pharmaceutical, aquaculture, livestock, etc. Their production is quite expensive which includes the cost of synthetic media and downstream processing of which 30% of the total production cost relies on synthetic media and nutritional supplements used for growth of microorganisms. The low cost agro-industrial by-products, rich in nutritional supplements, can act as a good substitute for high valued synthetic media. This review provides comprehensive information on the use of cost effective, renewable agro-industrial by-products as substrates for the production of bacteriocins and their application in food as biopreservatives.

  13. Antibacterial activity of bacteriocin-like substance P34 on Listeria monocytogenes in chicken sausage

    Science.gov (United States)

    Sant’Anna, Voltaire; Quadros, Deoni A.F.; Motta, Amanda S.; Brandelli, Adriano

    2013-01-01

    The antimicrobial activity of the bacteriocin-like substance (BLS) P34 against Listeria monocytogenes was investigated in chicken sausage. The BLS was applied to chicken sausages (256 AU g−1) previously inoculated with a suspension of 102 cfu g−1 of L. monocytogenes. BLS P34 inhibited the indicator microorganism in situ in all incubation times for up to 10 days at 5 °C. The effectiveness of BLS P34 was increased when it was added in combination with nisin. The bacteriocin was also tested in natural eatable natural bovine wrapping (salty semi-dried tripe) against the same indicator microorganism, also showing inhibitory capability in vitro. BLS P34 showed potential to control L. monocytogenes in refrigerated meat products. PMID:24688506

  14. Active polymers containing Lactobacillus curvatus CRL705 bacteriocins: effectiveness assessment in Wieners.

    Science.gov (United States)

    Blanco Massani, M; Molina, V; Sanchez, M; Renaud, V; Eisenberg, P; Vignolo, G

    2014-05-16

    Bacteriocins from lactic acid bacteria have potential as natural food preservatives. In this study two active (synthetic and gluten) films were obtained by the incorporation of lactocin 705 and lactocin AL705, bacteriocins produced by Lactobacillus curvatus CRL705 with antimicrobial activity against spoilage lactic acid bacteria and Listeria. Antimicrobial film effectiveness was determined in Wieners inoculated with Lactobacillus plantarum CRL691 and Listeria innocua 7 (10(4)CFU/g) stored at 5°C during 45days. Active and control (absence of bacteriocins) packages were prepared and bacterial counts in selective media were carried out. Visual inspection and pH measurement of Wieners were also performed. Typical growth of both inoculated microorganisms was observed in control packages which reached 10(6)-10(7)CFU/g at the end of storage period. In the active packages, L. innocua 7 was effectively inhibited (2.5 log cycles reduction at day 45), while L. plantarum CRL691 was only slightly inhibited (0.5 log cycles) up to the second week of storage, then counts around 10(6)-10(7)CFU/g were reached. Changes in pH values from 6.3 to 5.8 were produced and gas formation was observed in active and control packages. The low inhibitory effectiveness against lactic acid bacteria is in correlation with the low activity observed for lactocin 705 in the presence of fat; Wieners fat content (20-30%) may adversely affect antimicrobial activity. This study supports the feasibility of using polymers activated with L. curvatus CRL705 bacteriocins to control Listeria on the surface of Wieners and highlights the importance of evaluating antimicrobial packaging systems for each particular food application.

  15. Solution structure of acidocin B, a circular bacteriocin produced by Lactobacillus acidophilus M46.

    Science.gov (United States)

    Acedo, Jeella Z; van Belkum, Marco J; Lohans, Christopher T; McKay, Ryan T; Miskolzie, Mark; Vederas, John C

    2015-04-01

    Acidocin B, a bacteriocin produced by Lactobacillus acidophilus M46, was originally reported to be a linear peptide composed of 59 amino acid residues. However, its high sequence similarity to gassericin A, a circular bacteriocin from Lactobacillus gasseri LA39, suggested that acidocin B might be circular as well. Acidocin B was purified from culture supernatant by a series of hydrophobic interaction chromatographic steps. Its circular nature was ascertained by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and tandem mass spectrometry (MS/MS) sequencing. The peptide sequence was found to consist of 58 amino acids with a molecular mass of 5,621.5 Da. The sequence of the acidocin B biosynthetic gene cluster was also determined and showed high nucleotide sequence similarity to that of gassericin A. The nuclear magnetic resonance (NMR) solution structure of acidocin B in sodium dodecyl sulfate micelles was elucidated, revealing that it is composed of four α-helices of similar length that are folded to form a compact, globular bundle with a central pore. This is a three-dimensional structure for a member of subgroup II circular bacteriocins, which are classified based on their isoelectric points of ∼7 or lower. Comparison of acidocin B with carnocyclin A, a subgroup I circular bacteriocin with four α-helices and a pI of 10, revealed differences in the overall folding. The observed variations could be attributed to inherent diversity in their physical properties, which also required the use of different solvent systems for three-dimensional structural elucidation.

  16. Analysis of Lactobacillus Products for Phages and Bacteriocins That Inhibit Vaginal Lactobacilli

    Directory of Open Access Journals (Sweden)

    Lin Tao

    1997-01-01

    Full Text Available Objective: Bacterial vaginosis is associated with an unexplained loss of vaginal lactobacilli. Previously, we have identified certain vaginal lactobacilli-released phages that can inhibit in vitro other vaginal lactobacilli. However, there is no apparent route for phages to be transmitted among women. The purpose of this study was to identify whether certain Lactobacillus products commonly used by women release phages or bacteriocins that can inhibit vaginal lactobacilli.

  17. Pediocin SA-1: A selective bacteriocin for controlling Listeria monocytogenes in maize silages.

    Science.gov (United States)

    Amado, Isabel R; Fuciños, Clara; Fajardo, Paula; Pastrana, Lorenzo

    2016-10-01

    In this study, we assessed the potential as silage additive of a bacteriocin produced by Pediococcus acidilactici Northern Regional Research Laboratory (NRRL) B-5627 (pediocin SA-1). Maize was inoculated either with a bacterial starter alone (I) or in combination with the bacteriocin (IP), and untreated silage served as control. We monitored the products of fermentation (ethanol, and lactic and acetic acids), the microbial population, and the presence of the indicator strain Listeria monocytogenes Colección Española de Cultivos Tipo (CECT) 4032 (1×10(5) cfu/g) after 1, 2, 5, 8, 16, and 30d of ensiling. Our results indicated antilisterial activity of the bacteriocin, anticipating the disappearance of L. monocytogenes in IP compared with I and control silages. The PCR-denaturing gradient gel electrophoresis analysis revealed the addition of the bacteriocin did not affect the bacterial communities of the spontaneous fermentation, and the inoculant-containing bacteria (Lactobacillus plantarum, Lactobacillus buchneri, and Enterococcus faecium) were found in addition to the bacterial communities of untreated maize silages in I and IP silages. Both treatments increased the concentration of antimicrobial compounds (acetic acid, ethanol, and 1,2-propanodiol) and led to lower residual sugar contents compared with the control, which would provide enhanced aerobic stability. The fact that the identified species L. plantarum, L. buchneri, and E. faecium produce some of these inhibitory compounds, together with their persistence throughout the 30d of fermentation, suggest these bacteria could actively participate in the ensiling process. According to these results, pediocin SA-1 could be used as an additive to control the presence of L. monocytogenes in maize silages selectively, while improving their fermentative quality and eventually their aerobic stability.

  18. Antibacterial Activity of Selected Standard Strains of Lactic Acid Bacteria Producing Bacteriocins – Pilot Study

    Directory of Open Access Journals (Sweden)

    Malgorzata Bodaszewska-Lubas

    2012-10-01

    Full Text Available  Introduction:In this paper, an attempt was made to evaluate the antibacterial potential of standard strains of lactic acid bacteria (LAB producing bacteriocins of various classes, thus demonstrating various mechanisms of cell membrane damages against the Streptococcus agalactiae strains (Group B Streptococcus, GBS, depending on surface polysaccharides and surface alpha-like protein genes.Materials/Methods:Antimicrobial property of the strains of L. plantarum C 11, L. sakei DSMZ 6333, and L. lactis ATCC 11454 producing bacteriocins: JK and EF plantaricins, sakacin and nisin, respectively, against the GBS strains was evaluated. The chosen to the study GBS strains were represented by serotypes Ia, Ib, II, III, V and they had bca, epsilon, rib, alp2 or alp3 alpha-like protein genes. The experiment was conducted by means of suspension culture and the bacteria count was determined using the serial dilution method.Results:A great ability of L. plantarum C 11 strain was proven to inhibit the GBS growth. The strain of L. sakei DSMZ 6333 did not demonstrate any ability to inhibit the growth of GBS, whereas L. lactis ATCC 11454 inhibited the growth of S. agalactiae indicator strains to a minor extent. Statistically significant differences were demonstrated between the GBS strains representing various serotypes against the antimicrobial activity of model LAB strains. The least sensitive to the activity of bacteriocins were the strains representing serotypes Ib and III, whereas the strains representing serotype II were the most sensitive. The sensitivity of the GBS strains to the antimicrobial activity of LAB was not dependent on alpha-like protein genes.Discussion:Among the LAB standard strains producing bacteriocins, the strongest antimicrobial property was observed in the strain of L. plantarum C 11. Because of the generally known and verified strong antagonistic property of the strains of L. plantarum species against indicator bacteria, it is necessary

  19. Purification and Characterization of a Novel Cold Shock Protein-Like Bacteriocin Synthesized by Bacillus thuringiensis

    Science.gov (United States)

    Huang, Tianpei; Zhang, Xiaojuan; Pan, Jieru; Su, Xiaoyu; Jin, Xin; Guan, Xiong

    2016-01-01

    Bacillus thuringiensis (Bt), one of the most successful biopesticides, may expand its potential by producing bacteriocins (thuricins). The aim of this study was to investigate the antimicrobial potential of a novel Bt bacteriocin, thuricin BtCspB, produced by Bt BRC-ZYR2. The results showed that this bacteriocin has a high similarity with cold-shock protein B (CspB). BtCspB lost its activity after proteinase K treatment; however it was active at 60 °C for 30 min and was stable in the pH range 5–7. The partial loss of activity after the treatments of lipase II and catalase were likely due to the change in BtCspB structure and the partial degradation of BtCspB, respectively. The loss of activity at high temperatures and the activity variation at different pHs were not due to degradation or large conformational change. BtCspB did not inhibit four probiotics. It was only active against B. cereus strains 0938 and ATCC 10987 with MIC values of 3.125 μg/mL and 0.781 μg/mL, and MBC values of 12.5 μg/mL and 6.25 μg/mL, respectively. Taken together, these results provide new insights into a novel cold shock protein-like bacteriocin, BtCspB, which displayed promise for its use in food preservation and treatment of B. cereus-associated diseases. PMID:27762322

  20. Isolation and Characterization of a Broad Spectrum Bacteriocin from Bacillus amyloliquefaciens RX7

    Directory of Open Access Journals (Sweden)

    Kong Boon Lim

    2016-01-01

    Full Text Available We isolated a Bacillus strain, RX7, with inhibitory activity against Listeria monocytogenes from soil and identified it as Bacillus amyloliquefaciens based on 16S rRNA gene sequencing. The inhibitory activity was stable over a wide range of pH and was fully retained after 30 min at 80°C, after which it decreased gradually at higher temperatures. The activity was sensitive to the proteolytic action of α-chymotrypsin, proteinase-K, and trypsin, indicating its proteinaceous nature. This bacteriocin was active against a broad spectrum of bacteria and the fungus Candida albicans. Direct detection of antimicrobial activity on a sodium dodecyl sulfate-polyacrylamide gel suggested an apparent molecular mass of approximately 5 kDa. Ammonium sulfate precipitation and anion-exchange and gel permeation chromatography integrated with reverse phase-high-performance liquid chromatography were used for bacteriocin purification. Automated N-terminal Edman degradation of the purified RX7 bacteriocin recognized the first 15 amino acids as NH2-X-Ala-Trp-Tyr-Asp-Ile-Arg-Lys-Leu-Gly-Asn-Lys-Gly-Ala, where the letter X in the sequence indicates an unknown or nonstandard amino acid. Based on BLAST similarity search and multiple alignment analysis, the obtained partial sequence showed high homology with the two-peptide lantibiotic haloduracin (HalA1 from Bacillus halodurans, although at least two amino acids differed between the sequences. A time-kill study demonstrated a bactericidal mode of action of RX7 bacteriocin.

  1. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives

    OpenAIRE

    José Luis Parada; Carolina Ricoy Caron; Medeiros,Adriane Bianchi P.; Carlos Ricardo Soccol

    2007-01-01

    Biopreservation systems in foods are of increasing interest for industry and consumers. Bacteriocinogenic lactic acid bacteria and/or their isolated bacteriocins are considered safe additives (GRAS), useful to control the frequent development of pathogens and spoiling microorganisms in foods and feed. The spreading of bacterial antibiotic resistance and the demand for products with fewer chemicals create the necessity of exploring new alternatives, in order to reduce the abusive use of therap...

  2. Frequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes.

    Science.gov (United States)

    Gravesen, A; Jydegaard Axelsen, A-M; Mendes da Silva, J; Hansen, T B; Knøchel, S

    2002-02-01

    Bacteriocin-producing starter cultures have been suggested as natural food preservatives; however, development of resistance in the target organism is a major concern. We investigated the development of resistance in Listeria monocytogenes to the two major bacteriocins pediocin PA-1 and nisin A, with a focus on the variations between strains and the influence of environmental conditions. While considerable strain-specific variations in the frequency of resistance development and associated fitness costs were observed, the influence of environmental stress seemed to be bacteriocin specific. Pediocin resistance frequencies were determined for 20 strains and were in most cases ca. 10(-6). However, two strains with intermediate pediocin sensitivity had 100-fold-higher pediocin resistance frequencies. Nisin resistance frequencies (14 strains) were in the range of 10(-7) to 10(-2). Strains with intermediate nisin sensitivity were among those with the highest frequencies. Environmental stress in the form of low temperature (10 degrees C), reduced pH (5.5), or the presence of NaCl (6.5%) did not influence the frequency of pediocin resistance development; in contrast, the nisin resistance frequency was considerably reduced (<5 x 10(-8)). Pediocin resistance in all spontaneous mutants was very stable, but the stability of nisin resistance varied. Pediocin-resistant mutants had fitness costs in the form of reduction down to 44% of the maximum specific growth rate of the wild-type strain. Nisin-resistant mutants had fewer and less-pronounced growth rate reductions. The fitness costs were not increased upon applying environmental stress (5 degrees C, 6.5% NaCl, or pH 5.5), indicating that the bacteriocin-resistant mutants were not more stress sensitive than the wild-type strains. In a saveloy-type meat model at 5 degrees C, however, the growth differences seemed to be negligible. The applicational perspectives of the results are discussed.

  3. A Microplate Growth Inhibition Assay for Screening Bacteriocins against Listeria monocytogenes to Differentiate Their Mode-of-Action.

    Science.gov (United States)

    Vijayakumar, Paul Priyesh; Muriana, Peter M

    2015-06-11

    Lactic acid bacteria (LAB) have historically been used in food fermentations to preserve foods and are generally-recognized-as-safe (GRAS) by the FDA for use as food ingredients. In addition to lactic acid; some strains also produce bacteriocins that have been proposed for use as food preservatives. In this study we examined the inhibition of Listeria monocytogenes 39-2 by neutralized and non-neutralized bacteriocin preparations (Bac+ preps) produced by Lactobacillus curvatus FS47; Lb. curvatus Beef3; Pediococcus acidilactici Bac3; Lactococcus lactis FLS1; Enterococcus faecium FS56-1; and Enterococcus thailandicus FS92. Activity differences between non-neutralized and neutralized Bac+ preps in agar spot assays could not readily be attributed to acid because a bacteriocin-negative control strain was not inhibitory to Listeria in these assays. When neutralized and non-neutralized Bac+ preps were used in microplate growth inhibition assays against L. monocytogenes 39-2 we observed some differences attributed to acid inhibition. A microplate growth inhibition assay was used to compare inhibitory reactions of wild-type and bacteriocin-resistant variants of L. monocytogenes to differentiate bacteriocins with different modes-of-action (MOA) whereby curvaticins FS47 and Beef3, and pediocin Bac3 were categorized to be in MOA1; enterocins FS92 and FS56-1 in MOA2; and lacticin FLS1 in MOA3. The microplate bacteriocin MOA assay establishes a platform to evaluate the best combination of bacteriocin preparations for use in food applications as biopreservatives against L. monocytogenes.

  4. Improved antimicrobial activities of synthetic-hybrid bacteriocins designed from enterocin E50-52 and pediocin PA-1.

    Science.gov (United States)

    Tiwari, Santosh Kumar; Sutyak Noll, Katia; Cavera, Veronica L; Chikindas, Michael L

    2015-03-01

    Two hybrid bacteriocins, enterocin E50-52/pediocin PA-1 (EP) and pediocin PA-1/enterocin E50-52 (PE), were designed by combining the N terminus of enterocin E50-52 and the C terminus of pediocin PA-1 and by combining the C terminus of pediocin PA-1 and the N terminus of enterocin E50-52, respectively. Both hybrid bacteriocins showed reduced MICs compared to those of their natural counterparts. The MICs of hybrid PE and EP were 64- and 32-fold lower, respectively, than the MIC of pediocin PA-1 and 8- and 4-fold lower, respectively, than the MIC of enterocin E50-52. In this study, the effect of hybrid as well as wild-type (WT) bacteriocins on the transmembrane electrical potential (ΔΨ) and their ability to induce the efflux of intracellular ATP were investigated. Enterocin E50-52, pediocin PA-1, and hybrid bacteriocin PE were able to dissipate ΔΨ, but EP was unable to deplete this component. Both hybrid bacteriocins caused a loss of the intracellular concentration of ATP. EP, however, caused a faster efflux than PE and enterocin E50-52. Enterocin E50-52 and hybrids PE and EP were active against the Gram-positive and Gram-negative bacteria tested, such as Micrococcus luteus, Salmonella enterica serovar Enteritidis 20E1090, and Escherichia coli O157:H7. The hybrid bacteriocins designed and described herein are antimicrobial peptides with MICs lower those of their natural counterparts. Both hybrid peptides induce the loss of intracellular ATP and are capable of inhibiting Gram-negative bacteria, and PE dissipates the electrical potential. In this study, the MIC of hybrid bacteriocin PE decreased 64-fold compared to the MIC of its natural peptide counterpart, pediocin PA-1. Inhibition of Gram-negative pathogens confers an additional advantage for the application of these peptides in therapeutics.

  5. Simultaneous Production of Biosurfactants and Bacteriocins by Probiotic Lactobacillus casei MRTL3

    Directory of Open Access Journals (Sweden)

    Deepansh Sharma

    2014-01-01

    Full Text Available Lactic acid bacteria (LAB are ubiquitous and well-known commensal bacteria in the human and animal microflora. LAB are extensively studied and used in a variety of industrial and food fermentations. They are widely used for humans and animals as adjuvants, probiotic formulation, and dietary supplements and in other food fermentation applications. In the present investigation, LAB were isolated from raw milk samples collected from local dairy farms of Haryana, India. Further, the isolates were screened for simultaneous production of biosurfactants and bacteriocins. Biosurfactant produced was found to be a mixture of lipid and sugar similar to glycolipids. The bacteriocin obtained was found to be heat stable (5 min at 100°C. Further, DNA of the strain was extracted and amplified by the 16S rRNA sequencing using universal primers. The isolate Lactobacillus casei MRTL3 was found to be a potent biosurfactant and bacteriocin producer. It seems to have huge potential for food industry as a biopreservative and/or food ingredient.

  6. Quorum Sensing Regulation of Competence and Bacteriocins in Streptococcus pneumoniae and mutans

    Science.gov (United States)

    Shanker, Erin; Federle, Michael J.

    2017-01-01

    The human pathogens Streptococcus pneumoniae and Streptococcus mutans have both evolved complex quorum sensing (QS) systems that regulate the production of bacteriocins and the entry into the competent state, a requirement for natural transformation. Natural transformation provides bacteria with a mechanism to repair damaged genes or as a source of new advantageous traits. In S. pneumoniae, the competence pathway is controlled by the two-component signal transduction pathway ComCDE, which directly regulates SigX, the alternative sigma factor required for the initiation into competence. Over the past two decades, effectors of cellular killing (i.e., fratricides) have been recognized as important targets of the pneumococcal competence QS pathway. Recently, direct interactions between the ComCDE and the paralogous BlpRH pathway, regulating bacteriocin production, were identified, further strengthening the interconnections between these two QS systems. Interestingly, a similar theme is being revealed in S. mutans, the primary etiological agent of dental caries. This review compares the relationship between the bacteriocin and the competence QS pathways in both S. pneumoniae and S. mutans, and hopes to provide clues to regulatory pathways across the genus Streptococcus as a potential tool to efficiently investigate putative competence pathways in nontransformable streptococci. PMID:28067778

  7. Partial characterization of bacteriocins produced by two Lactobacilus strains with probiotic properties.

    Science.gov (United States)

    Uymaz, Başar; Akkoç, Nefise; Akçelik, M

    2011-03-01

    The probiotic characteristics of Lactobacillus brevis BG18 and Lb. plantarum BG33, isolated from traditional Turkish Tulum cheese were assessed. These two bacteriocinproducer strains exhibited good probiotic characteristics such as resistance in media containing 0.3% bile salt, pepsin (3 mg mL⁻¹), and pancreatine (1 mg mL⁻¹) as well as acid resistance at pH 2. They were also adhered to Caco-2 epithelial cells in a manner comparable to Escherichia coli LMG3083 (ETEC) and Salmonella Typhimurium SL1344. The strains produced a heat-stable antimicrobial compound that was shown to be proteinaceous in nature, and therefore, referred to as bacteriocins. The bacteriocins were able to inhibit growth of a number grampositive bacteria such as Listeria monocytogenes, Clostridium botulinum, Staphylococcus aureus and Bacillus cereus. Tricine-SDS-PAGE of the active fraction resulted in single bands with estimated molecular masses of 2.5 kDA and 2.7 kDA for Lb. brevis BG18 and Lb. plantarum BG33 bacteriocins, respectively.

  8. BAGEL3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides.

    Science.gov (United States)

    van Heel, Auke J; de Jong, Anne; Montalbán-López, Manuel; Kok, Jan; Kuipers, Oscar P

    2013-07-01

    Identifying genes encoding bacteriocins and ribosomally synthesized and posttranslationally modified peptides (RiPPs) can be a challenging task. Especially those peptides that do not have strong homology to previously identified peptides can easily be overlooked. Extensive use of BAGEL2 and user feedback has led us to develop BAGEL3. BAGEL3 features genome mining of prokaryotes, which is largely independent of open reading frame (ORF) predictions and has been extended to cover more (novel) classes of posttranslationally modified peptides. BAGEL3 uses an identification approach that combines direct mining for the gene and indirect mining via context genes. Especially for heavily modified peptides like lanthipeptides, sactipeptides, glycocins and others, this genetic context harbors valuable information that is used for mining purposes. The bacteriocin and context protein databases have been updated and it is now easy for users to submit novel bacteriocins or RiPPs. The output has been simplified to allow user-friendly analysis of the results, in particular for large (meta-genomic) datasets. The genetic context of identified candidate genes is fully annotated. As input, BAGEL3 uses FASTA DNA sequences or folders containing multiple FASTA formatted files. BAGEL3 is freely accessible at http://bagel.molgenrug.nl.

  9. Synthesis of lactococcin 972, a bacteriocin produced by Lactococcus lactis IPLA 972, depends on the expression of a plasmid-encoded bicistronic operon

    NARCIS (Netherlands)

    Martínez, B.; Fernández, M.; Suárez, J.E.; Rodríguez, A.

    1999-01-01

    Synthesis of lactococcin 972 is plasmid-encoded. An operon composed of two genes that encode pre-bacteriocin and a putative immunity protein has been identified. The first gene encodes a 91-residue polypeptide that is exported via a sec-dependent system to give the mature 66-aa bacteriocin. The immu

  10. Development of an active wheat gluten film with Lactobacillus curvatus CRL705 bacteriocins and a study of its antimicrobial performance during ageing.

    Science.gov (United States)

    Blanco Massani, Mariana; Botana, Adrián; Eisenberg, Patricia; Vignolo, Graciela

    2014-01-01

    Antimicrobial wheat gluten film was obtained at pilot scale by Lactobacillus curvatus CRL705 bacteriocins inclusion in the film-forming solution. Bacteriocins' minimum inhibitory concentration for the film activation was 2133 AU cm(-3) (lactocin AL705) and 267 AU cm(-3) (lactocin 705). Mechanical and barrier properties as well as film ageing kinetics were not significantly affected by the addition of bacteriocins. The antimicrobial film performance during ageing was assessed. Film activity against Listeria innocua 7 and Lactobacillus plantarum CRL691 was observed over 50 days of ageing. Even when the release of bacteriocins from the film upon water contact was observed for both bacteriocins at the beginning of the ageing period, and anti-Listeria activity was delivered to the simulant up to the 15th day of ageing, film residual activity for both bacteriocins was observed over 50 days. The results confirm the potential of a gluten film doped with L. curvatus CRL705 bacteriocins as a carrier of bacteriocins to avoid Listeria and lactic acid bacterial growth, thus enhancing quality and safety in foods.

  11. Isolation and partial characterization of a bacteriocin produced by Lactobacillus plantarum BM-1 isolated from a traditionally fermented Chinese meat product.

    Science.gov (United States)

    Zhang, Hongxing; Liu, Li; Hao, Yanling; Zhong, Siqiong; Liu, Hui; Han, Tao; Xie, Yuanhong

    2013-11-01

    Lactobacillus plantarum BM-1 isolated from a traditionally fermented Chinese meat product was found to produce a novel bacteriocin that is active against a wide range of gram-positive and gram-negative bacteria. Production of the bacteriocin BM-1 started early in the exponential phase and its maximum activity (5120 AU/mL) was recorded early during the stationary phase (16 hr). Bacteriocin BM-1 is sensitive to proteolytic enzymes but stable in the pH range of 2.0-10.0 and heat-resistant (15 min at 121°C). This bacteriocin was purified through pH-mediated cell adsorption-desorption and cation-exchange chromatography on an SP Sepharose Fast Flow column. The molecular weight of the purified bacteriocin BM-1 was determined to be 4638.142 Da by electrospray ionization Fourier transform mass spectrometry. Furthermore, the N-terminal amino acid sequence was obtained through automated Edman degradation and found to comprise the following 15 amino acid residues: H2 N-Lys-Tyr-Tyr-Gly-Asn-Gly-Val-Tyr-Val-Gly-Lys-His-Ser-Cys-Ser. Comparison of this sequence with that of other bacteriocins revealed that bacteriocin BM-1 contains the consensus YGNGV amino acid motif near the N-terminus. Based on its physicochemical characteristics, molecular weight, and N-terminal amino acid sequence, plantaricin BM-1 is a novel class IIa bacteriocin.

  12. Determination of bacteriocin activity with bioassays carried out on solid and liquid substrates: assessing the factor "indicator microorganism"

    Directory of Open Access Journals (Sweden)

    Ambrosiadis Ioannis

    2006-10-01

    Full Text Available Abstract Background Successful application of growth inhibition techniques for quantitative determination of bacteriocins relies on the sensitivity of the applied indicator microorganism to the bacteriocin to which is exposed. However, information on indicator microorganisms' performance and comparisons in bacteriocin determination with bioassays is almost non-existing in the literature. The aim of the present work was to evaluate the parameter "indicator microorganism" in bioassays carried out on solid -agar diffusion assay- and liquid -turbidometric assay- substrates, applied in the quantification of the most studied bacteriocin nisin. Results The performance of characterized microorganisms of known sources, belonging to the genera of Lactobacillus, Pediococcus, Micrococcus and Leuconostoc, has been assessed in this work in the assays of plate agar diffusion and turbidometry. Dose responses and sensitivities were examined and compared over a range of assay variables in standard bacteriocin solutions, fermentation broth filtrates and processed food samples. Measurements on inhibition zones produced on agar plates were made by means of digital image analysis. The data produced were analyzed statistically using the ANOVA technique and pairwise comparisons tests. Sensitivity limits and linearity of responses to bacteriocin varied significantly among different test-microorganisms in both applied methods, the lower sensitivity limits depending on both the test-microorganism and the applied method. In both methods, however, only two of the nine tested microorganisms (Lactobacillus curvatus ATCC 51436 and Pediococcus acidilactici ATCC 25740 were sensitive to very low concentrations of the bacteriocin and produced a linear-type of response in all kinds of samples used in this work. In all cases, very low bacteriocin concentrations, e.g. 1 IU/ml nisin, were more accurately determined in the turbidometric assay. Conclusion The present work shows that in

  13. Characterization, N-terminal sequencing and classification of Tolworthcin 524: A bacteriocin produced by Bacillus thuringiensis subsp. tolworthi.

    Science.gov (United States)

    Pacheco-Cano, Rubén D; de la Fuente-Salcido, Norma M; Salcedo-Hernández, Rubén; León-Galván, M Fabiola; Bideshi, Dennis K; Hernández-Guzmán, Gustavo; Barboza-Corona, J Eleazar

    2014-12-01

    Bacteriocins synthesized by entomopathogenic Bacillus thuringiensis are gaining attention owing to their inhibitory effects against a wide variety of pathogenic bacteria. In the present study, we purified and characterized Tolworthcin 524, a bacteriocin synthesized by B. thuringiensis subsp. tolworthi, and compared it with other bacteriocins synthesized by B. thuringiensis. Tolworthcin 524 was separated and purified from the secretome of B. thuringiensis by fast protein liquid chromatography with a gel filtration column to obtain yields of 17% and a specific activity of ∼3600U/mgprotein. The purified product showed two peptides of ∼9 and 6kDa with antimicrobial activity in a gel-screening assay. The purified product was analyzed by two-dimensional electrophoresis and the resolved peptides of ∼9 and 6kDa with isoelectric points of ∼8 were sequenced. Partial sequences (METPVVQPR and DWTCWSCLVCAACS) were obtained suggesting that the ∼9 and 6kDa correspond to the prebacteriocin and mature Tolworthcin 524, respectively. Sequences showed high identity with Thurincin H and Thuricin 17 and had a conserved motif with other bacteriocins of B. thuringiensis. Based on sequence data, Tolworthcin 524 was classified in subclass II.2 (Thuricin-like peptides) of the Bacillus bacteriocin classification scheme. The larger peptide did not harbor a sequence suggestive of a signal peptide neither did it contain the double-glycine (GG) motif characteristic of the secretion leader recognized by the ABC transport system. Implications of these properties in Tolworthcin 524 secretion are discussed.

  14. Sequence analysis of a bacteriocinogenic plasmid of Clostridium butyricum and expression of the bacteriocin gene in Escherichia coli.

    Science.gov (United States)

    Nakanishi, Shusuke; Tanaka, Mamoru

    2010-06-01

    A small cryptic plasmid, namely, pCBM588, was obtained from Clostridium butyricum MIYAIRI 588 (CBM588)--a bacterium used in probiotics. The complete sequence of pCBM588 was determined. The size of pCBM588 was 8060 bp and the G + C content was 24.3%. Nine open reading frames (ORFs) were predicted, and ORF3 showed significant homologies with a structural bacteriocin gene of Clostridium tyrobutyricum. The putative bacteriocin gene was inserted into the pET21d expression vector in frame; it was expressed as a His-tagged recombinant protein in Escherichia coli BL21 (DE3). A total of 10240AU of the recombinant bacteriocin were purified from 100 ml of E. coli culture. The bacteriocin was cleaved into 2 portions, and the small C-terminal polypeptide consisting of 83 amino acids possessed bactericidal activity. These results demonstrated that the ORF3 of pCBM588 encoded a bacteriocin, which is identical or very similar to the previously reported butyricin 7423.

  15. Role of acetate in production of an autoinducible Class IIa Bacteriocin in Carnobacterium piscicola A9b

    DEFF Research Database (Denmark)

    Nilsson, Lilian; Nielsen, Michael Krogsgaard; Ng, Yin;

    2002-01-01

    was to purify the compound and describe factors affecting its production, with particular emphasis on food-relevant factors. Amino acid sequencing showed that the compound is a class IIa bacteriocin with an N-terminal amino acid sequence identical to that of carnobacteriocin B2. The production...... of the bacteriocin was autoinducible, and the threshold level for induction was 9.6 x 10(-10) M. We also report, for the first time, that acetate acts as an induction factor, with a threshold concentration of 0.3 to 12 mM. Acetate could not act as an inducer during the late exponential phase of C. piscicola A9b....... The induction of bacteriocin production showed a dose-dependent relationship at acetate concentrations of up to 10 to 20 mM (depending on the growth medium) and at a concentration of 1.9 x 10(-8) M for the bacteriocin itself; a saturation level of bacteriocin specific activity was reached...

  16. 细菌素编码基因的定位分析%Primary genetic analysis of the bacteriocin locus

    Institute of Scientific and Technical Information of China (English)

    王辉; 孟祥晨

    2012-01-01

    The genes related to the production of bacteriocins always emerge in clusters: the operon structure is composed of structure genes, self-immunoreaction genes and genes encoding auxiliary protein. The structure genes encoding bacteriocins may be located in the plas-maids or genome DNA, in order to make sure the location of the genes encoding bacteriocins primarily, this paper introduced the methods of locating the genes encoding bacteriocins primarily, which formed the foundation of the further study of bacteriocins.%细菌素生物合成相关的基因经常成簇出现:结构基因、对自身产生免疫的基因及产生辅助蛋白质的基因组成操纵子结构,其中结构基因是细菌素编码基因,它可能在质粒上也可能在染色体上,为了初步定位细菌素编码基因是在质粒上还是染色体上,综述细菌素编码基因的初步定位方法,为深入研究细菌素提供依据.

  17. LIKE IT ACID AND POOR: A STUDY OF ABIOTIC FACTORS INFLUENCING Streptococcus bovis HC5 GROWTH AND BACTERIOCIN PRODUCTION

    Directory of Open Access Journals (Sweden)

    Ana Andréa Teixeira Barbosa

    2015-04-01

    Full Text Available This study aimed to investigate the effect of pH, temperature, growth atmosphere and nutrient availability on bovicin HC5 production by Streptococcus bovis HC5. S. bovis HC5 grew well in complex and basal media under aerobic and anaerobic conditions, but greater bacteriocin yields were recovered from anaerobic cultures. Lactate production and glucose consumption increased if S. bovis HC5 cells were cultivated at pH 7.0 and at 45 ºC, but higher bovicin HC5 activity was recovered from cells grown in acidic conditions and at lower temperatures (39 ºC. Cultures maintained under continuous CO2 flow showed faster growth rates in basal media, but bacteriocin production was always higher if S. bovis was cultivated in anaerobic sealed tubes. These results suggest that acidic pH and anoxic conditions favor bovicin HC5 production by S. bovis HC5. S. bovis HC5 is a unique lactic acid bacterium in its ability to grow and produce high amounts of a potentially useful bacteriocin in simple media. Considering the constrains for bacteriocin production at commercial scale, it appears that bovicin HC5 production could be achieved at lower costs compared to other bacteriocins from lactic acid bacteria.

  18. Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk.

    Science.gov (United States)

    Alegría, Angel; Delgado, Susana; Roces, Clara; López, Belén; Mayo, Baltasar

    2010-09-30

    Sixty bacterial strains were encountered by random amplification of polymorphic DNA (RAPD) and repetitive extragenic palindromic (REP) typing in a series of 306 Lactococcus lactis isolates collected during the manufacturing and ripening stages of five traditional, starter-free cheeses made from raw milk. Among the 60 strains, 17 were shown to produce bacteriocin-like compounds in both solid and liquid media. At a genotypic level, 16 of the strains were identified by molecular methods as belonging to L. lactis subsp. lactis and one to L. lactis subsp. cremoris. Among the L. lactis subsp. lactis strains, phenotypic and genetic data determined that eleven produced either nisin A (nine strains) or nisin Z (two strains), and that five produced lactococcin 972. Variable levels of the two bacteriocins were produced by different strains. In addition, nisin was shown to be produced in inexpensive, dairy- and meat-based media, which will allow the practical application of its producing strains in industrial processes. Specific PCR and nucleotide and deduced amino acid sequence analysis identified the inhibitor produced by the single L. lactis subsp. cremoris isolate as a lactococcin G-like bacteriocin. Beyond the use of bacteriocins as functional ingredients for the biopreservation of foods, the newly identified bacteriocin-producing L. lactis strains from traditional cheeses may also be useful for designing starter cultures with protective properties and/or adjunct cultures for accelerating cheese ripening.

  19. The effect of bacteriocin-producing Lactobacillus plantarum strains on the intracellular pH of sessile and planktonic Listeria monocytongenes single cells

    DEFF Research Database (Denmark)

    Nielsen, Dennis Sandris; Cho, Gyu-Sung; Hanak, Alexander

    2010-01-01

    A wide range of lactic acid bacteria (LAB) produce bacteriocins mainly active against other closely related LAB, but some bacteriocins are also active against the food-borne pathogen Listeria monocytogenes. With the aim of increasing food safety it has thus been considered to utilise bacteriocins...... unaffected after 5 h of co-culturing and after 8 h 50% of the cells still maintained pHi = 7. Higher concentrations of lactic acid were produced in liquid compared to a solid surface, and the different response of EGDe and N53-1 to the activities of the two L. plantarum strains probably reflect higher...... and/or bacteriocin-producing LAB as “natural” food preservatives in foods such as cheese, meat and ready-to-eat products. Some strains of Lactobacillus plantarum produce bacteriocins termed plantaricins. Using a single-cell based approach, the effect on the intracellular pH as a measure...

  20. Partial Characterization of an Anti-Candida albicans Bacteriocin Produced by a Marine Strain of Bacillus sp., Sh10

    Directory of Open Access Journals (Sweden)

    Fatemeh Shayesteh

    2015-09-01

    Full Text Available The bacteriocin-producing strain Bacillus sp., Sh10, isolated from the marine environment, exhibited a broad spectrum of antimicrobial activity against different food spoilage and human pathogens, with a maximum inhibitory activity against Candida albicans. The inhibitory compound was sensitive to trypsin but resistant to proteinase K, lysozyme, lipase and &alpha-amylase. It was heat-stable and remained its activity after autoclaving. In addition, the antimicrobial substance demonstrated striking stability at low temperatures (4 and -20°C for up to one year and retained its activity in a wide pH range from 2 to 11. It was also stable and active in the presence of different surfactants, solvents and heavy metals. Analysis of the partially purified bacteriocin by SDS-PAGE showed an apparent molecular weight of ~11 KDa. This study reveals a remarkable potential of this bacteriocin to be used as a food preservative.

  1. Evidence for production of a bacteriocin-like substance by Staphylococcus pseudintermedius, inhibitory to Staphylococcus aureus from foods.

    Science.gov (United States)

    Pinto, Taiz Siqueira; de Oliveira, Cybelle Pereira; da Costa, Ana Carolina Vieira; Lima, Catiana Oliveira; Barreto, Humberto Medeiros; de Souza, Evandro Leite; Siqueira-Junior, José Pinto

    2013-01-01

    This study assessed the production of a bacteriocin-like substance by Staphylococcus pseudintermedius S28, and evaluates its inhibitory effect against isolates of S. aureus from foods. All indicator isolates were sensitive to the substance produced from S. pseudintermedius S28, showing growth inhibition zones ranging from 14.2 to 28.3 mm. The inhibitory substance has no effect against the producer strain. The inhibitory substance was affected by proteolytic enzymes, while glycolytic and lipolytic enzymes had no effect, suggesting that the active substance could be considered as a bacteriocin-like substance. From these results, S. pseudintermedius S28 could be an interesting producer of a bacteriocin-like substance capable of strongly inhibiting S. aureus.

  2. A strain-variable bacteriocin in Bacillus anthracis and Bacillus cereus with repeated Cys-Xaa-Xaa motifs

    Directory of Open Access Journals (Sweden)

    Haft Daniel H

    2009-04-01

    Full Text Available Abstract Bacteriocins are peptide antibiotics from ribosomally translated precursors, produced by bacteria often through extensive post-translational modification. Minimal sequence conservation, short gene lengths, and low complexity sequence can hinder bacteriocin identification, even during gene calling, so they are often discovered by proximity to accessory genes encoding maturation, immunity, and export functions. This work reports a new subfamily of putative thiazole-containing heterocyclic bacteriocins. It appears universal in all strains of Bacillus anthracis and B. cereus, but has gone unrecognized because it is always encoded far from its maturation protein operon. Patterns of insertions and deletions among twenty-four variants suggest a repeating functional unit of Cys-Xaa-Xaa. Reviewers This article was reviewed by Andrei Osterman and Lakshminarayan Iyer.

  3. Large scale preparation and application of bacteriocins%细菌素的制备及其应用

    Institute of Scientific and Technical Information of China (English)

    方佳琪; 别怀周; 陈晓琳; 张明

    2011-01-01

    In recent years, bacteriocins that can inhibit or kill the growth of some bacteria have a wide range of practical application in food preservation, disease treatment and many other related aspects were found, and the preparation methods of bacteriocin were widely reported. This article outlines the preparation methods of bacteriocins and its application in many fields.%近年来,具有抑菌活性的细菌素被发现在食品防腐保鲜、疾病治疗和其他许多相关方面有着广泛的应用价值,各种制备细菌素的方法 也被广泛报道.本文概述了细菌素的制备方法 以及其在诸多领域中的应用.

  4. Bacteriocin as Weapons in the Marine Animal-Associated Bacteria Warfare: Inventory and Potential Applications as an Aquaculture Probiotic

    Directory of Open Access Journals (Sweden)

    Florie Desriac

    2010-04-01

    Full Text Available As the association of marine animals with bacteria has become more commonly recognized, researchers have increasingly questioned whether these animals actually produce many of the bioactive compounds originally isolated from them. Bacteriocins, ribosomally synthesized antibiotic peptides, constitute one of the most potent weapons to fight against pathogen infections. Indeed, bacteriocinogenic bacteria may prevent pathogen dissemination by occupying the same ecological niche. Bacteriocinogenic strains associated with marine animals are a relevant source for isolation of probiotics. This review draws up an inventory of the marine bacteriocinogenic strains isolated from animal-associated microbial communities, known to date. Bacteriocin-like inhibitory substances (BLIS and fully-characterized bacteriocins are described. Finally, their applications as probiotics in aquaculture are discussed.

  5. Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis.

    Science.gov (United States)

    Ramnath, Manilduth; Arous, Safia; Gravesen, Anne; Hastings, John W; Héchard, Yann

    2004-08-01

    Sensitivity to class IIa bacteriocins from lactic acid bacteria was recently associated with the mannose phosphotransferase system (PTS) permease, in Listeria monocytogenes. To assess the involvement of this protein complex in class IIa bacteriocin activity, the mptACD operon, encoding, was heterologously expressed in an insensitive species, namely Lactococcus lactis, using the NICE double plasmid system. Upon induction of the cloned operon, the recombinant Lc. lactis became sensitive to leucocin A. Pediocin PA-1 and enterocin A also showed inhibitory activity against Lc. lactis cultures expressing mptACD. Furthermore, the role of the three genes of the mptACD operon was investigated. Derivative plasmids containing various combinations of these three genes were made from the parental mptACD plasmid by divergent PCR. The results showed that expression of mptC alone is sufficient to confer sensitivity to class IIa bacteriocins in Lc. lactis.

  6. Screening of marine bacteria with bacteriocin-like activities and probiotic potential for ornate spiny lobster (Panulirus ornatus) juveniles.

    Science.gov (United States)

    Nguyen, Van Duy; Pham, Thu Thuy; Nguyen, Thi Hai Thanh; Nguyen, Thi Thanh Xuan; Hoj, Lone

    2014-09-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides, which have been found in diverse bacterial species of terrestrial origins and some from the sea. New bacteriocins with new characteristics, new origins and new applications are likely still awaiting discovery. The present study screened bacteria isolated from marine animals of interest to the aquaculture industry for antimicrobial and bacteriocin-like activities in order to uncover biodiversity of bacteriocin producers, and explore the potential application in aquaculture. In total, 24 of 100 screened isolates showed antimicrobial activities and 7 of these exerted bacteriocin-like activities. Sequencing of 16S rRNA genes identified the isolates as members of the six genera Proteus, Providencia, Klebsiella, Alcaligenes, Bacillus and Enterococcus. In some cases, further analysis of housekeeping genes, rpoB for Proteus and recA for Klebsiella, as well as biochemical tests was necessary for identification to species level, and some of the Proteus isolates may represent novel species. The seven bacteriocinogenic isolates showed a wide antimicrobial spectrum against foodborne and animal pathogens, which opens the way to their potential use as marine drugs and probiotics in food, aquaculture, livestock and clinical settings. As a case study, the protective effect of shortlisted bacteriocinogenic isolates were tested in aquaculture-raised spiny lobster (Panulirus ornatus) juveniles. A single-strain (Bacillus pumilus B3.10.2B) and a three-strain (B. pumilus B3.10.2B, Bacillus cereus D9, Lactobacillus plantarum T13) probiotic preparation were added to the feed of Panulirus ornatus juveniles, which were subsequently challenged with the pathogen Vibrio owensii DY05. Juveniles in the probiotic treatments displayed increased growth and reduced feed conversion rates after 60 days, and increased survival rate after pathogen challenge relative to the control. This study represents the first evidence of bacteriocin

  7. Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by a thermophilic strain of Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    De Felice Maurilio

    2002-04-01

    Full Text Available Abstract Background Applications of bacteriocins as food preservatives have been so far limited, principally because of their low antimicrobial activity in foods. Nisin is the only bacteriocin of significant use, but applications are restricted principally because of its very low activity at neutral or alkaline pH. Thus the isolation of new bacteriocins active in foods is desirable. Results We isolated a Bacillus licheniformis thermophilic strain producing a bacteriocin with some novel features, named here bacillocin 490. This bacteriocin was inactivated by pronase E and proteinase K and was active against closely related Bacillus spp. both in aerobic and in anaerobic conditions. Bactericidal activity was kept during storage at 4°C and was remarkably stable in a wide pH range. The bacteriocin was partially purified by elution after adhesion to cells of the food-isolated strain Bacillus smithii and had a rather low mass (2 KDa. Antimicrobial activity against B. smithii was observed also when this organism was grown in water buffalo milk. Conclusions Bacillocin 490 is a novel candidate as a food anti-microbial agent since it displays its activity in milk, is stable to heat treatment and during storage, is active in a wide pH range and has bactericidal activity also at high temperature. These features may allow the use of bacillocin 490 during processes performed at high temperature and as a complementary antimicrobial agent of nisin against some Bacillus spp. in non-acidic foods. The small size suggests its use on solid foods.

  8. Complete genome sequence of Lactobacillus plantarum LZ95, a potential probiotic strain producing bacteriocins and B-group vitamin riboflavin.

    Science.gov (United States)

    Li, Ping; Gu, Qing

    2016-07-10

    Lactobacillus plantarum LZ95 is a potential probiotic isolated from newborn infant fecal and it is identified to produce riboflavin with great antimicrobial activity. The complete genome sequence of this strain was reported in the present study. The genome contains a 3,261,418-bp chromosome and two plasmids. Genes, related to the biosynthesis of bacteriocins and riboflavin, were identified. This work will facilitate to reveal the biosynthetic mechanism of bacteriocins and B-group vitamins in lactic acid bacteria and provide evidence for its potential application in food industry.

  9. Characterization of anti-Listeria bacteriocins isolated from shellfish: potential antimicrobials to control non-fermented seafood.

    Science.gov (United States)

    Pinto, Ana Luísa; Fernandes, Melissa; Pinto, Cristina; Albano, Helena; Castilho, Fernanda; Teixeira, Paula; Gibbs, Paul A

    2009-01-31

    This work had as main objectives to characterize two bacteriocins produced by lactic acid bacteria (LAB) previously isolated from non-fermented seafood, in order to evaluate their potential as new food protective agents. The two bacteriocinogenic isolates were identified by Polymerase Chain Reaction (PCR) using genus- and species-specific primers, and confirmed by 16S rDNA sequencing, as Enterococcus faecium and Pediococcus pentosaceus. The antimicrobial spectrum of each strain included several indicator microorganisms, some of them also isolated from seafood. Growth of Listeria innocua, L. monocytogenes, Staphylococcus aureus, Bacillus cereus and other LAB species were inhibited, although no inhibition of Gram-negative microorganisms was observed. Proteolytic, but not lipolytic or glycolytic enzymes, completely inactivated the antimicrobial effect of both cell-free supernatants confirming the proteinaceous nature of the inhibitors. The antimicrobial activity was maintained after treatment with NaCl, SDS, Triton X-100, Tween 20, Tween 80 and EDTA after 2 h or 5 h of exposure and both bacteriocins were stable over a wide range of pH and temperatures. Production of bacteriocin by E. faecium (bacALP7) was detected initially at exponential phase and reached a maximum activity of 25,600 AU/ml in the early stationary phase, whereas bacteriocin production by P. pentosaceus ALP57 (bacALP57) reached the maximum at exponential phase with 12,800 AU/ml. The bacteriocins did not kill L. monocytogenes ESB54 nor L. innocua 2030c however, cellular growth was reduced. The partially purified bacteriocins, bacALP7 and bacALP57, were below 6.5 kDa in size as determined by Tricine-SDS gel electrophoresis. E. faecium and P. pentosaceus contained DNA fragments corresponding in size to those recorded for enterocin B and pediocin PA-1, respectively. Sequencing of the fragments from both bacteriocins confirmed the homology. To our knowledge, for the first time two LAB producing bacteriocins

  10. Characterization of a bacteriocin produced by Lactobacillus sakei R1333 isolated from smoked salmon.

    Science.gov (United States)

    Todorov, Svetoslav D; Rachman, Cinta; Fourrier, Angélique; Dicks, Leon M T; van Reenen, Carol A; Prévost, Herve; Dousset, Xavier

    2011-02-01

    Strain R1333, isolated from commercially available smoked salmon, was identified as Lactobacillus sakei based on biochemical tests, sugar fermentation reactions (API 50 CHL), PCR with species-specific primers and sequencing of the 16S rRNA gene. Strain R1333 produces a 3811 kDa class IIa bacteriocin, active against Streptococcus caprinus, Streptococcus macedonicus, Streptococcus spp., L. sakei, Lactococcus lactis subsp. lactis, Listeria innocua, Listeria ivanovii subsp. ivanovii and Listeria monocytogenes. The mode of activity against L. innocua 2030C and L. ivanovii subsp. ivanovii ATCC 19119 was bactericidal, resulting in cell lysis and enzyme- and DNA-leakage. The highest level of activity (1600 AU/mL) was recorded when cells were grown at 30°C in MRS broth (initial pH 6.5). Only 800 AU/mL was recorded when strain R1333 was grown in MRS without Tween 80. Lower levels of bacteriocin production were recorded when strain R1333 was grown in MRS at 20°C. Peptide R1333 adsorbs at low levels (200 AU/mL) to producer cells. Purification of bacteriocin R1333 was performed by 60% ammonium sulfate precipitation, followed by separation on a SepPak C(18) column and reverse-phase HPLC on a Nucleosil C(18) column with a linear gradient from 0.1% TFA to 90% acetonitryl. A molecular mass of 3811 kDa was determined by mass spectrometry. Based on mass spectrometry and sequencing of the PCR amplified fragment targeting the sakG gene, L. sakei R1333 is a potential producer of sakacin G. This is the first report of the identification of sakacin G produced by L. sakei isolated from smoked salmon.

  11. Ferredoxin containing bacteriocins suggest a novel mechanism of iron uptake in Pectobacterium spp.

    Directory of Open Access Journals (Sweden)

    Rhys Grinter

    Full Text Available In order to kill competing strains of the same or closely related bacterial species, many bacteria produce potent narrow-spectrum protein antibiotics known as bacteriocins. Two sequenced strains of the phytopathogenic bacterium Pectobacterium carotovorum carry genes encoding putative bacteriocins which have seemingly evolved through a recombination event to encode proteins containing an N-terminal domain with extensive similarity to a [2Fe-2S] plant ferredoxin and a C-terminal colicin M-like catalytic domain. In this work, we show that these genes encode active bacteriocins, pectocin M1 and M2, which target strains of Pectobacterium carotovorum and Pectobacterium atrosepticum with increased potency under iron limiting conditions. The activity of pectocin M1 and M2 can be inhibited by the addition of spinach ferredoxin, indicating that the ferredoxin domain of these proteins acts as a receptor binding domain. This effect is not observed with the mammalian ferredoxin protein adrenodoxin, indicating that Pectobacterium spp. carries a specific receptor for plant ferredoxins and that these plant pathogens may acquire iron from the host through the uptake of ferredoxin. In further support of this hypothesis we show that the growth of strains of Pectobacterium carotovorum and atrosepticum that are not sensitive to the cytotoxic effects of pectocin M1 is enhanced in the presence of pectocin M1 and M2 under iron limiting conditions. A similar growth enhancement under iron limiting conditions is observed with spinach ferrodoxin, but not with adrenodoxin. Our data indicate that pectocin M1 and M2 have evolved to parasitise an existing iron uptake pathway by using a ferredoxin-containing receptor binding domain as a Trojan horse to gain entry into susceptible cells.

  12. Escherichia coli bacteriocins: antimicrobial efficacy and prevalence among isolates from patients with bacteraemia.

    Science.gov (United States)

    Budič, Maruška; Rijavec, Matija; Petkovšek, Ziva; Zgur-Bertok, Darja

    2011-01-01

    Bacteriocins are antimicrobial peptides generally active against bacteria closely related to the producer. Escherichia coli produces two types of bacteriocins, colicins and microcins. The in vitro efficacy of isolated colicins E1, E6, E7, K and M, was assessed against Escherichia coli strains from patients with bacteraemia of urinary tract origin. Colicin E7 was most effective, as only 13% of the tested strains were resistant. On the other hand, 32%, 33%, 43% and 53% of the tested strains exhibited resistance to colicins E6, K, M and E1. Moreover, the inhibitory activity of individual colicins E1, E6, E7, K and M and combinations of colicins K, M, E7 and E1, E6, E7, K, M were followed in liquid broth for 24 hours. Resistance against individual colicins developed after 9 hours of treatment. On the contrary, resistance development against the combined action of 5 colicins was not observed. One hundred and five E. coli strains from patients with bacteraemia were screened by PCR for the presence of 5 colicins and 7 microcins. Sixty-six percent of the strains encoded at least one bacteriocin, 43% one or more colicins, and 54% one or more microcins. Microcins were found to co-occur with toxins, siderophores, adhesins and with the Toll/Interleukin-1 receptor domain-containing protein involved in suppression of innate immunity, and were significantly more prevalent among strains from non-immunocompromised patients. In addition, microcins were highly prevalent among non-multidrug-resistant strains compared to multidrug-resistant strains. Our results indicate that microcins contribute to virulence of E. coli instigating bacteraemia of urinary tract origin.

  13. In Vitro Evaluation of Bacteriocins Activity Against Listeria monocytogenes Biofilm Formation.

    Science.gov (United States)

    Camargo, Anderson Carlos; de Paula, Otávio Almeida Lino; Todorov, Svetoslav Dimitrov; Nero, Luís Augusto

    2016-03-01

    The present study aimed to assess the activity of cell-free supernatant (CFS) containing bacteriocins on the formation and maintenance of biofilms developed by Listeria monocytogenes, and the associated effect of bacteriocins and ethylene-diamine-tetra-acetic acid (EDTA) on the formed biofilm. CFS from 9 lactic acid bacteria (LAB) strains was tested for inhibitory activity against 85 L. monocytogenes isolates and 21 LAB strains. Then, 12 L. monocytogenes strains were selected based on genetic profiles and sensitivity to CFS and were subjected to an in vitro assay to assess biofilm formation in microtiter plates, considering different culture media and incubation conditions. Based on these results, 6 L. monocytogenes strains were subjected to the same in vitro procedure to assess biofilm formation, being co-inoculated with CFS. In addition, these strains were subjected to the same in vitro procedure, modified by adding the CFS after biofilm formation. Relevant decrease in biofilm formation was observed in the first experiment, but CFS added after biofilm formation did not eliminate them. CFS from Lactobacillus curvatus ET31 were selected due to its anti-biofilm activity, being associated to EDTA at different concentrations and tested for biofilm control of three strains of L. monocytogenes, using the same in vitro procedure described previously. Concentrated bacteriocin presented poor performance in eliminating formed biofilms, and EDTA concentration presented no evident interference on biofilm elimination. Twelve selected L. monocytogenes strains were positive for investigated virulence makers and negative for luxS gene, recognized as being involved in biofilm formation. Selected L. monocytogenes strains were able to produce biofilms under different conditions. CFSs have the potential to prevent biofilm formation, but they were not able to destroy already formed biofilms. Nevertheless, low concentrations of CFS combined with EDTA caused a relevant reduction in

  14. Ferredoxin containing bacteriocins suggest a novel mechanism of iron uptake in Pectobacterium spp.

    Science.gov (United States)

    Grinter, Rhys; Milner, Joel; Walker, Daniel

    2012-01-01

    In order to kill competing strains of the same or closely related bacterial species, many bacteria produce potent narrow-spectrum protein antibiotics known as bacteriocins. Two sequenced strains of the phytopathogenic bacterium Pectobacterium carotovorum carry genes encoding putative bacteriocins which have seemingly evolved through a recombination event to encode proteins containing an N-terminal domain with extensive similarity to a [2Fe-2S] plant ferredoxin and a C-terminal colicin M-like catalytic domain. In this work, we show that these genes encode active bacteriocins, pectocin M1 and M2, which target strains of Pectobacterium carotovorum and Pectobacterium atrosepticum with increased potency under iron limiting conditions. The activity of pectocin M1 and M2 can be inhibited by the addition of spinach ferredoxin, indicating that the ferredoxin domain of these proteins acts as a receptor binding domain. This effect is not observed with the mammalian ferredoxin protein adrenodoxin, indicating that Pectobacterium spp. carries a specific receptor for plant ferredoxins and that these plant pathogens may acquire iron from the host through the uptake of ferredoxin. In further support of this hypothesis we show that the growth of strains of Pectobacterium carotovorum and atrosepticum that are not sensitive to the cytotoxic effects of pectocin M1 is enhanced in the presence of pectocin M1 and M2 under iron limiting conditions. A similar growth enhancement under iron limiting conditions is observed with spinach ferrodoxin, but not with adrenodoxin. Our data indicate that pectocin M1 and M2 have evolved to parasitise an existing iron uptake pathway by using a ferredoxin-containing receptor binding domain as a Trojan horse to gain entry into susceptible cells.

  15. In vitro evaluation of the probiotic potential of bacteriocin producer Lactobacillus sakei 1.

    Science.gov (United States)

    Gomes, Bruna C; Rodrigues, Marina R; Winkelströter, Lizziane K; Nomizo, Auro; de Martinis, Elaine C P

    2012-06-01

    Lactobacillus sakei 1 is a food isolate that produces a heat-stable antimicrobial peptide (sakacin 1, a class IIa bacteriocin) inhibitory to the opportunistic pathogen Listeria monocytogenes. Bacterial isolates with antimicrobial activity may be useful for food biopreservation and also for developing probiotics. To evaluate the probiotic potential of L. sakei 1, it was tested for (i) in vitro gastric resistance (with synthetic gastric juice adjusted to pH 2.0, 2.5, or 3.0); (ii) survival and bacteriocin production in the presence of bile salts and commercial prebiotics (inulin and oligofructose); (iii) adhesion to Caco-2 cells; and (iv) effect on the adhesion of L. monocytogenes to Caco-2 cells and invasion of these cells by the organism. The results showed that L. sakei 1 survival in gastric environment varied according to pH, with the maximum survival achieved at pH 3.0, despite a 4-log reduction of the population after 3 h. Regarding the bile salt tolerance and influence of prebiotics, it was observed that L. sakei 1 survival rates were similar (P > 0.05) for all de Man Rogosa Sharpe (MRS) broth formulations when tests were done after 4 h of incubation. However, after incubation for 24 h, the survival of L. sakei 1 in MRS broth was reduced by 1.8 log (P bacteriocin production was observed in MRS broth when inulin (3,200 AU/ml) or oligofructose (2,400 AU/ml) was used instead of glucose (6,400 AU/ml). L. sakei 1 adhered to Caco-2 cells, and its cell-free pH-neutralized supernatant containing sakacin 1 led to a significant reduction of in vitro listerial invasion of human intestinal Caco-2 cells.

  16. Antibacterial efficacy of Nisin, Pediocin 34 and Enterocin FH99 against Listeria monocytogenes and cross resistance of its bacteriocin resistant variants to common food preservatives

    Directory of Open Access Journals (Sweden)

    G. Kaur

    2013-01-01

    Full Text Available Antilisterial efficiency of three bacteriocins, viz, Nisin, Pediocin 34 and Enterocin FH99 was tested individually and in combination against Listeria mononcytogenes ATCC 53135. A greater antibacterial effect was observed when the bacteriocins were combined in pairs, indicating that the use of more than one LAB bacteriocin in combination have a higher antibacterial action than when used individually. Variants of Listeria monocytogenes ATCC 53135 resistant to Nisin, Pediocin 34 and Enterocin FH99 were developed. Bacteriocin cross-resistance of wild type and their corresponding resistant variants were assessed and results showed that resistance to a bacteriocin may extend to other bacteriocins within the same class. Resistance to Pediocin 34 conferred cross resistance to Enterocin FH 99 but not to Nisin. Similarly resistance to Enterocin FH99 conferred cross resistance to Pediocin 34 but not to Nisin. Also, the sensitivity of Nisin, Pediocin 34 and Enterocin FH99 resistant variants of Listeria monocytogenes to low pH, salt, sodium nitrite, and potassium sorbate was assayed in broth and compared to the parental wild-type strain. The Nisin, Pediocin 34 and Enterocin FH99 resistant variants did not have intrinsic resistance to low pH, sodium chloride, potassium sorbate, or sodium nitrite. In no case were the bacteriocin resistant Listeria monocytogenes variants examined were more resistant to inhibitors than the parental strains.

  17. Temperature and pH conditions that prevail during fermentation of sausages are optimal for production of the antilisterial bacteriocin sakacin K.

    Science.gov (United States)

    Leroy, F; de Vuyst, L

    1999-03-01

    Sakacin K is an antilisterial bacteriocin produced by Lactobacillus sake CTC 494, a strain isolated from Spanish dry fermented sausages. The biokinetics of cell growth and bacteriocin production of L. sake CTC 494 in vitro during laboratory fermentations were investigated by making use of MRS broth. The data obtained from the fermentations was used to set up a predictive model to describe the influence of the physical factors temperature and pH on microbial behavior. The model was validated successfully for all components. However, the specific bacteriocin production rate seemed to have an upper limit. Both cell growth and bacteriocin activity were very much influenced by changes in temperature and pH. The production of biomass was closely related to bacteriocin activity, indicating primary metabolite kinetics, but was not the only factor of importance. Acidity dramatically influenced both the production and the inactivation of sakacin K; the optimal pH for cell growth did not correspond to the pH for maximal sakacin K activity. Furthermore, cells grew well at 35 degrees C but no bacteriocin production could be detected at this temperature. L. sake CTC 494 shows special promise for implementation as a novel bacteriocin-producing sausage starter culture with antilisterial properties, considering the fact that the temperature and acidity conditions that prevail during the fermentation process of dry fermented sausages are optimal for the production of sakacin K.

  18. Discovery of Azurin-Like Anticancer Bacteriocins from Human Gut Microbiome through Homology Modeling and Molecular Docking against the Tumor Suppressor p53.

    Science.gov (United States)

    Nguyen, Chuong; Nguyen, Van Duy

    2016-01-01

    Azurin from Pseudomonas aeruginosa is known anticancer bacteriocin, which can specifically penetrate human cancer cells and induce apoptosis. We hypothesized that pathogenic and commensal bacteria with long term residence in human body can produce azurin-like bacteriocins as a weapon against the invasion of cancers. In our previous work, putative bacteriocins have been screened from complete genomes of 66 dominant bacteria species in human gut microbiota and subsequently characterized by subjecting them as functional annotation algorithms with azurin as control. We have qualitatively predicted 14 putative bacteriocins that possessed functional properties very similar to those of azurin. In this work, we perform a number of quantitative and structure-based analyses including hydrophobic percentage calculation, structural modeling, and molecular docking study of bacteriocins of interest against protein p53, a cancer target. Finally, we have identified 8 putative bacteriocins that bind p53 in a same manner as p28-azurin and azurin, in which 3 peptides (p1seq16, p2seq20, and p3seq24) shared with our previous study and 5 novel ones (p1seq09, p2seq05, p2seq08, p3seq02, and p3seq17) discovered in the first time. These bacteriocins are suggested for further in vitro tests in different neoplastic line cells.

  19. Discovery of Azurin-Like Anticancer Bacteriocins from Human Gut Microbiome through Homology Modeling and Molecular Docking against the Tumor Suppressor p53

    Directory of Open Access Journals (Sweden)

    Chuong Nguyen

    2016-01-01

    Full Text Available Azurin from Pseudomonas aeruginosa is known anticancer bacteriocin, which can specifically penetrate human cancer cells and induce apoptosis. We hypothesized that pathogenic and commensal bacteria with long term residence in human body can produce azurin-like bacteriocins as a weapon against the invasion of cancers. In our previous work, putative bacteriocins have been screened from complete genomes of 66 dominant bacteria species in human gut microbiota and subsequently characterized by subjecting them as functional annotation algorithms with azurin as control. We have qualitatively predicted 14 putative bacteriocins that possessed functional properties very similar to those of azurin. In this work, we perform a number of quantitative and structure-based analyses including hydrophobic percentage calculation, structural modeling, and molecular docking study of bacteriocins of interest against protein p53, a cancer target. Finally, we have identified 8 putative bacteriocins that bind p53 in a same manner as p28-azurin and azurin, in which 3 peptides (p1seq16, p2seq20, and p3seq24 shared with our previous study and 5 novel ones (p1seq09, p2seq05, p2seq08, p3seq02, and p3seq17 discovered in the first time. These bacteriocins are suggested for further in vitro tests in different neoplastic line cells.

  20. Effects of nitrogen sources on bacteriocin production by Enterococcus faecium A 2000.

    Science.gov (United States)

    Pantev, A; Kabadjova, P; Valcheva, R; Danova, S; Dousset, X; Haertlé, T; Chobert, J M; Ivanova, I

    2002-01-01

    The production of a novel broad-spectrum antimicrobial peptide enterococcin A 2000, active against Gram-positive and Gram-negative microorganisms including Listeria subsp. and Escherichia coli, by Enterococcus faecium strain A 2000 isolated from the surface of traditional Bulgarian yellow cheese "kash-kaval" is considerably influenced by complex nitrogen sources in the production medium. Medium components, especially peptone and yeast extract, and their concentration contributed to the increase in bacteriocin production during the stationary phase (16-46 h) of cultivation even in the absence of one of the components present in the basal cultivation MRS medium.

  1. Dynamics of a Model of Allelopathy and Bacteriocin with a Single Mutation.

    Science.gov (United States)

    Zou, Lan; Chen, Xingwu; Ruan, Shigui; Zhang, Weinian

    2011-02-01

    In this paper we discuss a model of allelopathy and bacteriocin in the chemostat with a wild-type organism and a single mutant. Dynamical properties of this model show the basic competition between two microorganisms. A qualitative analysis about the boundary equilibrium, a state that microorganisms both vanish, is carried out. The existence and uniqueness of the interior equilibrium are proved by a technical reduction to the singularity of a matrix. Its dynamical properties are given by using the index theory of equilibria. We further discuss its bifurcations. Our results are demonstrated by numerical simulations.

  2. Bacteriocin production: a relatively unharnessed probiotic trait? [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    James W. Hegarty

    2016-10-01

    Full Text Available Probiotics are “live microorganisms which, when consumed in adequate amounts, confer a health benefit to the host”. A number of attributes are highly sought after among these microorganisms, including immunomodulation, epithelial barrier maintenance, competitive exclusion, production of short-chain fatty acids, and bile salt metabolism. Bacteriocin production is also generally regarded as a probiotic trait, but it can be argued that, in contrast to other traits, it is often considered a feature that is desirable, rather than a key probiotic trait. As such, the true potential of these antimicrobials has yet to be realised.

  3. EKSTRAKSI DAN KARAKTERISASI BAKTERIOSIN YANG DIHASILKAN OLEH Leuconostoc mesenteroides SM 22 [Extraction and Characterization of Bacteriocin Produced by Leuconostoc mesenteroides SM 22

    Directory of Open Access Journals (Sweden)

    Darnawan Ari Nugroho

    2003-12-01

    Full Text Available Bacteriocin produced by lactic acid bacteria has potential as food biopreservative due to their capability to control spoilage and pathogenic food borne bacteria. Previous studies showed that extraction of bacteriocin produced by Leuconostoc mesenteroides SM 22 using adsorption-desorption method was not optimal. The objectives of this research were (1 to increase the effectiveness of bacteriocin extraction using adsorption-desorption method by the addition of heated biomass of Leuconostoc SM 22 in various concentration during adsorbtion (2 to characterize the bacteriocin of Leuconostoc mesenteroides SM 22 on it's stability during heat treatment, during cool storage and it's spectrum activity againts pathogenic bacteria. Result of this research showed that bacteriocin activity obtained from extraction with no addition of heated biomass was 1000 AU/ml, while by addition of heated biomass of 2 to 3 times of original concentration (OD were 2000 AU/ml. Therefore it was suggested that addition of heated biomass of Leuconostoc mesenteroides SM 22 during adsorption-desorption with 2 times of original concentration (OD was able to increase the bacteriocin obtained. Bacteriocin with original activity of 2000 AU/ml, was stable (no reduction activity after heated at 100oC for 30 minutes, but slightly decrease after heated at 121oC for 5 minutes and 121oC for 15 minutes, that were 1600 AU/ml and 800 AU/ml respectively. Bacteriocin of Leuconostoc mesenteroides SM 22 was stable during 8 weeks storage at refrigerator (4oC, freezer -20oC and -40oC. This bacteriocin has a wide spectrum of activity showed by it's ability to inhibit the growth of Listeria monocytogenes, Staphylococcus aureus, Salmonella thypimurium, Vibrio parahaemolyticus, Shigella and psychrophilic bacteria isolated from milk and isolated from meat.

  4. Effect of yeast with bacteriocin from rumen bacteria on laying performance, blood biochemistry, faecal microbiota and egg quality of laying hens.

    Science.gov (United States)

    Wang, H T; Shih, W Y; Chen, S W; Wang, S Y

    2015-12-01

    The purpose of this study was to evaluate the effect of yeast with bacteriocin from Ruminococcus albus 7 (albusin B) on physiological state and production performance of laying hens. One hundred and twenty 26-week-old Single Comb White Leghorn (Hyline) laying hens were assigned into five groups including: (i) control group, (ii) yeast control (YC), (iii) 0.125% yeast with bacteriocin (0.125B), (iv) 0.25% yeast with bacteriocin (0.25B) and (v) 0.5% yeast with bacteriocin (0.5B). All supplements were added to the experimental diets of the hens from 26 to 46 weeks of age. Samples were collected every 4 weeks. Blood samples were collected from the wing vein for blood biochemical parameters assay, and faecal samples were collected by swab for the microbiota test. The egg production performance was recorded daily, and fresh eggs were collected for quality test. The blood biochemical assay results indicated that the addition of yeast with bacteriocin decreased the AST (aspartate aminotransferase) activity and it also affects the lactate concentration in laying hen blood. The result of egg quality indicated that yeast with bacteriocin supplementation had no effect on the mass of yolk and the strength of eggshell, but it had positive effect on the laying performance under hot environment. Low concentration bacteriocin (0.125B) supplementation could decrease total yolk cholesterol. The faecal microbiota result indicated that the supplementation of bacteriocin increased the lactobacilli counts. The yeast with bacteriocin supplementation significantly decreased the clostridia counts under hot environment condition, especially in hens receiving 0.25B. Combining the data from clinic chemistry, faecal microbiota, egg production and egg quality, the 0.25B supplementation may result in the best physiological parameter and egg production performance of laying hen.

  5. In vitro evaluation of the antimicrobial effect of a raw bacteriocin extract in combination with chemical preservatives employed in meat industry

    Directory of Open Access Journals (Sweden)

    Luis A. Aguado Bautista

    2010-12-01

    Full Text Available Biopreservation can be defined as the foods shelf life extension employing antibacterial products like bacteriocins. The objective of this work was to determinate the efficacy of E. faecium MXVK29 bacteriocin in combination with chemical preservatives against spoilage and pathogens microorganisms. Bacteriocin raw extrac antimicrobial activity was 46.34 UA/g of protein. Growth of Pseudomonas putida was not affected by the preservatives employed at the conditions employed. Antimicrobial response was different for other microorganisms since a synergetic effect of the preservatives combination inhibited Brochothrix thermosphacta and Escherichia coli growth. Sodium lactate had additive effect only against Listeria innocua.

  6. In vitro evaluation of bacteriocin-like inhibitory substances produced by lactic acid bacteria isolated during traditional Sicilian cheese making

    Directory of Open Access Journals (Sweden)

    Giusi Macaluso

    2016-02-01

    Full Text Available Bacteriocins are antimicrobial proteins produced by bacteria that inhibit the growth of other bacteria with a bactericidal or bacteriostatic mode of action. Many lactic acid bacteria (LAB produce a high diversity of different bacteriocins. Bacteriocinogenic LAB are generally recognised as safe (GRAS and useful to control the frequent development of pathogens and spoilage microorganisms. For this reason they are commonly used as starter cultures in food fermentations. In this study, the authors describe the results of a screening on 699 LAB isolated from wooden vat surfaces, raw milk and traditional Sicilian cheeses, for the production of bacteriocin-like inhibitory substances, by comparing two alternative methods. The antagonistic activity of LAB and its proteinaceous nature were evaluated using the spot-on-the-lawn and the well-diffusion assay (WDA and the sensitivity to proteolytic (proteinase K, protease B and trypsin, amylolytic (α-amylase and lipolytic (lipase enzymes. The indicator strains used were: Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella enteritidis. A total of 223 strains (belonging to the species Enterococcus spp., Lactobacillus spp., Pediococcus spp., Streptococcus spp., Leuconostoc spp. and Lactococcus lactis were found to inhibit the growth of Listeria monocytogenes by using the spot-on-the-lawn method; only 37 of these were confirmed by using the WDA. The direct addition of bacteriocin-producing cultures into dairy products can be a more practical and economic option for the improvement of the safety and quality of the final product.

  7. Lectin-like bacteriocins from Pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor.

    Directory of Open Access Journals (Sweden)

    Laura C McCaughey

    2014-02-01

    Full Text Available Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of D-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing D-rhamnose and not D-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins.

  8. Bacteriocin production and resistance to drugs are advantageous features for Lactobacillus acidophilus La-14, a potential probiotic strain.

    Science.gov (United States)

    Todorov, Svetoslav Dimitrov; Furtado, Danielle Nader; Saad, Susana Marta Isay; Gombossy de Melo Franco, Bernadette Dora

    2011-10-01

    L. acidophilus La-14 produces bacteriocin active against L. monocytogenes ScottA (1600 AU/ml) in MRS broth at 30°C or 37°C. The bacteriocin proved inhibitory to different serological types of Listeria spp. Antimicrobial activity was completely lost after treatment of the cell-free supernatant with proteolytic enzymes. Addition of bacteriocin produced by L. acidophilus La-14 to a 3 h-old culture of L. monocytogenes ScottA repressed cell growth in the following 8h. Treatment of stationary phase cells of L. monocytogenes ScottA (107-108 CFU/ml) by the bacteriocin resulted in growth inhibition. Growth of L. acidophilus La-14 was not inhibited by commercial drugs from different generic groups, including nonsteroidal anti-inflammatory drugs (NSAID) containing diclofenac potassium or ibuprofen arginine. Only one non-antibiotic drug tested, Atlansil (an antiarrhythmic agent), had an inhibitory effect on L. acidophilus La-14 with MIC of 2.5 mg/ml. L. acidophilus La-14 was not affected by drugs containing sodium or potassium diclofenac. L. acidophilus La-14 shows a good resistance to several drugs and may be applied in combination for therapeutic use.

  9. Bacteriocin protein BacL1 of Enterococcus faecalis is a peptidoglycan D-isoglutamyl-L-lysine endopeptidase.

    Science.gov (United States)

    Kurushima, Jun; Hayashi, Ikue; Sugai, Motoyuki; Tomita, Haruyoshi

    2013-12-27

    Enterococcus faecalis strains are commensal bacteria in humans and other animals, and they are also the causative agent of opportunistic infectious diseases. Bacteriocin 41 (Bac41) is produced by certain E. faecalis clinical isolates, and it is active against other E. faecalis strains. Our genetic analyses demonstrated that the extracellular products of the bacL1 and bacA genes, which are encoded in the Bac41 operon, coordinately express the bacteriocin activity against E. faecalis. In this study, we investigated the molecular functions of the BacL1 and BacA proteins. Immunoblotting and N-terminal amino acid sequence analysis revealed that BacL1 and BacA are secreted without any processing. The coincidental treatment with the recombinant BacL1 and BacA showed complete bacteriocin activity against E. faecalis, but neither BacL1 nor BacA protein alone showed the bacteriocin activity. Interestingly, BacL1 alone demonstrated substantial degrading activity against the cell wall fraction of E. faecalis in the absence of BacA. Furthermore, MALDI-TOF MS analysis revealed that BacL1 has a peptidoglycan D-isoglutamyl-L-lysine endopeptidase activity via a NlpC/P60 homology domain. These results collectively suggest that BacL1 serves as a peptidoglycan hydrolase and, when BacA is present, results in the lysis of viable E. faecalis cells.

  10. Outgrowth inhibition of Clostridium beijerinckii spores by a bacteriocin-producing lactic culture in ovine milk cheese.

    Science.gov (United States)

    Garde, Sonia; Avila, Marta; Arias, Ramón; Gaya, Pilar; Nuñez, Manuel

    2011-10-17

    In the manufacture of model cheeses, ovine milk was deliberately contaminated with spores of Clostridium beijerinckii INIA 63, a wild isolate from Manchego cheese with late blowing defect, and inoculated with nisin- and lacticin 481-producing Lactococcus lactis subsp. lactis INIA 415 as starter, to test its potential to prevent the late blowing defect, or with L. lactis subsp. lactis INIA 415-2, a spontaneous mutant not producing bacteriocins. Cheeses made individually with the lactococcal strains, without clostridial spores, served as controls. Cheese made with clostridial spores and L. lactis subsp. lactis INIA 415-2 showed late blowing defect after 120days of ripening. Spoilt cheese also showed lower concentrations of lactic acid, and higher levels of acetic, propionic and butyric acids, and of other volatile compounds such as 2-propanol and 1-butanol, than control cheese. In addition, cheese made with the bacteriocin producer did not show any late blowing symptoms, despite its spore counts similar to those of blown cheese, pointing to outgrowth inhibition of C. beijerinckii spores by bacteriocins. Besides, cheese made with the bacteriocin producer showed similar concentrations of lactic acid and volatile compounds than control cheese. Inclusion of L. lactis subsp. lactis INIA 415 in starter cultures seems a feasible method to prevent late blowing defect in cheese without altering its sensory characteristics.

  11. In Vitro Evaluation of Bacteriocin-Like Inhibitory Substances Produced by Lactic Acid Bacteria Isolated During Traditional Sicilian Cheese Making

    Science.gov (United States)

    Macaluso, Giusi; Fiorenza, Gerlando; Gaglio, Raimondo; Mancuso, Isabella

    2016-01-01

    Bacteriocins are antimicrobial proteins produced by bacteria that inhibit the growth of other bacteria with a bactericidal or bacteriostatic mode of action. Many lactic acid bacteria (LAB) produce a high diversity of different bacteriocins. Bacteriocinogenic LAB are generally recognised as safe (GRAS) and useful to control the frequent development of pathogens and spoilage microorganisms. For this reason they are commonly used as starter cultures in food fermentations. In this study, the authors describe the results of a screening on 699 LAB isolated from wooden vat surfaces, raw milk and traditional Sicilian cheeses, for the production of bacteriocin-like inhibitory substances, by comparing two alternative methods. The antagonistic activity of LAB and its proteinaceous nature were evaluated using the spot-on-the-lawn and the well-diffusion assay (WDA) and the sensitivity to proteolytic (proteinase K, protease B and trypsin), amylolytic (a-amylase) and lipolytic (lipase) enzymes. The indicator strains used were: Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella enteritidis. A total of 223 strains (belonging to the species Enterococcus spp., Lactobacillus spp., Pediococcus spp., Streptococcus spp., Leuconostoc spp. and Lactococcus lactis) were found to inhibit the growth of Listeria monocytogenes by using the spot-on-the-lawn method; only 37 of these were confirmed by using the WDA. The direct addition of bacteriocin-producing cultures into dairy products can be a more practical and economic option for the improvement of the safety and quality of the final product.

  12. Antimicrobial activities of bacteriocins E 50-52 and B 602 against antobiotic resistant strains involved in nosocomial infections

    Science.gov (United States)

    The antimicrobial spectra of previously published bacteriocins (BCN) E 50-52 and B 602 was determined. The amino acid sequences, molecular weights and the isoelectric points of both E 50-52 and B 602 BCN were consistent with class IIa characteristics, contained 39 and 29 amino acid residues, molecul...

  13. Lectin-like bacteriocins from Pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor.

    Science.gov (United States)

    McCaughey, Laura C; Grinter, Rhys; Josts, Inokentijs; Roszak, Aleksander W; Waløen, Kai I; Cogdell, Richard J; Milner, Joel; Evans, Tom; Kelly, Sharon; Tucker, Nicholas P; Byron, Olwyn; Smith, Brian; Walker, Daniel

    2014-02-01

    Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of D-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing D-rhamnose and not D-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins.

  14. Potential use of Bacillus thuringiensis bacteriocins to control antibiotic-resistant bacteria associated with mastitis in dairy goats.

    Science.gov (United States)

    Gutiérrez-Chávez, A J; Martínez-Ortega, E A; Valencia-Posadas, M; León-Galván, M F; de la Fuente-Salcido, N M; Bideshi, D K; Barboza-Corona, J E

    2016-01-01

    Mastitis caused by microbial infections in dairy goats reduces milk yield, modifies milk composition, and potentially contributes to morbidity in herds and consumers of dairy products. Microorganisms associated with mastitis in dairy goats are commonly controlled with antibiotics, but it is known that continued use of these chemical agents promotes antibiotic resistance among bacterial populations. Recently, it has been shown that bacteriocins of Bacillus thuringiensis inhibit growth of food-borne pathogens and also bacteria associated with bovine mastitis. However, there is no report on their ability to inhibit microorganisms linked to mastitis in dairy goats. In this study, using 16S rDNA and ITS regions of rDNA, we identified nine bacterial isolates and an encapsulated yeast associated with mastitis in dairy goats. Enterococcus durans, Brevibacillus sp., and Staphylococcus epidermidis 2 were resistant to, respectively, 75, ~67, ~42, and ~42 % of the antibiotics screened. In addition, 60 % of the bacterial isolates were resistant to penicillin, ampicillin, vancomycin, and dicloxacillin. Importantly, 60 % of the isolates were inhibited by the bacteriocins, but S. epidermidis 1, Enterobacter sp., Escherichia vulneris, and Cryptococcus neoformans were not susceptible to these antimicrobial peptides. Using Brevibacillus sp. and Staphylococcus chromogenes as indicator bacteria, we show that peptides of ~10 kDa that correspond to the molecular mass of bacteriocins used in this study are responsible for the inhibitory activity. Our results demonstrate that multiple antibiotic-resistant bacteria associated with subclinical mastitis in dairy goats from Guanajuato, Mexico, are susceptible to bacteriocins produced by B. thuringiensis.

  15. Antimicrobial activities of bacteriocins E50-52 and B602 against MRSA and other nosocomial infections

    Science.gov (United States)

    Our objective was to determine the antimicrobial activities of previously published bacteriocins E50-52 and B602 against methicillin resistant Staphylococcus aureus (MRSA) and other prominent nosocomial bacterial infections. methods: Several Russian hospitals were enlisted into the study from 2003 ...

  16. Purification and characterization of plantaricin 163, a novel bacteriocin produced by Lactobacillus plantarum 163 isolated from traditional Chinese fermented vegetables.

    Science.gov (United States)

    Hu, Meizhong; Zhao, Haizhen; Zhang, Chong; Yu, Jiansheng; Lu, Zhaoxin

    2013-11-27

    Presumptive lactic acid bacteria (LAB) strains isolated from traditional Chinese fermented vegetables were screened for bacteriocin production. A novel bacteriocin-producing strain, Lactobacillus plantarum 163, was identified on the basis of its physiobiochemical characteristics and characterized by 16S rDNA sequencing. The novel bacteriocin, plantaricin 163, produced by Lb. plantarum 163 was purified by salt precipitation, gel filtration, and reverse-phase high-performance liquid chromatography (RP-HPLC). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of plantaricin 163 revealed the molecular weight to be 3553.2 Da. The complete amino acid sequence showed VFHAYSARGNYYGNCPANWPSCRNNYKSAGGK, and no similarity to known bacteriocins was found. Plantaricin 163 was highly thermostable (20 min, 121 °C), active in the presence of acidic pH (3-5), sensitive to protease, and exhibited broad-spectrum antimicrobial activity against LAB and other tested Gram-positive and Gram-negative bacteria. The results suggest that plantaricin 163 may be employed as a biopreservative in the food industry.

  17. Characterization of Bacteriocin like inhibitory substance produced by a new Strain Brevibacillus borstelensis AG1 Isolated from 'Marcha'

    Directory of Open Access Journals (Sweden)

    Nivedita Sharma

    2014-09-01

    Full Text Available In the present study, a bacterium isolated from Marcha- a herbal cake used as traditional starter culture to ferment local wine in North East India, was evaluated for bacteriocin like inhibitory substance production and was tested against six food borne/spoilage causing pathogens viz. Listeria monocytogenes MTCC 839, Bacillus subtilis MTCC 121, Clostridium perfringens MTCC 450, Staphylococcus aureus, Lactobacillus plantarum and Leuconostoc mesenteroides MTCC 107 by using bit/disc method followed by well diffusion method. The bacterial isolate was identified as Brevibacillus borstelensis on the basis of phenotypic, biochemical and molecular characteristics using 16Sr RNA gene technique. Bacteriocin like inhibitory substance produced by Brevibacillus borstelensis AG1 was purified by gel exclusion chromatography. The molecular mass of the Brevibacillus borstelensis AG1 was found to be 12 kDa. Purified bacteriocin like inhibitory substance of Brevibacillus borstelensis was further characterized by studying the effect of temperature, pH, proteolytic enzyme and stability. Bacteriocin like inhibitory substance was found to be thermostable upto 100 °C, active at neutral pH, sensitive to trypsin, and partially stable till third week of storage thus showing a bright prospective to be used as a potential food biopreservative.

  18. Characterization of Bacteriocin like inhibitory substance produced by a new Strain Brevibacillus borstelensis AG1 Isolated from 'Marcha'.

    Science.gov (United States)

    Sharma, Nivedita; Gupta, Anupama; Gautam, Neha

    2014-01-01

    In the present study, a bacterium isolated from Marcha- a herbal cake used as traditional starter culture to ferment local wine in North East India, was evaluated for bacteriocin like inhibitory substance production and was tested against six food borne/spoilage causing pathogens viz. Listeria monocytogenes MTCC 839, Bacillus subtilis MTCC 121, Clostridium perfringens MTCC 450, Staphylococcus aureus, Lactobacillus plantarum and Leuconostoc mesenteroides MTCC 107 by using bit/disc method followed by well diffusion method. The bacterial isolate was identified as Brevibacillus borstelensis on the basis of phenotypic, biochemical and molecular characteristics using 16Sr RNA gene technique. Bacteriocin like inhibitory substance produced by Brevibacillus borstelensis AG1 was purified by gel exclusion chromatography. The molecular mass of the Brevibacillus borstelensis AG1 was found to be 12 kDa. Purified bacteriocin like inhibitory substance of Brevibacillus borstelensis was further characterized by studying the effect of temperature, pH, proteolytic enzyme and stability. Bacteriocin like inhibitory substance was found to be thermostable upto 100 °C, active at neutral pH, sensitive to trypsin, and partially stable till third week of storage thus showing a bright prospective to be used as a potential food biopreservative.

  19. Characterization of Bacteriocin like inhibitory substance produced by a new Strain Brevibacillus borstelensis AG1 Isolated from ‘Marcha’

    Science.gov (United States)

    Sharma, Nivedita; Gupta, Anupama; Gautam, Neha

    2014-01-01

    In the present study, a bacterium isolated from Marcha- a herbal cake used as traditional starter culture to ferment local wine in North East India, was evaluated for bacteriocin like inhibitory substance production and was tested against six food borne/spoilage causing pathogens viz. Listeria monocytogenes MTCC 839, Bacillus subtilis MTCC 121, Clostridium perfringens MTCC 450, Staphylococcus aureus, Lactobacillus plantarum and Leuconostoc mesenteroides MTCC 107 by using bit/disc method followed by well diffusion method. The bacterial isolate was identified as Brevibacillus borstelensis on the basis of phenotypic, biochemical and molecular characteristics using 16Sr RNA gene technique. Bacteriocin like inhibitory substance produced by Brevibacillus borstelensis AG1 was purified by gel exclusion chromatography. The molecular mass of the Brevibacillus borstelensis AG1 was found to be 12 kDa. Purified bacteriocin like inhibitory substance of Brevibacillus borstelensis was further characterized by studying the effect of temperature, pH, proteolytic enzyme and stability. Bacteriocin like inhibitory substance was found to be thermostable upto 100 °C, active at neutral pH, sensitive to trypsin, and partially stable till third week of storage thus showing a bright prospective to be used as a potential food biopreservative. PMID:25477937

  20. Antimicrobial and Anti-Swarming Effects of Bacteriocins and Biosurfactants from Probiotic Bacterial Strains against Proteus spp.

    Directory of Open Access Journals (Sweden)

    Laila Goudarzi

    2017-02-01

    Full Text Available Background:   Proteus spp. belongs to the family of Enterobacteriaceae. These bacteria are Gram-negative and motile microorganisms and known as the third most common causes of urinary tract infections. The aim of the current study was to investigate the effects of some secondary metabolites from probiotic strains of Lactobacillus spp. on swarming and growth of Proteus mirabilis and P. vulgaris. Methods:   After determination of optimal conditions for the growth and production of antimicrobials, bacteriocins and biosurfactants were partially purified from Lactobacillus culture supernatants. Then, effects of the purified compounds on growth and swarming migration of Proteus spp. were examined in the presence of various concentrations of semi-purified compounds. Results:  Results showed that the partially purified bacteriocins inhibited Proteus spp. swarming distance and had a significant reduction on the bacterial growth curves. Biosurfactants in a solvent form did not have any considerable effects on factors produced by Proteus spp. Conclusion:  According to the results, the secondary metabolites, especially bacteriocins or bacteriocin-like substances derived from Lactobacillus strains, can inhibit or reduce growth and swarming migration of Proteus spp. which are considered as the bacteria major virulence factors.

  1. PRODUCTION OF BACTERIOCIN EC2 AND ITS INTERFERENCE IN THE GROWTH OF SALMONELLA TYPHI IN A MILK MATRIX

    Directory of Open Access Journals (Sweden)

    Yuri de Jesus Lopes de Abreu

    2013-08-01

    Full Text Available Bacterial interference can occur through various mechanisms, including the production of peroxides, acids, ammonia, bacteriolytic enzymes or bacteriocins. The strain Escherichia coli EC2 produces the antimicrobial substance (AMS EC2, able to inhibit different strains of Gram-negative bacteria isolated from food, as E. coli and Salmonella sp. The activity of AMS EC2 was lost after treatment with proteolytic enzymes, indicating the presence of an active proteinaceous compound, suggesting that it is a bacteriocin. The substance, renamed bacteriocin EC2, has its better production when the producer strain is grown on Casoy medium, at 37ºC and pH 6.0, without NaCl addition, but it is also able to be produced in milk. When co-cultivated in UHT milk with the producer strain E. coli EC2, the growth of the indicator strain Salmonella Typhi is totally inhibited within the first 4 hours of incubation, suggesting a potential application of bacteriocin EC2 in the control of Salmonella sp. e.g. in foods.

  2. Characterization of Xanthomonas spp. strains by bacteriocins Caracterização de isolados de Xanthomonas spp. por bacterocinas

    Directory of Open Access Journals (Sweden)

    Marcel Bonini

    2007-03-01

    Full Text Available Twenty-five strains of Xanthomonas axonopodis pv. citri and 14 strains of Xanthomonas spp. were tested for bacteriocin production. X. axonopodis pv. passiflorae strains were sensitive to the bacteriocins produced by the 25 X. axonopodis pv. citri strains evaluated in this study while strains of X. axonopodis pv. manihotis and X. campestris pv. campestris showed variable sensitivity. Only five of the 25 X. axonopodis pv. citri strains were not inhibited by the bacteriocins produced by the two X. axonopodis pv. passiflorae strains. The bacteriocins produced by the Xanthomonas axonopodis pv. citri (FDC-806 and X. axonopodis pv. passiflorae (Mar-2850 A strains were thermolabile, resistant to lysozyme and sensitive to DNAse. The bacteriocin produced by X. axonopodis pv. passiflorae was resistant to the action of proteinase K, trypsin and RNAse while the bacteriocin produced by X. axonopodis pv. citri was sensitive to these enzymes. The bacteriocins produced by X. axonopodis pv. passiflorae and X. axonopodis pv. citri were called passifloricin and citricin, respectively.Vinte e cinco isolados de Xanthomonas axonopodis pv. citri e 14 isolados de Xanthomonas spp. foram comparados a fim de verificar a capacidade de produção de bacteriocina e a sua sensibilidade. Isolados de X. axonopodis pv. passiflorae foram sensíveis às bacteriocinas produzidas por 25 isolados de X. axonopodis pv. citri avaliados e os isolados de X. axonopodis pv. manihotis e X. campestris pv. campestris apresentaram sensibilidade variável. Dos 25 isolados de X. axonopodis pv. citri apenas cinco não foram inibidos pelas bacteriocinas produzidas por dois isolados de X. axonopodis pv. passiflorae. As bacteriocinas produzidas pelos isolados de X. axonopodis pv. citri (FDC-806 e de X. axonopodis pv. passiflorae (Mar-2850 A foram termolábeis e resistentes à lisozima e sensíveis a DNAse. A bacteriocina produzida pelo isolado de X. axonopodis pv. passiflorae foi resistente à a

  3. Genotypic and Phylogenic Analysis of Lactobacilli Producing Bacteriocin Isolated from Traditional Dairy Products and Food

    Directory of Open Access Journals (Sweden)

    Frazaneh Tafvizi

    2012-09-01

    Full Text Available Background & Objective: Lactic acid bacteria (LAB are a group of Gram-positive, non-spore forming, cocci or rod shaped, catalase negative organisms, considered as Generally Recognized as Safe (GRAS organisms. These bacteria are used for thousands of years for production of fermented foods because of their ability to produce desirable changes in taste, flavor and texture. Different antimicrobial molecules such as bacteriocins produced by these bacteria that can inhibit food pathogens, so enhancing the shelf life and improving the safety of food products. Because of important role of LAB to improving the human health, molecular identification and phylogenic analysis of these bacteria based on 16S rRNA sequencing play the critical role in investigation of local sources of LAB in Iran. Materials & Methods: 5 isolates were selected from 20 isolates for molecular identification. These strains produced the high level of bacteriocin. Total genomic DNA was extracted by lysosyme extraction protocol. PCR-mediated amplification was carried out by degenerate primers. Sequencing was performed after purification of PCR product. Results: Isolates were deposited as novel strains of Lactobacillus casei and Entrococcus facium in GenBank. Conclusion: Because of high potential of local probiotic bacteria in Iran, these strains may be useful and could be used in the food industry.

  4. Production of bacteriocin-like inhibitory substance by Bifidobacterium lactis in skim milk supplemented with additives.

    Science.gov (United States)

    Martinez, Fabio Andres Castillo; Domínguez, José Manuel; Converti, Attilio; Oliveira, Ricardo Pinheiro de Souza

    2015-08-01

    Bacteriocins are natural compounds used as food biopreservatives instead of chemical preservatives. Bifidobacterium animalis subsp. lactis (Bifid. lactis) was shown to produce a bacteriocin-like inhibitory substance (BLIS) able to inhibit the growth of Listeria monocytogenes selected as an indicator microorganism. To enhance this production by the strain Bifid. lactis BL 04, skim milk (SM) was used as a fermentation medium either in the presence or in the absence of yeast extract, Tween 80 or inulin as stimulating additives, and the results in terms of bacterial growth and BLIS production were compared with those obtained in a traditional high cost complex medium such as Man, Rogosa and Sharpe (MRS). To this purpose, all the cultivations were carried out in flasks at 200 rpm under anaerobic conditions ensured by a nitrogen flowrate of 1.0 L/min for 48 h, and BLIS production was quantified by means of a modified agar diffusion assay at low values of both temperature and concentration of List. monocytogenes. Although all these ingredients were shown to exert positive influence on BLIS production in both media, yeast extract and SM were by far the best ingredient and the best medium, respectively, allowing for a BLIS production at the late exponential phase of 2000 AU/ml.

  5. Antagonistic Potential of Lactobacillus Spp against Enteropathogenic Bacteria; Purification and Characterization of their Bacteriocins

    Directory of Open Access Journals (Sweden)

    Asha

    2012-10-01

    Full Text Available In the present study, Lactobacillus (160 isolates were isolated from curd sample. The isolates were aimed to analyze the antibacterial potential against Escherichia coli, Vibrio cholerae sub sp., ogawa, V. cholerae sub sp., inaba, Klebsiella sp., Proteus sp. and Shigella dysenteriae. All the isolates were inhibiting the tested Enteropathogenic bacteria except S. dysenteriae. Lactobacillus isolates produced highest inhibition zone (30 to 37 mm against V. cholerae sub sp., inaba and Klebsiella sp., of the 160 isolates only ten Lactobacillus isolates (L1- L10 were used for the production of bacteriocins, purified by ammonium sulphate precipitation and ion exchange (DEAE cellulose chromatography. Maximum bacteriocin activity has been observed with Lf3 against V. cholerae ssp Inaba at 30°C, pH 6.0, 1.5 to 2.0% Na Cl/18 h in addition to L8, L9 and L10 (MW 100 to 106 KDa and Lf3 was found to be the most prominent potential isolate.

  6. Production of bacteriocin by Virgibacillus salexigens isolated from "terasi": a traditionally fermented shrimp paste in Indonesia.

    Science.gov (United States)

    Kobayashi, Takeshi; Agustini, Tri Winarni; Ibrahim, Ratna; Kamei, Kaeko; Kondo, Akihiro; Kajiwara, Michika; Ooka, Yoshihiro; Nakamura, Hidetoshi; Terahara, Takeshi; Imada, Chiaki

    2016-03-01

    A natural antibacterial-substance-producing gram-positive bacterium was isolated from terasi shrimp paste, a popular fermented product in Indonesia. This strain, a spore-forming and strictly aerobic bacterium, was identified as Virgibacillus salexigens by 16S rRNA gene sequence analysis. The antibacterial substance purified from the precipitated product in the culture supernatant of the strain using ammonium sulfate showed a broad inhibition spectrum against gram-positive bacteria, including a typical foodborne bacterium, namely, Listeria monocytogenes. The antibacterial activity of the substance was inactivated by treatments with various proteolytic enzymes. It was stable after heating or pH treatment, and approximately 60% of the initial activity remained even after heating at 121 °C for 15 min. In addition, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis indicated that its monoisotopic mass weight was 5318.4 Da (M+H)(+). On the basis of the results obtained by the automated Edman degradation technique and MALDI-TOF MS analysis, the substance can be classified as a member of Class IId bacteriocins, but it could not be identified as any of the previously purified substances except for the putative bacteriocin predicted from the draft genome sequence data of gram-positive bacteria such as Virgibacillus and Bacillus strains.

  7. A peptide factor secreted by Staphylococcus pseudintermedius exhibits properties of both bacteriocins and virulence factors

    Science.gov (United States)

    Wladyka, Benedykt; Piejko, Marcin; Bzowska, Monika; Pieta, Piotr; Krzysik, Monika; Mazurek, Łukasz; Guevara-Lora, Ibeth; Bukowski, Michał; Sabat, Artur J.; Friedrich, Alexander W.; Bonar, Emilia; Międzobrodzki, Jacek; Dubin, Adam; Mak, Paweł

    2015-01-01

    Staphylococcus pseudintermedius is a common commensal bacterium colonizing the skin and mucosal surfaces of household animals. However, it has recently emerged as a dangerous opportunistic pathogen, comparable to S. aureus for humans. The epidemiological situation is further complicated by the increasing number of methicillin-resistant S. pseudintermedius infections and evidence of gene transmission driving antibiotic resistance between staphylococci colonizing human and zoonotic hosts. In the present study, we describe a unique peptide, BacSp222, that possesses features characteristic of both bacteriocins and virulence factors. BacSp222 is secreted in high quantities by S. pseudintermedius strain 222 isolated from dog skin lesions. This linear, fifty-amino-acid highly cationic peptide is plasmid-encoded and does not exhibit significant sequence similarities to any other known peptides or proteins. BacSp222 kills gram-positive bacteria (at doses ranging from 0.1 to several micromol/l) but also demonstrates significant cytotoxic activities towards eukaryotic cells at slightly higher concentrations. Moreover, at nanomolar concentrations, the peptide also possesses modulatory properties, efficiently enhancing interferon gamma-induced nitric oxide release in murine macrophage-like cell lines. BacSp222 appears to be one of the first examples of multifunctional peptides that breaks the convention of splitting bacteriocins and virulence factors into two unrelated groups. PMID:26411997

  8. Development of bioactive food packaging materials using immobilised bacteriocins lacticin 3147 and nisaplin.

    Science.gov (United States)

    Scannell, A G; Hill, C; Ross, R P; Marx, S; Hartmeier, W; Elke; Arendt, K

    2000-09-25

    Immobilisation of the bacteriocins nisin and lacticin 3147 to packaging materials was investigated. Stability of both cellulose-based bioactive inserts and anti-microbial polyethylene/polyamide pouches was examined over time. Anti-microbial activity against the indicator strain Lactococcus lactis subsp. lactis HP, in addition to Listeria innocua DPC 1770 and Staphylococcus aureus MMPR3 was observed for all bacteriocin-adsorbed materials. Activity retention of the inserts showed an initial decrease in the first week of storage but remained stable for the remaining 3 months of the trial. However, adsorption of lacticin 3147 to plastic film was unsuccessful, nisin bound well and the resulting film maintained its activity for 3-month period, both at room temperature and under refrigeration. When applied to food systems, the anti-microbial packaging reduced the population of lactic acid bacteria in sliced cheese and ham stored in modified atmosphere packaging (MAP) at refrigeration temperatures, thus extending the shelf life. Nisin-adsorbed bioactive inserts reduced levels of Listeria innocua by > or = 2 log units in both products, and Staphylococcus aureus by approximately 1.5 log units in cheese, and approximately 2.8 log units in ham. Similar reductions were observed in cheese vacuum-packaged in nisin-adsorbed pouches.

  9. Sonorensin: A new bacteriocin with potential of an anti-biofilm agent and a food biopreservative.

    Science.gov (United States)

    Chopra, Lipsy; Singh, Gurdeep; Kumar Jena, Kautilya; Sahoo, Debendra K

    2015-08-21

    The emergence of antibiotic resistant bacteria has led to exploration of alternative therapeutic agents such as ribosomally synthesized bacterial peptides known as bacteriocins. Biofilms, which are microbial communities that cause serious chronic infections, form environments that enhance antimicrobial resistance. Bacteria in biofilm can be upto thousand times more resistant to antibiotics than the same bacteria circulating in a planktonic state. In this study, sonorensin, predicted to belong to the heterocycloanthracin subfamily of bacteriocins, was found to be effectively killing active and non-multiplying cells of both Gram-positive and Gram-negative bacteria. Sonorensin showed marked inhibition activity against biofilm of Staphylococcus aureus. Fluorescence and electron microscopy suggested that growth inhibition occurred because of increased membrane permeability. Low density polyethylene film coated with sonorensin was found to effectively control the growth of food spoilage bacteria like Listeria monocytogenes and S. aureus. The biopreservative effect of sonorensin coated film showing growth inhibition of spoilage bacteria in chicken meat and tomato samples demonstrated the potential of sonorensin as an alternative to current antibiotics/ preservatives.

  10. A peptide factor secreted by Staphylococcus pseudintermedius exhibits properties of both bacteriocins and virulence factors.

    Science.gov (United States)

    Wladyka, Benedykt; Piejko, Marcin; Bzowska, Monika; Pieta, Piotr; Krzysik, Monika; Mazurek, Łukasz; Guevara-Lora, Ibeth; Bukowski, Michał; Sabat, Artur J; Friedrich, Alexander W; Bonar, Emilia; Międzobrodzki, Jacek; Dubin, Adam; Mak, Paweł

    2015-09-28

    Staphylococcus pseudintermedius is a common commensal bacterium colonizing the skin and mucosal surfaces of household animals. However, it has recently emerged as a dangerous opportunistic pathogen, comparable to S. aureus for humans. The epidemiological situation is further complicated by the increasing number of methicillin-resistant S. pseudintermedius infections and evidence of gene transmission driving antibiotic resistance between staphylococci colonizing human and zoonotic hosts. In the present study, we describe a unique peptide, BacSp222, that possesses features characteristic of both bacteriocins and virulence factors. BacSp222 is secreted in high quantities by S. pseudintermedius strain 222 isolated from dog skin lesions. This linear, fifty-amino-acid highly cationic peptide is plasmid-encoded and does not exhibit significant sequence similarities to any other known peptides or proteins. BacSp222 kills gram-positive bacteria (at doses ranging from 0.1 to several micromol/l) but also demonstrates significant cytotoxic activities towards eukaryotic cells at slightly higher concentrations. Moreover, at nanomolar concentrations, the peptide also possesses modulatory properties, efficiently enhancing interferon gamma-induced nitric oxide release in murine macrophage-like cell lines. BacSp222 appears to be one of the first examples of multifunctional peptides that breaks the convention of splitting bacteriocins and virulence factors into two unrelated groups.

  11. Biopreservation of Brined Shrimp (Pandalus borealis) by Bacteriocins from Lactic Acid Bacteria.

    Science.gov (United States)

    Einarsson, H; Lauzon, H L

    1995-02-01

    In brined shrimp (ca. 3% NaCl), the effects of three different lactic acid bacteria bacteriocins (crude [6.54 x 10(sup10) U of bacteriocin activity {BU}/g] and purified [8.13 x 10(sup23) BU/g] nisin Z, carnocin UI49 [2.32 x 10(sup4) BU/g], and crude bavaricin A [2.78 BU/g]) on bacterial growth and shelf life were compared with those of a benzoate-sorbate solution (0.1% each [wt/wt]) and a control with no preservatives. The shelf life of shrimp subjected to the control treatment was found to be 10 days. Carnocin UI49 did not extend the shelf life, while crude bavaricin A (a cell-free supernatant of Lactobacillus bavaricus MI 401) resulted in a shelf life of 16 days, as opposed to 31 days with nisin Z for both its crude and purified forms. The benzoate-sorbate solution preserved the brined shrimp for the whole storage period (59 days). In the control, carnocin UI49, and crude bavaricin A treatments, a gram-positive flora dominated towards the end of the storage period while in the nisin Z treatment a gram-negative flora was more pronounced.

  12. A rapid turbidometric microplate bioassay for accurate quantification of lactic acid bacteria bacteriocins.

    Science.gov (United States)

    Turcotte, Carl; Lacroix, Christophe; Kheadr, Ehab; Grignon, Louis; Fliss, Ismaïl

    2004-02-01

    A 1 day turbidometric microplate bioassay (TMB) was developed for the rapid, accurate and precise quantification of lactic acid bacteria (LAB) bacteriocins (nisin Z and pediocin PA-1). Parameters such as the concentration of the indicator strains and the incubation time were optimized for each bacteriocin. A high correlation coefficient (r(2)=0.992+/-0.004) was obtained for the exponential regression in the nisin Z concentration range of 20-120 ng/ml with 1 x 10(7) CFU indicator strain (Pediococcus acidilactici UL5) and an incubation time of 3 h. Using these parameters, the detection limit was estimated at 80 ng/ml (3.2 IU/ml), compared to 300 ng/ml for the agar diffusion assay (ADA). High precision (<7%) and accuracy (10%) were obtained for all nisin Z concentrations tested. Similar results were obtained with pediocin PA-1 with r(2)=0.993+/-0.005, a precision (8.2%) and an accuracy lower than 15%.

  13. CHARACTERISTICS OF BACTERIOCIN BA28 PRODUCED BY Pediococcus acidilactici BA28

    Directory of Open Access Journals (Sweden)

    Kaur Baljinder

    2013-01-01

    Full Text Available Peptic ulcers are produced by an imbalance between gastro-duodenal mucosal defense mechanisms and damaging forces of gastric acid and pepsin, combined with superimposed injury from environmental or immunologic agents. Most common symptoms of peptic ulcer disease are abdominal discomfort, gnawing ache, occurs 2 to 3 hours after meal, other symptoms includes weight loss, poor appetite, bloating, nausea, vomiting etc. Some time duodenal wall perforates; bleeding due to the ulcer breaks blood vessels and obstructs the path of food trying to leave the stomach. Various studies have shown the association of Helicobacter pylori with peptic ulcers. Probiotic lactic acid bacteria are proposed to cure peptic ulcers by reducing colonization of H. pylori with stomach wall and by eradicating already established infection. A bacteriocin producing probiotic strain of P. acidilactici BA28 was evaluated for its antimicrobial activity against a number of Gram-positive and Gram-negative pathogens. Bacteriocin BA28 was partially purificated and characterized following in vitro assays. Preliminary investigations against H. plyori have suggested its effectiveness against peptic ulcer disease and therefore could be exploited to develop novel therapeutics.

  14. Use of Lactobacillus plantarum LPCO10, a Bacteriocin Producer, as a Starter Culture in Spanish-Style Green Olive Fermentations

    Science.gov (United States)

    Ruiz-Barba, J. L.; Cathcart, D. P.; Warner, P. J.; Jiménez-Díaz, R.

    1994-01-01

    Bacteriocin-producing Lactobacillus plantarum LPCO10 and its non-bacteriocin-producing, bacteriocinimmune derivative, L. plantarum 55-1, were evaluated separately for growth and persistence in natural Spanish-style green olive fermentations. Both strains were genetically marked and selectively enumerated using antibiotic-containing media. Plasmid profile and bacteriocin production (bac+) were used as additional markers. When olive brines were inoculated at 105 CFU/ml, the parent strain, LPCO10, proliferated to dominate the epiphytic microflora, sharing high population levels with other spontaneously occurring lactobacilli and persisting throughout the fermentation (12 weeks). In contrast, the derivative strain could not be isolated after 7 weeks. Stability of both plasmid profile and bac+ (LPCO10 strain) or bac- (55-1 strain) phenotype was shown by L. plantarum LPCO10 and L. plantarum 55-1 isolated throughout the fermentation. Bacteriocin activity could be found in the L. plantarum LPCO10-inoculated brines only after ammonium sulfate precipitation and concentration (20 times) of the final brine. Spontaneously occurring lactobacilli and lactic coccus populations, which were isolated from each of the fermenting brines studied during this investigation, were shown to be sensitive to the bacteriocins produced by L. plantarum LPCO10 when tested by the drop diffusion test. The declines in both pH and glucose levels throughout the fermentative process were similar in L. plantarum LPCO10- and in L. plantarum 55-1-inoculated brines and were comparable to the declines in the uninoculated brines. However, the final concentration of lactic acid in L. plantarum LPCO10-inoculated brines was higher than in the L. plantarum 55-1-inoculated brines and uninoculated brines. These results indicated that L. plantarum LPCO10 may be useful as a starter culture to control the lactic acid fermentation of Spanish-style green olives. PMID:16349291

  15. Behavior of Listeria monocytogenes and Staphylococcus aureus in yogurt fermented with a bacteriocin-producing thermophilic starter.

    Science.gov (United States)

    Benkerroum, Noreddine; Oubel, Hafida; Mimoun, Lamiae Ben

    2002-05-01

    Streptococcus salivarius subsp. thermophilus B producing a bacteriocin active against Listeria monocytogenes ATCC 7644 and Staphylococcus aureus SAD 30 was isolated from bakery yeast. The bacteriocin was partially purified by an adsorption/desorption technique, and its spectrum of action was compared to that of a neutralized cell-free supernatant (CFS). Although the CFS inhibited a number of gram-positive and -negative bacteria of health and spoilage significance, the spectrum of action of the partially purified bacteriocin was limited to gram-positive bacteria. L. monocytogenes was the most sensitive to both preparations. The bacteriocin-producing streptococcal strain was used in combination with a Bac- Lactobacillus delbrueckii subsp. bulgaricus CY strain isolated from commercial yogurt to assess the effectiveness of the resulting thermophilic starter in controlling L. monocytogenes and S. aureus in yogurt during fermentation and storage at refrigeration (ca. 7 degrees C) or abuse (ca. 22 degrees C) temperature. Yogurt samples were contaminated with L. monocytogenes or S. aureus to the approximate levels of 10(3) and 10(6) CFU/ml of milk, respectively. The results showed that in situ bacteriocin production was more active against L. monocytogenes than against S. aureus in vitro and in contaminated samples. While L. monocytogenes leveled off below the detectable limit in a 1-ml sample of yogurt within 24 h of processing, S. aureus survived in Bac+ and Bac- samples during 10 days of storage at room temperature (ca. 22 degrees C). Use of a Bac+ starter resulted in a 5-day extension of the shelf life.

  16. Exploration and conservation of bacterial genetic resources as bacteriocin producing inhibitory microorganisms to pathogen bacteria in livestock

    Directory of Open Access Journals (Sweden)

    Chotiah S

    2013-06-01

    Full Text Available Exploration and conservation of microorganisms producing bacteriocin was done as the primary study towards the collection of potential bacteria and its application in improving livestock health condition and inhibit food borne pathogens. Diferent kinds of samples such as beef cattle rectal swab, rumen fluids, cow’s milk, chicken gut content, goat’s milk were collected at Bogor cattle slaughter houses, poultry slaughter houses, dairy cattle and goat farms. A total of 452 bacterial isolates consisted of 73 Gram negative bacteria and 379 Gram positive bacteria were isolated from samples collected and screened for bacteriocin activity. Determination of bacteriocin activity with bioassay using agar spot tests were carried out on liquid and semisolid medium assessing 8 kins of indicators of pathogenic bacteria and food borne pathogens. A total of 51 bacteriocin producing strains were collected and some of the strains had high inhibitory zone such as Lactobacillus casei SS14C (26 mm, Enterobacter cloacae SRUT (24mm, Enterococcus faecalis SK39 (21mm and Bifidobacterium dentium SS14T (20mm respectively, to Salmonella typhimurium BCC B0046/ATCC 13311, E. coli O157 hemolytic BCC B2717, Listeria monocytogenes BCC B2767/ATCC 7764 and Escherichia coli VTEC O157 BCC B2687. Evaluation after conservation ex situ to all bacterocin producing strain at 5oC for 1 year in freeze drying ampoules in vacuum and dry condition revealed the decreasing viability starting from log 0.8 CFU/ml for Lactococcus and Leuconostoc to log 2.2. CFU/ml for Streptococcus. Result of the study showed that the bacteriocin producing strains obtained were offered a potential resource for preventing disease of livestock and food borne diseases.

  17. Detection and Biochemical Characterization of Microorganisms in Milk and Cocoa powder samples by FTIR and subsequent production of Bacteriocin from Lactobacillus

    Directory of Open Access Journals (Sweden)

    Ramalingam C

    2013-03-01

    Full Text Available Cocoa and milk powder samples were taken from a confectionery and tested for presence of microbes (harmful and pathogenic.Biochemical characterization of isolated microbes was carried out for confirmation. Lactobacillus was isolated from milk powder. When a culture of Lactobacillus sp. was inoculated into milk and incubated at room temperature, it multiplies and converts lactose to lactic acid. Fourier transform infrared spectroscopy was used to study the variation of functional group peaks in milk by the action of Lactobacillus sp. The spectral changes were also observed. Our main aim of this project is the production of bacteriocin from isolated lactobacillus species; it showed broad range of antibacterial activity against some food borne pathogens like staphyloccus, Ecoli, streptococcus, Enterococcus etc. The bacteriocin is purified by ammonium sulfate precipitate and dialysis. Biochemically it was pure protein moiety. Maximum bacteriocin concentration was found after dialysis. Project revealed the possibility of using bacteriocin as food preservative.

  18. 乳酸菌细菌素作用机理的研究%Overview of the Mechanism of Action of Lactis Acid Bacteria Bacteriocins

    Institute of Scientific and Technical Information of China (English)

    李瑞胜; 别怀周; 张明

    2012-01-01

    Lactis acid bacteria bacteriocin acts as a natural food preservative to inhibit or kill the pathogenic bacteria and spoilage microorganism of food. The research about the mechanism of bacteriocin has laid a foundation for ihe application of bacteriocin in food* In this paper, the mechanism of class I and class II bacteriocins were reviewed.%乳酸茵细菌素可抑制或杀死食品中的病原菌和腐败茵,是天然的食品防腐剂对乳酸菌细菌素作用机理的研究可为其在食品工业中的应用奠定基础,就Ⅰ类和Ⅱ类细菌素的作用机理进行了综述.

  19. A new hybrid bacteriocin, Ent35–MccV, displays antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria

    Science.gov (United States)

    Acuña, Leonardo; Picariello, Gianluca; Sesma, Fernando; Morero, Roberto D.; Bellomio, Augusto

    2012-01-01

    Bacteriocins and microcins are ribosomally synthesized antimicrobial peptides that are usually active against phylogenetically related bacteria. Thus, bacteriocins are active against Gram-positive while microcins are active against Gram-negative bacteria. The narrow spectrum of action generally displayed by bacteriocins from lactic acid bacteria represents an important limitation for the application of these peptides as clinical drugs or as food biopreservatives. The present study describes the design and expression of a novel recombinant hybrid peptide combining enterocin CRL35 and microcin V named Ent35–MccV. The chimerical bacteriocin displayed antimicrobial activity against enterohemorrhagic Escherichia coli and Listeria monocytogenes clinical isolates, among other pathogenic bacteria. Therefore, Ent35–MccV may find important applications in food or pharmaceutical industries. PMID:23650575

  20. Bacteriocins from Lactobacillus plantarum - production, genetic organization and mode of action: produção, organização genética e modo de ação.

    Science.gov (United States)

    Todorov, Svetoslav D

    2009-04-01

    Bacteriocins are biologically active proteins or protein complexes that display a bactericidal mode of action towards usually closely related species. Numerous strains of bacteriocin producing Lactobacillus plantarum have been isolated in the last two decades from different ecological niches including meat, fish, fruits, vegetables, and milk and cereal products. Several of these plantaricins have been characterized and the aminoacid sequence determined. Different aspects of the mode of action, fermentation optimization and genetic organization of the bacteriocin operon have been studied. However, numerous of bacteriocins produced by different Lactobacillus plantarum strains have not been fully characterized. In this article, a brief overview of the classification, genetics, characterization, including mode of action and production optimization for bacteriocins from Lactic Acid Bacteria in general, and where appropriate, with focus on bacteriocins produced by Lactobacillus plantarum, is presented.

  1. Quantitative profiling of bacteriocins present in dairy-free probiotic preparations of Lactobacillus acidophilus by nanoliquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Nandakumar, Renu; Talapatra, Kesh

    2014-01-01

    Bacteriocins are a heterogeneous group of ribosomally synthesized peptides or proteins with antimicrobial activity, produced predominantly by lactic acid bacteria, with potential applications as biopreservatives and probiotics. We describe here a novel strategy based on a bottom-up, shotgun proteomic approach using nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) with multiple fragmentation techniques for the quantitative profiling of bacteriocins present in the probiotic preparations of Lactobacillus acidophilus. A direct LC-MS/MS analysis with alternate collision-induced dissociation, high-energy collision dissociation, and electron-transfer dissociation fragmentation following a filter-assisted size-exclusion sample prefractionation has resulted in the identification of peptides belonging to 37 bacteriocins or related proteins. Peptides from lactacin F, helveticin J, lysin, avicin A, acidocin M, curvaticin FS47, and carocin D were predominant. The process of freeze drying under vacuum was observed to affect both the diversity and abundance of bacteriocins. Data acquisition using alternating complementary peptide fragmentation modes, especially electron-transfer dissociation, has significantly enhanced the peptide sequence coverage and number of bacteriocin peptides identified. Multi-enzyme proteolytic digestion was observed to increase the sample complexity and dynamic range, lowering the chances of detection of low-abundant bacteriocin peptides by LC-MS/MS. An analytical platform integrating size exclusion prefractionation, nanoLC-MS/MS analysis with multiple fragmentation techniques, and data-dependent decision tree-driven bioinformatic data analysis is novel in bacteriocin research and suitable for the comprehensive bioanalysis of diverse, low-abundant bacteriocins in complex samples.

  2. Purification and Characterization of Bacteriocin Produced by Lactobacillus brevis UN Isolated from Dhulliachar: a Traditional Food Product of North East India.

    Science.gov (United States)

    Gautam, Neha; Sharma, Nivedita; Ahlawat, O P

    2014-06-01

    A bacteriocin producing strain Lactobacillus brevis UN isolated from Dulliachar-a salted pickle and identified by biochemical and molecular methods. L. brevis UN was found to produce bacteriocin with broad spectrum activity against spoilage causing/food borne pathogens viz. L. monocytogenes, C. perfringens, S. aureus, L. mesenteroides, L. plantarum and B. cereus. Bacteriocin production was optimized through classical one variable at a time method. The isolate showed maximum bacteriocin production at early stationary phase, pH 4.0, temperature 35 °C and with an inoculum size of 1.5 OD @ 10 %. Bacteriocin produced by L. brevis UN was purified to homogeneity by single step gel exclusion chromatography and was most active at pH 6.0 and 7.0, stable up to 100 °C and was proteinaceous in nature. The results of NMR revealed the presence of proline, glutamic acid, aspartic acid, leucine, isoleucine and serine in its peptide structure. PCR amplification analysis determined that bacteriocin encoded gene in L. brevis UN was plasmid bound.

  3. Bacteriocins: molecules of fundamental impact on the microbial ecology and potential food biopreservatives

    Directory of Open Access Journals (Sweden)

    Evandro Leite de Souza

    2005-07-01

    Full Text Available Bacteriocins are proteic molecules synthesized for various lineages of Gram-positive and Gram-negative bacteria when exposed to stressful conditions. Bacteriocins have been characterized as molecules of high antimicrobial property even at low concentrations, provoking the microbial survival inhibition by antibiosis. These substances have their synthesis mediated for genetic mechanisms and develop their lethal action on the microbial cell by multiples mechanisms that can act of isolated or concomitant way culminating with microbial cell killing. This molecules class presents characteristic of stability to heat, low pH, refrigeration and freezing, and resistance to weak organics solvents, salts and enzymes. On the other hand, they are very sensitive to proteolytic enzymes action. Bacteriocins could appear as potential agents to be applied in food conservation systems in order to provide microbiologically stable foods.Bacteriocinas são moléculas protéicas sintetizadas por várias linhagens de bactérias Gram-positivas e Gram-negativas quando submetidas a condições de stress. São ainda caracterizadas como moléculas de alto poder antimicrobiano mesmo em baixas concentrações, provocando a inibição da sobrevivência microbiana através de uma ação de antibiose. As bacteriocinas têm seu processo de síntese mediado por mecanismos genéticos, e desenvolvem sua ação letal sobre a célula microbiana por intermédio de múltiplos mecanismos que podem agir de forma isolada ou concomitante culminando com a morte da célula microbiana. Estas moléculas apresentam características de estabilidade ao calor, baixo pH, refrigeração, congelamento, resistência a ácidos orgânicos fracos, sais e enzimas, porém são muito sensíveis à enzimas proteolíticas. Assim, as bacteriocinas podem aparecer como potenciais agentes para serem aplicados em sistemas de conservação de alimentos com objetivo de prover alimentos microbiologicamente estáveis.

  4. Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains.

    Science.gov (United States)

    Vadyvaloo, Viveka; Arous, Safia; Gravesen, Anne; Héchard, Yann; Chauhan-Haubrock, Ramola; Hastings, John W; Rautenbach, Marina

    2004-09-01

    Strains of the food-borne pathogen Listeria monocytogenes, showing either intermediate or high-level resistance to class IIa bacteriocins, were investigated to determine characteristics that correlated with their sensitivity levels. Two intermediate and one highly resistant spontaneous mutant of L. monocytogenes B73, a highly resistant mutant of L. monocytogenes 412, and a highly resistant, defined (mptA) mutant of L. monocytogenes EGDe were compared with their respective wild-type strains in order to investigate the contribution of different factors to resistance. Decreased mannose-specific phosphotransferase system gene expression (mptA, EIIAB(Man) component) was implicated in all levels of resistance, confirming previous studies by the authors' group. However, a clear correlation between d-alanine content in teichoic acid (TA), in particular the alanine : phosphorus ratio, and a more positive cell surface, as determined by cytochrome c binding, were found for the highly resistant strains. Furthermore, two of the three highly resistant strains showed a significant increase in sensitivity towards d-cycloserine (DCS). However, real-time PCR of the dltA (d-alanine esterification), and dal and ddlA genes (peptidoglycan biosynthesis) showed no change in transcriptional levels. The link between DCS sensitivity and increased d-alanine esterification of TA may be that DCS competes with alanine for transport via the alanine transporter. A possible tendency towards increased lysinylation of membrane phospholipid in the highly resistant strains was also found. A previous study reported that cell membranes of all the resistant strains, including the intermediate resistant strains, contained more unsaturated phosphatidylglycerol, which is an indication of a more fluid cell membrane. The results of that study correlate with the possible lysinylation, decreased mptA expression, d-alanine esterification of TA and more positive cell surface charge found in this study for

  5. Effect of Leuconostoc mesenteroides 11 bacteriocin in the multiplication control of Listeria monocytogenes 4b Efeito da bacteriocina de Leuconostoc mesenteroides 11 no controle da multiplicação de Listeria monocytogenes 4b

    OpenAIRE

    Rafael C.R. Martinez; Martinis,Elaine C. P. De

    2006-01-01

    The activity of a crude preparation of bacteriocin produced by the chicken meat isolate Leuconostoc mesenteroides 11, was evaluated at 8ºC and 15ºC against Listeria monocytogenes. The pathogen was inoculated in a crude preparation of the bacteriocin and its population was enumerated after 0.5 and 10 days. The title of the bacteriocin in the preparation was determined immediately before inoculation and after 10 days of incubation at both temperatures. As a negative control, a non-bacteriocin p...

  6. Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes.

    Science.gov (United States)

    Holzapfel, W H; Geisen, R; Schillinger, U

    1995-01-01

    A review is presented on the present status of biological preservation of foods. Recent developments are discussed with respect to underlying mechanisms of inhibition by 'protective' cultures, and special reference is made to lactic acid bacteria (LAB) and their 'food-grade' safety. The role of bacteriocins, their limitations and potentiating role in biological systems, is also addressed. The use of enzymes (e.g. lysozyme) for food preservation is mainly restricted by economic factors, their inactivation by endogenous food components and their limited activity spectrum. Practical applications of protective cultures refer to particular food commodities that either constitute novel systems with respect to packaging and/or composition, or represent special hygienic risks. It is concluded that biological preservation cannot substitute GMP; it, however, offers an additional (and acceptable) processing parameter for improving the safety and assuring the quality of a given food.

  7. Using a bacteriocin structure to engineer a phage lysin that targets Yersinia pestis.

    Science.gov (United States)

    Lukacik, Petra; Barnard, Travis J; Buchanan, Susan K

    2012-12-01

    Purified phage lysins present an alternative to traditional antibiotics and work by hydrolysing peptidoglycan. Phage lysins have been developed against Gram-positive pathogens such as Bacillus anthracis and Streptococcus pneumoniae, where the peptidoglycan layer is exposed on the cell surface. Addition of the lysin to a bacterial culture results in rapid death of the organism. Gram-negative bacteria are resistant to phage lysins because they contain an outer membrane that protects the peptidoglycan from degradation. We solved crystal structures of a Yersinia pestis outer-membrane protein and the bacteriocin that targets it, which informed engineering of a bacterial-phage hybrid lysin that can be transported across the outer membrane to kill specific Gram-negative bacteria. This work provides a template for engineering phage lysins against a wide variety of bacterial pathogens.

  8. Bacteriocin-like substance from Bacillus amyloliquefaciens shows remarkable inhibition of Acanthamoeba polyphaga.

    Science.gov (United States)

    Benitez, Lisianne Brittes; Caumo, Karin; Brandelli, Adriano; Rott, Marilise Brittes

    2011-03-01

    The effectiveness of a bacteriocin-like substance (BLS) produced by Bacillus amyloliquefaciens was tested against Acanthamoeba polyphaga strains, and its cytotoxic potential on Vero cells was investigated. Amebicidal activity of the purified BLS was tested by plate bioassays with concentrations ranging from 12.5 to 6,400 AU mL(-1). Damage to A. pholyphaga cells was monitored using an inverted microscope and counted in a Fuchs-Rosenthal chamber after 24, 48, and 72 h. According to the results obtained, the BLS showed remarkable amebicidal and amebostatic effect on A. polyphaga and showed no cytotoxicity on the Vero cells. These results may have great relevance in the development of new acanthamoebicidal compounds.

  9. Medical and Personal Care Applications of Bacteriocins Produced by Lactic Acid Bacteria

    Science.gov (United States)

    Dicks, L. M. T.; Heunis, T. D. J.; van Staden, D. A.; Brand, A.; Noll, K. Sutyak; Chikindas, M. L.

    The frequent use of antibiotics has led to a crisis in the antibiotic ­resistance of pathogens associated with humans and animals. Antibiotic resistance and the emergence of multiresistant bacterial pathogens have led to the investigation of alternative antimicrobial agents to treat and prevent infections in both humans and animals. Research on antimicrobial peptides, with a special interest on bacteriocins of lactic acid bacteria, is entering a new era with novel applications other than food preservation. Many scientists are now focusing on the application of these peptides in medicinal and personal care products. However, it is difficult to assess the success of such ventures due to the dearth of information that has been published and the lack of clinical trials.

  10. Gut solutions to a gut problem: bacteriocins, probiotics and bacteriophage for control of Clostridium difficile infection.

    Science.gov (United States)

    Rea, Mary C; Alemayehu, Debebe; Ross, R Paul; Hill, Colin

    2013-09-01

    Clostridium difficile infection (CDI) is a major cause of morbidity and mortality among hospitalized patients and imposes a considerable financial burden on health service providers in both Europe and the USA. The incidence of CDI has dramatically increased in recent years, partly due to the emergence of a number of hypervirulent strains. The most commonly documented risk factors associated with CDIs are antibiotic usage leading to alterations of the gut microbiota, age >65 years and long-term hospital stay. Since standard therapies for antibiotic-associated diarrhoea and CDI have limited efficacy, there is now an urgent need for alternative therapeutics. In this review, we outline the current state of play with regard to the potential of gut-derived bacteriocins, probiotics and phage to act as antimicrobial agents against CDI in the human gut.

  11. Transcription activation of a UV-inducible Clostridium perfringens bacteriocin gene by a novel sigma factor.

    Science.gov (United States)

    Dupuy, Bruno; Mani, Nagraj; Katayama, Seiichi; Sonenshein, Abraham L

    2005-02-01

    Expression of the plasmid-encoded Clostridium perfringens gene for bacteriocin BCN5 was shown to depend in vivo and in vitro on the activity of UviA protein. UviA, also plasmid-encoded, proved to be an RNA polymerase sigma factor and was also partly autoregulatory. The uviA gene has two promoters; one provided a UviA-independent, basal level of gene expression while the stronger, UviA-dependent promoter was only utilized after the cell experienced DNA damage. As a result, BCN5 synthesis is induced by treatment with UV light or mitomycin C. UviA is related to a special class of sigma factors found to date only in Clostridium species and responsible for activating transcription of toxin genes in Clostridium difficile, Clostridium tetani, and Clostridium botulinum.

  12. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts

    Science.gov (United States)

    2012-01-01

    The biopreservation of foods using bacteriocinogenic lactic acid bacteria (LAB) isolated directly from foods is an innovative approach. The objectives of this study were to isolate and identify bacteriocinogenic LAB from various cheeses and yogurts and evaluate their antimicrobial effects on selected spoilage and pathogenic microorganisms in vitro as well as on a food commodity. LAB were isolated using MRS and M17 media. The agar diffusion bioassay was used to screen for bacteriocin or bacteriocin-like substances (BLS) producing LAB using Lactobacillus sakei and Listeria innocua as indicator organisms. Out of 138 LAB isolates, 28 were found to inhibit these bacteria and were identified as strains of Enterococcus faecium, Streptococcus thermophilus, Lactobacillus casei and Lactobacillus sakei subsp. sakei using 16S rRNA gene sequencing. Eight isolates were tested for antimicrobial activity at 5°C and 20°C against L. innocua, Escherichia coli, Bacillus cereus, Pseudomonas fluorescens, Erwinia carotovora, and Leuconostoc mesenteroides subsp. mesenteroides using the agar diffusion bioassay, and also against Penicillium expansum, Botrytis cinerea and Monilinia frucitcola using the microdilution plate method. The effect of selected LAB strains on L. innocua inoculated onto fresh-cut onions was also investigated. Twenty percent of our isolates produced BLS inhibiting the growth of L. innocua and/or Lact. sakei. Organic acids and/or H2O2 produced by LAB and not the BLS had strong antimicrobial effects on all microorganisms tested with the exception of E. coli. Ent. faecium, Strep. thermophilus and Lact. casei effectively inhibited the growth of natural microflora and L. innocua inoculated onto fresh-cut onions. Bacteriocinogenic LAB present in cheeses and yogurts may have potential to be used as biopreservatives in foods. PMID:22963659

  13. Production of two bacteriocins in various growth conditions produced by gram-positive bacteria isolated from chicken cecum.

    Science.gov (United States)

    Wang, Qiuju; Cui, Yizhe; Wang, Wenmei; Xu, Jili; Xu, Li

    2012-01-01

    Lactobacillus plantarum CLP29 and Enterococcus faecium CLE34 isolated from the cecal contents of young broiler chicks were identified based on physiological and biochemical characteristics, and identification was confirmed by 16S rRNA sequencing. Both bacteria showed a broad range of inhibitory action against bacteria such as Salmonella and Escherichia coli and produced two peptides, plantaricin CLP29 and enterocin CLE34. Treatment with proteinase K, trypase, or benase resulted in the loss of activity of the two peptides, confirming their proteinaceous nature. The highest activity levels for both bacteria were recorded in de Man - Rogosa - Sharpe agar at pH 5.0, 6.0, and 7.0, at 37 °C. Carbon and nitrogen sources affected the antibacterial activities of the two bacteriocins in different combinations, which suggested that the antibacterial abilities of different bacteriocins produced in nutrient sources were various.

  14. Partial Characterization of an Anti-Candida albicans Bacteriocin Produced by a Marine Strain of Bacillus sp., Sh10

    OpenAIRE

    Fatemeh Shayesteh; Asmat Ahmad; Gires Usup

    2015-01-01

    The bacteriocin-producing strain Bacillus sp., Sh10, isolated from the marine environment, exhibited a broad spectrum of antimicrobial activity against different food spoilage and human pathogens, with a maximum inhibitory activity against Candida albicans. The inhibitory compound was sensitive to trypsin but resistant to proteinase K, lysozyme, lipase and &alpha-amylase. It was heat-stable and remained its activity after autoclaving. In addition, the antimicrobial substance demonstrated stri...

  15. Sonorensin: an antimicrobial peptide, belonging to the heterocycloanthracin subfamily of bacteriocins, from a new marine isolate, Bacillus sonorensis MT93.

    Science.gov (United States)

    Chopra, Lipsy; Singh, Gurdeep; Choudhary, Vikas; Sahoo, Debendra K

    2014-05-01

    Marine environments are the greatest fronts of biodiversity, representing a resource of unexploited or unknown microorganisms and new substances having potential applications. Among microbial products, antimicrobial peptides (AMPs) have received great attention recently due to their applications as food preservatives and therapeutic agents. A new marine soil isolate producing an AMP was identified as Bacillus sonorensis based on 16S rRNA gene sequence analysis. It produced an AMP that showed a broad spectrum of activity against both Gram-positive and Gram-negative bacteria. The peptide, named sonorensin, was purified to homogeneity using a combination of chromatographic techniques. The intact molecular mass of the purified peptide, 6,274 Da, as revealed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF), was in agreement with Tricine-SDS-PAGE analysis. A PCR array of primers was used to identify AMP structural genes, which allowed the successful amplification of the related genes from strain MT93. The putative open reading frame of sonorensin was amplified, cloned into the pET-32a(+) vector, expressed as a thioredoxin (Trx) fusion protein in Escherichia coli, and then purified. Sequence alignment analysis revealed that the bacteriocin being reported could belong to new subfamily of bacteriocins, heterocycloanthracin. The peptide indicated its potential as a biocontrol agent or food antimicrobial agent, due to its antimicrobial activity against bacteria such as Listeria monocytogenes and Staphylococcus aureus. This is the first report of the production, purification, and characterization of wild-type and recombinant bacteriocin by B. sonorensis and the first bacteriocin of the heterocycloanthracin subfamily to be characterized.

  16. Characterization of anti-listeria bacteriocins isolated from shellfish: Potential antimicrobials to control non-fermented seafood

    OpenAIRE

    Pinto, Ana Luísa; Fernandes, Melissa; Pinto, Cristina; Albano, Helena; Castilho, Fernanda; Teixeira, Paula; Gibbs, Paul A

    2009-01-01

    This work had as main objectives to characterize two bacteriocins produced by lactic acid bacteria (LAB) previously isolated from non-fermented seafood, in order to evaluate their potential as new food protective agents. The two bacteriocinogenic isolates were identified by Polymerase Chain Reaction (PCR) using genusand species-specific primers, and confirmed by 16S rDNA sequencing, as Enterococcus faecium and Pediococcus pentosaceus. The antimicrobial spectrum of each strain incl...

  17. Extraction Effect of Different Extractant on Crude Bacteriocin%不同提取剂对粗细菌素提取效果的影响

    Institute of Scientific and Technical Information of China (English)

    许亦峰; 罗晓蕾; 施碧红

    2013-01-01

    The method for extracting the crude bacteriocin was set up through trial and error. Compared the advantages and disadvantages of the acid precipitation and the ammonium sulfate precipitation method for the extracting capacity and the activity remained of crude bacteriocin. Results showed that more bacteriocin was obtained by acid precipitation than by ammonium sulfate precipitation. The crude protein content of the bacteriocin was increased by 28.7% , the specific activity of crude bacteriocin obtained by acid precipitation was increased 55.5% , and the titer of bacteriocin is 2 times of that of by ammonium sulfate precipitation. The precipitations were further extracted by different solvents; as a result, the chloroform shows the best result based on the bacteriocin yield and activity.%摸索并建立了粗提细菌素的方法.从粗提细菌素的能力和活性保留两个方面,比较了酸沉淀法和硫酸铵沉淀法的优劣.结果发现,相对于硫酸铵沉淀法,酸沉淀法能够获得更多的粗细菌素,蛋白总量提高了28.7%.且酸沉淀法得到的粗细菌素的比活性比硫酸铵沉淀法提高了55.5%,单位效价是硫酸铵沉淀法的2倍.比较了不同有机溶剂抽提以上沉淀物,综合考虑细菌素得率及活性,发现三氯甲烷的抽提效果较好.

  18. Induction of defense-related enzymes in soybean leaves by class IId bacteriocins (thuricin 17 and bacthuricin F4) purified from Bacillus strains.

    Science.gov (United States)

    Jung, Woo-Jin; Mabood, Fazli; Souleimanov, Alfred; Smith, Donald L

    2011-12-20

    We have recently discovered a new class of bacteriocin (class IId) which stimulates plant growth in a way similar to Nod factors. Nod factors have been shown to provoke aspects of plant disease resistance. We investigated the effects of bacteriocins [thuricin 17 (T17) and bacthuricin F4 (BF4)] on the activities of phenylalanine ammonia lyase (PAL), guaiacol peroxidase (POD), ascorbate peroxidase (APX), superoxide dismutase (SOD), and polyphenol oxidase (PPO). Bacteriocin solutions were fed into the cut stems of soybean (Glycine max L. Merr. cv. OAC Bayfield) seedlings at the first trifoliate stage. PAL activity in T17 treated leaves was the highest at 72h after treatment and was 75.5% greater than the control at that time. At 72h after treatment POD activities in T17 and BF4 treated leaves increased by 72.7 and 91.3%, respectively, as compared with the control treatment. APX activity was 52.3 and 49.6% respectively, greater than the control in T17 and BF4 treated leaves at 72h after treatment. SOD activity in T17 treated leaves was the highest at 72h after treatment and was 26.0% greater than the control at that time. SOD activity was 70.5 and 60.2% greater, respectively, than the control in T17 and BF4 treated leaves, at 72h. Using PAGE we found that one APX isozyme (28kDa isoform) showed the strongest induction in all bacteriocin treated leaves at 72h. Activity of the seven SOD isozymes was increased by both bacteriocins, relative to the control treatment. The 33kDa PPO isozyme was induced strongly by both bacteriocins, relative to the control treatment. These results indicate that class IId bacteriocins can act as an inducer of plant disease defense-related enzymes and may be acting through mechanisms similar to Nod factors.

  19. Screening for anti-listerial bacteriocin-producing lactic acid bacteria from "Gueddid" a traditionally Tunisian fermented meat.

    Science.gov (United States)

    Ben Belgacem, Zouhaier; Ferchichi, Mounir; Prévost, Hervé; Dousset, Xavier; Manai, Mohamed

    2008-04-01

    Forty eight lactic acid bacteria strains isolated from "Gueddid", a traditionally Tunisian fermented meat, were screened for bacteriocin production. Four strains named MMZ 04, 09, 13, and 17 showed antimicrobial activity and were identified as Enterococcus faecium by molecular methods based on the 16S-23S rDNA ISR, PCR-RFLP analysis of the 16S-23S rDNA ISR and species-specific primers. The four antimicrobial compounds were heat stable (121°C for 15min), active over a wide pH range (3-9) and the antimicrobial activity was lost after treatment with trypsin, α-chymotrypsin and proteinase K but not by lysozyme and lipase. The mode of action of enterocin MMZ17 was identified as bactericidal. The MMZ17 bacteriocin was partially purified by ammonium sulphate precipitation and C(18) Sep-Pack chromatography. The apparent molecular size of enterocin MMZ17 as indicated by activity detection after SDS-PAGE was lower than 6.5 KDa. According to these assays, enterocin MMZ17 can be classified as a small, heat-stable Listeria-active peptide, presumably belonging to class IIa bacteriocins.

  20. Inhibition of Listeria monocytogenes on Ready-to-Eat Meats Using Bacteriocin Mixtures Based on Mode-of-Action

    Directory of Open Access Journals (Sweden)

    Paul Priyesh Vijayakumar

    2017-03-01

    Full Text Available Bacteriocin-producing (Bac+ lactic acid bacteria (LAB comprising selected strains of Lactobacillus curvatus, Lactococcus lactis, Pediococcus acidilactici, and Enterococcus faecium and thailandicus were examined for inhibition of Listeria monocytogenes during hotdog challenge studies. The Bac+ strains, or their cell-free supernatants (CFS, were grouped according to mode-of-action (MOA as determined from prior studies. Making a mixture of as many MOAs as possible is a practical way to obtain a potent natural antimicrobial mixture to address L. monocytogenes contamination of RTE meat products (i.e., hotdogs. The heat resistance of the bacteriocins allowed the use of pasteurization to eliminate residual producer cells for use as post-process surface application or their inclusion into hotdog meat emulsion during cooking. The use of Bac+ LAB comprising 3× MOAs directly as co-inoculants on hotdogs was not effective at inhibiting L. monocytogenes. However, the use of multiple MOA Bac+ CFS mixtures in a variety of trials demonstrated the effectiveness of this approach by showing a >2-log decrease of L. monocytogenes in treatment samples and 6–7 log difference vs. controls. These data suggest that surface application of multiple mode-of-action bacteriocin mixtures can provide for an Alternative 2, and possibly Alternative 1, process category as specified by USDA-FSIS for control of L. monocytogenes on RTE meat products.

  1. Potential of bacteriocin-producing lactic acid bacteria for safety improvements of traditional Thai fermented meat and human health.

    Science.gov (United States)

    Swetwiwathana, Adisorn; Visessanguan, Wonnop

    2015-11-01

    Lactic acid bacteria (LAB) are very important in converting of agricultural products into safe, delicious and shelf stable foods for human consumption. The preservative activity of LAB in foods is mainly attributed to the production of anti-microbial metabolites such as organic acids and bacteriocins which enables them to grow and control the growth of pathogens and spoilage microorganisms. Besides ensuring safety, bacteriocin-producing LAB with their probiotic potentials could also be emerging as a means to develop functional meat products with desirable health benefits. Nevertheless, to be qualified as a candidate probiotic culture, other prerequisite probiotic properties of bacteriocin-producing LAB have to be assessed according to regulatory guidelines for probiotics. Nham is an indigenous fermented sausage of Thailand that has gained popularity and acceptance among Thais. Since Nham is made from raw meat and is usually consumed without cooking, risks due to undesirable microorganisms such as Salmonella spp., Staphylococcus aureus, and Listeria monocytogenes, are frequently observed. With an ultimate goal to produce safer and healthier product, our research attempts on the development of a variety of new Nham products are discussed.

  2. Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances produced by Lactobacillus spp. isolated from artisanal Mexican cheese.

    Science.gov (United States)

    Heredia-Castro, Priscilia Y; Méndez-Romero, José I; Hernández-Mendoza, Adrián; Acedo-Félix, Evelia; González-Córdova, Aarón F; Vallejo-Cordoba, Belinda

    2015-12-01

    Lactobacillus spp. from Mexican Cocido cheese were shown to produce bacteriocin-like substances (BLS) active against Staphylococcus aureus,Listeria innocua,Escherichia coli, andSalmonella typhimurium by using the disk diffusion method. Crude extracts of Lactobacillus fermentum showed strong inhibitory activity against Staph. aureus, L. innocua, E. coli, and Salmonella cholerae. Complete inactivation of antimicrobial activity was observed after treatment of crude extracts with proteinase K, pronase, papain, trypsin, and lysozyme, confirming their proteinaceous nature. However, antimicrobial activity was partly lost for some of the crude extracts when treated with α-amylase, indicating that carbohydrate moieties were involved. The antimicrobial activity of the crude extracts was stable at 65°C for 30min over a wide pH range (2-8), and addition of potassium chloride, sodium citrate, ethanol, and butanol did not affect antibacterial activity. However, antimicrobial activity was lost after heating at 121°C for 15min, addition of methanol or Tween 80. Fourteen out of 18 Lactobacillus spp. showed antimicrobial activity against different test microorganisms, and 12 presented bacteriocin-like substances. Generation time and growth rate parameters indicated that the antimicrobial activity of crude extracts from 3 different strains was effective against the 4 indicator microorganisms. One of the crude extracts showed inhibition not only against gram-positive but also against gram-negative bacteria. Bacteriocin-like substances produced by this specific Lactobacillus strain showed potential for application as a food biopreservative.

  3. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins.

    Science.gov (United States)

    Kim, Young Chan; Tarr, Alexander W; Penfold, Christopher N

    2014-08-01

    Bacteriocins are a diverse group of ribosomally synthesized protein antibiotics produced by most bacteria. They range from small lanthipeptides produced by lactic acid bacteria to much larger multi domain proteins of Gram negative bacteria such as the colicins from Escherichia coli. For activity bacteriocins must be released from the producing cell and then bind to the surface of a sensitive cell to instigate the import process leading to cell death. For over 50years, colicins have provided a working platform for elucidating the structure/function studies of bacteriocin import and modes of action. An understanding of the processes that contribute to the delivery of a colicin molecule across two lipid membranes of the cell envelope has advanced our knowledge of protein-protein interactions (PPI), protein-lipid interactions and the role of order-disorder transitions of protein domains pertinent to protein transport. In this review, we provide an overview of the arrangement of genes that controls the synthesis and release of the mature protein. We examine the uptake processes of colicins from initial binding and sequestration of binding partners to crossing of the outer membrane, and then discuss the translocation of colicins through the cell periplasm and across the inner membrane to their cytotoxic site of action. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.

  4. Isolation of bacteriocin - producing lactic acid bacteria from 'Ugba' and 'Okpiye', two locally fermented nigerian food condiments

    Directory of Open Access Journals (Sweden)

    Charles Ogugua Nwuche

    2013-02-01

    Full Text Available In this work, 100 samples each of 'ugba' and 'okpiye' were evaluated for the presence of bacteriocin producing lactic acid bacteria. Thirty strains showing antibacterial activity against at least one of the indicator organisms were selected from a total of 752 colonies isolated from the condiments. Out of the 30, only five strains retained activity after the pH of the broth supernatant was adjusted to 6.5. When evaluated by the agar-well diffusion assay, the spectra of inhibitory activity showed that Staphylococcus aureus was the most sensitive indicator organism tested, while Listeria monocytogenes was the most resistant. One strain (UG 2 was active against Escherichia coli. The assays using the cell-free supernatant of the cultures showed that the bacteriocins were completely inactivated by the proteolyses as well as by the chloroform treatment. In ethanol, the activity of the compounds was only partially modified. When incubated in a water bath at 80°C for 30 min, no significant activity loss was recorded. The antimicrobial activity of the bacteriocins produced by the lactic acid bacteria has potential for use in biopreservation of condiments against the spoilage and food - borne pathogens.

  5. Characterization of a noncytotoxic bacteriocin from probiotic Lactobacillus plantarum DM5 with potential as a food preservative.

    Science.gov (United States)

    Das, Deeplina; Goyal, Arun

    2014-10-01

    The aim of this work was to purify and characterize the bacteriocin produced by probiotic Lactobacillus plantarum DM5 in order to evaluate its potential as nutraceuticals. Lb. plantarum DM5 exhibited in vitro probiotic properties such as high resistance to gastric juice and bile salt, adherence to human adenocarcinoma (HT-29) cells, bile salt hydrolase and cholesterol assimilation activity. Moreover, Lb. plantarum DM5 showed bacteriocin activity against several major food borne pathogens. Zymogram analysis of purified bacteriocin (plantaricin DM5) showed a molecular size of ∼15.2 kDa. Plantaricin DM5 was sensitive to proteolytic enzymes but stable in the pH range of 2.0-10.0, and it was heat resistant (121 °C for 15 min) and remained active upon treatment with surfactants and detergents. Cytotoxicity analysis of plantaricin DM5 on human embryonic kidney 293 (HEK 293) and human cervical cancer (HeLa) cell lines revealed its nontoxic and biocompatible nature. To the best of our knowledge, this is the first study on the isolated strain expressing probiotic properties and broad antimicrobial activity without any cytotoxic effect on mammalian cells from indigenous fermented beverage Marcha from India, and thus contributes to the food industry as a novel bio-preservant.

  6. Bacteriocins in S. mutans strains isolated from children with and without dental caries: biotypes and sensitivity to antibiotics.

    Science.gov (United States)

    Gamboa, Fredy; Chaves, Margarita; Estupiñan, Mabel; Galindo, Adriana

    2008-01-01

    The aim of this study was to determine the production of bacteriocins in the Streptococcus mutans strains isolated from children with and without dental caries. With this purpose the dmft index was determined and non-stimulated saliva was collected from 53 3- to 5-year-old children. The samples were cultured on Mitis Salivarius Bacitracin agar and incubated anaerobically for two days at 37 degrees C. The isolates were biotyped using the Api-ZYM enzymatic system (bioMérieux; Marcy-lE'toile, France). Bacteriocin was detected using the double layer onto brain heart infusion agar technique and the minimal inhibitory concentrations of the isolates were evaluated against penicillin, amoxycillin, cefazolin, erythromycin, clindamycin, imipenem and vancomycin using an agar dilution method. The dental caries experience in these children was 66% (35/53) and dmft index average was 3.2 (range 2-6). S. mutans was found in the saliva of 33 children (62%). In the 33 strains of S. mutans, 10 biotypes were found. Eight (24%) of the 33 strains evaluated produced bacteriocins, 6 of these strains came from patients with dental caries and the other two from patients without dental caries. All isolates were highly sensitive to the antibiotics tested.

  7. Screening of Bacteriocin-producing Lactic Acid Bacteria%产细菌素乳酸菌的筛选

    Institute of Scientific and Technical Information of China (English)

    胡欣洁; 刘云; 邓清云

    2012-01-01

    [Objective]To develop a strain of high-efficient bacteriocin with broader antimicrobial spectrum as natural preservative. [ Method] With pickles and yoghurt as raw materials, the bacteria, which could inhibit the indicator bacteria, was screened from the test materials by using MRS selective medium, and whether the bacteria could produce bacteriocin or not was determined by the tests of excluding acid inhibition, hydrogen peroxide inhibition and protease sensitivity. [Result]The screened strain was identified to be lactic acid bacteria, the produced bacteriocin had inhibitive effect against gram-negative and gram-positive bacteria, and it was a strain of lactic acid bacteria with iroad spectrum and the ability of bacteriocin-producing. [Conclusion]The bacteriocin-producing lactic acid bacteria had important roles in inhibiting various pathogens and food decay.%[目的]开发出更加高效、抑菌谱更广、可做天然防腐剂的细菌素.[方法]以泡菜、酸奶为原料,利用MRS选择培养基从试材中筛选出能够抑制指示菌的细菌,通过排除酸抑制作用、过氧化氢抑制作用和蛋白酶敏感性试验证明该菌株是否产生有抑菌作用的细菌素.[结果]筛选得到的菌株经鉴定证明是乳酸菌,其产生的细菌素对革兰氏阴性菌和革兰氏阳性菌都有抑制作用,是一株产广谱细菌素的乳酸菌.[结论]筛选得出的乳酸菌细菌素在抑制各种病原菌和食品腐败等方面具有重要作用.

  8. Detection and preliminary characterization of a narrow spectrum bacteriocin produced by Lactobacillus pentosus K2N7 from Thai traditional fermented shrimp (Kung-Som

    Directory of Open Access Journals (Sweden)

    Nisit Watthanasakphuban

    2016-02-01

    Full Text Available A total of 48 lactic acid bacteria (LAB exhibited antagonistic activity against Lactobacillus sakei subsp. sakei JCM 1157 or Staphylococcus aureus DMST 8840. Only strain K2N7 was selected for characterization of bacteriocin activity. It was identified as Lactobacillus pentosus based on 16S rDNA analysis. The maximum bacteriocin production was detected in early stationary phase of growth. It was found to be sensitive to proteolytic enzymes (trypsin, proteinase K, pronase E and -chymotrypsin. The bacteriocin K2N7 was heat stable (2 h at 100ºC and retained activity over a wide pH range (2.0-12.0. Bacteriocin K2N7 has a narrow inhibitory spectrum restricted to genus Lactobacillus including Lactobacillus plantarum D6SM3, a bacterial strain known to cause overfermentation in Kung-Som. The peptide was purified by 60% ammonium sulphate precipitation followed by sequential cation exchange chromatography and hydrophobic interaction characteristic. The molecular mass of bacteriocin K2N7 (2.017 kDa was determined by matrix-assisted laser desorption/ionization time-offlight mass spectrometry analysis (MALDI-TOF MS.

  9. Nuclear Magnetic Resonance Solution Structures of Lacticin Q and Aureocin A53 Reveal a Structural Motif Conserved among Leaderless Bacteriocins with Broad-Spectrum Activity.

    Science.gov (United States)

    Acedo, Jeella Z; van Belkum, Marco J; Lohans, Christopher T; Towle, Kaitlyn M; Miskolzie, Mark; Vederas, John C

    2016-02-02

    Lacticin Q (LnqQ) and aureocin A53 (AucA) are leaderless bacteriocins from Lactococcus lactis QU5 and Staphylococcus aureus A53, respectively. These bacteriocins are characterized by the absence of an N-terminal leader sequence and are active against a broad range of Gram-positive bacteria. LnqQ and AucA consist of 53 and 51 amino acids, respectively, and have 47% identical sequences. In this study, their three-dimensional structures were elucidated using solution nuclear magnetic resonance and were shown to consist of four α-helices that assume a very similar compact, globular overall fold (root-mean-square deviation of 1.7 Å) with a highly cationic surface and a hydrophobic core. The structures of LnqQ and AucA resemble the shorter two-component leaderless bacteriocins, enterocins 7A and 7B, despite having low levels of sequence identity. Homology modeling revealed that the observed structural motif may be shared among leaderless bacteriocins with broad-spectrum activity against Gram-positive organisms. The elucidated structures of LnqQ and AucA also exhibit some resemblance to circular bacteriocins. Despite their similar overall fold, inhibition studies showed that LnqQ and AucA have different antimicrobial potency against the Gram-positive strains tested, suggesting that sequence disparities play a crucial role in their mechanisms of action.

  10. Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: culture isolation, bacteriocin identification, and meat application experiments.

    Science.gov (United States)

    Budde, Birgitte Bjørn; Hornbaek, Tina; Jacobsen, Tomas; Barkholt, Vibeke; Koch, Anette Granly

    2003-06-15

    A new culture, Leuconostoc carnosum 4010, for biopreservation of vacuum-packed meats is described. The culture originated from bacteriocin-producing lactic acid bacteria (LAB) naturally present in vacuum-packed meat products. Approximately, 72,000 colonies were isolated from 48 different vacuum-packed meat products and examined for antibacterial activity. Bacteriocin-producing colonies were isolated from 46% of the packages examined. Leuc. carnosum was the predominant bacteriocin-producing strain and Leuc. carnosum 4010 was selected for further experiments because it showed strong antilisterial activity without producing any undesirable flavour components in meat products. For identification of the bacteriocins produced, partial purification was carried out by ammonium sulphate precipitation, dialysis, and cation exchange chromatography. SDS-PAGE analysis revealed two bands with inhibitory activity corresponding to molecular sizes of 4.6 and 5.3 kDa. N-terminal amino acid sequencing showed that Leuc. carnosum 4010 produced two bacteriocins highly similar or identical to leucocin A and leucocin C. Application experiments showed that the addition of 10(7) cfu/g Leuc. carnosum 4010 to a vacuum-packaged meat sausage immediately reduced the number of viable Listeria monocytogenes cells to a level below the detection limit and no increase of L. monocytogenes was observed during storage at 5 degrees C for 21 days. The results presented demonstrate that Leuc. carnosum 4010 is suitable as a new protective culture for cold-stored, cooked, sliced, and vacuum-packed meat products.

  11. 细菌素的分子生物学研究进展%Development of Biological and Molecular Characterization of Bacteriocins

    Institute of Scientific and Technical Information of China (English)

    崔德凤; 周波; 张永红

    2011-01-01

    Bacteriocins are a heterogeneous group of ribosomally synthesized antibacterial peptides or protein from some bacteria species. They are expected to become alternatives of food additives and antibiotics for their broad-spectrum antimicrobial activity, This paper reviews the bacteriocins molecular structure and function, genotyping, biosynthesis and their gene regulation, mode of antibacterial action and bacteria species of bacteriocin producing.%细菌素作为细菌合成的蛋白质(多肽)类抑菌物质,其广谱的抗菌活性,有望成为食品添加剂以及抗生素的替代品.主要对细菌素的分类及其作用机制、细菌素的生物合成及其调控,以及细菌素产生菌加以阐述.

  12. 产细菌素弯曲乳杆菌的分离鉴定及细菌素特性初步研究%Separation and identification of bacteriocin-producing Lactobacillus curvatus and characterization of its bacteriocin

    Institute of Scientific and Technical Information of China (English)

    任丽; 刘国荣; 王成涛; 孙宝国

    2013-01-01

    Bacteriocin-producing stain RX-6 was isolated from Spanish traditional Salami sausages. After eliminating some interference factors such as the organic acids,hydrogen peroxides and strain cells,the antimicrobial activity of the fermentation broth of strain RX-6 remained the same. By ammonium sulphate precipitation and dialysis,the activity was significantly enhanced. However,the substance was inactivated when treated with proteinase K. These results indicated the nature of antibacterial substance produced by strain RX-6 was protein. Based on morphological,physiological and biochemical characteristics, 16S rRNA gene sequence and phylogenic analysis, strain RX-6 was identified as Lactobacillus curvatus. Results obtained from characteristics analysis of the bacteriocin produced by strain RX-6 showed this bacteriocin still remained activated after the heat treatment at 121℃ for 20min and the pH activity range was 3 to 10, which indicated that it had strong heat stability and acid-base tolerance. Also, the bacteriocin could be inactivated by pepsin and trypsin.and partially inactivated by acid proteinase,which suggested that its use safety was very high. In addition,the bacteriocin had a broad inhibitory spectrum and could show inhibitory activity against Listeria spp., Staphylococcus spp., Pseudomonas spp. and Escherichia coli, which indicated that the bacteriocin had a potential application as natural food bio-preservatives in food industry.%从西班牙传统色拉米香肠中分离到一株产细菌素菌株RX-6,其发酵液在排除有机酸、过氧化氢及菌体细胞干扰后,抑菌活性基本无变化;经硫酸铵盐析及透析处理后,抑菌活性明显增强;蛋白酶K处理后,抑菌活性消失,表明起抑菌作用的是蛋白类物质.通过菌体形态观察、生理生化特征实验、16S rRNA序列比对及系统发育分析,鉴定菌株RX-6为弯曲乳杆菌(Lactobacillus curvatus).抑菌特性研究结果显示该菌株所产细菌素具

  13. TSST-1, enterotoxin and bacteriocin-like substance production by Staphylococcus aureus isolated from foods

    Directory of Open Access Journals (Sweden)

    S.A. Carvalho

    2013-10-01

    Full Text Available The production of Toxic Shock Syndrome Toxin-1 (TSST-1, enterotoxins and bacteriocin-like substances was evaluated in 95 strains of Staphylococcus aureus recovered from raw bovine milk (n=31 and from food samples involved in staphylococcal food poisoning (n=64. Enterotoxigenicity tests with the membrane over agar associated to optimal sensibility plate assays were performed and showed that 96.77% of strains recovered from milk and 95.31% from food samples produced enterotoxins A, B, C, D or TSST-1. Reference strains S. epidermidis, Bacillus cereus, Listeria monocytogenes, Lactobacillus casei, Pseudomonas aeruginosa, S. aureus, Salmonella Typhimurium, Escherichia coli, Enterococcus faecalis and Bacteroides fragilis were used as indicator bacteria in the antagonistic assays, the first five being sensitive to antagonistic substances. Brain heart infusion agar, in pH values ranging from 5.0 to 7.0 in aerobic atmosphere showed to be the optimum condition for antagonistic activity as evaluated with the best producer strains against the most sensitive indicator bacterium, L. monocytogenes. Sensitivity to enzymes confirmed the proteinaceous nature of these substances. Neither bacteriophage activity nor fatty acids were detected and the antagonistic activity was not due to residual chloroform. Results did not establish a positive correlation between the bacteriocinogenic profile and toxigenicity in the tested S. aureus strains.

  14. Purification and properties of extracellular mutacin, a bacteriocin from Streptococcus sobrinus.

    Science.gov (United States)

    Loyola-Rodriguez, J P; Morisaki, I; Kitamura, K; Hamada, S

    1992-02-01

    Mutacin MT6223, a cell-free bacteriocin produced by Streptococcus sobrinus MT6223, was purified by ammonium sulphate precipitation, chromatofocusing with PBE 94 and column chromatography on SP Sephadex C-25. The specific activity of the purified mutacin was increased 1950-fold with a recovery of 9.7%. The molecular mass of the purified mutacin preparation was estimated to be 6.5 kDa. The mutacin activity was stable from pH 2-7, and was resistant to treatment at 100 degrees C for 20 min. It was inactivated by papain or ficin digestion, and was partially inhibited by alpha-chymotrypsin. The mutacin was found to be active against strains of serotypes c, e and f of Streptococcus mutans and the addition of purified mutacin MT6223 to growing cells of S. mutans MT8148 resulted in a rapid inhibition of incorporation of [3H]thymidine, [3H]uracil or L-[3H]glutamic acid into DNA, RNA or protein, respectively. Specific pathogen-free Fischer rats fed diet 2000 and infected with S. mutans MT8148R showed significantly fewer caries and lower plaque scores when mutacin was administered through drinking water. The present study demonstrates that mutacin MT6223 inhibited the growth of mutans streptococci. Thus, mutacin MT6223 may be a candidate for use in dental caries prevention.

  15. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1.

    Science.gov (United States)

    Joo, Nam E; Ritchie, Kathryn; Kamarajan, Pachiyappan; Miao, Di; Kapila, Yvonne L

    2012-12-01

    Nisin, a bacteriocin and commonly used food preservative, may serve as a novel potential therapeutic for treating head and neck squamous cell carcinoma (HNSCC), as it induces preferential apoptosis, cell cycle arrest, and reduces cell proliferation in HNSCC cells, compared with primary keratinocytes. Nisin also reduces HNSCC tumorigenesis in vivo. Mechanistically, nisin exerts these effects on HNSCC, in part, through CHAC1, a proapoptotic cation transport regulator, and through a concomitant CHAC1-independent influx of extracellular calcium. In addition, although CHAC1 is known as an apoptotic mediator, its effects on cancer cell apoptosis have not been examined. Our studies are the first to report CHAC1's new role in promoting cancer cell apoptosis under nisin treatment. These data support the concept that nisin decreases HNSCC tumorigenesis in vitro and in vivo by inducing increased cell apoptosis and decreased cell proliferation; effects that are mediated by activation of CHAC1, increased calcium influxes, and induction of cell cycle arrest. These findings support the use of nisin as a potentially novel therapeutic for HNSCC, and as nisin is safe for human consumption and currently used in food preservation, its translation into a clinical setting may be facilitated.

  16. Nisin ZP, a Bacteriocin and Food Preservative, Inhibits Head and Neck Cancer Tumorigenesis and Prolongs Survival.

    Science.gov (United States)

    Kamarajan, Pachiyappan; Hayami, Takayuki; Matte, Bibiana; Liu, Yang; Danciu, Theodora; Ramamoorthy, Ayyalusamy; Worden, Francis; Kapila, Sunil; Kapila, Yvonne

    2015-01-01

    The use of small antimicrobial peptides or bacteriocins, like nisin, to treat cancer is a new approach that holds great promise. Nisin exemplifies this new approach because it has been used safely in humans for many years as a food preservative, and recent laboratory studies support its anti-tumor potential in head and neck cancer. Previously, we showed that nisin (2.5%, low content) has antitumor potential in head and neck squamous cell carcinoma (HNSCC) in vitro and in vivo. The current studies explored a naturally occurring variant of nisin (nisin ZP; 95%, high content) for its antitumor effects in vitro and in vivo. Nisin ZP induced the greatest level of apoptosis in HNSCC cells compared to low content nisin. HNSCC cells treated with increasing concentrations of nisin ZP exhibited increasing levels of apoptosis and decreasing levels of cell proliferation, clonogenic capacity, and sphere formation. Nisin ZP induced apoptosis through a calpain-dependent pathway in HNSCC cells but not in human oral keratinocytes. Nisin ZP also induced apoptosis dose-dependently in human umbilical vein endothelial cells (HUVEC) with concomitant decreases in vascular sprout formation in vitro and reduced intratumoral microvessel density in vivo. Nisin ZP reduced tumorigenesis in vivo and long-term treatment with nisin ZP extended survival. In addition, nisin treated mice exhibited normal organ histology with no evidence of inflammation, fibrosis or necrosis. In summary, nisin ZP exhibits greater antitumor effects than low content nisin, and thus has the potential to serve as a novel therapeutic for HNSCC.

  17. Combining prebiotics with probiotic bacteria can enhance bacterial growth and secretion of bacteriocins.

    Science.gov (United States)

    Pranckutė, Raminta; Kaunietis, Arnoldas; Kuisienė, Nomeda; Čitavičius, Donaldas J

    2016-08-01

    There is a growing interest in supporting human health by using prebiotics, such as oligosaccharides, and beneficial bacteria, also called probiotics. Combining these two components we can develop synbiotics. In order to create successful combination of synbiotic it is very important to evaluate the influence of prebiotic oligosaccharides to probiotic bacteria and their behavior, such as growth and secretion of health related biomolecules, including bacteriocins. In this study seven type strains of probiotic bacteria (five Lactobacillus sp. and two Lactococcus sp.) and two Lactobacillus sp. strains, isolated from probiotic yoghurt, were cultivated with various commercially available and extracted oligosaccharides (OS). The aim of this study was to evaluate the influence of these OS on type and isolated bacterial strains growth and antibacterial activity. Obtained results suggest that combination of certain OS with probiotic strains may considerably improve their growth and/or antibacterial activity. We also determined the antibacterial activity spectrum of investigated strains with combination of OS against common food borne pathogens. Results of this work show that prebiotic OS can be useful for modulating probiotic bacteria growth, antibacterial activity and even specificity of this activity.

  18. Detection of Listeria monocytogenes with short peptide fragments from class IIa bacteriocins as recognition elements.

    Science.gov (United States)

    Azmi, Sarfuddin; Jiang, Keren; Stiles, Michael; Thundat, Thomas; Kaur, Kamaljit

    2015-03-09

    We employed a direct peptide-bacteria binding assay to screen peptide fragments for high and specific binding to Listeria monocytogenes. Peptides were screened from a peptide array library synthesized on cellulose membrane. Twenty four peptide fragments (each a 14-mer) were derived from three potent anti-listerial peptides, Leucocin A, Pediocin PA1, and Curvacin A, that belong to class IIa bacteriocins. Fragment Leu10 (GEAFSAGVHRLANG), derived from the C-terminal region of Leucocin A, displayed the highest binding among all of the library fragments toward several pathogenic Gram-positive bacteria, including L. monocytogenes, Enterococcus faecalis, and Staphylococcus aureus. The specific binding of Leu10 to L. monocytogenes was further validated using microcantilever (MCL) experiments. Microcantilevers coated with gold were functionalized with peptides by chemical conjugation using a cysteamine linker to yield a peptide density of ∼4.8×10(-3) μmol/cm2 for different peptide fragments. Leu10 (14-mer) functionalized MCL was able to detect Listeria with same sensitivity as that of Leucocin A (37-mer) functionalized MCL, validating the use of short peptide fragments in bacterial detection platforms. Fragment Leu10 folded into a helical conformation in solution, like that of native Leucocin A, suggesting that both Leu10 and Leucocin A may employ a similar mechanism for binding target bacteria. The results show that peptide-conjugated microcantilevers can function as highly sensitive platforms for Listeria detection and hold potential to be developed as biosensors for pathogenic bacteria.

  19. Release of bacteriocins from nanofibers prepared with combinations of poly(d,l-lactide) (PDLLA) and poly(ethylene oxide) (PEO).

    Science.gov (United States)

    Heunis, Tiaan; Bshena, Osama; Klumperman, Bert; Dicks, Leon

    2011-01-01

    Plantaricin 423, produced by Lactobacillus plantarum, and bacteriocin ST4SA produced by Enterococcus mundtii, were electrospun into nanofibers prepared from different combinations of poly(d,l-lactide) (PDLLA) and poly(ethylene oxide) (PEO) dissolved in N,N-dimethylformamide (DMF). Both peptides were released from the nanofibers with a high initial burst and retained 88% of their original antimicrobial activity at 37 °C. Nanofibers have the potential to serve as carrier matrix for bacteriocins and open a new field in developing controlled antimicrobial delivery systems for various applications.

  20. Release of Bacteriocins from Nanofibers Prepared with Combinations of Poly(D,L-lactide (PDLLA and Poly(Ethylene Oxide (PEO

    Directory of Open Access Journals (Sweden)

    Leon Dicks

    2011-03-01

    Full Text Available Plantaricin 423, produced by Lactobacillus plantarum, and bacteriocin ST4SA produced by Enterococcus mundtii, were electrospun into nanofibers prepared from different combinations of poly(D,L-lactide (PDLLA and poly(ethylene oxide (PEO dissolved in N,N-dimethylformamide (DMF. Both peptides were released from the nanofibers with a high initial burst and retained 88% of their original antimicrobial activity at 37 °C. Nanofibers have the potential to serve as carrier matrix for bacteriocins and open a new field in developing controlled antimicrobial delivery systems for various applications.

  1. Plantaricins S and T, Two New Bacteriocins Produced by Lactobacillus plantarum LPCO10 Isolated from a Green Olive Fermentation

    Science.gov (United States)

    Jiménez-Díaz, R.; Rios-Sánchez, R. M.; Desmazeaud, M.; Ruiz-Barba, J. L.; Piard, J.-C.

    1993-01-01

    Twenty-six strains of Lactobacillus plantarum isolated from green olive fermentations were tested for cross-antagonistic activities in an agar drop diffusion test. Cell-free supernatants from four of these strains were shown to inhibit the growth of at least one of the L. plantarum indicator strains. L. plantarum LPCO10 provided the broadest spectrum of activity and was selected for further studies. The inhibitory compound from this strain was active against some gram-positive bacteria, including clostridia and propionibacteria as well as natural competitors of L. plantarum in olive fermentation brines. In contrast, no activity against gram-negative bacteria was detected. Inhibition due to the effect of organic acids, hydrogen peroxide, or bacteriophages was excluded. Since the inhibitory activity of the active supernatant was lost after treatment with various proteolytic enzymes, this substance could be classified as a bacteriocin, designated plantaricin S. Plantaricin S was also sensitive to glycolytic and lipolytic enzymes, suggesting that it was a glycolipoprotein. It exhibited a bactericidal and nonbacteriolytic mode of action against indicator cells. This bacteriocin was heat stable (60 min at 100°C), active in a pH range of 3.0 to 7.0, and also stable in crude culture supernatants during storage. Ultrafiltration studies indicated that plantaricin S occurred as multimolecular aggregates and that the size of the smallest active form is between 3 and 10 kDa. In sodium dodecyl sulfate-polyacrylamide gels, plantaricin S migrated as a peptide of ca. 2.5 kDa. Maximum production of plantaricin S was obtained in a fermentor system in unregulated pH and log-phase cultures of L. plantarum LPCO10 in MRS broth plus 4% NaCl. In these culture conditions, a second bacteriocin (designated plantaricin T) was produced in late-stationary-phase cultures of L. plantarum LPCO10. On the basis of its biological activity, its sensitivity to various enzymes, and its molecular weight

  2. High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes.

    Science.gov (United States)

    Gravesen, Anne; Ramnath, Manilduth; Rechinger, K Björn; Andersen, Natalie; Jänsch, Lothar; Héchard, Yann; Hastings, John W; Knøchel, Susanne

    2002-08-01

    Class IIa bacteriocins may be used as natural food preservatives, yet resistance development in the target organisms is still poorly understood. In this study, the understanding of class IIa resistance development in Listeria monocytogenes is extended, linking the seemingly diverging results previously reported. Eight resistant mutants having a high resistance level (at least a 10(3)-fold increase in MIC), originating from five wild-type listerial strains, were independently isolated following exposure to four different class IIa bacteriocin-producing lactic acid bacteria (including pediocin PA-1 and leucocin A producers). Two of the mutants were isolated from food model systems (a saveloy-type sausage at 10 degrees C, and salmon juice at 5 degrees C). Northern blot analysis showed that the eight mutants all had increased expression of EII(Bgl) and a phospho-beta-glucosidase homologue, both originating from putative beta-glucoside-specific phosphoenolpyruvate-dependent phosphotransferase systems (PTSs). However, disruption of these genes in a resistant mutant did not confer pediocin sensitivity. Comparative two-dimensional gel analysis of proteins isolated from mutant and wild-type strains showed that one spot was consistently missing in the gels from mutant strains. This spot corresponded to the MptA subunit of the mannose-specific PTS, found only in the gels of wild-type strains. The mptACD operon was recently shown to be regulated by the sigma(54) transcription factor in conjunction with the activator ManR. Class IIa bacteriocin-resistant mutants having defined mutations in mpt or manR also exhibited the two diverging PTS expression changes. It is suggested here that high-level class IIa resistance in L. monocytogenes and at least some other Gram-positive bacteria is developed by one prevalent mechanism, irrespective of wild-type strain, class IIa bacteriocin, or the tested environmental conditions. The changes in expression of the beta-glucoside-specific and

  3. Nisin ZP, a Bacteriocin and Food Preservative, Inhibits Head and Neck Cancer Tumorigenesis and Prolongs Survival.

    Directory of Open Access Journals (Sweden)

    Pachiyappan Kamarajan

    Full Text Available The use of small antimicrobial peptides or bacteriocins, like nisin, to treat cancer is a new approach that holds great promise. Nisin exemplifies this new approach because it has been used safely in humans for many years as a food preservative, and recent laboratory studies support its anti-tumor potential in head and neck cancer. Previously, we showed that nisin (2.5%, low content has antitumor potential in head and neck squamous cell carcinoma (HNSCC in vitro and in vivo. The current studies explored a naturally occurring variant of nisin (nisin ZP; 95%, high content for its antitumor effects in vitro and in vivo. Nisin ZP induced the greatest level of apoptosis in HNSCC cells compared to low content nisin. HNSCC cells treated with increasing concentrations of nisin ZP exhibited increasing levels of apoptosis and decreasing levels of cell proliferation, clonogenic capacity, and sphere formation. Nisin ZP induced apoptosis through a calpain-dependent pathway in HNSCC cells but not in human oral keratinocytes. Nisin ZP also induced apoptosis dose-dependently in human umbilical vein endothelial cells (HUVEC with concomitant decreases in vascular sprout formation in vitro and reduced intratumoral microvessel density in vivo. Nisin ZP reduced tumorigenesis in vivo and long-term treatment with nisin ZP extended survival. In addition, nisin treated mice exhibited normal organ histology with no evidence of inflammation, fibrosis or necrosis. In summary, nisin ZP exhibits greater antitumor effects than low content nisin, and thus has the potential to serve as a novel therapeutic for HNSCC.

  4. Inhibition of Cronobacter sakazakii by heat labile bacteriocins produced by probiotic LAB isolated from healthy infants.

    Science.gov (United States)

    Awaisheh, Saddam S; Al-Nabulsi, Anas A; Osaili, Tareq M; Ibrahim, Salam; Holley, Richard

    2013-09-01

    Cronobacter sakazakii is an opportunistic pathogen that can cause bacteremia, meningitis, and necrotizing enterocolitis, most often in neonates with case-fatality rates that may reach 80%. The antimicrobial activity of lactic acid bacteria against a wide range of foodborne pathogens is well-established in different types of food products. The objective of the current study was to investigate the antibacterial activity of Lactobacillus acidophilus and L. casei isolated from feces of healthy infants against different strains of C. sakazakii in agar and a rehydrated infant milk formula (RIMF) model. The inhibition zones of C. sakazakii around L. acidophilus or L. casei ranged from 22 to 32 mm on eMan Rogosa Sharpe (MRS) agar under aerobic conditions, while a slight reduction in antibacterial activity was noted on modified MRS (0.2% glucose) under anaerobic conditions. It was observed that pH-neutralized cell-free supernatant (CFS) of L. acidophilus or L. casei was inhibitory against tested C. sakazakii strains. The inhibition zones of neutralized CFS were lower than the antibacterial activities of live cultures. The antibacterial activity of CFS was abolished when CFS from L. acidophilus or L. casei was heated at 60 or 80 °C for either 10 min or 2 h, or treated with trypsin or pepsin. This was considered strong evidence that the inhibition was due to the production of bacteriocins by L. casei and L. acidophilus. Both the CFS and active growing cells of L. casei and L. acidophilus were able to reduce the viability of C. sakazakii in the RIMF model. The results may extend the use of natural antimicrobials instead of conventional preservation methods to improve the safety of RIMF.

  5. Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors.

    Science.gov (United States)

    Dupuy, Bruno; Raffestin, Stéphanie; Matamouros, Susana; Mani, Nagraj; Popoff, Michel R; Sonenshein, Abraham L

    2006-05-01

    The production of major extracellular toxins by pathogenic strains of Clostridium botulinum, Clostridium tetani and Clostridium difficile, and a bacteriocin by Clostridium perfringens is dependent on a related group of RNA polymerase sigma-factors. These sigma-factors (BotR, TetR, TcdR and UviA) were shown to be sufficiently similar that they could substitute for one another in in vitro DNA binding and run-off transcription experiments. In cells, however, the sigma-factors fell into two subclasses. BotR and TetR were able to direct transcription of their target genes in a fully reciprocal manner. Similarly, UviA and TcdR were fully interchangeable. Neither BotR nor TetR could substitute for UviA or TcdR, however, and neither UviA nor TcdR could direct transcription of the natural targets of BotR or TetR. The extent of functional interchangeability of the sigma-factors was attributed to the strong conservation of their subregion 4.2 sequences and the conserved -35 sequences of their target promoters, while restrictions on interchangeability were attributed to variations in their subregion 2.4 sequences and the target site -10 sequences. The four sigma-factors have been assigned to group 5 of the sigma(70) family and seem to have arisen from a common ancestral protein that may have co-evolved with the genes whose transcription they direct. A fifth Clostridiumsigma-factor, sigma(Y) of Clostridium acetobutylicum, resembles the TcdR family, but was not functionally interchangeable with members of this family.

  6. Screening of bacteriocin producing lactic acid bacteria and the analysis of bacteriocin related genes%产细菌素乳酸菌的筛选及细菌素相关基因的分析

    Institute of Scientific and Technical Information of China (English)

    张旭; 赵斌; 张香美; 李平兰

    2013-01-01

    In order to obtain a bacteriocin producing strain,lactic acid bacteria were separated and screened with dissolve calcium circle and oxford cup double-plate method from premium fermentation meat.Morphological,physiological biochemistry method,16S rDNA and specific gene PCR amplification were used to identify the strain to species,and the bacteriocin related gene was analyzed to determine bacteriocin types.The results showed that,after eliminating organic acid,hydrogen peroxide and other interference factors,L-ZS9 still had antibacterial activity among the 92 strains and its antibacterial substances were sensitive to protease (acid protease,protease K,trypsin,pepsin,neutral protease),while insensitive to alpha amylase.Therefore,L-ZS9 was recognized as bacteriocin producing bacteria and identified as Lactobacillus paraplantarum.Further bacteriocin related gene PCR amplification showed that L-ZS9 contained Ⅱ b plantaricins EF,JK,Ⅱ c plantaricin A and plantaricin N encoding gene.The mature peptide sequences of plnF,plnK were identical with Lactobacillus plantarum C11 (X94434) and only one amino acid mutation occurred in pinE,plnJ mature peptide sequences.Therefore,the Lactobacillus paraplantarum L-ZS9 was a nature multibacteriocinogenic strain.%试验利用溶钙圈法及牛津杯双层平板法,从国内外优良发酵肉品中分离筛选产细菌素的乳酸菌,通过形态学、生理生化学鉴定,16S rDNA及种间特异性基因PCR扩增将菌株鉴定到种,并对其细菌素相关基因进行分析,初步确定细菌素种类.结果表明:在排除有机酸、过氧化氢等干扰因素后,从分离纯化到的92株乳酸菌中筛选到一株对指示菌仍有明显抑制作用的菌株L-ZS9,该菌株所产抑菌物质对蛋白酶(酸性蛋白酶、蛋白酶K、胰蛋白酶、胃蛋白酶和中性蛋白酶)敏感,而α-淀粉酶对其活性基本无影响,因而确定L-ZS9为细菌素产生菌.经鉴定L-ZS9为类植物乳杆菌,进一步对菌株细菌素

  7. Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Otimização da produção de bacteriocina por Lactobacillus plantarum AMA-K isolado de Amasi, um produto lácteo fermentado de Zimbabwe, e estudo da adsorção da bacteriocina AMA-K à Listeria innocua, Listeria monocytogenes e Listeria ivanovii subsp. ivanovii

    OpenAIRE

    Svetoslav D. Todorov

    2008-01-01

    Bacteriocin AMA-K produced by Lactobacillus plantarum AMA-K inhibits the growth of Enterococcus spp., Escherichia coli, Klebsiella pneumoniae and Listeria spp. Growth of strain AMA-K in BHI, M17, soy milk and molasses was similar to growth in MRS. The effect of organic nitrogen sources, carbohydrates, glycerol, K2HPO4 and KH2PO4, MgSO4, MnSO4, tri-ammonium citrate, Tween 80, vitamins and initial pH on bacteriocin AMA-K was determined. The mode of action of bacteriocin AMA-K was studied. The e...

  8. Genome sequence of Lactococcus garvieae IPLA 31405, a bacteriocin-producing, tetracycline-resistant strain isolated from a raw-milk cheese

    OpenAIRE

    Flórez García, Ana Belén; Reimundo, Pilar; Delgado, Susana; Fernández, Elena; Alegría, Ángel; Guijarro, José A; Mayo Pérez, Baltasar

    2012-01-01

    This work describes the draft genome sequence of Lactococcus garvieae IPLA 31405, isolated from a traditional Spanish cheese. The genome contains a lactose-galactose operon,a bacteriocin locus, two integrated phages, a transposon harboring an active tet(M) gene, and two theta-type plasmid replicons. Genes encoding virulence factors were not recorded. © 2012, American Society for Microbiology.

  9. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118.

    Science.gov (United States)

    Flynn, Sarah; van Sinderen, Douwe; Thornton, Gerardine M; Holo, Helge; Nes, Ingolf F; Collins, J Kevin

    2002-04-01

    ABP-118, a small heat-stable bacteriocin produced by Lactobacillus salivarius subsp. salivarius UCC118, a strain isolated from the ileal-caecal region of the human gastrointestinal tract, was purified to homogeneity. Using reverse genetics, a DNA fragment specifying part of ABP-118 was identified on a 10769 bp chromosomal region. Analysis of this region revealed that ABP-118 was a Class IIb two-peptide bacteriocin composed of Abp118alpha, which exhibited the antimicrobial activity, and Abp118beta, which enhanced the antimicrobial activity. The gene conferring strain UCC118 immunity to the action of ABP-118, abpIM, was identified downstream of the abp118beta gene. Located further downstream of abp118beta, several ORFs were identified whose deduced proteins resembled those of proteins involved in bacteriocin regulation and secretion. Heterologous expression of ABP-118 was achieved in Lactobacillus plantarum, Lactococcus lactis and Bacillus cereus. In addition, the abp118 locus encoded an inducing peptide, AbpIP, which was shown to play a role in the regulation of ABP-118 production. This novel bacteriocin is, to the authors' knowledge, the first to be isolated from a known human probiotic bacterium and to be characterized at the genetic level.

  10. DNA analysis of the genes encoding acidocin LF221 A and acidocin LF221 B, two bacteriocins produced by Lactobacillus gasseri LF221

    NARCIS (Netherlands)

    Majhenič, A.Č.; Venema, K.; Allison, G.E.; Matijašić, B.B.; Rogelj, I.; Klaenhammer, T.R.

    2004-01-01

    Lactobacillus gasseri LF221, an isolate from the feces of a child, produces two bacteriocins. Standard procedures for molecular techniques were used to locate, clone and sequence the fragments of LF221 chromosomal DNA carrying the acidocin LF221 A and B structural genes, respectively. Sequencing ana

  11. The bacteriocins produced by Lactobacillus plantarum%植物乳杆菌细菌素的研究与应用

    Institute of Scientific and Technical Information of China (English)

    陈一然; 张明

    2011-01-01

    Because of the variety of bacteriocins from Lactobacillus plantarum and beneficial effects produced during ferment, it became popular to do research on bacteriocins from L plantarum. In this paper, with the purpose to provide a reference for further studies of bacteriocins from L plantarum, the characteristics were introduced elaborately, including types, molecule structures, inhibition mechanisms and inheritance control. Also, the applications of bacteriocins from L plantarum in food preservatives, medicine industry, and agriculture were simply summed up.%植物乳杆菌细菌素不仅种类多,产生菌在发酵过程中还可产生良好的保健功效,因此成为研究的热点.本文对植物乳杆菌细菌素的种类、分子结构、抑菌机制及遗传控制做了较为详尽的介绍,并简要介绍了植物乳杆菌细菌素在食品、医药、饲料中的应用,为进一步研究植物乳杆菌细菌素提供了参考.

  12. 细菌素作为绿色饲料添加剂的潜在性思考%Potential consider of the bacteriocins as green feed additives

    Institute of Scientific and Technical Information of China (English)

    韩冰; 余占桥; 张日俊

    2011-01-01

    细菌素是由细菌的核糖体产生的一类蛋白质或多肽类物质.由于细菌素可以对一些病原菌产生抑菌或杀菌的作用,所以可以考虑将其作为饲料添加剂用于提高动物免疫力,调整动物胃肠道菌群微生态平衡.文中从细菌素药效和毒性等多方面阐述了其作为绿色饲料添加剂的前景,并提出了仍需解决的问题.%Bacteriocins are a kind of peptides or proteins synthetized in the ribosome of the bacteria.Part bacteriocins could inhibit or kill some pathogens, and are considered as feed additive, to improve the immunity of the animals and regulate the microflora of the intestinal tracts. The work mainly focused on the toxicology and pharmacology of bacteriocins to show the good prospect of bacteriocins as green feed additives.

  13. Molecular analysis of the bacteriocin-encoding plasmid pDGL1 from Enterococcus durans and genetic characterization of the durancin locus

    Science.gov (United States)

    Enterococci constitute a significant component of lactic acid bacteria normally present in the intestinal microflora and include strains that produce bacteriocins. The genetic determinants for durancin GL in Enterococcus durans 41D were identified on the 8,347 bp plasmid pDGL1 by plasmid curing exp...

  14. Inducer bacteria, unique signal peptides and low nutrient media stimulate in-vitro bacteriocin production by Lactobacillus spp. and Enterococcus spp. strains

    Science.gov (United States)

    Bacteriocins (BCN) provide promising potential to control bacterial infections in a variety of applications. We previously reported three Type IIa BCN produced by Lactobacillus salivarius B-30514 (OR-7), Enterococcus durans/faecium/hirae B-30745 (E 760) and Enterococcus faecium B-30746 (E 50-52). ...

  15. Kinetic studies of the action of Lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane.

    NARCIS (Netherlands)

    Abee, T.; Klaenhammer, T.R.; Letellier, L.

    1994-01-01

    The bacteriocin lactacin F is bactericidal against Lactobacillus delbrueckii, Lactobacillus helveticus, and Enterococcus faecalis. Activity against L. delbrueckii was recently shown to be dependent on two peptides, LafA and LafX, which are encoded within the lactacin F operon (T. R. Klaenhammer, FEM

  16. Description of two Enterococcus strains isolated from traditional Peruvian artisanal-produced cheeses with a bacteriocin-like inhibitory activity

    Directory of Open Access Journals (Sweden)

    Aguilar Galvez A.

    2009-01-01

    Full Text Available The aim of this work was to isolate and to characterize strains of lactic acid bacteria (LAB with bacteriocin-like inhibitory activity from 27 traditional cheeses artisanal-produced obtained from different Peruvian regions. Twenty Gram+ and catalasenegative strains among 2,277 isolates exhibited bacteriocin-like inhibitory activity against Listeria monocytogenes CWBIB2232 as target strain. No change in inhibitory activity was observed after organic acid neutralization and treatment with catalase of the cell-free supernatant (CFS. The proteinic nature of the antimicrobial activity was confirmed for the twenty LAB strains by proteolytic digestion of the CFS. Two strains, CWBI-B1431 and CWBI-B1430, with the best antimicrobial activity were selected for further researches. These strains were taxonomically identified by phenotypic and genotypic analyses as Enterococcus mundtii (CWBI-B1431 and Enterococcus faecium (CWBI-B1430. The two strains were sensitive to vancomycin (MIC 2 μg.ml-1 and showed absence of haemolysis.

  17. Lacticin LC14, a new bacteriocin produced by Lactococcus lactis BMG6.14: isolation, purification and partial characterization.

    Science.gov (United States)

    Lasta, Samar; Ouzari, Hadda; Andreotti, Nicolas; Fajloun, Ziad; Mansuelle, Pascal; Boudabous, Abdellatif; Sampieri, Francois; Sabatier, Jean Marc

    2012-08-01

    A new bacteriocin, lacticin LC14, produced by Lactococcus lactis BMG6.14, was isolated and characterized. It was purified to homogeneity from overnight broth culture by ammonium sulfate precipitation, Sep-Pak chromatography, and two steps of reversed-phase HPLC. Lacticin LC14 showed bactericidal-type antimicrobial activity against several lactic acid bacteria and pathogenic strains including Listeria monocytogenes. It was inactivated by proteinase K and pronase E, but was resistant to papain, lysozyme, lipase and catalase. Lacticin LC14 was heat resistant, stable over a wide range of pH (2-10) and after treatment by solvents and detergents. Its N-terminal end was found unreactive towards Edman sequencing. Based on MALDI-TOF mass spectrometry, its molecular mass was 3333.7 Da. LC14 amino acid composition revealed a high proportion of hydrophobic residues, but no modified ones. LC14 may be able to challenge other well known other bacteriocins in probiotic and therapeutic applications.

  18. Characterization of a bacteriocin-like substance produced from a novel isolated strain of Bacillus subtilis SLYY-3

    Science.gov (United States)

    Li, Junfeng; Li, Hongfang; Zhang, Yuanyuan; Duan, Xiaohui; Liu, Jie

    2014-12-01

    In the present research, the strain SLYY-3 was isolated from sediments of Jiaozhou Bay, Qingdao, China. The strain SLYY-3, which produced a bacteriocin-like substance (BLS), was characterized to be a strain of Bacillus subtillis by biochemical profiling and 16S rDNA sequence analysis. It is the first time to report that Bacillus subtilis from Jiaozhou Bay sediments could produce a BLS. The BLS of B. subtillis SLYY-3 exhibited strong inhibitory activity against gram-positive bacteria (including Staphylococcus aureus and B. subtillis) and some fungi (including Penicillium glaucum, Aspergillus niger and Aspergillus flavus). The antimicrobial activity was detected from culture in the exponential growth phase and reached its maximum when culture entered into stationary growth phase. It was thermo-tolerant even when being kept at 100°C for 60 min without losing any activity and stable over a wide pH range from 1.0 to 12.0 while being inactivated by proteolytic enzyme and trypsin, indicating the proteinaceous nature of the BLS. The BLS was purified by precipitation with hydrochloric acid (HCl) and gel filteration (Sephadex G-100). SDS-PAGE analysis of the extracellular peptides of SLYY-3 revealed a bacteriocin-like protein with a molecular mass of 66 kDa. Altogether, these characteristics indicate the potential of the BLS for food industry as a protection against pathogenic and spoilage microorganisms.

  19. Bacteriocin production by strain Lactobacillus delbrueckii ssp. bulgaricus BB18 during continuous prefermentation of yogurt starter culture and subsequent batch coagulation of milk.

    Science.gov (United States)

    Simova, E D; Beshkova, D M; Angelov, M P; Dimitrov, Zh P

    2008-06-01

    By screening for bacteriocin-producing lactic acid bacteria of 1,428 strains isolated from authentic Bulgarian dairy products, Lb. bulgaricus BB18 strain obtained from kefir grain was selected. Out of 11 yogurt starters containing Lb. bulgaricus BB18 and S. thermophilus strains resistant to bacteriocin secreted by Lb. bulgaricus BB18 a yogurt culture (S. thermophilus 11A+Lb. bulgaricus BB18) with high growth and bacteriocinogenic activity in milk was selected. Continuous (pH-stat 5.7) prefermentation processes were carried out in milk at 37 degrees C in a 2l MBR bioreactor (MBR AG, Zurich, Switzerland) with an IMCS controller for agitation speed, temperature, dissolved oxygen, CO2 and pH. Prefermented milk with pH 5.7 coagulated in a thermostat at 37 degrees C until pH 4.8-4.9. S. thermophilus 11A and Lb. bulgaricus BB18 grew independently in a continuous mode at similar and sufficiently high-dilution rates (D=1.83 h(-1)-S. thermophilus 11A; D=1.80 h(-1)-Lb. bulgaricus BB18). The yogurt cultures developed in a stream at a high-dilution rate (D=2.03-2.28 h(-1)). The progress of both processes (growth and bacteriocin production) depended on the initial ratio between the two microorganisms. The continuous prefermentation process promoted conditions for efficient fermentation and bacteriocinogenesis of the starter culture during the batch process: strong reduction of the times for bacteriocin production and coagulation of milk (to 4.5-5.0 h); high cell productivity (lactobacilli-4x10(12) CFU ml(-1), streptococci-6x10(12) CFU ml(-1)); high productivity of bacteriocins (4,500 BU ml(-1))-1.7 times higher than the bacteriocinogenic activity of the batch starter culture.

  20. PRESERVATIVE POTENTIAL OF PURIFIED BACTERIOCIN PRODUCED FROM BREVIBACILLUS BORSTELENSIS AG1 ISOLATED FROM MARCHA – A TRADITIONAL WINE STARTER CULTURE CAKE IN TOMATO PASTE

    Directory of Open Access Journals (Sweden)

    Anupama Gupta

    2015-04-01

    Full Text Available Purified bacteriocin produced from Brevibacillus borstelensis AG1 isolated from Marcha a local wine starter herbal cake, was used to enhance the shelf life of tomato paste. Preservative effect of purified bacteriocin was studied for nine days in tomato paste inoculated with food borne pathogens and was compared to commercial biopreservative – nisin and chemical preservative – sodium benzoate. The indicator strains i.e. Listeria monocytogenes MTCC839, Bacillus subtilis CRI and Clostridium perfringens MTCC1739 were used at the amount 8.16, 8.13 and 8.18 log CFU/ml. Viable cells were counted periodically and a consistent reduction in number of viable cells of each tested pathogen was observed. It was found antagonistic against L. monocytogenes MTCC839, B. subtilis CRI and C. perfringes MTCC1739 which are the most challengeable and food borne pathogens found in processed vegetables products. Purified bacteriocin was found active over a wide pH range i.e. 3.0 to 11.0 and was able to withstand temperature up to 100oC. It showed a better preservative potential by reducing pathogenic load of the tested strains (by 2.02, 2.05 and 2.02 log cycles (CFU/ml of L. monocytogenes MTCC839, B. subtilis CRI and C. perfringes MTCC1739, respectively in tomato paste as compared to control (without bacteriocin. This proves efficiency of bacteriocin produced by B. borstelensis AG1 as biopreservative to enhance the safety and shelf life of acidic foods.

  1. 乳酸菌细菌素应用研究进展%Progress of Application Research on Lactic Acid Bacteria Bacteriocin

    Institute of Scientific and Technical Information of China (English)

    徐炳政; 王颖; 梁小月; 张东杰; 张桂芳

    2015-01-01

    The inhibitory metabolites from fermentation process of lactic acid bacteria included organic acid and bacteriocin,and bacteriocins from LAB have been concerned as the biological bacteriostat in recent years. This article briefly expounded the general classifications of bacteriocins from LAB,and focused on summarizing application progress of bacteriocins from LAB in the food industry,biological medicine industry and animal husbandry,and discussed its application safety and the existing problems in the present research. The bacteriocins from LAB as a kind of natural food preservative would be very broadly applied in the future.%乳酸菌发酵过程中的抑菌代谢产物包括有机酸和细菌素,乳酸菌细菌素作为一类生物抑菌剂近年来得到了广泛关注。文章简述了乳酸菌细菌素通用分类方式,着重综述了乳酸菌细菌素在食品工业、生物医药及畜牧养殖领域的应用进展,同时探讨了其应用安全性及目前研究中所存在的问题。相信不久的将来乳酸菌细菌素作为一类理想的天然食品防腐剂,应用前景将十分广阔。

  2. Purification and Characterization of Plantaricin JLA-9: A Novel Bacteriocin against Bacillus spp. Produced by Lactobacillus plantarum JLA-9 from Suan-Tsai, a Traditional Chinese Fermented Cabbage.

    Science.gov (United States)

    Zhao, Shengming; Han, Jinzhi; Bie, Xiaomei; Lu, Zhaoxin; Zhang, Chong; Lv, Fengxia

    2016-04-06

    Bacteriocins are ribosomally synthesized peptides with antimicrobial activity produced by numerous bacteria. A novel bacteriocin-producing strain, Lactobacillus plantarum JLA-9, isolated from Suan-Tsai, a traditional Chinese fermented cabbage, was screened and identified by its physiobiochemical characteristics and 16S rDNA sequence analysis. A new bacteriocin, designated plantaricin JLA-9, was purified using butanol extraction, gel filtration, and reverse-phase high-performance liquid chromatography. The molecular mass of plantaricin JLA-9 was shown to be 1044 Da by MALDI-TOF-MS analyses. The amino acid sequence of plantaricin JLA-9 was predicted to be FWQKMSFA by MALDI-TOF-MS/MS, which was confirmed by Edman degradation. This bacteriocin exhibited broad-spectrum antibacterial activity against Gram-positive and Gram-negative bacteria, especially Bacillus spp., high thermal stability (20 min, 121 °C), and narrow pH stability (pH 2.0-7.0). It was sensitive to α-chymotrypsin, pepsin, alkaline protease, and papain. The mode of action of this bacteriocin responsible for outgrowth inhibition of Bacillus cereus spores was studied. Plantaricin JLA-9 had no detectable effects on germination initiation over 1 h on monitoring the hydration, heat resistance, and 2,6-pyridinedicarboxylic acid (DPA) release of spores. Rather, germination initiation is a prerequisite for the action of plantaricin JLA-9. Plantaricin JLA-9 inhibited growth by preventing the establishment of oxidative metabolism and disrupting membrane integrity in germinating spores within 2 h. The results suggest that plantaricin JLA-9 has potential applications in the control of Bacillus spp. in the food industry.

  3. Purification of the Bacteriocin Isolated from Lactobacillus acidophilus and Effect of Surfactant on the Antibacterial Activity of Bacteriocin%嗜酸乳杆菌细菌素的分离纯化及表面活性剂对其活性的影响1)

    Institute of Scientific and Technical Information of China (English)

    张帅; 王金凤; 马永强

    2012-01-01

      从本研究室保藏的一株来自于凯菲尔粒的嗜酸乳杆菌培养基质中分离出具有抑菌活性的蛋白组分———细菌素,对该嗜酸乳杆菌所产生的细菌素的分离方法及表面活性剂对其抑菌活性的影响作用进行了研究。结果表明,嗜酸乳杆菌在添加了油酸的 MRS 培养基中培养16h 后达到产细菌素高峰;对细菌素分离纯化研究包括三个步骤:硫酸铵沉淀、离子交换色谱(IEC)和疏水作用色谱(HIC)。不同类型的表面活性剂对细菌素的抑菌活性具有不同的影响。%  Bacteriocin which is a kind of protein with antibacterial activity is produced from L actobacillus acidophilus ,and the strain is isolated from kefir grain preserved in the lab .The separation method about bacteriocin and the influence of the different surfactants on the antibacterial activity of bacteriocin is stud -ied .The results show that L actobacillus acidophilus is cultured in MRS medium addind oleic acid after 16h culture ,a peak of the bacteriocin-producing is reached .And The purification method about bacterio-cin includes three operations ,which separately are ammonium sulfate precipitation ,ion exchange chroma-tography(IEC)and Hydrophobic Interaction Chromatography . The different kinds of surfactants may have the different effects on the antibacterial activity of bacteriocin .

  4. Expression of Streptococcus pneumoniae Bacteriocins Is Induced by Antibiotics via Regulatory Interplay with the Competence System.

    Science.gov (United States)

    Kjos, Morten; Miller, Eric; Slager, Jelle; Lake, Frank B; Gericke, Oliver; Roberts, Ian S; Rozen, Daniel E; Veening, Jan-Willem

    2016-02-01

    Pneumococcal bacteriocins (pneumocins) are antibacterial toxins that mediate intra-species competition within the human host. However, the triggers of pneumocin expression are poorly understood. Using RNA-sequencing, we mapped the regulon of the pneumocin cluster (blp) of Streptococcus pneumoniae D39. Furthermore, by analogy with pneumococcal competence, we show that several antibiotics activate the blp-genes. Using real-time gene expression measurements we show that while the promoter driving expression of the two-component regulatory system blpR/H is constitutive, the remaining blp-promoters that control pneumocin expression, immunity and the inducer peptide BlpC, are pH-dependent and induced in the late exponential phase. Intriguingly, competence for genetic transformation, mediated by the paralogous ComD/E two-component quorum system, is induced by the same environmental cues. To test for interplay between these regulatory systems, we quantified the regulatory response to the addition of synthetic BlpC and competence-stimulating peptide (CSP). Supporting the idea of such interplay, we found that immediately upon addition of CSP, the blp-promoters were activated in a comD/E-dependent manner. After a delay, blp-expression was highly induced and was strictly dependent on blpRH and blpC. This raised the question of the mechanism of BlpC export, since bioinformatic analysis showed that the genes encoding the putative exporter for BlpC, blpAB, are not intact in strain D39 and most other strains. By contrast, all sequenced pneumococcal strains contain intact comAB genes, encoding the transport system for CSP. Consistent with the idea that comAB mediate BlpC export, we finally show that high-level expression of the blp-genes requires comAB. Together, our results demonstrate that regulation of pneumocin expression is intertwined with competence, explaining why certain antibiotics induce blp-expression. Antibiotic-induced pneumocin expression might therefore have

  5. 细菌素及其在动物生产中的应用%Bacteriocins and Their Application in Animal Production

    Institute of Scientific and Technical Information of China (English)

    朱双; 张爱忠; 姜宁; 任文; 蔡鹏; 王法明; 穆洋; 王立学; 张欣鑫

    2014-01-01

    Due to the emergence of antibiotic-resistant pathogens, some infectious diseases are difficult to treat and are getting worse.In recent years, the development of new and effective antibiotics is slow.However, the alternative antibiotics bacteria are concerned in recent years, which have a great potential to inhibit antibiotic-resistant pathogens by bacteriocins.Bacteriocins are small antimicrobial peptides ( AMPS) which are produced by many bacteria, they not only can inhibit effectively pathogen growth, but also can play an important role in health care as probiotics.At the same time, bacteriocins have been commonly used as a preservative in food production.With the focus on health and safety of livestock products as well as popularization and application of probiotics in diet increasing, bacteriocins will be widely used in animal production.This review summarizes the concept, classification, mechanism of bacteriocins, and discusses present research progress about the appli-cation of bacteriocins in animal production.%由于抗生素耐药病原菌的出现,一些传染性疾病已难以治疗并且日益恶化。近年来开发新的和有效的抗生素进展缓慢。然而,可替代抗生素的细菌素近些年来备受关注,其在控制抗生素耐药病原菌上拥有巨大的潜力。细菌素是由许多细菌产生的小抗菌肽( AMPs),不仅可以有效地抑制病原体生长,还可以作为益生菌在医疗中发挥重要作用。同时,细菌素作为防腐剂在食品生产中普遍应用,随着人们对畜产品卫生与安全的关注以及益生菌在饲料中的推广应用,细菌素在动物生产中也有着非常广阔的应用前景。为此,本文旨在在介绍细菌素的概念、分类、作用机制的基础上,进一步介绍细菌素在动物生产上的应用。

  6. The application of bacteriocin in feed%细菌素在饲料中的应用

    Institute of Scientific and Technical Information of China (English)

    饶正华; 李丽蓓; 高生

    2001-01-01

    @@ 细菌素(Bacteriocin)由于其种类多、无毒、大部分基因位于质粒上、分子量小、含修饰氨基酸、结构复杂等特点,被认为是分子遗传、基因工程、蛋白质工程、食品添加剂、化妆品、皮肤保健、抑制病原菌和调节肠道菌群的好材料.随着饲料中益生菌的推广使用和人们对饲料卫生的重视,细菌素在饲料中将会得到广泛的应用.

  7. Regulation of toxin and bacteriocin synthesis in Clostridium species by a new subgroup of RNA polymerase sigma-factors.

    Science.gov (United States)

    Dupuy, Bruno; Matamouros, Susana

    2006-04-01

    Many Clostridium species are pathogenic for humans and animals, and most of the resulting diseases, such as tetanus, botulism, gas gangrene and pseudomembranous colitis, are due to the production of potent extracellular toxins. The biochemical mechanisms of action of Clostridium toxins have been extensively studied in the past ten years. However, detailed information about the regulation of toxin gene expression has only recently emerged. TcdR, BotR, TetR and UviA are now known to be related alternative RNA polymerase sigma factors that drive transcription of toxin A and toxin B genes in C. difficile, the neurotoxin genes in C. botulinum and C. tetani, and a bacteriocin gene in C. perfringens. Although the Clostridium sigma factors have some similarity to members of the ECF sigma factor group, they differ sufficiently in structure and function so that they have been assigned to a new group within the sigma(70)-family.

  8. Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain.

    Science.gov (United States)

    Khochamit, Nalisa; Siripornadulsil, Surasak; Sukon, Peerapol; Siripornadulsil, Wilailak

    2015-01-01

    The antimicrobial activity and probiotic properties of Bacillus subtilis strain KKU213, isolated from local soil, were investigated. The cell-free supernatant (CFS) of a KKU213 culture containing crude bacteriocins exhibited inhibitory effects on Gram-positive bacteria, including Bacillus cereus, Listeria monocytogenes, Micrococcus luteus, and Staphylococcus aureus. The antibacterial activity of the CFS precipitated with 40% ammonium sulfate (AS) remained even after treatment at 60 and 100 °C, at pH 4 and 10 and with proteolytic enzymes, detergents and heavy metals. When analyzed by SDS-PAGE and overlaid with the indicator strains B. cereus and S. aureus, the 40% AS precipitate exhibited inhibitory activity on proteins smaller than 10 kDa. However, proteins larger than 25 kDa and smaller than 10 kDa were still observed on a native protein gel. Purified subtilosin A was prepared by Amberlite XAD-16 bead extraction and HPLC and analyzed by Nano-LC-QTOF-MS. Its molecular mass was found to be 3.4 kDa, and it retained its antibacterial activity. These results are consistent with the detection of the anti-listerial subtilosin A gene of the sbo/alb cluster in the KKU213 strain, which is 100% identical to that of B. subtilis subsp. subtilis 168. In addition to stable and cyclic subtilosin A, a mixture of many extracellular antibacterial peptides was also detected in the KKU213 culture. The KKU213 strain produced extracellular amylase, cellulase, lipase and protease, is highly acid-resistant (pH 2) when cultured in inulin and promotes health and reduces infection of intestinally colonized broiler chickens. Therefore, we propose that bacteriocin-producing B. subtilis KKU213 could be used as a potential probiotic strain or protective culture.

  9. Use of bacteriocin-producing, probiotic strain Enterococcus faecium AL41 to control intestinal microbiota in farm ostriches.

    Science.gov (United States)

    Lauková, A; Kandričáková, A; Ščerbová, J

    2015-06-01

    Probiotic enterococci can produce bacteriocins. Enterococcus faecium AL41 is an Enterocin M-producing, probiotic strain which has previously shown beneficial effect in broiler chickens. In this study, it was used to control intestinal microbiota in farm ostriches in a 42-day experiment with an experimental group (EG, 40 ostriches) and a control group (CG, 46). In addition to feed mixture, the ostriches in EG received Ent. faecium AL41 (10(9) CFU ml(-1); by rifampicin-marked variant) 400 μl per animal per day in their drinking water for 21 days. Sampling was carried out at the start of the experiment (at day 0/1), at day 21 (after 21 days of AL41 application) and at day 42 (21 days after AL41 cessation). Faeces (mixture, n = 6) were treated using the standard microbiological dilution method and cultivated on selective media (ISO). The highest count of AL41 was found at day 42. Its identity was confirmed with PCR and Maldi-Tof. The ostriches were free of Salmonella and Campylobacter cells. At day 21, antimicrobial effect was demonstrated by significant reduction in coagulase-positive and negative staphylococci in EG compared to CG (P intestinal microbiota in farm ostriches. Significance and impact of the study: Ostriches are excellent for high intensity farming in a wide range of climates, requiring only limited space and giving high yields per hectare. They are reared mainly for their meat. Although adult birds possess quite good immunity, young birds can be threatened by spoilage bacteria, especially when they are transferred from the nests to the farm area. Based on our previous results related to the beneficial effect of bacteriocin-producing, probiotic strain Enterococcus faecium AL41 in poultry or rabbits, we decided to test its ability to control intestinal microbiota in farming ostriches which has never been tested previously.

  10. Gene Design of Bacteriocin E50-52 and Construction of its Pichia pastoris Expression Vector%细菌素Bacteriocin E50-52(H)基因设计及其毕赤酵母表达载体构建

    Institute of Scientific and Technical Information of China (English)

    余占桥; 马青山; 韩冰; 张日俊

    2011-01-01

    设计及合成细菌素Bacteriocin E50-52(H)基因,克隆到组成型分泌表达质粒pGAPZαA中构建重组质粒pGAPZα-Bacteriocin E(H),经PCR、测序验证正确后,电转化整合到毕赤酵母基因组,基因组PCR、测序验证结果表明成功构建了细菌素组成型重组表达载体,为在毕赤酵母中表达奠定了基础.%Bacteriocin E50-52 gene was designed according to its amino acid sequence and cloning site of constitutive secreted plasmid pGAPZαA,then synthesized,inserted into pMD18-T. Recombinant pGAPZα- Bacteriocin E was constructed by ligating the digested target gene and pGAPZαA with Xho Ⅰ and Xba Ⅰ. Recombinant Pichia pastoris was constructed by transforming linearized recombinant plasmid in strain SMD1168. Sequencing result of recombinant vector and genome of Pichia pastoris indicated this expression plasmid was successfully constructed.

  11. Bacteriocins of Bacillus thuringiensis can expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide.

    Science.gov (United States)

    de la Fuente-Salcido, Norma M; Casados-Vázquez, Luz Edith; Barboza-Corona, J Eleazar

    2013-08-01

    Various strains of Bacillus thuringiensis are among the most successful entomopathogenic bacteria used commercially as biopesticides owing to their ability to synthesize insecticidal crystal (Cry) and cytolytic (Cyt) protein toxins during sporulation, and vegetative insecticidal (VIPs) proteins during the vegetative phase of growth. Whereas much is known about the molecular biology of Cry, Cyt, and VIPs, comparatively little is known about other proteins and metabolites synthesized by B. thuringiensis that could also have applied value. Here, we review recent reports on bacteriocins synthesized by this bacterium as they relate to antibacterial activity, molecular genetics, biophysical and biochemical properties, and methods used to separate and purify these antimicrobial peptides. We highlight the potential of bacteriocins for use as food preservatives, antibiotics, plant protection, and plant growth promoters. We suggest that B. thuringiensis could be used not only in biological control of insects but also in other agronomical and industrial areas of public interest.

  12. Optimization of growth and bacteriocin activity of the food bioprotective Carnobacterium divergens V41 in an animal origin protein free medium

    Directory of Open Access Journals (Sweden)

    Anne BRILLET-VIEL

    2016-08-01

    Full Text Available Optimization of Carnobacterium divergens V41 growth and bacteriocin activity in a culture medium deprived of animal protein, needs for food bioprotection, was performed by using a statistical approach. In a screening experiment, twelve factors (pH, temperature, carbohydrates, NaCl, yeast extract, soy peptone, sodium acetate, ammonium citrate, magnesium sulphate, manganese sulphate, ascorbic acid and thiamine were tested for their influence on the maximal growth and bacteriocin activity using a two-level incomplete factorial design with 192 experiments performed in microtiter plate wells. Based on results, a basic medium was developed and three variables (pH, temperature and carbohydrates concentration were selected for a scale-up study in bioreactor. A 23 complete factorial design was performed, allowing the estimation of linear effects of factors and all the first order interactions. The best conditions for the cell production were obtained with a temperature of 15°C and a carbohydrates concentration of 20 g/l whatever the pH (in the range 6.5-8, and the best conditions for bacteriocin activity were obtained at 15°C and pH 6.5 whatever the carbohydrates concentration (in the range 2-20 g/l. The predicted final count of C. divergens V41 and the bacteriocin activity under the optimized conditions (15°C, pH 6.5, 20 g/l carbohydrates were 2.4 x 1010 CFU/ml and 819200 AU/ml respectively. C. divergens V41 cells cultivated in the optimized conditions were able to grow in cold-smoked salmon and totally inhibited the growth of Listeria monocytogenes (< 50 CFU g-1 during five weeks of vacuum storage at 4° and 8°C.

  13. Characterization of bacteriocins produced by Lactococcus lactis strains Caracterização de bacteriocinas produzidas por linhagens de Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Izildinha Moreno

    2000-09-01

    Full Text Available Bacteriocins produced by fifteen strains of Lactococcus lactis (14 L. lactis subsp. lactis and one L. lactis subsp. cremoris were heat resistant, sensitive to several proteolytic enzymes and active over a wide range of pH. Their resistance to the heating was greatly influenced by the pH. Only the strain L. lactis subsp. lactis ITAL 383 produced a bacteriocin with a wide activity spectrum, similar to nisin of L. lactis subsp. lactis ATCC 11454. This bacteriocin inhibited closely related species and other Gram-positive microorganisms including Listeria monocytogenes and Staphylococcus aureus, but it was not active against the Gram-negative bacteria tested. The identification of partially purified antimicrobial compounds by SDS-PAGE showed that bacteriocin produced by strain ITAL 383 had the same molecular weight of nisin produced by L. lactis subsp. lactis ATCC 11454.Bacteriocinas resistentes ao aquecimento produzidas por quinze linhagens de Lactococcus lactis (14 L. lactis subsp. lactis e 1 L. lactis subsp. cremoris foram sensíveis à enzimas proteolíticas e ativas em uma ampla faixa de pH. A resistência dessas bacteriocinas ao aquecimento foi fortemente influenciada pelo pH do meio. Somente a linhagem L. lactis subsp. lactis ITAL 383 produziu uma bacteriocina com um amplo espectro de atividade, semelhante ao da nisina de L. lactis subsp. lactis ATCC 11454. Esta bacteriocina inibiu as espécies relacionadas e outros microorganismos gram-positivos, inclusive Listeria monocytogenes e Staphylococcus aureus, mas não as bactérias Gram-negativas examinadas. A identificação do composto antimicrobiano parcialmente purificado por SDS-PAGE revelou um peso molecular similar entre a bacteriocina ITAL 383 e a nisina de L. lactis subsp lactis ATCC 11454.

  14. Licheniocin 50.2 and Bacteriocins from Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 Inhibit Biofilms of Coagulase Negative Staphylococci and Listeria monocytogenes Clinical Isolates

    Science.gov (United States)

    Draganic, Veselin; Lozo, Jelena; Beric, Tanja; Kojic, Milan; Arsic, Biljana; Garalejic, Eliana; Djukic, Slobodanka; Stankovic, Slavisa

    2016-01-01

    Background Coagulase negative staphylococci (CoNS) and Listeria monocytogenes have important roles in pathogenesis of various genital tract infections and fatal foetomaternal infections, respectively. The aim of our study was to investigate the inhibitory effects of two novel bacteriocins on biofilms of CoNS and L. monocytogenes genital isolates. Methods The effects of licheniocin 50.2 from Bacillus licheniformis VPS50.2 and crude extract of bacteriocins produced by Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 (BGBU1-4 crude extract) were evaluated on biofilm formation and formed biofilms of eight CoNS (four S. epidermidis, two S. hominis, one S. lugdunensis and one S. haemolyticus) and 12 L. monocytogenes genital isolates. Results Licheniocin 50.2 and BGBU1-4 crude extract inhibited the growth of both CoNS and L. monocytogenes isolates, with MIC values in the range between 200–400 AU/ml for licheniocin 50.2 and 400–3200 AU/ml for BGBU1-4 crude extract. Subinhibitory concentrations (1/2 × and 1/4 × MIC) of licheniocin 50.2 inhibited biofilm formation by all CoNS isolates (p bacteriocins in concentrations of 100 AU/mL and 200 AU/mL reduced the amount of 24 h old CoNS and L. monocytogenes biofilms (p bacteriocins have potential to be used for genital application, to prevent biofilm formation and/or to eradicate formed biofilms, and consequently reduce genital and neonatal infections by CoNS and L. monocytogenes. PMID:27930711

  15. Application of response surface methodology in the optimisation of a growth medium for enhanced natural preservative bacteriocin production by a probiotic bacterium.

    Science.gov (United States)

    Kanmani, Paulraj; Kumar, R Satish; Yuvaraj, N; Paari, K A; Pattukumar, V; Arul, Venkatesan

    2012-01-01

    In this study, a statistics-based experimental design was utilised for the optimisation of a growth medium which possibly enhanced bacteriocin production by Streptococcus phocae PI80. Carbon, nitrogen sources and a bio-surfactant were first screened using a one variable at a time technique and scored for increasing yield production. The selected variables were further statistically optimised using response surface methodology with a central composite design. The high- and low-level limits of the selected variables were determined, and a set of 34 experimental runs were performed. The concentration of each medium ingredient influenced the bacteriocin activity to about 22,500 AU mL⁻¹. The carbon and nitrogen sources were identified as significant factors in restraining the bacteriocin activity produced by S. phocae PI80. The statistics-based experimental design was found to be very efficient in optimising the media components in a number of experimental runs, with a three-fold increase in bacteriocin activity compared to the un-optimised medium. The optimum medium composition was found to be sodium succinate (10.0 g L⁻¹), yeast extract (4.0 g L⁻¹), glucose (9.0 g L⁻¹), NaCl (10.0 g L⁻¹), Tween 80 (6.0 g L⁻¹) and K₂HPO₄ (1.0 g L⁻¹). This optimised medium is two-fold more cost effective than the commercial Lactobacillus MRS medium.

  16. 乳酸菌细菌素纯化技术的检测及研究进展%Detection technique of bacteriocin from lactic acid bacteria and research advance in separation and purification technology

    Institute of Scientific and Technical Information of China (English)

    刘文丽; 张兰威; John shi; 易华西

    2012-01-01

    细菌素可以抑制大量的食品源腐败菌和致病菌,因此,近年来受到国内外广大学者的关注,其中乳酸菌细菌素因其安全性尤为受到关注。然而要使细菌素更好地应用到生物技术领域,揭示乳酸菌细菌素的生物化学结构和作用位点就显得尤为重要,而这又是建立在乳酸菌细菌素的纯化基础上。文章结合乳酸菌细菌素纯化技术及检测的最新研究进展,讨论乳酸菌细菌素在食品和医疗领域的发展潜力。%Bacteriocins can be against numerous foodborne pathogen and spoilage organisms,hence researchers at home and aboard are interested in bacteriocins,especially,bacteriocin from lactic acid bacteria(LAB) are focused most.However,for bacteriocin could be applied to biotechnological fields better,it is essential to illuminate its biochemical structure and its mode of action,which needs that bacteriocins is purified to homogeneity.The main technologies used for the purification and detection of numerous bacteriocins was described,the exploration of bacteriocins potential in LAB was also discussed.

  17. Current advances and prospects of researches on the bacteriocins produced by Lactobacillus sakei%清酒乳杆菌细菌素研究的现状及展望

    Institute of Scientific and Technical Information of China (English)

    姜洁; 施波; 方佳琪; 陈晓琳; 祁克宗; 张明

    2011-01-01

    In addition to using the strains of Lactobacillus sakei as the starter cultures to develop the flavor and quality of sausage, most of the bacteriocins from L. sakei have strong inhibitory effects on pathogenic Listeria monocytogenes.There are various bacteriocins produced by L. sakei, and these bacteriocins have different properties. In this paper, the types of bacteriocins from L. sakei, the effect of meat products storage conditions ( or meat production condition) on the stability of L. sakei and bacteriocins, as well as application of bacteriocins from L. sakei as the food preservation were reviewed. This review is aimed at providing a reference for discovering new bacteriocins from L. sakei.%清酒乳杆菌不仅可作为发酵香肠的发酵剂赋予香肠良好的风味和品质,而且绝大多数清酒乳杆菌细菌素对食源性致病菌单核增生李斯特菌具有较强的抑制作用.清酒乳杆菌细菌素种类多,性质各异.本文分别从清酒乳杆菌细菌素的种类,肉制品环境对清酒乳杆菌和细菌素稳定性的影响以及清酒乳杆菌细菌素在食品中的应用研究进行了概述,为寻找新的具有良好性能的清酒乳杆菌细菌素提供了参考.

  18. Cloning and Expression of Synthetic Genes Encoding the Broad Antimicrobial Spectrum Bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by Recombinant Pichia pastoris

    Science.gov (United States)

    Jiménez, Juan J.; Gútiez, Loreto; Cintas, Luis M.; Herranz, Carmen; Hernández, Pablo E.

    2015-01-01

    We have evaluated the cloning and functional expression of previously described broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris. Synthetic genes, matching the codon usage of P. pastoris, were designed from the known mature amino acid sequence of these bacteriocins and cloned into the protein expression vector pPICZαA. The recombinant derived plasmids were linearized and transformed into competent P. pastoris X-33, and the presence of integrated plasmids into the transformed cells was confirmed by PCR and sequencing of the inserts. The antimicrobial activity, expected in supernatants of the recombinant P. pastoris producers, was purified using a multistep chromatographic procedure including ammonium sulfate precipitation, desalting by gel filtration, cation exchange-, hydrophobic interaction-, and reverse phase-chromatography (RP-FPLC). However, a measurable antimicrobial activity was only detected after the hydrophobic interaction and RP-FPLC steps of the purified supernatants. MALDI-TOF MS analysis of the antimicrobial fractions eluted from RP-FPLC revealed the existence of peptide fragments of lower and higher molecular mass than expected. MALDI-TOF/TOF MS analysis of selected peptides from eluted RP-FPLC samples with antimicrobial activity indicated the presence of peptide fragments not related to the amino acid sequence of the cloned bacteriocins. PMID:25821820

  19. A Sequential Statistical Approach towards an Optimized Production of a Broad Spectrum Bacteriocin Substance from a Soil Bacterium Bacillus sp. YAS 1 Strain

    Directory of Open Access Journals (Sweden)

    Amira M. Embaby

    2014-01-01

    Full Text Available Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken was employed to optimize bacteriocin (BAC YAS 1 production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v, incubation time (62 hrs, and agitation speed (207 rpm in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora. BAC YAS 1 showed activity over a wide range of pH (1–13 and temperature (45–80°C. A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium, the plant pathogen (E. amylovora, and the food spoiler (Listeria innocua was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri. Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries.

  20. Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: culture isolation, bacteriocin identification, and meat application experiments

    DEFF Research Database (Denmark)

    Budde, B.B.; Hornbæk, T.; Jacobsen, T.

    2003-01-01

    A new culture, Leuconostoc carnosum 4010, for biopreservation of vacuum-packed meats is described. The culture originated from bacteriocin-producing lactic acid bacteria (LAB) naturally present in vacuum-packed meat products. Approximately, 72,000 colonies were isolated from 48 different vacuum-p...... culture for cold-stored, cooked, sliced, and vacuum-packed meat products.......A new culture, Leuconostoc carnosum 4010, for biopreservation of vacuum-packed meats is described. The culture originated from bacteriocin-producing lactic acid bacteria (LAB) naturally present in vacuum-packed meat products. Approximately, 72,000 colonies were isolated from 48 different vacuum...... activity corresponding to molecular sizes of 4.6 and 5.3 kDa. N-terminal amino acid sequencing showed that Leuc. carnosum 4010 produced two bacteriocins highly similar or identical to leucocin A and leucocin C. Application experiments showed that the addition of 10(7) cfu/g Leuc. carnosum 4010 to a vacuum...

  1. A sequential statistical approach towards an optimized production of a broad spectrum bacteriocin substance from a soil bacterium Bacillus sp. YAS 1 strain.

    Science.gov (United States)

    Embaby, Amira M; Heshmat, Yasmin; Hussein, Ahmed; Marey, Heba S

    2014-01-01

    Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken) was employed to optimize bacteriocin (BAC YAS 1) production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v), incubation time (62 hrs), and agitation speed (207 rpm)) in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora). BAC YAS 1 showed activity over a wide range of pH (1-13) and temperature (45-80 °C). A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium), the plant pathogen (E. amylovora), and the food spoiler (Listeria innocua) was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri). Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries.

  2. Cloning and expression of synthetic genes encoding the broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris.

    Science.gov (United States)

    Arbulu, Sara; Jiménez, Juan J; Gútiez, Loreto; Cintas, Luis M; Herranz, Carmen; Hernández, Pablo E

    2015-01-01

    We have evaluated the cloning and functional expression of previously described broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris. Synthetic genes, matching the codon usage of P. pastoris, were designed from the known mature amino acid sequence of these bacteriocins and cloned into the protein expression vector pPICZαA. The recombinant derived plasmids were linearized and transformed into competent P. pastoris X-33, and the presence of integrated plasmids into the transformed cells was confirmed by PCR and sequencing of the inserts. The antimicrobial activity, expected in supernatants of the recombinant P. pastoris producers, was purified using a multistep chromatographic procedure including ammonium sulfate precipitation, desalting by gel filtration, cation exchange-, hydrophobic interaction-, and reverse phase-chromatography (RP-FPLC). However, a measurable antimicrobial activity was only detected after the hydrophobic interaction and RP-FPLC steps of the purified supernatants. MALDI-TOF MS analysis of the antimicrobial fractions eluted from RP-FPLC revealed the existence of peptide fragments of lower and higher molecular mass than expected. MALDI-TOF/TOF MS analysis of selected peptides from eluted RP-FPLC samples with antimicrobial activity indicated the presence of peptide fragments not related to the amino acid sequence of the cloned bacteriocins.

  3. Cloning and Expression of Synthetic Genes Encoding the Broad Antimicrobial Spectrum Bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by Recombinant Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Sara Arbulu

    2015-01-01

    Full Text Available We have evaluated the cloning and functional expression of previously described broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris. Synthetic genes, matching the codon usage of P. pastoris, were designed from the known mature amino acid sequence of these bacteriocins and cloned into the protein expression vector pPICZαA. The recombinant derived plasmids were linearized and transformed into competent P. pastoris X-33, and the presence of integrated plasmids into the transformed cells was confirmed by PCR and sequencing of the inserts. The antimicrobial activity, expected in supernatants of the recombinant P. pastoris producers, was purified using a multistep chromatographic procedure including ammonium sulfate precipitation, desalting by gel filtration, cation exchange-, hydrophobic interaction-, and reverse phase-chromatography (RP-FPLC. However, a measurable antimicrobial activity was only detected after the hydrophobic interaction and RP-FPLC steps of the purified supernatants. MALDI-TOF MS analysis of the antimicrobial fractions eluted from RP-FPLC revealed the existence of peptide fragments of lower and higher molecular mass than expected. MALDI-TOF/TOF MS analysis of selected peptides from eluted RP-FPLC samples with antimicrobial activity indicated the presence of peptide fragments not related to the amino acid sequence of the cloned bacteriocins.

  4. pbp2229-mediated nisin resistance mechanism in Listeria monocytogenes confers cross-protection to class IIa bacteriocins and affects virulence gene expression.

    Science.gov (United States)

    Gravesen, Anne; Kallipolitis, Birgitte; Holmstrøm, Kim; Høiby, Poul Erik; Ramnath, Manilduth; Knøchel, Susanne

    2004-03-01

    It was previously shown that enhanced nisin resistance in some mutants was associated with increased expression of three genes, pbp2229, hpk1021, and lmo2487, encoding a penicillin-binding protein, a histidine kinase, and a protein of unknown function, respectively. In the present work, we determined the direct role of the three genes in nisin resistance. Interruption of pbp2229 and hpk1021 eliminated the nisin resistance phenotype. Interruption of hpk1021 additionally abolished the increase in pbp2229 expression. The results indicate that this nisin resistance mechanism is caused directly by the increase in pbp2229 expression, which in turn is brought about by the increase in hpk1021 expression. We also found a degree of cross-protection between nisin and class IIa bacteriocins and investigated possible mechanisms. The expression of virulence genes in one nisin-resistant mutant and two class IIa bacteriocin-resistant mutants of the same wild-type strain was analyzed, and each mutant consistently showed either an increase or a decrease in the expression of virulence genes (prfA-regulated as well as prfA-independent genes). Although the changes mostly were moderate, the consistency indicates that a mutant-specific change in virulence may occur concomitantly with bacteriocin resistance development.

  5. Identification and partial characterization of a bacteriocin-like inhibitory substance (BLIS) from Lb. Bulgaricus K41 isolated from indigenous yogurts.

    Science.gov (United States)

    Zaeim, Davood; Soleimanian-Zad, Sabihe; Sheikh-Zeinoddin, Mahmoud

    2014-01-01

    Forty-two strains of Lactobacillus bulgaricus isolated from locally made yogurts were examined and compared for bacteriocin producing ability using spot on lawn assay which improved by taking photo and image processing. Lb. bulgaricus K41 exhibited the highest inhibition level against indicators. K41 Bacteriocin-like inhibitory substance is sensitive to proteolytic enzymes (proteinase K, pepsin, and trypsin) but α-amylase makes slight reduction in its activity and it is resistant to lipase. This antibacterial peptide is extremely heat-stable (121 °C for 15 min) and remains active over a wide pH range (pH = 2 to 10); also nonionic detergents (Tween-20, Tween-80, and Triton X100) showed no effect on its activity. The inhibitory spectrum is against Gram-positive bacteria (except Staphylococcus aureus) with extremely antilisterial activity and it is almost ineffective against Gram-negative bacteria. The mode of its action was identified as bactericidal against Listeria monocytogenes. The properties of K41 bacteriocin-like inhibitory substance add to its safety as a biopreservative produced by a generally recognized as safe (GRAS) bacterium suggesting it can be used in hurdle technology for ready-to-eat foods as one of the main sources of Listeria contaminations.

  6. 嗜酸乳杆菌产细菌素的分离纯化研究%SEPARATION AND PURIFICATION OF BACTERIOCINS PRODUCED BY LACTOBACILLUS ACIDOPHILUS

    Institute of Scientific and Technical Information of China (English)

    陈静; 何连芳; 张玉苍

    2011-01-01

    We carried out the separation and purification of bacteriocins produced by Lactobacillus acidophlus and studied the biological characteristics. The results showed that the bacteriocins produced by Lactobacillus acidophlus had thermal stability and better stability in the pH range of 2.0 to 9.0, and still kept the activity after being processed at 120 ℃ for 30 min. The fermented supernant was sensitive to proteases, which showed that the antibacterial substance belonged to proteins; and the fermented supernant had inhibitory effects on Gram-positive bacteria and Gram-negative bacteria. We could prepare the crude bacteriocin extract after ammonium sulfate precipitation and dialysis of the fermented supernant, then purified the crude bacteriocin extract by SephadexG-50 gel chromatography, and determined that the molecular weight of the bacteriocins was about 2 000 by Tricine-SDS-PAGE.%对一株嗜酸乳杆菌所产细菌素进行了分离纯化,并研究了其生物学特性.结果表明,嗜酸乳杆菌产的细菌素具有热稳定性,在120 ℃处理30 min仍保留活性,该细菌素在pH2.0 ~9.0范围内有较好的稳定性.发酵上清液对蛋白酶敏感,表明此抑茼物质为蛋白类物质,对革兰氏阴性菌及革兰氏阳性菌均有抑制作用.发酵上清液经过硫酸铵沉淀、透析后得到细菌素粗提液,然后利用SephadexG-50凝胶层析进行纯化,采用Tricine-SDS-PAGE电泳测其相对分子质量约为2 000.

  7. Use of the Yeast Pichia pastoris as an Expression Host for Secretion of Enterocin L50, a Leaderless Two-Peptide (L50A and L50B) Bacteriocin from Enterococcus faecium L50▿

    Science.gov (United States)

    Basanta, Antonio; Gómez-Sala, Beatriz; Sánchez, Jorge; Diep, Dzung B.; Herranz, Carmen; Hernández, Pablo E.; Cintas, Luis M.

    2010-01-01

    In this work, we report the expression and secretion of the leaderless two-peptide (EntL50A and EntL50B) bacteriocin enterocin L50 from Enterococcus faecium L50 by the methylotrophic yeast Pichia pastoris X-33. The bacteriocin structural genes entL50A and entL50B were fused to the Saccharomyces cerevisiae gene region encoding the mating pheromone α-factor 1 secretion signal (MFα1s) and cloned, separately and together (entL50AB), into the P. pastoris expression and secretion vector pPICZαA, which contains the methanol-inducible alcohol oxidase promoter (PAOX1) to express the fusion genes. After transfer into the yeast, the recombinant plasmids were integrated into the genome, resulting in three bacteriocinogenic yeast strains able to produce and secrete the individual bacteriocin peptides EntL50A and EntL50B separately and together. The secretion was efficiently directed by MFα1s through the Sec system, and the precursor peptides were found to be correctly processed to form mature and active bacteriocin peptides. The present work describes for the first time the heterologous expression and secretion of a two-peptide non-pediocin-like bacteriocin by a yeast. PMID:20348300

  8. Detectionn and activity of plantaricin OL15 a bacteriocin produced by Lactobacillus plantarum OL15 isolated from Algerian fermented olives.

    Directory of Open Access Journals (Sweden)

    Nour-Eddine, Karam

    2005-09-01

    Full Text Available Lactobacillus plantarum OL15 previously isolated from Algerian fermented green olives produces antimicrobial conpounds in its culture medium. Inhibitory action against other strains of Lactobacillus, Lactococcus , and Propionibacterium was observed . Activity was completely or partially inactivated by proteolytic enzymes, stable at pH values ranging from 3.0 to 8.0, and heat stable even after autoclaving at 121 °C for 15 min. The bacteriocin activity was able to pass through cellulose membranes with 100,000 but not through 10,000 molecular weight cut-off.Lactobacillus plantarum OL15, aislado de aceitunas verdes argelinas, produce un compuesto antimicrobiano en el medio de cultivo, observándose un efecto inhibidor frente a otras cepas de Lactobacillus, Lactococcus y Propionibacterium . Dicha actividad desaparece completa o parcialmente después del tratamiento con enzimas proteolíticas, es estable al pH en el rango de 3,0 a 8,0 y es, asimismo estable al calor incluso después de someterla a un proceso térmico de 121 ºC durante 15 minutos. La bacteriocina pasa a través de membranas de celulosa de corte molecular de 1000.000 pero no a través de las de 10.000.

  9. Aqueous two-phase flotation for primary recovery of bacteriocin-like inhibitory substance (BLIS) from Pediococcus acidilactici Kp10.

    Science.gov (United States)

    Md Sidek, Nurul Lyana; Tan, Joo Shun; Abbasiliasi, Sahar; Wong, Fadzlie Wong Faizal; Mustafa, Shuhaimi; Ariff, Arbakariya B

    2016-08-01

    An aqueous two-phase flotation (ATPF) system based on polyethylene glycol (PEG) and sodium citrate (NaNO3C6H5O7·2H2O) was considered for primary recovery of bacteriocin-like inhibitory substance (BLIS) from Pediococcus acidilactici Kp10. The effects of ATPF parameters namely phase composition, tie-line length (TLL), volume ratio between the two phases (VR), amount of crude load (CL), pH, nitrogen gas flow rate (FR) and flotation time (FT) on the performance of recovery were evaluated. BLIS was mainly concentrated into the upper PEG-rich phase in all systems tested so far. The optimum conditions for BLIS purification, which composed of PEG 8000/sodium citrate, were: TLL of 42.6, VR of 0.4, CL of 22% (w/w), pH 7, average FT of 30min and FR of 20mL/min. BLIS was partially purified up to 5.9-fold with a separation efficiency of 99% under this optimal conditions. A maximum yield of BLIS activity of about 70.3% was recovered in the PEG phase. The BLIS from the top phase was successfully recovered with a single band in SDS-gel with molecular weight of about 10-15kDa. ATPF was found to be an effective technique for the recovery of BLIS from the fermentation broth of P. acidilactici Kp10.

  10. Isolation and Taxonomic Identity of Bacteriocin-Producing Lactic Acid Bacteria from Retail Foods and Animal Sources.

    Science.gov (United States)

    Henning, Chris; Vijayakumar, Paul; Adhikari, Raj; Jagannathan, Badrinath; Gautam, Dhiraj; Muriana, Peter M

    2015-03-19

    Bacteriocin-producing (Bac⁺) lactic acid bacteria (LAB) were isolated from a variety of food products and animal sources. Samples were enriched in de Man, Rogosa, and Sharpe (MRS) Lactocilli broth and plated onto MRS agar plates using a "sandwich overlay" technique. Inhibitory activity was detected by the "deferred antagonism" indicator overlay method using Listeria monocytogenes as the primary indicator organism. Antimicrobial activity against L. monocytogenes was detected by 41 isolates obtained from 23 of 170 food samples (14%) and 11 of 110 samples from animal sources (10%) tested. Isolated Bac⁺ LAB included Lactococcus lactis, Lactobacillus curvatus, Carnobacterium maltaromaticum, Leuconostoc mesenteroides, and Pediococcus acidilactici, as well as Enterococcus faecium, Enterococcus faecalis, Enterococcus hirae, and Enterococcus thailandicus. In addition to these, two Gram-negative bacteria were isolated (Serratia plymuthica, and Serratia ficaria) that demonstrated inhibitory activity against L. monocytogenes, Staphylococcus aureus, and Enterococcus faecalis (S. ficaria additionally showed activity against Salmonella Typhimurium). These data continue to demonstrate that despite more than a decade of antimicrobial interventions on meats and produce, a wide variety of food products still contain Bac⁺ microbiota that are likely eaten by consumers and may have application as natural food preservatives.

  11. The role of environmental factors and medium composition on bacteriocin-like inhibitory substances (BLIS) production by Enterococcus mundtii strains.

    Science.gov (United States)

    Settanni, Luca; Valmorri, Sara; Suzzi, Giovanna; Corsetti, Aldo

    2008-08-01

    Bacteriocin-like inhibitory substances (BLIS)-producers Enterococcus mundtii WGWT1-1A, WGW11.2, WGJ20.1, WGJ40.2 and WGK53 from raw material origin were subjected to a study for the characterization of antimicrobial compound production under several growth conditions, including different cultivation media, growth temperatures, pHs, different concentrations and sources of nitrogen compounds, carbohydrates and other nutritional factors, and in the presence of different percentages of ethanol and NaCl. The five E. mundtii strains showed different behaviors. However, in all cases, MRS and sour dough bacteria (SDB) were found as the optimal media for BLIS production. In general, the higher BLIS production was observed with pH in the range 6.0-8.0 and, except 45 degrees C, the temperature did not show a defining effect. Low or no BLIS activity was detected after growth without nitrogen sources and carbohydrates. Absence of Tween 80, triammoniun citrate, K2HPO4, MgSO4 and MnSO4 did not affect BLIS activity levels. Except for a strain (WGWT1-1A), ethanol did not play a negative role in BLIS expression, while NaCl determined decrease of BLIS activity, proportional with concentration. The above strains did not contain plasmids, hence, BLIS expression is encoded by chromosomal DNA.

  12. Efficacy of organic acids, bacteriocins, and the lactoperoxidase system in inhibiting the growth of Cronobacter spp. in rehydrated infant formula.

    Science.gov (United States)

    Oshima, Satoru; Rea, Mary C; Lothe, Sheba; Morgan, Sheila; Begley, Maire; O'Connor, Paula M; Fitzsimmons, Aidan; Kamikado, Hideaki; Walton, Richard; Ross, R Paul; Hill, Colin

    2012-10-01

    Thirty-three antimicrobial agents, including antimicrobial peptides (nisin, lacticin 3147, isracidin), organic acids, emulsifiers (organic acid esters), glycine, lysozyme, tocopherol, EDTA, milk fat globule membrane, and the lactoperoxidase system (LPOS) were screened for anti-Cronobacter sakazakii activity. The compounds were initially screened individually in parallel in synthetic media. Those showing antimicrobial activity were then tested in reconstituted whole milk and finally in reconstituted powdered infant formula (PIF), using mild temperatures of reconstitution and prolonged storage at room temperature. Propionic acid and monocaprylin (as POEM M-100) in combination showed inhibitory activity at sufficiently low concentrations (0.1 to 0.2%) in milk to be considered as potential antimicrobial additives for the inhibition of C. sakazakii in reconstituted PIF. More interestingly, LPOS, when combined with the broad-spectrum bacteriocins nisin or lacticin 3147, inhibited outgrowth of C. sakazakii at 37°C for 8 h. The combined effects of POEM M-100 and either acetate or propionate and LPOS with lacticin 3147 or nisin were evaluated under the Food and Agriculture Organization of the United Nations-World Health Organization high-risk scenario for PIF, i.e., low temperature of reconstitution and long storage or feeding times at ambient temperature. In the presence of LPOS and lacticin 3147, growth of Cronobacter spp. was inhibited for up to 12 h when the PIF was rehydrated at 40 or 50°C. These results highlight the potential of combinatory approaches to improving the safety of infant milk formula.

  13. Regulation of Bacteriocin Synthesis by Quorum Sensing in Lactic Acid Bacteria:A Review%群体感应系统在乳酸菌产细菌素中的作用

    Institute of Scientific and Technical Information of China (English)

    满丽莉; 孟祥晨; 王辉; 赵日红

    2011-01-01

    Several lactic acid bacteria(LAB) produce peptides with antimicrobial activity usually referred to as bacteriocins.Bacteriocins are diverse in terms of structure,mode of action,antimicrobial spectrum,and potency.Both LAB and their bacteriocins are generally regarded as safe.Bacteriocins produced by LABs have demonstrated great potential as natural preservatives Intercellular communication has emerged as the key regulatory mechanism that controls the synthesis of bacteriocins via a regulatory strategy denominated quorum sensing,which allows population-wide synchronised production of antimicrobial peptides as a function of cell density.The intercellular communication phenomenon required for sensing of the cell density is mediated by secreted signaling molecules that accumulate in the environment as the cell density increase and activate signal transduction cascades,resulting in the production of bacteriocins.This review aims at describing the types of signal molecules,signal transduction mechanism and the regulation of quorum sensing in bacteriocins synthesis of LAB and understanding the regulation mechanism of quorum sensing involved in the production of two classes of bacteriocin in LAB.%许多乳酸菌能够产生抗菌活性肽——细菌素,细菌素具有不同的结构、作用方式、抑菌谱和效价,通常认为乳酸菌和其所产的细菌素都是安全的,乳酸菌所产细菌素作为天然食品防腐剂已显示了巨大的潜能。基于群体感应的细胞间交流已成为细菌素合成的关键调控机制,群体感应作为细胞密度函数,可使细菌素产生保持同步性。群体感应需通过信号分子介导感知菌体密度,信号分子随着菌体密度增加而增加,并激活信号转导级联使菌体产生细菌素。本文通过对乳酸菌群体感应信号分子种类、信号转导机制及群体感应系统对两类细菌素合成的调控进行综述,以初步了解群体感

  14. The effect of bacteriocin-producing Lactobacillus plantarum strains on the intracellular pH of sessile and planktonic Listeria monocytogenes single cells.

    Science.gov (United States)

    Nielsen, Dennis S; Cho, Gyu-Sung; Hanak, Alexander; Huch, Melanie; Franz, Charles M A P; Arneborg, Nils

    2010-07-31

    A wide range of lactic acid bacteria (LAB) produce bacteriocins mainly active against other closely related LAB, but some bacteriocins are also active against the food-borne pathogen Listeria monocytogenes. With the aim of increasing food safety it has thus been considered to utilise bacteriocins and/or bacteriocin-producing LAB as "natural" food preservatives in foods such as cheese, meat and ready-to-eat products. Some strains of Lactobacillus plantarum produce bacteriocins termed plantaricins. Using a single-cell based approach, the effect on the intracellular pH as a measure of the physiological state of sessile and planktonic L. monocytogenes (strains EGDe and N53-1) during co-culturing with plantaricin-producing L. plantarum (strains BFE 5092 and PCS 20) was investigated using fluorescence ratio imaging microscopy (FRIM). Mono-cultures of L. monocytogenes were used as control. Expression levels of plantaricin-encoding genes by sessile and planktonic L. plantarum were determined using qRT-PCR. L.plantarum BFE 5092 possesses the genes for plantaricin EF, JK and N, while L. plantarum PCS 20 contains the genes for plantaricin EF, although determination of the nucleotide sequence of the PCS 20 plantaricin E gene showed that this peptide is probably non-functional. When cultured as mono-culture, both L. monocytogenes strains maintained pH(i) at a constant level around 7.2-7.6 throughout the experiment, independently of the matrix. On a solid surface, L. plantarum BFE 5092 strongly affected pH(i) of L. monocytogenes N53-1 with only 20% of the cells being able to maintain pH(i) in the physiological optimal range with pH>7 and 52% of the cells with pH(i) approximately pH(ex,) showing that the cells had no proton gradient towards the environment. The effect on L. monocytogenes EGDe was less pronounced, but still notable. L.plantarum PCS 20 left both strains of L. monocytogenes virtually unaffected when co-cultured on a solid surface. In liquid, both L. plantarum

  15. Bacteriocin production by Lactobacillus pentosus ST712BZ isolated from boza Bacteriocina produzida por Lactobacillus pentosus ST712BZ isolad de boza

    Directory of Open Access Journals (Sweden)

    Svetoslav D. Todorov

    2007-03-01

    Full Text Available Bacteriocin ST712BZ (14.0kDa in size inhibits the growth of Lactobacillus casei,Escherichia coli, Pseudomonas aeruginosa,Enterococcus faecalis, Klebsiella pneumoniae and Lactobacillus curvatus. Growth of strain ST712BZ in BHI, M17, soy milk and molasses was similar to growth in MRS, with optimal bacteriocin production (12800AU/mL recorded in MRS after 24h. The same level of bacteriocin production (12800AU/mL was recorded in MRS broth with an initial pH of 6.5, 6.0 and 5.5. However, MRS broth (pH 6.5 supplemented with 1mM EDTA, yielded only 6400AU/mL. Low levels of bacteriocin activity were recorded in MRS broth with an initial pH of 5.0 and 4.5. Of all media compositions tested, MRS supplemented with tryptone (20.0g/L, glucose (20.0 to 40.0g/L, mannose (20.0g/L, vitamin B12, or vitamin C yielded 12800AU/mL. Glycerol concentrations of 1.0g/L and higher repressed bacteriocin production. Maximal bacteriocin activity (25600AU/mL was recorded in MRS supplemented with Vit. B1 or DL-6,8-thioctic acid.A bacteriocina ST712BZ produzida par Lactobacillus pentosus (peso molecular de 14,0kDa inibe o crescimento de Lactobacillus casei,Escherichia coli, Pseudomonas aeruginosa,Enterococcus faecalis, Klebsiella pneumoniae e Lactobacillus curvatus. O crescimento de L. pentosus ST712BZ em BHI, M17, leite de soja e melaços foi semelhante ao observado em MRS, registando-se a produção máxima de bacteriocina (12800UA/mL em MRS após 24 h. Observou-se o mesmo nível de produção de bacteriocina (12800UA/mL em caldo MRS com pH inicial de 6,5, 6,0 e 5,5. No entanto, em caldo MRS (pH 6,5 suplementado com 1 mM de EDTA a produção apenas atingiu 6400UA/mL. Os níveis de atividade bacteriocinogênica detectados em caldo MRS com um pH inicial de 5,0 e 4,5 foram baixos. De todas as fórmulas de meios de cultura testadas a que apresentou a atividade máxima 12800UA/mL foi MRS suplemento de triptona (20,0g/L, glicose (20,0 e 40,0 g/L, manose (20.0 g/L, vitamina B12 e

  16. Detection and characterization of bacteriocin-producing Lactococcus lactis strains Detecção e caracterização de Lactococcus lactis produtores de bacteriocinas

    Directory of Open Access Journals (Sweden)

    Izildinha Moreno

    1999-04-01

    Full Text Available One hundred sixty seven strains of Lactococcus lactis were screened for bacteriocin production by well diffusion assay of GM17 agar. Fourteen (8.4% produced antimicrobial activity other than organic acids, bacteriophages or hydrogen peroxide. The frequency of bacteriocin production ranged from 2% in L. lactis subsp. cremoris up to 12% in L. lactis subsp. lactis. Antimicrobial activities were not observed in any strain of L. lactis subsp. lactis var. diacetylactis. Among thirteen bacteriocin-producing strains and two nisin-producing strains (L. lactis subsp. lactis ATCC 11454 and L. lactis subsp. lactis CNRZ 150, eight (53% were characterized as lactose-positive (Lac+ and proteinase-negative (Prt-. The bacteriocin-producing cultures were also characterized on the basis of plasmid content. All strains had 2 to 7 plasmids with molecular weights varying from 0.5 to 28.1 Mdal. Four strains (ITAL 435, ITAL 436, ITAL 437 and ITAL 438 showed identical profiles and the other were quite distinct.Um total de 167 linhagens de L. lactis foi selecionado para os testes de produção de bacteriocinas pelo método de difusão em poços em agar GM17. Desse total, 14 (8.4% produziram substâncias inibidoras que não foram associadas com ácidos orgânicos, peróxido de hidrogênio e bacteriófagos. A frequência de produção de bacteriocinas variou de 2% em L. lactis subsp. cremoris a 12% em L. lactis subsp. lactis. Nenhuma das linhagens de L. lactis subsp. lactis var. diacetylactis produziu substâncias inibidoras. De 13 linhagens produtoras de bacteriocinas e duas de nisina (L. lactis subsp. lactis ATCC 11454 e L. lactis subsp. lactis CNRZ 150, 8 (53% foram caracterizadas como lactose-positivas (Lac+ e proteinase-negativas (Prt-. As linhagens produtoras de bacteriocinas também foram caracterizadas no seu conteúdo de plasmídios. Elas apresentaram de 2 a 7 plasmídios, com pesos moleculares aproximados de 0.5 a 28.1 Mdal. Quatro linhagens (ITAL 435, ITAL 436

  17. 枯草芽孢杆菌3-2产细菌素发酵条件的优化%Optimization of Fermentation Condition in Bacteriocin Produced by Prunella Bacillus 3-2

    Institute of Scientific and Technical Information of China (English)

    杨宇清; 郑一敏; 胡杨; 乐亮; 江娟; 王宁; 林海珠

    2011-01-01

    To obtain optimal fermentation conditions of bacteriocin produced by prunella bacillus 3-2,the medial components and cultural conditions for producing bacteriocin of prunella bacillus 3-2 were optimized by single factor test in shake-flask.Results showed that BPY was suitable for producing bacteriocin.The optimum culture conditions were fermented 24h,at temperature 35℃ with starting pH at 7.0,medium volume 100ml in 500ml flask,inoculum volume 3% and seed aged were 12h.Conclusion is that it improves the bacteriocin production by optimal fermentation conditions.%采用单因素法,通过摇瓶培养,对枯草芽孢杆菌3-2产细菌素的发酵培养基和发酵条件进行优化。结果表明:产细菌素的最佳培养基是BPY培养基,最适合发酵时间为24 h,最适发酵温度为35℃,最适起始pH值为7.0,最适装液量为100 mL/500 mL,最适接种量为3%,最适接种龄为12 h。通过优化发酵条件可提高细菌素的产量。

  18. Mode of action and in vitro susceptibility of mastitis pathogens to macedocin ST91KM and preparation of a teat seal containing the bacteriocin

    Directory of Open Access Journals (Sweden)

    Renee Pieterse

    2010-03-01

    Full Text Available Mastitis is considered to be the most economically costly disease affecting the dairy industry. Regular dosage of animals with antibiotics, including use of prophylactic concentrations, may select for resistant strains. The purpose of this study was to determine the mode of action of a new bacteriocin (macedocin ST91KM, to evaluate the antimicrobial resistance of mastitis pathogens to antibiotics commonly used in treatment remedies, and to introduce the possible use of an alternative antimicrobial agent. The bacteriocin macedocin ST91KM, produced by Streptococcus gallolyticus subsp. macedonicus ST91KM, is bactericidal to Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis and Staphylococcus aureus associated with mastitis infections, including strains resistant to methicillin and oxacillin. Sensitive cells were deformed and secreted nucleotides, K+ and β-galactosidase when exposed to macedocin ST91KM. Adsorption of the peptide to target cells decreased in the presence of solvents, suggesting that receptors on the cell surfaces have lipid moieties. No adsorption was recorded in the presence of MgCl2, KI and Na2CO3, suggesting that ionic strength plays an important role. A teat seal preparation containing macedocin ST91KM effectively released the peptide and inhibited the growth of S. agalactiae. Macedocin ST91KM could form the basis for alternative dry cow therapy to prevent mastitis infections in dairy cows as it is effective against pathogens that display resistance to conventional antibiotic therapy.

  19. Molecular Detection and Sensitivity to Antibiotics and Bacteriocins of Pathogens Isolated from Bovine Mastitis in Family Dairy Herds of Central Mexico

    Science.gov (United States)

    León-Galván, Ma. Fabiola; Barboza-Corona, José E.; Lechuga-Arana, A. Arianna; Valencia-Posadas, Mauricio; Aguayo, Daniel D.; Cedillo-Pelaez, Carlos; Martínez-Ortega, Erika A.; Gutierrez-Chavez, Abner J.

    2015-01-01

    Thirty-two farms (n = 535 cows) located in the state of Guanajuato, Mexico, were sampled. Pathogens from bovine subclinical mastitis (SCM) and clinical mastitis (CLM) were identified by 16S rDNA and the sensitivity to both antibiotics and bacteriocins of Bacillus thuringiensis was tested. Forty-six milk samples were selected for their positive California Mastitis Test (CMT) (≥3) and any abnormality in the udder or milk. The frequency of SCM and CLM was 39.1% and 9.3%, respectively. Averages for test day milk yield (MY), lactation number (LN), herd size (HS), and number of days in milk (DM) were 20.6 kg, 2.8 lactations, 16.7 animals, and 164.1 days, respectively. MY was dependent on dairy herd (DH), LN, HS, and DM (P < 0.01), and correlations between udder quarters from the CMT were around 0.49 (P < 0.01). Coagulase-negative staphylococci were mainly identified, as well as Staphylococcus aureus, Streptococcus uberis, Brevibacterium stationis, B. conglomeratum, and Staphylococcus agnetis. Bacterial isolates were resistant to penicillin, clindamycin, ampicillin, and cefotaxime. Bacteriocins synthesized by Bacillus thuringiensis inhibited the growth of multiantibiotic resistance bacteria such as S. agnetis, S. equorum, Streptococcus uberis, Brevibacterium stationis, and Brachybacterium conglomeratum, but they were not active against S. sciuri, a microorganism that showed an 84% resistance to antibiotics tested in this study. PMID:25815326

  20. The Stable Interaction Between Signal Peptidase LepB of Escherichia coli and Nuclease Bacteriocins Promotes Toxin Entry into the Cytoplasm.

    Science.gov (United States)

    Mora, Liliana; Moncoq, Karine; England, Patrick; Oberto, Jacques; de Zamaroczy, Miklos

    2015-12-25

    LepB is a key membrane component of the cellular secretion machinery, which releases secreted proteins into the periplasm by cleaving the inner membrane-bound leader. We showed that LepB is also an essential component of the machinery hijacked by the tRNase colicin D for its import. Here we demonstrate that this non-catalytic activity of LepB is to promote the association of the central domain of colicin D with the inner membrane before the FtsH-dependent proteolytic processing and translocation of the toxic tRNase domain into the cytoplasm. The novel structural role of LepB results in a stable interaction with colicin D, with a stoichiometry of 1:1 and a nanomolar Kd determined in vitro. LepB provides a chaperone-like function for the penetration of several nuclease-type bacteriocins into target cells. The colicin-LepB interaction is shown to require only a short peptide sequence within the central domain of these bacteriocins and to involve residues present in the short C-terminal Box E of LepB. Genomic screening identified the conserved LepB binding motif in colicin-like ORFs from 13 additional bacterial species. These findings establish a new paradigm for the functional adaptability of an essential inner-membrane enzyme.

  1. Engineered strains of Streptococcus macedonicus towards an osmotic stress resistant phenotype retain their ability to produce the bacteriocin macedocin under hyperosmotic conditions.

    Science.gov (United States)

    Anastasiou, Rania; Driessche, Gonzalez Van; Boutou, Effrossyni; Kazou, Maria; Alexandraki, Voula; Vorgias, Constantinos E; Devreese, Bart; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2015-10-20

    Streptococcus macedonicus ACA-DC 198 produces the bacteriocin macedocin in milk only under low NaCl concentrations (<1.0%w/v). The thermosensitive plasmid pGh9:ISS1 was employed to generate osmotic stress resistant (osmr) mutants of S. macedonicus. Three osmr mutants showing integration of the vector in unique chromosomal sites were identified and the disrupted loci were characterized. Interestingly, the mutants were able to grow and to produce macedocin at considerably higher concentrations of NaCl compared to the wild-type (up to 4.0%w/v). The production of macedocin under hyperosmotic conditions solely by the osmr mutants was validated by the well diffusion assay and by mass spectrometry analysis. RT-PCR experiments demonstrated that the macedocin biosynthetic regulon was transcribed at high salt concentrations only in the mutants. Mutant osmr3, the most robust mutant, was converted in its markerless derivative (osmr3f). Co-culture of S. macedonicus with spores of Clostridium tyrobutyricum in milk demonstrated that only the osmr3f mutant and not the wild-type inhibited the growth of the spores under hyperosmotic conditions (i.e., 2.5%w/v NaCl) due to the production of macedocin. Our study shows how genetic manipulation of a strain towards a stress resistant phenotype could improve bacteriocin production under conditions of the same stress.

  2. Molecular Detection and Sensitivity to Antibiotics and Bacteriocins of Pathogens Isolated from Bovine Mastitis in Family Dairy Herds of Central Mexico

    Directory of Open Access Journals (Sweden)

    Ma. Fabiola León-Galván

    2015-01-01

    Full Text Available Thirty-two farms (n=535 cows located in the state of Guanajuato, Mexico, were sampled. Pathogens from bovine subclinical mastitis (SCM and clinical mastitis (CLM were identified by 16S rDNA and the sensitivity to both antibiotics and bacteriocins of Bacillus thuringiensis was tested. Forty-six milk samples were selected for their positive California Mastitis Test (CMT (≥3 and any abnormality in the udder or milk. The frequency of SCM and CLM was 39.1% and 9.3%, respectively. Averages for test day milk yield (MY, lactation number (LN, herd size (HS, and number of days in milk (DM were 20.6 kg, 2.8 lactations, 16.7 animals, and 164.1 days, respectively. MY was dependent on dairy herd (DH, LN, HS, and DM P<0.01, and correlations between udder quarters from the CMT were around 0.49 P<0.01. Coagulase-negative staphylococci were mainly identified, as well as Staphylococcus aureus, Streptococcus uberis, Brevibacterium stationis, B. conglomeratum, and Staphylococcus agnetis. Bacterial isolates were resistant to penicillin, clindamycin, ampicillin, and cefotaxime. Bacteriocins synthesized by Bacillus thuringiensis inhibited the growth of multiantibiotic resistance bacteria such as S. agnetis, S. equorum, Streptococcus uberis, Brevibacterium stationis, and Brachybacterium conglomeratum, but they were not active against S. sciuri, a microorganism that showed an 84% resistance to antibiotics tested in this study.

  3. Bacteriocin-producing strains of Lactobacillus plantarum inhibit adhesion of Staphylococcus aureus to extracellular matrix: quantitative insight and implications in antibacterial therapy.

    Science.gov (United States)

    Mukherjee, Sandipan; Ramesh, Aiyagari

    2015-12-01

    In the present study, the adhesion of bacteriocin-producing probiotic strains of Lactobacillus plantarum onto extracellular matrix (ECM) proteins such as collagen and mucin and their potential to prevent pathogen invasion onto the ECM was ascertained. Fluorescence-based in vitro assays indicated that L. plantarum strains CRA21, CRA38 and CRA52 displayed considerable adhesion to ECM molecules, which was comparable to the probiotic Lactobacillus rhamnosus GG. Flow cytometry-based quantitative assessment of the adhesion potential suggested that L. plantarum CRA21 exhibited superior adhesion onto the ECM as compared with other lactic acid bacteria strains. Furthermore, fluorescence-based assays suggested that the highest inhibition of Staphylococcus aureus adhesion onto collagen and mucin by bacteriocin-producing L. plantarum strains was observed in the exclusion mode as compared with the competition and displacement modes. This observation was supported by the higher binding affinity (k(d)) for the ECM exhibited by the L. plantarum strains as compared with S. aureus. Interestingly, a crude plantaricin A extract from food isolates of L. plantarum displayed potent antibacterial activity on ECM-adhered S. aureus cells. It is envisaged that the L. plantarum isolates displaying bacteriocinogenic and ECM-adhering traits can perhaps be explored to develop safe antibacterial therapeutic agents.

  4. Study and application of bacteriocin against bacterial resistance%细菌素的抗细菌耐药研究及应用现状

    Institute of Scientific and Technical Information of China (English)

    章昱(综述); 周云芳(审校)

    2015-01-01

    With the advent of antibiotics such as penicillin, the mortality from bacterial infection has been greatly reduced. But decades later, after widespread application of antibiotics, we should deal with the severe situation that the antibiotic re-sistance is becoming increasingly serious, the infections from resistant strains are difficult to control and development of new antibiotics is rather slow.In order to overcome these problems, researchers are exploring new ways besides antibiotics, and pay more attentions to bacteriocins because of their antibacterial activities.But the applications of bacteriocins are also re-stricted by antibacterial spectrum, production and so on, and making a breakthrough becomes a hotspot.This review will focus on the status, application and heterologous expression of bacteriocins.%随着青霉素等抗生素的问世,人类因细菌感染所致疾病的死亡率大为降低;但在抗生素广泛应用至今,我们又面临着细菌耐药日趋严重、耐药菌感染难以控制、新抗生素研发脚步迟滞的严峻局势。如何应对这一全球性的难题,研究者们殚精竭虑,力求在抗生素以外寻求新的突破,有着比抗生素更悠久历史、同样具有抗菌活性的细菌素引起了研究者们的重视。但抗菌谱、产量等问题使细菌素的应用受到了限制,打破瓶颈成了当下研究的热点。本文主要对细菌素的研究现状、应用及异源表达做了相关综述。

  5. Effect of Leuconostoc mesenteroides 11 bacteriocin in the multiplication control of Listeria monocytogenes 4b Efeito da bacteriocina de Leuconostoc mesenteroides 11 no controle da multiplicação de Listeria monocytogenes 4b

    Directory of Open Access Journals (Sweden)

    Rafael C. R. Martinez

    2006-03-01

    Full Text Available The activity of a crude preparation of bacteriocin produced by the chicken meat isolate Leuconostoc mesenteroides 11, was evaluated at 8ºC and 15ºC against Listeria monocytogenes. The pathogen was inoculated in a crude preparation of the bacteriocin and its population was enumerated after 0.5 and 10 days. The title of the bacteriocin in the preparation was determined immediately before inoculation and after 10 days of incubation at both temperatures. As a negative control, a non-bacteriocin producing strain, Leuconostoc mesenteroides A13, was used. Bacteriocin of L. mesenteroides 11 partially inhibited L. monocytogenes at 8ºC, but at 15ºC it was unable to prevent growth of the pathogen. Our findings suggest that the use of the semi-purified bacteriocin of L. mesenteroides 11 probably will not be suitable as a single hurdle to prevent L. monocytogenes growth in foods.A atividade de uma preparação bruta de bacteriocina produzida por Leuconostoc mesenteroides 11, isolado de peito de frango, foi avaliada a 8ºC e 15ºC, contra Listeria monocytogenes. O patógeno foi inoculado em uma preparação bruta da bacteriocina e sua população foi enumerada depois de 0,5 e 10 dias de incubação. O título da preparação de bacteriocina foi determinado no tempo 0 e após 10 dias de incubação em ambas as temperaturas. Como controle negativo, foi utilizada uma cepa não produtora de bacteriocina, Leuconostoc mesenteroides A13. A bacteriocina de L. mesenteroides 11 inibiu parcialmente L. monocytogenes a 8ºC, mas a 15ºC a bacteriocina não foi capaz de impedir a multiplicação do patógeno. Nossos resultados sugerem que o uso da bacteriocina semi-purificada de L. mesenteroides 11 provavelmente não será adequada como único obstáculo para impedir a multiplicação de L. monocytogenes em alimentos.

  6. Chemical synthesis and characterization of J46 peptide, an atypical class IIa bacteriocin from Lactococcus lactis subsp. cremoris J46 Strain.

    Science.gov (United States)

    Lasta, Samar; Fajloun, Ziad; Darbon, Hervé; Mansuelle, Pascal; Andreotti, Nicolas; Sabatier, Jean-Marc; Boudabous, Abdellatif; Sampieri, François

    2008-02-01

    Bacteriocin J46 is a 27-residue polypeptide produced by Lactococcus lactis subsp. cremoris J46 in fermented milk. The natural form of J46 (nJ46) exhibits a broad antimicrobial spectrum. Herein, we produced the synthetic form of J46 (sJ46) by solid-phase chemical synthesis. The biochemical and physico-chemical properties of sJ46, as well as its antimicrobial activity, were found to be identical to those of its natural counterpart nJ46. It showed a potent antimicrobial activity against both lactic acid bacteria and other Gram-positive microorganisms. (1)H-NMR conformational analysis of sJ46 indicates that it adopts a flexible random coil structure.

  7. 产细菌素乳酸菌的鉴定及其特性研究%Identification of Bacteriocin-Producing Lactobacillus and Study on Its Characteristic

    Institute of Scientific and Technical Information of China (English)

    王小娜; 宋达峰; 顾青

    2011-01-01

    Lactic acid bacteria isolated in the laboratory was identified. After eliminating some interference factors such as the organic acids, hydrogen peioxides and so on, the bacteriocin obtained from culture supernatant still remained active, and significant reduction in antimicrobial activity was observed after treatment with proteinase K and trypsin, confirming its proteinaceous nature. The bacteriocin showed high temperature stability up to 120 ℃ for 30 min with less loss in its activity, and had pH stability in the range of 2~4. The molecular weight of the bacteriocin is approximately 4.0 kDa by tricine-SDS-PAGE assay. And the bacteriocin also evidenced a broad spectrum of antibacterial activity against both Gram-negative and Gram-positive bacteria including Listeria monocytogenes, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Shigella flexneri. Lactobacillus plantarum on the base of physiological and biochemical characteristics and 16S rRNA gene sequences, named as Lactobacillus plantarum ZJ317.%从婴儿粪便中分离获得能够产生抑菌活性物质的乳酸菌,通过排除有机酸、过氧化氢的干扰试验,该菌发酵上清液仍有明显的抑菌活性;通过蛋白酶K和胰蛋白酶试验,证明该菌株产生的抑菌活性物质具有蛋白质性质,是一种细菌素.初步提纯该细菌素,其抑菌活性较适pH范围为2~4,120℃热处理30 min后仍有70%的抑菌活性.经Trcine-SDS-PAGE试验分析该细菌素分子质量为4kDa.抑菌谱测定结果表明,该细菌素不仅对革兰氏阳性菌(单增李斯特氏菌、枯草芽孢杆菌、金黄色葡萄球菌等)有抑制作用,而且还抑制革兰氏阴性菌(大肠杆菌、沙门氏菌、恶臭假单胞菌、福氏志贺氏菌等),具有广谱的抑菌作用.通过菌落形态、生理生化特性试验和16S rRNA基因序列分析,鉴定该乳酸菌为植物乳杆菌,命名为Lactobacillus plantarum ZJ317.

  8. Molecular detection and sensitivity to antibiotics and bacteriocins of pathogens isolated from bovine mastitis in family dairy herds of central Mexico.

    Science.gov (United States)

    León-Galván, Ma Fabiola; Barboza-Corona, José E; Lechuga-Arana, A Arianna; Valencia-Posadas, Mauricio; Aguayo, Daniel D; Cedillo-Pelaez, Carlos; Martínez-Ortega, Erika A; Gutierrez-Chavez, Abner J

    2015-01-01

    Thirty-two farms (n = 535 cows) located in the state of Guanajuato, Mexico, were sampled. Pathogens from bovine subclinical mastitis (SCM) and clinical mastitis (CLM) were identified by 16S rDNA and the sensitivity to both antibiotics and bacteriocins of Bacillus thuringiensis was tested. Forty-six milk samples were selected for their positive California Mastitis Test (CMT) (≥3) and any abnormality in the udder or milk. The frequency of SCM and CLM was 39.1% and 9.3%, respectively. Averages for test day milk yield (MY), lactation number (LN), herd size (HS), and number of days in milk (DM) were 20.6 kg, 2.8 lactations, 16.7 animals, and 164.1 days, respectively. MY was dependent on dairy herd (DH), LN, HS, and DM (P antibiotics tested in this study.

  9. Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Otimização da produção de bacteriocina por Lactobacillus plantarum AMA-K isolado de Amasi, um produto lácteo fermentado de Zimbabwe, e estudo da adsorção da bacteriocina AMA-K à Listeria innocua, Listeria monocytogenes e Listeria ivanovii subsp. ivanovii

    Directory of Open Access Journals (Sweden)

    Svetoslav D. Todorov

    2008-03-01

    Full Text Available Bacteriocin AMA-K produced by Lactobacillus plantarum AMA-K inhibits the growth of Enterococcus spp., Escherichia coli, Klebsiella pneumoniae and Listeria spp. Growth of strain AMA-K in BHI, M17, soy milk and molasses was similar to growth in MRS. The effect of organic nitrogen sources, carbohydrates, glycerol, K2HPO4 and KH2PO4, MgSO4, MnSO4, tri-ammonium citrate, Tween 80, vitamins and initial pH on bacteriocin AMA-K was determined. The mode of action of bacteriocin AMA-K was studied. The effect of bacteriocin AMA-K to actively growing Listeria innocua LMG13568, L. ivanovii subsp. ivanovii ATCC19119 and L. monocytogenes ScottA was determined. Adsorption of bacteriocin AMA-K to target cells at different temperatures, pH and in presence of Tween 20, Tween 80, ascorbic acid, potassium sorbate, sodium nitrate and sodium chloride were studied. Bacteriocin AMA-K shares high homology to pediocin PA-1.A bacteriocina AMA-K produzida por Lactobacillus plantarum AMA-K inibe a multiplicação de Enterococcus spp, Escherichia coli, Klebsiella pneumoniae e Listeria spp. A multiplicação da cepa AMA-K em BHI, leite de soja e melaço foi semelhante à multiplicação em MRS. O efeito de fontes de nitrogênio orgânico, carboidratos, glicerol, K2HPO4 e KH2PO4, MgSO4, MnSO4, citrato de triamônio, Tween 80, vitaminas e pH inicial sobre a bacteriocina AMA-K foi determinada. O modo de ação da bacteriocina AMA-K foi estudado. O efeito da bacteriocina AMA-K sobre Listeria innocua LMG13568, Listeria ivanovii subsp.ivanovii ATCC19119 e Listeria monocytogenes Scott A foi determinado. A adsorção da bacteriocina AMA-K às células-alvo em diferentes temperaturas, pH e na presença de Tween 20, Tween 80, ácido ascórbico, sorbato de potássio, nitrato de sódio a cloreto de sódio foi avaliada. A bacteriocina AMA-K apresenta grande homologia a pediocina PA-1.

  10. Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against Staphylococci.

    Science.gov (United States)

    Sandiford, Stephanie; Upton, Mathew

    2012-03-01

    We describe the discovery, purification, characterization, and expression of an antimicrobial peptide, epidermicin NI01, which is an unmodified bacteriocin produced by Staphylococcus epidermidis strain 224. It is a highly cationic, hydrophobic, plasmid-encoded peptide that exhibits potent antimicrobial activity toward a wide range of pathogenic Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), enterococci, and biofilm-forming S. epidermidis strains. Purification of the peptide was achieved using a combination of hydrophobic interaction, cation exchange, and high-performance liquid chromatography (HPLC). Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis yielded a molecular mass of 6,074 Da, and partial sequence data of the peptide were elucidated using a combination of tandem mass spectrometry (MS/MS) and de novo sequencing. The draft genome sequence of the producing strain was obtained using 454 pyrosequencing technology, thus enabling the identification of the structural gene using the de novo peptide sequence data previously obtained. Epidermicin NI01 contains 51 residues with four tryptophan and nine lysine residues, and the sequence showed approximately 50% identity to peptides lacticin Z, lacticin Q, and aureocin A53, all of which belong to a new family of unmodified type II-like bacteriocins. The peptide is active in the nanomolar range against S. epidermidis, MRSA isolates, and vancomycin-resistant enterococci. Other unique features displayed by epidermicin include a high degree of protease stability and the ability to retain antimicrobial activity over a pH range of 2 to 10, and exposure to the peptide does not result in development of resistance in susceptible isolates. In this study we also show the structural gene alone can be cloned into Escherichia coli strain BL21(DE3), and expression yields active peptide.

  11. Three distinct two-component systems are involved in resistance to the class I bacteriocins, Nukacin ISK-1 and nisin A, in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Miki Kawada-Matsuo

    Full Text Available Staphylococcus aureus uses two-component systems (TCSs to adapt to stressful environmental conditions. To colonize a host, S. aureus must resist bacteriocins produced by commensal bacteria. In a comprehensive analysis using individual TCS inactivation mutants, the inactivation of two TCSs, graRS and braRS, significantly increased the susceptibility to the class I bacteriocins, nukacin ISK-1 and nisin A, and inactivation of vraSR slightly increased the susceptibility to nukacin ISK-1. In addition, two ABC transporters (BraAB and VraDE regulated by BraRS and one transporter (VraFG regulated by GraRS were associated with resistance to nukacin ISK-1 and nisin A. We investigated the role of these three TCSs of S. aureus in co-culture with S. warneri, which produces nukacin ISK-1, and Lactococcus lactis, which produces nisin A. When co-cultured with S. warneri or L. lactis, the braRS mutant showed a significant decrease in its population compared with the wild-type, whereas the graRS and vraSR mutants showed slight decreases. Expression of vraDE was elevated significantly in S. aureus co-cultured with nisin A/nukacin ISK-1-producing strains. These results suggest that three distinct TCSs are involved in the resistance to nisin A and nukacin ISK-1. Additionally, braRS and its related transporters played a central role in S. aureus survival in co-culture with the strains producing nisin A and nukacin ISK-1.

  12. New Antifungal Bacteriocin-Synthesizing Strains of Lactococcus lactis ssp. lactis as the Perspective Biopreservatives for Protection of Raw Smoked Sausages

    Directory of Open Access Journals (Sweden)

    L. G. Stoyanova

    2010-01-01

    Full Text Available Problem statement: Screening for the effective bacteriocin-synthesizing strains of Lactococcus lactis as the perspective biopreservatives was performed. We used a raw milk and dairy products from different climatic regions as well as from powerful drinks of mixed lactic acid and alcoholic fermentation: kurunga, kumiss and Iranian Dough, that were widely used by local population to prevent diseases. Approach: The special interest was paid to isolates of lactococci with antagonistic activity. According to their morphological, cultural, physiological, biochemical properties and sequence of 16S rRNA gene they were identified as Lactococcus lactis ssp. lactis. Only nine from the selected 94 strains expressed a broad spectrum of activity against Gram-positive and Gramnegative bacteria including pathogens (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella gallinarum, moulds (Aspergillus, Fusarium, Penicillium genera, as well as yeasts (Rhodotorula, Candida. Results: It reveals the unique biological properties for isolated natural strains of Lactococcus lactis species. Most effective new bacteriocin-synthesizing strains 194 and K-205 were isolated from raw cow milk and kurunga from Buryatia. These strains had high antibiotic activity up to 3600 and 2700 IU mL-1 as compared to nisin and up to 2500-1700 IU mL-1 as compared to fungicidal antibiotic nistatin. In our experiments we used raw smoked sausages that were infected with fungi. The identification of this infection showed the presence of Eurotium repens de Bary on the sausages. Treatment of the raw smoked sausages with cultural broth of L.lactis ssp. lactis 194 and K-205 inhibited growth of these microorganisms. After treatment the sausages had longer shelf-life and was in accordance with basal production data (Russian State Standard Specification 16131-86. Conclusion: The results of this study indicated that the treatment with

  13. Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis.

    Science.gov (United States)

    Borrero, Juan; Jiménez, Juan J; Gútiez, Loreto; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2011-01-01

    Replacement of the signal peptide (SP) of the bacteriocins enterocin P (EntP) and hiracin JM79 (HirJM79), produced by Enterococcus faecium P13 and Enterococcus hirae DCH5, respectively, by the signal peptide of Usp45 (SP(usp45)), the major Sec-dependent protein secreted by Lactococcus lactis, permits the production, secretion, and functional expression of EntP and HirJM79 by L. lactis. Chimeric genes encoding the SP(usp45) fused to either mature EntP (entP), with or without the immunity gene (entiP) or to mature HirJM79 (hirJM79), with or without the immunity gene (hiriJM79), were cloned into the expression vector pMG36c, carrying the P(32) constitutive promoter, and into pNZ8048 under control of the inducible PnisA promoter. The production of EntP and HirJM79 by most of the L. lactis recombinant strains was 1.5- to 3.7-fold higher and up to 3.6-fold higher than by the E. faecium P13 and E. hirae DCH5 control strains, respectively. However, the specific antimicrobial activity of the recombinant EntP was 1.1- to 6.2-fold higher than that produced by E. faecium P13, while that of the HirJM79 was a 40% to an 89% of that produced by E. hirae DCH5. Chimeras of SP(usp45) fused to mature EntP or HirJM79 drive the production and secretion of these bacteriocins in L. lactis in the absence of specific immunity and secretion proteins. The supernatants of the recombinant L. lactis NZ9000 strains, producers of EntP, showed a much higher antimicrobial activity against Listeria spp. than that of the recombinant L. lactis NZ9000 derivatives, producers of HirJM79.

  14. 植物乳杆菌代谢产细菌素的培养基优化%Culture Medium Optimization of Lactobacillus Plantarum for Bacteriocin Production

    Institute of Scientific and Technical Information of China (English)

    佟世生; 解洛香; 徐乐; 胡涛; 刘萍

    2012-01-01

    In this paper, the culture medium of Lactobacillus plantarum for bacteriocin production was optimized. The results showed that the culture medium had an important effect on germ formation and production of bacteriocin, in which carbon source was significant Overall, 5% molasses, 0.5% yeast extract, 2% tryptone, 0.4% KH2PO4, 0.1% MgSO4-7H2O, 0.5% CaCO3, 0.05% MnSO4 and 0.3% Tween 80 were the optimal combination of culture medium.%本文对植物乳杆菌代谢产细菌素的培养基进行一系列优化.结果显示,不同培养基对菌株生长和细菌素产量有重要的影响,其中以碳源的影响最为显著.综合考虑,5%糖蜜、0.5%酵母膏、2%胰蛋白胨、0.4%KH2PO4、0.1%MgSO4·7H2O、0.5%CaCO3、0.05% MnSO4和0.3%吐温80是植物乳杆菌生长和代谢产细菌素的最优培养基组合.

  15. 广谱抗菌肽——片球菌素pediocin PA-1%Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria

    Institute of Scientific and Technical Information of China (English)

    吕燕妮

    2011-01-01

    Pediocin PA-1 is a broad-spectrum lactic acid bacteria bacteriocin that shows a particularly strong activity against Listeria monocytogenes, a foodborne pathogen of special concern among the food industrys. This antimicrobial peptide is the most extensively studied class Ⅱa bacteriocin, and it has been sufficiently well characterized to be used as a food biopreservative. This review focuses on the progress that have been made in the elucidations of its structure and mode of action, includes an overview of its applications in food systems. In the future, protein engineering, genetic engineering and chemical synthesis may lead to the development of new antimicrobial peptides with improved properties, based on some features of the pediocin PA-1 molecule.%片球菌素PA-1是一种广谱的乳酸菌细菌素,它对食品工业中的腐败菌单核细胞增生李斯特氏菌有强烈的抑制作用,是Ⅱa类细菌素中研究最深入的一种抗菌肽,具有很好的作为食品生物防腐剂开发的应用前景。对近年来关于片球菌素PA-1的结构、作用方式及在食品中的应用作一综述,并对其未来的应用前景,在蛋白质工程、基因工程和化学合成方面进行性质改进做出了展望。

  16. Three distinct two-component systems are involved in resistance to the class I bacteriocins, Nukacin ISK-1 and nisin A, in Staphylococcus aureus.

    Science.gov (United States)

    Kawada-Matsuo, Miki; Yoshida, Yuuma; Zendo, Takeshi; Nagao, Junichi; Oogai, Yuichi; Nakamura, Yasunori; Sonomoto, Kenji; Nakamura, Norifumi; Komatsuzawa, Hitoshi

    2013-01-01

    Staphylococcus aureus uses two-component systems (TCSs) to adapt to stressful environmental conditions. To colonize a host, S. aureus must resist bacteriocins produced by commensal bacteria. In a comprehensive analysis using individual TCS inactivation mutants, the inactivation of two TCSs, graRS and braRS, significantly increased the susceptibility to the class I bacteriocins, nukacin ISK-1 and nisin A, and inactivation of vraSR slightly increased the susceptibility to nukacin ISK-1. In addition, two ABC transporters (BraAB and VraDE) regulated by BraRS and one transporter (VraFG) regulated by GraRS were associated with resistance to nukacin ISK-1 and nisin A. We investigated the role of these three TCSs of S. aureus in co-culture with S. warneri, which produces nukacin ISK-1, and Lactococcus lactis, which produces nisin A. When co-cultured with S. warneri or L. lactis, the braRS mutant showed a significant decrease in its population compared with the wild-type, whereas the graRS and vraSR mutants showed slight decreases. Expression of vraDE was elevated significantly in S. aureus co-cultured with nisin A/nukacin ISK-1-producing strains. These results suggest that three distinct TCSs are involved in the resistance to nisin A and nukacin ISK-1. Additionally, braRS and its related transporters played a central role in S. aureus survival in co-culture with the strains producing nisin A and nukacin ISK-1.

  17. 和田地区酸奶中产细菌素乳酸菌的筛选及细菌素特性的研究%Screening of bacteriocin-producing lactic acid bacteria from Hetian yoghourt and characterization of the bacteriocin

    Institute of Scientific and Technical Information of China (English)

    王东梅; 刘飞; 马翠云; 陈红征

    2012-01-01

    从和田地区酸奶中筛选出了乳酸菌A3,其所产抑菌物质在排除过氧化氢和有机酸的干扰及蛋白酶失活实验后,可以初步确定是一种细菌素。该细菌素对热较稳定,在酸性条件下表现出很好的抑菌活性,同时具有广谱的抑菌活性。根据该菌株的形态和生理生化特性,将A3菌株初步鉴定为肠膜明串珠菌(Leuconostoc mesenteroides)。%The lactic acid bacteria A3 was isolated from Hetian yoghourt. The bacteriostasis material was determined as bacteriocin after excluding interference of organic acid, H202 and inactivation of proteinase. The bacteriocin had good heat stability and high antibacterial activity under acid conditions. It also had broad-spectrum effects on bacteriostasis. Through detection of its appearance, physiological and biochemical characteristics, A3 was identified as Leuconostoc mesenteroides.

  18. Eliminação da produção de bacteriocinas em Erwinia e Pseudomonas fitopatogênicas Elimination of bacteriocin production in the phytopathogenic bacteria Erwinia and Pseudomonas

    Directory of Open Access Journals (Sweden)

    C.M.R. de Biagi

    1995-04-01

    Full Text Available Duas linhagens de bactérias fitopatogênicas do gênero Pseudomonas e duas do gênero Erwinia produtoras de bacteriocinas, foram submetidas a diferentes tratamentos visando estimar a estabilidade desse caráter. Houve eliminação da produção de bacteriocinas após tratamento com duas concentrações de brometo de etídio e a porcentagem de eliminação variou com o hospedeiro e com a concentração da droga. Não houve eliminação em temperaturas elevadas e também a preservação da linhagem por três anos em laboratório não causou perda do caráter. A eliminação da produção de bacteriocinas com brometo de etídio sugere que os genes envolvidos tenham localização plasmidiana.Four strains, two from each of the plant pathogenic bacteria Pseudomonas and Erwinia, all producing bacteriocins, were submitted to different treatments in order to evaluate the persistance of bacteriocin production. After ethidium bromide treatment elimination of the bacteriocin production was achieved and the percentage of loss varied with the host strain and drug concentration. Elimination was not detected after treatment with high temperatures, above the normal ones. Also preservation of the strains for three years, in laboratory, did not cause elimination of the character. The curing of bacteriocin production after ethidium bromide treatment suggests that the involved genes are located in plasmids.

  19. Quorum sensing in class Ⅱ bacteriocin-producing lactic acid bacteria and its application - A review%产Ⅱ类细菌素乳酸菌群体感应及其应用

    Institute of Scientific and Technical Information of China (English)

    张香美; 李平兰

    2011-01-01

    群体感应( quorum sensing,QS)是微生物通过感知与细胞密度相关的信号分子的浓度来调控基因表达的一种行为.许多产Ⅱ类细菌素乳酸菌通过自诱导肽介导的QS系统调控其细菌素的合成.本文综述了乳酸菌Ⅱ类细菌素合成的QS调控现象、调控机制、QS系统组分以及QS的应用.产Ⅱ类细菌素乳酸菌QS的研究,必将为揭示发酵调控机理、调控发酵过程提供新的研究平台,为食品级基因表达系统的开发提供新的选择.%Quorum sensing ( QS) refers to the behavior of microorganisms to control gene expression through detection the concentration of certain signal molecules, which is correlated with cell density. In many class II bacteriocin-producing lactic acid bacteria ( LAB ) , bacteriocin production is regulated by peptide pheromones via a QS mechanism. We reviewed, QS regulated class II bacteriocin production in LAB and its regulation mechanism, components of the QS system, as well as the application of QS mechanism. The study of QS mechanism of class II bacteriocin-producing LAB may provide a new platform for revealing the mechanism of fermentation control and regulating fermentation process. It also offers an alternative to the exploitation of food grade gene expression system.

  20. Ⅱa类乳酸菌细菌素的异源表达研究进展%Research Advances in Heterologous Expression of Class Ⅱa Bacteriocins from Lactic Acid Bacteria

    Institute of Scientific and Technical Information of China (English)

    刘国荣; 孙勇; 李平兰

    2012-01-01

    Ⅱa类乳酸菌细菌素由于其对单核细胞增生李斯特菌的强烈抑菌活性,已成为天然食品防腐剂研究与开发的热点。但是受生物合成调控系统控制,天然细菌素的产量往往很低而且提取过程较为复杂,很难满足相关研究和实际应用的需求。为此,许多研究者进行过Ⅱa类细菌素的异源表达研究,本文对该类细菌素在大肠杆菌、乳酸菌以及酵母菌中的异源表达研究作较为全面系统的综述,并指出目前存在的主要问题及今后的研究方向。%Class Ⅱ a bacteriocins from lactic acid bacteria, which have a strong antibacterial activity against Listeria monocytogenes, have become a hot topic in the research and development of natural preservatives. However, the bacteriocins are always produced at very low levels under the control of the biosynthesis regulatory system and their extraction is very complex, which makes it very difficult to meet the demands for relevant studies and practical applications. For this reason, the heterog- enous expression of class Ⅱ a bacteriocins has been widely studied in recent years. This paper summarizes a comprehensive systematic review of recent studies on the heterogenous expression of the bacteriocins in E. coli, lactic acid bacteria and yeast and points out the current main problems and future research directions.

  1. Bacteriocin Antibacterial Activity Produced by Lactobacillus helveticus Isolated Jianchang Dry-cured Duck%瑞士乳杆菌产生的细菌素的抑菌活性研究

    Institute of Scientific and Technical Information of China (English)

    林巧

    2015-01-01

    The antibacterial activity of this experiment by studying bacteriocins produced by Lactobacillus helveticus was investigated at different temperatures, different pH, different types of enzymes on the antibacterial activity of bacteriocin. Results showed that: proteinase can be a certain extent the antibacterial activity of bacteriocin, trypsin inhibition of the strongest; the antibacterial activity of the bacteriocin on the temperature tolerance and strong, even after treated at 100 ℃ has antibacterial activity, the st rongest antibacterial activity when stored at-20℃;the bacterial factors pH of 1.5 to 4.0 with antibacterial activity and antibacterial activity of the strongest at pH 1.5.%主要通过研究对从建昌板鸭发酵过程中分离瑞士乳杆菌产生细菌素的抑菌活性,考察不同温度,不同pH,不同种类酶作用对细菌素抑菌活性的影响。结果证明:蛋白酶能一定程度抑制细菌素的抑菌活性,且胰蛋白酶的抑制程度最强;该细菌素的抑菌活性对温度的耐受力强,即使在100℃处理后仍具有抑菌活性,在-20℃条件下保存时抑菌活性最强;该细菌素pH在1.5~4.0时具有抑菌活性,在pH为1.5时抑菌活性最强。

  2. Study on Fermentation Condition of Lactobacillus on Producing Bacteriocin and Antibacterial Spectrum of Antibacterial Compounds%乳杆菌产细菌素的发酵条件及其抑菌谱的研究

    Institute of Scientific and Technical Information of China (English)

    陈忠军; 张保军; 于娜

    2013-01-01

    本研究以从内蒙古地区传统谷物发酵食品-酸粥中筛选出的产细菌素的乳杆菌为对象,对其产细菌素的发酵条件进行优化,并确定其抑菌谱。结果表明乳杆菌SZL-1的最佳发酵条件为:接种量7%,培养基起始pH 6.0,发酵时间24h,培养温度37℃。乳杆菌SZL-1产生的细菌素抑菌谱较广,对大多数革兰氏阴性和革兰氏阳性菌都有抑菌作用,但对酵母菌无抑菌作用。%The strains producing bacteriocin was screened from traditional grain fermentation food Acid-Gruel in Inner Mongolia. The fermentation condition of producing bacteriocin and antibacterial spectrum of antibacterial compounds was studied. By single factor experiments and orthogonal experiments , the fermentation condition for SZL-1 on production of bacteriocin was optimized. The result showed that the optimum inoculation quantity is 7%, initial pH was 6.0, culturing at 37℃ for 24 hours. Moreover bacteriocin produced by SZL-1 had obvious inhibit activity on antibacterial upon most of Gram-positive and Gram-negative bacteria , but no action on yeast. And antibacterial spectrum was wide.

  3. In situ production of pediocin PA-1 like bacteriocin by different genera of lactic acid bacteria in soymilk fermentation and evaluation of sensory properties of the fermented soy curd.

    Science.gov (United States)

    Devi, Sundru Manjulata; Ramaswamy, Asha Mysore; Halami, Prakash M

    2014-11-01

    The lactic acid bacteria (LAB) are found to produce bacteriocins with enhanced nutritive properties in the fermented foods. In the present study, the ability of LAB cultures (Pediococcus acidilactici NCIM 5424, Enterococcus faecium NCIM 5423 and Lactobacillus plantarum Acr2) to produce pediocin PA-1 like bacteriocin was evaluated during soymilk fermentation. The isolates E. faecium NCIM 5423 and Lb. plantarum Acr2 were able to produce bacteriocin as well as ferment soymilk within 6 h of incubation. Upon plating the cultures E. faecium NCIM 5423 and Lb. plantarum Acr2 in soymilk were found to be viable even after 15 days of storage at 4 °C. No significant variation was observed in the viable counts of E. faecium NCIM 5423 and Lb. plantarum Acr2 (P>0.05). The effect of crude bacteriocin on Listeria cells was evidenced through scanning electron microscope (SEM) photographs wherein cell membrane damage was observed. On co-cultivation of E. faecium NCIM 5423 and Lb. plantarum Acr2 individually with Listeria monocytogenes ScottA a decrease in the Listeria count was observed within 24 h of incubation. However, during co-cultivation of ScottA with P. acidilactici NCIM 5424, no significant difference was observed in the viable counts (P>0.05). The pH, titratable acidity, pediocin activity, anti-oxidant property and sensory attributes for E. faecium NCIM 5423 were studied. It was observed that E. faecium NCIM 5423 fermented soymilk had an acceptable sensory score during storage period. Hence, such culture can be an ideal starter for development of functional foods with longer shelf life.

  4. pH对费氏丙酸杆菌细菌素抑菌性的影响%Effect of pH on Antimicrobial Activity of Propionibacterium freudenreichii Bacteriocins

    Institute of Scientific and Technical Information of China (English)

    郑丽雪; 郭晨; 谢建松; 唐亚进; 王立梅; 齐斌

    2016-01-01

    以实验室保存的一株费氏丙酸杆菌CS1420(Propionibacterium freudenreichii CS1420)为试验菌株。首先考察了不同初始pH下对其发酵产细菌素的影响。结果表明:以大肠杆菌ATCC25922为指示菌,当培养基初始pH为6.0时,细菌素抑菌效果最好;以Saccharomyces cerevisiae 2-10515为指示菌,当培养基初始pH为5.5时,细菌素抑菌效果最好。然后用丙酸调节细菌素粗提物的pH进行抑菌试验,结果表明,pH对粗提得到的细菌素抑菌性影响很大,当用丙酸将细菌素溶液的pH调至5.5时,细菌素的抑菌活性有显著提高。%Propionibacterium freudenreichii CS1420 was as experimental strains. Firstly,the effects of different pH on fermentation of Propionibacterium freudenreichii Bacteriocins were investigated. The result showed:the antimicrobial activity were best by using Eoli ATCC25922 as indicator strains when the medium initial pH was 6.0,the antimicrobial activity were best by using Saccharomyces cerevisiae 2-10515 as indicator strains when the medium initial pH was 5.5. Then,bacteriocins crude extract pH were adjusted and then bacteriostatic exper-iments were carried out. The result showed:the effect of pH on crude extract bacteriocins was tremendous. The antimicrobial activity of bacteriocins improved significantly when crude extract bacteriocins solution pH were adjusted 5.5 with propionic acid.

  5. Cell-free supernatants obtained from fermentation of cheese whey hydrolyzates and phenylpyruvic acid by Lactobacillus plantarum as a source of antimicrobial compounds, bacteriocins, and natural aromas.

    Science.gov (United States)

    Rodríguez-Pazo, Noelia; Vázquez-Araújo, Laura; Pérez-Rodríguez, Noelia; Cortés-Diéguez, Sandra; Domínguez, José Manuel

    2013-10-01

    Cheese whey hydrolyzates supplemented with phenylpyruvic acid (PPA) and commercial nutrients can be efficiently metabolized by Lactobacillus plantarum CECT-221 to biosynthesize some compounds with attractive applications in the food market. The main metabolites of cell-free extracts were antimicrobial compounds such as phenyllactic acid (PLA) and lactic acid (LA). The production of PLA by L. plantarum CECT-221 was evaluated in the Man-Rogosa-Sharpe broth supplemented with two biosynthetic precursors: phenylalanine or PPA. Using 30.5 mM PPA, the microorganism increased sevenfold the concentration of PLA producing 16.4 mM PLA in 46 h. A concentration of 40 mM PPA was a threshold to avoid substrate inhibition. The biosynthesis of whey hydrolyzates as a carbon source was enhanced by fed-batch fermentation of PPA; the average productivity of PLA increased up to 45.4 ± 3.02 mM after 120 h with a product yield of 0.244 mM mM(-1); meanwhile, LA reached 26.1 ± 1.3 g L(-1) with a product yield of 0.72 g g(-1). Cell-free fed-batch extracts charged in wells showed bacteriocin activity with halos of 7.49 ± 1.44 mm in plates inoculated with Carnobacterium piscicola and antimicrobial activity against Staphylococcus aureus (11.54 ± 1.14 mm), Pseudomonas aeruginosa (10.17 ± 2.46 mm), Listeria monocytogenes (7.75 ± 1.31 mm), and Salmonella enterica (3.60 ± 1.52 mm). Additionally, the analysis of the volatile composition of the headspace of this cell-free extract revealed that L. plantarum is a potential producer for natural aromas, such as acetophenone, with high price in the market. This is the first report of PLA production from cheese whey and PPA. The extracts showed bacteriocin activity and potential to be applied as an antimicrobial in the elaboration of safer foods.

  6. Anti-Listeria monocytogenes bacteriocin-like inhibitory substances from Enterococcus faecium UQ31 isolated from artisan Mexican-style cheese.

    Science.gov (United States)

    Alvarado, C; García-Almendárez, B E; Martin, S E; Regalado, C

    2005-08-01

    Artisan fresh Mexican-style cheeses are commonly made from raw milk that provides not only rich flavors, but also a diversity of associated lactic acid bacteria (LAB) strains. Enterococcus faecium UQ31 was isolated from panela cheese and produced bacteriocin-like inhibitory substances (BLIS) with a strong anti-Listeria activity. A modified pH-mediated adsorption-desorption purification process resulted in (after SDS-PAGE) two bands showing antimicrobial activities, where most of the activity corresponded to the band with an estimated molecular weight of 7.5 kDa. The BLIS produced by E. faecium UQ31 were heat resistant, stable at ambient storage conditions, and active in the pH range 5--9. The BLIS antimicrobial activities were detected during logarithmic growth phase and remained constant until the end of incubation time (19 h). These BLIS showed a wide anti-Listeria monocytogenes spectra. The E. faecium UQ31 strain or their BLIS represent a promising potential as antimicrobial food preservatives.

  7. Partial Purification and Characterization of the Mode of Action of Enterocin S37: A Bacteriocin Produced by Enterococcus faecalis S37 Isolated from Poultry Feces

    Directory of Open Access Journals (Sweden)

    Y. Belguesmia

    2010-01-01

    Full Text Available The aim of this research was to purify and characterize the mode of action of enterocin S37, a bacteriocin produced by Enterococcus faecalis S37, a strain recently isolated from the chicken feces. Enterocin S37 has a molecular weight comprised between 4 and 5 kDa. It remained active after 1 h at 80oC and at pH values ranging from 4.0 to 9.0. Furthermore, cell-free supernatant of Enterococcus faecalis S37 and purified enterocin S37 were active against Gram-positive bacteria including Listeria monocytogenes EGDe, L. innocua F, Enterococcus faecalis JH2-2, and Lactobacillus brevis F145. The purification of enterocin S37 was performed by ammonium sulfate precipitation followed up by hydrophobic-interaction chromatography procedures. Treatment of enterocin S37 with proteinase K, -chymotrypsin, and papain confirmed its proteinaceous nature, while its treatment with lysozyme and lipase resulted in no alteration of activity. Enterocin S37 is hydrophobic, anti-Listeria and likely acting by depletion of intracellular K+ ions upon action on KATP channels. This study contributed to gain more insights into the mode of action of enterocins.

  8. Genomic and Proteomic Characterization of Bacteriocin-Producing Leuconostoc mesenteroides Strains Isolated from Raw Camel Milk in Two Southwest Algerian Arid Zones

    Directory of Open Access Journals (Sweden)

    Zineb Benmechernene

    2014-01-01

    Full Text Available Information on the microbiology of camel milk is very limited. In this work, the genetic characterization and proteomic identification of 13 putative producing bacteriocin Leuconostoc strains exhibiting antilisterial activity and isolated from camel milk were performed. DNA sequencing of the 13 selected strains revealed high homology among the 16S rRNA genes for all strains. In addition, 99% homology with Leuconostoc mesenteroides was observed when these sequences were analysed by the BLAST tool against other sequences from reference strains deposited in the Genbank. Furthermore, the isolates were characterized by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDITOF MS which allowed for the identification of 2 mass peaks 6242 m/z and 5118 m/z that resulted to be specific to the species L. mesenteroides. Remarkably, the phyloproteomic tree provided more intraspecific information of L. mesenteroides than phylogenetic analysis. Accordingly, phyloproteomic analysis grouped L. mesenteroides strains into different subbranches, while all L. mesenteroides isolates were grouped in the same branch according to phylogenetic analysis. This study represents, to our knowledge, the first report on the use of MALDI-TOF MS on the identification of LAB isolated from camel milk.

  9. Partial Purification and Characterization of the Mode of Action of Enterocin S37: A Bacteriocin Produced by Enterococcus faecalis S37 Isolated from Poultry Feces

    Science.gov (United States)

    Belguesmia, Y.; Choiset, Y.; Prévost, H.; Dalgalarrondo, M.; Chobert, J.-M.; Drider, D.

    2010-01-01

    The aim of this research was to purify and characterize the mode of action of enterocin S37, a bacteriocin produced by Enterococcus faecalis S37, a strain recently isolated from the chicken feces. Enterocin S37 has a molecular weight comprised between 4 and 5 kDa. It remained active after 1 h at 80oC and at pH values ranging from 4.0 to 9.0. Furthermore, cell-free supernatant of Enterococcus faecalis S37 and purified enterocin S37 were active against Gram-positive bacteria including Listeria monocytogenes EGDe, L. innocua F, Enterococcus faecalis JH2-2, and Lactobacillus brevis F145. The purification of enterocin S37 was performed by ammonium sulfate precipitation followed up by hydrophobic-interaction chromatography procedures. Treatment of enterocin S37 with proteinase K, α-chymotrypsin, and papain confirmed its proteinaceous nature, while its treatment with lysozyme and lipase resulted in no alteration of activity. Enterocin S37 is hydrophobic, anti-Listeria and likely acting by depletion of intracellular K+ ions upon action on KATP channels. This study contributed to gain more insights into the mode of action of enterocins. PMID:20811593

  10. Isolation of Pediococcus acidilactici Kp10 with ability to secrete bacteriocin-like inhibitory substance from milk products for applications in food industry

    Directory of Open Access Journals (Sweden)

    Abbasiliasi Sahar

    2012-11-01

    Full Text Available Abstract Background Lactic acid bacteria (LAB can be isolated from traditional milk products. LAB that secrete substances that inhibit pathogenic bacteria and are resistant to acid, bile, and pepsin but not vancomycin may have potential in food applications. Results LAB isolated from a range of traditional fermented products were screened for the production of bacteriocin-like inhibitory substances. A total of 222 LAB strains were isolated from fermented milk products in the form of fresh curds, dried curds, and ghara (a traditional flavor enhancer prepared from whey, and fermented cocoa bean. Eleven LAB isolates that produced antimicrobial substances were identified as Lactococcus lactis, Lactobacillus plantarum, and Pediococcus acidilactici strains by biochemical methods and 16S rDNA gene sequencing. Of these, the cell-free supernatant of Kp10 (P. acidilactici most strongly inhibited Listeria monocytogenes. Further analysis identified the antimicrobial substance produced by Kp10 as proteinaceous in nature and active over a wide pH range. Kp10 (P. acidilactici was found to be catalase-negative, able to produce β-galactosidase, resistant to bile salts (0.3% and acidic conditions (pH 3, and susceptible to most antibiotics. Conclusion Traditionally prepared fermented milk products are good sources of LAB with characteristics suitable for industrial applications. The isolate Kp10 (P. acidilactici shows potential for the production of probiotic and functional foods.

  11. Molecular Occurrence of Enterocin A Gene among Enterococcus faecium Strains Isolated from Gastro-Intestinal Tract and Antimicrobial Effect of this Bacteriocin Against Clinical Pathogens

    Directory of Open Access Journals (Sweden)

    Mitra Salehi

    2014-06-01

    Materials and Methods: In this study occurrence of class II enterocin structural gene (enterocin A in a target of 42 Enterococcus faecium strains, isolated from gastrointestinal tract of animal have been surveyed. E. faecium identification and occurrence of enterocin A gene was performed by PCR method. Cell-free neutralized supernatant of gene positive strains was used to test bacteriocin production and antimicrobial spectrum of supernatant was assayed by wall diffusion method on the gram-positive and negative indicators bacteriaResults: Based on our results, 73.8% of isolated strains had enterocin A gene that they inhibited growth of indicator bacteria such as clinical strain of Pseudomonas aeruginosa, Salmonella enteric PTCC1709, Listeria monocytogenes, Bacillus cereus and Bacillus subtilis.Conclusions: Studied enterocins have growth inhibitory spectrum on Gram-positive and Gram-negative bacteria especially against pathogenic bacteria in the gastrointestinal tract. Therefore, these strains have the potential to explore and use as, alternative antimicrobial compound and bio-preservatives in food or feed or as probiotics.

  12. Microbial stability and safety of traditional Greek Graviera cheese: characterization of the lactic acid bacterial flora and culture-independent detection of bacteriocin genes in the ripened cheeses and their microbial consortia.

    Science.gov (United States)

    Samelis, John; Kakouri, Athanasia; Pappa, Eleni C; Matijasić, Bojana Bogovic; Georgalaki, Marina D; Tsakalidou, Effie; Rogelj, Andirena

    2010-07-01

    The microflora of four batches of traditional Greek Graviera cheese was studied at 5 weeks of ripening, and 200 lactic acid bacteria (LAB) isolates were phenotypically characterized and screened for antilisterial bacteriocins. The cheeses were also analyzed for organic acids by high-performance liquid chromatography and for the potential presence of 25 known LAB bacteriocin genes directly in cheese and their microbial consortia by PCR. All batches were safe according to the European Union regulatory criteria for Listeria monocytogenes, Salmonella, enterobacteria, and coagulase-positive staphylococci. The cheese flora was dominated by nonstarter Lactobacillus casei/paracasei (67.5%) and Lactobacillus plantarum (16.3%) strains, whereas few Streptococcus thermophilus (3.8%), Lactococcus lactis subsp. lactis (0.6%), and Leuconostoc (1.9%) organisms were present. Enterococcus faecium (9.4%) and Enterococcus durans (0.6%) were isolated among the dominant LAB from two batches; however, enterococci were present in all batches at 10- to 100-fold lower populations than mesophilic lactobacilli. Sixteen E. faecium isolates produced antilisterial enterocins. In accordance, enterocin B gene was detectable in all cheeses and enterocin P gene was present in one cheese, whereas the consortia of all cheeses contained at least two of the enterocin A, B, P, 31, L50A, and L50B genes. Plantaricin A gene was also amplified from all cheeses. Mean concentrations of lactic, acetic, citric, and propionic acids in the ripened cheeses exceeded 1.5% in total, of which approximately 0.9% was lactate. Thus, organic acid contents constitute an important hurdle factor for inhibiting growth of pathogens in traditional Graviera cheese products, with LAB bacteriocins, mainly enterocins, potentially contributing to increased cheese safety.

  13. Research Antifungal Activity on Bacteriocin Produced by Lactic Acid Bacteria from Traditional Sour Cabbage%传统酸菜中具有抗真菌特性乳酸菌素的研究

    Institute of Scientific and Technical Information of China (English)

    李传娟; 双全; 栗永乐; 萨如拉; 桑木信辅; 琢田爱

    2012-01-01

    The antibacterial ability of lactic acid bacteria (LAB), which isolated from the sour cabbage juice prepared by herdsman in the east Inner Mogolia Region, were determined by Plate punch diffusion method, and the extracellulary bacteriocins of one screening strain was partial purified by gel filtration Sephadex G-15, and its biochemical characteristics were assessed in vitro. The results showed that strain S1-4 of LAB, which was screened out from 84 tested strains, had a broad spectrum antibacterial fungi property. Purified extracellulary bacteriocins from strain S1-4 was characterised as a proteinaceous substance. This bacteriocins compound, molecular mass ranged from 6.5 kDa to 8 kDa, has thermal stability and acid tolerance with an optimum antibacterial ability at pH 4.0.%通过平板打孔扩散法测定从内蒙古东部地区传统酸菜汁中分离的乳酸菌(LAB)的抑菌能力,再用葡聚糖凝胶G-15对筛选乳酸菌的胞外细菌素进行分离及特性研究。结果显示,84株供试乳酸菌中筛选出1株具有广谱抗真菌能力的乳酸菌S1-4。该乳酸菌所产生的胞外抑菌素属蛋白类物质,具有热稳定和耐酸特性,在pH4.0时抑菌效果最佳,其分子量约为6.5KDa~8kDa。

  14. Study on Biofilm Inhibit Mechanism of Streptococcus Sanguis Bacteriocin on Candida Albicans.%血链球菌细菌素对白色念珠菌生物膜抑制作用的研究

    Institute of Scientific and Technical Information of China (English)

    马晟利; 王琪波; 李旭明

    2011-01-01

    Objective: To extract bacteriocin effective antimicrobial substances the standard strains of Streptococcus sanguis ATCC10556 and to study the action mechanism of Streptococcus sanguis bacteriocin on Candida albicans biofilms. Methods.. By ultrasonic, salt precipitation and sephadex G-25 column desalting through dialysis, sanguicin of the streptococcus bacteria isolated elements, the Candida albicans biofilms. After 2h, 6h, 12h, 24h, 48h, 72h,changes observed in BF. Results: After 24h, Candida albicans biofilms changed significantly, then was 12h. Conclusion: Streptococcus sanguis bacteriocin biofilms of Candida albicans strains were significantly inhibited.%目的:提取血链球菌标准株ATCC10556的有效抗菌物质细菌素,进一步研究血链球菌细菌素对白色念珠菌生物膜的作用机理.方法:通过超声破碎、盐析、sephadex G-25过柱脱盐、透析、浓缩的方法分离血链球菌细菌素,使之作用于白色念珠菌生物膜,并在2 h、6 h、12 h、24 h、48 h、72 h观察白色念珠菌生物膜厚度的变化.结果:24 h内白色念珠菌生物膜厚度有明显改变,12 h效果最为显著.结论:血链球菌细菌素对白色念株菌生物膜具有显著的抑制作用.

  15. Screening of anti-Listeria bacteriocin of lactic acid bacteria and its physicochemical characteristics%乳酸菌中抗李斯特细菌素的筛选及理化性质分析

    Institute of Scientific and Technical Information of China (English)

    张红星; 刘丽; 刘慧; 谢远红; 陈湘宁

    2011-01-01

    Strain Y153,isolated from fish balls,produced antimicrobial substance which was inhibitory to Listeria monocytogenes 54003. Strain Y153 was identified as Streptococcus by using 16S rRNA gene sequence homology analysis. After eliminating the effect of organic acid and hydrogen peroxide,the antimicrobial substance with its proteinaceous nature was confirmed as bacteriocin. Bacteriocin Y153 was heat-stable and remained activity after incubation at a wide pH. It could be degraded by proteases existing in the human body. A preliminary study on the bacteriocin producted by Streptococcus strain Y153 had been made to lay the basis for the development of natural food preservative.%从鱼肉丸中分离筛选到1株具有抑菌活性的乳酸菌菌株Y153,对单核细胞增生李斯特菌ATCC54003的生长具有良好的抑制作用。16SrRNA序列同源性分析鉴定乳酸菌Y153为乳酸链球菌属(Streptococcus)。在排除有机酸、过氧化氢的干扰后,确定该抑菌物质为蛋白类物质,即细菌素,命名为细菌素Y153。理化性质分析表明,细菌素Y153具有较好的热稳定性、酸碱稳定性可被人体内蛋白酶降解的特性。由此对乳酸链球菌所产细菌素Y153有了初步的研究,为开发天然的食品防腐剂奠定理论基础。

  16. Optimization of bacteriocin production by Lactobacillus plantarum 8-6%植物乳杆菌(Lactobacillus plantarum)8-6产细菌素发酵条件的优化

    Institute of Scientific and Technical Information of China (English)

    李亚; 谈重芳; 王雁萍; 李宗伟

    2012-01-01

    Fermentation conditions of bacteriocin produced by Lactobacillus plantamm 8-6 were optimized. Effects of culture time, temperature, inoculum, initial pH value, carbon source and nitrogen on bacteriocin production were studied. The optimum media composition and fermentation conditions were obtained by single-factor and orthogonal experiments as follows: glucose 3%, tryptone 1.5%, peptone 1.5%, yeast extract 1%, magnesium sulfate 0.058%, tween-80 0.2%, culture temperature 30°C, culture time 28h, initial pH value 6.5 and inoculum 2%. Under the above conditions, the production of bacteriocin was 1825.56 IU/ml, which increased by 373.15% compared to that before optimization.%对植物乳杆菌(Lactobacillus plantarum) 8-6产细菌素的发酵条件进行了优化,分别研究了培养时间、温度、接种量、培养基起始pH值、培养基碳源、氮源等因素对细菌素产生的影响,通过单因素水平试验和正交试验,确定产细菌素的最佳培养基组合和最佳发酵条件为葡萄糖3%,胰蛋白胨2%,蛋白胨1%,酵母膏1%,硫酸镁0.058%,吐温-80 0.2%,30℃培养24h,培养基起始pH值为6.5,接种量2%.乳杆菌8-6优化后效价为1825.56IU/mL,比优化前提高了373.15%.

  17. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0.

    Science.gov (United States)

    Marugg, J D; Gonzalez, C F; Kunka, B S; Ledeboer, A M; Pucci, M J; Toonen, M Y; Walker, S A; Zoetmulder, L C; Vandenbergh, P A

    1992-01-01

    The production of pediocin PA-1, a small heat-stable bacteriocin, is associated with the presence of the 9.4-kbp plasmid pSRQ11 in Pediococcus acidilactici PAC1.0. It was shown by subcloning of pSRQ11 in Escherichia coli cloning vectors that pediocin PA-1 is produced and, most probably, secreted by E. coli cells. Deletion analysis showed that a 5.6-kbp SalI-EcoRI fragment derived from pSRQ11 is required for pediocin PA-1 production. Nucleotide sequence analysis of this 5.6-kbp fragment indicated the presence of four clustered open reading frames (pedA, pedB, pedC, and pedD). The pedA gene encodes a 62-amino-acid precursor of pediocin PA-1, as the predicted amino acid residues 19 to 62 correspond entirely to the amino acid sequence of the purified pediocin PA-1. Introduction of a mutation in pedA resulted in a complete loss of pediocin production. The pedB and pedC genes, encoding proteins of 112 and 174 amino acid residues, respectively, are located directly downstream of the pediocin structural gene. Functions could not be assigned to their gene products; mutation analysis showed that the PedB protein is not involved in pediocin PA-1 production. The mutation analysis further revealed that the fourth gene, pedD, specifying a relatively large protein of 724 amino acids, is required for pediocin PA-1 production in E. coli. The predicted pedD protein shows strong similarities to several ATP-dependent transport proteins, including the E. coli hemolysin secretion protein HlyB and the ComA protein, which is required for competence induction for genetic transformation in Streptococcus pneumoniae.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1514784

  18. Bacteriocin protein BacL1 of Enterococcus faecalis targets cell division loci and specifically recognizes L-Ala2-cross-bridged peptidoglycan.

    Science.gov (United States)

    Kurushima, Jun; Nakane, Daisuke; Nishizaka, Takayuki; Tomita, Haruyoshi

    2015-01-01

    Bacteriocin 41 (Bac41) is produced from clinical isolates of Enterococcus faecalis and consists of two extracellular proteins, BacL1 and BacA. We previously reported that BacL1 protein (595 amino acids, 64.5 kDa) is a bacteriolytic peptidoglycan D-isoglutamyl-L-lysine endopeptidase that induces cell lysis of E. faecalis when an accessory factor, BacA, is copresent. However, the target of BacL1 remains unknown. In this study, we investigated the targeting specificity of BacL1. Fluorescence microscopy analysis using fluorescent dye-conjugated recombinant protein demonstrated that BacL1 specifically localized at the cell division-associated site, including the equatorial ring, division septum, and nascent cell wall, on the cell surface of target E. faecalis cells. This specific targeting was dependent on the triple repeat of the SH3 domain located in the region from amino acid 329 to 590 of BacL1. Repression of cell growth due to the stationary state of the growth phase or to treatment with bacteriostatic antibiotics rescued bacteria from the bacteriolytic activity of BacL1 and BacA. The static growth state also abolished the binding and targeting of BacL1 to the cell division-associated site. Furthermore, the targeting of BacL1 was detectable among Gram-positive bacteria with an L-Ala-L-Ala-cross-bridging peptidoglycan, including E. faecalis, Streptococcus pyogenes, or Streptococcus pneumoniae, but not among bacteria with alternate peptidoglycan structures, such as Enterococcus faecium, Enterococcus hirae, Staphylococcus aureus, or Listeria monocytogenes. These data suggest that BacL1 specifically targets the L-Ala-L-Ala-cross-bridged peptidoglycan and potentially lyses the E. faecalis cells during cell division.

  19. Screening the Best Fermentation Conditions of Bacteriocin Produced by Leuconostoc mesenteroides%肠膜明串珠菌产细菌素最适发酵条件的筛选

    Institute of Scientific and Technical Information of China (English)

    王琳琳; 郑一敏; 杨宇清; 胡杨; 胥秀英; 傅善权

    2011-01-01

    为获得肠膜明串珠茵产细茵素的最佳发酵条件,采用琼脂扩散法测定发酵液对革兰氏阳性细菌、革兰氏阴性细菌的抑菌活性,结果发现:产细茵素的最佳培养基是MRS培养基,最适起始pH值为6.4,最适接种的体积分数和接种种龄分别为3%和24 h,产细菌素最适发酵温度和时间分别为30℃和24 h.通过优化发酵条件提高了细菌素的产量.%Objective: To obtain the optimal fermentation conditions of hacteriocin produced by Leuconostoc mesenteroides strain. Method: The antibacterial activity of the fermentation liquid against Gram-positive bacteria and Gram-negative bacteria was tested by the method of agar diffusion assay. Results: MRS was shown to be more suitable for producing bacteriocin than 108 #. The optimum initial pH, inoculation amount. seed age and fermentation temperature and time were 6. 5, 3%, 24 hours and 30 ℃ and 24 hours, respectively. Conclusion: The optimization of fermentation conditions improved bacteriocin production by L. mesenteroides.

  20. 不同破碎方法提取嗜酸乳杆菌细菌素的研究%Study on bacteriocin extracted by different cell disruption methods

    Institute of Scientific and Technical Information of China (English)

    张帅

    2013-01-01

    Bacteriocin was seperated and got after the cell of Lactobacillus acidophilus was disrupted by the microwave test,bead mill test,ultrasonication,freezing and thawing test,and quartz sand grinding test.The better physical method of the cell disruption was studied by the bacteriostatic activity of bacteriocin.The result showed that the diameter of inhibition zone by ultrasonication was the largest,which was 20.94 mm,so the effect of the cell disruption was best.%采用微波法、珠磨法、超声波法、反复冻融法、石英砂研磨法分别对嗜酸乳杆菌进行细胞破碎分离细菌素,通过研究嗜酸乳杆菌产细菌素抑菌活性来确定最佳细胞破碎物理方法.结果表明,超声波破碎法抑菌圈直径最大,为20.94 mm,细胞破碎效果最好.

  1. Screening of bacteriocin-producing lactic acid bacteria in hogormag from Xinjiang and study on its bacteriostatic activity%新疆酸驼乳中细菌素乳酸菌的筛选及其抑菌性

    Institute of Scientific and Technical Information of China (English)

    武运; 李远; 王冰峰; 张晓燕; 阿伊古扎丽; 巴吐尔

    2011-01-01

    From 23 strains of lactic acid bacteria isolated from Hazakh traditional fermented camel milk, 9 Strains were screened out to exhibit inhibitory activity on S. aureus, B. subtilis and E. coli by doubledeck agar diffusion and punch methods. One strain of MLS5 exhibits the strongest antibacterial activity. The antimicrobial substance produced by MLS5 was initially identified as protein bacteriocin by inhib itive effect of organic acids and hydrogen peroxide exclusion and protease susceptibility test. Temperature and pH tolerance test showed that the bacteriocin still has thermal stability at 121 ℃ for 20 minutes and antibacterial activity at pH 3 ~ 6. Fermentation curve of strain MLS5 showed that the strain was capacity of producing bacteriocin and acid at the temperature of 37 ℃. The bacteriocin was generated from mid-logarithmic growth phase and reached the maximum activity at stationary phase. The inhibitory spectrum results showed that the bacteriocin produced by MLS5 exhibits broad antibacterial spectrum. It can not only inhibit the Gram-positive bacteria, but also inhibit E. coli and Mucor.%通过双层琼脂扩散打孔法,从新疆哈萨克族传统发酵酸驼乳中分离的23株乳酸菌中,筛选出9株对金黄色葡萄球菌、枯草芽孢杆菌和大肠杆菌具有抑菌活性的菌株(其中茵株MLS5抑菌活性最强).通过有机酸、过氧化氢抑茵的排除试验和蛋白酶敏感性试验,初步确定MLS5产生的抑茵物质为蛋白质类细菌素.温度和pH耐受试验表明,该细菌素具有良好的热稳定性(121℃,20 min),pH 3~6具有抑茵活性.菌株MLS5的发酵曲线表明,菌株在37℃培养条件下具有良好的产细菌素和产酸能力,该细茵素在茵体生长对数中期产生,在生长稳定期抑茵活性达到最大.经抑茵谱试验表明,MLS5所产细菌素不仅能抑制革兰氏阳性细茵,而且对大肠杆菌和毛霉菌也有抑制作用,具有较广的抑茵谱.

  2. 变形链球菌ComCDE密度感应参与不同菌种的竞争%Quorum sensing system is involved in bacteriocin production and bacterial competition of Streptococcus mutans

    Institute of Scientific and Technical Information of China (English)

    张恺; 凌均棨; 刘佳; 霍丽珺; 麦俊妮

    2012-01-01

    目的 研究口腔变形链球菌( S.mutans )ComCDE密度感应系统参与血链球菌(S.sanguinis)的相互竞争作用.方法 采用LIVE\\DEAD BacLightTM荧光染色结合激光共聚焦显微镜,观察变形链球菌(简称变链菌)在CSP信号肽诱导下群体细菌自身死亡变化;通过荧光定量反转录聚合酶链反应(RT-PCR)测定细菌素以及细菌素免疫蛋白相关基因表达变化,分析变链菌ComCDE系统参与菌群生存竞争的调控机制.结果 在细菌竞争中,变形链球菌△comC、△comD 、△comE突变株失去不同菌种间的竞争力,无法抑制相邻Ssanguinis的正常生长;只有野生株保持竞争力,抑制相邻S.sanguinis生长,形成缺陷菌环.CSP信号肽诱导下,变链菌群体死菌/活菌率增高58.1%(P<0.05);细菌素及免疫蛋白相关SMU.151、SMU.423、SMU.1913c基因分别升高23.3倍(P=0.00)、15.9倍(P<0.05)、19.3倍(P<0.05).结论 变形链球菌ComCDE密度感应系统调控变链菌的变链素及免疫蛋白产生、参与不同菌种间竞争生存.%Objective To study the role of ComCDE quorum sensing system of Streptococcus mutans (S.mutans) in bacteriocin production and bacterial competition.Methods Growth competition between S.mutans and Streptococcus sanguis (S.sanguis) was analyzed through the bacterial competition assay.Cellular growth and death of S.mutans with and without CSP peptide was monitored by using the laser confocal microscopy and LIVE/DEAD BacLightTM staining.Bacteriocin and bacteriocin immunity protein related gene expression was determined by real-time RT-PCR.Results Competition assay showed that S.mutans △comC,△comD,and △comE mutant lost the ability of competition,and they could not suppress the normal growth of S.sanguinis,while S.mutans UA159 wild type strain inhibited the normal growth of the adjacent S.sanguinis.In the presence of CSP peptide,the ratio of Dead/live cells of S.mutans UA159 was increased 58.1% (P < 0.05),and

  3. 一株从酸菜中分离的产细菌素乳杆菌的鉴定及其所产抑菌物质的研究%Identification and study on bacteriocin-producing Lactobacillus screened from Sauerkraut

    Institute of Scientific and Technical Information of China (English)

    牛爱地; 韩建春

    2009-01-01

    A lactic acid bacteria A_5 strain was isolated from the sauerkraut. The results showed that the supernatant of A_5 strain was sensitive with pepsin and papain, the inhibitory material of A_5 strain was a kind of protein, which could be classed as bacteriocin. The bacteriocin had the strong heat endurance, and it still had the strong bacteriostatic activity at 121 ℃, 20 min. The bacteriocin had the strong bacteriostatic activity in pH 3.0-5.0. The bacteriocin showed inhibition to some gram-positive and gram-negative bacteria. Therefore, it was a kind of bacteriocin with broad-spectrum antimicrobial activity.%从酸菜汁中分离出一株有抑菌活性的菌株,经鉴定为乳杆菌A_5.温度、pH对菌株发酵上清液的影响以及发酵上清液对酶的敏感性的研究表明,发酵上清液中的抑菌物质对胃蛋白酶、木瓜蛋白酶较敏感,说明抑菌物质是一种蛋白质,确定为细菌素.该细菌素具有良好的热稳定性,在121℃20 min的高温条件下,仍具有较强的抑菌活性.菌株所产细菌素在酸性条件下有较强的抑菌活性(pH 3.0~5.0);菌株产生的细菌素可以较好地抑制革兰氏阳性、阴性菌,表明菌株所产细菌素是一类具有广谱抑菌活性的细菌素.

  4. Bacteriocin-like activity of oral Fusobacterium nucleatum isolated from human and non-human primates Atividade semelhante a bacteriocina de Fusobacterium nucleatum orais isolados de primatas humanos e não-humanos

    Directory of Open Access Journals (Sweden)

    Elerson Gaetti-Jardim Júnior

    1999-12-01

    Full Text Available Fusobacterium nucleatum is indigenous of the human oral cavity and has been involved in different infectious processes. The production of bacteriocin-like substances may be important in regulation of bacterial microbiota in oral cavity. The ability to produce bacteriocin-like substances by 80 oral F. nucleatum isolates obtained from periodontal patients, healthy individuals and Cebus apella monkeys, was examinated. 17.5% of all tested isolates showed auto-antagonism and 78.8% iso- or hetero-antagonism. No isolate from monkey was capable to produce auto-inhibition. In this study, the antagonistic substances production was variable in all tested isolates. Most of the F. nucleatum showed antagonistic activity against tested reference strains. These data suggest a possible participation of these substances on the oral microbial ecology in humans and animals. However, the role of bacteriocins in regulating dental plaque microbiota in vivo is discussed.Fusobacterium nucleatum é indígena da cavidade oral humana e tem sido envolvido em diferentes processos infecciosos. A produção de substâncias semelhantes a bacteriocinas pode ser importante na regulação da microbiota bacteriana da cavidade oral. A capacidade de produzir substâncias tipo bacteriocina de 80 isolados de F. nucleatum orais, obtidos de pacientes com doença periodontal, indivíduos sadios e macaco Cebus apella, foi avaliada. 17,5% de todos os isolados mostrou auto-antagonismo e 78,8% iso- ou hetero-antagonismo. Nenhum isolado de macaco foi capaz de produzir auto-inibição. Neste estudo, a produção de substâncias antagonístas foi variável em todos os isolados testados. A maioria dos F. nucleatum mostrou atividade antagonísta para as cepas de referência testadas. Esses dados sugerem a possível participação dessas substâncias sobre a ecologia microbiana em humanos e animais. Entretanto, o papel das bacteriocinas na regulação da microbiota da placa dental in vivo

  5. 泡菜中产细菌素乳酸菌的筛选及特性研究%Screening and Characteristics of Bacteriocin-producing Lactic Acid Bacteria in PickIes

    Institute of Scientific and Technical Information of China (English)

    刘阳; 何义国; 赵兴秀; 赵长青; 张静; 邹伟

    2016-01-01

    Four lactic acid bacteria with good antibacterial properties are isolated from pickles by dilution coated plate method for separating,plate streak method for purifying,filtering paper method for preliminary screening,oxford cup method for secondary screening.Neutralization elimination of interference factors such as organic acid and hydrogen peroxide,fermented liquid still has strong bacteriostatic action.After being treated with protease and trypsin,the antibacterial performance of fermented liquid is significantly reduced, thus antibacterial material is determined as a kind of bacteriocin with protein properties.Through the morphology,growth condition and physiological and biochemical identification, preliminarily determine 4 strains of bacteria are all Lactobacillusplantarum.To further study the antibacterial ability of L-33 strain,its bacteriocin pH activity range is 5.0~9.0 and the antibacterial activity is the highest at pH 7.0.It has thermal stability and broad-spectrum bacteriocin inhibitory effect on gram positive bacteria and gram negative bacteria.%以泡菜为原材料,经稀释涂布平板法分离、平板划线法纯化、滤纸片法初筛和牛津杯法复筛得到4株有较好抑菌性能的乳酸菌。中和法排除有机酸及过氧化氢等干扰因素后,发酵液仍有较强的抑菌作用;用蛋白酶和胰蛋白酶处理后,发酵液抑菌性能明显降低,因而确定抑菌物质是一种具备蛋白质性质的细菌素。经形态学、生长条件和生理生化鉴定,初步确定4株菌均为植物乳杆菌。对抑菌能力较强的L-33菌株进一步研究,其产生的细菌素pH 活性范围为5.0~9.0,在pH 7.0时抑菌活性最高,且其具有热稳定性,是一种对革兰氏阳性菌和阴性菌都有抑菌效果的广谱细菌素。

  6. Screen and Preliminary Identification of Lactic acid bacteria to Produce Broad-Spectrum Bacteriocin%产广谱细菌素乳酸菌CW3的筛选和初步鉴定

    Institute of Scientific and Technical Information of China (English)

    吕好新; 王巍东; 谈重芳; 杨飞飞; 焦迎春; 王雁萍; 李宗伟

    2013-01-01

    [Objective] CW3 strain was screened and preliminarily identified.[Method] Oxford cup double plate method was adopted to primarily screen spectrum bacteriocin,then excluding acid and hydrogen peroxide disturbance,the protein property of anti-bacteria material was detected,the strain of rescreening was identified.[Result] The supernatant of CW3 strain can inhibit the growth of indicator strains excluded hydrogen peroxide and organic acid.The inhibitive activity decreased largely after treatment with trpsin and pepsin,which can draw that the anti-microbial substances were bacteriocin.The results of identification of physiology and biochemistry preliminarily identified that CW3 strain was a Lactobacillus plantarum.[Conclusion] CW3 strain was a Lactobacillus plantarum,which can generate spectrum bacteriocin.%[目的]对CW3菌株进行筛选,并且进行初步鉴定.[方法]首先采用牛津杯双层平板法进行产广谱细菌素菌株的初筛,再将初筛得到的菌株进行排除酸和过氧化氢干扰,并检测抑菌物质的蛋白质性质,最终对复筛得到的菌株进行鉴定.[结果]试验得出,排除有机酸、过氧化氢等干扰因素后,发酵液仍有抑菌作用;用胰蛋白酶和胃蛋白酶处理后,发酵液抑菌活性急剧下降,确定产生的抑菌物质具有蛋白质性质,是一类细菌素.经过生理生化试验初步鉴定菌株CW3为植物乳杆菌.[结论]菌株CW3是一种能产广谱细菌素的植物乳杆菌.

  7. Screening, Identification and Toxicity of a Strain of Wide pH Spectrum Bacteriocin-Producing Lactic Acid Bacteria and Characterization of Bacteriocin Produced by It%产宽谱pH细菌素乳酸菌的筛选鉴定、毒力检测及细菌素特性研究

    Institute of Scientific and Technical Information of China (English)

    周佳; 刘书亮; 胡欣洁; 张元娥

    2012-01-01

    SAU-2,a bacteriocin-producing strain,was screened out of 34 strains isolated from milk residue in West Sichuan plateau.The strain was identified as Enterococcus based on colonial morphology,physiological and biochemical characteristics and 16S rDNA sequence phylogenetic analysis.SAU-2 had no hemolytic activity.All the virulence factors of agg,gelE,cylM,cylB,cylA,esp,efaAfm,cpd,cob,ccf,cyILL,cyILS,fsrB and hyLEfm were negative.These results indicate that SAU-2 is safe.In addition,bacteriocin produced by SAU-2 could tolerate heat treatment at 121 ℃ for 20 min,and exhibited antibacterial activity at pH 2.0-12.0,but was sensitive to trypsin and proteinase K.It showed strong inhibitory effect on relative strains of SAU-2 and Gram-positive bacteria,and could also inhibit one strain of Pseudomonas aeruginosa and one strain of Rhodotorula glutinis,but had no inhibitory effect on other Gram-negative bacteria and fungi.%采用琼脂扩散法从分离自川西高原奶渣的34株疑似乳酸球菌中筛选细菌素产生菌,初筛检测发酵上清液抑菌活性,复筛排除有机酸和H2O2干扰,检测蛋白酶敏感性,测定抑菌物质盐析液和粗提液抑菌活性,确定菌株SAU-2为细菌素产生菌。根据形态、生理生化指标和16S rDNA序列系统发育分析,将其鉴定为Enterococcus。肠球菌SAU-2溶血素表型阴性,agg、gelE、cylM、cylB、cylA、esp、efaAfm、cpd、cob、ccf、cyILL、cyILS、fsrB和hyLEfm等毒力因子基因型阴性,表明肠球菌SAU-2是安全的。所产细菌素可耐受121℃条件20min;在pH2.0~12.0有抑菌活性;对胰蛋白酶和蛋白酶K敏感,对木瓜蛋白酶和胃蛋白酶不敏感;主要对近缘乳酸菌和G+细菌有抑菌活性,除对1株铜绿假单胞菌和1株红酵母有抑菌活性外,对其余G-细菌和真菌无抑制作用。

  8. Cloning, production, and functional expression of the bacteriocin sakacin A (SakA) and two SakA-derived chimeras in lactic acid bacteria (LAB) and the yeasts Pichia pastoris and Kluyveromyces lactis.

    Science.gov (United States)

    Jiménez, Juan J; Borrero, Juan; Diep, Dzung B; Gútiez, Loreto; Nes, Ingolf F; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2013-09-01

    Mature sakacin A (SakA, encoded by sapA) and its cognate immunity protein (SakI, encoded by sapiA), and two SakA-derived chimeras mimicking the N-terminal end of mature enterocin P (EntP/SakA) and mature enterocin A (EntA/SakA) together with SakI, were fused to different signal peptides (SP) and cloned into the protein expression vectors pNZ8048 and pMG36c for evaluation of their production and functional expression by different lactic acid bacteria. The amount, antimicrobial activity, and specific antimicrobial activity of SakA and its chimeras produced by Lactococcus lactis subsp. cremoris NZ9000 depended on the SP and the expression vector. Only L. lactis NZ9000 (pNUPS), producing EntP/SakA, showed higher bacteriocin production and antimicrobial activity than the natural SakA-producer Lactobacillus sakei Lb706. The lower antimicrobial activity of the SakA-producer L. lactis NZ9000 (pNUS) and that of the EntA/SakA-producer L. lactis NZ9000 (pNUAS) could be ascribed to secretion of truncated bacteriocins. On the other hand, of the Lb. sakei Lb706 cultures transformed with the pMG36c-derived vectors only Lb. sakei Lb706 (pGUS) overproducing SakA showed a higher antimicrobial activity than Lb. sakei Lb706. Finally, cloning of SakA and EntP/SakA into pPICZαA and pKLAC2 permitted the production of SakA and EntP/SakA by recombinant Pichia pastoris X-33 and Kluyveromyces lactis GG799 derivatives although their antimicrobial activity was lower than expected from their production.

  9. 贵州铜仁产广谱抑菌作用细菌素乳酸菌的筛选及鉴定%On the Sift and Identification of the Broad-spectrum Antibacterial Bacteriocin Produced in Tongren, Guizhou

    Institute of Scientific and Technical Information of China (English)

    胡美忠; 张新卓; 刘芸

    2014-01-01

    从贵州铜仁产发酵食品中分离纯化出70余株乳酸菌,采用Agar-spot-test初筛与排除酸、过氧化氢抑制后复筛出一株能产广谱抑菌作用细菌素的乳酸菌(编号G55),经生理生化及16S rDNA鉴定可知G55为植物乳杆菌。抑菌谱实验表明,G55产生的细菌素能抑制革兰阳性菌及革兰阴性菌的生长;蛋白酶实验表明,G55产生的细菌素对胃蛋白酶、蛋白酶K敏感,对胰蛋白酶、α凝乳蛋白酶部分敏感。%More than 70 strains of lactic acid bacteria are separated and purified from the fermented foods made in Tongren, Guizhou. First, they are preliminarily sifted by means of agar-spot-test and then excluded from the inhibition of the acid and hydrogen peroxide. After a second sift, a strain of lactic acid bacteria named G55 which can produce broad-spectrum antibacterial bacteriocin is chosen from them. After the physiobiochemical experiment and the 16SrDNA identification, it is concluded that G55 is an actobacillus plantarum. According to the antibacterial spectrum experiment, it shows that the bacteriocin produced by G55 can inhibit the growth of both gram-positive bacteria and gram-negative bacteria. Meanwhile, the experiment of protease shows that the bacteriorin is sensitive to pepsin and proteinase K and is partially sensitive to trypsin andαcurd protease.

  10. 开菲尔粒中产球菌样细菌素乳酸菌的分离与鉴定%The separation and Identification of lactobacillus to secrete Like-Coccidia bacteriocin in Kefir grains

    Institute of Scientific and Technical Information of China (English)

    王颖; 桑文彦; 姚笛; 高玉荣; 于洋

    2011-01-01

    To screen lactic acid bacteria of bacteriostasis using MRS selection culture medium.The agar diffusion method with Oxford cup methord was adopted,combining physical and chemical resistance of the characteristics identification,antibacterial spectrum determination colony morphology and characteristics,physiological and biochemical experiment,and the berger's manual identification were exercised.The physiological and biochemical reaction was lactic acid.The bacteria colony morphology and characteristics were Coccidia and have inhibition for most of the gram negative bacteria,this strain was lactic acid milk aureus the diacetyl lactic acid subspecies.Identification and separation results was in the bacteriocins coccoid lactic acid bacteria,and the bacteriocin was the like-protein peptide.%利用MRS选择培养基筛选开菲尔粒中具有抑菌作用的乳酸菌。采用牛津杯琼脂扩散法,结合对理化抗性特征的鉴定、抗菌谱测定、菌落形态与特征和生理生化实验鉴定,结合伯杰氏手册对分离到的菌株进行鉴定。生理生化反应为乳酸菌,菌落形态与特征为球菌,对多数的革兰氏阴性菌有抑制作用,该菌株为乳酸乳球菌二乙酰乳酸亚种。鉴定分离为产球菌样细菌素的乳酸菌,产生的是蛋白肽类的细菌素。

  11. 马奶酒中抗单增李斯特氏菌细菌素产生菌的筛选及鉴定%Screening for anti-Listeria bacteriocin-producing lactic acid bacteria from koumiss

    Institute of Scientific and Technical Information of China (English)

    吴敬; 芒来; 贺银凤

    2011-01-01

    144 lactic acid bacteria strains isolated from traditional fermented koumiss were screened for bacteriocin production by double agar diffusion method. After eliminating the effects of organic acid and catalase, the cell free supernatant of one strain named MKB63 showed strong anti-Listeria activity and were identified as Enterococcus faecium by physiological-biochemical characterization. After ammonium sulphate precipitation, dialysis and concentration,the activity was enhanced. But the inhibition activity was lost after treatment of trypsin and proteinase K. The result showed this inhibitory material had the features of protein, and could be classified as bacteriocin.%从内蒙古传统乳制品酸马奶酒中分离出144株乳酸菌,通过双层琼脂平板扩散法筛选出具有明显抑菌作用的菌株.在排除有机酸、H2O2等的干扰后,其中1株乳酸菌的发酵上清液对受试的单核细胞增生李斯特氏菌表现出明显抑制作用;进一步硫酸铵沉淀、透析及浓缩处理后,其抑菌活性显著增强,说明其代谢产物中含有蛋白质类抑菌物质,可能是细菌素.经生理、生化试验和形态学观察,将该菌株鉴定为屎肠球菌(Enterococcus faecium).

  12. 枯草芽孢杆菌MA139类细菌素抑菌活性的研究%Studies on the Antibacterial Activity of Bacteriocin-like Inhibitory Substances (BLIS) Produced from Bacillus subtilis MA139

    Institute of Scientific and Technical Information of China (English)

    胡婷; 陆文清

    2012-01-01

    为测定枯草芽孢杆菌MA139产生的类细菌素的抑菌活性.本试验采用管碟法对枯草芽孢杆菌MA139产生的类细菌素对多株革兰氏阳性菌、革兰氏阴性菌和真菌的抑菌活性进行测定.结果表明:类细菌素不但对芽孢杆菌属的其他菌种有抗菌活性,对病原菌和霉菌也有拮抗作用;不同指示菌对类细菌素的敏感性不一样,其中金黄色葡萄球菌对其最敏感.该类细菌素具有广谱抗菌作用,有作为畜禽饲料添加剂的潜力.%One experiment was conducted to determine the antibacterial activity of bacteriocin -like inhibitory substances (BLIS) produced from Bacillus subtilis MA139. The bacteriocin-like inhibitory substances were screened for antibacterial activity against indicator strains using agar spot assay. The results showed that they had broad spectrum of antagonistic activity against indicator strains, and Staphylococcus aureus showed greatest sensitivity to the BLIS. In conclusion, BOS from Bacillus subtilis MA139 had broad spectrum of antagonistic activity against various species of bacterial and fungal pathogens and could potentially be used as feed additives.

  13. Production of bacteriocin-like inhibitory substances (BLIS by Streptococcus salivarius strains isolated from the tongue and throat of children with and without sore throat Produção de substâncias inibidoras semelhantes à bacteriocina por cepas de Streptococcus salivarius, isoladas da língua e garganta de crianças com e sem dor de garganta

    Directory of Open Access Journals (Sweden)

    Vera Fantinato

    1999-12-01

    Full Text Available Streptococcus salivarius strains, isolated from children with and without sore throat, were tested for bacteriocin production against Streptococcus pyogenes. S. salivarius strains producing bacteriocin-like inhibitory substances (BLIS against S. pyogenes were more frequently found in children without sore throat. These results suggest that these children may be protected against sore throat by the presence of BLIS-positive S. salivarius strains.Cepas de Streptococcus salivarius, isoladas de crianças com e sem dor de garganta, foram testadas quanto à produção de bacteriocina contra Streptococcus pyogenes. Os resultados mostraram que as crianças que não tinham dor de garganta possuiam, na boca, cepas de bactérias produtoras de substâncias inibidoras semelhantes à bacteriocina contra S. pyogenes.

  14. Effect of the fermentation broth of a bacteriocin-producing lactobacillus plantarum YJG on the production performance and egg quality of laying hens%一株产细菌素植物乳酸杆菌YJG发酵液对蛋鸡生产性能以及蛋品质的影响

    Institute of Scientific and Technical Information of China (English)

    韩冰; 邓凯; 张日俊

    2011-01-01

    To study effect of the fermentation broth of a bacteriocin-producing Lactobacillus plantarum YJG on production performance and egg quality of laying hens. Two hundred and twenty five laying hens of 232-day-old were randomly divided into 5 treatment groups with 5 replicates, and the trials period was 34 days. The results showed that treatment with 500 AU/kg bacteriocin could enhance the average weight, and the treatments with bacteriocins could apparently reduce the feed egg ratio(P<0.05), Bacteriocins produced by Lactobacillus plantarum YJG could improve the production performance and egg quality of laying hens and provide new insight into research of feed additives.%研究一株植物乳酸杆菌细菌素对蛋鸡生产性能和蛋品质的影响.选用232日龄产蛋率和体重相近、健康状况良好的海兰灰蛋鸡225只,试验期为34 d.结果表明:日粮中添加500 AU/kg植物乳酸杆菌细菌素对蛋鸡的产蛋率和平均蛋重的提升幅度最大,各细菌素添加组对降低料蛋比均有显著的效果(P<0.05),对平均日采食量、蛋黄色泽、哈氏单位、蛋壳强度和蛋形指数都有不同程度的改善.植物乳酸杆菌细菌素可以明显改善蛋鸡生产性能和蛋品质,可以为饲料添加剂的研发提供新的思路.

  15. Bacteriocins and novel bacterial strains.

    Science.gov (United States)

    Poultry is thought to be a significant source of Campylobacter in human disease. We evaluated anti-Campylobacter activity among 365 Bacillus and Paenibacillus isolates from poultry. One novel antagonistic Bacillus circulans and three Paenibacillus polymyxa strains were identified and further studi...

  16. 乳酸菌细菌素的纯化及应用的研究进展%Advances in Purification and Application of the Bacteriocin Isolated from Lactic Acid Bacteria

    Institute of Scientific and Technical Information of China (English)

    张建飞

    2012-01-01

    随着人类生活水平和健康水平的提高,绿色食品(肉、蛋、奶)的需求越来越大,消费者更关心食品的安全性.世界各国,尤其是欧洲、日本等发达国家在大力开展研究药物饲料添加剂的代用品.积极鼓励和倡导绿色安全饲料添加剂的研究和推广,微生态制剂受到世人的瞩目.但是,科学家们仍需进一步探讨该类产品的稳定性和连续性与生理、生化、营养各方面的关系.国内外的学者正在致力于细菌素(抗菌肽(antibacterid peptides)或多肽抗生素(peptide antibiotics))的研究.随着国内外研究的进展和深入,人们相继发现这类多肽不但具有抗细菌、抗真菌的作用,还具有抗寄生虫、病毒、癌细胞等功能,在医药学和食品保鲜技术上,成为研究的热点.在食品安全的今天,细菌素作为一种高效安全的饲料添加剂正在成为可能,需要加大力度进行研究和开发,细菌素的基因工程、蛋白质工程及分子筛选法将继续研究和突破,最终真正能够替代抗生素成为人类生产绿色食品.%21st,with the development of human life and the level of health, the demand of green food (meat, eggs, milk) is growing, consumers are more concerned about food safety. Countries in the world, carry out the study of drug substitute for feed additives especially in Europe, Japan and other developed countries. Research and extension of green safe feed additive are encouraged and promoted actively, probiotics attract the world's attention. But scientists still need explore the relationship between stability and continuity of such product and physiological, biochemical, nutritional aspects. Domestic and foreign scholars are working on the study of bacteriocin (antibacterid peptides or peptide antibiotics), with the progress of study and in-depth at home and abroad, people have found that these peptides not only have anti-bacterial, anti-fungal effect, but also have anti-parasite, virus

  17. 产Ⅱ a类细菌素乳酸菌的筛选及鉴定%Screening and identification of class Ⅱa bacteriocin-producing lactic acid bacteria

    Institute of Scientific and Technical Information of China (English)

    岳喜庆; 闵钟熳; 郭晨; 蔡玮璠

    2011-01-01

    352 lactic acid bacterial strains were isolated from fermented Chinese cabbage juice, cucumber juice,barley juice, corn juice, fresh milk, traditional cheese, and red tea. One strain against Listeria monocytogenes and Escherichia coli was selected by double-agar diffusion method. After eliminating some interference factors, such as the organic acid and hydrogen peroxidex, the supernatant of the strain exhibited inhibitory effect against the indicator strain. However,when treated with trypsin, pepsin and papain, the inhibitory activity lost totally. Therefore, the inhibitory material which has the features of protein, could be considered as bacteriocin. The bacteriocin was independent of heat, and the inhibitory activity of which was kept over 90% after treated at pH 6. 5, 121 ℃ for 15 min. According to the characteristics of bacteria, the bacteriocin was classified into class Ⅱ a. The strain was identified and named Enterococcusfaecium BC-3 on the base of physiological and biochemical tests and 16S rRNA gene sequence homology analysis.%从自制的发酵肉、酸菜汁、黄瓜汁、大麦汁、玉米汁等以及市售鲜奶、传统干酪、红茶中分离出352株乳酸菌,通过琼脂平板扩散法筛选到l株对单核细胞增生李斯特菌和大肠杆菌有明显抑制作用的乳酸菌菌株.排除有机酸、过氧化氢等的干扰后,乳酸菌发酵液离心后的上清液仍有抑菌活性,用胰蛋白酶、胃蛋白酶、木瓜蛋白酶处理后失去抑菌活性,从而确定产生的抑菌物质具有蛋白质性质,是一种细菌素.该细菌素具有热稳定性,在pH6.5,121℃热处理15 min时,抑菌活性仍保持90%以上.经过生理生化试验和16S rRNA基因序列相似性分析,鉴定BC-3菌株为屎肠球菌,命名.Enterococcus.faecium BC-3.其产生的细菌素对单核细胞增生李斯特菌有特异活性,并且具有热稳定性,根据细菌素的分类特征,该细菌素属于Ⅱa类细菌素.

  18. 响应曲面法优化乳杆菌产细菌素的条件研究%Optimization of the fermentative conditions for bacteriocin production of Lactobacillus plantarum by response surface methodology

    Institute of Scientific and Technical Information of China (English)

    罗海; 唐洁; 汪静心; 曾朝懿

    2012-01-01

    As one strain was isolated from traditional fermented pickle,Lactobacillus plantarum was investigated for its optimal condition of bacteriocin production. The mainly factors included the liquid volume,glucose concentration,and peptone concentration which were screened by Plackett-Burman design. The capability of bacteriocin produced was judged in accordance with size of inhibition zone diameter. With the help of Box- Behnken design,the maximum response value could be identified. The results showed good fitting between the estimated value and the real value through verification,and the model was reliable. The optimization of cultured medium and fermentation conditions of Lactobacillus plantarum was as follows .. peptone 30g/L,glucose 15g/L, diammonium hydrogen citrate 2g/L,K2HPO4 2g/L,NaAc 5g/L,MnSO4 -4H20 0.25g/L,MgSO4.7H20 0.58g/L, tween80 0.1% ,fluid volume 25mL,temperature 30℃ ,the fermentation period 24h,inoculation amount 1% and pH6.0. Under the fermentative conditions,bacteriocin production of Lactobacillus plantarum increased by 30%.%以分离自泡菜可产细菌素的乳杆菌作为实验茵.优化其产细菌素的最佳培养条件,以提高其产细菌素的能力。通过Plackett-Burman实验筛选出对乳杆菌产细菌素有显著影响的3个因素,分别为装液量、葡萄糖质量浓度以及蛋白胨质量浓度。以抑菌圈直径大小作为产细菌素能力大小的判断依据,通过最陡爬坡实验和Box-Behnken实验进一步优化,并对优化的结果进行验证,验证结果表明,预测值和实际值有良好的拟合性,此优化模型可靠。最后确定的乳杆菌产细菌素的优化培养基组成为:蛋白胨30g/L、葡萄糖15g/L、柠檬酸氢二铵2g/L、K2HP042g/L、乙酸钠5g/L、MnSO4·4H200.25g/L、MgS04·7H200.58g/L、吐温800.1%;最佳培养条件为:装液量25mL、温度30℃、培养时间24h、接种量1%、pH6.0。在此优化发酵条件下

  19. 植物乳杆菌B28产细菌素的发酵条件研究%Optimization of bacteriocin production by Lactobacillus plantarum B28

    Institute of Scientific and Technical Information of China (English)

    程建军; 李想; 郭明若; 吴琼

    2011-01-01

    Lactobacillus plantarum B28, which is a strain isolated from traditional Bulgarian oat beverage, produces a bacteriocin which is inhibitory to Baeillus cereus.The growth characteristic of Lactobacillus plantarum B28 and the optimal stage of producing bacteriocin were studied.The different cultures and different concentratiom of ammomum sulphate effect on bacteriocm activity was observed.The growth cycle of B28 was studied at 37 ℃ which indicated its stationary phase starting from the 14 th hour to the 16th hour.The bacteriostatic activity of plantaricin,produced by the strain has been improving constantly.It reached the peak value at 24 h.L.Plantarum grew better in media in presence of yeast extract, soybean protein, lactose, D-fructose, sucrose, or D- maltose.D-xylos was not suitalbe for L.Plantarum.There was no coniderable effect when it grew in KH2PO4 and NaH2PO4.The optimized medium was achieved.%从来自保加利亚传统燕麦饮料中分离得到的植物乳杆菌B28出发,以腊样芽胞杆菌Baeillus cereus为指示菌,研究了植物乳杆菌B28生长特性以及产生细菌素的最佳时期;不同氮源、碳源和磷酸盐对细菌素抑菌活性性影响以及不同浓度硫酸铵溶液对细菌素的盐析效果.结果表明,植物乳杆菌B28在37℃条件下培养,14~16 h,生长进入稳定期;产生细菌素最佳发酵时间为24 h;70%的硫酸酸铵是适植物乳杆菌细菌素的盐析质量分数为.与对照培养基对比,植物乳杆菌B28的生长情况是酵母提取物>大豆蛋白>胰蛋白胨、蛋白胨、肉膏;乳糖>D-果糖、蔗糖、D-麦芽糖>D-木糖;磷酸盐对植物乳杆菌B28的生长影响不大.并得到了产生细菌素的最佳培养基配方.

  20. Isolation and Identification of Bacteriocin-producing Lactic Acid Bacteria from Meat Production%肉制品中产细菌素乳酸菌的分离及鉴定

    Institute of Scientific and Technical Information of China (English)

    刘丽; 郝彦玲; 张红星; 谢英

    2011-01-01

    从北京市售肉制品中分离筛选出1株具有抑菌活性的乳酸茵菌株L5-6,对单核细胞增生李斯特氏菌ATCC54003的生长具有良好的抑制作用.排除有机酸、过氧化氢的干扰后,确定该抑茵物质为蛋白类物质,即细菌素.16S rRNA序列同源性分析鉴定L5-6为戊糖片球菌.对L5-6中编码细菌素的结构基因进行克隆,推断L5-6所产的细茵素是片球菌素.片球菌素应用于肉制品防腐具有潜在的开发价值和广阔的市场前景,课题组对L5-6进行了初步的研究,为开发天然安全的食品保鲜防腐剂奠定基础.%Strain L5-6, isolated from meat production in Beijing, produced antimicrobial substance which was inhibitory to Listeria monocytogenes 54003. After eliminating the effect of organic acid and hydrogen peroxide,the antimicrobial substance with its proteinaceous nature was confirmed as bacteriocin. And also strain L5-6 was identified as Pediococcus pentosaceus by using 16S rRNA gene sequence homology analysis. Pediocin shows potential developing value and broad market prospect, especially in the meat products. The bacteriocin produced by L5-6 was identified as pediocin after cloning its structural gene. In this paper a preliminary study on L5-6 had been made to lay the basis for the development of natural food preservative.

  1. 植物乳杆菌KLDS1.0391在酸奶体系中的细菌素产生特点%The bacteriocin production by Lactobacillus plantarum KLDS1.0391 in yoghurt

    Institute of Scientific and Technical Information of China (English)

    范修海; 苑晓慧; 陈启佳; 满丽莉; 李雪; 牛墨; 孟祥晨

    2013-01-01

    Lactobacillus plantarum KLDS 1.0391 which can produce bacteriocin is probiotic. It can be used as both probiotic and biocontrol strain in food. The aim of this paper was to investigate the bacteriocin production of this strain in yoghourt during fermentation and storage of yoghourt when co-cultured with starter culture. The results showed that inhibition diameter was increased during fermentation. The antimicrobial activity of group added with L. plantarum KLDS1.0391 was significantly higher than that of control group (P <0. 01 ) during the fermentation of 6 h. There was no obvious difference between the sensory characteristics of yoghourt containing L. plantarum KLDS1.0391 and that of the control yoghourt. It was potential to explore the functional yoghourt using L. plantarum KLDS1. 0391.%植物乳杆菌KLDS1.0391能够合成细菌素,也是益生菌,在食品中既可作为益生菌使用,也可作为辅助发酵剂用于生物防控,该研究主要考察了KLDS1.0391菌株在酸奶体系中细菌素的产生特点.研究结果表明,在发酵的6h期间,抑菌活性随发酵时间延长而增强,发酵结束时,添加植物乳杆菌KLDS1.0391酸奶组的抑菌活性显著高于仅使用酸奶发酵剂的对照组(P<0.01).与对照组相比,加入辅助发酵剂的实验组的感官品质未发生明显的变化.植物乳杆菌KLDS1.0391具备开发益生酸奶的潜力.

  2. Antibacterial activity of bacteriocin from Lactobacillus plantarum CW5%植物乳杆菌(Lactobacillus plantarum)CW5的筛选及细菌素抑菌活性的研究

    Institute of Scientific and Technical Information of China (English)

    李亚; 谈重芳; 王雁萍; 李宗伟; 金庆生

    2011-01-01

    为了提高抑菌活性,对植物乳杆菌(Lactobacillus plantarum)CW5产细菌素的发酵条件进行了优化,分别研究了培养时间、温度、接种量、培养基起始pH、培养基碳源、氮源等因素对细菌素产生的影响,通过单因素水平实验和正交实验,确定产细菌素的最佳培养基组合和最佳发酵条件为:葡萄糖3%,胰蛋白胨1.5%,蛋白胨1.5%,酵母膏1%,硫酸镁0.058%,吐温800.2%,30℃培养24h,培养基起始pH为6.5,接种量2%。CW5在优化前效价为367.82IU/mL,优化后效价为1619.85IU/mL,提高了340.39%。%In order to improve the antibacterial activity, to optimize bacteriocin production, researching was done on the respect of incubation condition and the media components. The optimum media component was: glucose 3%, tryptone 1.5%, peptone 1.5%, yeast extract 1%, magnesium sulfate 0.058%, tween 80 0.2%. And the optimum temperature was 30 ℃, the optimum incubation time was 28 h, the optimum broth initial pH was 6.5, inoculation amount 2%. Under the above conditions, the production of bacteriocin was increased by 340.39%.

  3. 产细菌素植物乳杆菌纯种半固态发酵对泡菜品质的影响%Effect of Lactobacillus plantarum producing bacteriocine on pickle quality in semi-solid-state fermentation

    Institute of Scientific and Technical Information of China (English)

    韩新锋; 刘书亮; 张艾青; 杜晓华

    2012-01-01

    以产细菌素植物乳杆菌纯种半固态发酵制作什锦泡菜,同时以其纯种液态发酵泡菜和传统自然发酵泡菜为对照,比较三种泡菜在发酵过程和贮藏期间感官、理化指标与微生物菌相变化规律,评价半固态发酵对泡菜品质的影响.结果表明,该菌株纯种发酵制作的泡菜感官品质优于自然发酵泡菜,细菌、酵母菌、霉菌、大肠菌群数量均显著低于自然发酵泡菜;其中,纯种半固态发酵泡菜发酵过程pH值下降最迅速、泡菜中乳酸菌活菌数量高(108cfu/g)、亚硝酸盐含量低且无明显“亚硝峰”出现;说明产细菌素植物乳杆菌纯种半固态发酵制作什锦泡菜品质优于纯种液态发酵和自然发酵泡菜.%Mixed pickles were prepared by Lactobacillus plantarum producing bacteriocine with semi-solid fermentation; meanwhile pickles prepared by pure liquid fermentation and traditional natural fermentation were set as controls. Oranoleptic indicator, physical and chemical indicator, microorganism changes were compared during fermentation and storage to evaluate the effect of semi-solid fermentation. The results showed that the oranoleptic indicator of the pickles with pure semi-solid fermentation was superior to those with natural fermentation; the numbers of total plate counts, yeasts, moulds, coliform group were significantly lower than those of natural fermentation, respectively. The pH value of the pickles prepared by semi-solid fermentation decreased quickly, the numbers of viable lactic acid bacteria in the pickles with semi-solid fermentation were 108cfu/g, and the nitrites contents were low which had no obvious nitrites peak. The results indicated that the mixed pickles prepared by L. plantarum producing bacteriocine with pure semi-solid fermentation had a high quality among three kinds of fermentation.

  4. 新疆高寒牧区产细菌素低温乳酸菌的筛选%Screening of bacteriocin-producing low-temperature lactic acid bacteria in high, cold pasture areas in Xinjiang

    Institute of Scientific and Technical Information of China (English)

    王俊钢; 刘成江; 郭安民; 李宇辉; 韩冬印; 李开雄

    2013-01-01

    Forty-five lactic acid bacteria were screened from the samples collected from the high, cold pasture areas in Xinjiang, and three of them with antimicrobial properties were screened out through the test. After exclusion of organic acids and catalase, these three lactic acid bacteria still had a certain bacteriostasis performance. Meanwhile, the antibacterial activity was greatly reduced after treated with trypsin, which indicated that the metabolite was bacte-riocins, the protein with antibacterial property. These three lactic acid bacteria were identified to be: Lactobacillus plantarum, Lactobacillus pentosus and Lactococcus lactis, respectively.%从新疆高寒牧区牧民自制乳制品分离得到45株乳酸菌.采用排除有机酸和过氧化氢中和试验对分离的乳酸菌进行处理,结果表明三株乳酸菌有抑菌特性.用胰蛋白酶对发酵液进行处理后,其抑菌活性大大降低,说明代谢产物是具有蛋白属性的抑菌物质,判断为细菌素.鉴定结果初步认为,这三株乳酸菌分别属于植物乳杆菌、戊糖乳杆菌和乳酸乳球菌.

  5. 产细菌素乳酸菌的选育及其抑菌特性的研究%Screening of bacteriocin-producing lactic acid bacteria and the characteristics of antibacterial compound

    Institute of Scientific and Technical Information of China (English)

    吴荣荣; 张良; 王倩

    2009-01-01

    采用牛津杯琼脂扩散法,从实验室保存的乳酸菌中筛选到具有较高抑菌活性的菌株嗜酸乳杆菌A、戊糖片球菌M和戊糖片球菌T,它们产生的抑菌物质经排除酸、过氧化氢后,仍具有抑菌活性,然而经蛋白酶处理后其抑菌活性明显下降,确定其抑菌物质为细菌素,进一步的抑菌实验表明,3株菌所产细菌素具有较宽的抑菌谱,适宜用作生物型防腐剂.%Three strains, which showed obvious antibacterial activity, were isolated from lactic acid bacteria, including Lactobacillus.Acidophilus (A), Pediococcus pentosaceus(M)and Pediococcus pentosaceus(T)by the agar diffusion cup-plate method.The supernatants after eliminated organic acid and hydrogen peroxide still retained bacteriostatic activity.The effect of inhibition decreased after treatment with protease K, The above results indicated that the antibacterial substance was a kind of protein.The inhibitory spectrum from the above supernatants was broad.The bacteriocin produced by three strains was suitable for the biotype preservatives.

  6. Screening and Identification of Bacteriocin-like Substance Producing Bacillus%一株产细菌素物质芽孢杆菌的筛选和鉴定

    Institute of Scientific and Technical Information of China (English)

    李俊峰; 李红芳; 段孝辉; 宿烽; 田智刚

    2011-01-01

    One Bacillus strain named SLY—3 producing bacteriocin-like substance ( BLS) was screened from the soil polluted by oil. The G +bacteria and molds were effectively inhibited by BLS produced by strain SLY—3. With the analysis of colony morphology, physiological and biochemistry experiments and 16S rDNA gene sequence, the strain SLY—3 was identified as Bacillus subtilis. The BLS secreted by Bacillus subtilis SLY—3 has the highest inhibitory activity when it is cultured for 24 h at initial pH 7.0 and 28 ℃ .%从石油污染的土壤中筛选出一株能产生细菌素类物质的芽孢杆菌,命名为SLY-3.该菌株分泌的活性物质抑菌活性好,对细菌主要是革兰氏阳性菌、霉菌都有抑制作用.从表型、生理生化反应及16S rDNA序列比对方面进行分析,最终确定菌株SLY-3 为枯草芽孢杆菌(Bacillus subtilis).培养基初始pH为7.0,28℃振荡培养24 h后,发酵产物抑菌活性最高.

  7. Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR.

    Science.gov (United States)

    Ramiah, K; van Reenen, C A; Dicks, L M T

    2007-05-30

    Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA by Lactobacillus plantarum 423, grown in the presence of bile, pancreatin and at low pH, was studied by real-time PCR. Mub, MapA and EF-Tu were up-regulated in the presence of mucus, proportional to increasing concentrations. Expression of MapA was up-regulated in the presence of 3.0 g/l bile and 3.0 g/l pancreatin at pH 6.5. Similar results were recorded in the presence of 10.0 g/l bile and 10.0 g/l pancreatin at pH 6.5. Expression of Mub was down-regulated in the presence of bile and pancreatin, whilst the expression of EF-Tu and plaA remained unchanged. Expression of Mub and MapA remained unchanged at pH 4.0, whilst expression of EF-Tu and plaA were up-regulated. Expression of MapA was down-regulated in the presence of 1.0 g/l l-cysteine HCl, suggesting that the gene is regulated by transcription attenuation that involves cysteine.

  8. A rapid and accurate 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide colorimetric assay for quantification of bacteriocins with nisin as an example

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The objective of this study is to propose a more accurate and faster MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] colorimetric assay (MCA) for quantitative measurement of polypeptide bacteriocins in solutions with nisin as an example. After an initial incubation of nisin and indicator bacterium Micrococcus luteus NCIB 8166 in tubes, MTT was added for another incubation period. After that, nisin was quantified by estimating the number of viable bacteria based on measuring the amount of purple formazan produced by cleavage of yellow tetrazolium salt MTT. Then MCA was compared to a standard agar diffusion assay (ADA). The results suggested a high correlation coefficient (r2=0.975±0.004) between optical density (OD) and the inhibitory effect of nisin on a bacterial strain Micrococcus luteus NCIB 8166 at a range of 0.125~32 IU/ml.The MCA described in this study was very quick. Quantification of nisin took only 7~8 h and the detection limit was at the level of 0.125 IU/ml when compared to 12 IU/ml and 24~28 h for ADA. The MCA provides an accurate and rapid method for quantification of nisin in solutions and is expected to be used for quantification of other antimicrobial substances.

  9. Caracterização preliminar de bacteriocinas produzidas por seis cepas de bactérias láticas isoladas de produtos cárneos embalados a vácuo Preliminary characterization of bacteriocins produced by six lactic acid bacteria strains isolated from vacuum-packaged meat products

    Directory of Open Access Journals (Sweden)

    Elaine C. P. de Martinis

    2003-08-01

    Full Text Available No presente trabalho, foram estudadas as bacteriocinas produzidas por seis linhagens bacterianas: duas culturas Lactobacillus sake, duas de Lactobacillus curvatus, uma de Leuconostoc mesenteroides, uma de Leuconostoc sp 12. As atividades inibitórias foram quantificadas pelo método da diluição crítica, utilizando-se os indicadores Lactobacillus sake ATCC 15521 e Listeria monocytogenes. As bacteriocinas produzidas foram caracterizadas também quanto à sensibilidade a enzimas, faixa de temperatura na produção, termoestabilidade, estabilidade em diferentes pHs e modo de ação (bactericida ou bacteriostático frente a Listeria monocytogenes. Nenhuma bacteriocina foi destruída pela pepsina, mas todas foram sensíveis à proteinase K, tripsina e alfa-amilase (exceto a bacteriocina produzida por Leuconostoc sp 12, que foi insensível a alfa-amilase. Lactobacillus sake 1, Leuconostoc mesenteroides 11 e Lactobacillus sake 16 apresentaram atividade antilisterial, sendo a maior inibição observada para Lactobacillus sake 1 e Leuconostoc mesenteroides 11 (12.800UA/mL. Lactobacillus sake 1 e Lactobacillus curvatus 5 produziram as bacteriocinas mais termoestáveis. Lactobacillus sake 1 produziu a bacteriocina com maior estabilidade a variações de pH. Todas as bactérias láticas produziram bacteriocina entre 4ºC e 30ºC, sendo esta propriedade muito interessante para futuras aplicações em produtos cárneos refrigerados.In this work, the bacteriocins produced by six bacterial strains were studied (Lactobacillus sake 1, Lactobacillus curvatus 5, Leuconostoc mesenteroides 11, Leuconostoc sp 12, Lactobacillus curvatus 14 and Lactobacillus sake 16. Title of inhibitory activity was determined by critical dilution assay, using Lactobacillus sake ATCC 15521 and Listeria monocytogenes as indicator microorganisms. The inhibitory compounds were also characterized with respect to stability to the action of enzymes, thermostability, stability in several p

  10. Study of Morphology Effects of Streptococcus Sanguis Bacteriocin on Candida Albicans and Candida Tropicalis%血链球菌细菌素对白色念珠菌及热带念珠菌菌体形态影响的研究

    Institute of Scientific and Technical Information of China (English)

    马晟利; 李慧; 佟忠山; 赵英男; 夏雪; 董雪

    2013-01-01

    Objective: To study the inhibition and morphological impact of Streptococcus sanguis bacteriocin on Candida albicans(C. a) and Candida tropicalis(C. t). Methods: Streptococcus sanguis bacteriocin was extracted by low-temperature high-speed centrifugation, ultrasonic disruption, and then was respectively applied to separate and mixed cultured C. a and C. t under 37℃ 80rpm oscillating culture. At 12h, we used plate colony counting method to determine the antibacterial activity of Streptococcus sanguis bacteriocin with different concentrations. We measured each group bacterial suspension OD value every 2 hours, drew the growth curve, studied the effect of Streptococcus sanguis bacteriocin on growth curve of C. a and C. t. We observed morphology by optical microscopy and scanning electron microscopy in the process of cultivation. Results: After the inhibition of lg/L Streptococcus sanguis bacteriocin, the number of the colonies of separate and mixed cultured C. a and C. t were less than the control group. The difference was statistically significant. The growth curve of C. a and C. t changed significantly in 6 - 14h, and the logarithmic growth phase was delayed 8 hours. Discoid depression was appeared on surface of spore and hyphae after inhibition. Conclusion: Streptococcus sanguis bacteriocin could significantly inhibit separate and mixed cultured C. a and C. t, delay the logarithmic growth phase and change the morphology of C. a and C. t.%目的:研究血链球菌细菌素对白色念珠菌(C.a)及热带念珠菌(C.t)的抑制作用及形态学影响.方法:通过低温高速离心,超声破碎等方法提取血链素,使血链素分别作用于单独及混合培养的C.a及C.t,于37℃下80r/min振荡培养.培养12h时,以平板菌落计数法测定不同浓度血链素的抑菌活性;每2h测1次各组菌悬液的A值,并绘制生长曲线,观察血链素对C.a及C.t生长曲线的影响.在血链素对C.a及C.t的作用过程中,利用光学显微镜及扫

  11. 1株产细菌素植物乳杆菌的筛选及所产细菌素的理化性质分析%Study on Screening of Lactobacillus Plantarum for Producing Bacteriocin and its Physicochemical Characteristics

    Institute of Scientific and Technical Information of China (English)

    刘丽; 郝彦玲; 张红星; 谢英; 周绪宝

    2011-01-01

    Strain LH-09, isolated from ham products in Zhejiang province, produced antimicrobial substance which was inhibitory to Listeria monocytogenes 54003. Strain LH-09 was identified as Lactobacillus plantarum by using 16S rRNA gene sequence homology analysis. After eliminating the effect of organic acid and hydrogen peroxide, the antimicrobial substance with its proteinaceous nature was confirmed as bacteriocin. Bacteriocin LH-09 was heat-stable and remained activity after incubation at a wide pH. It could be degraded by proteases existing in the human body. Tricine-SDS-PACE showed that its molecular weight was between 2-6 kDa. In this paper a preliminary study on the bacteriocin producted by Lactobacillus plantarum had been made to lay the basis for the development of natural food preservative.%从浙江省生产的一种火腿制品中分离筛选到1株具有抑菌活性的乳酸菌菌株LH-09,对单核细胞增生李斯特菌ATCC54003的生长具有良好的抑制作用.16SrRNA序列同源性分析鉴定乳酸菌LH-09为植物乳杆菌.在排除有机酸、过氧化氢的干扰后,确定该抑菌物质为蛋白类物质,即细菌素.理化性质分析表明细菌素LH-09具有较好的热稳定性、酸碱稳定性,可被人体内蛋白酶降解.N-羟甲基甲基甘氨酸-SDS-PAGE电泳确定细菌素LH-09的分子质量在2~6 kDa之间.

  12. Características da bacteriocina produzida por Lactococcus lactis ssp. hordniae CTC 484 e seu efeito sobre Listeria monocytogenes em carne bovina Characterisation of the bacteriocin produced by Lactococcus lactis ssp. hordniae CTC 484 and the effect of this compound on Listeria monocytogenes in beef

    Directory of Open Access Journals (Sweden)

    Renata Bromberg

    2006-03-01

    Full Text Available O isolamento de linhagens de bactérias lácticas produtoras de bacteriocinas em carnes e seus produtos derivados resultou na detecção de Lactococcus lactis ssp. hordniae CTC 484, proveniente de frango. A bacteriocina inibiu não apenas uma outra bactéria láctica (Lactobacillus helveticus, mas também microorganismos patogênicos (Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Clostridium perfringens e Enterococcus faecalis. Ela foi inativada por causa de enzimas como: alfa-quimotripsina, tripsina, pronase E, ficina, pepsina, papaína e lipase. Além disso, a bacteriocina mostrou-se termoestável, mesmo a temperaturas de autoclavagem (121°C/10 min e foi produzida em condições de armazenamento sob refrigeração. A bacteriocina mostrou-se ativa dentro de uma ampla faixa de valores de pH (2-10, porém a maior atividade ocorreu em valores menores de pH. A eficiência da linhagem CTC 484, assim como a de sua bacteriocina na redução e inibição do crescimento de Listeria monocytogenes em carne bovina estéril, foram avaliadas. Os resultados indicaram que o tratamento da carne por meio da inoculação desta bactéria contribuiu para o aumento da segurança e extensão da vida útil deste alimento.Screening for the bacteriocin production of strains of lactic acid bacteria from various meat and meat products resulted in the detection of a bacteriocin-producing Lactococcus lactis ssp. hordniae CTC 484, isolated from chicken. The bacteriocin inhibited not only closely related lactic acid bacterium (Lactobacillus helveticus, but also pathogenic microorganisms (Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Clostridium perfringens, and Enterococcus faecalis. This compound was inactivated by alpha-chymotrypsin, trypsin, pronase E, ficin, pepsin, papain, and also by lipase. It was heat stable even at autoclaving temperature (121°C/10 min and was produced under refrigerated storage. It was also active over a wide

  13. Optimization of Fermentation Conditions for Bacteriocin Production by Lactobacillus acidophilus NX2-6%嗜酸乳杆菌NX2-6产细菌素的发酵条件优化

    Institute of Scientific and Technical Information of China (English)

    乌云达来; 陆兆新; 吕凤霞; 别小妹; 卢亚萍; 孙会刚; 查干其劳

    2012-01-01

    Three culture medium components including glucose,sodium acetate and sodium citrate and fermentation time were identified as key factors that affect bacteriocin production by Lactobacillus acidophilus NX2-6 using a Plackett-Burman design and their optimal levels were investigated using response surface methodology based on a Box-Behnken experimental desiign.The optimal levels of glucose,sodium acetate and sodium citrate concentrations and fermentation time were determined to be 60.0 g/L,8.0 g/L,5.0 g/L and 36 h,respectively based on the established quadratic polynormial regression equation for inhibition zone diameter of fermentaton broth.Under these conditions,the predicted inhibition zone diameter of fermentaton broth was 0.9918.The optimized culture medium resulted in an increase of approximately 80.0% in the antibacterial activity of fermentation broth compared to the basic culture medium.Therefore,response surface methodology can provide an economic,effective and reasonal strategy for the optimization of fermentation conditions for bacteriocin production by Lactobacillus acidophilus NX2-6.%在Plackett-Burman试验结果基础上,采用响应曲面法(Box-Behnken设计)对嗜酸乳杆菌NX2-6发酵产细菌素的关键影响因素,即葡萄糖质量浓度、乙酸钠质量浓度、柠檬酸三钠水合物质量浓度及培养时间的最佳水平范围进行研究和探讨。通过对发酵液抑菌圈直径的二次多项回归方程求解得知,在葡萄糖质量浓度、乙酸钠质量浓度、柠檬酸三钠水合物质量浓度和培养时间分别为60.0、8.0、5.0g/L和36h时,菌株NX2-6的发酵液抑菌圈直径预测值为21.37mm,验证实验抑菌圈直径实测值与预测值的相关系数R2为0.9918。优化后培养基与基础培养基相比,发酵液抗菌活性增加约80.0%,由此可见,利用响应曲面法对嗜酸乳杆菌NX2-6发酵产细菌素条件进行优化是经济有效且科学合理的。

  14. MRS培养基组分对Lactobacillus J23合成抗菌肽Bac-J23的影响%Effect of MRS medium components on bacteriocin Bac-J23 production from Lactobacillus J23

    Institute of Scientific and Technical Information of China (English)

    易华西; 韩雪; 杜明; 张兰威

    2012-01-01

    The effect of MRS medium ingredient on the bacteriocin Bac-J23 produced by Lactobacillus J23 were studied. The results showed that 5g/L acetic acid sodium, sucrose and Yeast extraction could stimulate the growth of strain Lactobacillus J23 and induce Bac-J23 production. Higher concentration KH2PO4 (15g/L~20g/L) and 0.2g/L MgSO4 were propitious to Bac-J23 production, while MnSO4 and Tween-80 had no influence to the growth of Lactobacillus J23 and the production of Bac-J23.%研究了培养基MRS组分对乳酸菌Lactobacillus J23产生广谱抗菌肽Bac-J23的影响,并对其组成进行了优化.结果表明,当培养基中浓度为5g/L的乙酸钠对Bac-J23的合成具有刺激诱导作用,蔗糖对Bac-J23合成的最有利,酵母提取物对Lactobacillus J23的生长和Bac-J23的合成均具有明显的促进作用,KH2PO4(15g/L~20g/L)有利于Bac-J23的合成,MgSO4 (0.2g/L)对合成Bac-J23最有利,MnSO4和Tween-80对Bac-J23合成及Lactobacillus J23生长均没有明显影响.

  15. Binding sequences for RdgB, a DNA damage-responsive transcriptional activator, and temperature-dependent expression of bacteriocin<