WorldWideScience

Sample records for bacterially expressed dsrna

  1. Use of bacterially expressed dsRNA to downregulate Entamoeba histolytica gene expression.

    Directory of Open Access Journals (Sweden)

    Carlos F Solis

    Full Text Available BACKGROUND: Modern RNA interference (RNAi methodologies using small interfering RNA (siRNA oligonucleotide duplexes or episomally synthesized hairpin RNA are valuable tools for the analysis of gene function in the protozoan parasite Entamoeba histolytica. However, these approaches still require time-consuming procedures including transfection and drug selection, or costly synthetic molecules. PRINCIPAL FINDINGS: Here we report an efficient and handy alternative for E. histolytica gene down-regulation mediated by bacterial double-stranded RNA (dsRNA targeting parasite genes. The Escherichia coli strain HT115 which is unable to degrade dsRNA, was genetically engineered to produce high quantities of long dsRNA segments targeting the genes that encode E. histolytica beta-tubulin and virulence factor KERP1. Trophozoites cultured in vitro were directly fed with dsRNA-expressing bacteria or soaked with purified dsRNA. Both dsRNA delivery methods resulted in significant reduction of protein expression. In vitro host cell-parasite assays showed that efficient downregulation of kerp1 gene expression mediated by bacterial dsRNA resulted in significant reduction of parasite adhesion and lytic capabilities, thus supporting a major role for KERP1 in the pathogenic process. Furthermore, treatment of trophozoites cultured in microtiter plates, with a repertoire of eighty-five distinct bacterial dsRNA segments targeting E. histolytica genes with unknown function, led to the identification of three genes potentially involved in the growth of the parasite. CONCLUSIONS: Our results showed that the use of bacterial dsRNA is a powerful method for the study of gene function in E. histolytica. This dsRNA delivery method is also technically suitable for the study of a large number of genes, thus opening interesting perspectives for the identification of novel drug and vaccine targets.

  2. Bacterium-Expressed dsRNA Downregulates Microsporidia Nosema bombycis Gene Expression.

    Science.gov (United States)

    Pan, Qiuling; Wang, Ling; Dang, Xiaoqun; Ma, Zhengang; Zhang, Xiaoyan; Chen, Shiliang; Zhou, Zeyang; Xu, Jinshan

    2017-03-01

    The microsporidia Nosema bombycis is the insect pathogen of pebrine disease severely destructive to sericulture production. Here, we describe the use of Escherichia coli HT115 strain (DE3) to express double-strand RNAs targeting the gene encoding ADP/ATP protein in N. bombycis. The results showed that dsRNAs deferentially suppressed the gene expression during N. bombycis infection in the silkworm, and the effect waned gradually. Our results, for the first time, provide a tool to utilize the dsRNA expressed by recombinant E. coli to control the pebrine disease of the domestic silkworm. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  3. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene.

    Directory of Open Access Journals (Sweden)

    Honggang Tian

    Full Text Available BACKGROUND: RNA interference (RNAi induced through double stranded RNA (dsRNA has been used widely to study gene function in insects. Recently, it has been reported that gene knockdown in several insects can be induced successfully through feeding with dsRNA. However, it is still unknown whether phenotypic silencing of genes not expressed in the midgut occurs after ingestion of insect dsRNA. PRINCIPAL FINDINGS: Using chitin synthase gene A (SeCHSA as the target gene, which is expressed in the cuticle and tracheae of the lepidopteran pest Spodoptera exigua, we showed that the growth and development of S. exigua larvae fed Escherichia coli expressing dsRNA of SeCHSA was disturbed, resulting in lethality. In the 4th and 5th larval instars, prepupae, and pupae, the mean survival rates of insects fed the dsRNA-containing diet were 88.64%, 74.24%, 68.43% and 62.63% respectively. The survival rates in the 5th instar larvae, prepupae and pupae stages were significantly lower than those of all controls, and significant lethality differences were also found between dsSeCHSA treatment and dsControl or ddH(2O control in the 4th instar larvae. The effects of ingesting bacterially expressed dsRNA on transcription of the target gene, tissue structure, and survival rates of insects were dose-dependent. CONCLUSIONS: Our results suggest that SeCHSA dsRNA may be useful as a means of insect pest control.

  4. Suppression of Penaeus merguiensis densovirus following oral delivery of live bacteria expressing dsRNA in the house cricket (Acheta domesticus) model.

    Science.gov (United States)

    La Fauce, Kathy; Owens, Leigh

    2013-02-01

    Penaeus merguiensis densovirus (PmergDNV) is a serious pathogen of the banana prawn, Penaeus merguiensis leading to at least 28% production loss due to reduced growth rates and mortality of juveniles. In the present study, we reduced PmergDNV titres and subsequent mortality by feeding Acheta domesticus (previously determined as an appropriate animal model for P. merguiensis) with dsRNA specific to the capsid protein by mixing it into their food. Feeding A. domesticus with PmergDNV-specific dsRNA in advance of viral challenge increased their longevity, decreased mortality by 84.4% and reduced viral loads 24-fold below the threshold level required for mortality. Mortalities and viral loads were significantly (both P < 0.001) lower in treatments challenged with PmergDNV following exposure to bacterially expressed PmergDNV-dsRNA. This is the first study to demonstrate gene silencing via RNAi against PmergDNV in vivo through oral administration of live bacteria expressing dsRNA in a model system. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Evaluation of deoxynivalenol production in dsRNA Carrying and Cured Fusarium graminearum isolates by AYT1 expressing transformed tobacco

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan shahhosseiny

    2015-12-01

    Full Text Available Introduction: Fusarium head blight (FHB, is the most destructive disease of wheat, producing the mycotoxin deoxynivalenol, a protein synthesis inhibitor, which is harmful to humans and livestock. dsRNAmycoviruses-infected-isolates of Fusariumgraminearum, showed changes in morphological and pathogenicity phenotypes including reduced virulence towards wheat and decreased production of trichothecene mycotoxin (deoxynivalenol: DON. Materials and methods: Previous studies indicated that over expression of yeast acetyl transferase gene (ScAYT1 encoding a 3-O trichothecene acetyl transferase that converts deoxynivalenol to a less toxic acetylated form, leads to suppression of the deoxynivalenol sensitivity in pdr5 yeast mutants. To identify whether ScAYT1 over-expression in transgenic tobacco plants can deal with mycotoxin (deoxynivalenol in fungal extract and studying the effect of dsRNA contamination on detoxification and resistance level, we have treated T1 AYT1 transgenic tobacco seedlings with complete extraction of normal F. graminearum isolate carrying dsRNA metabolites. First, we introduced AYT1into the model tobacco plants through Agrobacterium-mediated transformation in an attempt to detoxify deoxynivalenol. Results: In vitro tests with extraction of dsRNA carrying and cured isolates of F. graminearum and 10 ppm of deoxynivalenol indicated variable resistance levels in transgenic plants. Discussion and conclusion: The results of this study indicate that the transgene expression AYT1 and Fusarium infection to dsRNA can induce tolerance to deoxynivalenol, followed by increased resistance to Fusarium head blight disease of wheat.

  6. dsRNA interference on expression of a RNA-dependent RNA polymerase gene of Bombyx mori cytoplasmic polyhedrosis virus.

    Science.gov (United States)

    Pan, Zhong-Hua; Gao, Kun; Hou, Cheng-Xiang; Wu, Ping; Qin, Guang-Xing; Geng, Tao; Guo, Xi-Jie

    2015-07-01

    Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is one of the major viral pathogens in silkworm. Its infection often results in significant losses to sericulture. Studies have demonstrated that RNAi is one of the important anti-viral mechanisms in organisms. In this study, three dsRNAs targeting the RNA-dependent RNA polymerase (RDRP) gene of BmCPV were designed and synthesized with 2'-F modification to explore their interference effects on BmCPV replication in silkworm larvae. The results showed that injecting dsRNA in the dosage of 4-6 ng per mg body weight into the 5th instar larvae can interfere with the BmCPV-RDRP expression by 93% after virus infection and by 99.9% before virus infection. In addition, the expression of two viral structural protein genes (genome RNA segments 1 and 5) was also decreased with the decrease of RDRP expression, suggesting that RNAi interference of BmCPV-RDRP expression could affect viral replication. The study provides an effective method for investigating virus replication as well as the virus-host interactions in the silkworm larvae using dsRNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. dsRNA expression in the mouse elicits RNAi in oocytes and low adenosine deamination in somatic cells

    Czech Academy of Sciences Publication Activity Database

    Nejepínská, Jana; Malík, Radek; Filkowski, J.; Flemr, Matyáš; Filipowicz, W.; Svoboda, Petr

    2012-01-01

    Roč. 40, č. 1 (2012), s. 399-413 ISSN 0305-1048 R&D Projects: GA ČR GA204/09/0085 Grant - others:EMBO SDIG(XE) 1483 Institutional research plan: CEZ:AV0Z50520514 Keywords : dsRNA * RNAi * interferon Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.278, year: 2012

  8. Triggering of the dsRNA sensors TLR3, MDA5, and RIG-I induces CD55 expression in synovial fibroblasts.

    Directory of Open Access Journals (Sweden)

    Olga N Karpus

    Full Text Available CD55 (decay-accelerating factor is a complement-regulatory protein highly expressed on fibroblast-like synoviocytes (FLS. CD55 is also a ligand for CD97, an adhesion-type G protein-coupled receptor abundantly present on leukocytes. Little is known regarding the regulation of CD55 expression in FLS.FLS isolated from arthritis patients were stimulated with pro-inflammatory cytokines and Toll-like receptor (TLR ligands. Transfection with polyinosinic-polycytidylic acid (poly(I:C and 5'-triphosphate RNA were used to activate the cytoplasmic double-stranded (dsRNA sensors melanoma differentiation-associated gene 5 (MDA5 and retinoic acid-inducible gene-I (RIG-I. CD55 expression, cell viability, and binding of CD97-loaded beads were quantified by flow cytometry.CD55 was expressed at equal levels on FLS isolated from patients with rheumatoid arthritis (RA, osteoarthritis, psoriatic arthritis and spondyloarthritis. CD55 expression in RA FLS was significantly induced by IL-1β and especially by the TLR3 ligand poly(I:C. Activation of MDA5 and RIG-I also enhanced CD55 expression. Notably, activation of MDA5 dose-dependently induced cell death, while triggering of TLR3 or RIG-I had a minor effect on viability. Upregulation of CD55 enhanced the binding capacity of FLS to CD97-loaded beads, which could be blocked by antibodies against CD55.Activation of dsRNA sensors enhances the expression of CD55 in cultured FLS, which increases the binding to CD97. Our findings suggest that dsRNA promotes the interaction between FLS and CD97-expressing leukocytes.

  9. Purification and characterisation of dsRNA using ion pair reverse phase chromatography and mass spectrometry.

    Science.gov (United States)

    Nwokeoji, Alison O; Kung, An-Wen; Kilby, Peter M; Portwood, David E; Dickman, Mark J

    2017-02-10

    RNA interference has provided valuable insight into a wide range of biological systems and is a powerful tool for the analysis of gene function. The exploitation of this pathway to block the expression of specific gene targets holds considerable promise for the development of novel RNAi-based insect management strategies. In addition, there are a wide number of future potential applications of RNAi to control agricultural insect pests as well as its use for prevention of diseases in beneficial insects. The potential to synthesise large quantities of dsRNA by in-vitro transcription or in bacterial systems for RNA interference applications has generated significant demand for the development and application of high throughput analytical tools for the rapid extraction, purification and analysis of dsRNA. Here we have developed analytical methods that enable the rapid purification of dsRNA from associated impurities from bacterial cells in conjunction with downstream analyses. We have optimised TRIzol extractions in conjunction with a single step protocol to remove contaminating DNA and ssRNA, using RNase T1/DNase I digestion under high-salt conditions in combination with solid phase extraction to purify the dsRNA. In addition, we have utilised and developed IP RP HPLC for the rapid, high resolution analysis of the dsRNA. Furthermore, we have optimised base-specific cleavage of dsRNA by RNase A and developed a novel method utilising RNase T1 for RNase mass mapping approaches to further characterise the dsRNA using liquid chromatography interfaced with mass spectrometry. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Protection of Macrobrachium rosenbergii against white tail disease by oral administration of bacterial expressed and encapsulated double-stranded RNA.

    Science.gov (United States)

    Naveen Kumar, Singaiah; Karunasagar, Indrani; Karunasagar, Iddya

    2013-09-01

    White tail disease (WTD) of cultured Macrobrachium rosenbergii is caused by M. rosenbergii nodavirus (MrNV) and an extra small virus (XSV), both present together, and the mortality rate can be as high as 100% within 2 or 3 days of infection. Possible protection of M. rosenbergii against WTD by oral administration of bacterial expressed and encapsulated double-stranded RNA (dsRNA) was studied. Juvenile M. rosenbergii were fed with the feed coated with inactivated bacteria encapsulated dsRNA of MrNV and XSV genes individually and in combination for 7 days followed by challenge with WTD causing agents at 24 h and 72 h post-feeding. Test animals fed with a combination of dsRNA of MrNV and XSV capsid genes showed the highest relative percent survival (RPS) when compared to other treatments with RPS of 80% and 75% at 24 and 72 h respectively. One hundred percent mortality was observed in test animals fed with control dsRNA coated feed. Although in the literature, injection is the most common method used to deliver dsRNA, this study shows that oral administration is effective, feasible and economical. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Reporters Transiently Transfected into Mammalian Cells Are Highly Sensitive to Translational Repression Induced by dsRNA Expression

    Czech Academy of Sciences Publication Activity Database

    Nejepínská, Jana; Malík, Radek; Wagner, Susan; Svoboda, Petr

    2014-01-01

    Roč. 9, č. 1 (2014), e87517 E-ISSN 1932-6203 R&D Projects: GA ČR GA204/09/0085; GA ČR(CZ) GBP305/12/G034 Grant - others:EMBO(DE) 1483 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 ; RVO:61388971 Keywords : DOUBLE-STRANDED-RNA * INITIATION FACTOR-II * PROTEIN-KINASE PKR * GENE-EXPRESSION * MOUSE OOCYTES * MESSENGER-RNAS * HAIRPIN RNA * PHOSPHORYLATION * TRANSCRIPTION * INTERFERENCE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2014

  12. Proteomic Analysis of Bacterial Expression Profiles Following ...

    African Journals Online (AJOL)

    mass spectrometry (GC-MS) were performed to determine the phytochemicals in the active fraction. Results: Five differentially expressed bacterial proteins (four from Escherichia coli and one from Staphylococcus aureus), were identified via ...

  13. bacterial load in expressed and stored breast milk

    African Journals Online (AJOL)

    Dr

    2013-09-04

    Sep 4, 2013 ... Staphylococcus aureus were the predominant bacteria isolated in the breast milk samples ... the number of microbes was within levels considered acceptable in expressed breast milk. Key words: bacterial growth, expressed, breast milk ..... period, the bacterial isolates represented normal skin flora [18].

  14. Proteomic Analysis of Bacterial Expression Profiles Following ...

    African Journals Online (AJOL)

    Bacterial proteins were then extracted from the cell pellets and culture supernatants, using bacterial protein extraction reagent (Thermo Scientific) and ammonium sulfate precipitation. SDS-PAGE gel electrophoresis and protein sequence analysis. SDS-PAGE gel electrophoresis was performed using 12 % resolving gel [1.5 ...

  15. Bacterial Load in Expressed and Stored Breast Milk of Lactating ...

    African Journals Online (AJOL)

    The use of expressed breast milk has been advocated as an effective way of encouraging and maintaining lactation when the mother is separated from the baby for a while. However, prospects of storage of expressed breast milk for any considerable period of time is hindered by the possibility of bacterial contamination and ...

  16. Studying the Effect of Downregulating Autophagy-Related Gene LC3 on TLR3 Apoptotic Pathway Mediated by dsRNA in Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Wang, Guilan; Zhang, Maona; Li, Yunlong; Zhou, Jiaming; Chen, Li

    2017-01-01

    The purpose of this study is to examine the role of the double-stranded RNA (dsRNA) activated Toll-interleukin-1 receptor domain-containing adaptor inducing interferon β (TRIF) signal pathway in triggering apoptosis in hepatocellular carcinoma (HCC) cells. First, siRNA targeted autophagy-related gene LC3 (pU6H1-LC3 siRNA and siLC3) and a dsRNA used as a Toll-like receptor 3 (TLR3) ligand was constructed and synthesized, respectively. Then, a human HCC cell line was transfected with dsRNA, siLC3, and cotransfected with siLC3 and dsRNA (siLC3+dsRNA), respectively. Finally, quantification real-time polymerase chain reaction, western blotting, and immunofluorescence staining were used in the HCC line (SMMC7721), and MTT assay, flow cytometry, terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling, and transmission electron microscopy were used in an HCC xenograft model of nude mice. Human umbilical vein endothelial cell tube forming assay, color Doppler ultrasonographic flow image examination, and CD34-positive microvessel density were used in vitro and in vivo . Compared with untreated cells, the protein and mRNA expression of TLR3 and TRIF was up-regulated, in order, siLC3+dsRNA, dsRNA, and siLC3. Expression of LC3 was obviously down-regulated and the autophagosomes were significantly decreased in siLC3+dsRNA and siLC3, whereas in dsRNA (p protein, which can promote triggering of apoptosis by the TLR3-TRIF pathway. dsRNA and siLC3 could play anticancer roles in coordination.

  17. Endogenous Antimicrobial Peptide Expression in Response to Bacterial Epidermal Colonization

    Directory of Open Access Journals (Sweden)

    Michael Brandwein

    2017-11-01

    Full Text Available Bacterial commensal colonization of human skin is vital for the training and maintenance of the skin’s innate and adaptive immune functions. In addition to its physical barrier against pathogen colonization, the skin expresses a variety of antimicrobial peptides (AMPs which are expressed constitutively and induced in response to pathogenic microbial stimuli. These AMPs are differentially effective against a suite of microbial skin colonizers, including both bacterial and fungal residents of the skin. We review the breadth of microorganism-induced cutaneous AMP expression studies and their complementary findings on the efficacy of skin AMPs against different bacterial and fungal species. We suggest further directions for skin AMP research based on emerging skin microbiome knowledge in an effort to advance our understanding of the nuanced host–microbe balance on human skin. Such advances should enable the scientific community to bridge the gap between descriptive disease-state AMP studies and experimental single-species in vitro studies, thereby enabling research endeavors that more closely mimic the natural skin environs.

  18. Regulation of bacterial gene expression by ribosome stalling and rescuing.

    Science.gov (United States)

    Jin, Yongxin; Jin, Shouguang; Wu, Weihui

    2016-05-01

    Ribosome is responsible for protein synthesis and is able to monitor the sequence and structure of the nascent peptide. Such ability plays an important role in determining overall gene expression profile of the bacteria through ribosome stalling and rescuing. In this review, we briefly summarize our current understanding of the regulation of gene expression through ribosome stalling and rescuing in bacteria, as well as mechanisms that modulate ribosome activity. Understanding the mechanisms of how bacteria modulate ribosome activity will provide not only fundamental insights into bacterial gene regulation, but also new candidate targets for the development of novel antimicrobial agents.

  19. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin β1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua.

    Directory of Open Access Journals (Sweden)

    Eunseong Kim

    Full Text Available Oral toxicity of double-stranded RNA (dsRNA specific to integrin β1 subunit (SeINT was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT.The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cultured bacteria. The transformed bacteria gave a significant oral toxicity to S. exigua larvae with a significant reduction of the SeINT expression. The resulting insect mortality increased with the fed number of the bacteria. Pretreatment with an ultra-sonication to disrupt bacterial cell wall/membrane significantly increased the insecticidal activity of the transformed bacteria. The larvae treated with the transformed bacteria suffered tissue damage in the midgut epithelium, which exhibited a marked loss of cell-cell contacts and underwent a remarkable cell death. Moreover, these treated larvae became significantly susceptible to a Cry toxin derived from Bacillus thuringiensis (Bt.This study provides a novel and highly efficient application technique to use dsRNA specific to an integrin gene by mixing with a biopesticide, Bt.

  20. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin β1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua.

    Science.gov (United States)

    Kim, Eunseong; Park, Youngjin; Kim, Yonggyun

    2015-01-01

    Oral toxicity of double-stranded RNA (dsRNA) specific to integrin β1 subunit (SeINT) was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT. The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cultured bacteria. The transformed bacteria gave a significant oral toxicity to S. exigua larvae with a significant reduction of the SeINT expression. The resulting insect mortality increased with the fed number of the bacteria. Pretreatment with an ultra-sonication to disrupt bacterial cell wall/membrane significantly increased the insecticidal activity of the transformed bacteria. The larvae treated with the transformed bacteria suffered tissue damage in the midgut epithelium, which exhibited a marked loss of cell-cell contacts and underwent a remarkable cell death. Moreover, these treated larvae became significantly susceptible to a Cry toxin derived from Bacillus thuringiensis (Bt). This study provides a novel and highly efficient application technique to use dsRNA specific to an integrin gene by mixing with a biopesticide, Bt.

  1. Using Vital Dyes to Trace Uptake of dsRNA by Green Peach Aphid Allows Effective Assessment of Target Gene Knockdown

    Science.gov (United States)

    Bilgi, Vineeta; Fosu-Nyarko, John; Jones, Michael G. K.

    2017-01-01

    RNA interference (RNAi) is an effective tool to study gene function. For in vitro studies of RNAi in insects, microinjection of double-stranded (ds)RNA may cause stress. Non-persuasive oral delivery of dsRNA to trigger RNAi is a better mode of delivery for delicate insects such as aphids because it mimics natural feeding. However, when insects feed ad libitum, some individuals may not feed. For accurate measurement of gene knockdown, analysis should only include insects that have ingested dsRNA. The suitability of eleven dyes was assessed to trace ingestion of dsRNA in an artificial feeding system for green peach aphids (GPA, Myzus persicae). Non-toxic levels of neutral red and acridine orange were suitable tracers: they were visible in the stylet and gut after feeding for 24 h, and may also attract aphids to feed. Nymphs stained with neutral red (0.02%) were analysed for target gene expression after feeding on sucrose with dsRNA (V-ATPase, vha-8). There was a greater reduction in vha-8 expression and reproduction compared to nymphs fed the diet without dye. The results confirm the importance of identifying aphids that have ingested dsRNA, and also provide evidence that the vha-8 gene is a potential target for control of GPAs. PMID:28054949

  2. Using Vital Dyes to Trace Uptake of dsRNA by Green Peach Aphid Allows Effective Assessment of Target Gene Knockdown

    Directory of Open Access Journals (Sweden)

    Vineeta Bilgi

    2017-01-01

    Full Text Available RNA interference (RNAi is an effective tool to study gene function. For in vitro studies of RNAi in insects, microinjection of double-stranded (dsRNA may cause stress. Non-persuasive oral delivery of dsRNA to trigger RNAi is a better mode of delivery for delicate insects such as aphids because it mimics natural feeding. However, when insects feed ad libitum, some individuals may not feed. For accurate measurement of gene knockdown, analysis should only include insects that have ingested dsRNA. The suitability of eleven dyes was assessed to trace ingestion of dsRNA in an artificial feeding system for green peach aphids (GPA, Myzus persicae. Non-toxic levels of neutral red and acridine orange were suitable tracers: they were visible in the stylet and gut after feeding for 24 h, and may also attract aphids to feed. Nymphs stained with neutral red (0.02% were analysed for target gene expression after feeding on sucrose with dsRNA (V-ATPase, vha-8. There was a greater reduction in vha-8 expression and reproduction compared to nymphs fed the diet without dye. The results confirm the importance of identifying aphids that have ingested dsRNA, and also provide evidence that the vha-8 gene is a potential target for control of GPAs.

  3. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae.

    Science.gov (United States)

    Brat, Dawid; Boles, Eckhard; Wiedemann, Beate

    2009-04-01

    In industrial fermentation processes, the yeast Saccharomyces cerevisiae is commonly used for ethanol production. However, it lacks the ability to ferment pentose sugars like d-xylose and l-arabinose. Heterologous expression of a xylose isomerase (XI) would enable yeast cells to metabolize xylose. However, many attempts to express a prokaryotic XI with high activity in S. cerevisiae have failed so far. We have screened nucleic acid databases for sequences encoding putative XIs and finally were able to clone and successfully express a highly active new kind of XI from the anaerobic bacterium Clostridium phytofermentans in S. cerevisiae. Heterologous expression of this enzyme confers on the yeast cells the ability to metabolize d-xylose and to use it as the sole carbon and energy source. The new enzyme has low sequence similarities to the XIs from Piromyces sp. strain E2 and Thermus thermophilus, which were the only two XIs previously functionally expressed in S. cerevisiae. The activity and kinetic parameters of the new enzyme are comparable to those of the Piromyces XI. Importantly, the new enzyme is far less inhibited by xylitol, which accrues as a side product during xylose fermentation. Furthermore, expression of the gene could be improved by adapting its codon usage to that of the highly expressed glycolytic genes of S. cerevisiae. Expression of the bacterial XI in an industrially employed yeast strain enabled it to grow on xylose and to ferment xylose to ethanol. Thus, our findings provide an excellent starting point for further improvement of xylose fermentation in industrial yeast strains.

  4. DUX4-induced dsRNA and MYC mRNA stabilization activate apoptotic pathways in human cell models of facioscapulohumeral dystrophy.

    Directory of Open Access Journals (Sweden)

    Sean C Shadle

    2017-03-01

    Full Text Available Facioscapulohumeral dystrophy (FSHD is caused by the mis-expression of DUX4 in skeletal muscle cells. DUX4 is a transcription factor that activates genes normally associated with stem cell biology and its mis-expression in FSHD cells results in apoptosis. To identify genes and pathways necessary for DUX4-mediated apoptosis, we performed an siRNA screen in an RD rhabdomyosarcoma cell line with an inducible DUX4 transgene. Our screen identified components of the MYC-mediated apoptotic pathway and the double-stranded RNA (dsRNA innate immune response pathway as mediators of DUX4-induced apoptosis. Further investigation revealed that DUX4 expression led to increased MYC mRNA, accumulation of nuclear dsRNA foci, and activation of the dsRNA response pathway in both RD cells and human myoblasts. Nuclear dsRNA foci were associated with aggregation of the exon junction complex component EIF4A3. The elevation of MYC mRNA, dsRNA accumulation, and EIF4A3 nuclear aggregates in FSHD muscle cells suggest that these processes might contribute to FSHD pathophysiology.

  5. An accessory to the 'Trinity': SR-As are essential pathogen sensors of extracellular dsRNA, mediating entry and leading to subsequent type I IFN responses.

    Directory of Open Access Journals (Sweden)

    Stephanie J DeWitte-Orr

    2010-03-01

    Full Text Available Extracellular RNA is becoming increasingly recognized as a signaling molecule. Virally derived double stranded (dsRNA released into the extracellular space during virus induced cell lysis acts as a powerful inducer of classical type I interferon (IFN responses; however, the receptor that mediates this response has not been identified. Class A scavenger receptors (SR-As are likely candidates due to their cell surface expression and ability to bind nucleic acids. In this study, we investigated a possible role for SR-As in mediating type I IFN responses induced by extracellular dsRNA in fibroblasts, a predominant producer of IFNbeta. Fibroblasts were found to express functional SR-As, even SR-A species thought to be macrophage specific. SR-A specific competitive ligands significantly blocked extracellular dsRNA binding, entry and subsequent interferon stimulated gene (ISG induction. Candidate SR-As were systematically investigated using RNAi and the most dramatic inhibition in responses was observed when all candidate SR-As were knocked down in unison. Partial inhibition of dsRNA induced antiviral responses was observed in vivo in SR-AI/II(-/- mice compared with WT controls. The role of SR-As in mediating extracellular dsRNA entry and subsequent induced antiviral responses was observed in both murine and human fibroblasts. SR-As appear to function as 'carriers', facilitating dsRNA entry and delivery to the established dsRNA sensing receptors, specifically TLR3, RIGI and MDA-5. Identifying SR-As as gatekeepers of the cell, mediating innate antiviral responses, represents a novel function for this receptor family and provides insight into how cells recognize danger signals associated with lytic virus infections. Furthermore, the implications of a cell surface receptor capable of recognizing extracellular RNA may exceed beyond viral immunity to mediating other important innate immune functions.

  6. Inactivated E. coli transformed with plasmids that produce dsRNA against infectious salmon anemia virus hemagglutinin show antiviral activity when added to infected ASK cells.

    Directory of Open Access Journals (Sweden)

    Katherine eGarcía

    2015-04-01

    Full Text Available Infectious salmon anemia virus (ISAV has caused great losses to the Chilean salmon industry, and the success of prevention and treatment strategies is uncertain. The use of RNA interference (RNAi is a promising approach because during the replication cycle, the ISAV genome must be transcribed to mRNA in the cytoplasm. We explored the capacity of E. coli transformed with plasmids that produce double-stranded RNA (dsRNA to induce antiviral activity when added to infected ASK cells. We transformed the non-pathogenic Escherichia coli HT115 (DE3 with plasmids that expressed highly conserved regions of the ISAV genes encoding the nucleoprotein (NP, fusion (F, hemagglutinin (HE and matrix (M proteins as dsRNA, which is the precursor of the RNAi mechanism. The inactivated transformed bacteria carrying dsRNA were tested for their capacity to silence the target ISAV genes, and the dsRNA that were able to inhibit gene expression were subsequently tested for their ability to attenuate the cytopathic effect (CPE and reduce the viral load. Of the four target genes tested, inactivated E. coli transformed with plasmids producing dsRNA targeting HE showed antiviral activity when added to infected ASK cells.

  7. Efficient Detection of Long dsRNA in Vitro and in Vivo Using the dsRNA Binding Domain from FHV B2 Protein

    Directory of Open Access Journals (Sweden)

    Baptiste Monsion

    2018-02-01

    Full Text Available Double-stranded RNA (dsRNA plays essential functions in many biological processes, including the activation of innate immune responses and RNA interference. dsRNA also represents the genetic entity of some viruses and is a hallmark of infections by positive-sense single-stranded RNA viruses. Methods for detecting dsRNA rely essentially on immunological approaches and their use is often limited to in vitro applications, although recent developments have allowed the visualization of dsRNA in vivo. Here, we report the sensitive and rapid detection of long dsRNA both in vitro and in vivo using the dsRNA binding domain of the B2 protein from Flock house virus. In vitro, we adapted the system for the detection of dsRNA either enzymatically by northwestern blotting or by direct fluorescence labeling on fixed samples. In vivo, we produced stable transgenic Nicotiana benthamiana lines allowing the visualization of dsRNA by fluorescence microscopy. Using these techniques, we were able to discriminate healthy and positive-sense single-stranded RNA virus-infected material in plants and insect cells. In N. benthamiana, our system proved to be very potent for the spatio-temporal visualization of replicative RNA intermediates of a broad range of positive-sense RNA viruses, including high- vs. low-copy number viruses.

  8. BNYVV-derived dsRNA confers resistance to rhizomania disease of sugar beet as evidenced by a novel transgenic hairy root approach

    NARCIS (Netherlands)

    Pavli, R.; Panopoulos, N.J.; Goldbach, R.W.; Skaracis, G.N.

    2010-01-01

    Agrobacterium rhizogenes-transformed sugar beet hairy roots, expressing dsRNA from the Beet necrotic yellow vein virus replicase gene, were used as a novel approach to assess the efficacy of three intron-hairpin constructs at conferring resistance to rhizomania disease. Genetically engineered roots

  9. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr). Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and ...

  10. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr) Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and finally mer operon ...

  11. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an

  12. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

    Science.gov (United States)

    Furuse, Yuki; Finethy, Ryan; Saka, Hector A; Xet-Mull, Ana M; Sisk, Dana M; Smith, Kristen L Jurcic; Lee, Sunhee; Coers, Jörn; Valdivia, Raphael H; Tobin, David M; Cullen, Bryan R

    2014-01-01

    MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.

  13. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

    Directory of Open Access Journals (Sweden)

    Yuki Furuse

    Full Text Available MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.

  14. Expression of bacterial genes in transgenic tobacco: methods, applications and future prospects

    OpenAIRE

    Jube, Sandro; Borthakur, Dulal

    2007-01-01

    Tobacco is the most commonly used plant for expression of transgenes from a variety of organisms, because it is easily grown and transformed, it provides abundant amounts of fresh tissue and has a well-established cell culture system. Many bacterial proteins involved in the synthesis of commercial products are currently engineered for production in tobacco. Bacterial enzymes synthesized in tobacco can enhance protection against abiotic stresses and diseases, and provide a system to test appli...

  15. Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis.

    Science.gov (United States)

    Telleria, Erich L; Sant'Anna, Maurício R Viana; Alkurbi, Mohammad O; Pitaluga, André N; Dillon, Rod J; Traub-Csekö, Yara M

    2013-01-11

    Phlebotomine insects harbor bacterial, viral and parasitic pathogens that can cause diseases of public health importance. Lutzomyia longipalpis is the main vector of visceral leishmaniasis in the New World. Insects can mount a powerful innate immune response to pathogens. Defensin peptides take part in this response and are known to be active against Gram-positive and Gram-negative bacteria, and some parasites. We studied the expression of a defensin gene from Lutzomyia longipalpis to understand its role in sand fly immune response. We identified, sequenced and evaluated the expression of a L. longipalpis defensin gene by semi-quantitative RT-PCR. The gene sequence was compared to other vectors defensins and expression was determined along developmental stages and after exposure of adult female L. longipalpis to bacteria and Leishmania. Phylogenetic analysis showed that the L. longipalpis defensin is closely related to a defensin from the Old World sand fly Phlebotomus duboscqi. Expression was high in late L4 larvae and pupae in comparison to early larval stages and newly emerged flies. Defensin expression was modulated by oral infection with bacteria. The Gram-positive Micrococcus luteus induced early high defensin expression, whilst the Gram-negative entomopathogenic Serratia marcescens induced a later response. Bacterial injection also induced defensin expression in adult insects. Female sand flies infected orally with Leishmania mexicana showed no significant difference in defensin expression compared to blood fed insects apart from a lower defensin expression 5 days post Leishmania infection. When Leishmania was introduced into the hemolymph by injection there was no induction of defensin expression until 72 h later. Our results suggest that L. longipalpis modulates defensin expression upon bacterial and Leishmania infection, with patterns of expression that are distinct among bacterial species and routes of infection.

  16. Bacterial expression of larval peritrophins of Chryosomya bezziana

    Directory of Open Access Journals (Sweden)

    Tony Voucoloco

    2000-10-01

    Full Text Available Three candidate antigens, Chrysomya bezziana peritrophin-48, Chrysomya bezziana peritrophin-15 and Chrysomya bezziana peritrophin-42, were prepared for recombinant protein production in Escherichia coli using a variety of expression vectors. Cb peritrophin-48 was expressed as a recombinant protein possessing a carboxy-terminal hexaHis tag. Cb peritrophin-15 was expressed as both a glutathione S-transferase fusion protein and as an amino-terminal hexaHis tagged protein. The glutathione Stransferase Cb peritrophin-15 construct produced a heterogeneous group of fusion proteins. Cb peritrophin-42 was also expressed as an amino-terminal hexaHis tagged protein. The two putative domains of Cb peritrophin-42 were also separately expressed, again with amino-terminal hexaHis tags. Cultures of the hexaHis constructs Cb peritrophin-48, -15 and –42 were demonstrated to be useful for the production and purification of these protein antigens and were scaled-up for vaccine trials and protein characterization studies.

  17. Initiation of RNA Polymerization and Polymerase Encapsidation by a Small dsRNA Virus.

    Directory of Open Access Journals (Sweden)

    Aaron M Collier

    2016-04-01

    Full Text Available During the replication cycle of double-stranded (ds RNA viruses, the viral RNA-dependent RNA polymerase (RdRP replicates and transcribes the viral genome from within the viral capsid. How the RdRP molecules are packaged within the virion and how they function within the confines of an intact capsid are intriguing questions with answers that most likely vary across the different dsRNA virus families. In this study, we have determined a 2.4 Å resolution structure of an RdRP from the human picobirnavirus (hPBV. In addition to the conserved polymerase fold, the hPBV RdRP possesses a highly flexible 24 amino acid loop structure located near the C-terminus of the protein that is inserted into its active site. In vitro RNA polymerization assays and site-directed mutagenesis showed that: (1 the hPBV RdRP is fully active using both ssRNA and dsRNA templates; (2 the insertion loop likely functions as an assembly platform for the priming nucleotide to allow de novo initiation; (3 RNA transcription by the hPBV RdRP proceeds in a semi-conservative manner; and (4 the preference of virus-specific RNA during transcription is dictated by the lower melting temperature associated with the terminal sequences. Co-expression of the hPBV RdRP and the capsid protein (CP indicated that, under the conditions used, the RdRP could not be incorporated into the recombinant capsids in the absence of the viral genome. Additionally, the hPBV RdRP exhibited higher affinity towards the conserved 5'-terminal sequence of the viral RNA, suggesting that the RdRP molecules may be encapsidated through their specific binding to the viral RNAs during assembly.

  18. Polymorphism of viral dsRNA in Xanthophyllomyces dendrorhous strains isolated from different geographic areas.

    Science.gov (United States)

    Baeza, Marcelo; Sanhueza, Mario; Flores, Oriana; Oviedo, Vicente; Libkind, Diego; Cifuentes, Víctor

    2009-10-08

    Strains of the astaxanthin producing yeast Xanthophyllomyces dendrorhous have been isolated from different cold regions around the earth, and the presence of double stranded RNA (dsRNA) elements was described in some isolates. This kind of viruses is widely distributed among yeasts and filamentous fungi and, although generally are cryptic in function, their studies have been a key factor in the knowledge of important fungi. In this work, the characterization and genetic relationships among dsRNA elements were determined in strains representatives of almost all regions of the earth where X. dendrorhous have been isolated. Almost all strains of X. dendrorhous analyzed carry one, two or four dsRNA elements, of molecular sizes in the range from 0.8 to 5.0 kb. Different dsRNA-patterns were observed in strains with different geographic origin, being L1 (5.0 kb) the common dsRNA element. By hybridization assays a high genomic polymorphism was observed among L1 dsRNAs of different X. dendrorhous strains. Contrary, hybridization was observed between L1 and L2 dsRNAs of strains from same or different regions, while the dsRNA elements of minor sizes (M, S1, and S2) present in several strains did not show hybridization with neither L1 or L2 dsRNAs. Along the growth curve of UCD 67-385 (harboring four dsRNAs) an increase of L2 relative to L1 dsRNA was observed, while the S1/L1 ratio remains constant, as well as the M/L1 ratio of Patagonian strain. Strains cured of S2 dsRNA were obtained by treatment with anisomycin, and comparison of its dsRNA contents with uncured strain, revealed an increase of L1 dsRNA while the L2 and S1 dsRNA remain unaltered. The dsRNA elements of X. dendrorhous are highly variable in size and sequence, and the dsRNA pattern is specific to the geographic region of isolation. Each L1 and L2 dsRNA are viral elements able to self replicate and to coexist into a cell, and L1 and S2 dsRNAs elements could be part of a helper/satellite virus system in X

  19. Polymorphism of viral dsRNA in Xanthophyllomyces dendrorhous strains isolated from different geographic areas

    Directory of Open Access Journals (Sweden)

    Libkind Diego

    2009-10-01

    Full Text Available Abstract Background Strains of the astaxanthin producing yeast Xanthophyllomyces dendrorhous have been isolated from different cold regions around the earth, and the presence of double stranded RNA (dsRNA elements was described in some isolates. This kind of viruses is widely distributed among yeasts and filamentous fungi and, although generally are cryptic in function, their studies have been a key factor in the knowledge of important fungi. In this work, the characterization and genetic relationships among dsRNA elements were determined in strains representatives of almost all regions of the earth where X. dendrorhous have been isolated. Results Almost all strains of X. dendrorhous analyzed carry one, two or four dsRNA elements, of molecular sizes in the range from 0.8 to 5.0 kb. Different dsRNA-patterns were observed in strains with different geographic origin, being L1 (5.0 kb the common dsRNA element. By hybridization assays a high genomic polymorphism was observed among L1 dsRNAs of different X. dendrorhous strains. Contrary, hybridization was observed between L1 and L2 dsRNAs of strains from same or different regions, while the dsRNA elements of minor sizes (M, S1, and S2 present in several strains did not show hybridization with neither L1 or L2 dsRNAs. Along the growth curve of UCD 67-385 (harboring four dsRNAs an increase of L2 relative to L1 dsRNA was observed, whiles the S1/L1 ratio remains constant, as well as the M/L1 ratio of Patagonian strain. Strains cured of S2 dsRNA were obtained by treatment with anisomycin, and comparison of its dsRNA contents with uncured strain, revealed an increase of L1 dsRNA while the L2 and S1 dsRNA remain unaltered. Conclusion The dsRNA elements of X. dendrorhous are highly variable in size and sequence, and the dsRNA pattern is specific to the geographic region of isolation. Each L1 and L2 dsRNA are viral elements able to self replicate and to coexist into a cell, and L1 and S2 dsRNAs elements could

  20. Denitrification gene expression in clay-soil bacterial community

    Science.gov (United States)

    Pastorelli, R.; Landi, S.

    2009-04-01

    Our contribution in the Italian research project SOILSINK was focused on microbial denitrification gene expression in Mediterranean agricultural soils. In ecosystems with high inputs of nitrogen, such as agricultural soils, denitrification causes a net loss of nitrogen since nitrate is reduced to gaseous forms, which are released into the atmosphere. Moreover, incomplete denitrification can lead to emission of nitrous oxide, a potent greenhouse gas which contributes to global warming and destruction of ozone layer. A critical role in denitrification is played by microorganisms and the ability to denitrify is widespread among a variety of phylogenetically unrelated organisms. Data reported here are referred to wheat cultivation in a clay-rich soil under different environmental impact management (Agugliano, AN, Italy). We analysed the RNA directly extracted from soil to provide information on in situ activities of specific populations. The expression of genes coding for two nitrate reductases (narG and napA), two nitrite reductases (nirS and nirK), two nitric oxide reductases (cnorB and qnorB) and nitrous oxide reductase (nosZ) was analyzed by reverse transcription (RT)-nested PCR. Only napA, nirS, nirK, qnorB and nosZ were detected and fragments sequenced showed high similarity with the corresponding gene sequences deposited in GenBank database. These results suggest the suitability of the method for the qualitative detection of denitrifying bacteria in environmental samples and they offered us the possibility to perform the denaturing gradient gel electrophoresis (DGGE) analyzes for denitrification genes.. Earlier conclusions showed nirK gene is more widely distributed in soil environment than nirS gene. The results concerning the nosZ expression indicated that microbial activity was clearly present only in no-tilled and no-fertilized soils.

  1. Choosing Between Yeast and Bacterial Expression Systems: Yield Dependent

    Science.gov (United States)

    Miller, Rebecca S.; Malone, Christine C.; Moore, Blake P.; Burk, Melissa; Crawford, Lisa; Karr, Laurel J.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Green fluorescent protein (GFP) is a naturally occurring fluorescent protein isolated from the jellyfish Aequorea victoria. The intrinsic fluorescence of the protein is due to a chromophore located in the center of the molecule. Its usefulness has been established as a marker for gene expression and localization of gene products. GFP has recently been utilized as a model protein for crystallization studies at NASA/MSFC, both in earth-based and in microgravity experiments. Because large quantities of purified protein were needed, the cDNA of GFP was cloned into the Pichia pastoris pPICZ(alpha) C strain, with very little protein secreted into the media. Microscopic analysis prior to harvest showed gigantic green fluorescent yeast, but upon harvesting most protein was degraded. Trial fermentations of GFP cloned into pPICZ A for intracellular expression provided unsatisfactory yield. GFP cloned into E, coli was overexpressed at greater than 150 mg/liter, with purification yields at greater than 100mg/liter.

  2. Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Daisy W.; Prins, Kathleen C.; Borek, Dominika M.; Farahbakhsh, Mina; Tufariello, JoAnn M.; Ramanan, Parameshwaran; Nix, Jay C.; Helgeson, Luke A.; Otwinowski, Zbyszek; Honzatko, Richard B.; Basler, Christopher F.; Amarasinghe, Gaya K. (Sinai); (Iowa State); (LBNL); (UTSMC)

    2010-03-12

    Ebola viral protein 35 (VP35), encoded by the highly pathogenic Ebola virus, facilitates host immune evasion by antagonizing antiviral signaling pathways, including those initiated by RIG-I-like receptors. Here we report the crystal structure of the Ebola VP35 interferon inhibitory domain (IID) bound to short double-stranded RNA (dsRNA), which together with in vivo results reveals how VP35-dsRNA interactions contribute to immune evasion. Conserved basic residues in VP35 IID recognize the dsRNA backbone, whereas the dsRNA blunt ends are 'end-capped' by a pocket of hydrophobic residues that mimic RIG-I-like receptor recognition of blunt-end dsRNA. Residues critical for RNA binding are also important for interferon inhibition in vivo but not for viral polymerase cofactor function of VP35. These results suggest that simultaneous recognition of dsRNA backbone and blunt ends provides a mechanism by which Ebola VP35 antagonizes host dsRNA sensors and immune responses.

  3. Soluble triggering receptor expressed on myeloid cells 1: a biomarker for bacterial meningitis

    NARCIS (Netherlands)

    Determann, Rogier M.; Weisfelt, Martijn; de Gans, Jan; van der Ende, Arie; Schultz, Marcus J.; van de Beek, Diederik

    2006-01-01

    OBJECTIVE: To evaluate whether soluble triggering receptor expressed on myeloid cells 1 (sTREM-1) in CSF can serve as a biomarker for the presence of bacterial meningitis and outcome in patients with this disease. DESIGN: Retrospective study of diagnostic accuracy. SETTING AND PATIENTS: CSF was

  4. Measurement of bacterial gene expression in vivo by laser capture microdissection and quantitative real-time RT-PCR

    DEFF Research Database (Denmark)

    Schou, Kirstine Klitgaard; Jensen, Tim Kåre; Angen, Øystein

    2007-01-01

    Due to the relative small number of bacterial pathogens present in an infected host, exploration of pathogen gene expression in vivo is challenging. This study reports the development of a protocol for quantifying bacterial gene expression in vivo in Actinobacillus pleuropneumoniae using laser ca...... capture microdissection and real-time quantitative RT-PCR....

  5. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa zea larval development and pupation.

    Science.gov (United States)

    Jin, Shuangxia; Singh, Nameirakpam D; Li, Lebin; Zhang, Xianlong; Daniell, Henry

    2015-04-01

    In the past two decades, chloroplast genetic engineering has been advanced to achieve high-level protein accumulation but not for down-regulation of targeted genes. Therefore, in this report, lepidopteran chitin synthase (Chi), cytochrome P450 monooxygenase (P450) and V-ATPase dsRNAs were expressed via the chloroplast genome to study RNA interference (RNAi) of target genes in intended hosts. PCR and Southern blot analysis confirmed homoplasmy and site-specific integration of transgene cassettes into the chloroplast genomes. Northern blots and real-time qRT-PCR confirmed abundant processed and unprocessed dsRNA transcripts (up to 3.45 million copies of P450 dsRNAs/μg total RNA); the abundance of cleaved dsRNA was greater than the endogenous psbA transcript. Feeding of leaves expressing P450, Chi and V-ATPase dsRNA decreased transcription of the targeted gene to almost undetectable levels in the insect midgut, likely after further processing of dsRNA in their gut. Consequently, the net weight of larvae, growth and pupation rates were significantly reduced by chloroplast-derived dsRNAs. Taken together, successful expression of dsRNAs via the chloroplast genome for the first time opens the door to study RNA interference/processing within plastids. Most importantly, dsRNA expressed in chloroplasts can be utilized for gene inactivation to confer desired agronomic traits or for various biomedical applications, including down-regulation of dysfunctional genes in cancer or autoimmune disorders, after oral delivery of dsRNA bioencapsulated within plant cells. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Influenza viral neuraminidase primes bacterial coinfection through TGF-β-mediated expression of host cell receptors.

    Science.gov (United States)

    Li, Ning; Ren, Aihui; Wang, Xiaoshuang; Fan, Xin; Zhao, Yong; Gao, George F; Cleary, Patrick; Wang, Beinan

    2015-01-06

    Influenza infection predisposes the host to secondary bacterial pneumonia, which is a major cause of mortality during influenza epidemics. The molecular mechanisms underlying the bacterial coinfection remain elusive. Neuraminidase (NA) of influenza A virus (IAV) enhances bacterial adherence and also activates TGF-β. Because TGF-β can up-regulate host adhesion molecules such as fibronectin and integrins for bacterial binding, we hypothesized that activated TGF-β during IAV infection contributes to secondary bacterial infection by up-regulating these host adhesion molecules. Flow cytometric analyses of a human lung epithelial cell line indicated that the expression of fibronectin and α5 integrin was up-regulated after IAV infection or treatment with recombinant NA and was reversed through the inhibition of TGF-β signaling. IAV-promoted adherence of group A Streptococcus (GAS) and other coinfective pathogens that require fibronectin for binding was prevented significantly by the inhibition of TGF-β. However, IAV did not promote the adherence of Lactococcus lactis unless this bacterium expressed the fibronectin-binding protein of GAS. Mouse experiments showed that IAV infection enhanced GAS colonization in the lungs of wild-type animals but not in the lungs of mice deficient in TGF-β signaling. Taken together, these results reveal a previously unrecognized mechanism: IAV NA enhances the expression of cellular adhesins through the activation of TGF-β, leading to increased bacterial loading in the lungs. Our results suggest that TGF-β and cellular adhesins may be potential pharmaceutical targets for the prevention of coinfection.

  7. Functional expression of an scFv on bacterial magnetic particles by in vitro docking

    Energy Technology Data Exchange (ETDEWEB)

    Sugamata, Yasuhiro; Tanaka, Tsuyoshi; Matsunaga, Tadashi; Yoshino, Tomoko, E-mail: y-tomoko@cc.tuat.ac.jp

    2014-02-28

    Highlights: • We present a novel expression system called “in vitro docking” on bacterial magnetic particles. • An scFv–Fc was functionally expressed on bacterial magnetic particles of magnetotactic bacteria. • Our novel expression system on BacMPs will be effective for disulfide-bonded proteins. - Abstract: A Gram-negative, magnetotactic bacterium, Magnetospirillum magneticum AMB-1 produces nano-sized magnetic particles (BacMPs) in the cytoplasm. Although various applications of genetically engineered BacMPs have been demonstrated, such as immunoassay, ligand–receptor interaction or cell separation, by expressing a target protein on BacMPs, it has been difficult to express disulfide-bonded proteins on BacMPs due to lack of disulfide-bond formation in the cytoplasm. Here, we propose a novel dual expression system, called in vitro docking, of a disulfide-bonded protein on BacMPs by directing an immunoglobulin Fc-fused target protein to the periplasm and its docking protein ZZ on BacMPs. By in vitro docking, an scFv–Fc fusion protein was functionally expressed on BacMPs in the dimeric or trimeric form. Our novel disulfide-bonded protein expression system on BacMPs will be useful for efficient screening of potential ligands or drugs, analyzing ligand–receptor interactions or as a magnetic carrier for affinity purification.

  8. Regulation of bacterial virulence gene expression by cell envelope stress responses.

    Science.gov (United States)

    Flores-Kim, Josué; Darwin, Andrew J

    2014-01-01

    The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens.

  9. The Human dsRNA binding protein PACT is unable to functionally substitute for the Drosophila dsRNA binding protein R2D2 [v1; ref status: indexed, http://f1000r.es/201

    Directory of Open Access Journals (Sweden)

    Benjamin K Dickerman

    2013-10-01

    Full Text Available The primary function of the dsRNA binding protein (dsRBP PACT/RAX is to activate the dsRNA dependent protein kinase PKR in response to stress signals.  Additionally, it has been identified as a component of the small RNA processing pathway.  A role for PACT/RAX in this pathway represents an important interplay between two modes of post-transcriptional gene regulation.  The function of PACT/RAX in this context is poorly understood.  Thus, additional models are required to clarify the mechanism by which PACT/RAX functions.  In this study, Drosophila melanogaster was employed to identify functionally orthologous dsRNA-binding proteins.  Transgenic Drosophila expressing human PACT were generated to determine whether PACT is capable of functionally substituting for the Drosophila dsRBP R2D2, which has a well-defined role in small RNA biogenesis.  Results presented here indicate that PACT is unable to substitute for R2D2 at the whole organism level.

  10. Structural Basis for dsRNA Recognition by NS1 Protein of Influenza A Virus

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, A.; Wong, S; Yuan, Y

    2009-01-01

    Influenza A viruses are important human pathogens causing periodic pandemic threats. Nonstructural protein 1 (NS1) protein of influenza A virus (NS1A) shields the virus against host defense. Here, we report the crystal structure of NS1A RNA-binding domain (RBD) bound to a double-stranded RNA (dsRNA) at 1.7A. NS1A RBD forms a homodimer to recognize the major groove of A-form dsRNA in a length-independent mode by its conserved concave surface formed by dimeric anti-parallel alpha-helices. dsRNA is anchored by a pair of invariable arginines (Arg38) from both monomers by extensive hydrogen bonds. In accordance with the structural observation, isothermal titration calorimetry assay shows that the unique Arg38-Arg38 pair and two Arg35-Arg46 pairs are crucial for dsRNA binding, and that Ser42 and Thr49 are also important for dsRNA binding. Agrobacterium co-infiltration assay further supports that the unique Arg38 pair plays important roles in dsRNA binding in vivo.

  11. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data

    Directory of Open Access Journals (Sweden)

    Tintle Nathan L

    2012-08-01

    Full Text Available Abstract Background Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. Results We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Conclusions Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  12. Interplay of Noisy Gene Expression and Dynamics Explains Patterns of Bacterial Operon Organization

    Science.gov (United States)

    Igoshin, Oleg

    2011-03-01

    Bacterial chromosomes are organized into operons -- sets of genes co-transcribed into polycistronic messenger RNA. Hypotheses explaining the emergence and maintenance of operons include proportional co-regulation, horizontal transfer of intact ``selfish'' operons, emergence via gene duplication, and co-production of physically interacting proteins to speed their association. We hypothesized an alternative: operons can reduce or increase intrinsic gene expression noise in a manner dependent on the post-translational interactions, thereby resulting in selection for or against operons in depending on the network architecture. We devised five classes of two-gene network modules and show that the effects of operons on intrinsic noise depend on class membership. Two classes exhibit decreased noise with co-transcription, two others reveal increased noise, and the remaining one does not show a significant difference. To test our modeling predictions we employed bioinformatic analysis to determine the relationship gene expression noise and operon organization. The results confirm the overrepresentation of noise-minimizing operon architectures and provide evidence against other hypotheses. Our results thereby suggest a central role for gene expression noise in selecting for or maintaining operons in bacterial chromosomes. This demonstrates how post-translational network dynamics may provide selective pressure for organizing bacterial chromosomes, and has practical consequences for designing synthetic gene networks. This work is supported by National Institutes of Health grant 1R01GM096189-01.

  13. Dynamics of immune system gene expression upon bacterial challenge and wounding in a social insect (Bombus terrestris.

    Directory of Open Access Journals (Sweden)

    Silvio Erler

    2011-03-01

    Full Text Available The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT. There is a lack of immune genes in social insects (e.g. honeybees when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals. The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge.Antimicrobial peptides (AMP (abaecin, defensin 1, hymenoptaecin were strongly up-regulated by wounding and bacterial challenge, the latter showing a higher impact on the gene expression level. Sterile wounding down-regulated TEP A, an effector gene of the JAK/STAT pathway, and bacterial infection influenced genes of the Imd (relish and JNK pathway (basket. Relish was up-regulated within the first hour after bacterial challenge, but decreased strongly afterwards. AMP expression following wounding and bacterial challenge correlates with the expression pattern of relish whereas correlated expression with dorsal was absent. Although expression of AMPs was high, continuous bacterial growth was observed throughout the experiment.Here we demonstrate for the first time the temporal dynamics of immune system gene expression in a social insect. Wounding and bacterial challenge affected the innate immune system significantly. Induction of AMP expression due to wounding might comprise a pre-adaptation to accompanying bacterial infections. Compared with solitary species this social insect exhibits reduced immune system efficiency, as bacterial growth could not be inhibited. A negative feedback loop regulating the Imd-pathway is suggested. AMPs, the end product of the Imd-pathway, inhibited the up-regulation of the

  14. Induction of bacterial lipoprotein tolerance is associated with suppression of toll-like receptor 2 expression.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    Tolerance to bacterial cell wall components including lipopolysaccharide (LPS) may represent an essential regulatory mechanism during bacterial infection. Two members of the Toll-like receptor (TLR) family, TLR2 and TLR4, recognize the specific pattern of bacterial cell wall components. TLR4 has been found to be responsible for LPS tolerance. However, the role of TLR2 in bacterial lipoprotein (BLP) tolerance and LPS tolerance is unclear. Pretreatment of human THP-1 monocytic cells with a synthetic bacterial lipopeptide induced tolerance to a second BLP challenge with diminished tumor necrosis factor-alpha and interleukin-6 production, termed BLP tolerance. Furthermore, BLP-tolerized THP-1 cells no longer responded to LPS stimulation, indicating a cross-tolerance to LPS. Induction of BLP tolerance was CD14-independent, as THP-1 cells that lack membrane-bound CD14 developed tolerance both in serum-free conditions and in the presence of a specific CD14 blocking monoclonal antibody (MEM-18). Pre-exposure of THP-1 cells to BLP suppressed mitogen-activated protein kinase phosphorylation and nuclear factor-kappaB activation in response to subsequent BLP and LPS stimulation, which is comparable with that found in LPS-tolerized cells, indicating that BLP tolerance and LPS tolerance may share similar intracellular pathways. However, BLP strongly enhanced TLR2 expression in non-tolerized THP-1 cells, whereas LPS stimulation had no effect. Furthermore, a specific TLR2 blocking monoclonal antibody (2392) attenuated BLP-induced, but not LPS-induced, tumor necrosis factor-alpha and interleukin-6 production, indicating BLP rather than LPS as a ligand for TLR2 engagement and activation. More importantly, pretreatment of THP-1 cells with BLP strongly inhibited TLR2 activation in response to subsequent BLP stimulation. In contrast, LPS tolerance did not prevent BLP-induced TLR2 overexpression. These results demonstrate that BLP tolerance develops through down-regulation of TLR2

  15. Analysis of gene expression levels in individual bacterial cells without image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, In Hae; Son, Minjun [Physics Department, University of Florida, P.O. Box 118440, Gainesville, FL 32611-8440 (United States); Hagen, Stephen J., E-mail: sjhagen@ufl.edu [Physics Department, University of Florida, P.O. Box 118440, Gainesville, FL 32611-8440 (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer We present a method for extracting gene expression data from images of bacterial cells. Black-Right-Pointing-Pointer The method does not employ cell segmentation and does not require high magnification. Black-Right-Pointing-Pointer Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. Black-Right-Pointing-Pointer We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.

  16. Analysis of gene expression levels in individual bacterial cells without image segmentation

    International Nuclear Information System (INIS)

    Kwak, In Hae; Son, Minjun; Hagen, Stephen J.

    2012-01-01

    Highlights: ► We present a method for extracting gene expression data from images of bacterial cells. ► The method does not employ cell segmentation and does not require high magnification. ► Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. ► We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.

  17. A quorum sensing-based in vivo expression system and its application in multivalent bacterial vaccine.

    Science.gov (United States)

    Chu, Teng; Ni, Chunshan; Zhang, Lingzhi; Wang, Qiyao; Xiao, Jingfan; Zhang, Yuanxing; Liu, Qin

    2015-03-18

    Delivery of antigens by live bacterial carriers can elicit effective humoral and cellular responses and may be an attractive strategy for live bacterial vaccine production through introduction of a vector that expresses an exogenous protective antigen. To overcome the instability and metabolic burden associated with plasmid introduction, alternative strategies, such as the use of in vivo-inducible promoters, have been proposed. However, screening an ideal in vivo-activated promoter with high efficiency and low leak expression in a particular strain poses great challenges to many researchers. In this work, we constructed an in vivo antigen-expressing vector suitable for Edwardsiella tarda, an enteric Gram-negative invasive intracellular pathogen of both animals and humans. By combining quorum sensing genes from Vibrio fischeri with iron uptake regulons, a synthetic binary regulation system (ironQS) for E. tarda was designed. In vitro expression assay demonstrated that the ironQS system is only initiated in the absence of Fe2+ in the medium when the cell density reaches its threshold. The ironQS system was further confirmed in vivo to present an in vivo-triggered and cell density-dependent expression pattern in larvae and adult zebrafish. A recombinant E. tarda vector vaccine candidate WED(ironQS-G) was established by introducing gapA34, which encodes the protective antigen glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the fish pathogen Aeromonas hydrophila LSA34 into ironQS system, and the immune protection afforded by this vaccine was assessed in turbot (Scophtalmus maximus). Most of the vaccinated fish survived under the challenge with A. hydrophila LSA34 (RPS=67.0%) or E. tarda EIB202 (RPS=72.3%). Quorum sensing system has been extensively used in various gene structures in synthetic biology as a well-functioning and population-dependent gene circuit. In this work, the in vivo expression system, ironQS, maintained the high expression efficiency of the

  18. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin ?1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua

    OpenAIRE

    Kim, Eunseong; Park, Youngjin; Kim, Yonggyun

    2015-01-01

    Background Oral toxicity of double-stranded RNA (dsRNA) specific to integrin ?1 subunit (SeINT) was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT. Principal Findings The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cul...

  19. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Directory of Open Access Journals (Sweden)

    Chew Chieng Yeo

    2016-02-01

    Full Text Available Toxin-antitoxin (TA systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  20. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications.

    Science.gov (United States)

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-02-19

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  1. Interplay of Gene Expression Noise and Ultrasensitive Dynamics Affects Bacterial Operon Organization

    Science.gov (United States)

    Ray, J. Christian J; Igoshin, Oleg A.

    2012-01-01

    Bacterial chromosomes are organized into polycistronic cotranscribed operons, but the evolutionary pressures maintaining them are unclear. We hypothesized that operons alter gene expression noise characteristics, resulting in selection for or against maintaining operons depending on network architecture. Mathematical models for 6 functional classes of network modules showed that three classes exhibited decreased noise and 3 exhibited increased noise with same-operon cotranscription of interacting proteins. Noise reduction was often associated with a decreased chance of reaching an ultrasensitive threshold. Stochastic simulations of the lac operon demonstrated that the predicted effects of transcriptional coupling hold for a complex network module. We employed bioinformatic analysis to find overrepresentation of noise-minimizing operon organization compared with randomized controls. Among constitutively expressed physically interacting protein pairs, higher coupling frequencies appeared at lower expression levels, where noise effects are expected to be dominant. Our results thereby suggest an important role for gene expression noise, in many cases interacting with an ultrasensitive switch, in maintaining or selecting for operons in bacterial chromosomes. PMID:22956903

  2. Intracellular delivery of poly(I:C) induces apoptosis of fibroblast-like synoviocytes via an unknown dsRNA sensor

    Energy Technology Data Exchange (ETDEWEB)

    Karpus, Olga N.; Hsiao, Cheng-Chih; Kort, Hanneke de; Tak, Paul P.; Hamann, Jörg, E-mail: j.hamann@amc.uva.nl

    2016-08-26

    Fibroblast-like synoviocytes (FLS) express functional membranous and cytoplasmic sensors for double-stranded (ds)RNA. Notably, FLS undergo apoptosis upon transfection with the synthetic dsRNA analog poly(I:C). We here studied the mechanism of intracellular poly(I:C) recognition and subsequent cell death in FLS. FLS responded similarly to poly(I:C) or 3pRNA transfection; however, only intracellular delivery of poly(I:C) induced significant cell death, accompanied by upregulation of pro-apoptotic proteins Puma and Noxa, caspase 3 cleavage, and nuclear segregation. Knockdown of the DExD/H-box helicase MDA5 did not affect the response to intracellular poly(I:C); in contrast, knockdown of RIG-I abrogated the response to 3pRNA. Knockdown of the downstream adaptor proteins IPS, STING, and TRIF or inhibition of TBK1 did not affect the response to intracellular poly(I:C), while knockdown of IFNAR blocked intracellular poly(I:C)-mediated signaling and cell death. We conclude that a so far unknown intracellular sensor recognizes linear dsRNA and induces apoptosis in FLS. - Highlights: • Intracellular poly(I:C) and 3pRNA evoke immune responses in FLS. • Only intracellular delivery of poly(I:C) induces FLS apoptosis. • FLS do not require MDA5 for their response to intracellular poly(I:C). • FLS respond to intracellular poly(I:C) independent of IPS and STING. • An unknown intracellular sensor recognizes linear dsRNA in FLS.

  3. Bacterial Expression of Human Butyrylcholinesterase as a Tool for Nerve Agent Bioscavengers Development

    Directory of Open Access Journals (Sweden)

    Xavier Brazzolotto

    2017-10-01

    Full Text Available Human butyrylcholinesterase is a performant stoichiometric bioscavenger of organophosphorous nerve agents. It is either isolated from outdated plasma or functionally expressed in eukaryotic systems. Here, we report the production of active human butyrylcholinesterase in a prokaryotic system after optimization of the primary sequence through the Protein Repair One Stop Shop process, a structure- and sequence-based algorithm for soluble bacterial expression of difficult eukaryotic proteins. The mutant enzyme was purified to homogeneity. Its kinetic parameters with substrate are similar to the endogenous human butyrylcholinesterase or recombinants produced in eukaryotic systems. The isolated protein was prone to crystallize and its 2.5-Å X-ray structure revealed an active site gorge region identical to that of previously solved structures. The advantages of this alternate expression system, particularly for the generation of butyrylcholinesterase variants with nerve agent hydrolysis activity, are discussed.

  4. Bacterial Expression of Human Butyrylcholinesterase as a Tool for Nerve Agent Bioscavengers Development.

    Science.gov (United States)

    Brazzolotto, Xavier; Igert, Alexandre; Guillon, Virginia; Santoni, Gianluca; Nachon, Florian

    2017-10-27

    Human butyrylcholinesterase is a performant stoichiometric bioscavenger of organophosphorous nerve agents. It is either isolated from outdated plasma or functionally expressed in eukaryotic systems. Here, we report the production of active human butyrylcholinesterase in a prokaryotic system after optimization of the primary sequence through the Protein Repair One Stop Shop process, a structure- and sequence-based algorithm for soluble bacterial expression of difficult eukaryotic proteins. The mutant enzyme was purified to homogeneity. Its kinetic parameters with substrate are similar to the endogenous human butyrylcholinesterase or recombinants produced in eukaryotic systems. The isolated protein was prone to crystallize and its 2.5-Å X-ray structure revealed an active site gorge region identical to that of previously solved structures. The advantages of this alternate expression system, particularly for the generation of butyrylcholinesterase variants with nerve agent hydrolysis activity, are discussed.

  5. Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development.

    Directory of Open Access Journals (Sweden)

    Seung-Joo Lee

    2012-01-01

    Full Text Available Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS effectors steadily accumulated until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation, and location of antigen-specific CD4 T cells in vivo.

  6. Administration of co-expressed Penaeus stylirostris densovirus-like particles and dsRNA-YHV-Pro provide protection against yellow head virus in shrimp.

    Science.gov (United States)

    Sinnuengnong, Rapee; Attasart, Pongsopee; Smith, Duncan R; Panyim, Sakol; Assavalapsakul, Wanchai

    2018-02-10

    The activation of the innate RNA interference pathway through double-stranded RNAs (dsRNAs) is one of the approaches to protecting shrimp from viruses. Previous studies have shown that injection of specific dsRNAs can successfully inhibit viral infection in shrimp. However, inhibition requires high levels of dsRNA and dsRNA stability in shrimp is limited. Virus-like particles (VLPs) have been applied to deliver nucleic acids into host cells because of the protection of dsRNAs from host endonucleases as well as the target specificity provided by VLPs. Therefore, this study aimed to develop Penaeus stylirostris densovirus (PstDNV) VLPs for dsRNA deliver to shrimp. The PstDNV capsid protein was expressed and can be self-assembled to form PstDNV VLPs. Co-expression of dsRNA-YHV-Pro and PstDNV capsid protein was achieved in the same bacterial cells, whose structure was displayed as the aggregation of VLPs by TEM. Tested for their inhibiting yellow head virus (YHV) from infecting shrimp, the dsRNA-YHV-Pro-PstDNV VLPs gave higher levels of YHV suppression and a greater reduction in shrimp mortality than the delivery of naked dsRNA-YHV-Pro. Therefore, PstDNV-VLPs are a promising vehicle for dsRNA delivery that maintains the anti-virus activity of dsRNA in shrimp over a longer period of time as compared to native dsRNAs. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Maternal bacterial infections impact expression of drug transporters in human placenta.

    Science.gov (United States)

    Petrovic, Vanja; Kojovic, Dea; Cressman, Alex; Piquette-Miller, Micheline

    2015-06-01

    Several efflux and uptake transporters in the placenta are involved in the transmembrane transport of endogenous substrates and xenobiotics. Their expression and function may be altered in maternal complications associated with inflammation. Our objective was to examine the effect of chorioamnionitis, a bacterial intra-amniotic infection on the expression of clinically important transporters in human placenta. Human placental samples were collected from preterm and term pregnancies diagnosed with chorioamnionitis infection and were gestational age-matched with samples from pregnancies with no obstetric complications, using predefined exclusion criteria. Transporter protein expression was quantified using Western blots while cytokine and transporter mRNA expression was measured via real-time polymerase chain reaction. mRNA levels of pro-inflammatory cytokines IL-6, IL-1β and TNF-α were markedly elevated by 2.5- to 3-fold in preterm placentas with infection, relative to preterm controls (pinfection and preterm parturition, relative to preterm healthy controls. Protein and mRNA expression changes were generally consistent. At term, ABCG2 mRNA and SLCO2B1 protein expression levels were significantly downregulated, relative to controls. Significant changes in ABCB1 and SLCO4A1 expression were not observed, however ABCB1 transcript levels strongly correlated with IL-6, IL-1β and TNF-α expression (pinfections impact the expression of key drug transporters in placenta, suggesting that materno-fetal drug transport may be altered by changes in placental expression of ABC and OATP transporters. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  8. UGT-29 protein expression and localization during bacterial infection in Caenorhabditis elegans

    Science.gov (United States)

    Wong, Rui-Rui; Lee, Song-Hua; Nathan, Sheila

    2014-09-01

    The nematode Caenorhabditis elegans is routinely used as an animal model to delineate complex molecular mechanisms involved in the host response to pathogen infection. Following up on an earlier study on host-pathogen interaction, we constructed a ugt-29::GFP transcriptional fusion transgenic worm strain to examine UGT-29 protein expression and localization upon bacterial infection. UGT-29 orthologs can be found in higher organisms including humans and is proposed as a member of the UDP-Glucoronosyl Transferase family of proteins which are involved in phase II detoxification of compounds detrimental to the host organism. Under uninfected conditions, UGT-29::GFP fusion protein was highly expressed in the C. elegans anterior pharynx and intestine, two major organs involved in detoxification. We further evaluated the localization of the enzyme in worms infected with the bacterial pathogen, Burkholderia pseudomallei. The infected ugt-29::GFP transgenic strain exhibited increased fluorescence in the pharynx and intestine with pronounced fluorescence also extending to body wall muscle. This transcriptional fusion GFP transgenic worm is a convenient and direct tool to provide information on UGT detoxification enzyme gene expression and could be a useful tool for a number of diverse applications.

  9. Application of Whole Genome Expression Analysis to Assess Bacterial Responses to Environmental Conditions

    Science.gov (United States)

    Vukanti, R. V.; Mintz, E. M.; Leff, L. G.

    2005-05-01

    Bacterial responses to environmental signals are multifactorial and are coupled to changes in gene expression. An understanding of bacterial responses to environmental conditions is possible using microarray expression analysis. In this study, the utility of microarrays for examining changes in gene expression in Escherichia coli under different environmental conditions was assessed. RNA was isolated, hybridized to Affymetrix E. coli Genome 2.0 chips and analyzed using Affymetrix GCOS and Genespring software. Major limiting factors were obtaining enough quality RNA (107-108 cells to get 10μg RNA)and accounting for differences in growth rates under different conditions. Stabilization of RNA prior to isolation and taking extreme precautions while handling RNA were crucial. In addition, use of this method in ecological studies is limited by availability and cost of commercial arrays; choice of primers for cDNA synthesis, reproducibility, complexity of results generated and need to validate findings. This method may be more widely applicable with the development of better approaches for RNA recovery from environmental samples and increased number of available strain-specific arrays. Diligent experimental design and verification of results with real-time PCR or northern blots is needed. Overall, there is a great potential for use of this technology to discover mechanisms underlying organisms' responses to environmental conditions.

  10. Effective non-denaturing purification method for improving the solubility of recombinant actin-binding proteins produced by bacterial expression.

    Science.gov (United States)

    Chung, Jeong Min; Lee, Sangmin; Jung, Hyun Suk

    2017-05-01

    Bacterial expression is commonly used to produce recombinant and truncated mutant eukaryotic proteins. However, heterologous protein expression may render synthesized proteins insoluble. The conventional method used to express a poorly soluble protein, which involves denaturation and refolding, is time-consuming and inefficient. There are several non-denaturing approaches that can increase the solubility of recombinant proteins that include using different bacterial cell strains, altering the time of induction, lowering the incubation temperature, and employing different detergents for purification. In this study, we compared several non-denaturing protocols to express and purify two insoluble 34 kDa actin-bundling protein mutants. The solubility of the mutant proteins was not affected by any of the approaches except for treatment with the detergent sarkosyl. These results indicate that sarkosyl can effectively improve the solubility of insoluble proteins during bacterial expression. Copyright © 2016. Published by Elsevier Inc.

  11. A novel bacterial expression method with optimized parameters for very high yield production of triple-labeled proteins.

    Science.gov (United States)

    Murray, Victoria; Huang, Yuefei; Chen, Jianglei; Wang, Jianjun; Li, Qianqian

    2012-01-01

    The Gram-negative bacterium Escherichia coli offer a means for rapid, high-yield, and economical production of recombinant proteins. However, when preparing protein samples for NMR, high-level production of functional isotopically labeled proteins can be quite challenging. This is especially true for the preparation of triple-labeled protein samples in D(2)O ((2)H/(13)C/(15)N). The large expense and time-consuming nature of triple-labeled protein production for NMR led us to revisit the current bacterial protein expression protocols. Our goal was to develop an efficient bacterial expression method for very high-level production of triple-labeled proteins that could be routinely utilized in every NMR lab without changing expression vectors or requiring fermentation. We developed a novel high cell-density IPTG-induction bacterial expression method that combines tightly controlled traditional IPTG-induction expression with the high cell-density of auto-induction expression. In addition, we optimize several key experimental protocols and parameters to ensure that our new high cell-density bacterial expression method routinely produces 14-25 mg of triple-labeled proteins and 15-35 mg of unlabeled proteins from 50-mL bacterial cell cultures.

  12. Sequence-specific cleavage of dsRNA by Mini-III RNase.

    Science.gov (United States)

    Głów, Dawid; Pianka, Dariusz; Sulej, Agata A; Kozłowski, Łukasz P; Czarnecka, Justyna; Chojnowski, Grzegorz; Skowronek, Krzysztof J; Bujnicki, Janusz M

    2015-03-11

    Ribonucleases (RNases) play a critical role in RNA processing and degradation by hydrolyzing phosphodiester bonds (exo- or endonucleolytically). Many RNases that cut RNA internally exhibit substrate specificity, but their target sites are usually limited to one or a few specific nucleotides in single-stranded RNA and often in a context of a particular three-dimensional structure of the substrate. Thus far, no RNase counterparts of restriction enzymes have been identified which could cleave double-stranded RNA (dsRNA) in a sequence-specific manner. Here, we present evidence for a sequence-dependent cleavage of long dsRNA by RNase Mini-III from Bacillus subtilis (BsMiniIII). Analysis of the sites cleaved by this enzyme in limited digest of bacteriophage Φ6 dsRNA led to the identification of a consensus target sequence. We defined nucleotide residues within the preferred cleavage site that affected the efficiency of the cleavage and were essential for the discrimination of cleavable versus non-cleavable dsRNA sequences. We have also determined that the loop α5b-α6, a distinctive structural element in Mini-III RNases, is crucial for the specific cleavage, but not for dsRNA binding. Our results suggest that BsMiniIII may serve as a prototype of a sequence-specific dsRNase that could possibly be used for targeted cleavage of dsRNA. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Depletion of Shine-Dalgarno Sequences Within Bacterial Coding Regions Is Expression Dependent

    Science.gov (United States)

    Yang, Chuyue; Hockenberry, Adam J.; Jewett, Michael C.; Amaral, Luís A. N.

    2016-01-01

    Efficient and accurate protein synthesis is crucial for organismal survival in competitive environments. Translation efficiency (the number of proteins translated from a single mRNA in a given time period) is the combined result of differential translation initiation, elongation, and termination rates. Previous research identified the Shine-Dalgarno (SD) sequence as a modulator of translation initiation in bacterial genes, while codon usage biases are frequently implicated as a primary determinant of elongation rate variation. Recent studies have suggested that SD sequences within coding sequences may negatively affect translation elongation speed, but this claim remains controversial. Here, we present a metric to quantify the prevalence of SD sequences in coding regions. We analyze hundreds of bacterial genomes and find that the coding sequences of highly expressed genes systematically contain fewer SD sequences than expected, yielding a robust correlation between the normalized occurrence of SD sites and protein abundances across a range of bacterial taxa. We further show that depletion of SD sequences within ribosomal protein genes is correlated with organismal growth rates, supporting the hypothesis of strong selection against the presence of these sequences in coding regions and suggesting their association with translation efficiency in bacteria. PMID:27605518

  14. Depletion of Shine-Dalgarno Sequences Within Bacterial Coding Regions Is Expression Dependent

    Directory of Open Access Journals (Sweden)

    Chuyue Yang

    2016-11-01

    Full Text Available Efficient and accurate protein synthesis is crucial for organismal survival in competitive environments. Translation efficiency (the number of proteins translated from a single mRNA in a given time period is the combined result of differential translation initiation, elongation, and termination rates. Previous research identified the Shine-Dalgarno (SD sequence as a modulator of translation initiation in bacterial genes, while codon usage biases are frequently implicated as a primary determinant of elongation rate variation. Recent studies have suggested that SD sequences within coding sequences may negatively affect translation elongation speed, but this claim remains controversial. Here, we present a metric to quantify the prevalence of SD sequences in coding regions. We analyze hundreds of bacterial genomes and find that the coding sequences of highly expressed genes systematically contain fewer SD sequences than expected, yielding a robust correlation between the normalized occurrence of SD sites and protein abundances across a range of bacterial taxa. We further show that depletion of SD sequences within ribosomal protein genes is correlated with organismal growth rates, supporting the hypothesis of strong selection against the presence of these sequences in coding regions and suggesting their association with translation efficiency in bacteria.

  15. Multilevel Regulation of Bacterial Gene Expression with the Combined STAR and Antisense RNA System.

    Science.gov (United States)

    Lee, Young Je; Kim, Soo-Jung; Moon, Tae Seok

    2018-02-16

    Synthetic small RNA regulators have emerged as a versatile tool to predictably control bacterial gene expression. Owing to their simple design principles, small size, and highly orthogonal behavior, these engineered genetic parts have been incorporated into genetic circuits. However, efforts to achieve more sophisticated cellular functions using RNA regulators have been hindered by our limited ability to integrate different RNA regulators into complex circuits. Here, we present a combined RNA regulatory system in Escherichia coli that uses small transcription activating RNA (STAR) and antisense RNA (asRNA) to activate or deactivate target gene expression in a programmable manner. Specifically, we demonstrated that the activated target output by the STAR system can be deactivated by expressing two different types of asRNAs: one binds to and sequesters the STAR regulator, affecting the transcription process, while the other binds to the target mRNA, affecting the translation process. We improved deactivation efficiencies (up to 96%) by optimizing each type of asRNA and then integrating the two optimized asRNAs into a single circuit. Furthermore, we demonstrated that the combined STAR and asRNA system can control gene expression in a reversible way and can regulate expression of a gene in the genome. Lastly, we constructed and simultaneously tested two A AND NOT B logic gates in the same cell to show sophisticated multigene regulation by the combined system. Our approach establishes a methodology for integrating multiple RNA regulators to rationally control multiple genes.

  16. DNA thermodynamic stability and supercoil dynamics determine the gene expression program during the bacterial growth cycle.

    Science.gov (United States)

    Sobetzko, Patrick; Glinkowska, Monika; Travers, Andrew; Muskhelishvili, Georgi

    2013-07-01

    The chromosomal DNA polymer constituting the cellular genetic material is primarily a device for coding information. Whilst the gene sequences comprise the digital (discontinuous) linear code, physiological alterations of the DNA superhelical density generate in addition analog (continuous) three-dimensional information essential for regulation of both chromosome compaction and gene expression. Insight into the relationship between the DNA analog information and the digital linear code is of fundamental importance for understanding genetic regulation. Our previous study in the model organism Escherichia coli suggested that the chromosomal gene order and a spatiotemporal gradient of DNA superhelicity associated with DNA replication determine the growth phase-dependent gene transcription. In this study we reveal a general gradient of DNA thermodynamic stability correlated with the polarity of chromosomal replication and manifest in the spatiotemporal pattern of gene transcription during the bacterial growth cycle. Furthermore, by integrating the physical and dynamic features of the transcribed sequences with their functional content we identify spatiotemporal domains of gene expression encompassing different functions. We thus provide both an insight into the organisational principle of the bacterial growth program and a novel holistic methodology for exploring chromosomal dynamics.

  17. OpWise: Operons aid the identification of differentially expressed genes in bacterial microarray experiments

    Directory of Open Access Journals (Sweden)

    Arkin Adam P

    2006-01-01

    Full Text Available Abstract Background Differentially expressed genes are typically identified by analyzing the variation between replicate measurements. These procedures implicitly assume that there are no systematic errors in the data even though several sources of systematic error are known. Results OpWise estimates the amount of systematic error in bacterial microarray data by assuming that genes in the same operon have matching expression patterns. OpWise then performs a Bayesian analysis of a linear model to estimate significance. In simulations, OpWise corrects for systematic error and is robust to deviations from its assumptions. In several bacterial data sets, significant amounts of systematic error are present, and replicate-based approaches overstate the confidence of the changers dramatically, while OpWise does not. Finally, OpWise can identify additional changers by assigning genes higher confidence if they are consistent with other genes in the same operon. Conclusion Although microarray data can contain large amounts of systematic error, operons provide an external standard and allow for reasonable estimates of significance. OpWise is available at http://microbesonline.org/OpWise.

  18. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiaofei [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036 (China); Deng, Ping; Cui, Hongguang [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); Wang, Aiming, E-mail: aiming.wang@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada)

    2015-11-15

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings the split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.

  19. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    International Nuclear Information System (INIS)

    Cheng, Xiaofei; Deng, Ping; Cui, Hongguang; Wang, Aiming

    2015-01-01

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings the split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.

  20. Simultaneous determination of gene expression and bacterial identity in single cells in defined mixtures of pure cultures

    DEFF Research Database (Denmark)

    Poulsen, Lars K.; Dalton, Helen M.; Angels, Mark

    1997-01-01

    A protocol was developed to achieve the simultaneous determination of gene expression and bacterial identity at the level of single cells: a chromogenic beta-galactosidase activity assay was combined with in situ hybridization of Fluorescently labelled oligonucleotide probes to rRNA. The method...... allows monitoring of gene expression and quantification of beta-galactosidase activity in single cells....

  1. Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux in a mammalian cell line.

    Directory of Open Access Journals (Sweden)

    Dan M Close

    Full Text Available The bacterial luciferase (lux gene cassette consists of five genes (luxCDABE whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo.Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH(2 was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp from Vibrio harveyi. FMNH(2 supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background.The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies.

  2. DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression.

    Science.gov (United States)

    Dorman, Charles J; Dorman, Matthew J

    2016-11-01

    Although it has become routine to consider DNA in terms of its role as a carrier of genetic information, it is also an important contributor to the control of gene expression. This regulatory principle arises from its structural properties. DNA is maintained in an underwound state in most bacterial cells and this has important implications both for DNA storage in the nucleoid and for the expression of genetic information. Underwinding of the DNA through reduction in its linking number potentially imparts energy to the duplex that is available to drive DNA transactions, such as transcription, replication and recombination. The topological state of DNA also influences its affinity for some DNA binding proteins, especially in DNA sequences that have a high A + T base content. The underwinding of DNA by the ATP-dependent topoisomerase DNA gyrase creates a continuum between metabolic flux, DNA topology and gene expression that underpins the global response of the genome to changes in the intracellular and external environments. These connections describe a fundamental and generalised mechanism affecting global gene expression that underlies the specific control of transcription operating through conventional transcription factors. This mechanism also provides a basal level of control for genes acquired by horizontal DNA transfer, assisting microbial evolution, including the evolution of pathogenic bacteria.

  3. Production and application of long dsRNA in mammalian cells

    Czech Academy of Sciences Publication Activity Database

    Chalupníková, Kateřina; Nejepínská, Jana; Svoboda, Petr

    2013-01-01

    Roč. 942, 20.2.2013 (2013), s. 291-314 ISSN 1940 -6029 Institutional support: RVO:68378050 Keywords : dsRNA * RNAi * IFN response * transgenic RNAi * OAS (2′5′-oligoadenylate synthetase) Subject RIV: EB - Genetics ; Molecular Biology

  4. FLDS: A Comprehensive dsRNA Sequencing Method for Intracellular RNA Virus Surveillance.

    Science.gov (United States)

    Urayama, Syun-Ichi; Takaki, Yoshihiro; Nunoura, Takuro

    2016-01-01

    Knowledge of the distribution and diversity of RNA viruses is still limited in spite of their possible environmental and epidemiological impacts because RNA virus-specific metagenomic methods have not yet been developed. We herein constructed an effective metagenomic method for RNA viruses by targeting long double-stranded (ds)RNA in cellular organisms, which is a hallmark of infection, or the replication of dsRNA and single-stranded (ss)RNA viruses, except for retroviruses. This novel dsRNA targeting metagenomic method is characterized by an extremely high recovery rate of viral RNA sequences, the retrieval of terminal sequences, and uniform read coverage, which has not previously been reported in other metagenomic methods targeting RNA viruses. This method revealed a previously unidentified viral RNA diversity of more than 20 complete RNA viral genomes including dsRNA and ssRNA viruses associated with an environmental diatom colony. Our approach will be a powerful tool for cataloging RNA viruses associated with organisms of interest.

  5. Bacterial Contamination of Expressed Breast Milk in Neonatal Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Mehran Karimi

    2013-04-01

    Full Text Available Background: The milks expressed from the mothers’ breast might be infected during squeeze, storage and/or transmission. The infection level has been reported as different in various studies up to 97 percent. The main purpose of this study is to determine the infection level and its relevant organisms as well as to specify drug allergy of the expressed milks from the mothers with their infant admitted to NICU ward. Materials and Methods: In this study, among the expressed milks from 80 mothers, were cultured each in an amount of 0.5-1cc and antibiotic discs selected for every strain was placed.Results: The results indicate that 85 percent of samples were infected and dominant microorganisms were firstly Klebsiella (13.7% and then S. epidermidis (12.5%. In addition, 95% of Gram negative bacteria strains were susceptible to imipenem. The most effective antibiotic on isolated staphylococci was ceftizoxime (46.6% resistance. The colony count in 32.4% gram negative bacteria and in 66.7% gram positive bacteria was between 104 to 105 CFU/ml and the remaining was above 105 CFU/ml (p=0.02. Furthermore, there was no significant relationship between bacterial infection of the expressed milks with the site of milk expressing (house or hospital, mode of expressing (by pump or hand, storage duration and the mother’s demographic characteristics including age and/or literacy.Conclusion: The studies show that infection prevalence in the milk samples was 85%; the most common infection factor was Klebsiella and then S. epidermidis that is indicative of high prevalence of hospital infection (nosocomial infection in the infants ward.

  6. The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens.

    Science.gov (United States)

    Hwang, Hau-Hsuan; Yang, Fong-Jhih; Cheng, Tun-Fang; Chen, Yi-Chun; Lee, Ying-Ling; Tsai, Yun-Long; Lai, Erh-Min

    2013-09-01

    The soil phytopathogen Agrobacterium tumefaciens causes crown gall disease in a wide range of plant species. The neoplastic growth at the infection sites is caused by transferring, integrating, and expressing transfer DNA (T-DNA) from A. tumefaciens into plant cells. A trans-zeatin synthesizing (tzs) gene is located in the nopaline-type tumor-inducing plasmid and causes trans-zeatin production in A. tumefaciens. Similar to known virulence (Vir) proteins that are induced by the vir gene inducer acetosyringone (AS) at acidic pH 5.5, Tzs protein is highly induced by AS under this growth condition but also constitutively expressed and moderately upregulated by AS at neutral pH 7.0. We found that the promoter activities and protein levels of several AS-induced vir genes increased in the tzs deletion mutant, a mutant with decreased tumorigenesis and transient transformation efficiencies, in Arabidopsis roots. During AS induction and infection of Arabidopsis roots, the tzs deletion mutant conferred impaired growth, which could be rescued by genetic complementation and supplementing exogenous cytokinin. Exogenous cytokinin also repressed vir promoter activities and Vir protein accumulation in both the wild-type and tzs mutant bacteria with AS induction. Thus, the tzs gene or its product, cytokinin, may be involved in regulating AS-induced vir gene expression and, therefore, affect bacterial growth and virulence during A. tumefaciens infection.

  7. MicroRNA expression in lung tissue and blood isolated from pigs suffering from bacterial pneumonia

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Wendt, Karin Tarp; Heegaard, Peter M. H.

    MicroRNAs (miRNAs) are a highly evolutionarily conserved group of small non-coding RNA molecules, which regulate the activity of other genes at the post-transcriptional level. Recently it has become evident that miRNA plays an important role in modulating and fine tuning of the innate and adaptive...... expressed (p-values lower than 0.05). MicroRNA expression in lung tissue over time in response to the two different serotypes were very similar. miR-223 was found to be highly up regulated, followed by miR-146a and to a lesser degree miR-21 in lung tissue of the AP serotype 2 infected animals. MiR-233...... immune responses. Still, little is known about the impact of miRNAs in the development and pathogenesis of lung infections. Expression of miRNA, known to be induced by bacterial (i.e., LPS) ligands and thus supposed to play a role in the regulation of antimicrobial defence, were studied in lung tissue...

  8. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont.

    Directory of Open Access Journals (Sweden)

    Ryo Futahashi

    Full Text Available The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations.

  9. Microarray Analysis of Immunity Against WSSV in Response to Injection of Non-specific Long dsRNA in Kuruma Shrimp, Marsupenaeus japonicus.

    Science.gov (United States)

    Maralit, Benedict Arias; Komatsu, Mami; Hipolito, Sheryll Grospe; Hirono, Ikuo; Kondo, Hidehiro

    2015-08-01

    Injection of shrimp with non-specific double-stranded RNA (dsRNA) of diverse lengths, sequences, and base compositions is known to induce non-specific immunity and protect against lethal disease, although the mechanisms are unclear. Previous shrimp studies examined the effects of non-specific RNA on particular pathways, while their global effects have not been examined. To understand the global effects of non-specific RNA in shrimp, we injected kuruma shrimp (Marsupenaeus japonicus) with a dsRNA and a small interfering RNA (siRNA) that is not specific to any gene in the shrimp genome and then examined global gene expression at 24 and 48 h with a microarray. For the non-specific RNA, we chose double-stranded green fluorescent protein (dsGFP) and siGFP because they are commonly used as mock controls and their effects on shrimp have not yet been studied. Injection of PBS was used as a control. The microarray results showed that many genes were up-regulated and some were down-regulated by dsGFP. In addition, dsGFP injection increased survival following WSSV challenge. The changes in expression for several genes were confirmed by quantitative PCR. The up-regulated genes included genes for eight immune-related proteins: c-type lectin 2, hemocyte homeostasis-associated protein, viral responsive protein, fibrinogen-related protein 1, sid-1 like protein, argonaute 2, Dicer 2, and heat shock protein 90. These results show that injection of shrimp with non-specific dsRNA hinders viral accumulation and prevents significant mortalities.

  10. Expression of Toll-like receptor 9 and response to bacterial CpG oligodeoxynucleotides in human intestinal epithelium

    DEFF Research Database (Denmark)

    Pedersen, G; Andresen, Lars; Matthiessen, M W

    2005-01-01

    Recognition of repeat CpG motifs, which are common in bacterial, but not in mammalian, DNA, through Toll-like receptor (TLR)9 is an integral part of the innate immune system. As the role of TLR9 in the human gut is unknown, we determined the spectrum of TLR9 expression in normal and inflamed colon...... in vitro despite spontaneous TLR9 gene expression. This suggests that the human epithelium is able to avoid inappropriate immune responses to luminal bacterial products through modulation of the TLR9 pathway....

  11. A member of the Tlr family is involved in dsRNA innate immune response in Paracentrotus lividus sea urchin.

    Science.gov (United States)

    Russo, Roberta; Chiaramonte, Marco; Matranga, Valeria; Arizza, Vincenzo

    2015-08-01

    The innate immune response involves proteins such as the membrane receptors of the Toll-like family (TLRs), which trigger different intracellular signalling pathways that are dependent on specific stimulating molecules. In sea urchins, TLR proteins are encoded by members of a large multigenic family composed of 60-250 genes in different species. Here, we report a newly identified mRNA sequence encoding a TLR protein (referred to as Pl-Tlr) isolated from Paracentrotus lividus immune cells. The partial protein sequence contained the conserved Toll/IL-1 receptor (TIR) domain, the transmembrane domain and part of the leucine repeats. Phylogenetic analysis of the Pl-Tlr protein was accomplished by comparing its sequence with those of TLRs from different classes of vertebrates and invertebrates. This analysis was suggestive of an evolutionary path that most likely represented the course of millions of years, starting from simple organisms and extending to humans. Challenge of the sea urchin immune system with poly-I:C, a chemical compound that mimics dsRNA, caused time-dependent Pl-Tlr mRNA up-regulation that was detected by QPCR. In contrast, bacterial LPS injury did not affect Pl-Tlr transcription. The study of the Tlr genes in the sea urchin model system may provide new perspectives on the role of Tlrs in the invertebrate immune response and clues concerning their evolution in a changing world. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection.

    Science.gov (United States)

    Guthke, Reinhard; Möller, Ulrich; Hoffmann, Martin; Thies, Frank; Töpfer, Susanne

    2005-04-15

    The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Reinhard.Guthke@hki-jena.de.

  13. Protein kinase regulated by dsRNA downregulates the interferon production in dengue virus- and dsRNA-stimulated human lung epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yuye Li

    Full Text Available Dengue virus (DENV is found in the tropical and subtropical regions and affects millions of people annually. Currently, no specific vaccine or antiviral treatment against dengue virus is available. Innate immunity has been shown to be important for host resistance to DENV infection. Although protein kinase regulated by double-stranded RNA (PKR has been found to promote the innate signaling in response to infection by several viruses, its role in the innate response to DENV infection is still unclear. Our study aimed to investigate the role of PKR in DENV-induced innate immune responses.By RNAi, silencing of PKR significantly enhanced the expression of interferon (IFN-β in DENV infected human lung epithelial A549 cells. Western blot and immunofluorescence microscopy data showed that PKR knockdown upregulated the activation of innate signaling cascades including p38 and JNK mitogen-activated protein kinases (MAPKs, interferon regulatory factor-3 and NF-κB, following DENV2 infection. Likewise, a negative regulatory effect of PKR on the IFN production was also observed in poly(IC challenged cells. Moreover, the PKR knockdown-mediated IFN induction was attenuated by RIG-I or IPS-1 silencing. Finally, overexpression of a catalytically inactive PKR mutant (K296R, but not of a mutant lacking dsRNA binding activity (K64E or the double mutant (K64EK296R, reversed the IFN induction mediated by PKR knockdown, suggesting that the dsRNA binding activity is required for PKR to downregulate IFN production.PKR acts as a negative regulator of IFN induction triggered by DENVs and poly(IC, and this regulation relies on its dsRNA binding activity. These findings reveal a novel regulatory role for PKR in innate immunity, suggesting that PKR might be a promising target for anti-DENV treatments.

  14. Characterization and heterologous expression of an age-dependent fungal/bacterial type chitinase of Aspergillus nidulans.

    Science.gov (United States)

    Erdei, Eva; Pusztahelyi, Tünde; Miskei, M; Barna, Teréz; Pócsi, I

    2008-09-01

    Under carbon starvation, Aspergillus nidulans produced a fungal/bacterial type chitinase, ChiB. The chiB gene was cloned and subcloned into pJC40 expression vector containing a 10XHis fusion tag, and the ChiB protein was expressed heterologously in Escherichia coli. Recombinant and native ChiB enzymes shared the same optimal pH ranges and showed similar substrate specificities with endo-acting cleavage patterns.

  15. Parameters that enhance the bacterial expression of active plant polyphenol oxidases.

    Directory of Open Access Journals (Sweden)

    Mareike E Dirks-Hofmeister

    Full Text Available Polyphenol oxidases (PPOs, EC 1.10.3.1 are type-3 copper proteins that enzymatically convert diphenolic compounds into their corresponding quinones. Although there is significant interest in these enzymes because of their role in food deterioration, the lack of a suitable expression system for the production of soluble and active plant PPOs has prevented detailed investigations of their structure and activity. Recently we developed a bacterial expression system that was sufficient for the production of PPO isoenzymes from dandelion (Taraxacum officinale. The system comprised the Escherichia coli Rosetta 2 (DE3 [pLysSRARE2] strain combined with the pET-22b(+-vector cultivated in auto-induction medium at a constant low temperature (26 °C. Here we describe important parameters that enhance the production of active PPOs using dandelion PPO-2 for proof of concept. Low-temperature cultivation was essential for optimal yields, and the provision of CuCl2 in the growth medium was necessary to produce an active enzyme. By increasing the copper concentration in the production medium to 0.2 mM, the yield in terms of PPO activity per mol purified protein was improved 2.7-fold achieving a v(max of 0.48 ± 0.1 µkat per mg purified PPO-2 for 4-methylcatechol used as a substrate. This is likely to reflect the replacement of an inactive apo-form of the enzyme with a correctly-folded, copper-containing counterpart. We demonstrated the transferability of the method by successfully expressing a PPO from tomato (Solanum lycopersicum showing that our optimized system is suitable for the analysis of further plant PPOs. Our new system therefore provides greater opportunities for the future of research into this economically-important class of enzymes.

  16. Insight into buffalo (Bubalus bubalis RIG1 and MDA5 receptors: a comparative study on dsRNA recognition and in-vitro antiviral response.

    Directory of Open Access Journals (Sweden)

    Manvender Singh

    Full Text Available RIG1 and MDA5 have emerged as important intracellular innate pattern recognition receptors that recognize viral RNA and mediate cellular signals controlling Type I interferon (IFN-I response. Buffalo RIG1 and MDA5 genes were investigated to understand the mechanism of receptor induced antiviral response. Sequence analysis revealed that RIG1 and MDA5 maintain a domain arrangement that is common in mammals. Critical binding site residues of the receptors are evolutionary conserved among mammals. Molecular dynamics simulations suggested that RIG1 and MDA5 follow a similar, if not identical, dsRNA binding pattern that has been previously reported in human. Moreover, binding free energy calculation revealed that MDA5 had a greater affinity towards dsRNA compared to RIG1. Constitutive expressions of RLR genes were ubiquitous in different tissues without being specific to immune organs. Poly I:C stimulation induced elevated expressions of IFN-β and IFN-stimulated genes (ISGs through interferon regulatory factors (IRFs mediated pathway in buffalo foetal fibroblast cells. The present study provides crucial insights into the structure and function of RIG1 and MDA5 receptors in buffalo.

  17. A novel in vivo inducible expression system in Edwardsiella tarda for potential application in bacterial polyvalence vaccine.

    Science.gov (United States)

    Mu, Wei; Guan, Lingyu; Yan, Yijian; Liu, Qin; Zhang, Yuanxing

    2011-12-01

    Recombinant bacterial vector vaccine is an attractive vaccination strategy to induce the immune response to a carried protective antigen, and the main concern of bacterial vector vaccine is to establish a stable antigen expression system in vector bacteria. Edwardsiella tarda is an important facultative intracellular pathogen of both animals and humans, and its attenuated derivates are excellent bacterial vectors for use in recombinant vaccine design. In this study, we design an in vivo inducible expression system in E. tarda and establish potential recombinant E. tarda vector vaccines. With wild type strain E. tarda EIB202 as a vector, 53 different bacteria-originated promoters were examined for iron-responsive transcription in vitro, and the promoters P(dps) and P(yncE) showed high transcription activity. The transcription profiles in vivo of two promoters were further assayed, and P(dps) revealed an enhanced in vivo inducible transcription in macrophage, larvae and adult zebra fish. The gapA34 gene, encoding the protective antigen GAPDH from the fish pathogen Aeromonas hydrophila LSA34, was introduced into the P(dps)-based protein expression system, and transformed into attenuated E. tarda strains. The resultant recombinant vector vaccine WED/pUTDgap was evaluated in turbot (Scophtalmus maximus). Over 60% of the vaccinated fish survived under the challenge with A. hydrophila LSA34 and E. tarda EIB202, suggesting that the P(dps)-based antigen delivery system had great potential in bacterial vector vaccine application. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Functional Analysis of Chicken IRF7 in Response to dsRNA Analog Poly(I:C by Integrating Overexpression and Knockdown.

    Directory of Open Access Journals (Sweden)

    Tae Hyun Kim

    Full Text Available In order to develop novel strategies to protect against increasingly virulent bird-linked pathogens, a better understanding of the avian antiviral response mechanism is essential. Type I interferons (IFNs are recognized as the first line of defense in a host's antiviral response; and it has been suggested that IRF7, a member of the IFN regulatory factor (IRF family, plays an important role in modulating the immune response to avian influenza virus infection in chickens. The objective of this study was to identify candidate genes and pathways associated with IRF7 regulation at the transcriptome level as a first step towards elucidating the underlying cellular mechanisms of IRF7 modulation in the chicken antiviral response. IRF7 overexpression and knockdown DF-1 cell lines were established and stimulated by various pathogen-associated molecular patterns. Significant IRF7 and type I IFN expression changes were observed in both the IRF7 overexpression cell line and the IRF7 knockdown cell line upon exposure to the double stranded RNA (dsRNA analog poly(I:C. Using RNA-seq based transcriptome analysis, we identified potential novel genes that IRF7 may help regulate as part of the host immune response to dsRNA; potential biomarkers and therapeutic targets revealed as a result of this study warrant further investigation. Based on our results, we suggest that IRF7 may have conserved functional activity in the avian antiviral response, and plays a crucial role in type I IFN regulation.

  19. Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance

    Directory of Open Access Journals (Sweden)

    Cashman Kathleen A

    2008-06-01

    Full Text Available Abstract Background There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP, glycoprotein 1 (GP1, and glycoprotein 2 (GP2. Results Full-length NP and the ectodomains of GP1 and GP2 were generated as maltose-binding protein (MBP fusions in the Rosetta strains of Escherichia coli (E. coli using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively. Each protein was captured from cell lysates using amylose resin, cleaved with Factor Xa, and purified using size-exclusion chromatography (SEC. Fermentation cultures resulted in average yields per liter of 1.6 mg, 1.5 mg, and 0.7 mg of purified NP, GP1 and GP2, respectively. LASV-specific antibodies in human convalescent sera specifically detected each of the purified recombinant LASV proteins, highlighting their utility in diagnostic applications. In addition, mouse hyperimmune ascitic fluids (MHAF against a panel of Old and New World arenaviruses demonstrated selective cross reactivity with LASV proteins in Western blot and enzyme-linked immunosorbent assay (ELISA. Conclusion These results demonstrate the potential for developing broadly reactive immunological assays that employ all three arenaviral proteins individually and in combination.

  20. Heterologous expression and characterization of bacterial 2-C-methyl-d-erythritol-4-phosphate pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Carlsen, Simon; Ajikumar, Parayil Kumaran; Formenti, Luca Riccardo

    2013-01-01

    Transfer of a biosynthetic pathway between evolutionary distant organisms can create a metabolic shunt capable of bypassing the native regulation of the host organism, hereby improving the production of secondary metabolite precursor molecules for important natural products. Here, we report...... machinery was unable to functionalize ispG and ispH. However, we have found that leuC and leuD, encoding the heterodimeric iron–sulfur cluster protein, isopropylmalate isomerase, can complement the S. cerevisiae leu1 auxotrophy. To our knowledge, this is the first time a bacterial iron–sulfur cluster...... protein has been functionally expressed in the cytosol of S. cerevisiae under aerobic conditions and shows that S. cerevisiae has the capability to functionally express at least some bacterial iron–sulfur cluster proteins in its cytosol....

  1. Using bacterial extract along with differential gene expression in Acropora millepora larvae to decouple the processes of attachment and metamorphosis.

    Directory of Open Access Journals (Sweden)

    Nachshon Siboni

    Full Text Available Biofilms of the bacterium Pseudoalteromonas induce metamorphosis of acroporid coral larvae. The bacterial metabolite tetrabromopyrrole (TBP, isolated from an extract of Pseudoalteromonas sp. associated with the crustose coralline alga (CCA Neogoniolithon fosliei, induced coral larval metamorphosis (100% with little or no attachment (0-2%. To better understand the molecular events and mechanisms underpinning the induction of Acropora millepora larval metamorphosis, including cell proliferation, apoptosis, differentiation, migration, adhesion and biomineralisation, two novel coral gene expression assays were implemented. These involved the use of reverse-transcriptase quantitative PCR (RT-qPCR and employed 47 genes of interest (GOI, selected based on putative roles in the processes of settlement and metamorphosis. Substantial differences in transcriptomic responses of GOI were detected following incubation of A. millepora larvae with a threshold concentration and 10-fold elevated concentration of TBP-containing extracts of Pseudoalteromonas sp. The notable and relatively abrupt changes of the larval body structure during metamorphosis correlated, at the molecular level, with significant differences (p<0.05 in gene expression profiles of 24 GOI, 12 hours post exposure. Fourteen of those GOI also presented differences in expression (p<0.05 following exposure to the threshold concentration of bacterial TBP-containing extract. The specificity of the bacterial TBP-containing extract to induce the metamorphic stage in A. millepora larvae without attachment, using a robust, low cost, accurate, ecologically relevant and highly reproducible RT-qPCR assay, allowed partially decoupling of the transcriptomic processes of attachment and metamorphosis. The bacterial TBP-containing extract provided a unique opportunity to monitor the regulation of genes exclusively involved in the process of metamorphosis, contrasting previous gene expression studies that

  2. Immunoglobulin (Ig) D in Labeo rohita is widely expressed and differentially modulated in viral, bacterial and parasitic antigenic challenges.

    Science.gov (United States)

    Basu, Madhubanti; Lenka, Saswati S; Paichha, Mahismita; Swain, Banikalyan; Patel, Bhakti; Banerjee, Rajanya; Jayasankar, Pallipuram; Das, Surajit; Samanta, Mrinal

    2016-10-15

    Immunoglobulins (Igs) play critical roles in protecting host against diverse pathogenic invasion and diseases. Among all Ig isotypes, IgD is the most recently-evolved and enigmatic molecule detected in all vertebrates species except birds. In South-East Asia, Labeo rohita (rohu) is the leading candidate fish species for freshwater aquaculture, and this article describes about IgD gene expression in rohu following viral, bacterial and parasitic antigenic challenges. The partial cDNA (761bp) of Labeo rohita-IgD (LrIgD) was cloned and submitted in the GenBank with the accession no KT883581. Phylogenetically, LrIgD was closely related to grass carp IgD. Analysis of LrIgD gene expression in juveniles by quantitative real-time PCR (qRT-PCR) assay revealed gradual increase in IgD expression with the advancement of time. In the healthy rohu fingerlings, LrIgD expression occurred predominantly in kidney followed by liver and spleen. In response to rhabdoviral antigenic stimulation, LrIgD expression was significantly enhanced in all tested tissues. In bacterial (Aeromonas hydrophila) infection, transcripts of LrIgD increased more dramatically in liver followed by kidney and gill. In parasitic (Argulus) infection, most significant expression of IgD was noted in the skin, followed by kidney, liver, spleen and gill. These results collectively suggest the key role of IgD in the immune response of rohu during viral, bacterial and parasitic infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Nuclear Factor 90, a cellular dsRNA binding protein inhibits the HIV Rev-export function

    Directory of Open Access Journals (Sweden)

    St-Laurent Georges

    2006-11-01

    Full Text Available Abstract Background The HIV Rev protein is known to facilitate export of incompletely spliced and unspliced viral transcripts to the cytoplasm, a necessary step in virus life cycle. The Rev-mediated nucleo-cytoplasmic transport of nascent viral transcripts, dependents on interaction of Rev with the RRE RNA structural element present in the target RNAs. The C-terminal variant of dsRNA-binding nuclear protein 90 (NF90ctv has been shown to markedly attenuate viral replication in stably transduced HIV-1 target cell line. Here we examined a mechanism of interference of viral life cycle involving Rev-NF90ctv interaction. Results Since Rev:RRE complex formations depend on protein:RNA and protein:protein interactions, we investigated whether the expression of NF90ctv might interfere with Rev-mediated export of RRE-containing transcripts. When HeLa cells expressed both NF90ctv and Rev protein, we observed that NF90ctv inhibited the Rev-mediated RNA transport. In particular, three regions of NF90ctv protein are involved in blocking Rev function. Moreover, interaction of NF90ctv with the RRE RNA resulted in the expression of a reporter protein coding sequences linked to the RRE structure. Moreover, Rev influenced the subcellular localization of NF90ctv, and this process is leptomycin B sensitive. Conclusion The dsRNA binding protein, NF90ctv competes with HIV Rev function at two levels, by competitive protein:protein interaction involving Rev binding to specific domains of NF90ctv, as well as by its binding to the RRE-RNA structure. Our results are consistent with a model of Rev-mediated HIV-1 RNA export that envisions Rev-multimerization, a process interrupted by NF90ctv.

  4. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges

    Directory of Open Access Journals (Sweden)

    Anna Kolliopoulou

    2017-06-01

    Full Text Available RNAi is applied as a new and safe method for pest control in agriculture but efficiency and specificity of delivery of dsRNA trigger remains a critical issue. Various agents have been proposed to augment dsRNA delivery, such as engineered micro-organisms and synthetic nanoparticles, but the use of viruses has received relatively little attention. Here we present a critical view of the potential of the use of recombinant viruses for efficient and specific delivery of dsRNA. First of all, it requires the availability of plasmid-based reverse genetics systems for virus production, of which an overview is presented. For RNA viruses, their application seems to be straightforward since dsRNA is produced as an intermediate molecule during viral replication, but DNA viruses also have potential through the production of RNA hairpins after transcription. However, application of recombinant virus for dsRNA delivery may not be straightforward in many cases, since viruses can encode RNAi suppressors, and virus-induced silencing effects can be determined by the properties of the encoded RNAi suppressor. An alternative is virus-like particles that retain the efficiency and specificity determinants of natural virions but have encapsidated non-replicating RNA. Finally, the use of viruses raises important safety issues which need to be addressed before application can proceed.

  5. Effects of mechanical and bacterial stressors on cytokine and growth-factor expression in periodontal ligament cells.

    Science.gov (United States)

    Proff, P; Reicheneder, C; Faltermeier, A; Kubein-Meesenburg, D; Römer, P

    2014-05-01

    The goal of the study was to examine the effects of a mechanical (orthodontic force simulation by static compressive loading) and a bacterial (endotoxins from a heat-inactivated gram-negative periodontal pathogen) stressor on the expression patterns of factors that are key to regulating osteoclastogenesis and bone remodeling. Three experimental groups were formed with fifth-passage periodontal ligament (PDL) fibroblasts treated by the static application of compressive force (2 g/cm(2)), heat-inactivated aggregatibacter actinomycetemcomitans (1 × 10(7) cells), or both of these stressors combined. Real-time polymerase chain reaction (RT-PCR) was used to study gene expression of IL-6, IL-8, COX-2, IGF-1, VEGF, and MMP-13 in the 3 groups. Protein levels of COX-2, prostaglandin E2 (PGE(2)), and IL-8 production were quantified using immunoblotting and enzyme-linked immunosorbent assay (ELISA). The mechanical stressor upregulated the genes of COX-2, IL-8, IGF-1, and MMP-13 in PDL fibroblasts and the bacterial stressor upregulated IL-6, IL-8, COX-2 and MMP-13. Both stressors in combination upregulated VEGF and caused COX-2 gene expression to increase further; the latter effect was also detected at the protein level and indirectly via the enhanced production of PGE(2). We noted that the posttranscriptional regulation of IL-8 was induced by the mechanical stressor and influenced by PGE(2). While mechanical-stressor application increased the gene expression of COX-2, IL-8, and VEGF in the presence of the bacterial stressor, IL-8 production was posttranscriptionally regulated by the mechanical stressor, whereas COX-2 expression correlated with enhanced production of the inflammatory tissue hormone PGE(2), which exerted a suppressive effect on endotoxin-induced IL-8 production.

  6. The effect of dietary bacterial organic selenium on growth performance, antioxidant capacity, and Selenoproteins gene expression in broiler chickens.

    Science.gov (United States)

    Dalia, A M; Loh, T C; Sazili, A Q; Jahromi, M F; Samsudin, A A

    2017-08-18

    Selenium (Se) is an essential trace mineral in broilers, which has several important roles in biological processes. Organic forms of Se are more efficient than inorganic forms and can be produced biologically via Se microbial reduction. Hence, the possibility of using Se-enriched bacteria as feed supplement may provide an interesting source of organic Se, and benefit broiler antioxidant system and other biological processes. The objective of this study was to examine the impacts of inorganic Se and different bacterial organic Se sources on the performance, serum and tissues Se status, antioxidant capacity, and liver mRNA expression of selenoproteins in broilers. Results indicated that different Se sources did not significantly (P ≤ 0.05) affect broiler growth performance. However, bacterial organic Se of T5 (basal diet +0.3 mg /kg feed ADS18 Se), T4 (basal diet +0.3 mg /kg feed ADS2 Se), and T3 (basal diet +0.3 mg /kg feed ADS1 Se) exhibited significantly (P ≤ 0.05) highest Se concentration in serum, liver, and kidney respectively. Dietary inorganic Se and bacterial organic Se were observed to significantly affect broiler serum ALT, AST, LDH activities and serum creatinine level. ADS18 supplemented Se of (Stenotrophomonas maltophilia) bacterial strain showed the highest GSH-Px activity with the lowest MDA content in serum, and the highest GSH-Px and catalase activity in the kidney, while bacterial Se of ADS2 (Klebsiella pneumoniae) resulted in a higher level of GSH-Px1 and catalase in liver. Moreover, our study showed that in comparison with sodium selenite, only ADS18 bacterial Se showed a significantly higher mRNA level in GSH-Px1, GSH-Px4, DIO1, and TXNDR1, while both ADS18 and ADS2 showed high level of mRNA of DIO2 compared to sodium selenite. The supplementation of bacterial organic Se in broiler chicken, improved tissue Se deposition, antioxidant status, and selenoproteins gene expression, and can be considered as an effective alternative source of

  7. Safety assessment of genetically modified rice expressing human serum albumin from urine metabonomics and fecal bacterial profile.

    Science.gov (United States)

    Qi, Xiaozhe; Chen, Siyuan; Sheng, Yao; Guo, Mingzhang; Liu, Yifei; He, Xiaoyun; Huang, Kunlun; Xu, Wentao

    2015-02-01

    The genetically modified (GM) rice expressing human serum albumin (HSA) is used for non-food purposes; however, its food safety assessment should be conducted due to the probability of accidental mixture with conventional food. In this research, Sprague Dawley rats were fed diets containing 50% (wt/wt) GM rice expressing HSA or non-GM rice for 90 days. Urine metabolites were detected by (1)H NMR to examine the changes of the metabolites in the dynamic process of metabolism. Fecal bacterial profiles were detected by denaturing gradient gel electrophoresis to reflect intestinal health. Additionally, short chain fatty acids and fecal enzymes were investigated. The results showed that compared with rats fed the non-GM rice, some significant differences were observed in rats fed with the GM rice; however, these changes were not significantly different from the control diet group. Additionally, the gut microbiota was associated with blood indexes and urine metabolites. In conclusion, the GM rice diet is as safe as the traditional daily diet. Furthermore, urine metabonomics and fecal bacterial profiles provide a non-invasive food safety assessment rat model for genetically modified crops that are used for non-food/feed purposes. Fecal bacterial profiles have the potential for predicting the change of blood indexes in future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Linezolid Exerts Greater Bacterial Clearance but No Modification of Host Lung Gene Expression Profiling: A Mouse MRSA Pneumonia Model.

    Directory of Open Access Journals (Sweden)

    Jiwang Chen

    Full Text Available Linezolid (LZD is beneficial to patients with MRSA pneumonia, but whether and how LZD influences global host lung immune responses at the mRNA level during MRSA-mediated pneumonia is still unknown.A lethal mouse model of MRSA pneumonia mediated by USA300 was employed to study the influence of LZD on survival, while the sublethal mouse model was used to examine the effect of LZD on bacterial clearance and lung gene expression during MRSA pneumonia. LZD (100mg/kg/day, IP was given to C57Bl6 mice for three days. On Day 1 and Day 3 post infection, bronchoalveolar lavage fluid (BALF protein concentration and levels of cytokines including IL6, TNFα, IL1β, Interferon-γ and IL17 were measured. In the sublethal model, left lungs were used to determine bacterial clearance and right lungs for whole-genome transcriptional profiling of lung immune responses.LZD therapy significantly improved survival and bacterial clearance. It also significantly decreased BALF protein concentration and levels of cytokines including IL6, IL1β, Interferon-γ and IL17. No significant gene expression changes in the mouse lungs were associated with LZD therapy.LZD is beneficial to MRSA pneumonia, but it does not modulate host lung immune responses at the transcriptional level.

  9. Cry3Bb1-Resistant Western Corn Rootworm, Diabrotica virgifera virgifera (LeConte Does Not Exhibit Cross-Resistance to DvSnf7 dsRNA.

    Directory of Open Access Journals (Sweden)

    William Moar

    Full Text Available There is a continuing need to express new insect control compounds in transgenic maize against western corn rootworm, Diabrotica virgifera virgifera (LeConte (WCR. In this study three experiments were conducted to determine cross-resistance between the new insecticidal DvSnf7 dsRNA, and Bacillus thuringiensis (Bt Cry3Bb1; used to control WCR since 2003, with field-evolved resistance being reported. Laboratory susceptible and Cry3Bb1-resistant WCR were evaluated against DvSnf7 dsRNA in larval diet-incorporation bioassays. Additionally, the susceptibility of seven field and one field-derived WCR populations to DvSnf7 (and Cry3Bb1 was assessed in larval diet-overlay bioassays. Finally, beetle emergence of laboratory susceptible and Cry3Bb1-resistant WCR was evaluated with maize plants in the greenhouse expressing Cry3Bb1, Cry34Ab1/Cry35Ab1, or DvSnf7 dsRNA singly, or in combination.The Cry3Bb1-resistant colony had slight but significantly (2.7-fold; P<0.05 decreased susceptibility to DvSnf7 compared to the susceptible colony, but when repeated using a field-derived WCR population selected for reduced Cry3Bb1 susceptibility, there was no significant difference (P<0.05 in DvSnf7 susceptibility compared to that same susceptible population. Additionally, this 2.7-fold difference in susceptibility falls within the range of DvSnf7 susceptibility among the seven field populations tested. Additionally, there was no correlation between susceptibility to DvSnf7 and Cry3Bb1 for all populations evaluated. In greenhouse studies, there were no significant differences (P<0.05 between beetle emergence of susceptible and Cry3Bb1-resistant colonies on DvSnf7 and Cry34Ab1/Cry35Ab1, and between DvSnf7 and MON 87411 (DvSnf7 + Cry3Bb1 for the Cry3Bb1-resistant colony. These results demonstrate no cross-resistance between DvSnf7 and Cry3Bb1 against WCR. Therefore, pyramiding DvSnf7 with Bt proteins such as Cry3Bb1 and Cry34Ab1/Cry35Ab1 will provide a valuable IRM tool

  10. Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides.

    Science.gov (United States)

    Almutairi, Mashal M; Park, Sung Ryeol; Rose, Simon; Hansen, Douglas A; Vázquez-Laslop, Nora; Douthwaite, Stephen; Sherman, David H; Mankin, Alexander S

    2015-10-20

    Ketolides are promising new antimicrobials effective against a broad range of Gram-positive pathogens, in part because of the low propensity of these drugs to trigger the expression of resistance genes. A natural ketolide pikromycin and a related compound methymycin are produced by Streptomyces venezuelae strain ATCC 15439. The producer avoids the inhibitory effects of its own antibiotics by expressing two paralogous rRNA methylase genes pikR1 and pikR2 with seemingly redundant functions. We show here that the PikR1 and PikR2 enzymes mono- and dimethylate, respectively, the N6 amino group in 23S rRNA nucleotide A2058. PikR1 monomethylase is constitutively expressed; it confers low resistance at low fitness cost and is required for ketolide-induced activation of pikR2 to attain high-level resistance. The regulatory mechanism controlling pikR2 expression has been evolutionary optimized for preferential activation by ketolide antibiotics. The resistance genes and the induction mechanism remain fully functional when transferred to heterologous bacterial hosts. The anticipated wide use of ketolide antibiotics could promote horizontal transfer of these highly efficient resistance genes to pathogens. Taken together, these findings emphasized the need for surveillance of pikR1/pikR2-based bacterial resistance and the preemptive development of drugs that can remain effective against the ketolide-specific resistance mechanism.

  11. Retinal photoreceptor expresses toll-like receptors (TLRs and elicits innate responses following TLR ligand and bacterial challenge.

    Directory of Open Access Journals (Sweden)

    Pawan Kumar Singh

    Full Text Available Toll-like receptors (TLRs play an important role in host defense against microbial pathogens. Our previous studies have shown that TLRs are expressed on various retinal cells (Microglia and Müller glia and orchestrate retinal innate responses in bacterial endophthalmitis. In this study, we used a well-characterized mouse cone photoreceptor cell line (661W; and demonstrated that these cells express all known TLRs. Although the stimulation of 661W cells with TLR ligands (Pam3Cys, PolyI:C, LPS, Flagellin, Poly DT, and ODN did not alter TLR expression, downstream TLR-signaling pathways (NF-κB, p38, and ERK are activated. Moreover, TLR-activated 661W cells secreted significant amounts of inflammatory mediators (IL-6, IL-1β, MIP-2, and KC in their culture supernatant, as assessed by ELISA. A similar trend was observed in 661W cells challenged with live bacteria (Staphylococcus aureus. Interestingly, the neutralization of TLR2, a major receptor for S. aureus recognition, did not significantly attenuate bacterial-induced inflammatory mediators, suggesting the existence of TLR2-independent mechanisms in photoreceptor cells. Together, these results indicate that photoreceptors constitutively express functional TLRs and possess the ability to initiate innate responses following pathogen challenge, implicating their role in retinal innate immunity.

  12. Effect of PEG biofunctional spacers and TAT peptide on dsRNA loading on gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Vanesa; Conde, Joao; Hernandez, Yulan [Universidad de Zaragoza, Instituto de Nanociencia de Aragon (Spain); Baptista, Pedro V. [Universidade Nova de Lisboa, Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Centro de Investigacao em Genetica Molecular Humana (Portugal); Ibarra, M. R.; Fuente, Jesus M. de la, E-mail: jmfuente@unizar.es [Universidad de Zaragoza, Instituto de Nanociencia de Aragon (Spain)

    2012-06-15

    The surface chemistry of gold nanoparticles (AuNPs) plays a critical role in the self-assembly of thiolated molecules and in retaining the biological function of the conjugated biomolecules. According to the well-established gold-thiol interaction the undefined ionic species on citrate-reduced gold nanoparticle surface can be replaced with a self-assembled monolayer of certain thiolate derivatives and other biomolecules. Understanding the effect of such derivatives in the functionalization of several types of biomolecules, such as PEGs, peptides or nucleic acids, has become a significant challenge. Here, an approach to attach specific biomolecules to the AuNPs ({approx}14 nm) surface is presented together with a study of their effect in the functionalization with other specific derivatives. The effect of biofunctional spacers such as thiolated poly(ethylene glycol) (PEG) chains and a positive peptide, TAT, in dsRNA loading on AuNPs is reported. Based on the obtained data, we hypothesize that loading of oligonucleotides onto the AuNP surface may be controlled by ionic and weak interactions positioning the entry of the oligo through the PEG layer. We demonstrate that there is a synergistic effect of the TAT peptide and PEG chains with specific functional groups on the enhancement of dsRNA loading onto AuNPs.

  13. Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla

    International Nuclear Information System (INIS)

    Brussaard, C.P.D.; Noordeloos, A.A.M.; Sandaa, R.-A.; Heldal, M.; Bratbak, G.

    2004-01-01

    We report the isolation of the first double-stranded (ds) RNA virus in the family Reoviridae that infects a protist (microalga Micromonas pusilla, Prasinophyceae). The dsRNA genome was composed of 11 segments ranging between 0.8 and 5.8 kb, with a total size of approximately 25.5 kb. The virus (MpRNAV-01B) could not be assigned to the genus level because host type, genome size, and number of segments smaller than 2 kb did not correspond to either of the two existing 11-segmented dsRNA genera Rotavirus and Aquareovirus. MpRNAV-01B has a particle size of 65-80 nm, a narrow host range, a latent period of 36 h, and contains five major proteins (120, 95, 67, 53, and 32 kDa). MpRNAV-01B was stable to freeze-thawing, resistant to chloroform, ether, nonionic detergents, chelating and reducing agents. The virus was inactivated at temperatures above 35 deg. C and by ionic detergent, ethanol, acetone, and acidic conditions (pH 2-5)

  14. Enhanced Bacterial Wilt Resistance in Potato Through Expression of Arabidopsis EFR and Introgression of Quantitative Resistance from Solanum commersonii.

    Science.gov (United States)

    Boschi, Federico; Schvartzman, Claudia; Murchio, Sara; Ferreira, Virginia; Siri, Maria I; Galván, Guillermo A; Smoker, Matthew; Stransfeld, Lena; Zipfel, Cyril; Vilaró, Francisco L; Dalla-Rizza, Marco

    2017-01-01

    Bacterial wilt (BW) caused by Ralstonia solanacearum is responsible for substantial losses in cultivated potato ( Solanum tuberosum ) crops worldwide. Resistance genes have been identified in wild species; however, introduction of these through classical breeding has achieved only partial resistance, which has been linked to poor agronomic performance. The Arabidopsis thaliana (At) pattern recognition receptor elongation factor-Tu (EF-Tu) receptor (EFR) recognizes the bacterial pathogen-associated molecular pattern EF-Tu (and its derived peptide elf18) to confer anti-bacterial immunity. Previous work has shown that transfer of AtEFR into tomato confers increased resistance to R. solanacearum . Here, we evaluated whether the transgenic expression of AtEFR would similarly increase BW resistance in a commercial potato line (INIA Iporá), as well as in a breeding potato line (09509.6) in which quantitative resistance has been introgressed from the wild potato relative Solanum commersonii. Resistance to R. solanacearum was evaluated by damaged root inoculation under controlled conditions. Both INIA Iporá and 09509.6 potato lines expressing AtEFR showed greater resistance to R. solanacearum , with no detectable bacteria in tubers evaluated by multiplex-PCR and plate counting. Notably, AtEFR expression and the introgression of quantitative resistance from S. commersonii had a significant additive effect in 09509.6-AtEFR lines. These results show that the combination of heterologous expression of AtEFR with quantitative resistance introgressed from wild relatives is a promising strategy to develop BW resistance in potato.

  15. Enhanced Bacterial Wilt Resistance in Potato Through Expression of Arabidopsis EFR and Introgression of Quantitative Resistance from Solanum commersonii

    Directory of Open Access Journals (Sweden)

    Federico Boschi

    2017-09-01

    Full Text Available Bacterial wilt (BW caused by Ralstonia solanacearum is responsible for substantial losses in cultivated potato (Solanum tuberosum crops worldwide. Resistance genes have been identified in wild species; however, introduction of these through classical breeding has achieved only partial resistance, which has been linked to poor agronomic performance. The Arabidopsis thaliana (At pattern recognition receptor elongation factor-Tu (EF-Tu receptor (EFR recognizes the bacterial pathogen-associated molecular pattern EF-Tu (and its derived peptide elf18 to confer anti-bacterial immunity. Previous work has shown that transfer of AtEFR into tomato confers increased resistance to R. solanacearum. Here, we evaluated whether the transgenic expression of AtEFR would similarly increase BW resistance in a commercial potato line (INIA Iporá, as well as in a breeding potato line (09509.6 in which quantitative resistance has been introgressed from the wild potato relative Solanum commersonii. Resistance to R. solanacearum was evaluated by damaged root inoculation under controlled conditions. Both INIA Iporá and 09509.6 potato lines expressing AtEFR showed greater resistance to R. solanacearum, with no detectable bacteria in tubers evaluated by multiplex-PCR and plate counting. Notably, AtEFR expression and the introgression of quantitative resistance from S. commersonii had a significant additive effect in 09509.6-AtEFR lines. These results show that the combination of heterologous expression of AtEFR with quantitative resistance introgressed from wild relatives is a promising strategy to develop BW resistance in potato.

  16. Biomarker-based classification of bacterial and fungal whole-blood infections in a genome-wide expression study

    Directory of Open Access Journals (Sweden)

    Andreas eDix

    2015-03-01

    Full Text Available Sepsis is a clinical syndrome that can be caused by bacteria or fungi. Early knowledge on the nature of the causative agent is a prerequisite for targeted anti-microbial therapy. Besides currently used detection methods like blood culture and PCR-based assays, the analysis of the transcriptional response of the host to infecting organisms holds great promise. In this study, we aim to examine the transcriptional footprint of infections caused by the bacterial pathogens Staphylococcus aureus and Escherichia coli and the fungal pathogens Candida albicans and Aspergillus fumigatus in a human whole-blood model. Moreover, we use the expression information to build a random forest classifier to classify if a sample contains a bacterial, fungal, or mock-infection. After normalizing the transcription intensities using stably expressed reference genes, we filtered the gene set for biomarkers of bacterial or fungal blood infections. This selection is based on differential expression and an additional gene relevance measure. In this way, we identified 38 biomarker genes, including IL6, SOCS3, and IRG1 which were already associated to sepsis by other studies. Using these genes, we trained the classifier and assessed its performance. It yielded a 96% accuracy (sensitivities >93%, specificities >97% for a 10-fold stratified cross-validation and a 92% accuracy (sensitivities and specificities >83% for an additional test dataset comprising Cryptococcus neoformans infections. Furthermore, the classifier is robust to Gaussian noise, indicating correct class predictions on datasets of new species. In conclusion, this genome-wide approach demonstrates an effective feature selection process in combination with the construction of a well-performing classification model. Further analyses of genes with pathogen-dependent expression patterns can provide insights into the systemic host responses, which may lead to new anti-microbial therapeutic advances.

  17. Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides

    DEFF Research Database (Denmark)

    Almutairi, Mashal M; Park, Sung Ryeol; Rose, Simon

    2015-01-01

    activation by ketolide antibiotics. The resistance genes and the induction mechanism remain fully functional when transferred to heterologous bacterial hosts. The anticipated wide use of ketolide antibiotics could promote horizontal transfer of these highly efficient resistance genes to pathogens. Taken...... together, these findings emphasized the need for surveillance of pikR1/pikR2-based bacterial resistance and the preemptive development of drugs that can remain effective against the ketolide-specific resistance mechanism.......Ketolides are promising new antimicrobials effective against a broad range of Gram-positive pathogens, in part because of the low propensity of these drugs to trigger the expression of resistance genes. A natural ketolide pikromycin and a related compound methymycin are produced by Streptomyces...

  18. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress.

    Science.gov (United States)

    Vaishnav, A; Kumari, S; Jain, S; Varma, A; Choudhary, D K

    2015-08-01

    Plant root-associated rhizobacteria elicit plant immunity referred to as induced systemic tolerance (IST) against multiple abiotic stresses. Among multibacterial determinants involved in IST, the induction of IST and promotion of growth by putative bacterial volatile compounds (VOCs) is reported in the present study. To characterize plant proteins induced by putative bacterial VOCs, proteomic analysis was performed by MALDI-MS/MS after exposure of soybean seedlings to a new strain of plant growth promoting rhizobacteria (PGPR) Pseudomonas simiae strain AU. Furthermore, expression analysis by Western blotting confirmed that the vegetative storage protein (VSP), gamma-glutamyl hydrolase (GGH) and RuBisCo large chain proteins were significantly up-regulated by the exposure to AU strain and played a major role in IST. VSP has preponderant roles in N accumulation and mobilization, acid phosphatase activity and Na(+) homeostasis to sustain plant growth under stress condition. More interestingly, plant exposure to the bacterial strain significantly reduced Na(+) and enhanced K(+) and P content in root of soybean seedlings under salt stress. In addition, high accumulation of proline and chlorophyll content also provided evidence of protection against osmotic stress during the elicitation of IST by bacterial exposure. The present study reported for the first time that Ps. simiae produces a putative volatile blend that can enhance soybean seedling growth and elicit IST against 100 mmol l(-1) NaCl stress condition. The identification of such differentially expressed proteins provide new targets for future studies that will allow assessment of their physiological roles and significance in the response of glycophytes to stresses. Further work should uncover more about the chemical side of VOC compounds and a detailed study about their molecular mechanism responsible for plant growth. © 2015 The Society for Applied Microbiology.

  19. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy

    2016-01-24

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  20. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate

    Directory of Open Access Journals (Sweden)

    Lia R. Valeeva

    2018-02-01

    Full Text Available Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo-inositol hexakisphosphate (phytate, which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases and 168phyA (BPP family under the control of root-specific inducible promoter Pht1;2. The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate

  1. Exposure to West Nile Virus Increases Bacterial Diversity and Immune Gene Expression in Culex pipiens.

    Science.gov (United States)

    Zink, Steven D; Van Slyke, Greta A; Palumbo, Michael J; Kramer, Laura D; Ciota, Alexander T

    2015-10-27

    Complex interactions between microbial residents of mosquitoes and arboviruses are likely to influence many aspects of vectorial capacity and could potentially have profound effects on patterns of arbovirus transmission. Such interactions have not been well studied for West Nile virus (WNV; Flaviviridae, Flavivirus) and Culex spp. mosquitoes. We utilized next-generation sequencing of 16S ribosomal RNA bacterial genes derived from Culex pipiens Linnaeus following WNV exposure and/or infection and compared bacterial populations and broad immune responses to unexposed mosquitoes. Our results demonstrate that WNV infection increases the diversity of bacterial populations and is associated with up-regulation of classical invertebrate immune pathways including RNA interference (RNAi), Toll, and Jak-STAT (Janus kinase-Signal Transducer and Activator of Transcription). In addition, WNV exposure alone, without the establishment of infection, results in similar alterations to microbial and immune signatures, although to a lesser extent. Multiple bacterial genera were found in greater abundance inWNV-exposed and/or infected mosquitoes, yet the most consistent and notable was the genus Serratia.

  2. The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens

    NARCIS (Netherlands)

    Snoeijers, S.S.; Pérez-García, A.; Joosten, M.H.A.J.; Wit, de P.J.G.M.

    2000-01-01

    Successful colonisation of plants by pathogens requires efficient utilisation of nutrient resources available in host tissues. Several bacterial and fungal genes are specifically induced during pathogenesis and under nitrogen-limiting conditions in vitro. This suggests that a nitrogen-limiting

  3. Bacterial gene expression detected in human faeces by reverse transcription-PCR

    NARCIS (Netherlands)

    Fitzsimons, N.A.; Akkermans, A.D.L.; Vos, de W.M.; Vaughan, E.E.

    2003-01-01

    A method to isolate and specifically detect bacterial messenger RNA (mRNA) in human faeces is presented. The surface layer protein gene slpA of Lactobacillus acidophilus ATCC 4356(T) was chosen as a model system because it is transcribed at a high level to a relatively stable mRNA (Boot et al.,

  4. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation

    Science.gov (United States)

    Barchinger, Sarah E.; Pirbadian, Sahand; Baker, Carol S.; Leung, Kar Man; Burroughs, Nigel J.; El-Naggar, Mohamed Y.

    2016-01-01

    using extensions of the outer membrane called bacterial nanowires. These bacterial nanowires link the cell's respiratory chain to external surfaces, including oxidized metals important in bioremediation, and explain why S. oneidensis can be utilized as a component of microbial fuel cells, a form of renewable energy. In this work, we use differential gene expression analysis to focus on which genes function to produce the nanowires and promote extracellular electron transfer during oxygen limitation. Among the genes that are expressed at high levels are those encoding cytochrome proteins necessary for electron transfer. Shewanella coordinates the increased expression of regulators, metabolic pathways, and transport pathways to ensure that cytochromes efficiently transfer electrons along the nanowires. PMID:27342561

  5. Endogenous CO2 may inhibit bacterial growth and induce virulence gene expression in enteropathogenic Escherichia coli.

    Science.gov (United States)

    Martínez, Haydee; Buhse, Thomas; Rivera, Marco; Parmananda, P; Ayala, Guadalupe; Sánchez, Joaquín

    2012-07-01

    Analysis of the growth kinetics of enteropathogenic Escherichia coli (EPEC) revealed that growth was directly proportional to the ratio between the exposed surface area and the liquid culture volume (SA/V). It was hypothesized that this bacterial behavior was caused by the accumulation of an endogenous volatile growth inhibitor metabolite whose escape from the medium directly depended on the SA/V. The results of this work support the theory that an inhibitor is produced and indicate that it is CO(2). We also report that concomitant to the accumulation of CO(2), there is secretion of the virulence-related EspB and EspC proteins from EPEC. We therefore postulate that endogenous CO(2) may have an effect on both bacterial growth and virulence. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. G(ANH)MTETRA, A NATURAL BACTERIAL-CELL WALL BREAKDOWN PRODUCT, INDUCES INTERLEUKIN-1-BETA AND INTERLEUKIN-6 EXPRESSION IN HUMAN MONOCYTES - A STUDY OF THE MOLECULAR MECHANISMS INVOLVED IN INFLAMMATORY CYTOKINE EXPRESSION

    NARCIS (Netherlands)

    DOKTER, WHA; DIJKSTRA, AJ; KOOPMANS, SB; STULP, BK; KECK, W; HALIE, MR; VELLENGA, E

    1994-01-01

    It is believed that induction of cytokine expression by bacterial cell wall components plays a role in the development and course of sepsis. However, most attention has been focused on lipopolysaccharide (LPS). We studied the ability of

  7. Interaction of packaging motor with the polymerase complex of dsRNA bacteriophage

    International Nuclear Information System (INIS)

    Lisal, Jiri; Kainov, Denis E.; Lam, TuKiet T.; Emmett, Mark R.; Wei Hui; Gottlieb, Paul; Marshall, Alan G.; Tuma, Roman

    2006-01-01

    Many viruses employ molecular motors to package their genomes into preformed empty capsids (procapsids). In dsRNA bacteriophages the packaging motor is a hexameric ATPase P4, which is an integral part of the multisubunit procapsid. Structural and biochemical studies revealed a plausible RNA-translocation mechanism for the isolated hexamer. However, little is known about the structure and regulation of the hexamer within the procapsid. Here we use hydrogen-deuterium exchange and mass spectrometry to delineate the interactions of the P4 hexamer with the bacteriophage phi12 procapsid. P4 associates with the procapsid via its C-terminal face. The interactions also stabilize subunit interfaces within the hexamer. The conformation of the virus-bound hexamer is more stable than the hexamer in solution, which is prone to spontaneous ring openings. We propose that the stabilization within the viral capsid increases the packaging processivity and confers selectivity during RNA loading

  8. CpxR-Dependent Thermoregulation of Serratia marcescens PrtA Metalloprotease Expression and Its Contribution to Bacterial Biofilm Formation.

    Science.gov (United States)

    Bruna, Roberto E; Molino, María Victoria; Lazzaro, Martina; Mariscotti, Javier F; García Véscovi, Eleonora

    2018-04-15

    PrtA is the major secreted metalloprotease of Serratia marcescens Previous reports implicate PrtA in the pathogenic capacity of this bacterium. PrtA is also clinically used as a potent analgesic and anti-inflammatory drug, and its catalytic properties attract industrial interest. Comparatively, there is scarce knowledge about the mechanisms that physiologically govern PrtA expression in Serratia In this work, we demonstrate that PrtA production is derepressed when the bacterial growth temperature decreases from 37°C to 30°C. We show that this thermoregulation occurs at the transcriptional level. We determined that upstream of prtA , there is a conserved motif that is directly recognized by the CpxR transcriptional regulator. This feature is found along Serratia strains irrespective of their isolation source, suggesting an evolutionary conservation of CpxR-dependent regulation of PrtA expression. We found that in S. marcescen s, the CpxAR system is more active at 37°C than at 30°C. In good agreement with these results, in a cpxR mutant background, prtA is derepressed at 37°C, while overexpression of the NlpE lipoprotein, a well-known CpxAR-inducing condition, inhibits PrtA expression, suggesting that the levels of the activated form of CpxR are increased at 37°C over those at 30°C. In addition, we establish that PrtA is involved in the ability of S. marcescens to develop biofilm. In accordance, CpxR influences the biofilm phenotype only when bacteria are grown at 37°C. In sum, our findings shed light on regulatory mechanisms that fine-tune PrtA expression and reveal a novel role for PrtA in the lifestyle of S. marcescens IMPORTANCE We demonstrate that S. marcescens metalloprotease PrtA expression is transcriptionally thermoregulated. While strongly activated below 30°C, its expression is downregulated at 37°C. We found that in S. marcescens , the CpxAR signal transduction system, which responds to envelope stress and bacterial surface adhesion, is

  9. β2-agonist clenbuterol suppresses bacterial phagocytosis of splenic macrophages expressing high levels of macrophage receptor with collagenous structure.

    Science.gov (United States)

    Shirato, Ken; Sato, Shogo; Sato, Madoka; Hashizume, Yoko; Tachiyashiki, Kaoru; Imaizumi, Kazuhiko

    2013-01-01

    Splenic marginal zone macrophages expressing macrophage receptor with collagenous structure (MARCO) contribute to the clearance of blood-borne pathogens. We determined a splenic adherent cell fraction abundantly containing cells expressing a higher level of MARCO by flow cytometry, and examined the effects of daily administration of an anabolic dose of β2-agonist clenbuterol on the phagocytic capacity of the cells in mice. After 6 weeks of clenbuterol (1.0 mg/kg body weight/d) or vehicle administration to the mice, splenic adherent cells were isolated. These cells were separated into three cell-size subpopulations. Among them, the small-cell subpopulation contained abundantly the cells with markedly higher levels of MARCO and exhibited more intense phagocytic capacity against Escherichia coli, as compared with the other subpopulations. The phagocytic capacity of the small cells was significantly reduced after clenbuterol administration. These results suggest that the utilization of clenbuterol as doping drug impairs bacterial clearance in the spleen.

  10. Autohydrolysis of plant xylans by apoplastic expression of thermophilic bacterial endo-xylanases

    DEFF Research Database (Denmark)

    Borkhardt, Bernhard; Harholt, Jesper; Ulvskov, Peter Bjarne

    2010-01-01

    The genes encoding the two endo-xylanases XynA and XynB from the thermophilic bacterium Dictyoglomus thermophilum were codon optimized for expression in plants. Both xylanases were designed to be constitutively expressed under the control of the CaMV 35S promoter and targeted to the apoplast. Tra...

  11. Gingival fluid cytokine expression and subgingival bacterial counts during pregnancy and postpartum: a case series.

    Science.gov (United States)

    Bieri, Regina Alessandri; Adriaens, Laurence; Spörri, Stefan; Lang, Niklaus P; Persson, G Rutger

    2013-01-01

    The aim of this study was to assess gingival fluid (GCF) cytokine messenger RNA (mRNA) levels, subgingival bacteria, and clinical periodontal conditions during a normal pregnancy to postpartum. Subgingival bacterial samples were analyzed with the checkerboard DNA-DNA hybridization method. GCF samples were assessed with real-time PCR including five proinflammatory cytokines and secretory leukocyte protease inhibitor. Nineteen pregnant women with a mean age of 32 years (S.D. ± 4 years, range 26-42) participated in the study. Full-mouth bleeding scores (BOP) decreased from an average of 41.2% (S.D. ± 18.6%) at the 12th week of pregnancy to 26.6% (S.D. ± 14.4%) at the 4-6 weeks postpartum (p counts of Eubacterium saburreum, Parvimonas micra, Selenomonas noxia, and Staphylococcus aureus were found at week 12 of pregnancy than at the 4-6 weeks postpartum examinations (p counts were observed. BOP scores and GCF levels of selected cytokines were not related to each other and no differences in GCF levels of the cytokines were observed between samples from the 12th week of pregnancy to 4-6 weeks postpartum. Decreasing postpartum counts of Porphyromonas endodontalis and Pseudomonas aeruginosa were associated with decreasing levels of Il-8 and Il-1β. BOP decreased after pregnancy without any active periodontal therapy. Associations between bacterial counts and cytokine levels varied greatly in pregnant women with gingivitis and a normal pregnancy outcome. Postpartum associations between GCF cytokines and bacterial counts were more consistent. Combined assessments of gingival fluid cytokines and subgingival bacteria may provide important information on host response.

  12. Characterization of bacterial artificial chromosome transgenic mice expressing mCherry fluorescent protein substituted for the murine smooth muscle-alpha-actin gene

    Science.gov (United States)

    Smooth muscle a actin (SMA) is a cytoskeletal protein expressed by mesenchymal and smooth muscle cell types, including mural cells(vascular smooth muscle cells and pericytes). Using Bacterial Artificial Chromosome (BAC) recombineering technology, we generated transgenic reporter mice that express a ...

  13. A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors.

    Directory of Open Access Journals (Sweden)

    Hao Gong

    2011-09-01

    Full Text Available Small non-coding RNAs (sRNAs that act as regulators of gene expression have been identified in all kingdoms of life, including microRNA (miRNA and small interfering RNA (siRNA in eukaryotic cells. Numerous sRNAs identified in Salmonella are encoded by genes located at Salmonella pathogenicity islands (SPIs that are commonly found in pathogenic strains. Whether these sRNAs are important for Salmonella pathogenesis and virulence in animals has not been reported. In this study, we provide the first direct evidence that a pathogenicity island-encoded sRNA, IsrM, is important for Salmonella invasion of epithelial cells, intracellular replication inside macrophages, and virulence and colonization in mice. IsrM RNA is expressed in vitro under conditions resembling those during infection in the gastrointestinal tract. Furthermore, IsrM is found to be differentially expressed in vivo, with higher expression in the ileum than in the spleen. IsrM targets the mRNAs coding for SopA, a SPI-1 effector, and HilE, a global regulator of the expression of SPI-1 proteins, which are major virulence factors essential for bacterial invasion. Mutations in IsrM result in disregulation of expression of HilE and SopA, as well as other SPI-1 genes whose expression is regulated by HilE. Salmonella with deletion of isrM is defective in bacteria invasion of epithelial cells and intracellular replication/survival in macrophages. Moreover, Salmonella with mutations in isrM is attenuated in killing animals and defective in growth in the ileum and spleen in mice. Our study has shown that IsrM sRNA functions as a pathogenicity island-encoded sRNA directly involved in Salmonella pathogenesis in animals. Our results also suggest that sRNAs may represent a distinct class of virulence factors that are important for bacterial infection in vivo.

  14. Use Of Low Light Image Microscopy To Monitor Genetically Engineered Bacterial Luciferase Gene Expression In Living Cells And Gene Activation Throughout The Development Of A Transgenic Organism

    Science.gov (United States)

    Langridge, W. H.; Escher, Alan P.; Baga, M.; O'Kane, Dennis J.; Wampler, John E.; Koncz, C.; Schell, John D.; Szalay, A. A.

    1989-12-01

    Procaryotic and eucaryotic expression vectors which contain a marker gene for selection of transformants linked to genes encoding bacterial luciferase for detection of promoter activated gene expression in vivo were used to transform the appropriate host organisms and drug resistant colonies, cells, or calli were obtained. Bacterial luciferase expression was measured by a luminescence assay for quantitative determination of promoter activation. The cellular localization of bacteria inside the host plant cell cytoplasm was achieved in a single infected plant cell based on the light emitting ability of the genetically engineered bacteria. In addition, the bacterial luciferase marker gene fusions were used to monitor cell type, tissue, and organ specific gene expression in transgenic plants in vivo. To monitor physiological changes during ontogeny of a transformed plant, low light video microscopy, aided by real time image processing techniques developed specifically to enhance extreme low light images, was successfully applied.

  15. Silencing of ecdysone receptor, insect intestinal mucin and sericotropin genes by bacterially produced double-stranded RNA affects larval growth and development in Plutella xylostella and Helicoverpa armigera.

    Science.gov (United States)

    Israni, B; Rajam, M V

    2017-04-01

    RNA interference mediated gene silencing, which is triggered by double-stranded RNA (dsRNA), has become a important tool for functional genomics studies in various systems, including insects. Bacterially produced dsRNA employs the use of a bacterial strain lacking in RNaseIII activity and harbouring a vector with dual T7 promoter sites, which allow the production of intact dsRNA molecules. Here, we report an assessment of the functional relevance of the ecdysone receptor, insect intestinal mucin and sericotropin genes through silencing by dsRNA in two lepidopteran insect pests, Helicoverpa armigera and Plutella xylostella, both of which cause serious crop losses. Oral feeding of dsRNA led to significant reduction in transcripts of the target insect genes, which caused significant larval mortality with various moulting anomalies and an overall developmental delay. We also found a significant decrease in reproductive potential in female moths, with a drop in egg laying and compromised egg hatching from treated larvae as compared to controls. dsRNA was stable in the insect gut and was efficiently processed into small interfering RNAs (siRNAs), thus accounting for the phenotypes observed in the present work. The study revealed the importance of these genes in core insect processes, which are essential for insect development and survival. © 2016 The Royal Entomological Society.

  16. Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection

    NARCIS (Netherlands)

    Rasche, F; Velvis, H; Zachow, C; Berg, G; Van Elsas, JD; Sessitsch, A

    1. Blackleg and soft rot disease of potatoes Solanum tuberosum L., mainly caused by the bacterial pathogen Erwinia carotovora ssp. atrospetica (Eca), lead to enormous yield losses world-wide. Genetically modified (GM) potatoes producing anti-bacterial agents, such as cecropin/attacin and T4

  17. Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection

    NARCIS (Netherlands)

    Rasche, F.; Velvis, H.; Zachow, C.; Berg, G.; Elsas, van J.D.; Sessitsch, A.

    2006-01-01

    1. Blackleg and soft rot disease of potatoes Solanum tuberosum L., mainly caused by the bacterial pathogen Erwinia carotovora ssp. atrospetica (Eca), lead to enormous yield losses world-wide. Genetically modified (GM) potatoes producing anti-bacterial agents, such as cecropin/attacin and T4

  18. Heterologous expression and characterization of bacterial 2-C-methyl-D-erythritol-4-phosphate pathway in Saccharomyces cerevisiae.

    Science.gov (United States)

    Carlsen, Simon; Ajikumar, Parayil Kumaran; Formenti, Luca Riccardo; Zhou, Kang; Phon, Too Heng; Nielsen, Michael Lynge; Lantz, Anna Eliasson; Kielland-Brandt, Morten C; Stephanopoulos, Gregory

    2013-07-01

    Transfer of a biosynthetic pathway between evolutionary distant organisms can create a metabolic shunt capable of bypassing the native regulation of the host organism, hereby improving the production of secondary metabolite precursor molecules for important natural products. Here, we report the engineering of Escherichia coli genes encoding the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway into the genome of Saccharomyces cerevisiae and the characterization of intermediate metabolites synthesized by the MEP pathway in yeast. Our UPLC-MS analysis of the MEP pathway metabolites from engineered yeast showed that the pathway is active until the synthesis of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate, but appears to lack functionality of the last two steps of the MEP pathway, catalyzed by the [4Fe-4S] iron sulfur cluster proteins encoded by ispG and ispH. In order to functionalize the last two steps of the MEP pathway, we co-expressed the genes for the E. coli iron sulfur cluster (ISC) assembly machinery. By deleting ERG13, thereby incapacitating the mevalonate pathway, in conjunction with labeling experiments with U-¹³C₆ glucose and growth experiments, we found that the ISC assembly machinery was unable to functionalize ispG and ispH. However, we have found that leuC and leuD, encoding the heterodimeric iron-sulfur cluster protein, isopropylmalate isomerase, can complement the S. cerevisiae leu1 auxotrophy. To our knowledge, this is the first time a bacterial iron-sulfur cluster protein has been functionally expressed in the cytosol of S. cerevisiae under aerobic conditions and shows that S. cerevisiae has the capability to functionally express at least some bacterial iron-sulfur cluster proteins in its cytosol.

  19. Expression of recombinant staphylokinase, a fibrin-specific plasminogen activator of bacterial origin, in potato (Solanum tuberosum L.) plants.

    Science.gov (United States)

    Gerszberg, Aneta; Wiktorek-Smagur, Aneta; Hnatuszko-Konka, Katarzyna; Łuchniak, Piotr; Kononowicz, Andrzej K

    2012-03-01

    One of the most dynamically developing sectors of green biotechnology is molecular farming using transgenic plants as natural bioreactors for the large scale production of recombinant proteins with biopharmaceutical and therapeutic values. Such properties are characteristic of certain proteins of bacterial origin, including staphylokinase. For many years, work has been carried out on the use of this protein in thrombolytic therapy. In this study, transgenic Solanum tuberosum plants expressing a CaMV::sak-mgpf-gusA gene fusion, were obtained. AGL1 A. tumefaciens strain was used in the process of transformation. The presence of the staphylokinase gene was confirmed by PCR in 22.5% of the investigated plants. The expression of the fusion transgene was detected using the β-glucuronidase activity assay in 32 putative transgenic plants. Furthermore, on the basis of the GUS histochemical reaction, the transgene expression pattern had a strong, constitutive character in seven of the transformants. The polyacrylamide gel electrophoresis of a protein extract from the SAK/PCR-positive plants, revealed the presence of a119 kDa protein that corresponds to that of the fusion protein SAK-mGFP-GUSA. Western blot analysis, using an antibody against staphylokinase, showed the presence of the staphylokinase domain in the 119 kDa protein in six analyzed transformants. However, the enzymatic test revealed amidolytic activity characteristic of staphylokinase in the protein extract of only one plant. This is the first report on a Solanum tuberosum plant producing a recombinant staphylokinase protein, a plasminogen activator of bacterial origin.

  20. Stable expression and characterization of a fungal pectinase and bacterial peroxidase genes in tobacco chloroplast

    Directory of Open Access Journals (Sweden)

    Edward Alexander Espinoza-Sánchez

    2015-05-01

    Conclusion: This study demonstrated that hydrolytic genes PelA and MnP-2 could be integrated and expressed correctly from the chloroplast genome of tobacco plants. A whole plant, having ~470 g of biomass could feasibly yield 66,676.25 units of pectin or 21,715.46 units of manganese peroxidase. Also, this study provides new information about methods and strategies for the expression of enzymes with industrial value.

  1. Bacterial-Chromatin Structural Proteins Regulate the Bimodal Expression of the Locus of Enterocyte Effacement (LEE) Pathogenicity Island in EnteropathogenicEscherichia coli.

    Science.gov (United States)

    Leh, Hervé; Khodr, Ahmad; Bouger, Marie-Christine; Sclavi, Bianca; Rimsky, Sylvie; Bury-Moné, Stéphanie

    2017-08-08

    In enteropathogenic Escherichia coli (EPEC), the locus of enterocyte effacement (LEE) encodes a type 3 secretion system (T3SS) essential for pathogenesis. This pathogenicity island comprises five major operons ( LEE1 to LEE5 ), with the LEE5 operon encoding T3SS effectors involved in the intimate adherence of bacteria to enterocytes. The first operon, LEE1 , encodes Ler (LEE-encoded regulator), an H-NS (nucleoid structuring protein) paralog that alleviates the LEE H-NS silencing. We observed that the LEE5 and LEE1 promoters present a bimodal expression pattern, depending on environmental stimuli. One key regulator of bimodal LEE1 and LEE5 expression is ler expression, which fluctuates in response to different growth conditions. Under conditions in vitro considered to be equivalent to nonoptimal conditions for virulence, the opposing regulatory effects of H-NS and Ler can lead to the emergence of two bacterial subpopulations. H-NS and Ler share nucleation binding sites in the LEE5 promoter region, but H-NS binding results in local DNA structural modifications distinct from those generated through Ler binding, at least in vitro Thus, we show how two nucleoid-binding proteins can contribute to the epigenetic regulation of bacterial virulence and lead to opposing bacterial fates. This finding implicates for the first time bacterial-chromatin structural proteins in the bimodal regulation of gene expression. IMPORTANCE Gene expression stochasticity is an emerging phenomenon in microbiology. In certain contexts, gene expression stochasticity can shape bacterial epigenetic regulation. In enteropathogenic Escherichia coli (EPEC), the interplay between H-NS (a nucleoid structuring protein) and Ler (an H-NS paralog) is required for bimodal LEE5 and LEE1 expression, leading to the emergence of two bacterial subpopulations (with low and high states of expression). The two proteins share mutual nucleation binding sites in the LEE5 promoter region. In vitro , the binding of H

  2. Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation.

    Science.gov (United States)

    Jung, Ji Young; Lee, Se Hee; Jin, Hyun Mi; Hahn, Yoonsoo; Madsen, Eugene L; Jeon, Che Ok

    2013-05-15

    Barcode-based 16S rRNA gene pyrosequencing showed that the kimchi microbiome was dominated by six lactic acid bacteria (LAB), Leuconostoc (Lc.) mesenteroides, Lactobacillus (Lb.) sakei, Weissella (W.) koreensis, Lc. gelidum, Lc. carnosum, and Lc. gasicomitatum. Therefore, we used completed genome sequences of representatives of these bacteria to investigate metatranscriptomic gene-expression profiles during kimchi fermentation. Total mRNA was extracted from kimchi samples taken at five time points during a 29 day-fermentation. Nearly all (97.7%) of the metagenome sequences that were recruited on all LAB genomes of GenBank mapped onto the six LAB strains; this high coverage rate indicated that this approach for assessing processes carried out by the kimchi microbiome was valid. Expressed mRNA sequences (as cDNA) were determined using Illumina GA IIx. Assignment of mRNA sequences to metabolic genes using MG-RAST revealed the prevalence of carbohydrate metabolism and lactic acid fermentation. The mRNA sequencing reads were mapped onto genomes of the six LAB strains, which showed that Lc. mesenteroides was most active during the early-stage fermentation, whereas gene expression by Lb. sakei and W. koreensis was high during later stages. However, gene expression by Lb. sakei decreased rapidly at 25 days of fermentation, which was possibly caused by bacteriophage infection of the Lactobacillus species. Many genes related to carbohydrate transport and hydrolysis and lactate fermentation were actively expressed, which indicated typical heterolactic acid fermentation. Mannitol dehydrogenase-encoding genes (mdh) were identified from all Leuconostoc species and especially Lc. mesenteroides, which harbored three copies (two copies on chromosome and one copy on plasmid) of mdh with different expression patterns. These results contribute to knowledge of the active populations and gene expression in the LAB community responsible for an important fermentation process. Copyright

  3. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils

    Science.gov (United States)

    Lee, Angela; McGuire, Krista L.

    2017-01-01

    ABSTRACT New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation (cbbL-R [cbbL gene, red-like subunit] and apsA), nitrogen cycling (noxZ and amoA), and contaminant degradation (bphA); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a

  4. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils.

    Science.gov (United States)

    Gill, Aman S; Lee, Angela; McGuire, Krista L

    2017-08-15

    New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation ( cbbL-R [ cbbL gene, red-like subunit] and apsA ), nitrogen cycling ( noxZ and amoA ), and contaminant degradation ( bphA ); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a

  5. Expression and Purification of the Main Component Contained in Camel Milk and Its Antimicrobial Activities Against Bacterial Plant Pathogens.

    Science.gov (United States)

    Tanhaeian, Abbas; Shahriari Ahmadi, Farajollah; Sekhavati, Mohammad Hadi; Mamarabadi, Mojtaba

    2018-04-04

    Lactoferrin is the most dominant protein in milk after casein. This protein plays a crucial role in many biological processes including the regulation of iron metabolism, induction and modulation of the immune system, the primary defense against microorganisms, inhibiting lipid peroxidation and presenting antimicrobial activity against various pathogens such as parasites, fungi, bacteria, and viruses. The major antimicrobial effect of lactoferrin is related to its N-terminal tail where different peptides for instance lactoferricin and lactoferrampin which are important for their antimicrobial abilities are present. The growth rate of bacterial cells in camel milk is lower than that of the cow milk due to having more antimicrobial compounds. In this study, we have fused a codon-optimized partial camel lactoferrcin and lactoferrampin DNA sequences in order to construct a fused peptide via a lysine. This chimeric 42-mer peptide consists of complete and partial amino acid sequence of camel lactoferrampin and lactoferricin, respectively. Human embryonic kidney 293 (HEK-293) cells were used for synthesizing this recombinant peptide. Finally, the antibacterial activities of this constructed peptide were investigated under in vitro condition. The result showed that, all construction, cloning and expression processes were successfully performed in HEK-293. One His-tag tail was added to the chimera in order to optimize the isolation and purification processes and also reduce the cost of production. Additionally, His-tag retained the antimicrobial activity of the chimera. The antimicrobial tests showed that the growth rate in the majority of bacterial plant pathogens, including gram negative and positive bacteria, was inhibited by recombinant chimera as the level of MIC values were evaluated between 0.39 and 25.07 μg/ml for different bacterial isolates.

  6. Patterns of Bacterial and Archaeal Gene Expression through the Lower Amazon River

    Energy Technology Data Exchange (ETDEWEB)

    Satinsky, Brandon M.; Smith, Christa B.; Sharma, Shalabh; Ward, Nicholas D.; Krusche, Alex V.; Richey, Jeffrey E.; Yager, Patricia L.; Crump, Byron C.; Moran, Mary Ann

    2017-08-08

    Analysis of metatranscriptomic and metagenomic datasets from the lower reaches of the Amazon River between Obidos and the river mouth revealed microbial transcript and gene pools dominated by Actinobacteria, Thaumarchaeota, Bacteroidetes, Acidobacteria, Betaproteobacteria, and Planctomycetes. Three mainstem stations spanning a 625 km reach had similar gene expression patterns (transcripts gene copy-1) across a diverse suite of element cycling genes, but two tributary-influenced stations at the mouth of the Tapajos River and near the Tocantins River at Belem had distinct transcriptome composition and expression ratios, particularly for genes encoding light-related energy capture (higher) and iron acquisition and ammonia oxidation (lower). Environmental parameters that were useful predictors of gene expression ratios included concentrations of lignin phenols, suspended sediments, nitrate, phosphate, and particulate organic carbon and nitrogen. Similar to the gene expression data, these chemical properties reflected highly homogeneous mainstem stations punctuated by distinct tributary- influenced stations at Tapajos and Belem. Although heterotrophic processes were expected to dominate in the lower Amazon, transcripts from photosynthetic bacteria were abundant in tributary-influenced regions, and transcripts from Thaumarcheota taxa genetically capable of chemosynthetic ammonia oxidation accounted for up to 21% of the transcriptome at others. Based on regressions of transcript numbers against gene numbers, expression ratios of Thaumarchaeota populations were largely unchanged within the mainstem, suggesting a relatively minor role for gene regulation. These quantitative gene and transcript inventories detail a diverse array of energy acquisition strategies and metabolic capabilities for bacteria and archaea populations of the world’s largest river system.

  7. Cooperative working of bacterial chromosome replication proteins generated by a reconstituted protein expression system

    Science.gov (United States)

    Fujiwara, Kei; Katayama, Tsutomu; Nomura, Shin-ichiro M.

    2013-01-01

    Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription–translation–replication process by autonomous expression of chromosomal DNA replication machineries from a reconstituted transcription–translation system (PURE system). We found that low temperature is essential to express a complex protein, DNA polymerase III, in a single tube using the PURE system. Addition of the 13 genes, encoding initiator, DNA helicase, helicase loader, RNA primase and DNA polymerase III to the PURE system gave rise to a DNA replication system by a coupling manner. An artificial genetic circuit demonstrated that the DNA produced as a result of the replication is able to provide genetic information for proteins, indicating the in vitro central dogma can sequentially undergo two rounds. PMID:23737447

  8. Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism.

    Directory of Open Access Journals (Sweden)

    Shridhar Bale

    2012-09-01

    Full Text Available Filoviruses, including Marburg virus (MARV and Ebola virus (EBOV, cause fatal hemorrhagic fever in humans and non-human primates. All filoviruses encode a unique multi-functional protein termed VP35. The C-terminal double-stranded (dsRNA-binding domain (RBD of VP35 has been implicated in interferon antagonism and immune evasion. Crystal structures of the VP35 RBD from two ebolaviruses have previously demonstrated that the viral protein caps the ends of dsRNA. However, it is not yet understood how the expanses of dsRNA backbone, between the ends, are masked from immune surveillance during filovirus infection. Here, we report the crystal structure of MARV VP35 RBD bound to dsRNA. In the crystal structure, molecules of dsRNA stack end-to-end to form a pseudo-continuous oligonucleotide. This oligonucleotide is continuously and completely coated along its sugar-phosphate backbone by the MARV VP35 RBD. Analysis of dsRNA binding by dot-blot and isothermal titration calorimetry reveals that multiple copies of MARV VP35 RBD can indeed bind the dsRNA sugar-phosphate backbone in a cooperative manner in solution. Further, MARV VP35 RBD can also cap the ends of the dsRNA in solution, although this arrangement was not captured in crystals. Together, these studies suggest that MARV VP35 can both coat the backbone and cap the ends, and that for MARV, coating of the dsRNA backbone may be an essential mechanism by which dsRNA is masked from backbone-sensing immune surveillance molecules.

  9. Understanding the impact of water distribution system conditions on the biodegradation of haloacetic acids and expression of bacterial dehalogenase genes.

    Science.gov (United States)

    Behbahani, Mohsen; Lin, Boren; Phares, Tamara L; Seo, Youngwoo

    2018-06-05

    The objective of this study is to evaluate the influence of water distribution system conditions (pH, total organic carbon, residual chlorine, and phosphate) on haloacetic acids (HAAs) biodegradation. A series of batch microcosm tests were conducted to determine biodegradation kinetics and collected biomass was used for real time quantitative reverse transcription polymerase chain reaction analyses to monitor how these drinking water distribution system conditions affect the relative expression of bacterial dehalogenase genes. It was observed that tested water distribution system conditions affected HAA biodegradation with different removal efficiencies (0-100%). HAA biodegradation was improved in tested samples with TOC (3 mg/L) and pH 8.5 compared to those of TOC (0 mg/L) and pH 7, respectively. However, slight improvement was observed with the increased PO 4 concentration (3.5 mg/L), and the presence of residual chlorine even at low concentration prohibited biodegradation of HAAs. The observed trend in the relative expression of dehII genes was compatible with the HAA biodegradation trend. Overall relative expression ratio of dehII genes was lower at pH 7, phosphate (0.5 mg/L), and TOC (0 mg/L) in comparison with pH 8.5, phosphate (3.5 mg/L), and TOC (3 mg/L) in the same experimental conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Mechano-sensitization of mammalian neuronal networks through expression of the bacterial large-conductance mechanosensitive ion channel.

    Science.gov (United States)

    Soloperto, Alessandro; Boccaccio, Anna; Contestabile, Andrea; Moroni, Monica; Hallinan, Grace I; Palazzolo, Gemma; Chad, John; Deinhardt, Katrin; Carugo, Dario; Difato, Francesco

    2018-03-08

    Development of remote stimulation techniques for neuronal tissues represents a challenging goal. Among the potential methods, mechanical stimuli are the most promising vectors to convey information non-invasively into intact brain tissue. In this context, selective mechano-sensitization of neuronal circuits would pave the way to develop a new cell-type-specific stimulation approach. We report here, for the first time, the development and characterization of mechano-sensitized neuronal networks through the heterologous expression of an engineered bacterial large-conductance mechanosensitive ion channel (MscL). The neuronal functional expression of the MscL was validated through patch-clamp recordings upon application of calibrated suction pressures. Moreover, we verified the effective development of in-vitro neuronal networks expressing the engineered MscL in terms of cell survival, number of synaptic puncta and spontaneous network activity. The pure mechanosensitivity of the engineered MscL, with its wide genetic modification library, may represent a versatile tool to further develop a mechano-genetic approach.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  11. Salix purpurea Stimulates the Expression of Specific Bacterial Xenobiotic Degradation Genes in a Soil Contaminated with Hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Antoine P Pagé

    Full Text Available The objectives of this study were to uncover Salix purpurea-microbe xenobiotic degradation systems that could be harnessed in rhizoremediation, and to identify microorganisms that are likely involved in these partnerships. To do so, we tested S. purpurea's ability to stimulate the expression of 10 marker microbial oxygenase genes in a soil contaminated with hydrocarbons. In what appeared to be a detoxification rhizosphere effect, transcripts encoding for alkane 1-monooxygenases, cytochrome P450 monooxygenases, laccase/polyphenol oxidases, and biphenyl 2,3-dioxygenase small subunits were significantly more abundant in the vicinity of the plant's roots than in bulk soil. This gene expression induction is consistent with willows' known rhizoremediation capabilities, and suggests the existence of S. purpurea-microbe systems that target many organic contaminants of interest (i.e. C4-C16 alkanes, fluoranthene, anthracene, benzo(apyrene, biphenyl, polychlorinated biphenyls. An enhanced expression of the 4 genes was also observed within the bacterial orders Actinomycetales, Rhodospirillales, Burkholderiales, Alteromonadales, Solirubrobacterales, Caulobacterales, and Rhizobiales, which suggest that members of these taxa are active participants in the exposed partnerships. Although the expression of the other 6 marker genes did not appear to be stimulated by the plant at the community level, signs of additional systems that rest on their expression by members of the orders Solirubrobacterales, Sphingomonadales, Actinomycetales, and Sphingobacteriales were observed. Our study presents the first transcriptomics-based identification of microbes whose xenobiotic degradation activity in soil appears stimulated by a plant. It paints a portrait that contrasts with the current views on these consortia's composition, and opens the door for the development of laboratory test models geared towards the identification of root exudate characteristics that limit the

  12. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    NARCIS (Netherlands)

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC

  13. Characterizing bacterial gene expression in nitrogen cycle metabolism with RT-qPCR.

    Science.gov (United States)

    Graham, James E; Wantland, Nicholas B; Campbell, Mark; Klotz, Martin G

    2011-01-01

    Recent advances in DNA sequencing have greatly accelerated our ability to obtain the raw information needed to recognize both known and potential novel modular microbial genomic capacity for nitrogen metabolism. With PCR-based approaches to quantifying microbial mRNA expression now mainstream in most laboratories, researchers can now more efficiently propose and test hypotheses on the contributions of individual microbes to the biological accessibility of nitrogen upon which all other life depends. We review known microbial roles in these key nitrogen transformations, and describe the necessary steps in carrying out relevant gene expression studies. An example experimental design is then provided characterizing Nitrosococcus oceani mRNA expression in cultures responding to ammonia. The approach described, that of assessing microbial genome inventory and testing putative modular gene expression by mRNA quantification, is likely to remain an important tool in understanding individual microbial contributions within microbial community activities that maintain the Earth's nitrogen balance. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Expression of sperm-specific protamines impairs bacterial and eukaryotic cell proliferation.

    Science.gov (United States)

    Günther, Katharina; Paradowska-Dogan, Agnieszka; Bärmann, Birte; Klein, Harald; von Eichel-Streiber, Christoph; Hartley, Ricardo; Weidner, Wolfgang; Behr, Rüdiger; Steger, Klaus

    2015-06-01

    Protamines are the predominant nuclear proteins in testicular spermatids and ejaculated spermatozoa. During spermiogenesis, protamine-DNA interaction induces a higher-order chromatin packaging which finally results in a complete transcriptional stop in elongating spermatids. Although numerous studies investigated the role of protamines in male fertility, to date, no study is available that investigates protamine function, particularly transcriptional silencing, in non-germ cells. Transcriptional stop due to the high binding affinity of arginine-rich protamines to the negatively charged DNA backbone, however, may be induced in somatic cells and may result in suppressing cell division in tumor cells. In the present study, we therefore analyzed whether a protamine-mediated chromatin condensation in somatic cancer cell lines can stop gene expression and arrest cancer cell proliferation. In contrast to terminally differentiated sperm, cancer cells represent immortalized cells that have modulated natural mechanisms for the regulation of apoptosis and cell proliferation. We expressed human protamines in two fast-growing cell systems, E. coli and HeLa cells. In both cases, protamine expression significantly attenuated cell proliferation when compared with control cells. To our knowledge, this is the first study that demonstrates a stop of cell proliferation in both E. coli and HeLa cells by protamine expression. Follow-up studies on the molecular effect of protamines on proliferative cells may, in the future, open new avenues to investigate effective and specific treatments of cancer cells.

  15. Quantitative Conversion of Phytate to Inorganic Phosphorus in Soybean Seeds Expressing a Bacterial Phytase1[OA

    Science.gov (United States)

    Bilyeu, Kristin D.; Zeng, Peiyu; Coello, Patricia; Zhang, Zhanyuan J.; Krishnan, Hari B.; Bailey, April; Beuselinck, Paul R.; Polacco, Joe C.

    2008-01-01

    Phytic acid (PA) contains the major portion of the phosphorus in the soybean (Glycine max) seed and chelates divalent cations. During germination, both minerals and phosphate are released upon phytase-catalyzed degradation of PA. We generated a soybean line (CAPPA) in which an Escherichia coli periplasmic phytase, the product of the appA gene, was expressed in the cytoplasm of developing cotyledons. CAPPA exhibited high levels of phytase expression, ≥90% reduction in seed PA, and concomitant increases in total free phosphate. These traits were stable, and, although resulted in a trend for reduced emergence and a statistically significant reduction in germination rates, had no effect on the number of seeds per plant or seed weight. Because phytate is not digested by monogastric animals, untreated soymeal does not provide monogastrics with sufficient phosphorus and minerals, and PA in the waste stream leads to phosphorus runoff. The expression of a cytoplasmic phytase in the CAPPA line therefore improves phosphorus availability and surpasses gains achieved by other reported transgenic and mutational strategies by combining in seeds both high phytase expression and significant increases in available phosphorus. Thus, in addition to its value as a high-phosphate meal source, soymeal from CAPPA could be used to convert PA of admixed meals, such as cornmeal, directly to utilizable inorganic phosphorus. PMID:18162589

  16. Expression of lung vascular and airway ICAM-1 after exposure to bacterial lipopolysaccharide

    DEFF Research Database (Denmark)

    Beck-Schimmer, B; Schimmer, R C; Warner, R L

    1997-01-01

    lavage fluids (BALFs) of animals after intratracheal instillation of LPS. Retrieved alveolar macrophages showed a small, significant, and transient increase in surface expression of ICAM-1. These data indicate, at the very least, a dual compartmentalized (vascular and airway) upregulation of ICAM-1 after...

  17. Patterns of Bacterial and Archaeal Gene Expression through the Lower Amazon River

    Directory of Open Access Journals (Sweden)

    Brandon M. Satinsky

    2017-08-01

    Full Text Available Analysis of metatranscriptomic and metagenomic datasets from the lower reaches of the Amazon River between Óbidos and the river mouth revealed microbial transcript and gene pools dominated by Actinobacteria, Thaumarchaeota, Bacteroidetes, Acidobacteria, Betaproteobacteria, and Planctomycetes. Three mainstem stations spanning a 625 km reach had similar gene expression patterns (transcripts gene copy−1 across a diverse suite of element cycling genes, but two tributary-influenced stations at the mouth of the Tapajós River and near the Tocantins River at Belém had distinct transcriptome composition and expression ratios, particularly for genes encoding light-related energy capture (higher and iron acquisition and ammonia oxidation (lower. Environmental parameters that were useful predictors of gene expression ratios included concentrations of lignin phenols, suspended sediments, nitrate, phosphate, and particulate organic carbon and nitrogen. Similar to the gene expression data, these chemical properties reflected highly homogeneous mainstem stations punctuated by distinct tributary-influenced stations at Tapajós and Belém. Although heterotrophic processes were expected to dominate in the lower Amazon, transcripts from photosynthetic bacteria were abundant in tributary-influenced regions, and transcripts from Thaumarcheota taxa genetically capable of chemosynthetic ammonia oxidation accounted for up to 21% of the transcriptome at others. Based on regressions of transcript numbers against gene numbers, expression ratios of Thaumarchaeota populations were largely unchanged within the mainstem, suggesting a relatively minor role for gene regulation. These quantitative gene and transcript inventories detail a diverse array of energy acquisition strategies and metabolic capabilities for bacteria and archaea populations of the world's largest river system.

  18. A Bacterial Surface Display System Expressing Cleavable Capsid Proteins of Human Norovirus: A Novel System to Discover Candidate Receptors

    Directory of Open Access Journals (Sweden)

    Qian Xu

    2017-12-01

    Full Text Available Human noroviruses (HuNoVs are the dominant cause of food-borne outbreaks of acute gastroenteritis. However, fundamental researches on HuNoVs, such as identification of viral receptors have been limited by the currently immature system to culture HuNoVs and the lack of efficient small animal models. Previously, we demonstrated that the recombinant protruding domain (P domain of HuNoVs capsid proteins were successfully anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with a plasmid expressing HuNoVs P protein fused with bacterial transmembrane anchor protein. The cell-surface-displayed P proteins could specifically recognize and bind to histo-blood group antigens (HBGAs, receptors of HuNoVs. In this study, an upgraded bacterial surface displayed system was developed as a new platform to discover candidate receptors of HuNoVs. A thrombin-susceptible “linker” sequence was added between the sequences of bacterial transmembrane anchor protein and P domain of HuNoV (GII.4 capsid protein in a plasmid that displays the functional P proteins on the surface of bacteria. In this new system, the surface-displayed HuNoV P proteins could be released by thrombin treatment. The released P proteins self-assembled into small particles, which were visualized by electron microscopy. The bacteria with the surface-displayed P proteins were incubated with pig stomach mucin which contained HBGAs. The bacteria-HuNoV P proteins-HBGAs complex could be collected by low speed centrifugation. The HuNoV P proteins-HBGAs complex was then separated from the recombinant bacterial surface by thrombin treatment. The released viral receptor was confirmed by using the monoclonal antibody against type A HBGA. It demonstrated that the new system was able to capture and easily isolate receptors of HuNoVs. This new strategy provides an alternative, easier approach for isolating unknown receptors/ligands of HuNoVs from different samples

  19. Strategies for production of active eukaryotic proteins in bacterial expression system

    OpenAIRE

    Orawan Khow; Sunutcha Suntrarachun

    2012-01-01

    Bacteria have long been the favorite expression system for recombinant protein production. However, the flaw of the system is that insoluble and inactive proteins are co-produced due to codon bias, protein folding, phosphorylation, glycosylation, mRNA stability and promoter strength. Factors are cited and the methods to convert to soluble and active proteins are described, for example a tight control of Escherichia coli milieu, refolding from inclusion body and through fusion technology.

  20. Microarray analysis of gene expression in disk abalone Haliotis discus discus after bacterial challenge.

    Science.gov (United States)

    De Zoysa, Mahanama; Nikapitiya, Chamilani; Oh, Chulhong; Lee, Youngdeuk; Whang, Ilson; Lee, Jae-Seong; Choi, Cheol Young; Lee, Jehee

    2011-02-01

    In this study, we investigated the gene expression profiling of disk abalone, Haliotis discus discus challenged by a mixture of three pathogenic bacteria Vibrio alginolyticus, Vibrio parahemolyticus, and Listeria monocytogenes using a cDNA microarray. Upon bacteria challenge, 68 (1.6%) and 112 (2.7%) gene transcripts changed their expression levels ≥2 or ≤2 -fold in gills and digestive tract, respectively. There were 46 tissue-specific transcripts that up-regulated specifically in the digestive tract. In contrast, only 13 transcripts showed gill-specific up-regulation. Quantitative real-time PCR was performed to verify microarray data and results revealed that candidate genes namely Krüppell-like factor (KLF), lachesin, muscle lim protein, thioredoxin-2 (TRx-2), nuclear factor interleukin 3 (NFIL-3) and abalone protein 38 were up-regulated. Also, our results further indicated that bacteria challenge may activate the transcription factors or their activators (Krüppell-like factor, inhibitor of NF-κB or Ik-B), inflammatory cytokines (IL-3 regulated protein, allograft inflammatory factor), other cytokines (IFN-44-like protein, SOCS-2), antioxidant enzymes (glutathione-S-transferase, thioredoxin-2 and thioredoxin peroxidase), and apoptosis-related proteins (TNF-α, archeron) in abalone. The identification of immune and stress response genes and their expression profiles in this microarray will permit detailed investigation of the stress and immune responses of abalone genes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. A bicistronic expression system for bacterial production of authentic human interleukin-18.

    Science.gov (United States)

    Kirkpatrick, Robert B; McDevitt, Patrick J; Matico, Rosalie E; Nwagwu, Silas; Trulli, Stephen H; Mao, Joyce; Moore, Dwight D; Yorke, Adam F; McLaughlin, Megan M; Knecht, Kristin A; Elefante, Louis C; Calamari, Amy S; Fornwald, Jim A; Trill, John J; Jonak, Zdenka L; Kane, James; Patel, Pramathesh S; Sathe, Ganesh M; Shatzman, Allan R; Tapley, Peter M; Johanson, Kyung O

    2003-02-01

    Interleukin-18 (IL-18) is activated and released from immune effector cells to stimulate acquired and innate immune responses involving T and natural killer (NK) cells. The release of IL-18 from mammalian cells is linked to its proteolytic activation by caspases including interleukin 1 converting enzyme (ICE). The absence of a signal peptide sequence and the requirement for coupled activation and cellular release have presented challenges for the large-scale recombinant production of IL-18. In this study, we have explored methods for the direct production of authentic human IL-18 toward the development of a large-scale production system. Expression of mature IL-18 directly in Escherichia coli with a methionine initiating codon leads to the production of MetIL-18 that is dramatically less potent in bioassays than IL-18 produced as a pro-peptide and activated in vitro. To produce an authentic IL-18, we have devised a bicistronic expression system for the coupled transcription and translation of ProIL-18 with caspase-1 (ICE) or caspase-4 (ICE-rel II, TX, ICH-2). Mature IL-18 with an authentic N-terminus was produced and has a biological activity and potency comparable to that of in vitro processed mature IL-18. Optimization of this system for the maximal production yields can be accomplished by modulating the temperature, to affect the rate of caspase activation and to favor the accumulation of ProIL-18, prior to its proteolytic processing by activated caspase. The effect of temperature is particularly profound for the caspase-4 co-expression process, enabling optimized production levels of over 150 mg/L in shake flasks at 25 degrees C. An alternative bicistronic expression design utilizing a precise ubiquitin IL-18 fusion, processed by co-expressed ubiquitinase, was also successfully used to generate fully active IL-18, thereby demonstrating that the pro-sequence of IL-18 is not required for recombinant IL-18 production. Copyright 2002 Elsevier Science (USA)

  2. Uptake and expression of bacterial and cyanobacterial genes by isolated cucumber etioplasts

    Energy Technology Data Exchange (ETDEWEB)

    Daniell, H.; McFadden, B.A.

    1987-09-01

    The uptake and expression by plastids isolated from dark-grown cucumber cotyledons (etioplasts) of two pUC derivatives, pCS75 and pUC9-CM, respectively carrying genes for the large and small subunits of ribulose bisphosphate carboxylase/oxygenase of Anacystis nidulans or chloramphenicol acetyltransferase, is reported. Untreated etioplasts take up only 3% as much DNA as that taken up by EDTA-washed etioplasts after 2 hr of incubation with nick-translated (/sup 32/P)-pCS75. The presence or absence of light does not affect DNA uptake, binding, or breakdown by etioplasts. Calcium or magnesium ions inhibit DNA uptake by 86% but enhance binding and breakdown of donor DNA by EDTA-treated etioplasts. Uncouplers that abolish membrane potential, transmembrane proton gradient, or both do not affect DNA uptake, binding, or breakdown by etioplasts. However, both DNA uptake and binding are severely inhibited by ATP. After the incubation of EDTA-treated etioplasts with pCS75, immunoprecipitation using antiserum to the small subunit of ribulose bisphosphate carboxylase/oxygenase from A. nidulans reveals the synthesis of small subunits. Treatment of etioplasts with 10 mM EDTA shows a 10-min duration to be optimal for the expression of chloramphenicol acetyltransferase encoded by pUC9-CM. A progressive increase in the expression of this enzyme is observed with an increase in the concentration of pUC9-CM in the DNA uptake medium. The plasmid-dependent incorporation of (/sup 35/S) methionine by EDTA-treated organelles declines markedly during cotyledon greening in vivo.

  3. Expression of innate immune complement regulators on brain epithelial cells during human bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Gasque Philippe

    2006-09-01

    Full Text Available Abstract Background In meningitis, the cerebrospinal fluid contains high levels of innate immune molecules (e.g. complement which are essential to ward off the infectious challenge and to promote the infiltration of phagocytes (neutrophils, monocytes. However, epithelial cells of either the ependymal layer, one of the established niche for adult neural stem cells, or of the choroid plexus may be extremely vulnerable to bystander attack by cytotoxic and cytolytic complement components. Methods In this study, we assessed the capacity of brain epithelial cells to express membrane-bound complement regulators (ie, CD35, CD46, CD55 and CD59 in vitro and in situ by immunostaining of control and meningitis human brain tissue sections. Results Double immunofluorescence experiments for ependymal cell markers (GFAP, S100, ZO-1, E-cadherin and complement regulators indicated that the human ependymal cell line model was strongly positive for CD55, CD59 compared to weak stainings for CD46 and CD35. In tissues, we found that CD55 was weakly expressed in control choroid plexus and ependyma but was abundantly expressed in meningitis. Anti-CD59 stained both epithelia in apical location while increased CD59 staining was solely demonstrated in inflamed choroid plexus. CD46 and CD35 were not detected in control tissue sections. Conversely, in meningitis, the ependyma, subependyma and choroid plexus epithelia were strongly stained for CD46 and CD35. Conclusion This study delineates for the first time the capacity of brain ependymal and epithelial cells to respond to and possibly sustain the innate complement-mediated inflammatory insult.

  4. Bacterial subversion of cAMP signalling inhibits cathelicidin expression, which is required for innate resistance to Mycobacterium tuberculosis

    Science.gov (United States)

    Gupta, Shashank; Winglee, Kathryn; Gallo, Richard; Bishai, William R

    2017-01-01

    Antimicrobial peptides such as cathelicidins are an important component of innate immune defence against inhaled microorganisms and have demonstrated antimicrobial activity against Mycobacterium tuberculosis with in vitro models. Despite this, little is known about the regulation and expression of cathelicidin during tuberculosis in vivo. We sought to determine whether the cathelicidin-related antimicrobial peptide (Cramp) gene, the murine functional homologue of the human cathelicidin gene (CAMP or LL-37), is required for regulating protective immunity during M. tuberculosis infection in vivo. We used Cramp−/− mice in a validated model of pulmonary tuberculosis and conducted cell-based assays with macrophages from these mice. We evaluated the in vivo susceptibility of Cramp−/− mice to infection and further dissected various pro-inflammatory immune responses against M. tuberculosis. We observed increased susceptibility of Cramp−/− mice to M. tuberculosis compared to wild type mice. Macrophages from Cramp−/− mice were unable to control M. tuberculosis growth in an in vitro infection model, were deficient in intracellular calcium influx and were defective in stimulating T-cells. Additionally, CD4 and CD8 T-cells from Cramp−/− mice produced less IFNβ upon stimulation. Furthermore, bacterial-derived cyclic-AMP modulated cathelicidin expression in macrophages. Our results demonstrate that cathelicidin is required for innate resistance to M. tuberculosis in a relevant animal model and is a key mediator in regulating the levels of pro-inflammatory cytokines by calcium and cyclic nucleotides. PMID:28097645

  5. Identification of self-consistent modulons from bacterial microarray expression data with the help of structured regulon gene sets

    KAUST Repository

    Permina, Elizaveta A.

    2013-01-01

    Identification of bacterial modulons from series of gene expression measurements on microarrays is a principal problem, especially relevant for inadequately studied but practically important species. Usage of a priori information on regulatory interactions helps to evaluate parameters for regulatory subnetwork inference. We suggest a procedure for modulon construction where a seed regulon is iteratively updated with genes having expression patterns similar to those for regulon member genes. A set of genes essential for a regulon is used to control modulon updating. Essential genes for a regulon were selected as a subset of regulon genes highly related by different measures to each other. Using Escherichia coli as a model, we studied how modulon identification depends on the data, including the microarray experiments set, the adopted relevance measure and the regulon itself. We have found that results of modulon identification are highly dependent on all parameters studied and thus the resulting modulon varies substantially depending on the identification procedure. Yet, modulons that were identified correctly displayed higher stability during iterations, which allows developing a procedure for reliable modulon identification in the case of less studied species where the known regulatory interactions are sparse. Copyright © 2013 Taylor & Francis.

  6. In vitro digestibility of specific dsRNA by enzymes of digestive tract of shrimp Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Ana R Álvarez-Sánchez

    2017-05-01

    Full Text Available Objective. The digestibility of specific dsRNA by action of the enzymes of digestive tract of the whiteleg shrimp Litopenaeus vannamei was determined in vitro. Materials and methods. Digestive enzyme activity (amylase, lipase, protease, DNase and RNase was measured in the stomach, digestive gland, and anterior, middle, and posterior intestine of juvenile shrimp, and the digestibility of DNA, RNA and the dsRNA-ORF89, specific to WSSV, was determined by in vitro assays, as well as electrophoretic and densitometric analyses. Results. The highest enzymatic activity was found in the digestive gland: amylase (81.41%, lipase (92.60%, protease (78.20%, DNase (90.85%, and RNase (93.14%. The highest digestive capacity against DNA, RNA, and dsRNA was found in the digestive gland (5.11 ng of DNA per minute, 8.55 ng of RNA per minute, and 1.48 ng dsRNA per minute. Conclusions. The highest digestibility of dsRNA-ORF89, specific to WSSV, was found in the digestive gland, whereas the lowest digestibility was observed in the posterior intestine. This is the first report regarding the digestibility of dsRNA-ORF89 by whiteleg shrimp digestive tract enzymes, with potential therapeutic importance in shrimp culture to prevent WSSV disease through balanced feed.

  7. In C. elegans, high levels of dsRNA allow RNAi in the absence of RDE-4.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Habig

    Full Text Available C. elegans Dicer requires an accessory double-stranded RNA binding protein, RDE-4, to enact the first step of RNA interference, the cleavage of dsRNA to produce siRNA. While RDE-4 is typically essential for RNAi, we report that in the presence of high concentrations of trigger dsRNA, rde-4 deficient animals are capable of silencing a transgene. By multiple criteria the silencing occurs by the canonical RNAi pathway. For example, silencing is RDE-1 dependent and exhibits a decrease in the targeted mRNA in response to an increase in siRNA. We also find that high concentrations of dsRNA trigger lead to increased accumulation of primary siRNAs, consistent with the existence of a rate-limiting step during the conversion of primary to secondary siRNAs. Our studies also revealed that transgene silencing occurs at low levels in the soma, even in the presence of ADARs, and that at least some siRNAs accumulate in a temperature-dependent manner. We conclude that an RNAi response varies with different conditions, and this may allow an organism to tailor a response to specific environmental signals.

  8. Transfected poly(I:C) activates different dsRNA receptors, leading to apoptosis or immunoadjuvant response in androgen-independent prostate cancer cells.

    Science.gov (United States)

    Palchetti, Sara; Starace, Donatella; De Cesaris, Paola; Filippini, Antonio; Ziparo, Elio; Riccioli, Anna

    2015-02-27

    Despite the effectiveness of surgery or radiation therapy for the treatment of early-stage prostate cancer (PCa), there is currently no effective strategy for late-stage disease. New therapeutic targets are emerging; in particular, dsRNA receptors Toll-like receptor 3 (TLR3) and cytosolic helicases expressed by cancer cells, once activated, exert a pro-apoptotic effect in different tumors. We previously demonstrated that the synthetic analog of dsRNA poly(I:C) induces apoptosis in the androgen-dependent PCa cell line LNCaP in a TLR3-dependent fashion, whereas only a weak apoptotic effect is observed in the more aggressive and androgen-independent PCa cells PC3 and DU145. In this paper, we characterize the receptors and the signaling pathways involved in the remarkable apoptosis induced by poly(I:C) transfected by Lipofectamine (in-poly(I:C)) compared with the 12-fold higher free poly(I:C) concentration in PC3 and DU145 cells. By using genetic inhibition of different poly(I:C) receptors, we demonstrate the crucial role of TLR3 and Src in in-poly(I:C)-induced apoptosis. Therefore, we show that the increased in-poly(I:C) apoptotic efficacy is due to a higher binding of endosomal TLR3. On the other hand, we show that in-poly(I:C) binding to cytosolic receptors MDA5 and RIG-I triggers IRF3-mediated signaling, leading uniquely to the up-regulation of IFN-β, which likely in turn induces increased TLR3, MDA5, and RIG-I proteins. In summary, in-poly(I:C) activates two distinct antitumor pathways in PC3 and DU145 cells: one mediated by the TLR3/Src/STAT1 axis, leading to apoptosis, and the other one mediated by MDA5/RIG-I/IRF3, leading to immunoadjuvant IFN-β expression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Application of YHV-protease dsRNA for protection and therapeutic treatment against yellow head virus infection in Litopenaeus vannamei.

    Science.gov (United States)

    Assavalapsakul, Wanchai; Chinnirunvong, Wanlop; Panyim, Sakol

    2009-04-06

    While farming of the Pacific white shrimp Litopenaeus vannamei is well established in North and South America, the industry has more recently been introduced to Asia, and the Pacific white shrimp is now the most commonly farmed species in Thailand. However, outbreaks of yellow head virus (YHV) disease in the Pacific white shrimp have caused severe economic losses and currently there is no effective prevention or treatment of YHV infections. The YHV-protease double-stranded RNA (YHV-Pro dsRNA) can act as both a prophylactic agent and as a treatment to inhibit YHV replication in infected black tiger shrimp Penaeus monodon. The utility of this methodology to other shrimp species has not, however, been established. The purpose of this study was to determine whether YHV-Pro dsRNA can be applied to the Pacific white shrimp. To assess prophylactic efficiency, YHV-Pro dsRNA was injected into juvenile shrimp 24 h prior to challenge with YHV. Subsequent YHV replication was inhibited by YHV-Pro dsRNA as compared with injection of an unrelated dsRNA. For therapeutic treatment of YHV-infected shrimp, shrimp were challenged with YHV before dsRNA injection. Injection of YHV-Pro dsRNA up to 6 h post-infection resulted in the almost complete elimination of YHV replication. These results suggest that YHV-Pro dsRNA can also be broadly applied as a prophylactic agent to inhibit YHV replication and therapeutic treatment of YHV-infected Pacific white shrimp.

  10. Bacterial-Chromatin Structural Proteins Regulate the Bimodal Expression of the Locus of Enterocyte Effacement (LEE Pathogenicity Island in Enteropathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Hervé Leh

    2017-08-01

    Full Text Available In enteropathogenic Escherichia coli (EPEC, the locus of enterocyte effacement (LEE encodes a type 3 secretion system (T3SS essential for pathogenesis. This pathogenicity island comprises five major operons (LEE1 to LEE5, with the LEE5 operon encoding T3SS effectors involved in the intimate adherence of bacteria to enterocytes. The first operon, LEE1, encodes Ler (LEE-encoded regulator, an H-NS (nucleoid structuring protein paralog that alleviates the LEE H-NS silencing. We observed that the LEE5 and LEE1 promoters present a bimodal expression pattern, depending on environmental stimuli. One key regulator of bimodal LEE1 and LEE5 expression is ler expression, which fluctuates in response to different growth conditions. Under conditions in vitro considered to be equivalent to nonoptimal conditions for virulence, the opposing regulatory effects of H-NS and Ler can lead to the emergence of two bacterial subpopulations. H-NS and Ler share nucleation binding sites in the LEE5 promoter region, but H-NS binding results in local DNA structural modifications distinct from those generated through Ler binding, at least in vitro. Thus, we show how two nucleoid-binding proteins can contribute to the epigenetic regulation of bacterial virulence and lead to opposing bacterial fates. This finding implicates for the first time bacterial-chromatin structural proteins in the bimodal regulation of gene expression.

  11. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes

    DEFF Research Database (Denmark)

    Li, Yiping; Ingmer, Hanne; Madsen, Mogens

    2008-01-01

    . jejuni strains are capable of invading the CEICs and stimulate these cells in a pro-inflammatory manner and during this interaction the expression of the bacterial virulence-associated genes ciaB, dnaJ and racR is increased. Furthermore, incubation of bacteria with conditioned cell- and bacteria...

  12. Expression of Human papillomavirus 16 E7ggg oncoprotein on N- and C-terminus of Potato virus X coat protein in bacterial and plant cells

    Czech Academy of Sciences Publication Activity Database

    Plchová, Helena; Moravec, Tomáš; Hoffmeisterová, Hana; Folwarczna, Jitka; Čeřovská, Noemi

    2011-01-01

    Roč. 77, č. 2 (2011), s. 146-152 ISSN 1046-5928 R&D Projects: GA ČR GA521/09/1525 Institutional research plan: CEZ:AV0Z50380511 Keywords : Bacterial expression * Human papillomavirus * Oncoprotein E7 Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.587, year: 2011

  13. Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: hide, mask, hit.

    Science.gov (United States)

    Zinzula, Luca; Tramontano, Enzo

    2013-12-01

    Double-stranded RNA (dsRNA) is synthesized during the course of infection by RNA viruses as a byproduct of replication and transcription and acts as a potent trigger of the host innate antiviral response. In the cytoplasm of the infected cell, recognition of the presence of viral dsRNA as a signature of "non-self" nucleic acid is carried out by RIG-I-like receptors (RLRs), a set of dedicated helicases whose activation leads to the production of type I interferon α/β (IFN-α/β). To overcome the innate antiviral response, RNA viruses encode suppressors of IFN-α/β induction, which block RLRs recognition of dsRNA by means of different mechanisms that can be categorized into: (i) dsRNA binding and/or shielding ("hide"), (ii) dsRNA termini processing ("mask") and (iii) direct interaction with components of the RLRs pathway ("hit"). In light of recent functional, biochemical and structural findings, we review the inhibition mechanisms of RLRs recognition of dsRNA displayed by a number of highly pathogenic RNA viruses with different disease phenotypes such as haemorrhagic fever (Ebola, Marburg, Lassa fever, Lujo, Machupo, Junin, Guanarito, Crimean-Congo, Rift Valley fever, dengue), severe respiratory disease (influenza, SARS, Hendra, Hantaan, Sin Nombre, Andes) and encephalitis (Nipah, West Nile). Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Bacterial Expression and Kinetic Analysis of Carboxylesterase 001D from Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Yongqiang Li

    2016-04-01

    Full Text Available Carboxylesterasesare an important class of detoxification enzymes involved in insecticide resistance in insects. A subgroup of Helicoverpa armigera esterases, known as Clade 001, was implicated in organophosphate and pyrethroid insecticide resistance due to their overabundance in resistant strains. In this work, a novel carboxylesterasegene 001D of H. armigera from China was cloned, which has an open reading frame of 1665 nucleotides encoding 554 amino acid residues. We used a series of fusion proteins to successfully express carboxylesterase 001D in Escherichia coli. Three different fusion proteins were generated and tested. The enzyme kinetic assay towards 1-naphthyl acetate showed all three purified fusion proteins are active with a Kcat between 0.35 and 2.29 s−1, and a Km between 7.61 and 19.72 μM. The HPLC assay showed all three purified fusion proteins had low but measurable hydrolase activity towards β-cypermethrin and fenvalerate insecticides (specific activities ranging from 0.13 to 0.67 μM·min−1·(μM−1·protein. The enzyme was stable up to 40 °C and at pH 6.0–11.0. The results imply that carboxylesterase 001D is involved in detoxification, and this moderate insecticide hydrolysis may suggest that overexpression of the gene to enhance insecticide sequestration is necessary to allow carboxylesterases to confer resistance to these insecticides in H. armigera.

  15. Bacterial translational regulations: high diversity between all mRNAs and major role in gene expression

    Directory of Open Access Journals (Sweden)

    Picard Flora

    2012-10-01

    Full Text Available Abstract Background In bacteria, the weak correlations at the genome scale between mRNA and protein levels suggest that not all mRNAs are translated with the same efficiency. To experimentally explore mRNA translational level regulation at the systemic level, the detailed translational status (translatome of all mRNAs was measured in the model bacterium Lactococcus lactis in exponential phase growth. Results Results demonstrated that only part of the entire population of each mRNA species was engaged in translation. For transcripts involved in translation, the polysome size reached a maximum of 18 ribosomes. The fraction of mRNA engaged in translation (ribosome occupancy and ribosome density were not constant for all genes. This high degree of variability was analyzed by bioinformatics and statistical modeling in order to identify general rules of translational regulation. For most of the genes, the ribosome density was lower than the maximum value revealing major control of translation by initiation. Gene function was a major translational regulatory determinant. Both ribosome occupancy and ribosome density were particularly high for transcriptional regulators, demonstrating the positive role of translational regulation in the coordination of transcriptional networks. mRNA stability was a negative regulatory factor of ribosome occupancy and ribosome density, suggesting antagonistic regulation of translation and mRNA stability. Furthermore, ribosome occupancy was identified as a key component of intracellular protein levels underlining the importance of translational regulation. Conclusions We have determined, for the first time in a bacterium, the detailed translational status for all mRNAs present in the cell. We have demonstrated experimentally the high diversity of translational states allowing individual gene differentiation and the importance of translation-level regulation in the complex process linking gene expression to protein

  16. Genomic characterization and expression profiles upon bacterial infection of a novel cystatin B homologue from disk abalone (Haliotis discus discus).

    Science.gov (United States)

    Premachandra, H K A; Wan, Qiang; Elvitigala, Don Anushka Sandaruwan; De Zoysa, Mahanama; Choi, Cheol Young; Whang, Ilson; Lee, Jehee

    2012-12-01

    Cystatins are a large family of cysteine proteinase inhibitors which are involved in diverse biological and pathological processes. In the present study, we identified a gene related to cystatin superfamily, AbCyt B, from disk abalone Haliotis discus discus by expressed sequence tag (EST) analysis and BAC library screening. The complete cDNA sequence of AbCyt B is comprised of 1967 nucleotides with a 306 bp open reading frame (ORF) encoding for 101 amino acids. The amino acid sequence consists of a single cystatin-like domain, which has a cysteine proteinase inhibitor signature, a conserved Gly in N-terminal region, QVVAG motif and a variant of PW motif. No signal peptide, disulfide bonds or carbohydrate side chains were identified. Analysis of deduced amino acid sequence revealed that AbCyt B shares up to 44.7% identity and 65.7% similarity with the cystatin B genes from other organisms. The genomic sequence of AbCyt B is approximately 8.4 Kb, consisting of three exons and two introns. Phylogenetic tree analysis showed that AbCyt B was closely related to the cystatin B from pacific oyster (Crassostrea gigas) under the family 1.Functional analysis of recombinant AbCyt B protein exhibited inhibitory activity against the papain, with almost 84% inhibition at a concentration of 3.5 μmol/L. In tissue expression analysis, AbCyt B transcripts were expressed abundantly in the hemocyte, gill, mantle, and digestive tract, while weakly in muscle, testis, and hepatopancreas. After the immune challenge with Vibrio parahemolyticus, the AbCyt B showed significant (P<0.05) up-regulation of relative mRNA expression in gill and hemocytes at 24 and 6 h of post infection, respectively. These results collectively suggest that AbCyst B is a potent inhibitor of cysteine proteinases and is also potentially involved in immune responses against invading bacterial pathogens in abalone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Pesticide side effects in an agricultural soil ecosystem as measured by amoA expression quantification and bacterial diversity changes

    DEFF Research Database (Denmark)

    Feld, Louise; Hjort Hjelmsø, Mathis; Schostag, Morten

    2015-01-01

    of specific microbial genes or as changes in diversity. To assess the impact of pesticides on gene expression, we focused on the amoA gene, which is involved in ammonia oxidation. We hypothesized that the amount of amoA transcript decreases upon pesticide application, and to test this hypothesis, we used...... reverse-transcription qPCR. We also hypothesized that bacterial diversity is affected by pesticides. This hypothesis was investigated via 454 sequencing and diversity analysis of the 16S ribosomal RNA and RNA genes, representing the active and total soil bacterial communities, respectively. We prepared...

  18. Bacterial subversion of cAMP signalling inhibits cathelicidin expression, which is required for innate resistance to Mycobacterium tuberculosis.

    Science.gov (United States)

    Gupta, Shashank; Winglee, Kathryn; Gallo, Richard; Bishai, William R

    2017-05-01

    Antimicrobial peptides such as cathelicidins are important components of innate immune defence against inhaled microorganisms, and have shown antimicrobial activity against Mycobacterium tuberculosis in in vitro models. Despite this, little is known about the regulation and expression of cathelicidin during tuberculosis in vivo. We sought to determine whether the cathelicidin-related antimicrobial peptide gene (Cramp), the murine functional homologue of the human cathelicidin gene (CAMP or LL-37), is required for regulation of protective immunity during M. tuberculosis infection in vivo. We used Cramp -/- mice in a validated model of pulmonary tuberculosis, and conducted cell-based assays with macrophages from these mice. We evaluated the in vivo susceptibility of Cramp -/- mice to infection, and also dissected various pro-inflammatory immune responses against M. tuberculosis. We observed increased susceptibility of Cramp -/- mice to M. tuberculosis as compared with wild-type mice. Macrophages from Cramp -/- mice were unable to control M. tuberculosis growth in an in vitro infection model, were deficient in intracellular calcium influx, and were defective in stimulating T cells. Additionally, CD4 + and CD8 + T cells from Cramp -/- mice produced less interferon-β upon stimulation. Furthermore, bacterial-derived cAMP modulated cathelicidin expression in macrophages. Our results demonstrate that cathelicidin is required for innate resistance to M. tuberculosis in a relevant animal model and is a key mediator in regulation of the levels of pro-inflammatory cytokines by calcium and cyclic nucleotides. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression, and characterization of the essential uppS gene.

    Science.gov (United States)

    Apfel, C M; Takács, B; Fountoulakis, M; Stieger, M; Keck, W

    1999-01-01

    The prenyltransferase undecaprenyl pyrophosphate synthetase (di-trans,poly-cis-decaprenylcistransferase; EC 2.5.1.31) was purified from the soluble fraction of Escherichia coli by TSK-DEAE, ceramic hydroxyapatite, TSK-ether, Superdex 200, and heparin-Actigel chromatography. The protein was labeled with the photolabile analogue of the farnesyl pyrophosphate analogue (E, E)-[1-3H]-(2-diazo-3-trifluoropropionyloxy)geranyl diphosphate and was detected on a sodium dodecyl sulfate-polyacrylamide gel as a protein with an apparent molecular mass of 29 kDa. This protein band was cut out from the gel, trypsin digested, and subjected to matrix-assisted laser desorption ionization mass spectrometric analysis. Comparison of the experimental data with computer-simulated trypsin digest data for all E. coli proteins yielded a single match with a protein of unassigned function (SWISS-PROT Q47675; YAES_ECOLI). Sequences with strong similarity indicative of homology to this protein were identified in 25 bacterial species, in Saccharomyces cerevisiae, and in Caenorhabditis elegans. The homologous genes (uppS) were cloned from E. coli, Haemophilus influenzae, and Streptococcus pneumoniae, expressed in E. coli as amino-terminal His-tagged fusion proteins, and purified over a Ni2+ affinity column. An untagged version of the E. coli uppS gene was also cloned and expressed, and the protein purified in two chromatographic steps. We were able to detect Upp synthetase activity for all purified enzymes. Further, biochemical characterization revealed no differences between the recombinant untagged E. coli Upp synthetase and the three His-tagged fusion proteins. All enzymes were absolutely Triton X-100 and MgCl2 dependent. With the use of a regulatable gene disruption system, we demonstrated that uppS is essential for growth in S. pneumoniae R6.

  20. Stable Host Gene Expression in the Gut of Adult Drosophila melanogaster with Different Bacterial Mono-Associations

    Science.gov (United States)

    Zhang, Vivian; Ludington, William B.; Eisen, Michael B.

    2016-01-01

    There is growing evidence that the microbes found in the digestive tracts of animals influence host biology, but we still do not understand how they accomplish this. Here, we evaluated how different microbial species commonly associated with laboratory-reared Drosophila melanogaster impact host biology at the level of gene expression in the dissected adult gut and in the entire adult organism. We observed that guts from animals associated from the embryonic stage with either zero, one or three bacterial species demonstrated indistinguishable transcriptional profiles. Additionally, we found that the gut transcriptional profiles of animals reared in the presence of the yeast Saccharomyces cerevisiae alone or in combination with bacteria could recapitulate those of conventionally-reared animals. In contrast, we found whole body transcriptional profiles of conventionally-reared animals were distinct from all of the treatments tested. Our data suggest that adult flies are insensitive to the ingestion of the bacteria found in their gut, but that prior to adulthood, different microbes impact the host in ways that lead to global transcriptional differences observable across the whole adult body. PMID:27898741

  1. The combination of decoy receptor 3 and soluble triggering receptor expressed on myeloid cells-1 for the diagnosis of nosocomial bacterial meningitis.

    Science.gov (United States)

    Liu, Yong-Juan; Shao, Li-Hua; Zhang, Jian; Fu, Shan-Ji; Wang, Gang; Chen, Feng-Zhe; Zheng, Feng; Ma, Rui-Ping; Liu, Hai-Hong; Dong, Xiao-Meng; Ma, Li-Xian

    2015-03-23

    Early diagnosis and appropriate antibiotic treatment can significantly reduce mortality of nosocomial bacterial meningitis. However, it is a challenge for clinicians to make an accurate and rapid diagnosis of bacterial meningitis. This study aimed at determining whether combined biomarkers can provide a useful tool for the diagnosis of bacterial meningitis. A retrospective study was carried out. Cerebrospinal fluid (CSF) levels of decoy receptor 3 (DcR3) and soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) were detected by enzyme-linked immunosorbent assay (ELISA). The patients with bacterial meningitis had significantly elevated levels of the above mentioned biomarkers. The two biomarkers were all risk factors with bacterial meningitis. The biomarkers were constructed into a "bioscore". The discriminative performance of the bioscore was better than that of each biomarker, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.842 (95% confidence intervals (CI) 0.770-0.914; pbacterial meningitis. The combined strategy is of interest and the validation of that improvement needs further studies.

  2. Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections.

    Science.gov (United States)

    Lee, Seung-Bum; Li, Baichuan; Jin, Shuangxia; Daniell, Henry

    2011-01-01

    Retrocyclin-101 (RC101) and Protegrin-1 (PG1) are two important antimicrobial peptides that can be used as therapeutic agents against bacterial and/or viral infections, especially those caused by the HIV-1 or sexually transmitted bacteria. Because of their antimicrobial activity and complex secondary structures, they have not yet been produced in microbial systems and their chemical synthesis is prohibitively expensive. Therefore, we created chloroplast transformation vectors with the RC101 or PG1 coding sequence, fused with GFP to confer stability, furin or Factor Xa cleavage site to liberate the mature peptide from their fusion proteins and a His-tag to aid in their purification. Stable integration of RC101 into the tobacco chloroplast genome and homoplasmy were confirmed by Southern blots. RC101 and PG1 accumulated up to 32%-38% and 17%∼26% of the total soluble protein. Both RC101 and PG1 were cleaved from GFP by corresponding proteases in vitro, and Factor Xa-like protease activity was observed within chloroplasts. Confocal microscopy studies showed location of GFP fluorescence within chloroplasts. Organic extraction resulted in 10.6-fold higher yield of RC101 than purification by affinity chromatography using His-tag. In planta bioassays with Erwinia carotovora confirmed the antibacterial activity of RC101 and PG1 expressed in chloroplasts. RC101 transplastomic plants were resistant to tobacco mosaic virus infections, confirming antiviral activity. Because RC101 and PG1 have not yet been produced in other cell culture or microbial systems, chloroplasts can be used as bioreactors for producing these proteins. Adequate yield of purified antimicrobial peptides from transplastomic plants should facilitate further preclinical studies. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology and Blackwell Publishing Ltd.

  3. Ectopic expression of Hrf1 enhances bacterial resistance via regulation of diterpene phytoalexins, silicon and reactive oxygen species burst in rice.

    Directory of Open Access Journals (Sweden)

    Wenqi Li

    Full Text Available Harpin proteins as elicitor derived from plant gram negative bacteria such as Xanthomonas oryzae pv. oryzae (Xoo, Erwinia amylovora induce disease resistance in plants by activating multiple defense responses. However, it is unclear whether phytoalexin production and ROS burst are involved in the disease resistance conferred by the expression of the harpin(Xoo protein in rice. In this article, ectopic expression of hrf1 in rice enhanced resistance to bacterial blight. Accompanying with the activation of genes related to the phytoalexin biosynthesis pathway in hrf1-transformed rice, phytoalexins quickly and consistently accumulated concurrent with the limitation of bacterial growth rate. Moreover, the hrf1-transformed rice showed an increased ability for ROS scavenging and decreased hydrogen peroxide (H(2O(2 concentration. Furthermore, the localization and relative quantification of silicon deposition in rice leaves was detected by scanning electron microscopy (SEM and energy-dispersive X-ray spectrometer (EDS. Finally, the transcript levels of defense response genes increased in transformed rice. These results show a correlation between Xoo resistance and phytoalexin production, H(2O(2, silicon deposition and defense gene expression in hrf1-transformed rice. These data are significant because they provide evidence for a better understanding the role of defense responses in the incompatible interaction between bacterial disease and hrf1-transformed plants. These data also supply an opportunity for generating nonspecific resistance to pathogens.

  4. Ectopic Expression of Hrf1 Enhances Bacterial Resistance via Regulation of Diterpene Phytoalexins, Silicon and Reactive Oxygen Species Burst in Rice

    Science.gov (United States)

    Zhong, Weigong; Yang, Jie; Okada, Kazunori; Yamane, Hisakazu; Zhang, Lei; Wang, Guang; Wang, Dong; Xiao, Shanshan; Chang, Shanshan; Qian, Guoliang; Liu, Fengquan

    2012-01-01

    Harpin proteins as elicitor derived from plant gram negative bacteria such as Xanthomonas oryzae pv. oryzae (Xoo), Erwinia amylovora induce disease resistance in plants by activating multiple defense responses. However, it is unclear whether phytoalexin production and ROS burst are involved in the disease resistance conferred by the expression of the harpinXoo protein in rice. In this article, ectopic expression of hrf1 in rice enhanced resistance to bacterial blight. Accompanying with the activation of genes related to the phytoalexin biosynthesis pathway in hrf1-transformed rice, phytoalexins quickly and consistently accumulated concurrent with the limitation of bacterial growth rate. Moreover, the hrf1-transformed rice showed an increased ability for ROS scavenging and decreased hydrogen peroxide (H2O2) concentration. Furthermore, the localization and relative quantification of silicon deposition in rice leaves was detected by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDS). Finally, the transcript levels of defense response genes increased in transformed rice. These results show a correlation between Xoo resistance and phytoalexin production, H2O2, silicon deposition and defense gene expression in hrf1-transformed rice. These data are significant because they provide evidence for a better understanding the role of defense responses in the incompatible interaction between bacterial disease and hrf1-transformed plants. These data also supply an opportunity for generating nonspecific resistance to pathogens. PMID:22970151

  5. In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus

    Science.gov (United States)

    Zhang, Xing; Ding, Ke; Yu, Xuekui; Chang, Winston; Sun, Jingchen; Hong Zhou, Z.

    2015-11-01

    Viruses in the Reoviridae, like the triple-shelled human rotavirus and the single-shelled insect cytoplasmic polyhedrosis virus (CPV), all package a genome of segmented double-stranded RNAs (dsRNAs) inside the viral capsid and carry out endogenous messenger RNA synthesis through a transcriptional enzyme complex (TEC). By direct electron-counting cryoelectron microscopy and asymmetric reconstruction, we have determined the organization of the dsRNA genome inside quiescent CPV (q-CPV) and the in situ atomic structures of TEC within CPV in both quiescent and transcribing (t-CPV) states. We show that the ten segmented dsRNAs in CPV are organized with ten TECs in a specific, non-symmetric manner, with each dsRNA segment attached directly to a TEC. The TEC consists of two extensively interacting subunits: an RNA-dependent RNA polymerase (RdRP) and an NTPase VP4. We find that the bracelet domain of RdRP undergoes marked conformational change when q-CPV is converted to t-CPV, leading to formation of the RNA template entry channel and access to the polymerase active site. An amino-terminal helix from each of two subunits of the capsid shell protein (CSP) interacts with VP4 and RdRP. These findings establish the link between sensing of environmental cues by the external proteins and activation of endogenous RNA transcription by the TEC inside the virus.

  6. Toward pectin fermentation by Saccharomyces cerevisiae: expression of the first two steps of a bacterial pathway for D-galacturonate metabolism.

    Science.gov (United States)

    Huisjes, Eline H; Luttik, Marijke A H; Almering, Marinka J H; Bisschops, Markus M M; Dang, Dieu H N; Kleerebezem, Michiel; Siezen, Roland; van Maris, Antonius J A; Pronk, Jack T

    2012-12-31

    Saccharomyces cerevisiae cannot metabolize D-galacturonate, an important monomer of pectin. Use of S. cerevisiae for production of ethanol or other compounds of interest from pectin-rich feedstocks therefore requires introduction of a heterologous pathway for D-galacturonate metabolism. Bacterial D-galacturonate pathways involve D-galacturonate isomerase, D-tagaturonate reductase and three additional enzymes. This study focuses on functional expression of bacterial D-galacturonate isomerases in S. cerevisiae. After demonstrating high-level functional expression of a D-tagaturonate reductase gene (uxaB from Lactococcus lactis), the resulting yeast strain was used to screen for functional expression of six codon-optimized bacterial D-galacturonate isomerase (uxaC) genes. The L. lactis uxaC gene stood out, yielding a tenfold higher enzyme activity than the other uxaC genes. Efficient expression of D-galacturonate isomerase and D-tagaturonate reductase represents an important step toward metabolic engineering of S. cerevisiae for bioethanol production from D-galacturonate. To investigate in vivo activity of the first steps of the D-galacturonate pathway, the L. lactis uxaB and uxaC genes were expressed in a gpd1Δ gpd2Δ S. cerevisiae strain. Although D-tagaturonate reductase could, in principle, provide an alternative means for re-oxidizing cytosolic NADH, addition of D-galacturonate did not restore anaerobic growth, possibly due to absence of a functional D-altronate exporter in S. cerevisiae. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Bacterial production of site specific {sup 13}C labeled phenylalanine and methodology for high level incorporation into bacterially expressed recombinant proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ramaraju, Bhargavi; McFeeters, Hana; Vogler, Bernhard; McFeeters, Robert L., E-mail: robert.mcfeeters@uah.edu [University of Alabama in Huntsville, Department of Chemistry (United States)

    2017-01-15

    Nuclear magnetic resonance spectroscopy studies of ever larger systems have benefited from many different forms of isotope labeling, in particular, site specific isotopic labeling. Site specific {sup 13}C labeling of methyl groups has become an established means of probing systems not amenable to traditional methodology. However useful, methyl reporter sites can be limited in number and/or location. Therefore, new complementary site specific isotope labeling strategies are valuable. Aromatic amino acids make excellent probes since they are often found at important interaction interfaces and play significant structural roles. Aromatic side chains have many of the same advantages as methyl containing amino acids including distinct {sup 13}C chemical shifts and multiple magnetically equivalent {sup 1}H positions. Herein we report economical bacterial production and one-step purification of phenylalanine with {sup 13}C incorporation at the Cα, Cγ and Cε positions, resulting in two isolated {sup 1}H-{sup 13}C spin systems. We also present methodology to maximize incorporation of phenylalanine into recombinantly overexpressed proteins in bacteria and demonstrate compatibility with ILV-methyl labeling. Inexpensive, site specific isotope labeled phenylalanine adds another dimension to biomolecular NMR, opening new avenues of study.

  8. Immunohistochemical analysis of MMP-9, MMP-2 and TIMP-1, TIMP-2 expression in the central nervous system following infection with viral and bacterial meningitis.

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski

    2009-01-01

    Full Text Available Matrix metalloproteinases (MMPs are capable of degrading components of the basal lamina of cerebral vessels, thereby disrupting the blood-brain barrier and inducing leukocyte recruitment. This study provides comprehensive information regarding the cell specificity of matrix metalloproteinases (MMP-2, MMP-9 and their binding tissue inhibitors (TIMP-1, TIMP-2 in the central nervous system during viral and bacterial meningitis. Specifically, we evaluated the immunoreactivity of MMPs and TIMPs in various cell types in brain parenchyma and meninges obtained from autopsy tissues. We found that a higher proportion of endothelial cells were positive for MMP-9 during meningitis when compared to controls. In addition, the immunoreactivity of MMP-9 decreased and the immunoreactivity of TIMP-1 increased in astrocytes upon infection. Furthermore, the results of this study revealed that mononuclear cells were highly immunoreactive for TIMP-1, TIMP-2 and MMP-9 during viral meningitis and that the expression of TIMPs in polymorphonuclear cells was even higher during bacterial meningitis. Taken together the results of this study indicated that the central nervous system resident cells and inflammatory infiltrates contribute to MMPs activity and that the expression patterns vary between cell types and in response to viral and bacterial meningitis.

  9. Bacterial lipoprotein-induced self-tolerance and cross-tolerance to LPS are associated with reduced IRAK-1 expression and MyD88-IRAK complex formation.

    LENUS (Irish Health Repository)

    Li, Chong Hui

    2012-02-03

    Tolerance to bacterial cell-wall components may represent an essential regulatory mechanism during bacterial infection. We have demonstrated previously that the inhibition of nuclear factor (NF)-kappaB and mitogen-activated protein kinase activation was present in bacterial lipoprotein (BLP) self-tolerance and its cross-tolerance to lipopolysaccharide (LPS). In this study, the effect of BLP-induced tolerance on the myeloid differentiation factor 88 (MyD88)-dependent upstream signaling pathway for NF-kappaB activation in vitro was examined further. When compared with nontolerant human monocytic THP-1 cells, BLP-tolerant cells had a significant reduction in tumor necrosis factor alpha (TNF-alpha) production in response to a high-dose BLP (86+\\/-12 vs. 6042+\\/-245 ng\\/ml, P < 0.01) or LPS (341+\\/-36 vs. 7882+\\/-318 ng\\/ml, P < 0.01) stimulation. The expression of Toll-like receptor 2 (TLR2) protein was down-regulated in BLP-tolerant cells, whereas no significant differences in TLR4, MyD88, interleukin-1 receptor-associated kinase 4 (IRAK-4), and TNF receptor-associated factor 6 expression were observed between nontolerant and BLP-tolerant cells, as confirmed by Western blot analysis. The IRAK-1 protein was reduced markedly in BLP-tolerant cells, although IRAK-1 mRNA expression remained unchanged as revealed by real-time reverse transcriptase-polymerase chain reaction analysis. Furthermore, decreased MyD88-IRAK immunocomplex formation, as demonstrated by immunoprecipitation, was observed in BLP-tolerant cells following a second BLP or LPS stimulation. BLP pretreatment also resulted in a marked inhibition in total and phosphorylated inhibitor of kappaB-alpha (IkappaB-alpha) expression, which was not up-regulated by subsequent BLP or LPS stimulation. These results demonstrate that in addition to the down-regulation of TLR2 expression, BLP tolerance is associated with a reduction in IRAK-1 expression, MyD88-IRAK association, and IkappaB-alpha phosphorylation. These

  10. Bacterial expression and/or solid phase peptide synthesis of 20-40 amino acid long polypeptides and miniproteins, the case study of Class B GPCR ligands.

    Science.gov (United States)

    Stráner, Pál; Taricska, Nóra; Szabó, Mária; Tóth, Gábor K; Perczel, András

    2016-01-01

    By using two different synthetic techniques several polypeptides interacting with Class B type G-protein coupled receptors were prepared. These polypeptides of different lengths (20 ≤ amino acids ≤ 40), structural and aggregation properties, were prepared both by solid phase peptide synthesis (SPPS) and E.coli bacterial expression. Their purity, synthetic yields, by-products and (15)N/(13)Clabelling characteristics were compared as function of i) the applied method, ii) amino acid length and iii) folding propensities. Their tentative yields, costs and "environmental footprints" were analyzed and found as follows. For unlabelled and short polypeptides (n= 20 aa.) the method of choice is the less environmentally friendly however, quick and effective SPPS. If the polypeptide is (un)folded and/or has no aggregation propensity, then SPPS gives relatively good yield (e.g. 14 ± 4%) and a pure product (>97%). For aggregating polypeptides production yields drop for both methods 4 ± 2% (SPPS) and 2 ± 1% (E. coli), respectively. For longer (n≥ 30 aa.) macromolecules (e.g. miniproteins) bacterial expression efficacy gets higher. Moreover biotechnology is "greener", the resulting in raw material is purer (2.8 ± 1.5 mg). All these advantages for at a lower cost: ~4 €/aa. If isotopic labelling is needed for heteronuclear NMR measurements, bacterial expression is the sole option, due to the high cost of (15)N/(13)C labelled Fmoc(Boc)-L-aa-OH starting materials needed for SPPS. In E.coli uniformly double-labelled, pure polypeptides can be obtained for less than 5-700 €/mg, regardless of the length of the polypeptide chain. Thus, chemists are encouraged to use E.coli expression systems when adequate to make not only proteins but polypeptides and miniproteins as well.

  11. Design of a Comprehensive Biochemistry and Molecular Biology Experiment: Phase Variation Caused by Recombinational Regulation of Bacterial Gene Expression

    Science.gov (United States)

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about "Salmonella enterica" serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation,…

  12. Leishmania aethiopica field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response.

    Directory of Open Access Journals (Sweden)

    Haroun Zangger

    2014-04-01

    Full Text Available Infection with Leishmania parasites causes mainly cutaneous lesions at the site of the sand fly bite. Inflammatory metastatic forms have been reported with Leishmania species such as L. braziliensis, guyanensis and aethiopica. Little is known about the factors underlying such exacerbated clinical presentations. Leishmania RNA virus (LRV is mainly found within South American Leishmania braziliensis and guyanensis. In a mouse model of L. guyanensis infection, its presence is responsible for an hyper-inflammatory response driven by the recognition of the viral dsRNA genome by the host Toll-like Receptor 3 leading to an exacerbation of the disease. In one instance, LRV was reported outside of South America, namely in the L. major ASKH strain from Turkmenistan, suggesting that LRV appeared before the divergence of Leishmania subgenera. LRV presence inside Leishmania parasites could be one of the factors implicated in disease severity, providing rationale for LRV screening in L. aethiopica.A new LRV member was identified in four L. aethiopica strains (LRV-Lae. Three LRV-Lae genomes were sequenced and compared to L. guyanensis LRV1 and L. major LRV2. LRV-Lae more closely resembled LRV2. Despite their similar genomic organization, a notable difference was observed in the region where the capsid protein and viral polymerase open reading frames overlap, with a unique -1 situation in LRV-Lae. In vitro infection of murine macrophages showed that LRV-Lae induced a TLR3-dependent inflammatory response as previously observed for LRV1.In this study, we report the presence of an immunogenic dsRNA virus in L. aethiopica human isolates. This is the first observation of LRV in Africa, and together with the unique description of LRV2 in Turkmenistan, it confirmed that LRV was present before the divergence of the L. (Leishmania and (Viannia subgenera. The potential implication of LRV-Lae on disease severity due to L. aethiopica infections is discussed.

  13. Cryo-em reconstruction of the bacteriophage .fi.6 procapsid at near-atomic resolution shows confirmational changes in dsRNA virus maturation

    Czech Academy of Sciences Publication Activity Database

    Němeček, D.; Bouřa, Evžen; Wu, W.; Cheng, N.; Qiao, J.; Mindich, L.; Heyman, B.; Steven, A. C.

    2013-01-01

    Roč. 20, č. 1 (2013), s. 19-19 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /11./. 14.03.2013-16.03.2013, Nové Hrady] Institutional support: RVO:61388963 Keywords : dsRNA * crystal structure * proteins Subject RIV: CE - Biochemistry

  14. A Single RNaseIII Domain Protein from Entamoeba histolytica Has dsRNA Cleavage Activity and Can Help Mediate RNAi Gene Silencing in a Heterologous System.

    Directory of Open Access Journals (Sweden)

    Justine M Pompey

    Full Text Available Dicer enzymes process double-stranded RNA (dsRNA into small RNAs that target gene silencing through the RNA interference (RNAi pathway. Dicer enzymes are complex, multi-domain RNaseIII proteins, however structural minimalism of this protein has recently emerged in parasitic and fungal systems. The most minimal Dicer, Saccharomyces castellii Dicer1, has a single RNaseIII domain and two double stranded RNA binding domains. In the protozoan parasite Entamoeba histolytica 27nt small RNAs are abundant and mediate silencing, yet no canonical Dicer enzyme has been identified. Although EhRNaseIII does not exhibit robust dsRNA cleavage in vitro, it can process dsRNA in the RNAi-negative background of Saccharomyces cerevisiae, and in conjunction with S. castellii Argonaute1 can partially reconstitute the RNAi pathway. Thus, although EhRNaseIII lacks the domain architecture of canonical or minimal Dicer enzymes, it has dsRNA processing activity that contributes to gene silencing via RNAi. Our data advance the understanding of small RNA biogenesis in Entamoeba as well as broaden the spectrum of non-canonical Dicer enzymes that contribute to the RNAi pathway.

  15. A Single RNaseIII Domain Protein from Entamoeba histolytica Has dsRNA Cleavage Activity and Can Help Mediate RNAi Gene Silencing in a Heterologous System.

    Science.gov (United States)

    Pompey, Justine M; Foda, Bardees; Singh, Upinder

    2015-01-01

    Dicer enzymes process double-stranded RNA (dsRNA) into small RNAs that target gene silencing through the RNA interference (RNAi) pathway. Dicer enzymes are complex, multi-domain RNaseIII proteins, however structural minimalism of this protein has recently emerged in parasitic and fungal systems. The most minimal Dicer, Saccharomyces castellii Dicer1, has a single RNaseIII domain and two double stranded RNA binding domains. In the protozoan parasite Entamoeba histolytica 27nt small RNAs are abundant and mediate silencing, yet no canonical Dicer enzyme has been identified. Although EhRNaseIII does not exhibit robust dsRNA cleavage in vitro, it can process dsRNA in the RNAi-negative background of Saccharomyces cerevisiae, and in conjunction with S. castellii Argonaute1 can partially reconstitute the RNAi pathway. Thus, although EhRNaseIII lacks the domain architecture of canonical or minimal Dicer enzymes, it has dsRNA processing activity that contributes to gene silencing via RNAi. Our data advance the understanding of small RNA biogenesis in Entamoeba as well as broaden the spectrum of non-canonical Dicer enzymes that contribute to the RNAi pathway.

  16. cDNA cloning and bacterial expression of an endo-β-1,4-mannanase, AkMan, from Aplysia kurodai

    OpenAIRE

    Zahura, Umme Afsari; Rahman, Mohammad Matiur; Inoue, Akira; Tanaka, Hiroyuki; Ojima, Takao

    2011-01-01

    Previously we isolated an endo-β-1,4-mannanase (EC 3.2.1.78), AkMan, from the digestive fluid of a common sea hare Aplysia kurodai and demonstrated that this enzyme had a broad pH optimum spanning 4.0 to 7.5 and an appreciably high heat stability in this pH range (Zahura et al., Comp. Biochem. Physiol., B157, 137-148 (2010)). In the present study, we cloned the cDNA encoding AkMan and constructed a bacterial expression system for this enzyme to enrich information about the primary structure a...

  17. New Parameters to Quantitatively Express the Invasiveness of Bacterial Strains from Implant-Related Orthopaedic Infections into Osteoblast Cells

    Directory of Open Access Journals (Sweden)

    Davide Campoccia

    2018-04-01

    Full Text Available Complete eradication of bacterial infections is often a challenging task, especially in presence of prosthetic devices. Invasion of non-phagocytic host cells appears to be a critical mechanism of microbial persistence in host tissues. Hidden within host cells, bacteria elude host defences and antibiotic treatments that are intracellularly inactive. The intracellular invasiveness of bacteria is generally measured by conventional gentamicin protection assays. The efficiency of invasion, however, markedly differs across bacterial species and adjustments to the titre of the microbial inocula used in the assays are often needed to enumerate intracellular bacteria. Such changes affect the standardisation of the method and hamper a direct comparison of bacteria on a same scale. This study aims at investigating the precise relation between inoculum, in terms of multiplicity of infection (MOI, and internalised bacteria. The investigation included nine Staphylococcus aureus, seven Staphylococcus epidermidis, five Staphylococcus lugdunensis and two Enterococcus faecalis clinical strains, which are co-cultured with MG63 human osteoblasts. Unprecedented insights are offered on the relations existing between MOI, number of internalised bacteria and per cent of internalised bacteria. New parameters are identified that are of potential use for qualifying the efficiency of internalization and compare the behaviour of bacterial strains.

  18. New Parameters to Quantitatively Express the Invasiveness of Bacterial Strains from Implant-Related Orthopaedic Infections into Osteoblast Cells.

    Science.gov (United States)

    Campoccia, Davide; Montanaro, Lucio; Ravaioli, Stefano; Cangini, Ilaria; Testoni, Francesca; Visai, Livia; Arciola, Carla Renata

    2018-04-03

    Complete eradication of bacterial infections is often a challenging task, especially in presence of prosthetic devices. Invasion of non-phagocytic host cells appears to be a critical mechanism of microbial persistence in host tissues. Hidden within host cells, bacteria elude host defences and antibiotic treatments that are intracellularly inactive. The intracellular invasiveness of bacteria is generally measured by conventional gentamicin protection assays. The efficiency of invasion, however, markedly differs across bacterial species and adjustments to the titre of the microbial inocula used in the assays are often needed to enumerate intracellular bacteria. Such changes affect the standardisation of the method and hamper a direct comparison of bacteria on a same scale. This study aims at investigating the precise relation between inoculum, in terms of multiplicity of infection (MOI), and internalised bacteria. The investigation included nine Staphylococcus aureus , seven Staphylococcus epidermidis , five Staphylococcus lugdunensis and two Enterococcus faecalis clinical strains, which are co-cultured with MG63 human osteoblasts. Unprecedented insights are offered on the relations existing between MOI, number of internalised bacteria and per cent of internalised bacteria. New parameters are identified that are of potential use for qualifying the efficiency of internalization and compare the behaviour of bacterial strains.

  19. Phylogenetically diverse ureC genes and their expression suggest the urea utilization by bacterial symbionts in marine sponge Xestospongia testudinaria.

    Science.gov (United States)

    Su, Jing; Jin, Liling; Jiang, Qun; Sun, Wei; Zhang, Fengli; Li, Zhiyong

    2013-01-01

    Urea is one of the dominant organic nitrogenous compounds in the oligotrophic oceans. Compared to the knowledge of nitrogen transformation of nitrogen fixation, ammonia oxidization, nitrate and nitrite reduction mediated by sponge-associated microbes, our knowledge of urea utilization in sponges and the phylogenetic diversity of sponge-associated microbes with urea utilization potential is very limited. In this study, Marinobacter litoralis isolated from the marine sponge Xestospongia testudinaria and the slurry of X. testudinaria were found to have urease activity. Subsequently, phylogenetically diverse bacterial ureC genes were detected in the total genomic DNA and RNA of sponge X. testudinaria, i.e., 19 operative taxonomic units (OTUs) in genomic DNA library and 8 OTUs in cDNA library at 90% stringency. Particularly, 6 OTUs were common to both the genomic DNA library and the cDNA library, which suggested that some ureC genes were expressed in this sponge. BLAST and phylogenetic analysis showed that most of the ureC sequences were similar with the urease alpha subunit of members from Proteobacteria, which were the predominant component in sponge X. testudinaria, and the remaining ureC sequences were related to those from Magnetococcus, Cyanobacteria, and Actinobacteria. This study is the first assessment of the role of sponge bacterial symbionts in the regenerated utilization of urea by the detection of transcriptional activity of ureC gene, as well as the phylogenetic diversity of ureC gene of sponge bacterial symbionts. The results suggested the urea utilization by bacterial symbionts in marine sponge X. testudinaria, extending our understanding of nitrogen cycling mediated by sponge-associated microbiota.

  20. Phylogenetically diverse ureC genes and their expression suggest the urea utilization by bacterial symbionts in marine sponge Xestospongia testudinaria.

    Directory of Open Access Journals (Sweden)

    Jing Su

    Full Text Available Urea is one of the dominant organic nitrogenous compounds in the oligotrophic oceans. Compared to the knowledge of nitrogen transformation of nitrogen fixation, ammonia oxidization, nitrate and nitrite reduction mediated by sponge-associated microbes, our knowledge of urea utilization in sponges and the phylogenetic diversity of sponge-associated microbes with urea utilization potential is very limited. In this study, Marinobacter litoralis isolated from the marine sponge Xestospongia testudinaria and the slurry of X. testudinaria were found to have urease activity. Subsequently, phylogenetically diverse bacterial ureC genes were detected in the total genomic DNA and RNA of sponge X. testudinaria, i.e., 19 operative taxonomic units (OTUs in genomic DNA library and 8 OTUs in cDNA library at 90% stringency. Particularly, 6 OTUs were common to both the genomic DNA library and the cDNA library, which suggested that some ureC genes were expressed in this sponge. BLAST and phylogenetic analysis showed that most of the ureC sequences were similar with the urease alpha subunit of members from Proteobacteria, which were the predominant component in sponge X. testudinaria, and the remaining ureC sequences were related to those from Magnetococcus, Cyanobacteria, and Actinobacteria. This study is the first assessment of the role of sponge bacterial symbionts in the regenerated utilization of urea by the detection of transcriptional activity of ureC gene, as well as the phylogenetic diversity of ureC gene of sponge bacterial symbionts. The results suggested the urea utilization by bacterial symbionts in marine sponge X. testudinaria, extending our understanding of nitrogen cycling mediated by sponge-associated microbiota.

  1. Phylogenetically Diverse ureC Genes and Their Expression Suggest the Urea Utilization by Bacterial Symbionts in Marine Sponge Xestospongia testudinaria

    Science.gov (United States)

    Su, Jing; Jin, Liling; Jiang, Qun; Sun, Wei; Zhang, Fengli; Li, Zhiyong

    2013-01-01

    Urea is one of the dominant organic nitrogenous compounds in the oligotrophic oceans. Compared to the knowledge of nitrogen transformation of nitrogen fixation, ammonia oxidization, nitrate and nitrite reduction mediated by sponge-associated microbes, our knowledge of urea utilization in sponges and the phylogenetic diversity of sponge-associated microbes with urea utilization potential is very limited. In this study, Marinobacter litoralis isolated from the marine sponge Xestospongia testudinaria and the slurry of X. testudinaria were found to have urease activity. Subsequently, phylogenetically diverse bacterial ureC genes were detected in the total genomic DNA and RNA of sponge X. testudinaria, i.e., 19 operative taxonomic units (OTUs) in genomic DNA library and 8 OTUs in cDNA library at 90% stringency. Particularly, 6 OTUs were common to both the genomic DNA library and the cDNA library, which suggested that some ureC genes were expressed in this sponge. BLAST and phylogenetic analysis showed that most of the ureC sequences were similar with the urease alpha subunit of members from Proteobacteria, which were the predominant component in sponge X. testudinaria, and the remaining ureC sequences were related to those from Magnetococcus, Cyanobacteria, and Actinobacteria. This study is the first assessment of the role of sponge bacterial symbionts in the regenerated utilization of urea by the detection of transcriptional activity of ureC gene, as well as the phylogenetic diversity of ureC gene of sponge bacterial symbionts. The results suggested the urea utilization by bacterial symbionts in marine sponge X. testudinaria, extending our understanding of nitrogen cycling mediated by sponge-associated microbiota. PMID:23741404

  2. The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering.

    Science.gov (United States)

    Gawin, Agnieszka; Valla, Svein; Brautaset, Trygve

    2017-07-01

    The XylS/Pm regulator/promoter system originating from the Pseudomonas putida TOL plasmid pWW0 is widely used for regulated low- and high-level recombinant expression of genes and gene clusters in Escherichia coli and other bacteria. Induction of this system can be graded by using different cheap benzoic acid derivatives, which enter cells by passive diffusion, operate in a dose-dependent manner and are typically not metabolized by the host cells. Combinatorial mutagenesis and selection using the bla gene encoding β-lactamase as a reporter have demonstrated that the Pm promoter, the DNA sequence corresponding to the 5' untranslated end of its cognate mRNA and the xylS coding region can be modified and improved relative to various types of applications. By combining such mutant genetic elements, altered and extended expression profiles were achieved. Due to their unique properties, obtained systems serve as a genetic toolbox valuable for heterologous protein production and metabolic engineering, as well as for basic studies aiming at understanding fundamental parameters affecting bacterial gene expression. The approaches used to modify XylS/Pm should be adaptable for similar improvements also of other microbial expression systems. In this review, we summarize constructions, characteristics, refinements and applications of expression tools using the XylS/Pm system. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Genome-wide identification and characterization of TRAF genes in the Yesso scallop (Patinopecten yessoensis) and their distinct expression patterns in response to bacterial challenge.

    Science.gov (United States)

    Wang, Jing; Wang, Ruijia; Wang, Shuyue; Zhang, Mengran; Ma, Xiaoli; Liu, Pingping; Zhang, Meiwei; Hu, Xiaoli; Zhang, Lingling; Wang, Shi; Bao, Zhenmin

    2015-11-01

    The tumor necrosis factor (TNF) receptor associated factors (TRAFs) are the major signal transducers for the TNF receptor superfamily and the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) superfamily, which regulate a variety of cellular activities and innate immune responses. TRAF genes have been extensively studied in various species, including vertebrates and invertebrates. However, as one of the key component of NF-κB pathway, TRAF genes have not been systematically characterized in marine invertebrates. In this study, we identified and characterized five TRAF genes, PyTRAF2, PyTRAF3, PyTRAF4, PyTRAF6 and PyTRAF7, in the Yesso scallop (Patinopecten yessoensis). Phylogenetic and protein structural analyses were conducted to determine their identities and evolutionary relationships. In comparison with the TRAF genes from vertebrate species, the structural features were all relatively conserved in the PyTRAF genes. To gain insights into the roles of TRAF genes during scallop innate immune responses, quantitative real-time PCR was used to investigate the expression profiles in the different stages of scallop development, in the healthy adult tissues, and in the hemocytes after bacterial infection with Micrococcus luteus and Vibrio anguillarum. Based on the qRT-PCR analysis, the expression of most of the PyTRAFs was significantly induced in the acute phases (3-6 h) after infection with Gram-positive (M. luteus) and Gram-negative (V. anguillarum) bacteria, and many more dramatic changes in PyTRAFs expression were observed after V. anguillarum challenge. Notably, the strong response in the up-regulation of PyTRAF6 post-bacterial challenge was distinct from that previously reported in scallops and crabs but was similar to that of other shellfish, Echinodermata and even teleost fish. The high level expressions of PyTRAFs in the hemocytes and the gill, and their specific expression patterns after challenges provide insights into the versatile roles and responses

  4. Myeloid cell sirtuin-1 expression does not alter host immune responses to Gram-negative endotoxemia or Gram-positive bacterial infection.

    Directory of Open Access Journals (Sweden)

    Laura E Crotty Alexander

    Full Text Available The role of sirtuin-1 (SIRT1 in innate immunity, and in particular the influence of SIRT1 on antimicrobial defense against infection, has yet to be reported but is important to define since SIRT1 inhibitors are being investigated as therapeutic agents in the treatment of cancer, Huntington's disease, and autoimmune diseases. Given the therapeutic potential of SIRT1 suppression, we sought to characterize the role of SIRT1 in host defense. Utilizing both pharmacologic methods and a genetic knockout, we demonstrate that SIRT1 expression has little influence on macrophage and neutrophil antimicrobial functions. Myeloid SIRT1 expression does not change mortality in gram-negative toxin-induced shock or gram-positive bacteremia, suggesting that therapeutic suppression of SIRT1 may be done safely without suppression of myeloid cell-specific immune responses to severe bacterial infections.

  5. Bacterial Keratitis

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Bacterial Keratitis Sections What Is Bacterial Keratitis? Bacterial Keratitis Symptoms ... Lens Care Bacterial Keratitis Treatment What Is Bacterial Keratitis? Leer en Español: ¿Qué Es la Queratitis Bacteriana? ...

  6. Design of a comprehensive biochemistry and molecular biology experiment: phase variation caused by recombinational regulation of bacterial gene expression.

    Science.gov (United States)

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about Salmonella enterica serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation, antibody agglutination test, and PCR analysis. Phase variation was observed by baterial motility assay and identified by antibody agglutination test and PCR analysis. This comprehensive experiment can be performed to help students improve their ability to use the knowledge acquired in Biochemistry and Molecular Biology. Copyright © 2014 by The International Union of Biochemistry and Molecular Biology.

  7. Bacterial feeding induces changes in immune-related gene expression and has trans-generational impacts in the cabbage looper (Trichoplusia ni

    Directory of Open Access Journals (Sweden)

    Vogel Heiko

    2009-05-01

    Full Text Available Abstract Background Poly- and oligophagous insects are able to feed on various host plants with a wide range of defense strategies. However, diverse food plants are also inhabited by microbiota differing in quality and quantity, posing a potential challenge for immune system mediated homeostasis in the herbivore. Recent studies highlight the complex interactions between environmentally encountered microorganisms and herbivorous insects, pointing to a potential adaptational alteration of the insects' physiology. We performed a differential gene expression analysis in whole larvae and eggs laid by parents grown on different diets to identify potential novel genes related to elevated microbial content in the caterpillars' food. Results We used GeneFishing, a novel differential display method, to study the effects of dietary bacteria on the general gene expression in different life stages and tissues of the cabbage looper (Trichoplusia ni. We were able to visualize several hundred transcripts on agarose gels, one fifth of which were differentially expressed between treatments. The largest number of differentially expressed genes was found in defense-related processes (13 and in recognition and metabolism (16. 21 genes were picked out and further tested for differential gene expression by an independent method (qRT-PCR in various tissues of larvae grown on bacterial and bacteria-free diet, and also in adults. We detected a number of genes indicative of an altered physiological status of the insect, depending on the diet, developmental stage and tissue. Conclusion Changes in immune status are accompanied by specific changes in the transcript levels of genes connected to metabolism and homeostasis of the organism. Our findings show that larval feeding on bacteria-rich diet leads to substantial gene expression changes, potentially resulting in a reorganization of the insects' metabolism to maintain organismal homeostasis, not only in the larval but also

  8. A study of the cytoplasmic expression of a form of human prolactin and of its solubilization and renaturation from bacterial inclusion bodies

    International Nuclear Information System (INIS)

    Affonso, Regina

    2000-01-01

    Different vector elements, that can determine a high expression level of a form of human prolactin (taghPrl) in bacterial cytoplasm, were studied. Expression conditions were first optimized for a reference vector, which was used to transform different strains of E. coli: HB2151, RRI and RB791. The highest expression level (113 ±16 μg/mL.A 600 ) was obtained in HB2151, after activation with only 0.1 mM IPTG. At this point the influence of the transcription terminator (g32 from bacteriophage T4), of the translation enhancer (g10 from bacteriophage T7), of the promoter (λP L or tac) and of the antibiotic resistance gene (amp r or kan r ) were studied. The first three elements did not show any significant influence, at least in our systems. On the contrary, the analysis of the influence of amp r and kan r genes showed, unexpectedly, that the presence of the last one provides an approximately 5-fold higher expression for taghPrl in E. coli cytoplasm. Finally, an appropriate extraction, solubilization, renaturation and purification process, able to provide a monomeric form of taghPrl, was studied. A method utilizing urea and mercaptoethanol as solubilizing agents and a dialysis as a renaturation procedure, provided with some modifications, one of the highest yields ever reported in the literature: 35.4 ± 4.5% of total recovery. Moreover, the biological activity of the taghPrl obtained, when tested in the Nb2 cell proliferation assay, was of the same order of that shown by the International Standard of human prolactin of pituitary origin. These data show that the cytoplasmic expression system here described, which can provide an expression efficiency 50-100 - fold higher than the periplasmic expression, can represent a valid alternative for the production of this and of other hormones of pharmaceutical interest and grade. (author)

  9. Using random walk in models specified by stochastic differential equations to determine the best expression for the bacterial growth rate

    DEFF Research Database (Denmark)

    Optical Density bioscreen measurements of P. aeruginosa to perform a Maximum Likelihood estimation of the model parameters and subsequently obtain a smoothing estimate for the model state variables by means of a nonlinear smoothing algorithm based on the extended Kalman filter, using an implementation...... the expressions which are nested. Additional inferens concerning the best expression is performed by considering the incremental variance σ2 of the Wiener process. The best expression is found to be S(a/(1 + b(1 − S)2) + c) with σ2 = 3.46 · 10−4, which is one order of magnitude lower than the incremental variance...

  10. Isolation of prawn ( Exopalaemon carinicauda) lipopolysaccharide and β-1, 3-glucan binding protein gene and its expression in responding to bacterial and viral infections

    Science.gov (United States)

    Ge, Qianqian; Li, Jian; Duan, Yafei; Li, Jitao; Sun, Ming; Zhao, Fazhen

    2016-04-01

    The pattern recognition proteins (PRPs) play a major role in immune response of crustacean to resist pathogens. In the present study, as one of PRPs, lipopolysaccharide and β-1, 3-glucan binding protein (LGBP) gene in the ridge tail white prawn ( Exopalaemon carinicauda) ( EcLGBP) was isolated. The full-length cDNA of EcLGBP was 1338 bp, encoding a polypeptide of 366 amino acid residules. The deduced amino acid sequence of EcLGBP shared high similarities with LGBP and BGBP from other crustaceans. Some conservative domains were predicted in EcLGBP sequence. EcLGBP constitutively expressed in most tissues at different levels, and the highest expression was observed in hepatopancreas. With infection time, the cumulative mortality increased gradually followed by the proliferation of Vibrio parahaemolyticus and white spot syndrome virus (WSSV). The expression of EcLGBP in response to V. parahaemolyticus infection was up-regulated in hemocytes and hepatopancreas, and the up-regulation in hepatopancreas was earlier than that in hemocytes. EcLGBP expression after WSSV infection increased at 3 h, then significantly decreased in both hemocytes and hepatopancreas. The results indicated that EcLGBP was involved in the immune defense against bacterial and viral infections.

  11. Rotavirus structural proteins and dsRNA are required for the human primary plasmacytoid dendritic cell IFNalpha response.

    Directory of Open Access Journals (Sweden)

    Emily M Deal

    2010-06-01

    Full Text Available Rotaviruses are the leading cause of severe dehydrating diarrhea in children worldwide. Rotavirus-induced immune responses, especially the T and B cell responses, have been extensively characterized; however, little is known about innate immune mechanisms involved in the control of rotavirus infection. Although increased levels of systemic type I interferon (IFNalpha and beta correlate with accelerated resolution of rotavirus disease, multiple rotavirus strains, including rhesus rotavirus (RRV, have been demonstrated to antagonize type I IFN production in a variety of epithelial and fibroblast cell types through several mechanisms, including degradation of multiple interferon regulatory factors by a viral nonstructural protein. This report demonstrates that stimulation of highly purified primary human peripheral plasmacytoid dendritic cells (pDCs with either live or inactivated RRV induces substantial IFNalpha production by a subset of pDCs in which RRV does not replicate. Characterization of pDC responses to viral stimulus by flow cytometry and Luminex revealed that RRV replicates in a small subset of human primary pDCs and, in this RRV-permissive small subset, IFNalpha production is diminished. pDC activation and maturation were observed independently of viral replication and were enhanced in cells in which virus replicates. Production of IFNalpha by pDCs following RRV exposure required viral dsRNA and surface proteins, but neither viral replication nor activation by trypsin cleavage of VP4. These results demonstrate that a minor subset of purified primary human peripheral pDCs are permissive to RRV infection, and that pDCs retain functionality following RRV stimulus. Additionally, this study demonstrates trypsin-independent infection of primary peripheral cells by rotavirus, which may allow for the establishment of extraintestinal viremia and antigenemia. Importantly, these data provide the first evidence of IFNalpha induction in primary

  12. Purification and characterisation of dsRNA using ion pair reverse phase chromatography and mass spectrometry

    OpenAIRE

    Nwokeoji, Alison O.; Kung, An-Wen; Kilby, Peter M.; Portwood, David E.; Dickman, Mark J.

    2017-01-01

    RNA interference has provided valuable insight into a wide range of biological systems and is a powerful tool for the analysis of gene function. The exploitation of this pathway to block the expression of specific gene targets holds considerable promise for the development of novel RNAi-based insect management strategies. In addition, there are a wide number of future potential applications of RNAi to control agricultural insect pests as well as its use for prevention of diseases in beneficia...

  13. One-step affinity tag purification of full-length recombinant human AP-1 complexes from bacterial inclusion bodies using a polycistronic expression system.

    Science.gov (United States)

    Wang, Wei-Ming; Lee, A-Young; Chiang, Cheng-Ming

    2008-05-01

    The AP-1 transcription factor is a dimeric protein complex formed primarily between Jun (c-Jun, JunB, JunD) and Fos (c-Fos, FosB, Fra-1, Fra-2) family members. These distinct AP-1 complexes are expressed in many cell types and modulate target gene expression implicated in cell proliferation, differentiation, and stress responses. Although the importance of AP-1 has long been recognized, the biochemical characterization of AP-1 remains limited in part due to the difficulty in purifying full-length, reconstituted dimers with active DNA-binding and transcriptional activity. Using a combination of bacterial coexpression and epitope-tagging methods, we successfully purified all 12 heterodimers (3 Junx4 Fos) of full-length human AP-1 complexes as well as c-Jun/c-Jun, JunD/JunD, and c-Jun/JunD dimers from bacterial inclusion bodies using one-step nickel-NTA affinity tag purification following denaturation and renaturation of coexpressed AP-1 subunits. Coexpression of two constitutive components in a dimeric AP-1 complex helps stabilize the proteins when compared with individual protein expression in bacteria. Purified dimeric AP-1 complexes are functional in sequence-specific DNA binding, as illustrated by electrophoretic mobility shift assays and DNase I footprinting, and are also active in transcription with in vitro-reconstituted human papillomavirus (HPV) chromatin containing AP-1-binding sites in the native configuration of HPV nucleosomes. The availability of these recombinant full-length human AP-1 complexes has greatly facilitated mechanistic studies of AP-1-regulated gene transcription in many biological systems.

  14. Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction.

    Directory of Open Access Journals (Sweden)

    Kristina V Tugaeva

    Full Text Available Abundant regulatory 14-3-3 proteins have an extremely wide interactome and coordinate multiple cellular events via interaction with specifically phosphorylated partner proteins. Notwithstanding the key role of 14-3-3/phosphotarget interactions in many physiological and pathological processes, they are dramatically underexplored. Here, we focused on the 14-3-3 interaction with human Tau protein associated with the development of several neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Among many known phosphorylation sites within Tau, protein kinase A (PKA phosphorylates several key residues of Tau and induces its tight interaction with 14-3-3 proteins. However, the stoichiometry and mechanism of 14-3-3 interaction with phosphorylated Tau (pTau are not clearly elucidated. In this work, we describe a simple bacterial co-expression system aimed to facilitate biochemical and structural studies on the 14-3-3/pTau interaction. We show that dual co-expression of human fetal Tau with PKA in Escherichia coli results in multisite Tau phosphorylation including also naturally occurring sites which were not previously considered in the context of 14-3-3 binding. Tau protein co-expressed with PKA displays tight functional interaction with 14-3-3 isoforms of a different type. Upon triple co-expression with 14-3-3 and PKA, Tau protein could be co-purified with 14-3-3 and demonstrates complex which is similar to that formed in vitro between individual 14-3-3 and pTau obtained from dual co-expression. Although used in this study for the specific case of the previously known 14-3-3/pTau interaction, our co-expression system may be useful to study of other selected 14-3-3/phosphotarget interactions and for validations of 14-3-3 complexes identified by other methods.

  15. Inducible expression of enhanced green fluorescent protein by interleukin-1α, interleukin-1β and Toll-like receptor 2 promoters in goat mammary epithelial cells in response to bacterial challenges.

    Science.gov (United States)

    Ru, Kun; Su, Feng; Zheng, Yuemao; Zhang, Yijun; Luo, Yan; Guo, Zekun; He, Xiaoli; Liu, Xin; Zhang, Jingcheng; Liu, Jun; Zhang, Yong

    2015-01-01

    The development of a bacteria-inducible expression system has several advantages compared with persistent expression of anti-bacterial proteins in milk to prevent and treat mastitis. The present study determined whether mastitis responsive promoters could regulate enhanced green fluorescent protein (EGFP) expression in goat mammary epithelial cells (GMECs) in response to challenges with Escherichia coli, Staphylococcus aureus or Streptococcus agalactiae. The level of expression of interleukin (IL)-1α was significantly increased in GMECs challenged with E. coli, S. aureus or S. agalactiae compared with untreated GMECs. IL-1β was induced by E. coli and S. aureus, while Toll-like receptor 2 (TLR2) was induced by E. coli only. GMECs were transfected with IL-1α, IL-1β and TLR2 promoter-EGFP reporter gene lentiviral expression vectors and the levels of expression of EGFP were measured by flow cytometry and Western blot analysis after bacterial challenge. EGFP expression driven by the IL-1α and IL-1β promoters was higher in GMECs challenged with E. coli, S. aureus or S. agalactiae than in untreated GMECs. There were no differences in EGFP expression driven by the TLR2 promoter between GMECs challenged with S. aureus or S. agalactiae and untreated GMECs, but EGFP expression was significantly increased in GMECs challenged with E. coli. Overall, these results indicate that the promoters of some bacteria-inducible genes can regulate EGFP expression in GMECs in response to bacterial challenges. This bacteria-inducible expression strategy could be used for production of mastitis resistant animals by regulating the expression of anti-bacterial proteins in the mammary gland. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses.

    Directory of Open Access Journals (Sweden)

    Kathie-Anne Walters

    Full Text Available Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4. Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.

  17. Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery.

    Science.gov (United States)

    Donovan, Jesse; Rath, Sneha; Kolet-Mandrikov, David; Korennykh, Alexei

    2017-11-01

    Mammalian cells respond to double-stranded RNA (dsRNA) by activating a translation-inhibiting endoribonuclease, RNase L. Consensus in the field indicates that RNase L arrests protein synthesis by degrading ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs). However, here we provide evidence for a different and far more efficient mechanism. By sequencing abundant RNA fragments generated by RNase L in human cells, we identify site-specific cleavage of two groups of noncoding RNAs: Y-RNAs, whose function is poorly understood, and cytosolic tRNAs, which are essential for translation. Quantitative analysis of human RNA cleavage versus nascent protein synthesis in lung carcinoma cells shows that RNase L stops global translation when tRNAs, as well as rRNAs and mRNAs, are still intact. Therefore, RNase L does not have to degrade the translation machinery to stop protein synthesis. Our data point to a rapid mechanism that transforms a subtle RNA cleavage into a cell-wide translation arrest. © 2017 Donovan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. Studies on the Virome of the Entomopathogenic Fungus Beauveria bassiana Reveal Novel dsRNA Elements and Mild Hypervirulence.

    Directory of Open Access Journals (Sweden)

    Ioly Kotta-Loizou

    2017-01-01

    Full Text Available The entomopathogenic fungus Beauveria bassiana has a wide host range and is used as a biocontrol agent against arthropod pests. Mycoviruses have been described in phytopathogenic fungi while in entomopathogenic fungi their presence has been reported only rarely. Here we show that 21.3% of a collection of B. bassiana isolates sourced from worldwide locations, harbor dsRNA elements. Molecular characterization of these elements revealed the prevalence of mycoviruses belonging to the Partitiviridae and Totiviridae families, the smallest reported virus to date, belonging to the family Narnaviridae, and viruses unassigned to a family or genus. Of particular importance is the discovery of members of a newly proposed family Polymycoviridae in B. bassiana. Polymycoviruses, previously designated as tetramycoviruses, consist of four non-conventionally encapsidated capped dsRNAs. The presence of additional non-homologous genomic segments in B. bassiana polymycoviruses and other fungi illustrates the unprecedented dynamic nature of the viral genome. Finally, a comparison of virus-free and virus-infected isogenic lines derived from an exemplar B. bassiana isolate revealed a mild hypervirulent effect of mycoviruses on the growth of their host isolate and on its pathogenicity against the greater wax moth Galleria mellonella, highlighting for the first time the potential of mycoviruses as enhancers of biocontrol agents.

  19. The bovine paranasal sinuses: Bacterial flora, epithelial expression of nitric oxide and potential role in the in-herd persistence of respiratory disease pathogens.

    Science.gov (United States)

    Murray, Gerard M; O'Neill, Rónan G; Lee, Alison M; McElroy, Máire C; More, Simon J; Monagle, Aisling; Earley, Bernadette; Cassidy, Joseph P

    2017-01-01

    The bovine paranasal sinuses are a group of complex cavernous air-filled spaces, lined by respiratory epithelium, the exact function of which is unclear. While lesions affecting these sinuses are occasionally reported in cattle, their microbial flora has not been defined. Furthermore, given that the various bacterial and viral pathogens causing bovine respiratory disease (BRD) persist within herds, we speculated that the paranasal sinuses may serve as a refuge for such infectious agents. The paranasal sinuses of clinically normal cattle (n = 99) and of cattle submitted for post-mortem examination (PME: n = 34) were examined by microbial culture, PCR and serology to include bacterial and viral pathogens typically associated with BRD: Mycoplasma bovis, Histophilus somni, Mannheimia haemolytica and Pasteurella multocida, bovine respiratory syncytial virus (BRSV) and bovine parainfluenza-3 virus (BPIV-3). Overall, the paranasal sinuses were either predominantly sterile or did not contain detectable microbes (83.5%: 94.9% of clinically normal and 50.0% of cattle submitted for PME). Bacteria, including BRD causing pathogens, were identified in relatively small numbers of cattle (animal. To further explore these findings we investigated the potential role of the antimicrobial molecule nitric oxide (NO) within paranasal sinus epithelium using immunohistochemistry. Expression of the enzyme responsible for NO synthesis, inducible nitric oxide synthase (iNOS), was detected to varying degrees in 76.5% of a sub-sample of animals suggesting production of this compound plays a similar protective role in the bovine sinus as it does in humans.

  20. Steady-state levels of G-protein beta-subunit expression are regulated by treatment of cells with bacterial toxins

    International Nuclear Information System (INIS)

    Watkins, D.C.; Northup, J.K.; Malbon, C.C.

    1987-01-01

    Cultures of 3T3-L1 cells were incubated with either 10 ng/ml cholera toxin or 10 ng/ml pertussis toxin from 4 days prior to the initiation of differentiation and throughout the subsequent incubation. Toxin concentrations were sufficient to completely prevent the labelling of alpha-subunits with [ 32 P]NAD + and pertussis toxin and to prevent by more than 90% the labelling with [ 32 P]NAD + and cholera toxin in membranes prepared from these cells. Neither toxin prevented the differentiation to the adipocyte phenotype. Neither toxin prevented the increases in the relative amounts of G-proteins which occur upon differentiation. Both toxins dramatically decreased the amount of beta-subunits. As measured by quantitative immunoblotting with antisera specific for both the 35 kDa and 36 kDa beta-subunits, levels of beta-subunit were decreased by more than 50% of steady-state level of control cells. Thus, bacterial toxins which modifies G-protein alpha-subunits are capable of modulating the levels of beta-subunits in vivo. The basis for the regulation of G-protein subunit expression by bacterial toxins is under study

  1. Expression of coding (mRNA) and non-coding (microRNA) RNA in lung tissue and blood isolated from pigs suffering from bacterial pleuropneumonia

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Schou, Kirstine Klitgaard; Wendt, Karin Tarp

    2010-01-01

    MicroRNAs are small non-coding RNA molecules (18-23 nt), that regulate the activity of other genes at the post-transcriptional level. Recently it has become evident that microRNA plays an important role in modulating and fine tuning innate and adaptive immune responses. Still, little is known about...... the impact of microRNAs in the development and pathogenesis of lung infections. Expression of microRNA known to be induced by bacterial (i.e., LPS) ligands and thus supposed to play a role in the regulation of antimicrobial defence, were studied in lung tissue and in blood from pigs experimentally infected...... with Actinobacillus pleuropneumoniae (AP). Expression differences of mRNA and microRNA were quantified at different time points (6h, 12h, 24h, 48h PI) using reverse transcription quantitative real-time PCR (Rotor-Gene and Fluidigm). Expression profiles of miRNA in blood of seven animals were further studied using mi...

  2. Differential effect of early antibiotic intervention on bacterial fermentation patterns and mucosal gene expression in the colon of pigs under diets with different protein levels.

    Science.gov (United States)

    Zhang, Chuanjian; Yu, Miao; Yang, Yuxiang; Mu, Chunlong; Su, Yong; Zhu, Weiyun

    2017-03-01

    The study aimed to evaluate the effects of early antibiotic intervention (EAI) on bacterial fermentation patterns and mucosal immune markers in the colon of pigs with different protein level diets. Eighteen litters of piglets at day (d) 7 were fed creep feed without or with growth promoting antibiotics until d 42. At d 42, pigs within each group were further randomly assigned to a normal- or low-crude protein (CP) diet. At d 77 and d 120, five pigs per group were slaughtered for analyzing colonic bacteria, metabolites, and mucosal gene expressions. Results showed that low-CP diet increased propionate and butyrate concentrations at d 77 but reduced ammonia and phenol concentrations (P fermentation and gene expressions of pro-inflammatory cytokines. Low-CP diet markedly reduced protein fermentation, modified microbial communities, and down-regulated gene expressions of pro-inflammatory cytokines possibly via down-regulating TLR4-MyD88-NF-κB signaling pathway.

  3. Expression of a bacterial, phenylpropanoid-metabolizing enzyme in tobacco reveals essential roles of phenolic precursors in normal leaf development and growth.

    Science.gov (United States)

    Merali, Zara; Mayer, Melinda J; Parker, Mary L; Michael, Anthony J; Smith, Andrew C; Waldron, Keith W

    2012-06-01

    Tobacco plants (Nicotiana tabacum cv XHFD 8) were genetically modified to express a bacterial 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL) enzyme which is active with intermediates of the phenylpropanoid pathway. We have previously shown that HCHL expression in tobacco stem resulted in various pleiotropic effects, indicative of a reduction in the carbon flux through the phenylpropanoid pathway, accompanied by an abnormal phenotype. Here, we report that in addition to the reduction in lignin and phenolic biosynthesis, HCHL expression also resulted in several gross morphological changes in poorly lignified tissue, such as abnormal mesophyll and palisade. The effect of HCHL expression was also noted in lignin-free single cells, with suspension cultures displaying an altered shape and different growth patterns. Poorly/non-lignified cell walls also exhibited a greater ease of alkaline extractability of simple phenolics and increased levels of incorporation of vanillin and vanillic acid. However, HCHL expression had no significant effect on the cell wall carbohydrate chemistry of these tissues. Evidence from this study suggests that changes in the transgenic lines result from a reduction in phenolic intermediates which have an essential role in maintaining structural integrity of low-lignin or lignin-deprived cell walls. These results emphasize the importance of the intermediates and products of phenylpropanoid pathway in modulating aspects of normal growth and development of tobacco. Analysis of these transgenic plants also shows the plasticity of the lignification process and reveals the potential to bioengineer plants with reduced phenolics (without deleterious effects) which could enhance the bioconversion of lignocellulose for industrial applications. Copyright © Physiologia Plantarum 2012.

  4. Temporal Expression Dynamics of Plant Biomass-Degrading Enzymes by a Synthetic Bacterial Consortium Growing on Sugarcane Bagasse

    NARCIS (Netherlands)

    Javier Jimenez, Diego; De Mares, Maryam Chaib; Salles, Joana Falcao

    2018-01-01

    Plant biomass (PB) is an important source of sugars useful for biofuel production, whose degradation efficiency depends on synergistic and dynamic interactions of different enzymes. Here, using a metatranscriptomics-based approach, we explored the expression of PB-degrading enzymes in a five-species

  5. Exposure to the viral by-product dsRNA or Coxsackievirus B5 triggers pancreatic beta cell apoptosis via a Bim / Mcl-1 imbalance.

    Directory of Open Access Journals (Sweden)

    Maikel L Colli

    2011-09-01

    Full Text Available The rise in type 1 diabetes (T1D incidence in recent decades is probably related to modifications in environmental factors. Viruses are among the putative environmental triggers of T1D. The mechanisms regulating beta cell responses to viruses, however, remain to be defined. We have presently clarified the signaling pathways leading to beta cell apoptosis following exposure to the viral mimetic double-stranded RNA (dsRNA and a diabetogenic enterovirus (Coxsackievirus B5. Internal dsRNA induces cell death via the intrinsic mitochondrial pathway. In this process, activation of the dsRNA-dependent protein kinase (PKR promotes eIF2α phosphorylation and protein synthesis inhibition, leading to downregulation of the antiapoptotic Bcl-2 protein myeloid cell leukemia sequence 1 (Mcl-1. Mcl-1 decrease results in the release of the BH3-only protein Bim, which activates the mitochondrial pathway of apoptosis. Indeed, Bim knockdown prevented both dsRNA- and Coxsackievirus B5-induced beta cell death, and counteracted the proapoptotic effects of Mcl-1 silencing. These observations indicate that the balance between Mcl-1 and Bim is a key factor regulating beta cell survival during diabetogenic viral infections.

  6. Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae.

    Science.gov (United States)

    Bhatia, Varnika; Bhattacharya, Ramcharan; Uniyal, Prem L; Singh, Rajendra; Niranjan, Rampal S

    2012-01-01

    Sap sucking hemipteran aphids damage diverse crop species. Although delivery of ds-RNA or siRNA through microinjection/feeding has been demonstrated, the efficacy of host-mediated delivery of aphid-specific dsRNA in developing aphid resistance has been far from being elucidated. Transgenic Arabidopsis expressing ds-RNA of Myzus persicae serine protease (MySP) was developed that triggered the generation of corresponding siRNAs amenable for delivery to the feeding aphids. M. persicae when fed on the transgenic plants for different time intervals under controlled growth conditions resulted in a significant attenuation of the expression of MySP and a commensurate decline in gut protease activity. Although the survivability of these aphids was not affected, there was a noticeable decline in their fecundity resulting in a significant reduction in parthenogenetic population. The study highlighted the feasibility of developing host based RNAi-mediated resistance against hemipteran pest aphids.

  7. Attenuated Streptococcus equi ssp. zooepidemicus as a bacterial vector for expression of porcine circovirus type 2 capsid protein.

    Science.gov (United States)

    Wei, Zigong; Fu, Qiang; Liu, Xiaohong; Chen, Yaosheng

    2012-07-01

    Porcine circovirus type 2 (PCV2) infection and other concurrent factors is associated with post-weaning multisystemic wasting syndrome, which is becoming a major problem for the swine industry worldwide. Coinfection of Streptococcus equi ssp. zooepidemicus (SEZ) and PCV2 in swine has necessitated demand for a recombinant vaccine against these two pathogens. A recombinant SEZ-Cap strain expressing the major immunogenic capsid protein of PCV2 in place of the szp gene of acapsular SEZ C55138 ΔhasB was constructed. Fluorescence-activated cell sorting and immunofluorescence microscopy analyses indicated that the capsid protein is expressed on the surface of the recombinant strain. Experiments in mice demonstrated that strain SEZ-Cap was less virulent than the parental strain and that it induced significant anti-PCV2 antibodies when administered intraperitoneally, which is worthy of further investigation in swine. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Electrotransformation and Expression of Bacterial Genes Encoding Hygromycin Phosphotransferase and β-Galactosidase in the Pathogenic Fungus Histoplasma capsulatum

    OpenAIRE

    Woods, Jon P.; Heinecke, Elizabeth L.; Goldman, William E.

    1998-01-01

    We developed an efficient electrotransformation system for the pathogenic fungus Histoplasma capsulatum and used it to examine the effects of features of the transforming DNA on transformation efficiency and fate of the transforming DNA and to demonstrate fungal expression of two recombinant Escherichia coli genes, hph and lacZ. Linearized DNA and plasmids containing Histoplasma telomeric sequences showed the greatest transformation efficiencies, while the plasmid vector had no significant ef...

  9. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.

    Science.gov (United States)

    Kozak, Barbara U; van Rossum, Harmen M; Luttik, Marijke A H; Akeroyd, Michiel; Benjamin, Kirsten R; Wu, Liang; de Vries, Simon; Daran, Jean-Marc; Pronk, Jack T; van Maris, Antonius J A

    2014-10-21

    The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs(+) reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. Importance: Genetically engineered microorganisms are intensively investigated and applied for production of biofuels and chemicals from renewable sugars. To make such processes economically and environmentally sustainable, the energy

  10. Occurrence of dsRNA Mycovirus (LeV-FMRI0339 in the Edible Mushroom Lentinula edodes and Meiotic Stability of LeV-FMRI0339 among Monokaryotic Progeny

    Directory of Open Access Journals (Sweden)

    Jung-Mi Kim

    2013-12-01

    Full Text Available dsRNA was found in malformed cultures of Lentinula edodes strain FMRI0339, one of the three most popular sawdust cultivated commercial strains of shiitake, and was also found in healthy-looking fruiting bodies and actively growing mycelia. Cloning of the partial genome of the dsRNA revealed the presence of the RdRp sequence of a novel L. edodes mycovirus (LeV, and sequence comparison of the cloned amplicon showed identical sequences sequence to known RNA-dependent RNA polymerase genes of LeV found in strain HKA. The meiotic stability of dsRNA was examined by measuring the ratio of the presence of dsRNA among sexual monokaryotic progeny. More than 40% of the monokaryotic progeny still contained the dsRNA, indicating the persistence of dsRNA during sexual reproduction. Comparing the mycelia growth of monokaryotic progeny suggested that there appeared to be a tendency toward a lower frequency of virus incidence in actively growing progeny.

  11. Expression and extracellular release of a functional anti-trypanosome Nanobody® in Sodalis glossinidius, a bacterial symbiont of the tsetse fly

    Directory of Open Access Journals (Sweden)

    De Vooght Linda

    2012-02-01

    Full Text Available Abstract Background Sodalis glossinidius, a gram-negative bacterial endosymbiont of the tsetse fly, has been proposed as a potential in vivo drug delivery vehicle to control trypanosome parasite development in the fly, an approach known as paratransgenesis. Despite this interest of S. glossinidius as a paratransgenic platform organism in tsetse flies, few potential effector molecules have been identified so far and to date none of these molecules have been successfully expressed in this bacterium. Results In this study, S. glossinidius was transformed to express a single domain antibody, (Nanobody® Nb_An33, that efficiently targets conserved cryptic epitopes of the variant surface glycoprotein (VSG of the parasite Trypanosoma brucei. Next, we analyzed the capability of two predicted secretion signals to direct the extracellular delivery of significant levels of active Nb_An33. We show that the pelB leader peptide was successful in directing the export of fully functional Nb_An33 to the periplasm of S. glossinidius resulting in significant levels of extracellular release. Finally, S. glossinidius expressing pelBNb_An33 exhibited no significant reduction in terms of fitness, determined by in vitro growth kinetics, compared to the wild-type strain. Conclusions These data are the first demonstration of the expression and extracellular release of functional trypanosome-interfering Nanobodies® in S. glossinidius. Furthermore, Sodalis strains that efficiently released the effector protein were not affected in their growth, suggesting that they may be competitive with endogenous microbiota in the midgut environment of the tsetse fly. Collectively, these data reinforce the notion for the potential of S. glossinidius to be developed into a paratransgenic platform organism.

  12. Β-defensin in Nile tilapia (Oreochromis niloticus): Sequence, tissue expression, and anti-bacterial activity of synthetic peptides.

    Science.gov (United States)

    Dong, Jun-Jian; Wu, Fang; Ye, Xing; Sun, Cheng-Fei; Tian, Yuan-Yuan; Lu, Mai-Xin; Zhang, Rui; Chen, Zhi-Hang

    2015-07-15

    Beta-defensins (β-defensins) are small cationic amphiphilic peptides that are widely distributed in plants, insects, and vertebrates, and are important for their antimicrobial properties. In this study, the β-defensin (Onβ-defensin) gene of the Nile tilapia (Oreochromis niloticus) was cloned from spleen tissue. Onβ-defensin has a genomic DNA sequence of 674 bp and produces a cDNA of 454 bp. Sequence alignments showed that Onβ-defensin contains three exons and two introns. Sequence analysis of the cDNA identified an open reading frame of 201 bp, encoding 66 amino acids. Bioinformatic analysis showed that Onβ-defensin encodes a cytoplasmic protein molecule containing a signal peptide. The deduced amino acid sequence of this peptide contains six conserved cysteine residues and two conserved glycine residues, and shows 81.82% and 78.33% sequence similarities with β-defensin-1 of fugu (Takifugu rubripes) and rainbow trout (Oncorhynchus mykiss), respectively. Real-time quantitative PCR showed that the level of Onβ-defensin expression was highest in the skin (307.1-fold), followed by the spleen (77.3-fold), kidney (17.8-fold), and muscle (16.5-fold) compared to controls. By contrast, low levels of expression were found in the liver, heart, intestine, stomach, and gill (tilapia with Streptococcus agalactiae (group B streptococcus [GBS] strain) resulted in a significantly upregulated expression of Onβ-defensin in the skin, muscle, kidney, and gill. In vitro antimicrobial experiments showed that a synthetic Onβ-defensin polypeptide had a certain degree of inhibitory effect on the growth of Escherichia coli DH5α and S. agalactiae. The results indicate that Onβ-defensin plays a role in immune responses that suppress or kill pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Small intestinal bacterial overgrowth in nonalcoholic steatohepatitis: association with toll-like receptor 4 expression and plasma levels of interleukin 8.

    LENUS (Irish Health Repository)

    Shanab, Ahmed Abu

    2011-05-01

    Experimental and clinical studies suggest an association between small intestinal bacterial overgrowth (SIBO) and nonalcoholic steatohepatitis (NASH). Liver injury and fibrosis could be related to exposure to bacterial products of intestinal origin and, most notably, endotoxin, including lipopolysaccharide (LPS).

  14. Protective effects of a bacterially expressed NIF-KGF fusion protein against bleomycin-induced acute lung injury in mice.

    Science.gov (United States)

    Li, Xinping; Li, Shengli; Zhang, Miaotao; Li, Xiukun; Zhang, Xiaoming; Zhang, Wenlong; Li, Chuanghong

    2010-08-01

    Current evidence suggests that the keratinocyte growth factor (KGF) and the polymorphonuclear leukocyte may play key roles in the development of lung fibrosis. Here we describe the construction, expression, purification, and identification of a novel NIF (neutrophil inhibitory factor)-KGF mutant fusion protein (NKM). The fusion gene was ligated via a flexible octapeptide hinge and expressed as an insoluble protein in Escherichia coli BL21 (DE3). The fusion protein retained the activities of KGF and NIF, as it inhibited both fibroblast proliferation and leukocyte adhesion. Next, the effects of NKM on bleomycin-induced lung fibrosis in mice were examined. The mice were divided into the following four groups: (i) saline group; (ii) bleomycin group (instilled with 5 mg/kg bleomycin intratracheally); (iii) bleomycin plus dexamethasone (Dex) group (Dex was given intraperitoneally (i.p.) at 1 mg/kg/day 2 days prior to bleomycin instillation and daily after bleomycin instillation until the end of the treatment); and (iv) bleomycin plus NKM group (NKM was given i.p. at 2 mg/kg/day using the same protocol as the Dex group). NKM significantly improved the survival rates of mice exposed to bleomycin. The marked morphological changes and increased hydroxyproline levels resulted from the instillation of bleomycin (on Day 17) in the lungs were significantly inhibited by NKM. These results revealed that NKM can attenuate bleomycin-induced lung fibrosis, suggesting that NKM could be used to prevent bleomycin-induced lung damage or other interstitial pulmonary fibrosis.

  15. Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression

    Science.gov (United States)

    Mars, Ruben A. T.; Nicolas, Pierre; Denham, Emma L.

    2016-01-01

    SUMMARY Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5′ untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5′ ends of mRNA molecules. These can include 5′ secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. PMID:27784798

  16. Expression of recombinant human lysozyme in bacterial artificial chromosome transgenic mice promotes the growth of Bifidobacterium and inhibits the growth of Salmonella in the intestine.

    Science.gov (United States)

    Dan, Lu; Liu, Shen; Shang, Shengzhe; Zhang, Huihua; Zhang, Ran; Li, Ning

    2018-04-20

    Targeted gene modification is a novel intervention strategy to increase disease resistance more quickly than traditional animal breeding. Human lysozyme, a natural, non-specific immune factor, participates in innate immunity, exerts a wide range of antimicrobial activities against pathogens, and has immuneregulatory effects. Therefore, it is a candidate gene for improved disease resistance in animals. In this study, we successfully generated a transgenic mouse model by microinjecting a modified bacterial artificial chromosome containing a recombinant human lysozyme (rhLZ) gene into the pronuclei of fertilized mouse embryos. rhLZ was expressed in serum, liver, spleen, lung, kidney, stomach, small intestine, and large intestine but not in milk. rhLZ protein concentrations in the serum of transgenic mice ranged from 2.09 to 2.60 mg/l. To examine the effect of rhLZ on intestinal microbiota, total aerobes, total anaerobes, Clostridium, Enterococcus, Streptococcus, Salmonella, Escherichia coli, Staphylococcus, Bifidobacterium, and Lactobacillus were measured in the intestines of transgenic and wild type mice. Results showed that Bifidobacteria were significantly increased (p < 0.001), whereas Salmonella were significantly decreased (p < 0.001) in transgenic mice compared to wild type mice. Our study suggests that rhLZ expression is a potential strategy to increase animal disease resistance. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Involvement of CD252 (CD134L) and IL-2 in the expression of cytotoxic proteins in bacterial- or viral-activated human T cells.

    Science.gov (United States)

    Walch, Michael; Rampini, Silvana K; Stoeckli, Isabelle; Latinovic-Golic, Sonja; Dumrese, Claudia; Sundstrom, Hanna; Vogetseder, Alexander; Marino, Joseph; Glauser, Daniel L; van den Broek, Maries; Sander, Peter; Groscurth, Peter; Ziegler, Urs

    2009-06-15

    Regulation of cytotoxic effector molecule expression in human CTLs after viral or bacterial activation is poorly understood. By using human autologous dendritic cells (DCs) to prime T lymphocytes, we found perforin only highly up-regulated in virus- (HSV-1, vaccinia virus) but not in intracellular bacteria- (Listeria innocua, Listeria monocytogenes, Mycobacterium tuberculosis, Chlamydophila pneumoniae) activated CTLs. In contrast, larger quantities of IFN-gamma and TNF-alpha were produced in Listeria-stimulated cultures. Granzyme B and granulysin were similarly up-regulated by all tested viruses and intracellular bacteria. DCs infected with HSV-1 showed enhanced surface expression of the costimulatory molecule CD252 (CD134L) compared with Listeria-infected DC and induced enhanced secretion of IL-2. Adding blocking CD134 or neutralizing IL-2 Abs during T cell activation reduced the HSV-dependent up-regulation of perforin. These data indicate a distinct CTL effector function in response to intracellular pathogens triggered via differing endogenous IL-2 production upon costimulation through CD252.

  18. Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission.

    Science.gov (United States)

    Minerdi, Daniela; Bossi, Simone; Maffei, Massimo E; Gullino, Maria Lodovica; Garibaldi, Angelo

    2011-05-01

    Fusarium oxysporum MSA 35 [wild-type (WT) strain] is a nonpathogenic Fusarium strain, which exhibits antagonistic activity to plant pathogenic F. oxysporum isolates. The fungus lives in association with a consortium of ectosymbiotic bacteria. The WT strain, when cured of the bacterial symbionts [the cured (CU) form], is pathogenic, causing wilt symptoms similar to those of pathogenic F. oxysporum f. sp. lactucae. Both WT and CU MSA 35 strains produce microbial volatile organic compounds (MVOCs), but with a different spectrum. In vitro dual culture assays were used to assess the effects of the MVOCs produced by WT and CU strains of F. oxysporum MSA 35 on the growth and expansin gene expression of lettuce seedlings. An increase in the root length (95.6%), shoot length (75.0%) and fresh weight (85.8%) was observed only after WT strain MVOCs exposure. Leaf chlorophyll content was significantly enhanced (68%) in WT strain MVOC-treated seedlings as compared with CU strain volatiles and nontreated controls. β-Caryophyllene was found to be one of the volatiles released by WT MSA 35 responsible for the plant growth promotion effect. Semi-quantitative and quantitative reverse transcription-PCR assays indicated a significant difference in the expansin gene expression level between leaf (6.7-fold) and roots (4.4-fold) exposed to WT strain volatiles when compared with the CU strain volatiles and those that were nonexposed. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Comparison of two vectors for functional expression of a bacterial cytochrome P450 gene in Escherichia coli using CYP153 genes.

    Science.gov (United States)

    Fujita, Naoya; Sumisa, Futoshi; Shindo, Kazutoshi; Kabumoto, Hiroki; Arisawa, Akira; Ikenaga, Hiroshi; Misawa, Norihiko

    2009-08-01

    Two vectors, pT7NScamAB and pRED, have been used for the functional expression of bacterial class I cytochrome P450 (P450) genes in Escherichia coli, which utilize putidaredoxin reductase (CamA) and putidaredoxin (CamB), and the reductase domain of a self-sufficient P450RhF respectively, for electron transfer from NAD(P)H to a P450 protein. We here compared the efficiency of bioconversion with the two vectors towards n-octane, cyclohexane, n-butylbenzene, and 2-n-butylbenzofuran using two well-characterized CYP153A genes, aciA and CYP153A13a (P450balk). As for n-octane bioconversion, aciA and pT7camAB was the best combination for the production of 1-octanol and 1,8-octanediol. As for the bioconversion of cyclohexane, n-butylbenzene and 2-n-butylbenzofuran, CYP153A13a with pRED achieved the most efficient bioconversion, as compared by conversion ratio per active CYP153A protein content. It was also found that 2-n-butylbenzofuran is biotransformed into 4-benzofuran-2-yl-butyric acid via 4-benzofuran-2-yl-butan-1-ol with E. coli cells expressing CYP153A.

  20. Expression of bacterial virulence factors and cytokines during in vitro macrophage infection by enteroinvasive Escherichia coli and Shigella flexneri: a comparative study

    Directory of Open Access Journals (Sweden)

    Silvia Y Bando

    2010-09-01

    Full Text Available Enteroinvasive Escherichia coli (EIEC and Shigellaspp cause bacillary dysentery in humans by invading and multiplying within epithelial cells of the colonic mucosa. Although EIEC and Shigellashare many genetic and biochemical similarities, the illness caused by Shigellais more severe. Thus, genomic and structure-function molecular studies on the biological interactions of these invasive enterobacteria with eukaryotic cells have focused on Shigella rather than EIEC. Here we comparatively studied the interactions of EIEC and of Shigella flexneriwith cultured J774 macrophage-like cells. We evaluated several phenotypes: (i bacterial escape from macrophages after phagocytosis, (ii macrophage death induced by EIEC and S. flexneri, (iii macrophage cytokine expression in response to infection and (iv expression of plasmidial (pINV virulence genes. The results showed thatS. flexneri caused macrophage killing earlier and more intensely than EIEC. Both pathogens induced significant macrophage production of TNF, IL-1 and IL-10 after 7 h of infection. Transcription levels of the gene invasion plasmid antigen-C were lower in EIEC than in S. flexneri throughout the course of the infection; this could explain the diminished virulence of EIEC compared to S. flexneri.

  1. Candidate genes revealed by a genome scan for mosquito resistance to a bacterial insecticide: sequence and gene expression variations

    Directory of Open Access Journals (Sweden)

    David Jean-Philippe

    2009-11-01

    Full Text Available Abstract Background Genome scans are becoming an increasingly popular approach to study the genetic basis of adaptation and speciation, but on their own, they are often helpless at identifying the specific gene(s or mutation(s targeted by selection. This shortcoming is hopefully bound to disappear in the near future, thanks to the wealth of new genomic resources that are currently being developed for many species. In this article, we provide a foretaste of this exciting new era by conducting a genome scan in the mosquito Aedes aegypti with the aim to look for candidate genes involved in resistance to Bacillus thuringiensis subsp. israelensis (Bti insecticidal toxins. Results The genome of a Bti-resistant and a Bti-susceptible strains was surveyed using about 500 MITE-based molecular markers, and the loci showing the highest inter-strain genetic differentiation were sequenced and mapped on the Aedes aegypti genome sequence. Several good candidate genes for Bti-resistance were identified in the vicinity of these highly differentiated markers. Two of them, coding for a cadherin and a leucine aminopeptidase, were further examined at the sequence and gene expression levels. In the resistant strain, the cadherin gene displayed patterns of nucleotide polymorphisms consistent with the action of positive selection (e.g. an excess of high compared to intermediate frequency mutations, as well as a significant under-expression compared to the susceptible strain. Conclusion Both sequence and gene expression analyses agree to suggest a role for positive selection in the evolution of this cadherin gene in the resistant strain. However, it is unlikely that resistance to Bti is conferred by this gene alone, and further investigation will be needed to characterize other genes significantly associated with Bti resistance in Ae. aegypti. Beyond these results, this article illustrates how genome scans can build on the body of new genomic information (here, full

  2. Protein and DNA technologies for functional expression of membrane-associated cytochromes P450 in bacterial cell factories

    DEFF Research Database (Denmark)

    Vazquez Albacete, Dario

    The heavy dependence and massive consumption of fossil fuels by humans is changing our environment very rapidly. Some of the side effects of industrial activity include the pollution of the natural resources we rely on, and the reduction of biodiversity. Some chemicals found in nature exhibit great....... In most of biosynthetic pathways leading to these chemicals the cytochrome P450 enzyme family (P450s) is responsible for their final functionalization. However, the membrane-bound nature of P450s, makes their expression in microbial hosts a challenge. In order to meet the global demand for these natural......450 engineering guidelines and serves as platform to improve performance of microbial cells, thereby boosting recombinant production of complex plant P450-derived biochemicals. The knowledge generated, could guide future reconstruction of functional plant metabolic pathways leading to high valuable...

  3. (+)-(10R)-Germacrene A synthase from goldenrod, Solidago canadensis; cDNA isolation, bacterial expression and functional analysis.

    Science.gov (United States)

    Prosser, Ian; Phillips, Andy L; Gittings, Simon; Lewis, Mervyn J; Hooper, Antony M; Pickett, John A; Beale, Michael H

    2002-08-01

    Profiling of sesquiterpene hydrocarbons in extracts of goldenrod, Solidago canadensis, by GC-MS revealed the presence of both enantiomers of germacrene D and lesser amounts of germacrene A, alpha-humulene, and beta-caryophyllene. A similarity-based cloning strategy using degenerate oligonucleotide primers, based on conserved amino acid sequences in known plant sesquiterpene synthases and RT-PCR, resulted in the isolation of a full length sesquiterpene synthase cDNA. Functional expression of the cDNA in E. coli, as an N-terminal thioredoxin fusion protein using the pET32b vector yielded an enzyme that was readily purified by nickel-chelate affinity chromatography. Chiral GC-MS analysis of products from of (3)H- and (2)H-labelled farnesyl diphosphate identified the enzyme as (+)-(10R)-germacrene A synthase. Sequence analysis and molecular modelling was used to compare this enzyme with the mechanistically related epi-aristolochene synthase from tobacco.

  4. Bacterially activated B-cells drive T cell differentiation towards Tr1 through PD-1/PD-L1 expression.

    Science.gov (United States)

    Said, Sawsan Sudqi; Barut, Guliz Tuba; Mansur, Nesteren; Korkmaz, Asli; Sayi-Yazgan, Ayca

    2018-04-01

    Regulatory B cells (Bregs) play a crucial role in immunological tolerance primarily through the production of IL-10 in many diseases including autoimmune disorders, allergy, infectious diseases, and cancer. To date, various Breg subsets with overlapping phenotypes have been identified. However, the roles of Bregs in Helicobacter infection are largely unknown. In the present study, we investigate the phenotype and function of Helicobacter -stimulated B cells. Our results demonstrate that Helicobacter felis -stimulated IL-10- producing B cells (Hf stim - IL-10 + B) are composed of B10 and Transitional 2 Marginal Zone Precursor (T2-MZP) cells with expression of CD9, Tim-1, and programmed death 1 (PD-1). On the other hand, Helicobacter felis -stimulated IL-10- nonproducing B (Hf stim - IL-10 - B) cells are mainly marginal zone (MZ) B cells that express PD-L1 and secrete TGF-β, IL-6, and TNF-α, and IgM and IgG2b. Furthermore, we show that both Hf stim - IL-10 + B cells and Hf stim - IL-10 - B cells induce CD49b + LAG-3 + Tr1 cells. Here, we describe a novel mechanism for PD-1/PD-L1- driven B cell-dependent Tr1 cell differentiation. Finally, we explore the capability of Hf stim - IL-10 - B cells to induce Th17 cell differentiation, which we find to be dependent on TGF-β. Taken together, the current study demonstrates that Hf stim - B cells induce Tr1 cells through the PD-1/PD-L1 axis and Th17 cells by secreting TGF-β. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Bacterial meningitis

    NARCIS (Netherlands)

    Roos, Karen L.; van de Beek, Diederik

    2010-01-01

    Bacterial meningitis is a neurological emergency. Empiric antimicrobial and adjunctive therapy should be initiated as soon as a single set of blood cultures has been obtained. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, vomiting, photophobia, and an

  6. The bovine paranasal sinuses: Bacterial flora, epithelial expression of nitric oxide and potential role in the in-herd persistence of respiratory disease pathogens.

    Directory of Open Access Journals (Sweden)

    Gerard M Murray

    Full Text Available The bovine paranasal sinuses are a group of complex cavernous air-filled spaces, lined by respiratory epithelium, the exact function of which is unclear. While lesions affecting these sinuses are occasionally reported in cattle, their microbial flora has not been defined. Furthermore, given that the various bacterial and viral pathogens causing bovine respiratory disease (BRD persist within herds, we speculated that the paranasal sinuses may serve as a refuge for such infectious agents. The paranasal sinuses of clinically normal cattle (n = 99 and of cattle submitted for post-mortem examination (PME: n = 34 were examined by microbial culture, PCR and serology to include bacterial and viral pathogens typically associated with BRD: Mycoplasma bovis, Histophilus somni, Mannheimia haemolytica and Pasteurella multocida, bovine respiratory syncytial virus (BRSV and bovine parainfluenza-3 virus (BPIV-3. Overall, the paranasal sinuses were either predominantly sterile or did not contain detectable microbes (83.5%: 94.9% of clinically normal and 50.0% of cattle submitted for PME. Bacteria, including BRD causing pathogens, were identified in relatively small numbers of cattle (<10%. While serology indicated widespread exposure of both clinically normal and cattle submitted for PME to BPIV-3 and BRSV (seroprevalences of 91.6% and 84.7%, respectively, PCR identified BPIV-3 in only one animal. To further explore these findings we investigated the potential role of the antimicrobial molecule nitric oxide (NO within paranasal sinus epithelium using immunohistochemistry. Expression of the enzyme responsible for NO synthesis, inducible nitric oxide synthase (iNOS, was detected to varying degrees in 76.5% of a sub-sample of animals suggesting production of this compound plays a similar protective role in the bovine sinus as it does in humans.

  7. CXCR3 expression defines a novel subset of innate CD8+ T cells that enhance immunity against bacterial infection and cancer upon stimulation with IL-15

    Science.gov (United States)

    Oghumu, Steve; Terrazas, Cesar A.; Varikuti, Sanjay; Kimble, Jennifer; Vadia, Stephen; Yu, Lianbo; Seveau, Stephanie; Satoskar, Abhay R.

    2015-01-01

    Innate CD8+ T cells are a heterogeneous population with developmental pathways distinct from conventional CD8+ T cells. However, their biology, classification, and functions remain incompletely understood. We recently demonstrated the existence of a novel population of chemokine (C-X-C motif) receptor 3 (CXCR3)-positive innate CD8+ T cells. Here, we investigated the functional properties of this subset and identified effector molecules and pathways which mediate their function. Adoptive transfer of IL-15 activated CXCR3+ innate CD8+ T cells conferred increased protection against Listeria monocytogenes infection in susceptible IFN-γ−/− mice compared with similarly activated CXCR3− subset. This was associated with enhanced proliferation and IFN-γ production in CXCR3+ cells. Further, CXCR3+ innate cells showed enhanced cytotoxicity against a tumor cell line in vitro. In depth analysis of the CXCR3+ subset showed increased gene expression of Ccl5, Klrc1, CtsW, GP49a, IL-2Rβ, Atp5e, and Ly6c but reduced IFN-γR2 and Art2b. Ingenuity pathway analysis revealed an up-regulation of genes associated with T-cell activation, proliferation, cytotoxicity, and translational initiation in CXCR3+ populations. Our results demonstrate that CXCR3 expression in innate CD8+ T cells defines a subset with enhanced cytotoxic potential and protective antibacterial immune functions. Immunotherapeutic approaches against infectious disease and cancer could utilize CXCR3+ innate CD8+ T-cell populations as novel clinical intervention strategies.—Oghumu, S., Terrazas, C. A., Varikuti, S., Kimble, J., Vadia, S., Yu, L., Seveau, S., Satoskar, A. R. CXCR3 expression defines a novel subset of innate CD8+ T cells that enhance immunity against bacterial infection and cancer upon stimulation with IL-15. PMID:25466888

  8. Expression of a bacterial bi-functional chorismate mutase/prephenate dehydratase modulates primary and secondary metabolism associated with aromatic amino acids in Arabidopsis.

    Science.gov (United States)

    Tzin, Vered; Malitsky, Sergey; Aharoni, Asaph; Galili, Gad

    2009-10-01

    Plants can synthesize the aromatic amino acid Phe via arogenate, but it is still not known whether they also use an alternative route for Phe biosynthesis via phenylpyruvate, like many micro-organisms. To examine this possibility, we expressed a bacterial bi-functional PheA (chorismate mutase/prephenate dehydratase) gene in Arabidopsis thaliana that converts chorismate via prephenate into phenylpyruvate. The PheA-expressing plants showed a large increase in the level of Phe, implying that they can convert phenylpyruvate into Phe. In addition, PheA expression rendered the plants more sensitive than wild-type plants to the Trp biosynthesis inhibitor 5-methyl-Trp, implying that Phe biosynthesis competes with Trp biosynthesis from their common precursor chorismate. Surprisingly, GC-MS, LC-MS and microarray analyses showed that this increase in Phe accumulation only had a very minor effect on the levels of other primary metabolites as well as on the transcriptome profile, implying little regulatory cross-interaction between the aromatic amino acid biosynthesis network and the bulk of the Arabidopsis transcriptome and primary metabolism. However, the levels of a number of secondary metabolites derived from all three aromatic amino acids (Phe, Trp and Tyr) were altered in the PheA plants, implying regulatory cross-interactions between the flux of aromatic amino acid biosynthesis from chorismate and their further metabolism into various secondary metabolites. Taken together, our results provide insights into the regulatory mechanisms of aromatic amino acid biosynthesis and their interaction with central primary metabolism, as well as the regulatory interface between primary and secondary metabolism.

  9. Bacterial evolution through the selective loss of beneficial Genes. Trade-offs in expression involving two loci.

    Science.gov (United States)

    Zinser, Erik R; Schneider, Dominique; Blot, Michel; Kolter, Roberto

    2003-08-01

    The loss of preexisting genes or gene activities during evolution is a major mechanism of ecological specialization. Evolutionary processes that can account for gene loss or inactivation have so far been restricted to one of two mechanisms: direct selection for the loss of gene activities that are disadvantageous under the conditions of selection (i.e., antagonistic pleiotropy) and selection-independent genetic drift of neutral (or nearly neutral) mutations (i.e., mutation accumulation). In this study we demonstrate with an evolved strain of Escherichia coli that a third, distinct mechanism exists by which gene activities can be lost. This selection-dependent mechanism involves the expropriation of one gene's upstream regulatory element by a second gene via a homologous recombination event. Resulting from this genetic exchange is the activation of the second gene and a concomitant inactivation of the first gene. This gene-for-gene expression tradeoff provides a net fitness gain, even if the forfeited activity of the first gene can play a positive role in fitness under the conditions of selection.

  10. Influence of Bxpel1 Gene Silencing by dsRNA Interference on the Development and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus

    Science.gov (United States)

    Qiu, Xiu-Wen; Wu, Xiao-Qin; Huang, Lin; Ye, Jian-Ren

    2016-01-01

    As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. The pectate lyase gene is essential for successful invasion of their host plants by plant-parasitic nematodes. To demonstrate the role of pectate lyase gene in the PWD process, RNA interference (RNAi) is used to analyze the function of the pectate lyase 1 gene in B. xylophilus (Bxpel1). The efficiency of RNAi was detected by real-time PCR. The result demonstrated that the quantity of B. xylophilus propagated with control solution treatment was 62 times greater than that soaking in double-stranded RNA (dsRNA) after B. xylophilus inoculation in Botrytis cinerea for the first generation (F1). The number of B. xylophilus soaking in control solution was doubled compared to that soaking in Bxpel1 dsRNA four days after inoculation in Pinus thunbergii. The quantity of B. xylophilus was reduced significantly (p < 0.001) after treatment with dsRNAi compared with that using a control solution treatment. Bxpel1 dsRNAi reduced the migration speed and reproduction of B. xylophilus in pine trees. The pathogenicity to P. thunbergii seedling of B. xylophilus was weaker after soaking in dsRNA solution compared with that after soaking in the control solution. Our results suggest that Bxpel1 gene is a significant pathogenic factor in the PWD process and this basic information may facilitate a better understanding of the molecular mechanism of PWD. PMID:26797602

  11. Tissue-specific expression and post-translational modifications of plant- and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L.

    Science.gov (United States)

    O’Leary, Brendan; Fedosejevs, Eric T.; Hill, Allyson T.; Bettridge, James; Park, Joonho; Rao, Srinath K.; Leach, Craig A.; Plaxton, William C.

    2011-01-01

    This study employs transcript profiling together with immunoblotting and co-immunopurification to assess the tissue-specific expression, protein:protein interactions, and post-translational modifications (PTMs) of plant- and bacterial-type phosphoenolpyruvate carboxylase (PEPC) isozymes (PTPC and BTPC, respectively) in the castor plant, Ricinus communis. Previous studies established that the Class-1 PEPC (PTPC homotetramer) of castor oil seeds (COS) is activated by phosphorylation at Ser-11 and inhibited by monoubiquitination at Lys-628 during endosperm development and germination, respectively. Elimination of photosynthate supply to developing COS by depodding caused the PTPC of the endosperm and cotyledon to be dephosphorylated, and then subsequently monoubiquitinated in vivo. PTPC monoubiquitination rather than phosphorylation is widespread throughout the castor plant and appears to be the predominant PTM of Class-1 PEPC that occurs in planta. The distinctive developmental patterns of PTPC phosphorylation versus monoubiquitination indicates that these two PTMs are mutually exclusive. By contrast, the BTPC: (i) is abundant in the inner integument, cotyledon, and endosperm of developing COS, but occurs at low levels in roots and cotyledons of germinated COS, (ii) shows a unique developmental pattern in leaves such that it is present in leaf buds and young expanding leaves, but undetectable in fully expanded leaves, and (iii) tightly interacts with co-expressed PTPC to form the novel and allosterically-desensitized Class-2 PEPC heteromeric complex. BTPC and thus Class-2 PEPC up-regulation appears to be a distinctive feature of rapidly growing and/or biosynthetically active tissues that require a large anaplerotic flux from phosphoenolpyruvate to replenish tricarboxylic acid cycle C-skeletons being withdrawn for anabolism. PMID:21841182

  12. Expression of the bacterial type III effector DspA/E in Saccharomyces cerevisiae down-regulates the sphingolipid biosynthetic pathway leading to growth arrest.

    Science.gov (United States)

    Siamer, Sabrina; Guillas, Isabelle; Shimobayashi, Mitsugu; Kunz, Caroline; Hall, Michael N; Barny, Marie-Anne

    2014-06-27

    Erwinia amylovora, the bacterium responsible for fire blight, relies on a type III secretion system and a single injected effector, DspA/E, to induce disease in host plants. DspA/E belongs to the widespread AvrE family of type III effectors that suppress plant defense responses and promote bacterial growth following infection. Ectopic expression of DspA/E in plant or in Saccharomyces cerevisiae is toxic, indicating that DspA/E likely targets a cellular process conserved between yeast and plant. To unravel the mode of action of DspA/E, we screened the Euroscarf S. cerevisiae library for mutants resistant to DspA/E-induced growth arrest. The most resistant mutants (Δsur4, Δfen1, Δipt1, Δskn1, Δcsg1, Δcsg2, Δorm1, and Δorm2) were impaired in the sphingolipid biosynthetic pathway. Exogenously supplied sphingolipid precursors such as the long chain bases (LCBs) phytosphingosine and dihydrosphingosine also suppressed the DspA/E-induced yeast growth defect. Expression of DspA/E in yeast down-regulated LCB biosynthesis and induced a rapid decrease in LCB levels, indicating that serine palmitoyltransferase (SPT), the first and rate-limiting enzyme of the sphingolipid biosynthetic pathway, was repressed. SPT down-regulation was mediated by dephosphorylation and activation of Orm proteins that negatively regulate SPT. A Δcdc55 mutation affecting Cdc55-PP2A protein phosphatase activity prevented Orm dephosphorylation and suppressed DspA/E-induced growth arrest. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. HIV gene expression from intact proviruses positioned in bacterial artificial chromosomes at integration sites previously identified in latently infected T cells

    International Nuclear Information System (INIS)

    Eipers, Peter G.; Salazar-Gonzalez, Jesus F.; Morrow, Casey D.

    2011-01-01

    HIV integration predominantly occurs in introns of transcriptionally active genes. To study the impact of the integration site on HIV gene expression, a complete HIV-1 provirus (with GFP as a fusion with Nef) was inserted into bacterial artificial chromosomes (BACs) at three sites previously identified in latent T cells of patients: topoisomerase II (Top2A), DNA methyltransferase 1 (DNMT1), or basic leucine transcription factor 2 (BACH2). Transfection of BAC-HIV into 293 T cells resulted in a fourfold difference in production of infectious HIV-1. Cell lines were established that contained BAC-Top2A, BAC-DNMT1, or BAC-BACH2, but only BAC-DNMT1 spontaneously produced virus, albeit at a low level. Stimulation with TNF-α resulted in virus production from four of five BAC-Top2A and all BAC-DNMT1 cell lines, but not from the BAC-BACH2 lines. The results of these studies highlight differences between integration sites identified in latent T cells to support virus production and reactivation from latency.

  14. cDNA cloning and bacterial expression of an endo-β-1,4-mannanase, AkMan, from Aplysia kurodai.

    Science.gov (United States)

    Zahura, Umme Afsari; Rahman, Mohammad Matiur; Inoue, Akira; Tanaka, Hiroyuki; Ojima, Takao

    2011-08-01

    Previously we isolated an endo-β-1,4-mannanase (EC 3.2.1.78), AkMan, from the digestive fluid of a common sea hare Aplysia kurodai and demonstrated that this enzyme had a broad pH optimum spanning 4.0 to 7.5 and an appreciably high heat stability in this pH range (Zahura et al., Comp. Biochem. Physiol., B157, 137-148 (2010)). In the present study, we cloned the cDNA encoding AkMan and constructed a bacterial expression system for this enzyme to enrich information about the primary structure and the characteristic properties of this enzyme. cDNA fragments encoding AkMan were amplified by PCR followed by 5'- and 3'-RACE PCRs from the A. kurodai hepatopancreas cDNA using degenerated primers designed on the basis of partial amino-acid sequences of AkMan. The cDNA including entire translational region of AkMan consisted of 1392bp and encoded 369 amino-acid residues. The N-terminal region of 17 residues of the deduced sequence except for the initiation Met was regarded as the signal peptide of AkMan and the mature enzyme region was considered to comprise 351 residues with a calculated molecular mass of 39961.96Da. Comparison of the primary structure of AkMan with other β-1,4-mannanases indicated that AkMan belongs to the subfamily 10 of glycosyl-hydrolase-family-5 (GHF5). Phylogenetic analysis for the GHF5 β-1,4-mannanases indicated that AkMan together with other molluscan β-1,4-mannanases formed an independent clade of the subfamily 10 in the phylogenetic tree. The recombinant AkMan (recAkMan) was expressed with an Escherichia coli BL21(DE3)-pCold1 expression system as an N-terminal hexahistidine-tagged protein and purified by Ni-NTA affinity chromatography. The recAkMan showed the broad pH optimum in acidic pH range as did native AkMan; however, heat stability of recAkMan was considerably lower than that of native enzyme. This may indicate that the stability of AkMan is derived from an appropriate folding and/or some posttranslational modifications in Aplysia cells

  15. Bacterial Proteasomes.

    Science.gov (United States)

    Jastrab, Jordan B; Darwin, K Heran

    2015-01-01

    Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology.

  16. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin

    Science.gov (United States)

    Lu, C.; Fedoroff, N.

    2000-01-01

    Both physiological and genetic evidence indicate interconnections among plant responses to different hormones. We describe a pleiotropic recessive Arabidopsis transposon insertion mutation, designated hyponastic leaves (hyl1), that alters the plant's responses to several hormones. The mutant is characterized by shorter stature, delayed flowering, leaf hyponasty, reduced fertility, decreased rate of root growth, and an altered root gravitropic response. It also exhibits less sensitivity to auxin and cytokinin and hypersensitivity to abscisic acid (ABA). The auxin transport inhibitor 2,3,5-triiodobenzoic acid normalizes the mutant phenotype somewhat, whereas another auxin transport inhibitor, N-(1-naph-thyl)phthalamic acid, exacerbates the phenotype. The gene, designated HYL1, encodes a 419-amino acid protein that contains two double-stranded RNA (dsRNA) binding motifs, a nuclear localization motif, and a C-terminal repeat structure suggestive of a protein-protein interaction domain. We present evidence that the HYL1 gene is ABA-regulated and encodes a nuclear dsRNA binding protein. We hypothesize that the HYL1 protein is a regulatory protein functioning at the transcriptional or post-transcriptional level.

  17. Molecular characterization of a new monopartite dsRNA mycovirus from mycorrhizal Thelephora terrestris (Ehrh.) and its detection in soil oribatid mites (Acari: Oribatida)

    Energy Technology Data Exchange (ETDEWEB)

    Petrzik, Karel, E-mail: petrzik@umbr.cas.cz [Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice (Czech Republic); Sarkisova, Tatiana [Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice (Czech Republic); Starý, Josef [Institute of Soil Biology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05 České Budějovice (Czech Republic); Koloniuk, Igor [Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice (Czech Republic); and others

    2016-02-15

    A novel dsRNA virus was identified in the mycorrhizal fungus Thelephora terrestris (Ehrh.) and sequenced. This virus, named Thelephora terrestris virus 1 (TtV1), contains two reading frames in different frames but with the possibility that ORF2 could be translated as a fusion polyprotein after ribosomal -1 frameshifting. Picornavirus 2A-like motif, nudix hydrolase, phytoreovirus S7, and RdRp domains were found in a unique arrangement on the polyprotein. A new genus named Phlegivirus and containing TtV1, PgLV1, RfV1 and LeV is therefore proposed. Twenty species of oribatid mites were identified in soil material in the vicinity of T. terrestris. TtV1 was detected in large amounts in Steganacarus (Tropacarus) carinatus (C.L. Koch, 1841) and in much smaller amounts in Nothrus silvestris (Nicolet). This is the first description of mycovirus presence in oribatid mites. - Highlights: • A novel dsRNA virus was identified in the mycorrhizal fungus Thelephora terrestris. • A new virus genus Phlegivirus is proposed. • The mycovirus was firstly detected in oribatid mites.

  18. Molecular characterization of a new monopartite dsRNA mycovirus from mycorrhizal Thelephora terrestris (Ehrh.) and its detection in soil oribatid mites (Acari: Oribatida)

    International Nuclear Information System (INIS)

    Petrzik, Karel; Sarkisova, Tatiana; Starý, Josef; Koloniuk, Igor

    2016-01-01

    A novel dsRNA virus was identified in the mycorrhizal fungus Thelephora terrestris (Ehrh.) and sequenced. This virus, named Thelephora terrestris virus 1 (TtV1), contains two reading frames in different frames but with the possibility that ORF2 could be translated as a fusion polyprotein after ribosomal -1 frameshifting. Picornavirus 2A-like motif, nudix hydrolase, phytoreovirus S7, and RdRp domains were found in a unique arrangement on the polyprotein. A new genus named Phlegivirus and containing TtV1, PgLV1, RfV1 and LeV is therefore proposed. Twenty species of oribatid mites were identified in soil material in the vicinity of T. terrestris. TtV1 was detected in large amounts in Steganacarus (Tropacarus) carinatus (C.L. Koch, 1841) and in much smaller amounts in Nothrus silvestris (Nicolet). This is the first description of mycovirus presence in oribatid mites. - Highlights: • A novel dsRNA virus was identified in the mycorrhizal fungus Thelephora terrestris. • A new virus genus Phlegivirus is proposed. • The mycovirus was firstly detected in oribatid mites.

  19. Bacterial adhesion

    NARCIS (Netherlands)

    Loosdrecht, van M.C.M.

    1988-01-01

    As mentioned in the introduction of this thesis bacterial adhesion has been studied from a variety of (mostly practice oriented) starting points. This has resulted in a range of widely divergent approaches. In order to elucidate general principles in bacterial adhesion phenomena, we felt it

  20. Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface.

    Science.gov (United States)

    Montanaro, Jacqueline; Inic-Kanada, Aleksandra; Ladurner, Angela; Stein, Elisabeth; Belij, Sandra; Bintner, Nora; Schlacher, Simone; Schuerer, Nadine; Mayr, Ulrike Beate; Lubitz, Werner; Leisch, Nikolaus; Barisani-Asenbauer, Talin

    2015-01-01

    To target chronic inflammatory ocular surface diseases, a drug delivery platform is needed that is safe, possesses immunomodulatory properties, and can be used either for drug delivery, or as a foreign antigen carrier. A new therapeutic approach that we have previously proposed uses nonliving bacterial ghosts (BGs) as a carrier-delivery system which can be engineered to carry foreign antigens and/or be loaded with therapeutic drugs. The parent strain chosen for development of our BG delivery system is the probiotic Escherichia coli strain Nissle 1917 (EcN), whose intrinsic properties trigger the innate immune system with the flagella and fimbriae used to attach and stimulate epithelial cells. In previous studies, we have shown that EcN BGs are safe for the ocular surface route, but evidence that EcN BGs retain flagella and fimbriae after transformation, has never been visually confirmed. In this study, we used different visualization techniques to determine whether flagella and fimbriae are retained on EcN BGs engineered either for drug delivery or as a foreign antigen carrier. We have also shown by immunoelectron microscopy that EcN retains two foreign antigens after processing to become EcN BGs. Furthermore, we demonstrated that BGs derived from EcN and expressing a foreign antigen attachment to conjunctival epithelial cells in vitro without causing reduced cell viability. These results are an important step in constructing a delivery system based on a nonliving probiotic that is suitable for use in ocular surface diseases pairing immunomodulation and targeted delivery.

  1. Toxicity ranking and toxic mode of action evaluation of commonly used agricultural adjuvants on the basis of bacterial gene expression profiles.

    Directory of Open Access Journals (Sweden)

    Ingrid Nobels

    Full Text Available The omnipresent group of pesticide adjuvants are often referred to as "inert" ingredients, a rather misleading term since consumers associate this term with "safe". The upcoming new EU regulation concerning the introduction of plant protection products on the market (EC1107/2009 includes for the first time the demand for information on the possible negative effects of not only the active ingredients but also the used adjuvants. This new regulation requires basic toxicological information that allows decisions on the use/ban or preference of use of available adjuvants. In this study we obtained toxicological relevant information through a multiple endpoint reporter assay for a broad selection of commonly used adjuvants including several solvents (e.g. isophorone and non-ionic surfactants (e.g. ethoxylated alcohols. The used assay allows the toxicity screening in a mechanistic way, with direct measurement of specific toxicological responses (e.g. oxidative stress, DNA damage, membrane damage and general cell lesions. The results show that the selected solvents are less toxic than the surfactants, suggesting that solvents may have a preference of use, but further research on more compounds is needed to confirm this observation. The gene expression profiles of the selected surfactants reveal that a phenol (ethoxylated tristyrylphenol and an organosilicone surfactant (ethoxylated trisiloxane show little or no inductions at EC(20 concentrations, making them preferred surfactants for use in different applications. The organosilicone surfactant shows little or no toxicity and good adjuvant properties. However, this study also illustrates possible genotoxicity (induction of the bacterial SOS response for several surfactants (POEA, AE, tri-EO, EO FA and EO NP and one solvent (gamma-butyrolactone. Although the number of compounds that were evaluated is rather limited (13, the results show that the used reporter assay is a promising tool to rank commonly

  2. Avances y limitaciones en el uso de los dsRNA como estrategias de control y prevención de enfermedades virales en sistemas acuícolas

    Directory of Open Access Journals (Sweden)

    Ljubomir Papic

    2015-07-01

    Full Text Available El desarrollo de la acuicultura sustentable es acorde con la demanda creciente de nuevas metodologías que aseguren la salud de las diversas especies acuícolas. Dentro de ellas, el uso de terapias revolucionarias basadas en RNA de doble cadena (dsRNA ha abierto una amplia gama de posibilidades en el progreso de las estrategias de control y prevención de enfermedades. El sistema de silenciamiento génico mediante RNA de interferencia (RNAi presenta un interesante potencial para el control de enfermedades infecciosas en sistemas de acuicultura. Por otro lado, se ha visto que los dsRNA pueden tener un importante efecto inmunomodulador en células de peces activando mecanismos de defensa inmune innata. La definición de un adecuado sistema de suministro para asegurar el ingreso de los dsRNA a la célula objetivo ha resultado en pruebas medianamente exitosas. Sin embargo, el cómo suministrar el dsRNA para asegurar el ingreso al organismo en su hábitat natural, se presenta como la principal dificultad de esta tecnología. Este trabajo presenta una completa revisión del potencial del silenciamiento post-transcripcional mediado por dsRNA, como estrategia antiviral en peces de cultivo y de su potencial uso como inmunoestimulante, enfatizando la necesidad de buscar metodologías que permitan suministrar el dsRNA al organismo objetivo, considerando las limitaciones y particularidades de un sistema de cultivo intensivo.

  3. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  4. Bacterial Vaginosis

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... of getting other STDs, such as chlamydia and gonorrhea . These bacteria can sometimes cause pelvic inflammatory disease ( ...

  5. Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface

    Directory of Open Access Journals (Sweden)

    Montanaro J

    2015-07-01

    Full Text Available Jacqueline Montanaro,1 Aleksandra Inic-Kanada,1 Angela Ladurner,1 Elisabeth Stein,1 Sandra Belij,1 Nora Bintner,1 Simone Schlacher,1 Nadine Schuerer,1 Ulrike Beate Mayr,2 Werner Lubitz,2 Nikolaus Leisch,3 Talin Barisani-Asenbauer11Laura Bassi Centres of Expertise, OCUVAC – Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria; 2BIRD-C GmbH & Co KG, Kritzendorf, Austria; 3Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, AustriaAbstract: To target chronic inflammatory ocular surface diseases, a drug delivery platform is needed that is safe, possesses immunomodulatory properties, and can be used either for drug delivery, or as a foreign antigen carrier. A new therapeutic approach that we have previously proposed uses nonliving bacterial ghosts (BGs as a carrier-delivery system which can be engineered to carry foreign antigens and/or be loaded with therapeutic drugs. The parent strain chosen for development of our BG delivery system is the probiotic Escherichia coli strain Nissle 1917 (EcN, whose intrinsic properties trigger the innate immune system with the flagella and fimbriae used to attach and stimulate epithelial cells. In previous studies, we have shown that EcN BGs are safe for the ocular surface route, but evidence that EcN BGs retain flagella and fimbriae after transformation, has never been visually confirmed. In this study, we used different visualization techniques to determine whether flagella and fimbriae are retained on EcN BGs engineered either for drug delivery or as a foreign antigen carrier. We have also shown by immunoelectron microscopy that EcN retains two foreign antigens after processing to become EcN BGs. Furthermore, we demonstrated that BGs derived from EcN and expressing a foreign antigen attachment to conjunctival epithelial cells in vitro without causing reduced cell viability. These results

  6. Expression of the double-stranded RNA of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Tortricidae) ribosomal protein P0 gene enhances the resistance of transgenic soybean plants.

    Science.gov (United States)

    Meng, Fanli; Li, Yang; Zang, Zhenyuan; Li, Na; Ran, Ruixue; Cao, Yingxue; Li, Tianyu; Zhou, Quan; Li, Wenbin

    2017-12-01

    The soybean pod borer [SPB; Leguminivora glycinivorella (Matsumura) (Lepidoptera: Tortricidae)] is the most important soybean pest in northeastern Asia. Silencing genes using plant-mediated RNA-interference is a promising strategy for controlling SPB infestations. The ribosomal protein P0 is important for protein translation and DNA repair in the SPB. Thus, transferring P0 double-stranded RNA (dsRNA) into plants may help prevent SPB-induced damage. We investigated the effects of SpbP0 dsRNA injections and SpbP0 dsRNA-expressing transgenic soybean plants on the SPB. Larval mortality rates were greater for SpbP0 dsRNA-injected larvae (96%) than for the control larvae (31%) at 14 days after injections. Transgenic T 2 soybean plants expressing SpbP0 dsRNA sustained less damage from SPB larvae than control plants. In addition, the expression level of the SpbP0 gene decreased and the mortality rate increased when SPB larvae were fed on T 3 transgenic soybean pods. Moreover, the surviving larvae were deformed and exhibited inhibited growth. Silencing SpbP0 expression is lethal to the SPB. Transgenic soybean plants expressing SpbP0 dsRNA are more resistant to the SPB than wild-type plants. Thus, SpbP0 dsRNA-expressing transgenic plants may be useful for controlling insect pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Combined prime-boost vaccination against tick-borne encephalitis (TBE using a recombinant vaccinia virus and a bacterial plasmid both expressing TBE virus non-structural NS1 protein

    Directory of Open Access Journals (Sweden)

    Zakharova LG

    2005-08-01

    Full Text Available Abstract Background Heterologous prime-boost immunization protocols using different gene expression systems have proven to be successful tools in protecting against various diseases in experimental animal models. The main reason for using this approach is to exploit the ability of expression cassettes to prime or boost the immune system in different ways during vaccination procedures. The purpose of the project was to study the ability of recombinant vaccinia virus (VV and bacterial plasmid, both carrying the NS1 gene from tick-borne encephalitis (TBE virus under the control of different promoters, to protect mice against lethal challenge using a heterologous prime-boost vaccination protocol. Results The heterologous prime-boost vaccination protocol, using a VV recombinant and bacterial plasmid, both containing the NS1 TBE virus protein gene under the control of different promoters, achieved a high level of protection in mice against lethal challenge with a highly pathogenic TBE virus strain. No signs of pronounced TBE infection were detected in the surviving animals. Conclusion Heterologous prime-boost vaccination protocols using recombinant VV and bacterial plasmids could be used for the development of flavivirus vaccines.

  8. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  9. Toward pectin fermentation by Saccharomyces cerevisiae: Expression of the first two steps of a bacterial pathway for d-galacturonate metabolism.

    NARCIS (Netherlands)

    Huisjes, E.H.; Luttik, M.A.; Almering, M.J.; Bisschops, M.M.; Dang, D.H.; Kleerebezem, M.; Siezen, R.J.; Maris, van A.J.; Pronk, J.T.

    2012-01-01

    Saccharomyces cerevisiae cannot metabolize d-galacturonate, an important monomer of pectin. Use of S. cerevisiae for production of ethanol or other compounds of interest from pectin-rich feedstocks therefore requires introduction of a heterologous pathway for d-galacturonate metabolism. Bacterial

  10. Association analysis of bacterial leaf spot resistance and SNP markers derived from expressed sequence tags (ESTs) in lettuce (Lactuca sativa L.)

    Science.gov (United States)

    Bacterial leaf spot of lettuce, caused by Xanthomonas campestris pv. vitians, is a devastating disease of lettuce worldwide. Since there are no chemicals available for effective control of the disease, host-plant resistance is highly desirable to protect lettuce production. A total of 179 lettuce ge...

  11. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...

  12. Bacterial meningitis

    NARCIS (Netherlands)

    Heckenberg, Sebastiaan G. B.; Brouwer, Matthijs C.; van de Beek, Diederik

    2014-01-01

    Bacterial meningitis is a neurologic emergency. Vaccination against common pathogens has decreased the burden of disease. Early diagnosis and rapid initiation of empiric antimicrobial and adjunctive therapy are vital. Therapy should be initiated as soon as blood cultures have been obtained,

  13. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation,

  14. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    , the production and oxidation of methane, nitrate reduction and fixation of atmospheric nitrogen are exclusively carried out by different groups of bacteria. Some bacterial species – ‘extremophiles’ – thrive in extreme environments in which no eukaryotic organisms can survive with respect to temperature, salinity...

  15. Bacterial Vaginosis

    Science.gov (United States)

    ... that coats the walls of the vagina Vaginal discharge with an unpleasant or fishlike odor Vaginal pain or itching Burning during urination Doctors are unsure of the incubation period for bacterial vaginosis. How Is the Diagnosis Made? Your child’s pediatrician can make the diagnosis ...

  16. Bacterial stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Bacterial stress. Physicochemical and chemical parameters: temperature, pressure, pH, salt concentration, oxygen, irradiation. Nutritional depravation: nutrient starvation, water shortage. Toxic compounds: Antibiotics, heavy metals, toxins, mutagens. Interactions with other cells: ...

  17. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  18. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    reduce or delay bacterial biofilm formation of a range of urinary tract infectious E.coli and Klebsiella isolates. Several other proteinaceous coatings were also found to display anti-adhesive properties, possibly providing a measure for controlling the colonization of implant materials. Several other...... components. These substances may both mediate and stabilize the bacterial biofilm. Finally, several adhesive structures were examined, and a novel physiological biofilm phenotype in E.coli biofilms was characterized, namely cell chain formation. The autotransporter protein, antigen 43, was implicated...

  19. Bacterial lipases

    OpenAIRE

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, meaning a sharp increase in lipase activity observed when the substrate starts to form an emulsion, thereby presenting to the enzyme an interfacial area. As a consequence, the kinetics of a lipase rea...

  20. A common multiple cloning site in a set of vectors for expression of eukaryotic genes in mammalian, insect and bacterial cells

    DEFF Research Database (Denmark)

    Pallisgaard, N; Pedersen, FS; Birkelund, Svend

    1994-01-01

    a start Met codon was included in the same reading frame as in lambda gt11Sfi-Not to support expression of partial cDNA clones. Thus a cDNA insert of lambda gt11Sfi-Not could be shuttled among the new vectors for expression. The other set of vectors without a start codon were suitable for expression of c......DNA carrying their own start Met codon. By Western blot analysis and by transactivation of a reporter plasmid in co-transfections we show that cDNA is very efficiently expressed in NIH 3T3 cells under control of the elongation factor 1 alpha promoter....

  1. Expression of a bacterial feedback-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism.

    Science.gov (United States)

    Tzin, Vered; Malitsky, Sergey; Ben Zvi, Michal Moyal; Bedair, Mohamed; Sumner, Lloyd; Aharoni, Asaph; Galili, Gad

    2012-04-01

    The shikimate pathway of plants mediates the conversion of primary carbon metabolites via chorismate into the three aromatic amino acids and to numerous secondary metabolites derived from them. However, the regulation of the shikimate pathway is still far from being understood. We hypothesized that 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS) is a key enzyme regulating flux through the shikimate pathway. To test this hypothesis, we expressed a mutant bacterial AroG gene encoding a feedback-insensitive DAHPS in transgenic Arabidopsis plants. The plants were subjected to detailed analysis of primary metabolism, using GC-MS, as well as secondary metabolism, using LC-MS. Our results exposed a major effect of bacterial AroG expression on the levels of shikimate intermediate metabolites, phenylalanine, tryptophan and broad classes of secondary metabolite, such as phenylpropanoids, glucosinolates, auxin and other hormone conjugates. We propose that DAHPS is a key regulatory enzyme of the shikimate pathway. Moreover, our results shed light on additional potential metabolic bottlenecks bridging plant primary and secondary metabolism. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  2. Transcriptome profiling of a toxic dinoflagellate reveals a gene-rich protist and a potential impact on gene expression due to bacterial presence.

    Directory of Open Access Journals (Sweden)

    Ahmed Moustafa

    2010-03-01

    Full Text Available Dinoflagellates are unicellular, often photosynthetic protists that play a major role in the dynamics of the Earth's oceans and climate. Sequencing of dinoflagellate nuclear DNA is thwarted by their massive genome sizes that are often several times that in humans. However, modern transcriptomic methods offer promising approaches to tackle this challenging system. Here, we used massively parallel signature sequencing (MPSS to understand global transcriptional regulation patterns in Alexandrium tamarense cultures that were grown under four different conditions.We generated more than 40,000 unique short expression signatures gathered from the four conditions. Of these, about 11,000 signatures did not display detectable differential expression patterns. At a p-value < 1E-10, 1,124 signatures were differentially expressed in the three treatments, xenic, nitrogen-limited, and phosphorus-limited, compared to the nutrient-replete control, with the presence of bacteria explaining the largest set of these differentially expressed signatures.Among microbial eukaryotes, dinoflagellates contain the largest number of genes in their nuclear genomes. These genes occur in complex families, many of which have evolved via recent gene duplication events. Our expression data suggest that about 73% of the Alexandrium transcriptome shows no significant change in gene expression under the experimental conditions used here and may comprise a "core" component for this species. We report a fundamental shift in expression patterns in response to the presence of bacteria, highlighting the impact of biotic interaction on gene expression in dinoflagellates.

  3. Molecular characterization of a new monopartite dsRNA mycovirus from mycorrhizal Thelephora terrestris (Ehrh.) and its detection in soil oribatid mites (Acari: Oribatida).

    Science.gov (United States)

    Petrzik, Karel; Sarkisova, Tatiana; Starý, Josef; Koloniuk, Igor; Hrabáková, Lenka; Kubešová, Olga

    2016-02-01

    A novel dsRNA virus was identified in the mycorrhizal fungus Thelephora terrestris (Ehrh.) and sequenced. This virus, named Thelephora terrestris virus 1 (TtV1), contains two reading frames in different frames but with the possibility that ORF2 could be translated as a fusion polyprotein after ribosomal -1 frameshifting. Picornavirus 2A-like motif, nudix hydrolase, phytoreovirus S7, and RdRp domains were found in a unique arrangement on the polyprotein. A new genus named Phlegivirus and containing TtV1, PgLV1, RfV1 and LeV is therefore proposed. Twenty species of oribatid mites were identified in soil material in the vicinity of T. terrestris. TtV1 was detected in large amounts in Steganacarus (Tropacarus) carinatus (C.L. Koch, 1841) and in much smaller amounts in Nothrus silvestris (Nicolet). This is the first description of mycovirus presence in oribatid mites. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Bacterial mitosis

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Borch, Jonas; Dam, Mette

    2003-01-01

    Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system...... movement is powered by insertional polymerization of ParM. Consistently, we find that segregating plasmids are positioned at the ends of extending ParM filaments. Thus, the process of R1 plasmid segregation in E. coli appears to be mechanistically analogous to the actin-based motility operating...

  5. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase

    Directory of Open Access Journals (Sweden)

    Ayalew Ligaba-Osena

    2018-02-01

    Full Text Available To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta, which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.

  6. Isolation and bacterial expression of a sesquiterpene synthase CDNA clone from peppermint(mentha .chi. piperita, L.) that produces the aphid alarm pheromone (E)-.beta.-farnesene

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Crock, John E. (Moscow, ID)

    1999-01-01

    A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-farnesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-farnesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.

  7. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-.beta.-farnesene

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce; Crock, John E.

    2005-01-25

    A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-famesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-famesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.

  8. Efficient bacterial expression of recombinant potato mop-top virus non-structural triple gene block protein 1 modified by progressive deletion of its N-terminus

    Czech Academy of Sciences Publication Activity Database

    Pečenková, Tamara; Filigarová, Marie; Čeřovská, Noemi

    2005-01-01

    Roč. 41, - (2005), s. 128-135 ISSN 1046-5928 R&D Projects: GA ČR GA522/04/1329 Institutional research plan: CEZ:AV0Z50380511 Keywords : Protein expression * Potato mop-top virus * Triple gene block Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.553, year: 2005

  9. Relative expression of bacterial and host specific genes associated with probiotic survival and viability in the mice gut fed with Lactobacillus plantarum Lp91.

    Science.gov (United States)

    Chandran, Archana; Duary, Raj Kumar; Grover, Sunita; Batish, Virender Kumar

    2013-11-07

    The present investigation was aimed at studying the relative expression of atpD (a key part of F1F0-ATPase operon), bsh (bile salt hydrolase), mub (mucus-binding protein) and MUC2 (mucin) genes in mouse model for establishing the in vivo functional efficacy of Lactobacillus plantarum Lp91 (MTCC5690) by reverse transcription-quantitative PCR (RT-qPCR). The atpD gene was significantly up-regulated to 2.0, 2.4 and 3.2 folds in Lp91 after 15, 30 and 60 min transit in the stomach of mice. The maximal significant (Pstrain Lp5276 after seven days of mice feeding. Simultaneously, mub gene expression increased to 12.8 and 22.7 fold in both Lp91 and Lp5276, respectively. The expression level of MUC2 was at the level of 1.6 and 2.1 fold in the host colon on administration with Lp91 and Lp5276 feeding, respectively. Hence, the expression of atpD, bsh, mub, MUC2 could be considered as prospective and potential biomarkers for screening of novel probiotic lactobacillus strains for optimal functionality in the gut. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes

    DEFF Research Database (Denmark)

    Li, Yiping; Ingmer, Hanne; Madsen, Mogens

    2008-01-01

    Background Campylobacter jejuni is a major cause of inflammatory diarrhoea in humans and is considered a commensal of the gastroenteric tract of the avian host. However, little is known about the interaction between C. jejuni and the avian host including the cytokine responses and the expression...

  11. Gene silencing of mannose 6-phosphate reductase in the parasitic weed Orobanche aegyptiaca through the production of homologous dsRNA sequences in the host plant.

    Science.gov (United States)

    Aly, Radi; Cholakh, Hila; Joel, Daniel M; Leibman, Diana; Steinitz, Benjamin; Zelcer, Aaron; Naglis, Anna; Yarden, Oded; Gal-On, Amit

    2009-08-01

    Orobanche spp. (broomrape) are parasitic plants which subsist on the roots of a wide range of hosts, including tomato, causing severe losses in yield quality and quantity. Large amounts of mannitol accumulate in this parasitic weed during development. Mannose 6-phosphate reductase (M6PR) is a key enzyme in mannitol biosynthesis, and it has been suggested that mannitol accumulation may be very important for Orobanche development. Therefore, the Orobanche M6PR gene is a potential target for efforts to control this parasite. Transgenic tomato plants were produced bearing a gene construct containing a specific 277-bp fragment from Orobanche aegyptiaca M6PR-mRNA, in an inverted-repeat configuration. M6PR-siRNA was detected in three independent transgenic tomato lines in the R1 generation, but was not detected in the parasite. Quantitative RT-PCR analysis showed that the amount of endogenous M6PR mRNA in the tubercles and underground shoots of O. aegyptiaca grown on transgenic host plants was reduced by 60%-80%. Concomitant with M6PR mRNA suppression, there was a significant decrease in mannitol level and a significant increase in the percentage of dead O. aegyptiaca tubercles on the transgenic host plants. The detection of mir390, which is involved with cytoplasmic dsRNA processing, is the first indication of the existence of gene-silencing mechanisms in Orobanche spp. Gene silencing mechanisms are probably involved with the production of decreased levels of M6PR mRNA in the parasites grown on the transformed tomato lines.

  12. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L..

    Directory of Open Access Journals (Sweden)

    Zongyong Tong

    Full Text Available Alfalfa (Medicago sativa L. is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs, such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.

  13. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao

    2014-01-01

    Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.

  14. A convenient method for preparation of biologically active recombinant CHH of the kuruma prawn, Marsupenaeus japonicus, using the bacterial expression system.

    Science.gov (United States)

    Nagai, Chiaki; Asazuma, Hideaki; Nagata, Shinji; Ohira, Tsuyoshi; Nagasawa, Hiromichi

    2009-03-01

    Crustacean hyperglycemic hormone (CHH) not only plays an important role in the modulation of hemolymph glucose level but also functions in other biological events including molting, reproduction and stress response. Of the six CHHs characterized in Marsupenaeus japonicus, an expression system for recombinant Pej-SGP-VII (rPej-SGP-VII-amide) has not yet been established. Here, we established a procedure using a Nus-tag for solubilization, thereby soluble and biologically active rPej-SGP-VII-amide could successfully be obtained by a simpler procedure than previous ones used for producing other recombinant Pej-SGPs (Pej-SGP-I, III and IV). It was found that rPej-SGP-VII-amide thus obtained had the correct arrangement of intramolecular disulfide bonds and helix-rich secondary structure. The established expression system for rPej-SGP-VII-amide may be applicable for the preparation of other recombinant CHHs.

  15. Insect parents improve the anti-parasitic and anti-bacterial defence of their offspring by priming the expression of immune-relevant genes.

    Science.gov (United States)

    Trauer-Kizilelma, Ute; Hilker, Monika

    2015-09-01

    Insect parents that experienced an immune challenge are known to prepare (prime) the immune activity of their offspring for improved defence. This phenomenon has intensively been studied by analysing especially immunity-related proteins. However, it is unknown how transgenerational immune priming affects transcript levels of immune-relevant genes of the offspring upon an actual threat. Here, we investigated how an immune challenge of Manduca sexta parents affects the expression of immune-related genes in their eggs that are attacked by parasitoids. Furthermore, we addressed the question whether the transgenerational immune priming of expression of genes in the eggs is still traceable in adult offspring. Our study revealed that a parental immune challenge did not affect the expression of immune-related genes in unparasitised eggs. However, immune-related genes in parasitised eggs of immune-challenged parents were upregulated to a higher level than those in parasitised eggs of unchallenged parents. Hence, this transgenerational immune priming of the eggs was detected only "on demand", i.e. upon parasitoid attack. The priming effects were also traceable in adult female progeny of immune-challenged parents which showed higher transcript levels of several immune-related genes in their ovaries than non-primed progeny. Some of the primed genes showed enhanced expression even when the progeny was left unchallenged, whereas other genes were upregulated to a greater extent in primed female progeny than non-primed ones only when the progeny itself was immune-challenged. Thus, the detection of transgenerational immune priming strongly depends on the analysed genes and the presence or absence of an actual threat for the offspring. We suggest that M. sexta eggs laid by immune-challenged parents "afford" to upregulate the transcription of immunity-related genes only upon attack, because they have the chance to be endowed by parentally directly transferred protective proteins

  16. Identification of an intestine-specific promoter and inducible expression of bacterial α-galactosidase in mammalian cells by a lac operon system.

    Science.gov (United States)

    Ya-Feng, Zhai; Gang, Shu; Xiao-Tong, Zhu; Zhi-Qi, Zhang; Xia-Jing, Lin; Song-Bo, Wang; Li-Na, Wang; Yong-Liang, Zhang; Qing-Yan, Jiang

    2012-10-30

    α-galactosidase has been widely used in animal husbandry to reduce anti-nutritional factors (such as α-galactoside) in feed. Intestine-specific and substrate inducible expression of α-galactosidase would be highly beneficial for transgenic animal production. To achieve the intestine-specific and substrate inducible expression of α-galactosidase, we first identified intestine-specific promoters by comparing the transcriptional activity and tissue specificity of four intestine-specific promoters from human intestinal fatty acid binding protein, rat intestinal fatty acid binding protein, human mucin-2 and human lysozyme. We made two chimeric constructs combining the promoter and enhancer of human mucin-2, rat intestinal trefoil factor and human sucrase-isomaltase. Then a modified lac operon system was constructed to investigate the induction of α-galactosidase expression and enzyme activity by isopropyl β-D-1-thiogalactopyranoside (IPTG) and an α-galactosidase substrate, α-lactose.We declared that the research carried out on human (Zhai Yafeng) was in compliance with the Helsinki Declaration, and experimental research on animals also followed internationally recognized guidelines. The activity of the human mucin-2 promoter was about 2 to 3 times higher than that of other intestine-specific promoters. In the lac operon system, the repressor significantly decreased (P lactose supplementation reversed (P operon system in an intestine-derived cell line, which could be of great value for gene therapy applications and transgenic animal production.

  17. Germacrene C synthase from Lycopersicon esculentum cv. VFNT cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase.

    Science.gov (United States)

    Colby, S M; Crock, J; Dowdle-Rizzo, B; Lemaux, P G; Croteau, R

    1998-03-03

    Germacrene C was found by GC-MS and NMR analysis to be the most abundant sesquiterpene in the leaf oil of Lycopersicon esculentum cv. VFNT Cherry, with lesser amounts of germacrene A, guaia-6,9-diene, germacrene B, beta-caryophyllene, alpha-humulene, and germacrene D. Soluble enzyme preparations from leaves catalyzed the divalent metal ion-dependent cyclization of [1-3H]farnesyl diphosphate to these same sesquiterpene olefins, as determined by radio-GC. To obtain a germacrene synthase cDNA, a set of degenerate primers was constructed based on conserved amino acid sequences of related terpenoid cyclases. With cDNA prepared from leaf epidermis-enriched mRNA, these primers amplified a 767-bp fragment that was used as a hybridization probe to screen the cDNA library. Thirty-one clones were evaluated for functional expression of terpenoid cyclase activity in Escherichia coli by using labeled geranyl, farnesyl, and geranylgeranyl diphosphates as substrates. Nine cDNA isolates expressed sesquiterpene synthase activity, and GC-MS analysis of the products identified germacrene C with smaller amounts of germacrene A, B, and D. None of the expressed proteins was active with geranylgeranyl diphosphate; however, one truncated protein converted geranyl diphosphate to the monoterpene limonene. The cDNA inserts specify a deduced polypeptide of 548 amino acids (Mr = 64,114), and sequence comparison with other plant sesquiterpene cyclases indicates that germacrene C synthase most closely resembles cotton delta-cadinene synthase (50% identity).

  18. BACTERIAL PLASMIDS

    Directory of Open Access Journals (Sweden)

    Marina Dinic

    2007-12-01

    Full Text Available Plasmids, extrachromosomal DNA, were identified in bacteria pertaining to family of Enterobacteriacae for the very first time. After that, they were discovered in almost every single observed strain. The structure of plasmids is made of circular double chain DNA molecules which are replicated autonomously in a host cell. Their length may vary from few up to several hundred kilobase (kb. Among the bacteria, plasmids are mostly transferred horizontally by conjugation process. Plasmid replication process can be divided into three stages: initiation, elongation, and termination. The process involves DNA helicase I, DNA gyrase, DNA polymerase III, endonuclease, and ligase.Plasmids contain genes essential for plasmid function and their preservation in a host cell (the beginning and the control of replication. Some of them possess genes whichcontrol plasmid stability. There is a common opinion that plasmids are unnecessary fora growth of bacterial population and their vital functions; thus, in many cases they can be taken up or kicked out with no lethal effects to a plasmid host cell. However,there are numerous biological functions of bacteria related to plasmids. Plasmids identification and classification are based upon their genetic features which are presented permanently in all of them, and these are: abilities to preserve themselves in a host cell and to control a replication process. In this way, plasmids classification among incompatibility groups is performed. The method of replicon typing, which is based on genotype and not on phenotype characteristics, has the same results as in compatibility grouping.

  19. Comparative Analysis of RNAi-Based Methods to Down-Regulate Expression of Two Genes Expressed at Different Levels in Myzus persicae.

    Science.gov (United States)

    Mulot, Michaël; Boissinot, Sylvaine; Monsion, Baptiste; Rastegar, Maryam; Clavijo, Gabriel; Halter, David; Bochet, Nicole; Erdinger, Monique; Brault, Véronique

    2016-11-19

    With the increasing availability of aphid genomic data, it is necessary to develop robust functional validation methods to evaluate the role of specific aphid genes. This work represents the first study in which five different techniques, all based on RNA interference and on oral acquisition of double-stranded RNA (dsRNA), were developed to silence two genes, ALY and Eph , potentially involved in polerovirus transmission by aphids. Efficient silencing of only Eph transcripts, which are less abundant than those of ALY , could be achieved by feeding aphids on transgenic Arabidopsis thaliana expressing an RNA hairpin targeting Eph , on Nicotiana benthamiana infected with a Tobacco rattle virus (TRV)-Eph recombinant virus, or on in vitro-synthesized Eph -targeting dsRNA. These experiments showed that the silencing efficiency may differ greatly between genes and that aphid gut cells seem to be preferentially affected by the silencing mechanism after oral acquisition of dsRNA. In addition, the use of plants infected with recombinant TRV proved to be a promising technique to silence aphid genes as it does not require plant transformation. This work highlights the need to pursue development of innovative strategies to reproducibly achieve reduction of expression of aphid genes.

  20. Disk abalone (Haliotis discus discus) expresses a novel antistasin-like serine protease inhibitor: Molecular cloning and immune response against bacterial infection.

    Science.gov (United States)

    Nikapitiya, Chamilani; De Zoysa, Mahanama; Oh, Chulhong; Lee, Youngdeuk; Ekanayake, Prashani Mudika; Whang, Ilson; Choi, Cheol Young; Lee, Jae-Seong; Lee, Jehee

    2010-04-01

    A novel antistasin-like cDNA homologue named as Ab-Antistasin was isolated from the disk abalone Haliotis discus discus normalized cDNA library. The Ab-Antistasin (1398-bp) consisted of an 1185-bp open reading frame encoding 395 amino acid (aa) residues. The predicted molecular mass and isoelectric point of Ab-Antistasin was 44 kDa and 8.5, respectively, and showed highest identity (23.1%) to Hydra magnipapillata antistasin. The most striking feature of Ab-Antistasin is the 12-fold internal repeats (IR) of an antistasin-like domain. Ten of the 12 IR domains (26-27 aa) are highly conserved, with 6 cysteines and 1 glycine. Ab-Antistasin was comprised of three Bowman-Birk serine protease inhibitor family motifs. The recombinant Ab-Antistasin (rAb-Antistasin) was over-expressed in Escherichia coli and purified using a pMAL system. rAb-Antistasin (10 microM) was able to inhibit trypsin activity by 66% in a dose-dependent manner. Moreover, it exhibited low prolongation activity for coagulation in an APTT assay (86.0 s compared to control 42.0 s) with human blood. Endogenous Ab-Antistasin mRNA was found to be expressed in digestive tract, hepatopancreas, hemocytes, abductor muscle and mantle, with highest expression levels in digestive tract followed by hepatopancreas and hemocytes. Quantitative real time PCR results revealed that Ab-Antistasin transcription was significantly induced at 3 h post-infection (p.i.) after challenged by a mixture of bacteria (Vibrio alginolyticus, Vibrio parahemolyticus, and Listeria monocytogenes) in the abalone digestive tract; in the hemocytes, induction occurred at 6 and 12 h. The results indicated that Ab-Antistasin could play an important role in the immune responses of mollusks. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Potential costs of bacterial infection on storage protein gene expression and reproduction in queenless Apis mellifera worker bees on distinct dietary regimes.

    Science.gov (United States)

    Lourenço, Anete Pedro; Martins, Juliana Ramos; Guidugli-Lazzarini, Karina Rosa; Macedo, Liliane Maria Fróes; Bitondi, Márcia Maria Gentile; Simões, Zilá Luz Paulino

    2012-09-01

    Insects are able to combat infection by initiating an efficient immune response that involves synthesizing antimicrobial peptides and a range of other defense molecules. These responses may be costly to the organism, resulting in it exploiting endogenous resources to maintain homeostasis or support defense to the detriment of other physiological needs. We used queenless worker bees on distinct dietary regimes that may alter hemolymph protein storage and ovary activation to investigate the physiological costs of infection with Serratia marcescens. The expression of the genes encoding the storage proteins vitellogenin and hexamerin 70a, the vitellogenin receptor, and vasa (which has a putative role in reproduction), was impaired in the infected bees. This impairment was mainly evident in the bees fed beebread, which caused significantly higher expression of these genes than did royal jelly or syrup, and this was confirmed at the vitellogenin and hexamerin 70a protein levels. Beebread was also the only diet that promoted ovary activation in the queenless bees, but this activation was significantly impaired by the infection. The expression of the genes encoding the storage proteins apolipophorins-I and -III and the lipophorin receptor was not altered by infection regardless the diet provided to the bees. Similarly, the storage of apolipophorin-I in the hemolymph was only slightly impaired by the infection, independently of the supplied diet. Taken together these results indicate that, infection demands a physiological cost from the transcription of specific protein storage-related genes and from the reproductive capacity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Identification of an intestine-specific promoter and inducible expression of bacterial α-galactosidase in mammalian cells by a lac operon system

    Directory of Open Access Journals (Sweden)

    Ya-Feng Zhai

    2012-10-01

    Full Text Available Abstract Background α-galactosidase has been widely used in animal husbandry to reduce anti-nutritional factors (such as α-galactoside in feed. Intestine-specific and substrate inducible expression of α-galactosidase would be highly beneficial for transgenic animal production. Methods To achieve the intestine-specific and substrate inducible expression of α-galactosidase, we first identified intestine-specific promoters by comparing the transcriptional activity and tissue specificity of four intestine-specific promoters from human intestinal fatty acid binding protein, rat intestinal fatty acid binding protein, human mucin-2 and human lysozyme. We made two chimeric constructs combining the promoter and enhancer of human mucin-2, rat intestinal trefoil factor and human sucrase-isomaltase. Then a modified lac operon system was constructed to investigate the induction of α-galactosidase expression and enzyme activity by isopropyl β-D-1-thiogalactopyranoside (IPTG and an α-galactosidase substrate, α-lactose. We declared that the research carried out on human (Zhai Yafeng was in compliance with the Helsinki Declaration, and experimental research on animals also followed internationally recognized guidelines. Results The activity of the human mucin-2 promoter was about 2 to 3 times higher than that of other intestine-specific promoters. In the lac operon system, the repressor significantly decreased (P P Conclusions We have successfully constructed a high specificity inducible lac operon system in an intestine-derived cell line, which could be of great value for gene therapy applications and transgenic animal production.

  3. Germacrene C synthase from Lycopersicon esculentum cv. VFNT Cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase

    Science.gov (United States)

    Colby, Sheila M.; Crock, John; Dowdle-Rizzo, Barbara; Lemaux, Peggy G.; Croteau, Rodney

    1998-01-01

    Germacrene C was found by GC-MS and NMR analysis to be the most abundant sesquiterpene in the leaf oil of Lycopersicon esculentum cv. VFNT Cherry, with lesser amounts of germacrene A, guaia-6,9-diene, germacrene B, β-caryophyllene, α-humulene, and germacrene D. Soluble enzyme preparations from leaves catalyzed the divalent metal ion-dependent cyclization of [1-3H]farnesyl diphosphate to these same sesquiterpene olefins, as determined by radio-GC. To obtain a germacrene synthase cDNA, a set of degenerate primers was constructed based on conserved amino acid sequences of related terpenoid cyclases. With cDNA prepared from leaf epidermis-enriched mRNA, these primers amplified a 767-bp fragment that was used as a hybridization probe to screen the cDNA library. Thirty-one clones were evaluated for functional expression of terpenoid cyclase activity in Escherichia coli by using labeled geranyl, farnesyl, and geranylgeranyl diphosphates as substrates. Nine cDNA isolates expressed sesquiterpene synthase activity, and GC-MS analysis of the products identified germacrene C with smaller amounts of germacrene A, B, and D. None of the expressed proteins was active with geranylgeranyl diphosphate; however, one truncated protein converted geranyl diphosphate to the monoterpene limonene. The cDNA inserts specify a deduced polypeptide of 548 amino acids (Mr = 64,114), and sequence comparison with other plant sesquiterpene cyclases indicates that germacrene C synthase most closely resembles cotton δ-cadinene synthase (50% identity). PMID:9482865

  4. HMG CoA Lyase (HL): Mutation detection and development of a bacterial expression system for screening the activity of mutant alleles from HL-deficient patients

    Energy Technology Data Exchange (ETDEWEB)

    Robert, M.F.; Ashmarina, L.; Poitier, E. [Hospital Ste-Justine, Montreal (Canada)] [and others

    1994-09-01

    HL catalyzes the last step of ketogenesis, and autosomal recessive HL deficiency in humans can cause episodes of hypoglycemia and coma. Structurally, HL is a dimer of identical 325-residue peptides which requires a reducing environment to maintain activity. We cloned the human and mouse HL cDNAs and genes and have performed mutation analysis on cells from 30 HL-deficient probands. Using SSCP and also genomic Southern analysis we have identified putative mutations on 53/60 alleles of these patients (88%). To date, we have found 20 mutations: 3 large deletions, 4 termination mutations, 5 frameshift mutations, and 8 missense mutations which we suspect to be pathogenic based on evolutionary conservation and/or our previous studies on purified HL protein. We have also identified 3 polymorphic variants. In order to directly test the activity of the missense mutations, we established a pGEX-based system, using a glutathione S transferase (GST)-HL fusion protein. Expressed wild-type GST-HL was insoluble. We previously located a reactive Cys at the C-terminus of chicken HL which is conserved in human HL. We produced a mutant HL peptide, C323S, which replaced Cys323 with Ser. Purified C323S is soluble and has similar kinetics to wild-type HL. C323S-containing GST-HL is soluble and enzymatically active. We are cloning and expressing the 8 missense mutations.

  5. Immortalization of Fetal Bovine Colon Epithelial Cells by Expression of Human Cyclin D1, Mutant Cyclin Dependent Kinase 4, and Telomerase Reverse Transcriptase: An In Vitro Model for Bacterial Infection.

    Directory of Open Access Journals (Sweden)

    Kengo Kuroda

    Full Text Available Cattle are the economically important animals in human society. They are essential for the production of livestock products such as milk and meats. The production efficiency of livestock products is negatively impacted by infection with zoonotic pathogens. To prevent and control infectious diseases, it is important to understand the interaction between cattle tissue and pathogenic bacteria. In this study, we established an in vitro infection model of an immortalized bovine colon-derived epithelial cell line by transducing the cells with lentiviral vectors containing genes encoding cell cycle regulators cyclin D1, mutant cyclin dependent kinase 4 (CDK4, and human telomerase reverse transcriptase (TERT. The established cell line showed continuous cell proliferation, expression of epithelial markers, and an intact karyotype, indicating that the cells maintained their original nature as colon-derived epithelium. Furthermore, we exposed the established cell line to two strains of Salmonella enterica and EHEC. Interestingly, S. Typhimurium showed higher affinity for the established cell line and invaded the cytoplasm than S. Enteritidis. Quantitative RT-PCR revealed that gene expression of Toll-like receptor 1 (TLR1, TLR 2 and TLR 3, whereas TLR 4, 5 and 6 were not detectable in established cells. Our established immortalized colon-derived epithelial cell should be a useful tool for studies evaluating the molecular mechanisms underlying bacterial infection.

  6. Immortalization of Fetal Bovine Colon Epithelial Cells by Expression of Human Cyclin D1, Mutant Cyclin Dependent Kinase 4, and Telomerase Reverse Transcriptase: An In Vitro Model for Bacterial Infection.

    Science.gov (United States)

    Kuroda, Kengo; Kiyono, Tohru; Isogai, Emiko; Masuda, Mizuki; Narita, Moe; Okuno, Katsuya; Koyanagi, Yukako; Fukuda, Tomokazu

    2015-01-01

    Cattle are the economically important animals in human society. They are essential for the production of livestock products such as milk and meats. The production efficiency of livestock products is negatively impacted by infection with zoonotic pathogens. To prevent and control infectious diseases, it is important to understand the interaction between cattle tissue and pathogenic bacteria. In this study, we established an in vitro infection model of an immortalized bovine colon-derived epithelial cell line by transducing the cells with lentiviral vectors containing genes encoding cell cycle regulators cyclin D1, mutant cyclin dependent kinase 4 (CDK4), and human telomerase reverse transcriptase (TERT). The established cell line showed continuous cell proliferation, expression of epithelial markers, and an intact karyotype, indicating that the cells maintained their original nature as colon-derived epithelium. Furthermore, we exposed the established cell line to two strains of Salmonella enterica and EHEC. Interestingly, S. Typhimurium showed higher affinity for the established cell line and invaded the cytoplasm than S. Enteritidis. Quantitative RT-PCR revealed that gene expression of Toll-like receptor 1 (TLR1), TLR 2 and TLR 3, whereas TLR 4, 5 and 6 were not detectable in established cells. Our established immortalized colon-derived epithelial cell should be a useful tool for studies evaluating the molecular mechanisms underlying bacterial infection.

  7. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Bistra B Nankova

    Full Text Available Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA like propionic (PPA, and butyric acid (BA, which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD. Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals

  8. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mouser, P.J.; N' Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J.; Long, P.E.; Lovley, D.R.

    2009-04-01

    The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological status of Geobacter species in subsurface environments during bioremediation. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes.

  9. A shift from oral to blood pH is a stimulus for adaptive gene expression of Streptococcus gordonii CH1 and induces protection against oxidative stress and enhanced bacterial growth by expression of msrA

    NARCIS (Netherlands)

    Vriesema, A. J.; Dankert, J.; Zaat, S. A.

    2000-01-01

    Viridans group streptococci (VS) from the oral cavity entering the bloodstream may initiate infective endocarditis (IE). We aimed to identify genes expressed in response to a pH increase from slightly acidic (pH 6.2) to neutral (pH 7.3) as encountered by VS entering the bloodstream from the oral

  10. Protection of yellow head virus infection in shrimp by feeding of bacteria expressing dsRNAs.

    Science.gov (United States)

    Sanitt, Poohrawind; Attasart, Pongsopee; Panyim, Sakol

    2014-06-10

    Although prevention of shrimp mortality from yellow head virus (YHV) infection via dsRNA injection has been well demonstrated for many years, it has not yet been applied in a farm culture because of its impracticality. Hence, oral administration of dsRNA becomes an alternative and desirable approach. This study is the first to demonstrate that oral feeding of Escherichia coli expressing shrimp Rab7 gene (dsRab7) or YHV protease gene (dsYHV) could inhibit YHV replication and lowered shrimp mortality. E. coli HT115 expressing dsRab7 or dsYHV or a combination of these dsRNAs were embedded in agar and used to feed vannamei shrimp at early juvenile stage before YHV challenge. After 4 days of continuous feeding of dsRNAs, strong inhibitory effect on shrimp mortality was observed in which dsRab7 gave the highest effect (70% reduction from the control) whereas dsYHV showed a 40% reduction. Our results reveal the potential of anti-YHV strategy via orally delivered dsRNA for application in the shrimp farm industry. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Evaluation of spectral libraries and sample preparation for DIA-LC-MS analysis of host cell proteins: A case study of a bacterially expressed recombinant biopharmaceutical protein.

    Science.gov (United States)

    Heissel, Søren; Bunkenborg, Jakob; Kristiansen, Max Per; Holmbjerg, Anne Fich; Grimstrup, Marie; Mørtz, Ejvind; Kofoed, Thomas; Højrup, Peter

    2018-07-01

    Recombinantly expressed biopharmaceutical proteins often undergo a series of purification steps with the aim of removing contaminating material. Depending on the application of the protein, there are various requirements for the degree of purity, but host cell proteins (HCPs) will in general remain in small amounts. LC-MS has emerged as an orthogonal technique, capable of providing detailed information regarding the individual proteins. The aim of this case study was to characterize the HCPs associated with a biopharmaceutical protein, provided by Statens Serum Institut (DK), which is used in the field of tuberculosis and has not previously been studied by LC-MS. The developed method and acquired experiences served to develop a generalized strategy for HCP-characterization in our laboratory. We evaluated the use of different spectral libraries, recorded in data-dependent mode for obtaining the highest HCP coverage, combined with SWATH-based absolute quantification. The accuracy of two label-free absolute quantification strategies was evaluated using stable isotope peptides. Two different sample preparation workflows were evaluated for optimal HCP yield. . The label-free strategy produced accurate quantification across several orders of magnitude, and the calculated purity was found to be in agreement with previously obtained ELISA data. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Baculovirus DNA Replication-Specific Expression Factors Trigger Apoptosis and Shutoff of Host Protein Synthesis during Infection▿

    OpenAIRE

    Schultz, Kimberly L. W.; Friesen, Paul D.

    2009-01-01

    Apoptosis is an important antivirus defense. To define the poorly understood pathways by which invertebrates respond to viruses by inducing apoptosis, we have identified replication events that trigger apoptosis in baculovirus-infected cells. We used RNA silencing to ablate factors required for multiplication of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Transfection with double-stranded RNA (dsRNA) complementary to the AcMNPV late expression factors (lefs) that are des...

  13. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    2013-01-01

    with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell......Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing...... signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated...

  14. Spread from the Sink to the Patient:In SituStudy Using Green Fluorescent Protein (GFP)-Expressing Escherichia coli To Model Bacterial Dispersion from Hand-Washing Sink-Trap Reservoirs.

    Science.gov (United States)

    Kotay, Shireen; Chai, Weidong; Guilford, William; Barry, Katie; Mathers, Amy J

    2017-04-15

    There have been an increasing number of reports implicating Gammaproteobacteria as often carrying genes of drug resistance from colonized sink traps to vulnerable hospitalized patients. However, the mechanism of transmission from the wastewater of the sink P-trap to patients remains poorly understood. Herein we report the use of a designated hand-washing sink lab gallery to model dispersion of green fluorescent protein (GFP)-expressing Escherichia coli from sink wastewater to the surrounding environment. We found no dispersion of GFP-expressing E. coli directly from the P-trap to the sink basin or surrounding countertop with coincident water flow from a faucet. However, when the GFP-expressing E. coli cells were allowed to mature in the P-trap under conditions similar to those in a hospital environment, a GFP-expressing E. coli -containing putative biofilm extended upward over 7 days to reach the strainer. This subsequently resulted in droplet dispersion to the surrounding areas (<30 in.) during faucet operation. We also demonstrated that P-trap colonization could occur by retrograde transmission along a common pipe. We postulate that the organisms mobilize up to the strainer from the P-trap, resulting in droplet dispersion rather than dispersion directly from the P-trap. This work helps to further define the mode of transmission of bacteria from a P-trap reservoir to a vulnerable hospitalized patient. IMPORTANCE Many recent reports demonstrate that sink drain pipes become colonized with highly consequential multidrug-resistant bacteria, which then results in hospital-acquired infections. However, the mechanism of dispersal of bacteria from the sink to patients has not been fully elucidated. Through establishment of a unique sink gallery, this work found that a staged mode of transmission involving biofilm growth from the lower pipe to the sink strainer and subsequent splatter to the bowl and surrounding area occurs rather than splatter directly from the water in

  15. Male germ cells express abundant endogenous siRNAs

    Science.gov (United States)

    Song, Rui; Hennig, Grant W.; Wu, Qiuxia; Jose, Charlie; Zheng, Huili; Yan, Wei

    2011-01-01

    In mammals, endogenous siRNAs (endo-siRNAs) have only been reported in murine oocytes and embryonic stem cells. Here, we show that murine spermatogenic cells express numerous endo-siRNAs, which are likely to be derived from naturally occurring double-stranded RNA (dsRNA) precursors. The biogenesis of these testicular endo-siRNAs is DROSHA independent, but DICER dependent. These male germ cell endo-siRNAs can potentially target hundreds of transcripts or thousands of DNA regions in the genome. Overall, our work has unveiled another hidden layer of regulation imposed by small noncoding RNAs during male germ cell development. PMID:21788498

  16. Bacterial Carriers for Glioblastoma Therapy

    Directory of Open Access Journals (Sweden)

    Nalini Mehta

    2017-03-01

    Full Text Available Treatment of aggressive glioblastoma brain tumors is challenging, largely due to diffusion barriers preventing efficient drug dosing to tumors. To overcome these barriers, bacterial carriers that are actively motile and programmed to migrate and localize to tumor zones were designed. These carriers can induce apoptosis via hypoxia-controlled expression of a tumor suppressor protein p53 and a pro-apoptotic drug, Azurin. In a xenograft model of human glioblastoma in rats, bacterial carrier therapy conferred a significant survival benefit with 19% overall long-term survival of >100 days in treated animals relative to a median survival of 26 days in control untreated animals. Histological and proteomic analyses were performed to elucidate the safety and efficacy of these carriers, showing an absence of systemic toxicity and a restored neural environment in treated responders. In the treated non-responders, proteomic analysis revealed competing mechanisms of pro-apoptotic and drug-resistant activity. This bacterial carrier opens a versatile avenue to overcome diffusion barriers in glioblastoma by virtue of its active motility in extracellular space and can lead to tailored therapies via tumor-specific expression of tumoricidal proteins.

  17. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach...... that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  18. An invertebrate signal transducer and activator of transcription 5 (STAT5) ortholog from the disk abalone, Haliotis discus discus: Genomic structure, early developmental expression, and immune responses to bacterial and viral stresses.

    Science.gov (United States)

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Park, Hae-Chul; Lee, Jehee

    2016-03-01

    Signal transducer and activator of transcription (STAT) family members are key signaling molecules that transduce cellular responses from the cell membrane to the nucleus upon Janus kinase (JAK) activation. Although seven STAT members have been reported in mammals, very limited information on STAT genes in molluscans is available. In this study, we identified and characterized a STAT paralog that is homologous to STAT5 from the disk abalone, Haliotis discus discus, and designated as AbSTAT5. Comparison of the deduced amino acid sequence for AbSTAT5 (790 amino acids) with other counterparts revealed conserved residues important for functions and typical domain regions, including the N-terminal domain, coiled-coil domain, DNA-binding domain, linker domain, and Src homology 2 (SH2) domains as mammalian counterparts. Analysis of STAT phylogeny revealed that AbSTAT5 was clustered with the molluscan subgroup in STAT5 clade with distinct evolution. According to the genomic structure of AbSTAT5, the coding sequence was distributed into 20 exons with 19 introns. Immunologically essential transcription factor-binding sites, such as GATA-1, HNF, SP1, C/EBP, Oct-1, AP1, c-Jun, and Sox-2, were predicted at the 5'-proximal region of AbSTAT5. Expression of AbSTAT5 mRNA was detected in different stages of embryonic development and observed at considerably higher levels in the morula and late veliger stages. Tissue-specific expressional studies revealed that the highest level of AbSTAT5 transcripts was detected in hemocytes, followed by gill tissues. Temporal expressions of AbSTAT5 were analyzed upon live bacterial (Vibrio parahemolyticus and Listeria monocytogenes), viral (viral hemorrhagic septicemia virus), and pathogen-associated molecular pattern (lipopolysaccharides and Poly I:C) stimulations, and significant elevations indicated immune modulation. These results suggest that AbSTAT5 may be involved in maintaining innate immune responses from developmental to adult stages in

  19. Isolation of immune-relating 185/333-1 gene from Sea Urchin ( Strongylocentrotus intermedius) and Its expression analysis

    Science.gov (United States)

    Wang, Yinan; Ding, Jun; Liu, Yang; Liu, Xuewei; Chang, Yaqing

    2016-02-01

    The 185/333 gene family involved in the immune response of sea urchin. One 185/333 cDNA was isolated from Strongylocentrotus intermedius, and named as Si185/333-1. Its full-length cDNA was 1246 bp in length with a 906 bp open reading frame encoding a protein of 301 aa. The molecular weight of the deduced protein was approximately 33.1 kD with an estimated PI of pH 6.26. Si185/333-1 had high identities (70%-86%) to most of Sp185/333. An extraordinary identity of 92% was found between Si185/333-1 and Sp185/333 C5 alpha (ABR22474). Moderate identities (63%-64%) were displayed between Si185/333-1 and He185/333. Si185/333-1 had similar structure to Sp185/333. A signal-peptide, a gly-rich region and a his-rich region were found in its secondary structure. RGD motif was found in gly-rich region at position 116-118aa. There was no transmembrane region in Si185/333-1. The element pattern of Si185/333-1 is different from any available pattern that identified in Sp185/333. Si185/333-1 clustered together with pattern C Sp185/333 in phylogenetic tree. The Si185/333-1 mRNA could be detected in tißsues including peristomial membrane, coelomocytes, muscle of Aristotles lantern, gut and tube feet, with the highest expression level detected in peristomial membrane and a relatively low expression in ovary and testis. The temporal expression of Si185/333-1 in peristomial membrane and coelomocytes were up-regulated after bacterial, ß-D-glucan and dsRNA challenges, reaching the maximum at 12 h post-stimulation. The up-regulation was more obvious in coelomocytes, and bacterial challenge triggered the highest response. These results proved that 185/333-1 gene was involved in the immune defense of S. intermedius, while more studies were necessary for its function in S. intermedius immunity.

  20. Dynamics of bacterial gene regulation

    Science.gov (United States)

    Narang, Atul

    2009-03-01

    The phenomenon of diauxic growth is a classical problem of bacterial gene regulation. The most well studied example of this phenomenon is the glucose-lactose diauxie, which occurs because the expression of the lac operon is strongly repressed in the presence of glucose. This repression is often explained by appealing to molecular mechanisms such as cAMP activation and inducer exclusion. I will begin by analyzing data showing that these molecular mechanisms cannot explain the strong lac repression because they exert a relatively weak effect. I will then present a minimal model accounting only for enzyme induction and dilution, which yields strong repression despite the absence of catabolite repression and inducer exclusion. The model also explains the growth patterns observed in batch and continuous cultures of various bacterial strains and substrate mixtures. The talk will conclude with a discussion of the experimental evidence regarding positive feedback, the key component of the minimal model.

  1. Bombyx mori DNA/RNA non-specific nuclease: expression of isoforms in insect culture cells, subcellular localization and functional assays.

    Science.gov (United States)

    Liu, Jisheng; Swevers, Luc; Iatrou, Kostas; Huvenne, Hanneke; Smagghe, Guy

    2012-08-01

    A DNA/RNA non-specific alkaline nuclease (BmdsRNase) was isolated from the digestive juice of Bombyx mori. While originally reported to be produced by the midgut only, in this project it was found that the mRNA of this enzyme was also expressed in the epidermis, fat body, gut, thoracic muscles, Malpighian tubules, brain, and silk glands of 5th instar larvae, indicating additional functions to its reported role in nucleic acid digestion in the midgut. In order to study the functional properties of BmdsRNase, three pEA-BmdsRNase expression constructs were generated, characterized by presence or absence of a signal peptide and a propeptide, and used for expression in lepidopteran Hi5 tissue culture cells. Western blot indicated that these different forms of BmdsRNase protein were not secreted into the growth medium, while they were detected in the pellets and supernatants of Hi5 cell extracts. Nucleic acids cleavage experiments indicated that full-length BmdsRNase could digest dsRNA and that the processed form (absence of signal peptide and propeptide) of BmdsRNase could degrade both DNA and dsRNA in Hi5 cell culture. Using a reporter assay targeted by transfected homologous dsRNA, it was shown that the digestive property of the processed form could interfere with the RNAi response. Immunostaining of processed BmdsRNase protein showed asymmetric localization in the cellular cytoplasm and co-localization with Flag-tagged Dicer-2 was also observed. In conclusion, our in vitro studies indicated that intracellular protein isoforms of BmdsRNase can be functional and involved in the regulation of nucleic acid metabolism in the cytoplasm. In particular, because of its propensity to degrade dsRNA, the enzyme might be involved in the innate immune response against invading nucleic acids such as RNA viruses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    , but the identity and significance of interspecies bacterial interactions is neglected in these analyses. There is therefore an urgent need for bridging the gap between metagenomic analysis and in vitro models suitable for studies of bacterial interactions.Bacterial interactions and coadaptation are important......The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...

  3. The Zygosaccharomyces bailii antifungal virus toxin zygocin: cloning and expression in a heterologous fungal host.

    Science.gov (United States)

    Weiler, Frank; Rehfeldt, Klaus; Bautz, Frank; Schmitt, Manfred J

    2002-11-01

    Zygocin, a monomeric protein toxin secreted by a virus-infected killer strain of the osmotolerant spoilage yeast Zygosaccharomyces bailii, kills a broad spectrum of human and phytopathogenic yeasts and filamentous fungi by disrupting cytoplasmic membrane function. The toxin is encoded by a double-stranded (ds)RNA killer virus (ZbV-M, for Z. bailii virus M) that stably persists within the yeast cell cytosol. In this study, the protein toxin was purified, its N-terminal amino acid sequence was determined, and a full-length cDNA copy of the 2.1 kb viral dsRNA genome was cloned and successfully expressed in a heterologous fungal system. Sequence analysis as well as zygocin expression in Schizosaccharomyces pombe indicated that the toxin is in vivo expressed as a 238-amino-acid preprotoxin precursor (pptox) consisting of a hydrophobic N-terminal secretion signal, followed by a potentially N-glycosylated pro-region and terminating in a classical Kex2p endopeptidase cleavage site that generates the N-terminus of the mature and biologically active protein toxin in a late Golgi compartment. Matrix-assisted laser desorption mass spectrometry further indicated that the secreted toxin is a monomeric 10.4 kDa protein lacking detectable post-translational modifications. Furthermore, we present additional evidence that in contrast with other viral antifungal toxins, zygocin immunity is not mediated by the toxin precursor itself and, therefore, heterologous pptox expression in a zygocin-sensitive host results in a suicidal phenotype. Final sequence comparisons emphasize the conserved pattern of functional elements present in dsRNA killer viruses that naturally infect phylogenetically distant hosts (Saccharomyces cerevisiae and Z. bailii) and reinforce models for the sequence elements that are in vivo required for viral RNA packaging and replication.

  4. Packing on the Pounds in Response to Bacterial Growth Conditions.

    Science.gov (United States)

    Rashid, Sabih; MacNeil, Lesley T

    2017-05-22

    Reporting in Nature Cell Biology, Lin and Wang (2017) show that bacterial methyl metabolism impacts host mitochondrial dynamics and lipid storage in C. elegans. The authors propose a model whereby bacterial metabolic products regulate a nuclear hormone receptor that promotes lipid accumulation through expression of a secreted Hedgehog-like protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Role of quorum sensing in bacterial infections

    Science.gov (United States)

    Castillo-Juárez, Israel; Maeda, Toshinari; Mandujano-Tinoco, Edna Ayerim; Tomás, María; Pérez-Eretza, Berenice; García-Contreras, Silvia Julieta; Wood, Thomas K; García-Contreras, Rodolfo

    2015-01-01

    Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed. PMID:26244150

  6. Identifying Bacterial Immune Evasion Proteins Using Phage Display.

    Science.gov (United States)

    Fevre, Cindy; Scheepmaker, Lisette; Haas, Pieter-Jan

    2017-01-01

    Methods aimed at identification of immune evasion proteins are mainly rely on in silico prediction of sequence, structural homology to known evasion proteins or use a proteomics driven approach. Although proven successful these methods are limited by a low efficiency and or lack of functional identification. Here we describe a high-throughput genomic strategy to functionally identify bacterial immune evasion proteins using phage display technology. Genomic bacterial DNA is randomly fragmented and ligated into a phage display vector that is used to create a phage display library expressing bacterial secreted and membrane bound proteins. This library is used to select displayed bacterial secretome proteins that interact with host immune components.

  7. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Strauss, Edna; Caly, Wanda Regina

    2003-01-01

    Spontaneous bacterial peritonitis occurs in 30% of patients with ascites due to cirrhosis leading to high morbidity and mortality rates. The pathogenesis of spontaneous bacterial peritonitis is related to altered host defenses observed in end-stage liver disease, overgrowth of microorganisms, and bacterial translocation from the intestinal lumen to mesenteric lymph nodes. Clinical manifestations vary from severe to slight or absent, demanding analysis of the ascitic fluid. The diagnosis is confirmed by a number of neutrophils over 250/mm3 associated or not to bacterial growth in culture of an ascites sample. Enterobacteriae prevail and Escherichia coli has been the most frequent bacterium reported. Mortality rates decreased markedly in the last two decades due to early diagnosis and prompt antibiotic treatment. Third generation intravenous cephalosporins are effective in 70% to 95% of the cases. Recurrence of spontaneous bacterial peritonitis is common and can be prevented by the continuous use of oral norfloxacin. The development of bacterial resistance demands the search for new options in the prophylaxis of spontaneous bacterial peritonitis; probiotics are a promising new approach, but deserve further evaluation. Short-term antibiotic prophylaxis is recommended for patients with cirrhosis and ascites shortly after an acute episode of gastrointestinal bleeding.

  8. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation......, resistance and QS inhibition as future antimicrobial targets, in particular those that would work to minimize selection pressures for the development of resistant bacteria....

  9. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene.

    Directory of Open Access Journals (Sweden)

    Nidhi Thakur

    Full Text Available BACKGROUND: Expression of double strand RNA (dsRNA designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi, thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemisia tabaci upon oral feeding. The v-ATPase subunit A (v-ATPaseA coding gene was identified as a crucial target. We now report the effectiveness of transgenic tobacco plants expressing siRNA to silence v-ATPaseA gene expression for the control of whitefly infestation. METHODOLOGY/PRINCIPAL FINDINGS: Transgenic tobacco lines were developed for the expression of long dsRNA precursor to make siRNA and knock down the v-ATPaseA mRNA in whitefly. Molecular analysis and insecticidal properties of the transgenic plants established the formation of siRNA targeting the whitefly v-ATPaseA, in the leaves. The transcript level of v-ATPaseA in whiteflies was reduced up to 62% after feeding on the transgenic plants. Heavy infestation of whiteflies on the control plants caused significant loss of sugar content which led to the drooping of leaves. The transgenic plants did not show drooping effect. CONCLUSIONS/SIGNIFICANCE: Host plant derived pest resistance was achieved against whiteflies by genetic transformation of tobacco which generated siRNA against the whitefly v-ATPaseA gene. Transgenic tobacco lines expressing dsRNA of v-ATPaseA, delivered sufficient siRNA to whiteflies feeding on them, mounting a significant silencing response, leading to their mortality. The transcript level of the target gene was reduced in whiteflies feeding on transgenic plants. The strategy can be taken up for genetic engineering of plants to control whiteflies in field crops.

  10. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene.

    Science.gov (United States)

    Thakur, Nidhi; Upadhyay, Santosh Kumar; Verma, Praveen C; Chandrashekar, Krishnappa; Tuli, Rakesh; Singh, Pradhyumna K

    2014-01-01

    Expression of double strand RNA (dsRNA) designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi), thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemisia tabaci) upon oral feeding. The v-ATPase subunit A (v-ATPaseA) coding gene was identified as a crucial target. We now report the effectiveness of transgenic tobacco plants expressing siRNA to silence v-ATPaseA gene expression for the control of whitefly infestation. Transgenic tobacco lines were developed for the expression of long dsRNA precursor to make siRNA and knock down the v-ATPaseA mRNA in whitefly. Molecular analysis and insecticidal properties of the transgenic plants established the formation of siRNA targeting the whitefly v-ATPaseA, in the leaves. The transcript level of v-ATPaseA in whiteflies was reduced up to 62% after feeding on the transgenic plants. Heavy infestation of whiteflies on the control plants caused significant loss of sugar content which led to the drooping of leaves. The transgenic plants did not show drooping effect. Host plant derived pest resistance was achieved against whiteflies by genetic transformation of tobacco which generated siRNA against the whitefly v-ATPaseA gene. Transgenic tobacco lines expressing dsRNA of v-ATPaseA, delivered sufficient siRNA to whiteflies feeding on them, mounting a significant silencing response, leading to their mortality. The transcript level of the target gene was reduced in whiteflies feeding on transgenic plants. The strategy can be taken up for genetic engineering of plants to control whiteflies in field crops.

  11. Cellular reprogramming by gram-positive bacterial components: a review.

    LENUS (Irish Health Repository)

    Buckley, Julliette M

    2012-02-03

    LPS tolerance has been the focus of extensive scientific and clinical research over the last several decades in an attempt to elucidate the sequence of changes that occur at a molecular level in tolerized cells. Tolerance to components of gram-positive bacterial cell walls such as bacterial lipoprotein and lipoteichoic acid is a much lesser studied, although equally important, phenomenon. This review will focus on cellular reprogramming by gram-positive bacterial components and examines the alterations in cell surface receptor expression, changes in intracellular signaling, gene expression and cytokine production, and the phenomenon of cross-tolerance.

  12. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  13. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  14. Factitious Bacterial Meningitis Revisited

    Science.gov (United States)

    Peterson, E.; Thrupp, L.; Uchiyama, N.; Hawkins, B.; Wolvin, B.; Greene, G.

    1982-01-01

    Nonviable gram-negative bacilli were seen in smears of cerebrospinal fluid from eight infants in whom bacterial meningitis was ruled out. Tubes from commercial kits were the source of the factitious organisms. PMID:7153328

  15. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...... about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria......-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial...

  16. [Diagnosis of bacterial vaginosis].

    Science.gov (United States)

    Djukić, Slobodanka; Ćirković, Ivana; Arsić, Biljana; Garalejić, Eliana

    2013-01-01

    Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2-producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent's scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up-to-date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short-term and long-term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  17. Molecular interactions and immune responses between Maize fine streak virus and the leafhopper vector Graminella nigrifrons through differential expression and RNA interference.

    Science.gov (United States)

    Chen, Y; Redinbaugh, M G; Michel, A P

    2015-06-01

    Graminella nigrifrons is the only known vector for Maize fine streak virus (MFSV). In this study, we used real-time quantitative PCR to compare the expression profiles of transcripts that putatively function in the insect immune response: four peptidoglycan recognition proteins (PGRP-SB1, -SD, -LC and LB), Toll, spaetzle, defensin, Dicer-2 (Dcr-2), Argonaut-2 (Ago-2) and Arsenic resistance protein 2 (Ars-2). Except for PGRP-LB and defensin, transcripts involved in humoral pathways were significantly suppressed in G. nigrifrons fed on MFSV-infected maize. The abundance of three RNA interference (RNAi) pathway transcripts (Dcr-2, Ago-2, Ars-2) was significantly lower in nontransmitting relative to transmitting G. nigrifrons. Injection with double-stranded RNA (dsRNA) encoding segments of the PGRP-LC and Dcr-2 transcripts effectively reduced transcript levels by 90 and 75% over 14 and 22 days, respectively. MFSV acquisition and transmission were not significantly affected by injection of either dsRNA. Knock-down of PGRP-LC resulted in significant mortality (greater than 90%) at 27 days postinjection, and resulted in more abnormal moults relative to those injected with Dcr-2 or control dsRNA. The use of RNAi to silence G. nigrifrons transcripts will facilitate the study of gene function and pathogen transmission, and may provide approaches for developing novel targets of RNAi-based pest control. © 2015 The Royal Entomological Society.

  18. Synthesis of oligonucleotides containing novel G-clamp analogue with C8-tethered group in phenoxazine ring: Implication to qPCR detection of the low-copy Kemerovo virus dsRNA.

    Science.gov (United States)

    Varizhuk, Anna M; Zatsepin, Timofei S; Golovin, Andrey V; Belyaev, Evgeny S; Kostyukevich, Yury I; Dedkov, Vladimir G; Shipulin, German A; Shpakovski, George V; Aralov, Andrey V

    2017-07-15

    Nowadays modified oligonucleotides are widely used in diagnostics and as novel therapeutics. Introduction of modified or unnatural residues into oligonucleotides allows fine tuning of their binding properties to complementary nucleic acids and leads to improved stability both in vitro and in vivo. Previously it was demonstrated that insertion of phenoxazine nucleotides with various groups in C9-position into oligonucleotides leads to a significant increase of duplex stability with complementary DNA and RNA. Here the synthesis of a novel G-clamp nucleoside analogue (G 8AE -clamp) bearing 2-aminoethyl tether at C8-atom is presented. Introduction of such modified residues into oligonucleotides lead to enhanced specificity of duplex formation towards complementary DNA and RNA targets with increased thermal and 3'-exonuclease stability. According to CD-spectroscopy studies G 8AE -clamp does not substantially disrupt helix geometry. Primers containing G 8AE -clamp demonstrated superior sensitivity in qPCR detection of dsRNA of Kemerovo virus in comparison to native oligonucleotides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A comparative evaluation of the regulation of GM crops or products containing dsRNA and suggested improvements to risk assessments.

    Science.gov (United States)

    Heinemann, Jack A; Agapito-Tenfen, Sarah Zanon; Carman, Judy A

    2013-05-01

    Changing the nature, kind and quantity of particular regulatory-RNA molecules through genetic engineering can create biosafety risks. While some genetically modified organisms (GMOs) are intended to produce new regulatory-RNA molecules, these may also arise in other GMOs not intended to express them. To characterise, assess and then mitigate the potential adverse effects arising from changes to RNA requires changing current approaches to food or environmental risk assessments of GMOs. We document risk assessment advice offered to government regulators in Australia, New Zealand and Brazil during official risk evaluations of GM plants for use as human food or for release into the environment (whether for field trials or commercial release), how the regulator considered those risks, and what that experience teaches us about the GMO risk assessment framework. We also suggest improvements to the process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  1. Bacterial meningitis in children

    International Nuclear Information System (INIS)

    Marji, S.

    2007-01-01

    To demonstrate the epidemiology, clinical manifestations and bacteriological profile of bacterial meningitis in children beyond the neonatal period in our hospital. This was a retrospective descriptive study conducted at Prince Rashid Hospital in Irbid, Jordan. The medical records of 50 children with the diagnosis of bacterial meningitis during 4 years period, were reviewed. The main cause of infection was streptococcus pneumoniae, followed by Haemophilus influenza and Niesseria meningitides. Mortality was higher in infants and meningococcal infection, while complications were more encountered in cases of streptococcus pneumoniae. Cerebrospinal fluid culture was positive in 11 cases and Latex agglutination test in 39. There is a significant reduction of the numbers of bacterial meningitis caused by Haemophilus influenza type B species. (author)

  2. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    Biofilm resilience poses major challenges to the development of novel antimicrobial agents. Biofilm bacteria can be considered small groups of “Special Forces” capable of infiltrating the host and destroying important components of the cellular defense system with the aim of crippling the host...... defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  3. Diagnosis of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Đukić Slobodanka

    2013-01-01

    Full Text Available Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2­producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent’s scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up­to­date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short­term and long­term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  4. A study of bacterial gene regulatory mechanisms

    DEFF Research Database (Denmark)

    Hansen, Sabine

    the different regulatory mechanisms affect system dynamics. We have designed a synthetic gene regulatory network (GRN) in bacterial cells that enables us to study the dynamics of GRNs. The results presented in this PhD thesis show that model equations based on the established mechanisms of action of each...... of a particular type of regulatory mechanism. The synthetic system presented in this thesis is, to our knowledge, the first of its kind to allow a direct comparison of the dynamic behaviors of gene regulatory networks that employ different mechanisms of regulation. In addition to studying the dynamic behavior...... switch off the expression of unfavorable proteins. This dynamic regulation requires a coordinated effort by a network of regulatory factors. The regulatory mechanisms employed by bacterial cell to regulate their protein expression have been extensively studied. However, little is known about how...

  5. Adult bacterial meningitis

    DEFF Research Database (Denmark)

    Meyer, C N; Samuelsson, I S; Galle, M

    2004-01-01

    Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin susceptibi......Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin...

  6. Bacterial blight of cotton

    Directory of Open Access Journals (Sweden)

    Aïda JALLOUL

    2015-04-01

    Full Text Available Bacterial blight of cotton (Gossypium ssp., caused by Xanthomonas citri pathovar malvacearum, is a severe disease occurring in all cotton-growing areas. The interactions between host plants and the bacteria are based on the gene-for-gene concept, representing a complex resistance gene/avr gene system. In light of the recent data, this review focuses on the understanding of these interactions with emphasis on (1 the genetic basis for plant resistance and bacterial virulence, (2 physiological mechanisms involved in the hypersensitive response to the pathogen, including hormonal signaling, the oxylipin pathway, synthesis of antimicrobial molecules and alteration of host cell structures, and (3 control of the disease.

  7. Bacterial meningitis in infants.

    Science.gov (United States)

    Ku, Lawrence C; Boggess, Kim A; Cohen-Wolkowiez, Michael

    2015-03-01

    Neonatal bacterial meningitis is uncommon but devastating. Morbidity among survivors remains high. The types and distribution of pathogens are related to gestational age, postnatal age, and geographic region. Confirming the diagnosis is difficult. Clinical signs are often subtle, lumbar punctures are frequently deferred, and cerebrospinal fluid (CSF) cultures can be compromised by prior antibiotic exposure. Infants with bacterial meningitis can have negative blood cultures and normal CSF parameters. Promising tests such as the polymerase chain reaction require further study. Prompt treatment with antibiotics is essential. Clinical trials investigating a vaccine for preventing neonatal Group B Streptococcus infections are ongoing. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A study of the cytoplasmic expression of a form of human prolactin and of its solubilization and renaturation from bacterial inclusion bodies; Estudo da expressao citoplasmatica bacteriana de uma forma de prolactina humana e de sua solubilizacao e renaturacao a partir de corpos de inclusao

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Regina

    2000-07-01

    Different vector elements, that can determine a high expression level of a form of human prolactin (taghPrl) in bacterial cytoplasm, were studied. Expression conditions were first optimized for a reference vector, which was used to transform different strains of E. coli: HB2151, RRI and RB791. The highest expression level (113 {+-}16 {mu}g/mL.A{sub 600}) was obtained in HB2151, after activation with only 0.1 mM IPTG. At this point the influence of the transcription terminator (g32 from bacteriophage T4), of the translation enhancer (g10 from bacteriophage T7), of the promoter ({lambda}P{sub L} or tac) and of the antibiotic resistance gene (amp{sup r} or kan{sup r}) were studied. The first three elements did not show any significant influence, at least in our systems. On the contrary, the analysis of the influence of amp{sup r} and kan{sup r} genes showed, unexpectedly, that the presence of the last one provides an approximately 5-fold higher expression for taghPrl in E. coli cytoplasm. Finally, an appropriate extraction, solubilization, renaturation and purification process, able to provide a monomeric form of taghPrl, was studied. A method utilizing urea and mercaptoethanol as solubilizing agents and a dialysis as a renaturation procedure, provided with some modifications, one of the highest yields ever reported in the literature: 35.4 {+-} 4.5% of total recovery. Moreover, the biological activity of the taghPrl obtained, when tested in the Nb2 cell proliferation assay, was of the same order of that shown by the International Standard of human prolactin of pituitary origin. These data show that the cytoplasmic expression system here described, which can provide an expression efficiency 50-100 - fold higher than the periplasmic expression, can represent a valid alternative for the production of this and of other hormones of pharmaceutical interest and grade. (author)

  9. Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations

    OpenAIRE

    Nikolic, Nela; Schreiber, Frank; Dal Co, Alma; Kiviet, Daniel J.; Bergmiller, Tobias; Littmann, Sten; Kuypers, Marcel M. M.; Ackermann, Martin

    2017-01-01

    Author summary This study addresses a fundamental question in bacterial metabolism: do all individuals in a clonal population express the same metabolic functions, or do individuals specialize on different metabolic functions and assimilate different substrates? Reports about stochastic gene expression in bacterial populations raise the possibility that transcriptional differences between individuals translate into different metabolic behaviors, but the prevalence and magnitude of such effect...

  10. The Bacterial Growth Curve.

    Science.gov (United States)

    Paulton, Richard J. L.

    1991-01-01

    A procedure that allows students to view an entire bacterial growth curve during a two- to three-hour student laboratory period is described. Observations of the lag phase, logarithmic phase, maximum stationary phase, and phase of decline are possible. A nonpathogenic, marine bacterium is used in the investigation. (KR)

  11. Bacterial fingerprints across Europe

    NARCIS (Netherlands)

    Glasner, Corinna

    2014-01-01

    Bacterial pathogens, such as Staphylococcus aureus and carbapenemase-producing Enterobacteriaceae (CPE), impose major threats to human health worldwide. Both have a ‘Jekyll & Hyde’ character, since they can be present as human commensals, but can also become harmful invasive pathogens especially

  12. [Bacterial biofilms and infection].

    Science.gov (United States)

    Lasa, I; Del Pozo, J L; Penadés, J R; Leiva, J

    2005-01-01

    In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths) and cancer (7.1 million deaths) (WHO report 2004). The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  13. EDITORIAL SPONTANEOUS BACTERIAL PERITONITIS ...

    African Journals Online (AJOL)

    hi-tech

    Spontaneous bacterial peritonitis (SBP) frequent]y occurs in patients with liver cirrhosis and ascites. It is defined as an infection of previously sterile ascitic fluid without any demonstrable intrabdominal source of infection. It is now internationally agreed that a polymorphonuclear (PMN) cell count in the ascitic fluid of over 250 ...

  14. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  15. Seizures Complicating Bacterial Meningitis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-09-01

    Full Text Available The clinical data of 116 patients, 1 month to <5 years of age, admitted for bacterial meningitis, and grouped according to those with and without seizures during hospitalization, were compared in a study at Buddhist Dalin Tzu Chi General Hospital, Chang Gung Memorial Hospital and other centers in Taiwan.

  16. Diagnosis of bacterial infection

    African Journals Online (AJOL)

    rapid and easy-to-use test for bacterial infections. Clearly, this is a very ... detect antigens or specific antibodies, e.g. group A streptococcal antigen testing can be employed to reduce antibiotic use. Culture-based tests are often ... White blood cell count 12 000 cells/mm³; or the presence of >10% ...

  17. Bacterial Meningitis Outcome

    OpenAIRE

    J Gordon Millichap

    1995-01-01

    The neurologic, psychological, and educational outcomes of bacterial meningitis in 130 children evaluated at a mean age of 8 years, and 6 years after their meningitis, are reported from the Department of Paediatrics and Clinical Epidemiology and Biostatistics Unit, University of Melbourne, and the Royal Children’s Hospital, Victoria, Australia.

  18. Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield.

    Science.gov (United States)

    Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei

    2017-08-30

    RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3 , a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA- HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing ds HaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera . Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls.

  19. Corticosteroids for Bacterial Keratitis

    Science.gov (United States)

    Srinivasan, Muthiah; Mascarenhas, Jeena; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Glidden, David V.; Ray, Kathryn J.; Hong, Kevin C.; Oldenburg, Catherine E.; Lee, Salena M.; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.; Acharya, Nisha R.

    2013-01-01

    Objective To determine whether there is a benefit in clinical outcomes with the use of topical corticosteroids as adjunctive therapy in the treatment of bacterial corneal ulcers. Methods Randomized, placebo-controlled, double-masked, multicenter clinical trial comparing prednisolone sodium phosphate, 1.0%, to placebo as adjunctive therapy for the treatment of bacterial corneal ulcers. Eligible patients had a culture-positive bacterial corneal ulcer and received topical moxifloxacin for at least 48 hours before randomization. Main Outcome Measures The primary outcome was best spectacle-corrected visual acuity (BSCVA) at 3 months from enrollment. Secondary outcomes included infiltrate/scar size, reepithelialization, and corneal perforation. Results Between September 1, 2006, and February 22, 2010, 1769 patients were screened for the trial and 500 patients were enrolled. No significant difference was observed in the 3-month BSCVA (−0.009 logarithm of the minimum angle of resolution [logMAR]; 95% CI, −0.085 to 0.068; P = .82), infiltrate/scar size (P = .40), time to reepithelialization (P = .44), or corneal perforation (P > .99). A significant effect of corticosteroids was observed in subgroups of baseline BSCVA (P = .03) and ulcer location (P = .04). At 3 months, patients with vision of counting fingers or worse at baseline had 0.17 logMAR better visual acuity with corticosteroids (95% CI, −0.31 to −0.02; P = .03) compared with placebo, and patients with ulcers that were completely central at baseline had 0.20 logMAR better visual acuity with corticosteroids (−0.37 to −0.04; P = .02). Conclusions We found no overall difference in 3-month BSCVA and no safety concerns with adjunctive corticosteroid therapy for bacterial corneal ulcers. Application to Clinical Practice Adjunctive topical corticosteroid use does not improve 3-month vision in patients with bacterial corneal ulcers. PMID:21987582

  20. Radiometric detection of bacterial metabolism

    International Nuclear Information System (INIS)

    Camargo, E.E.; Wagner Junior, H.N.

    1979-01-01

    The measurement of 14 CO 2 produced by the bacterial oxidation of labelled compounds is discussed as a means of evaluating the bacterial metabolism. The following items are discussed:automated radiometric detection, types of graphs, clinical applications of the radiometric system and influential factors. Complementary studies on bacterial assimilation of substances are presented. (M.A.) [pt

  1. Bacterial Cell Wall Components

    Science.gov (United States)

    Ginsberg, Cynthia; Brown, Stephanie; Walker, Suzanne

    Bacterial cell-surface polysaccharides cells are surrounded by a variety of cell-surface structures that allow them to thrive in extreme environments. Components of the cell envelope and extracellular matrix are responsible for providing the cells with structural support, mediating intercellular communication, allowing the cells to move or to adhere to surfaces, protecting the cells from attack by antibiotics or the immune system, and facilitating the uptake of nutrients. Some of the most important cell wall components are polysaccharide structures. This review discusses the occurrence, structure, function, and biosynthesis of the most prevalent bacterial cell surface polysaccharides: peptidoglycan, lipopolysaccharide, arabinogalactan, and lipoarabinomannan, and capsular and extracellular polysaccharides. The roles of these polysaccharides in medicine, both as drug targets and as therapeutic agents, are also described.

  2. Bacterial meningitis in Nottingham.

    OpenAIRE

    Ispahani, P.

    1983-01-01

    Records of 171 cases of bacterial meningitis admitted to Nottingham hospitals from January 1974 to June 1980 were reviewed. The distribution of organisms producing meningitis and the factors influencing mortality in different age groups were assessed. Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae accounted for 69% of all proven cases. The overall mortality was 26% being lowest in patients with meningococcal meningitis (0%) and highest in those with pneumococcal m...

  3. Neglected bacterial zoonoses.

    Science.gov (United States)

    Chikeka, I; Dumler, J S

    2015-05-01

    Bacterial zoonoses comprise a group of diseases in humans or animals acquired by direct contact with or by oral consumption of contaminated animal materials, or via arthropod vectors. Among neglected infections, bacterial zoonoses are among the most neglected given emerging data on incidence and prevalence as causes of acute febrile illness, even in areas where recognized neglected tropical diseases occur frequently. Although many other bacterial infections could also be considered in this neglected category, five distinct infections stand out because they are globally distributed, are acute febrile diseases, have high rates of morbidity and case fatality, and are reported as commonly as malaria, typhoid or dengue virus infections in carefully designed studies in which broad-spectrum diagnoses are actively sought. This review will focus attention on leptospirosis, relapsing fever borreliosis and rickettsioses, including scrub typhus, murine typhus and spotted fever group rickettsiosis. Of greatest interest is the lack of distinguishing clinical features among these infections when in humans, which confounds diagnosis where laboratory confirmation is lacking, and in regions where clinical diagnosis is often attributed to one of several perceived more common threats. As diseases such as malaria come under improved control, the real impact of these common and under-recognized infections will become evident, as will the requirement for the strategies and allocation of resources for their control. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  4. Bacterial growth kinetics

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, J.C.; Kirchner, P.T.

    1989-01-01

    Quantitative measurement of bacterial growth may be made using a radioassay technique. This method measures, by scintillation counting, the 14 CO 2 derived from the bacterial metabolism of a 14 C-labeled substrate. Mathematical growth models may serve as reliable tools for estimation of the generation rate constant (or slope of the growth curve) and provide a basis for evaluating assay performance. Two models, i.e., exponential and logistic, are proposed. Both models yielded an accurate fit to the data from radioactive measurement of bacterial growth. The exponential model yielded high precision values of the generation rate constant, with an average relative standard deviation of 1.2%. Under most conditions the assay demonstrated no changes in the slopes of growth curves when the number of bacteria per inoculation was changed. However, the radiometric assay by scintillation method had a growth-inhibiting effect on a few strains of bacteria. The source of this problem was thought to be hypersensitivity to trace amounts of toluene remaining on the detector

  5. Role of overexpressed CFA/I fimbriae in bacterial swimming.

    Science.gov (United States)

    Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, Sangmu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong

    2012-06-01

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 CFA/I fimbriae on bacterial swimming motility.

  6. The bacterial enhancer-dependent RNA polymerase.

    Science.gov (United States)

    Zhang, Nan; Darbari, Vidya C; Glyde, Robert; Zhang, Xiaodong; Buck, Martin

    2016-11-01

    Transcription initiation is highly regulated in bacterial cells, allowing adaptive gene regulation in response to environment cues. One class of promoter specificity factor called sigma54 enables such adaptive gene expression through its ability to lock the RNA polymerase down into a state unable to melt out promoter DNA for transcription initiation. Promoter DNA opening then occurs through the action of specialized transcription control proteins called bacterial enhancer-binding proteins (bEBPs) that remodel the sigma54 factor within the closed promoter complexes. The remodelling of sigma54 occurs through an ATP-binding and hydrolysis reaction carried out by the bEBPs. The regulation of bEBP self-assembly into typically homomeric hexamers allows regulated gene expression since the self-assembly is required for bEBP ATPase activity and its direct engagement with the sigma54 factor during the remodelling reaction. Crystallographic studies have now established that in the closed promoter complex, the sigma54 factor occupies the bacterial RNA polymerase in ways that will physically impede promoter DNA opening and the loading of melted out promoter DNA into the DNA-binding clefts of the RNA polymerase. Large-scale structural re-organizations of sigma54 require contact of the bEBP with an amino-terminal glutamine and leucine-rich sequence of sigma54, and lead to domain movements within the core RNA polymerase necessary for making open promoter complexes and synthesizing the nascent RNA transcript. © 2016 The Author(s).

  7. New-found fundamentals of bacterial persistence.

    Science.gov (United States)

    Kint, Cyrielle I; Verstraeten, Natalie; Fauvart, Maarten; Michiels, Jan

    2012-12-01

    Persister cells display tolerance to high doses of bactericidal antibiotics and typically comprise a small fraction of a bacterial population. Recently, evidence was provided for a causal link between therapy failure and the presence of persister cells in chronic infections, underscoring the need for research on bacterial persistence. A series of recent breakthroughs have shed light on the multiplicity of persister genes, the contribution of gene expression noise to persister formation, the importance of active responses to antibiotic tolerance and heterogeneity among persister cells. Moreover, the development of in vivo model systems has highlighted the clinical relevance of persistence. This review discusses these recent advances and how this knowledge fundamentally changes the way in which we will perceive the problem of antibiotic tolerance in years to come. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Bacterial Dissemination to the Brain in Sepsis.

    Science.gov (United States)

    Singer, Benjamin H; Dickson, Robert P; Denstaedt, Scott J; Newstead, Michael W; Kim, Kwi; Falkowski, Nicole R; Erb-Downward, John R; Schmidt, Thomas M; Huffnagle, Gary B; Standiford, Theodore J

    2018-03-15

    Sepsis causes brain dysfunction and neuroinflammation. It is unknown whether neuroinflammation in sepsis is initiated by dissemination of bacteria to the brain and sustained by persistent infection, or whether neuroinflammation is a sterile process resulting solely from circulating inflammatory mediators. To determine if gut bacteria translocate to the brain during sepsis, and are associated with neuroinflammation. Murine sepsis was induced using cecal ligation and puncture, and sepsis survivor mice were compared with sham and unoperated control animals. Brain tissue of patients who died of sepsis was compared with patients who died of noninfectious causes. Bacterial taxa were characterized by 16S ribosomal RNA gene sequencing in both murine and human brain specimens; compared among sepsis and nonsepsis groups; and correlated with levels of S100A8, a marker of neuroinflammation using permutational multivariate ANOVA. Viable gut-associated bacteria were enriched in the brains of mice 5 days after surviving abdominal sepsis (P < 0.01), and undetectable by 14 days. The community structure of brain-associated bacteria correlated with severity of neuroinflammation (P < 0.001). Furthermore, bacterial taxa detected in brains of humans who die of sepsis were distinct from those who died of noninfectious causes (P < 0.001) and correlated with S100A8/A9 expression (P < 0.05). Although bacterial translocation is associated with acute neuroinflammation in murine sepsis, bacterial translocation did not result in chronic cerebral infection. Postmortem analysis of patients who die of sepsis suggests a role for bacteria in acute brain dysfunction in sepsis. Further work is needed to determine if modifying gut-associated bacterial communities modulates brain dysfunction after sepsis.

  9. Radiology of bacterial pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Jose E-mail: vilar_jlu@gva.es; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-08-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings.

  10. Radiology of bacterial pneumonia

    International Nuclear Information System (INIS)

    Vilar, Jose; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-01-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings

  11. Bacterial Degradation of Pesticides

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær

    This PhD project was carried out as part of the Microbial Remediation of Contaminated Soil and Water Resources (MIRESOWA) project, funded by the Danish Council for Strategic Research (grant number 2104-08-0012). The environment is contaminated with various xenobiotic compounds e.g. pesticides......D student, to construct fungal-bacterial consortia in order to potentially stimulate pesticide degradation thereby increasing the chance of successful bioaugmentation. The results of the project are reported in three article manuscripts, included in this thesis. In manuscript I, the mineralization of 2...

  12. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the Par......M protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome....

  13. Changes in bacterial meningitis.

    OpenAIRE

    Carter, P E; Barclay, S M; Galloway, W H; Cole, G F

    1990-01-01

    In 1964, one of us (WHG) undertook a retrospective study of bacterial meningitis in childhood in the north east of Scotland during the period 1946-61. We have recently carried out a similar review of cases occurring during 1971-86, to compare the incidence, mortality, and bacteriological patterns. During the earlier period 285 cases occurred, a total incidence of 16.9/100,000 children per year. In the later period 274 children were affected, an annual incidence of 17.8/100,000. The overall mo...

  14. Collective decisions among bacterial viruses

    Science.gov (United States)

    Joh, Richard; Mileyko, Yuriy; Voit, Eberhard; Weitz, Joshua

    2010-03-01

    For many temperate bacteriophages, the decision of whether to kill hosts or enter a latent state depends on the multiplicity of infection. In this talk, I present a quantitative model of gene regulatory dynamics to describe how phages make collective decisions within host cells. Unlike most previous studies, the copy number of viral genomes is treated as a variable. In the absence of feedback loops, viral mRNA transcription is expected to be proportional to the viral copy number. However, when there are nonlinear feedback loops in viral gene regulation, our model shows that gene expression patterns are sensitive to changes in viral copy number and there can be a domain of copy number where the system becomes bistable. Hence, the viral copy number is a key control parameter determining host cell fates. This suggests that bacterial viruses can respond adaptively to changes in population dynamics, and can make alternative decisions as a bet-hedging strategy. Finally, I present a stochastic version of viral gene regulation and discuss speed-accuracy trade-offs in the context of cell fate determination by viruses.

  15. Animal Models of Bacterial Keratitis

    Science.gov (United States)

    Marquart, Mary E.

    2011-01-01

    Bacterial keratitis is a disease of the cornea characterized by pain, redness, inflammation, and opacity. Common causes of this disease are Pseudomonas aeruginosa and Staphylococcus aureus. Animal models of keratitis have been used to elucidate both the bacterial factors and the host inflammatory response involved in the disease. Reviewed herein are animal models of bacterial keratitis and some of the key findings in the last several decades. PMID:21274270

  16. Validation of reference housekeeping genes for gene expression studies in western corn rootworm (Diabrotica virgifera virgifera.

    Directory of Open Access Journals (Sweden)

    Thaís Barros Rodrigues

    Full Text Available Quantitative Real-time PCR (qRT-PCR is a powerful technique to investigate comparative gene expression. In general, normalization of results using a highly stable housekeeping gene (HKG as an internal control is recommended and necessary. However, there are several reports suggesting that regulation of some HKGs is affected by different conditions. The western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae, is a serious pest of corn in the United States and Europe. The expression profile of target genes related to insecticide exposure, resistance, and RNA interference has become an important experimental technique for study of western corn rootworms; however, lack of information on reliable HKGs under different conditions makes the interpretation of qRT-PCR results difficult. In this study, four distinct algorithms (Genorm, NormFinder, BestKeeper and delta-CT and five candidate HKGs to genes of reference (β-actin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; β-tubulin; RPS9, ribosomal protein S9; EF1a, elongation factor-1α were evaluated to determine the most reliable HKG under different experimental conditions including exposure to dsRNA and Bt toxins and among different tissues and developmental stages. Although all the HKGs tested exhibited relatively stable expression among the different treatments, some differences were noted. Among the five candidate reference genes evaluated, β-actin exhibited highly stable expression among different life stages. RPS9 exhibited the most similar pattern of expression among dsRNA treatments, and both experiments indicated that EF1a was the second most stable gene. EF1a was also the most stable for Bt exposure and among different tissues. These results will enable researchers to use more accurate and reliable normalization of qRT-PCR data in WCR experiments.

  17. The enzymes of bacterial census and censorship.

    Science.gov (United States)

    Fast, Walter; Tipton, Peter A

    2012-01-01

    N-Acyl-L-homoserine lactones (AHLs) are a major class of quorum-sensing signals used by Gram-negative bacteria to regulate gene expression in a population-dependent manner, thereby enabling group behavior. Enzymes capable of generating and catabolizing AHL signals are of significant interest for the study of microbial ecology and quorum-sensing pathways, for understanding the systems that bacteria have evolved to interact with small-molecule signals, and for their possible use in therapeutic and industrial applications. The recent structural and functional studies reviewed here provide a detailed insight into the chemistry and enzymology of bacterial communication. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. A distinct bacterial dysbiosis associated skin inflammation in ovine footrot

    Science.gov (United States)

    Maboni, Grazieli; Blanchard, Adam; Frosth, Sara; Stewart, Ceri; Emes, Richard; Tötemeyer, Sabine

    2017-03-01

    Ovine footrot is a highly prevalent bacterial disease caused by Dichelobacter nodosus and characterised by the separation of the hoof horn from the underlying skin. The role of innate immune molecules and other bacterial communities in the development of footrot lesions remains unclear. This study shows a significant association between the high expression of IL1β and high D. nodosus load in footrot samples. Investigation of the microbial population identified distinct bacterial populations in the different disease stages and also depending on the level of inflammation. Treponema (34%), Mycoplasma (29%) and Porphyromonas (15%) were the most abundant genera associated with high levels of inflammation in footrot. In contrast, Acinetobacter (25%), Corynebacteria (17%) and Flavobacterium (17%) were the most abundant genera associated with high levels of inflammation in healthy feet. This demonstrates for the first time there is a distinct microbial community associated with footrot and high cytokine expression.

  19. Aerotaxis in Bacterial Turbulence

    Science.gov (United States)

    Fernandez, Vicente; Bisson, Antoine; Bitton, Cindy; Waisbord, Nicolas; Smriga, Steven; Rusconi, Roberto; Stocker, Roman

    2012-11-01

    Concentrated suspensions of motile bacteria exhibit correlated dynamics on spatial scales much larger than an individual bacterium. The resulting flows, visually similar to turbulence, can increase mixing and decrease viscosity. However, it remains unclear to what degree the collective dynamics depend on the motile behavior of bacteria at the individual level. Using a new microfluidic device to create controlled horizontal oxygen gradients, we studied the two dimensional behavior of dense suspensions of Bacillus subtilis. This system makes it possible to assess the interplay between the coherent large-scale motions of the suspension, oxygen transport, and the directional response of cells to oxygen gradients (aerotaxis). At the same time, this device has enabled us to examine the onset of bacterial turbulence and its influence on the propagation of the diffusing oxygen front, as the bacteria begin in a dormant state and transition to swimming when exposed to oxygen.

  20. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...... also shares in vivo properties of assembly and dynamics with IF proteins by forming stable filamentous structures that continuously incorporate subunits along their length and that grow in a nonpolar fashion. De novo assembly of crescentin is biphasic and involves a cell size-dependent mechanism...... a new function for MreB and providing a parallel to the role of actin in IF assembly and organization in metazoan cells. Additionally, analysis of an MreB localization mutant suggests that cell wall insertion during cell elongation normally occurs along two helices of opposite handedness, each...

  1. Bacterial polyhydroxyalkanoates: Still fabulous?

    Science.gov (United States)

    Możejko-Ciesielska, Justyna; Kiewisz, Robert

    2016-11-01

    Bacterial polyhydroxyalkanoates (PHA) are polyesters accumulated as carbon and energy storage materials under limited growth conditions in the presence of excess carbon sources. They have been developed as biomaterials with unique properties for the past many years being considered as a potential substitute for conventional non-degradable plastics. Due to the increasing concern towards global climate change, depleting petroleum resource and problems with an utilization of a growing number of synthetic plastics, PHAs have gained much more attention from industry and research. These environmentally friendly microbial polymers have great potential in biomedical, agricultural, and industrial applications. However, their production on a large scale is still limited. This paper describes the backgrounds of PHAs and discussed the current state of knowledge on the polyhydroxyalkanoates. Ability of bacteria to convert different carbon sources to PHAs, the opportunities and challenges of their introduction to global market as valuable renewable products have been also discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Biosensors of bacterial cells.

    Science.gov (United States)

    Burlage, Robert S; Tillmann, Joshua

    2017-07-01

    Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Bacterial Electron Transfer Chains Primed by Proteomics.

    Science.gov (United States)

    Wessels, H J C T; de Almeida, N M; Kartal, B; Keltjens, J T

    2016-01-01

    Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities. © 2016 Elsevier Ltd. All rights reserved.

  4. Bacterial ferrous iron transport: the Feo system.

    Science.gov (United States)

    Lau, Cheryl K Y; Krewulak, Karla D; Vogel, Hans J

    2016-03-01

    To maintain iron homeostasis within the cell, bacteria have evolved various types of iron acquisition systems. Ferric iron (Fe(3+)) is the dominant species in an oxygenated environment, while ferrous iron (Fe(2+)) is more abundant under anaerobic conditions or at low pH. For organisms that must combat oxygen limitation for their everyday survival, pathways for the uptake of ferrous iron are essential. Several bacterial ferrous iron transport systems have been described; however, only the Feo system appears to be widely distributed and is exclusively dedicated to the transport of iron. In recent years, many studies have explored the role of the FeoB and FeoA proteins in ferrous iron transport and their contribution toward bacterial virulence. The three-dimensional structures for the Feo proteins have recently been determined and provide insight into the molecular details of the transport system. A highly select group of bacteria also express the FeoC protein from the same operon. This review will provide a comprehensive look at the structural and functional aspects of the Feo system. In addition, bioinformatics analyses of the feo operon and the Feo proteins have been performed to complement our understanding of this ubiquitous bacterial uptake system, providing a new outlook for future studies. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Corruption of innate immunity by bacterial proteases.

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.

  6. Exploiting Quorum Sensing To Confuse Bacterial Pathogens

    Science.gov (United States)

    LaSarre, Breah

    2013-01-01

    SUMMARY Cell-cell communication, or quorum sensing, is a widespread phenomenon in bacteria that is used to coordinate gene expression among local populations. Its use by bacterial pathogens to regulate genes that promote invasion, defense, and spread has been particularly well documented. With the ongoing emergence of antibiotic-resistant pathogens, there is a current need for development of alternative therapeutic strategies. An antivirulence approach by which quorum sensing is impeded has caught on as a viable means to manipulate bacterial processes, especially pathogenic traits that are harmful to human and animal health and agricultural productivity. The identification and development of chemical compounds and enzymes that facilitate quorum-sensing inhibition (QSI) by targeting signaling molecules, signal biogenesis, or signal detection are reviewed here. Overall, the evidence suggests that QSI therapy may be efficacious against some, but not necessarily all, bacterial pathogens, and several failures and ongoing concerns that may steer future studies in productive directions are discussed. Nevertheless, various QSI successes have rightfully perpetuated excitement surrounding new potential therapies, and this review highlights promising QSI leads in disrupting pathogenesis in both plants and animals. PMID:23471618

  7. Corruption of Innate Immunity by Bacterial Proteases

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N.

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host’s innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections. PMID:19756242

  8. Level of CYP4G19 Expression Is Associated with Pyrethroid Resistance in Blattella germanica

    Directory of Open Access Journals (Sweden)

    Guang-zhou Guo

    2010-01-01

    Full Text Available German cockroaches have become a large problem in the Shenzhen area because of their pesticide resistance, especially to pyrethroid. A pyrethroid called “Jia Chong Qing” to prevent pests for a long time were found to be resistant to “Jia Chong Qing” with resistance index of 3.88 measured using RT-PCR and immunohistochemistry analysis showed that both CYP4G19 mRNA and CYP4G19 protein expression levels in the wild strain were substantially higher than that of a sensitive strain. dsRNA segments derived from the target gene CYP4G19 were prepared using in vitro transcription and were microinjected into abdomens of the wild strain. Two to eight days after injection, the result showed that CYP4G19 mRNA expressions were significantly reduced in the groups injected with dsRNAs.

  9. Development of the gastric morphology and fornical bacterial ...

    African Journals Online (AJOL)

    area for bacterial attachment thus facilitating a symbiotic relationship between the rodent and the gastric micro- ... stomach weight, expressed as a percentage of body weight, was used as a relative measure of gastric ... from subsequent litters were removed from their mothers at progressively earlier ages and survival was ...

  10. Live bacterial delivery systems for development of mucosal vaccines

    NARCIS (Netherlands)

    Thole, J.E.R.; Dalen, P.J. van; Havenith, C.E.G.; Pouwels, P.H.; Seegers, J.F.M.L.; Tielen, F.D.; Zee, M.D. van der; Zegers, N.D.; Shaw, M.

    2000-01-01

    By expression of foreign antigens in attenuated strains derived from bacterial pathogens and in non-pathogenic commensal bacteria, recombinant vaccines are being developed that aim to stimulate mucosal immunity. Recent advances in the pathogenesis and molecular biology of these bacteria have allowed

  11. Bacteriële meningitis

    NARCIS (Netherlands)

    Brouwer, M. C.; van de Beek, D.

    2012-01-01

    Bacterial meningitis is a severe disease which affects 35.000 Europeans each year and has a mortality rate of about 20%. During the past 25 years the epidemiology of bacterial meningitis has changed significantly due to the implementation of vaccination against Haemophilus influenzae, Neisseria

  12. Bacterial meningitis in immunocompromised patients

    NARCIS (Netherlands)

    van Veen, K.E.B.

    2018-01-01

    Bacterial meningitis is an acute infection of the meninges, in The Netherlands most commonly caused by Streptococcus pneumoniae and Neisseria meningitides. Risk factors for acquiring bacterial meningitis include a decreased function of the immune system. The aim of this thesis was to study

  13. Bacterial Artificial Chromosome Mutagenesis Using Recombineering

    Directory of Open Access Journals (Sweden)

    Kumaran Narayanan

    2011-01-01

    Full Text Available Gene expression from bacterial artificial chromosome (BAC clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the use of BACs for functional studies has been limited because their large size has inherently presented a major obstacle for introducing modifications using conventional genetic engineering strategies. The development of in vivo homologous recombination strategies based on recombineering in E. coli has helped resolve this problem by enabling facile engineering of high molecular weight BAC DNA without dependence on suitably placed restriction enzymes or cloning steps. These techniques have considerably expanded the possibilities for studying functional genetics using BACs in vitro and in vivo.

  14. Bacterial resistances to mercury and copper.

    Science.gov (United States)

    Brown, N L; Camakaris, J; Lee, B T; Williams, T; Morby, A P; Parkhill, J; Rouch, D A

    1991-06-01

    Heavy metals are toxic to living organisms. Some have no known beneficial biological function, while others have essential roles in physiological reactions. Mechanisms which deal with heavy metal stress must protect against the deleterious effects of heavy metals, yet avoid depleting the cell of a heavy metal which is also an essential nutrient. We describe the mechanisms of resistance in Escherichia coli to two different heavy metals, mercury and copper. Resistance of E. coli to mercury is reasonably well understood and is known to occur by transport of mercuric ions into the cytoplasmic compartment of the bacterial cell and subsequent reductive detoxification of mercuric ions. Recent mutational analysis has started to uncover the mechanistic detail of the mercuric ion transport processes, and has shown the essential nature of cysteine residues in transport of Hg(II). Resistance to copper is much less well understood, but is known to involve the increased export of copper from the bacterial cell and modification of the copper; the details of the process are still being elucidated. Expression of both metal resistance determinants is regulated by the corresponding cation. In each case the response enables the maintenance of cellular homeostasis for the metal. The conclusions drawn allow us to make testable predictions about the regulation of expression of resistance to other heavy metals.

  15. Mucin dynamics in intestinal bacterial infection.

    Directory of Open Access Journals (Sweden)

    Sara K Lindén

    Full Text Available Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract.Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17 in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05. Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon.Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.

  16. Towards light-mediated sensing of bacterial comfort.

    Science.gov (United States)

    Zafrilla, G; Iglesias, A; Marín, M; Torralba, L; Dorado-Morales, P; Racero, J L; Alcaina, J J; Morales, L J; Martínez, L; Collantes, M; Gómez, L; Vilanova, C; Porcar, M

    2014-08-01

    Bacterial comfort is central to biotechnological applications. Here, we report the characterization of different sensoring systems, the first step within a broader synthetic biology-inspired light-mediated strategy to determine Escherichia coli perception of environmental factors critical to bacterial performance. We did so by directly 'asking' bacterial cultures with light-encoded questions corresponding to the excitation wavelength of fluorescent proteins placed under the control of environment-sensitive promoters. We built four genetic constructions with fluorescent proteins responding to glucose, temperature, oxygen and nitrogen; and a fifth construction allowing UV-induced expression of heterologous genes. Our engineered strains proved able to give feedback in response to key environmental factors and to express heterologous proteins upon light induction. This light-based dialoguing strategy reported here is the first effort towards developing a human-bacteria interphase with both fundamental and applied implications. The results we present here are at the core of a larger synthetic biology research effort aiming at establishing a dialogue with bacteria. The framework is to convert the human voice into electric pulses, these into light pulses exciting bacterial fluorescent proteins, and convert light-emission back into electric pulses, which will be finally transformed into synthetic voice messages. We report here the first results of the project, in the form of light-based determination of key parameters for bacterial comfort. The ultimate goal of this strategy is to combine different engineered populations to have a combined feedback from the pool. © 2014 The Society for Applied Microbiology.

  17. Zoonotic bacterial meningitis in human adults

    NARCIS (Netherlands)

    van Samkar, Anusha; Brouwer, Matthijs C.; van der Ende, Arie; van de Beek, Diederik

    2016-01-01

    To describe the epidemiology, etiology, clinical characteristics, treatment, outcome, and prevention of zoonotic bacterial meningitis in human adults. We identified 16 zoonotic bacteria causing meningitis in adults. Zoonotic bacterial meningitis is uncommon compared to bacterial meningitis caused by

  18. Stress significantly increases mortality following a secondary bacterial respiratory infection

    Science.gov (United States)

    2012-01-01

    A variety of mechanisms contribute to the viral-bacterial synergy which results in fatal secondary bacterial respiratory infections. Epidemiological investigations have implicated physical and psychological stressors as factors contributing to the incidence and severity of respiratory infections and psychological stress alters host responses to experimental viral respiratory infections. The effect of stress on secondary bacterial respiratory infections has not, however, been investigated. A natural model of secondary bacterial respiratory infection in naive calves was used to determine if weaning and maternal separation (WMS) significantly altered mortality when compared to calves pre-adapted (PA) to this psychological stressor. Following weaning, calves were challenged with Mannheimia haemolytica four days after a primary bovine herpesvirus-1 (BHV-1) respiratory infection. Mortality doubled in WMS calves when compared to calves pre-adapted to weaning for two weeks prior to the viral respiratory infection. Similar results were observed in two independent experiments and fatal viral-bacterial synergy did not extend beyond the time of viral shedding. Virus shedding did not differ significantly between treatment groups but innate immune responses during viral infection, including IFN-γ secretion, the acute-phase inflammatory response, CD14 expression, and LPS-induced TNFα production, were significantly greater in WMS versus PA calves. These observations demonstrate that weaning and maternal separation at the time of a primary BHV-1 respiratory infection increased innate immune responses that correlated significantly with mortality following a secondary bacterial respiratory infection. PMID:22435642

  19. Evolution of Bacterial Suicide

    Science.gov (United States)

    Tchernookov, Martin; Nemenman, Ilya

    2013-03-01

    While active, controlled cellular suicide (autolysis) in bacteria is commonly observed, it has been hard to argue that autolysis can be beneficial to an individual who commits it. We propose a theoretical model that predicts that bacterial autolysis is evolutionarily advantageous to an individualand would fixate in physically structured environments for stationary phase colonies. We perform spatially resolved agent-based simulations of the model, which predict that lower mixing in the environment results in fixation of a higher autolysis rate from a single mutated cell, regardless of the colony's genetic diversity. We argue that quorum sensing will fixate as well, even if initially rare, if it is coupled to controlling the autolysis rate. The model does not predict a strong additional competitive advantage for cells where autolysis is controlled by quorum sensing systems that distinguish self from nonself. These predictions are broadly supported by recent experimental results in B. subtilisand S. pneumoniae. Research partially supported by the James S McDonnell Foundation grant No. 220020321 and by HFSP grant No. RGY0084/2011.

  20. Electromagnetism of Bacterial Growth

    Science.gov (United States)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  1. S1PR3 Signaling Drives Bacterial Killing and Is Required for Survival in Bacterial Sepsis.

    Science.gov (United States)

    Hou, JinChao; Chen, QiXing; Wu, XiaoLiang; Zhao, DongYan; Reuveni, Hadas; Licht, Tamar; Xu, MengLong; Hu, Hu; Hoeft, Andreas; Ben-Sasson, Shmuel A; Shu, Qiang; Fang, XiangMing

    2017-12-15

    Efficient elimination of pathogenic bacteria is a critical determinant in the outcome of sepsis. Sphingosine-1-phosphate receptor 3 (S1PR3) mediates multiple aspects of the inflammatory response during sepsis, but whether S1PR3 signaling is necessary for eliminating the invading pathogens remains unknown. To investigate the role of S1PR3 in antibacterial immunity during sepsis. Loss- and gain-of-function experiments were performed using cell and murine models. S1PR3 levels were determined in patients with sepsis and healthy volunteers. S1PR3 protein levels were up-regulated in macrophages upon bacterial stimulation. S1pr3 -/- mice showed increased mortality and increased bacterial burden in multiple models of sepsis. The transfer of wild-type bone marrow-derived macrophages rescued S1pr3 -/- mice from lethal sepsis. S1PR3-overexpressing macrophages further ameliorated the mortality rate of sepsis. Loss of S1PR3 led to markedly decreased bacterial killing in macrophages. Enhancing endogenous S1PR3 activity using a peptide agonist potentiated the macrophage bactericidal function and improved survival rates in multiple models of sepsis. Mechanically, the reactive oxygen species levels were decreased and phagosome maturation was delayed in S1pr3 -/- macrophages due to impaired recruitment of vacuolar protein-sorting 34 to the phagosomes. In addition, S1RP3 expression levels were elevated in monocytes from patients with sepsis. Higher levels of monocytic S1PR3 were associated with efficient intracellular bactericidal activity, better immune status, and preferable outcomes. S1PR3 signaling drives bacterial killing and is essential for survival in bacterial sepsis. Interventions targeting S1PR3 signaling could have translational implications for manipulating the innate immune response to combat pathogens.

  2. Bacterial quorum sensing and the role of algae in bacterial diseases control in aquaculture

    Directory of Open Access Journals (Sweden)

    . Wiyoto

    2010-07-01

    Full Text Available Bacterial disease is one of the most common diseases in aquaculture practices which have a significant impact. Several researches noted that pathogenicity of a certain bacteria can be determined by its quorum sensing activity. Quorum sensing is a communication process of a certain bacteria with the same or different species of bacteria which involves the releasing and capturing of signal molecule to and from the environment. This activity will activate a certain target gene which further resulted in the expression of a phenotype by the bacteria. With regard to this characteristic, one of the methods to control bacterial diseases is by quorum sensing disruption. Several species of algae, both micro and macro, have been found to be able to intervense bacterial quorum sensing and thus can be used as an alternative in bacterial disease control.    Key words: quorum sensing, bacterial disease, aquaculture, algae  Abstrak Penyakit bakteri adalah salah satu penyakit yang paling umum dalam akuakultur dengan dampak yang cukup signifikan. Beberapa penelitian menunjukkan bahwa tingkat patogenitas suatu bakteri salah satunya ditentukan oleh aktivitas kuorum sensing bakteri. Kuorum sensing bakteri merupakan suatu proses komunikasi yang dilakukan oleh bakteri dengan bakteri lainnya baik yang sejenis maupun berlainan jenis yang berupa pelepasan dan penangkapan molekul sinyal menuju dan dari lingkungan sekitar bakteri tersebut. Aktivitas inilah yang akan menentukan ekspresi suatu gen target seperti patogenitas, sehingga salah satu metode yang dapat digunakan dalam mengendalikan penyakit yang disebabkan oleh bakteri adalah dengan mengganggu aktivitas kuorum sensing bakteri. Beberapa jenis alga, baik mikro maupun makro, diketahui dapat mengintervensi aktivitas kuorum sensing, dan dapat menjadi salah satu alternatif bagi pengendalian penyakit bakterial. Kata-kata kunci: kuorum sensing, penyakit bakterial, akuakultur, alga

  3. Bacterial growth on macrophyte leachate and fate of bacterial production

    International Nuclear Information System (INIS)

    Findlay, S.; Carlough, L.; Crocker, M.T.; Gill, H.K.; Meyer, J.L.; Smith, P.J.

    1986-01-01

    The role bacteria play in transferring organic carbon to other trophic levels in aquatic ecosystems depends on the efficiency with which they convert dissolved organic [ 14 C]-labelled carbon into bacterial biomass and on the ability of consumers to graze bacteria. The authors have measured the conversion efficiency for bacteria growing on macrophyte-derived dissolved organic carbon and estimated the amount of bacterial production removed by grazing. Bacteria converted this DOC into new tissue with an efficiency of 53%, substantially higher than the apparent conversion efficiency of macrophyte-derived particulate organic carbon or other types of DOC. Two estimates of grazing indicate that the decline in bacterial numbers after the bloom was probably due to grazing by flagellates. These results show the significance of the bacterial link between DOC and other trophic levels

  4. Adjunctive Therapies for Bacterial Keratitis.

    Science.gov (United States)

    Dakhil, Turki Abdulaziz Bin; Stone, Donald U; Gritz, David C

    2017-01-01

    Bacterial keratitis is the most common type among all types of infectious keratitis. Currently, antibiotics are the main-stay of treatment. The objective of this systematic review is to review published clinical studies which discuss the adjunctive treatment of bacterial keratitis to guide clinical decision-making. We reviewed the role of a variety of medications and surgeries which can help in managing bacterial keratitis complications, which include as thinning, perforation, and impaired wound healing. We have included appropriate animal and laboratory studies, case reports and case series, and randomized clinical trials regarding each therapy.

  5. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  6.  Prokaryotic expression systems

    Directory of Open Access Journals (Sweden)

    Dorota Porowińska

    2013-03-01

    Full Text Available For overproduction of recombinant proteins both eukaryotic and prokaryotic expression systems are used. Choosing the right system depends, among other things, on the growth rate and culture of host cells, level of the target gene expression and posttranslational processing of the synthesized protein. Regardless of the type of expression system, its basic elements are the vector and the expression host.The most widely used system for protein overproduction, both on a laboratory and industrial scale, is the prokaryotic system. This system is based primarily on the bacteria E. coli, although increasingly often Bacillus species are used. The prokaryotic system allows one to obtain large quantities of recombinant proteins in a short time. A simple and inexpensive bacterial cell culture and well-known mechanisms of transcription and translation facilitate the use of these microorganisms. The simplicity of genetic modifications and the availability of many bacterial mutants are additional advantages of the prokaryotic system. In this article we characterize the structural elements of prokaryotic expression vectors. Also strategies for preparation of the target protein gene that increase productivity, facilitate detection and purification of recombinant protein and provide its activity are discussed. Bacterial strains often used as host cells in expression systems as well as the potential location of heterologous proteins are characterized.Knowledge of the basic elements of the prokaryotic expression system allows for production of biologically active proteins in a short time and in satisfactory quantities. 

  7. Genome-Wide Characterization and Expression Profiling of Sugar Transporter Family in the Whitefly, Bemisia tabaci (Gennadius (Hemiptera: Aleyrodidae

    Directory of Open Access Journals (Sweden)

    Zezhong Yang

    2017-05-01

    Full Text Available Sugar transporters (STs play pivotal roles in the growth, development, and stress responses of phloem-sucking insects, such as the whitefly, Bemisia tabaci. In this study, 137 sugar transporters (STs were identified based on analysis of the genome and transcriptome of B. tabaci MEAM1. B. tabaci MEAM1 encodes a larger number of STs than other selected insects. Phylogenetic and molecular evolution analysis showed that the 137 STs formed three expanded clades and that the genes in Sternorrhyncha expanded clades had accelerated rates of evolution. B. tabaci sugar transporters (BTSTs were divided into three groups based on their expression profiles across developmental stages; however, no host-specific BTST was found in B. tabaci fed on different host plants. Feeding of B. tabaci adults with feeding diet containing dsRNA significantly reduced the transcript level of the target genes in B. tabaci and mortality was significantly improved in B. tabaci fed on dsRNA compared to the control, which indicates the sugar transporters may be used as potential RNAi targets for B. tabaci bio-control. These results provide a foundation for further studies of STs in B. tabaci.

  8. Rehosting of Bacterial Chaperones for High-Quality Protein Production▿

    Science.gov (United States)

    Martínez-Alonso, Mónica; Toledo-Rubio, Verónica; Noad, Rob; Unzueta, Ugutz; Ferrer-Miralles, Neus; Roy, Polly; Villaverde, Antonio

    2009-01-01

    Coproduction of DnaK/DnaJ in Escherichia coli enhances solubility but promotes proteolytic degradation of their substrates, minimizing the yield of unstable polypeptides. Higher eukaryotes have orthologs of DnaK/DnaJ but lack the linked bacterial proteolytic system. By coexpression of DnaK and DnaJ in insect cells with inherently misfolding-prone recombinant proteins, we demonstrate simultaneous improvement of soluble protein yield and quality and proteolytic stability. Thus, undesired side effects of bacterial folding modulators can be avoided by appropriate rehosting in heterologous cell expression systems. PMID:19820142

  9. Exogenous gene can be expressed by a recombinant Bombyx mori cypovirus.

    Science.gov (United States)

    Guo, Rui; Cao, Guangli; Xue, Renyu; Kumar, Dhiraj; Chen, Fei; Liu, Wei; Jiang, Yue; Lu, Yahong; Zhu, Liyuan; Liang, Zi; Kuang, Sulan; Hu, Xiaolong; Gong, Chengliang

    2018-02-01

    Bombyx mori cypovirus (BmCPV) is one of the major viral pathogen for silkworm, and the genome of BmCPV is composed of 10 dsRNA segments. As construction system of recombinant BmCPV (rBmCPV) is scanty, researchers achieved little progress in studying gene function of BmCPV in recent decades. Here, 10 recombinant plasmids with a full-length cDNA of viral genome segments S1-S10 containing T7 promoter were constructed. After cotransfecting the BmN cells with the mixture of 10 in vitro-transcribed RNAs, pathological changes were observed. Real-time PCR and Western blot showed viral gene vp1 and structural proteins were expressed. It is found the genome of the rBmCPV is composed of 10 dsRNA segments similar to those of wild-type BmCPV. Moreover, viral particles and polyhedron with virions can be generated in the cotransfected cells and the injected silkworm midguts. These findings confirmed the formation of infective rBmCPV. Additionally, we found viable rBmCPV was generated by cotransfecting the mixture of in vitro-transcribed S1-S9 RNAs into the cultured cells, confirming polh was not essential for BmCPV replication. Moreover, an infectious rBmCPV expressing the DsRed protein was constructed based on this system. Further investigation showed S2 and S7 segments are indispensible for viral proliferation. Our findings demonstrated the construction system of rBmCPV can be utilized for exploring viral replication and pathogenesis, and investigated method for constructing rBmCPV will certainly facilitate developing novel biopesticides and expressing exogenous gene in the midgut of silkworm.

  10. Bacterial sepsis and chemokines.

    Science.gov (United States)

    Kobayashi, Makiko; Tsuda, Yasuhiro; Yoshida, Tsuyoshi; Takeuchi, Dan; Utsunomiya, Tokuichiro; Takahashi, Hitoshi; Suzuki, Fujio

    2006-01-01

    Bacterial sepsis causes a high mortality rate when it occurs in patients with compromised host defenses. Severely burned patients, typical immunocompromised hosts, are extremely susceptible to infections from various pathogens, and a local wound infection frequently escalates into sepsis. In these patients, Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa are familiar pathogens that cause opportunistic infections. Also, polymicrobial sepsis frequently occurs in these patients. In this review, therefore, the roles of chemokines in thermally injured patients infected with these 3 pathogens and polymicrobial sepsis will be discussed. These infections in thermally injured patients may be controlled immunologically, because immunocompetent hosts are resistant to infections with these pathogens. Classically activated macrophages (M1Mphi) are major effector cells for host innate immune responses against these infections. However, M1Mphi are not generated in thermally injured patients whose alternatively activated macrophages (M2Mphi) predominate. M2Mphi appear in patients early after severe burn injuries. M2Mphi inhibit M1Mphi generation through the secretion of CCL17 and IL-10. As a modulator of Mphi, two different subsets of neutrophils (PMN-I, PMN-II) are described. PMN-I direct the polarization of resident Mphi into M1Mphi through the production of CCL3. M2Mphi are induced from resident Mphi by CCL2 released from PMN-II. Therefore, as an inhibitor of CCL2, glycyrrhizin protects individuals infected with S. aureus. Sepsis stemming from P. aeruginosa wound infection is also influenced by CCL2 released from immature myeloid cells. A large number of immature myeloid cells appear in association with burn injuries. Host resistance to S. aureus, E. faecalis, P. aeruginosa or polymicrobial infections may be improved in thermally injured patients through the induction of M1Mphi, elimination of CCL2 and/or depletion of M2Mphi induced by CCL2.

  11. Arabidopsis RNASE THREE LIKE2 Modulates the Expression of Protein-Coding Genes via 24-Nucleotide Small Interfering RNA-Directed DNA Methylation.

    Science.gov (United States)

    Elvira-Matelot, Emilie; Hachet, Mélanie; Shamandi, Nahid; Comella, Pascale; Sáez-Vásquez, Julio; Zytnicki, Matthias; Vaucheret, Hervé

    2016-02-01

    RNaseIII enzymes catalyze the cleavage of double-stranded RNA (dsRNA) and have diverse functions in RNA maturation. Arabidopsis thaliana RNASE THREE LIKE2 (RTL2), which carries one RNaseIII and two dsRNA binding (DRB) domains, is a unique Arabidopsis RNaseIII enzyme resembling the budding yeast small interfering RNA (siRNA)-producing Dcr1 enzyme. Here, we show that RTL2 modulates the production of a subset of small RNAs and that this activity depends on both its RNaseIII and DRB domains. However, the mode of action of RTL2 differs from that of Dcr1. Whereas Dcr1 directly cleaves dsRNAs into 23-nucleotide siRNAs, RTL2 likely cleaves dsRNAs into longer molecules, which are subsequently processed into small RNAs by the DICER-LIKE enzymes. Depending on the dsRNA considered, RTL2-mediated maturation either improves (RTL2-dependent loci) or reduces (RTL2-sensitive loci) the production of small RNAs. Because the vast majority of RTL2-regulated loci correspond to transposons and intergenic regions producing 24-nucleotide siRNAs that guide DNA methylation, RTL2 depletion modifies DNA methylation in these regions. Nevertheless, 13% of RTL2-regulated loci correspond to protein-coding genes. We show that changes in 24-nucleotide siRNA levels also affect DNA methylation levels at such loci and inversely correlate with mRNA steady state levels, thus implicating RTL2 in the regulation of protein-coding gene expression. © 2016 American Society of Plant Biologists. All rights reserved.

  12. Bacterial Communities: Interactions to Scale

    Directory of Open Access Journals (Sweden)

    Reed M. Stubbendieck

    2016-08-01

    Full Text Available In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.

  13. Bacterial flora of sturgeon fingerling

    International Nuclear Information System (INIS)

    Arani, A.S.; Mosahab, R.

    2008-01-01

    The study on microbial populations is a suitable tool to understand and apply control methods to improve the sanitary level of production in fish breeding and rearing centers, ensure health of sturgeon fingerlings at the time of their release into the rivers and also in the conversation and restoration of these valuable stocks in the Caspian Sea, Iran. A laboratory research based on Austin methods (Austin, B., Austin, D.A. 1993) was conducted for bacterial study on 3 sturgeon species naming A. persicus, A. stellatus and A. nudiventris during different growth stages. Bacterial flora of Acinetobacter, Moraxella, Aeromonas, Vibrio, Edwardsiella, Staphylococcus, Proteus, Yersinia, Pseudomonas and Plesiomonas were determined. The factors which may induce changes in bacterial populations during different stages of fife are the followings: quality of water in rearing ponds, different conditions for growth stages, suitable time for colonization of bacterial flora in rearing pond, water temperature increase in fingerlings size and feeding condition. (author)

  14. Subdural Empyema in Bacterial Meningitis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-01-01

    Full Text Available Researchers at the University of Amsterdam, the Netherlands, evaluated the occurrence, treatment, and outcome of subdural empyema as a complication of community-acquired bacterial meningitis in 28 (2.7% adults.

  15. Arsenic uptake in bacterial calcite

    Energy Technology Data Exchange (ETDEWEB)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew G.; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and Xray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  16. Arsenic uptake in bacterial calcite

    Science.gov (United States)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03 Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  17. Current knowledge of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Đukić Slobodanka

    2011-01-01

    Full Text Available Bacterial vaginosis, earlier termed nonspecific vaginitis (anaerobic vaginosis because of the absence of recognized pathogens, is most common vaginal syndrome of women of childbearing age affecting 15-30%. This syndrome, whose aetiology and pathogenesis remains unknown, is characterized by significant changes in the vaginal ecosystem. These changes consist of a decrease in the number of lactobacilli and a large increase in the number of anaerobic organisms. The bacteria adhere to desquamated epithelial cells with a distinctive appearance of clue cells The main complaints of women with symptomatic bacterial vaginosis include vaginal discharge and odour. However, a significant number of all women who have bacterial vaginosis deny symptoms. Bacterial vaginosis is associated with a number of gynaecologic and obstetric complications including cervicitis, cervical neoplasia, pelvic inflammatory disease, postoperative infections, and preterm labour. The diagnosis is most frequently made based on vaginal smear stained according to Gram (Nugent scoring method. Metronidazole and clindamycin are the drugs of choice for treatment of women with bacterial vaginosis. Which women should undergo treatment? According to the prevailing attitude, it should include women with symptoms. Symptomatic women with frequent relapses of bacterial vaginosisas, as a rule, have poor response to the applied therapy. To achieve better efficiency in the treatment of such women, it is necessary to have more extensive understanding of all factors in the pathogenesis of the syndrome.

  18. Vizantin inhibits bacterial adhesion without affecting bacterial growth and causes Streptococcus mutans biofilm to detach by altering its internal architecture.

    Science.gov (United States)

    Takenaka, Shoji; Oda, Masataka; Domon, Hisanori; Ohsumi, Tatsuya; Suzuki, Yuki; Ohshima, Hayato; Yamamoto, Hirofumi; Terao, Yutaka; Noiri, Yuichiro

    2016-11-11

    An ideal antibiofilm strategy is to control both in the quality and quantity of biofilm while maintaining the benefits derived from resident microflora. Vizantin, a recently developed immunostimulating compound, has also been found to have antibiofilm property. This study evaluated the influence on biofilm formation of Streptococcus mutans in the presence of sulfated vizantin and biofilm development following bacterial adhesion on a hydroxyapatite disc coated with sulfated vizantin. Supplementation with sulfated vizantin up to 50 μM did not affect either bacterial growth or biofilm formation, whereas 50 μM sulfated vizantin caused the biofilm to readily detach from the surface. Sulfated vizantin at the concentration of 50 μM upregulated the expression of the gtfB and gtfC genes, but downregulated the expression of the gtfD gene, suggesting altered architecture in the biofilm. Biofilm development on the surface coated with sulfated vizantin was inhibited depending on the concentration, suggesting prevention from bacterial adhesion. Among eight genes related to bacterial adherence in S. mutans, expression of gtfB and gtfC was significantly upregulated, whereas the expression of gtfD, GbpA and GbpC was downregulated according to the concentration of vizantin, especially with 50 μM vizantin by 0.8-, 0.4-, and 0.4-fold, respectively. These findings suggest that sulfated vizantin may cause structural degradation as a result of changing gene regulation related to bacterial adhesion and glucan production of S. mutans. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    Science.gov (United States)

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  20. Partial characterization of lignin peroxidase expressed by bacterial ...

    African Journals Online (AJOL)

    Lignin peroxidase producing microorganisms were isolated from the gut of Macrotermes nigeriense (Soldier and worker termite). The microorganisms isolated were Staphylococcus aureus, Staphylococcus epidermis, Bacillus subtilis, Micrococcus luteus, Epidermophyton flocussum, Microsporum distortum, Trichophyton ...

  1. The Human Vaginal Bacterial Biota and Bacterial Vaginosis

    Directory of Open Access Journals (Sweden)

    Sujatha Srinivasan

    2008-01-01

    Full Text Available The bacterial biota of the human vagina can have a profound impact on the health of women and their neonates. Changes in the vaginal microbiota have been associated with several adverse health outcomes including premature birth, pelvic inflammatory disease, and acquisition of HIV infection. Cultivation-independent molecular methods have provided new insights regarding bacterial diversity in this important niche, particularly in women with the common condition bacterial vaginosis (BV. PCR methods have shown that women with BV have complex communities of vaginal bacteria that include many fastidious species, particularly from the phyla Bacteroidetes and Actinobacteria. Healthy women are mostly colonized with lactobacilli such as Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners, though a variety of other bacteria may be present. The microbiology of BV is heterogeneous. The presence of Gardnerella vaginalis and Atopobium vaginae coating the vaginal epithelium in some subjects with BV suggests that biofilms may contribute to this condition.

  2. Bacterial contamination of blood products.

    Science.gov (United States)

    Palavecino, Elizabeth; Jacobs, Michael; Yomtovian, Roslyn

    2004-11-01

    The occurrence of a septic reaction resulting from bacterial contamination of blood products, particularly with room-temperature stored platelets, is the most common transfusion-associated infectious risk in the United States. Bacterial contamination of blood products was first identified more than 60 years ago; yet, strategies to resolve this problem have proved daunting despite ongoing awareness and increasing concern especially in the last few years. With the recent US Food and Drug Administration (FDA) approval of culture methods for quality control testing of platelet units and the promulgation of accreditation standards by the College of American Pathologists and American Association of Blood Banks to detect bacterially contaminated platelet units and to prevent transfusion of these units, blood banks and transfusion services have finally started to address this problem, in a more standardized manner. Furthermore, as new methods of interdicting, inactivating and detecting bacterially contaminated blood products emerge, it is hoped that the problem of bacterial contamination of blood products will be overcome.

  3. Community-acquired bacterial meningitis.

    Science.gov (United States)

    Costerus, Joost M; Brouwer, Matthijs C; Bijlsma, Merijn W; van de Beek, Diederik

    2017-02-01

    Bacterial meningitis is a medical emergency and is associated with a high disease burden. We reviewed recent progress in the management of patients with community-acquired bacterial meningitis. The worldwide burden of disease of bacterial meningitis remains high, despite the decreasing incidence following introduction of routine vaccination campaigns. Delay in diagnosis and treatment remain major concerns in the management of acute bacterial meningitis. European Society of Clinical Microbiology and Infectious Diseases guidelines strive for a door-to-antibiotic-time less than 1 h. Polymerase chain reaction (PCR) has emerged as an important diagnostic tool to identify the causative organism. Point-of-care tests using fast multiplex PCR have been developed, but additional value has not been proven. Although anecdotal observations advocate pressure-based management, a randomized controlled trial will need to be performed first to determine efficacy and safety of such an aggressive treatment approach. Adjunctive dexamethasone remains the only adjunctive therapy with proven efficacy. The incidence of bacterial meningitis has been decreasing after the implementation of effective vaccines. Treatment should be administered as soon as possible and time to treatment should not exceed 1 h.

  4. Expression Profiles and RNAi Silencing of Inhibitor of Apoptosis Transcripts in Aedes, Anopheles, and Culex Mosquitoes (Diptera: Culicidae).

    Science.gov (United States)

    Puglise, Jason M; Estep, Alden S; Becnel, James J

    2016-03-01

    Effective mosquito control is vital to curtail the devastating health effects of many vectored diseases. RNA interference (RNAi)-mediated control of mosquitoes is an attractive alternative to conventional chemical pesticides. Previous studies have suggested that transcripts for inhibitors of apoptosis (IAPs) may be good RNAi targets. To revisit and extend previous reports, we examined the expression of Aedes aegypti (L.) IAPs (AaeIAPs) 1, 2, 5, 6, 9, and a viral IAP-associated factor (vIAF) as well as Anopheles quadrimaculatus Say and Culex quinquefasciatus Say IAP1 homologs (AquIAP1 and CquIAP1) in adult females. Expression profiles of IAPs suggested that some older female mosquitoes had significantly higher IAP mRNA levels when compared to the youngest ones. Minor differences in expression of AaeIAPs were observed in mosquitoes that imbibed a bloodmeal, but the majority of the time points (up to 48 h) were not significantly different. Although in vitro experiments with the Ae. aegypti Aag-2 cell line demonstrated that the various AaeIAPs could be effectively knocked down within one day after dsRNA treatment, only Aag-2 cells treated with dsIAP1 displayed apoptotic morphology. Gene silencing and mortality were also evaluated after topical application and microinjection of the same dsRNAs into female Ae. aegypti. In contrast to previous reports, topical administration of dsRNA against AaeIAP1 did not yield a significant reduction in gene expression or increased mortality. Knockdown of IAP1 and other IAPs by microinjection did not result in significant mortality. In toto, our findings suggest that IAPs may not be suitable RNAi targets for controlling adult mosquito populations.

  5. Surface display of proteins by Gram-negative bacterial autotransporters

    Directory of Open Access Journals (Sweden)

    Mourez Michael

    2006-06-01

    Full Text Available Abstract Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.

  6. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective.

    Science.gov (United States)

    Rémy, Benjamin; Mion, Sonia; Plener, Laure; Elias, Mikael; Chabrière, Eric; Daudé, David

    2018-01-01

    Numerous bacteria utilize molecular communication systems referred to as quorum sensing (QS) to synchronize the expression of certain genes regulating, among other aspects, the expression of virulence factors and the synthesis of biofilm. To achieve this process, bacteria use signaling molecules, known as autoinducers (AIs), as chemical messengers to share information. Naturally occurring strategies that interfere with bacterial signaling have been extensively studied in recent years, examining their potential to control bacteria. To interfere with QS, bacteria use quorum sensing inhibitors (QSIs) to block the action of AIs and quorum quenching (QQ) enzymes to degrade signaling molecules. Recent studies have shown that these strategies are promising routes to decrease bacterial pathogenicity and decrease biofilms, potentially enhancing bacterial susceptibility to antimicrobial agents including antibiotics and bacteriophages. The efficacy of QSIs and QQ enzymes has been demonstrated in various animal models and are now considered in the development of new medical devices against bacterial infections, including dressings, and catheters for enlarging the therapeutic arsenal against bacteria.

  7. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective

    Directory of Open Access Journals (Sweden)

    Benjamin Rémy

    2018-03-01

    Full Text Available Numerous bacteria utilize molecular communication systems referred to as quorum sensing (QS to synchronize the expression of certain genes regulating, among other aspects, the expression of virulence factors and the synthesis of biofilm. To achieve this process, bacteria use signaling molecules, known as autoinducers (AIs, as chemical messengers to share information. Naturally occurring strategies that interfere with bacterial signaling have been extensively studied in recent years, examining their potential to control bacteria. To interfere with QS, bacteria use quorum sensing inhibitors (QSIs to block the action of AIs and quorum quenching (QQ enzymes to degrade signaling molecules. Recent studies have shown that these strategies are promising routes to decrease bacterial pathogenicity and decrease biofilms, potentially enhancing bacterial susceptibility to antimicrobial agents including antibiotics and bacteriophages. The efficacy of QSIs and QQ enzymes has been demonstrated in various animal models and are now considered in the development of new medical devices against bacterial infections, including dressings, and catheters for enlarging the therapeutic arsenal against bacteria.

  8. Construction of expression vectors carrying mouse peroxisomal ...

    African Journals Online (AJOL)

    The aim of this study was to construct expression vectors carrying mouse peroxisomal protein gene (PEP-cDNA) in prokaryotic and mammalian expression vectors in ... pGEX6p2-PEP and pUcD3-FLAG-PEP constructed vectors were transformed into the one shot TOP10 and JM105 bacterial competent cells, respectively.

  9. Bacterial systems for production of heterologous proteins.

    Science.gov (United States)

    Zerbs, Sarah; Frank, Ashley M; Collart, Frank R

    2009-01-01

    Proteins are the working molecules of all biological systems and participate in a majority of cellular chemical reactions and biological processes. Knowledge of the properties and function of these molecules is central to an understanding of chemical and biological processes. In this context, purified proteins are a starting point for biophysical and biochemical characterization methods that can assist in the elucidation of function. The challenge for production of proteins at the scale and quality required for experimental, therapeutic and commercial applications has led to the development of a diverse set of methods for heterologous protein production. Bacterial expression systems are commonly used for protein production as these systems provide an economical route for protein production and require minimal technical expertise to establish a laboratory protein production system.

  10. The physical basis of bacterial quorum communication

    CERN Document Server

    2015-01-01

    This book aims to educate physical scientists and quantitatively-oriented biologists on the application of physical experimentation and analysis, together with appropriate modeling, to understanding and interpreting microbial chemical communication and especially quorum sensing (QS). Quorum sensing describes a chemical communication behavior that is nearly universal among bacteria. Individual cells release a diffusible small molecule (an autoinducer) into their environment. A high concentration of this autoinducer serves as a signal of high population density, triggering new patterns of gene expression throughout the population. However QS is often much more complex than simple census-taking. Many QS bacteria produce and detect multiple autoinducers, which generate quorum signal cross talk with each other and with other bacterial species. QS gene regulatory networks operate in physically complex environments and respond to a range of inputs in addition to autoinducer signals. While many individual QS systems ...

  11. Abdominal radiation causes bacterial translocation

    International Nuclear Information System (INIS)

    Guzman-Stein, G.; Bonsack, M.; Liberty, J.; Delaney, J.P.

    1989-01-01

    The purpose of this study was to determine if a single dose of radiation to the rat abdomen leads to bacterial translocation into the mesenteric lymph nodes (MLN). A second issue addressed was whether translocation correlates with anatomic damage to the mucosa. The radiated group (1100 cGy) which received anesthesia also was compared with a control group and a third group which received anesthesia alone but no abdominal radiation. Abdominal radiation lead to 100% positive cultures of MLN between 12 hr and 4 days postradiation. Bacterial translocation was almost nonexistent in the control and anesthesia group. Signs of inflammation and ulceration of the intestinal mucosa were not seen until Day 3 postradiation. Mucosal damage was maximal by Day 4. Bacterial translocation onto the MLN after a single dose of abdominal radiation was not apparently dependent on anatomical, histologic damage of the mucosa

  12. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  13. Discovery of a Bacterial 5-Methylcytosine Deaminase

    Science.gov (United States)

    2015-01-01

    5-Methylcytosine is found in all domains of life, but the bacterial cytosine deaminase from Escherichia coli (CodA) will not accept 5-methylcytosine as a substrate. Since significant amounts of 5-methylcytosine are produced in both prokaryotes and eukaryotes, this compound must eventually be catabolized and the fragments recycled by enzymes that have yet to be identified. We therefore initiated a comprehensive phylogenetic screen for enzymes that may be capable of deaminating 5-methylcytosine to thymine. From a systematic analysis of sequence homologues of CodA from thousands of bacterial species, we identified putative cytosine deaminases where a “discriminating” residue in the active site, corresponding to Asp-314 in CodA from E. coli, was no longer conserved. Representative examples from Klebsiella pneumoniae (locus tag: Kpn00632), Rhodobacter sphaeroides (locus tag: Rsp0341), and Corynebacterium glutamicum (locus tag: NCgl0075) were demonstrated to efficiently deaminate 5-methylcytosine to thymine with values of kcat/Km of 1.4 × 105, 2.9 × 104, and 1.1 × 103 M–1 s–1, respectively. These three enzymes also catalyze the deamination of 5-fluorocytosine to 5-fluorouracil with values of kcat/Km of 1.2 × 105, 6.8 × 104, and 2.0 × 102 M–1 s–1, respectively. The three-dimensional structure of Kpn00632 was determined by X-ray diffraction methods with 5-methylcytosine (PDB id: 4R85), 5-fluorocytosine (PDB id: 4R88), and phosphonocytosine (PDB id: 4R7W) bound in the active site. When thymine auxotrophs of E. coli express these enzymes, they are capable of growth in media lacking thymine when supplemented with 5-methylcytosine. Expression of these enzymes in E. coli is toxic in the presence of 5-fluorocytosine, due to the efficient transformation to 5-fluorouracil. PMID:25384249

  14. Role of sex steroid hormones in bacterial-host interactions.

    Science.gov (United States)

    García-Gómez, Elizabeth; González-Pedrajo, Bertha; Camacho-Arroyo, Ignacio

    2013-01-01

    Sex steroid hormones play important physiological roles in reproductive and nonreproductive tissues, including immune cells. These hormones exert their functions by binding to either specific intracellular receptors that act as ligand-dependent transcription factors or membrane receptors that stimulate several signal transduction pathways. The elevated susceptibility of males to bacterial infections can be related to the usually lower immune responses presented in males as compared to females. This dimorphic sex difference is mainly due to the differential modulation of the immune system by sex steroid hormones through the control of proinflammatory and anti-inflammatory cytokines expression, as well as Toll-like receptors (TLRs) expression and antibody production. Besides, sex hormones can also affect the metabolism, growth, or virulence of pathogenic bacteria. In turn, pathogenic, microbiota, and environmental bacteria are able to metabolize and degrade steroid hormones and their related compounds. All these data suggest that sex steroid hormones play a key role in the modulation of bacterial-host interactions.

  15. Bacterial Cellular Engineering by Genome Editing and Gene Silencing

    Directory of Open Access Journals (Sweden)

    Nobutaka Nakashima

    2014-02-01

    Full Text Available Genome editing is an important technology for bacterial cellular engineering, which is commonly conducted by homologous recombination-based procedures, including gene knockout (disruption, knock-in (insertion, and allelic exchange. In addition, some new recombination-independent approaches have emerged that utilize catalytic RNAs, artificial nucleases, nucleic acid analogs, and peptide nucleic acids. Apart from these methods, which directly modify the genomic structure, an alternative approach is to conditionally modify the gene expression profile at the posttranscriptional level without altering the genomes. This is performed by expressing antisense RNAs to knock down (silence target mRNAs in vivo. This review describes the features and recent advances on methods used in genomic engineering and silencing technologies that are advantageously used for bacterial cellular engineering.

  16. Bacterial computing with engineered populations.

    Science.gov (United States)

    Amos, Martyn; Axmann, Ilka Maria; Blüthgen, Nils; de la Cruz, Fernando; Jaramillo, Alfonso; Rodriguez-Paton, Alfonso; Simmel, Friedrich

    2015-07-28

    We describe strategies for the construction of bacterial computing platforms by describing a number of results from the recently completed bacterial computing with engineered populations project. In general, the implementation of such systems requires a framework containing various components such as intracellular circuits, single cell input/output and cell-cell interfacing, as well as extensive analysis. In this overview paper, we describe our approach to each of these, and suggest possible areas for future research. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Bacterial growth during the early phase of infection determines the severity of experimental Escherichia coli mastitis in dairy cows

    NARCIS (Netherlands)

    Kornalijnslijper, J.E.; Daemen, A.; Werven, van T.; Niewold, T.A.; Rutten, V.; Noordhuizen-Stassen, E.N.

    2004-01-01

    The aim of this study was to investigate the importance of bacterial growth for the severity of experimental Escherichia coli mastitis, indirectly expressed as the area under the curve of bacterial counts in milk over time. The association of pre-infusion somatic cell count and post-infusion influx

  18. Genome-Wide Characterization and Expression Profiling of Sugar Transporter Family in the Whitefly,Bemisia tabaci(Gennadius) (Hemiptera: Aleyrodidae).

    Science.gov (United States)

    Yang, Zezhong; Xia, Jixing; Pan, Huipeng; Gong, Cheng; Xie, Wen; Guo, Zhaojiang; Zheng, Huixin; Yang, Xin; Yang, Fengshan; Wu, Qingjun; Wang, Shaoli; Zhang, Youjun

    2017-01-01

    Sugar transporters ( STs ) play pivotal roles in the growth, development, and stress responses of phloem-sucking insects, such as the whitefly, Bemisia tabaci . In this study, 137 sugar transporters ( STs ) were identified based on analysis of the genome and transcriptome of B. tabaci MEAM1. B. tabaci MEAM1 encodes a larger number of STs than other selected insects. Phylogenetic and molecular evolution analysis showed that the 137 STs formed three expanded clades and that the genes in Sternorrhyncha expanded clades had accelerated rates of evolution. B. tabaci sugar transporters ( BTSTs ) were divided into three groups based on their expression profiles across developmental stages; however, no host-specific BTST was found in B. tabaci fed on different host plants. Feeding of B. tabaci adults with feeding diet containing dsRNA significantly reduced the transcript level of the target genes in B. tabaci and mortality was significantly improved in B. tabaci fed on dsRNA compared to the control, which indicates the sugar transporters may be used as potential RNAi targets for B. tabaci bio-control. These results provide a foundation for further studies of STs in B. tabaci .

  19. Biotechnological applications of bacterial cellulases

    Czech Academy of Sciences Publication Activity Database

    Menéndez, E.; García-Fraile, Paula; Rivas, R.

    2015-01-01

    Roč. 2, č. 3 (2015), s. 163-182 ISSN 2306-5354 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Biotechnological applications * Bacterial cellulases * Cellulose degradation Subject RIV: EE - Microbiology, Virology

  20. Disease notes - Bacterial root rot

    Science.gov (United States)

    Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...

  1. Metagenomic Diagnosis of Bacterial Infections

    Science.gov (United States)

    Nakamura, Shota; Maeda, Norihiro; Miron, Ionut Mihai; Yoh, Myonsun; Izutsu, Kaori; Kataoka, Chidoh; Honda, Takeshi; Yasunaga, Teruo; Nakaya, Takaaki; Kawai, Jun; Hayashizaki, Yoshihide; Horii, Toshihiro

    2008-01-01

    To test the ability of high-throughput DNA sequencing to detect bacterial pathogens, we used it on DNA from a patient’s feces during and after diarrheal illness. Sequences showing best matches for Campylobacter jejuni were detected only in the illness sample. Various bacteria may be detectable with this metagenomic approach. PMID:18976571

  2. bacterial flora and antibiotic sensitivity

    African Journals Online (AJOL)

    Purulent pelvic collections are common pathologies observed in contemporary gynaecological practice. They may originate from chronic pelvic inflammatory disease, from abortions or following normal deliveries. This study was designed to compare the bacterial flora in purulent pelvic collections obtained from HIV infected ...

  3. Community-acquired bacterial meningitis

    NARCIS (Netherlands)

    van de Beek, Diederik; Brouwer, Matthijs; Hasbun, Rodrigo; Koedel, Uwe; Whitney, Cynthia G.; Wijdicks, Eelco

    2016-01-01

    Meningitis is an inflammation of the meninges and subarachnoid space that can also involve the brain cortex and parenchyma. It can be acquired spontaneously in the community - community-acquired bacterial meningitis - or in the hospital as a complication of invasive procedures or head trauma

  4. Molecular mechanisms underlying bacterial persisters

    DEFF Research Database (Denmark)

    Maisonneuve, Etienne; Gerdes, Kenn

    2014-01-01

    All bacteria form persisters, cells that are multidrug tolerant and therefore able to survive antibiotic treatment. Due to the low frequencies of persisters in growing bacterial cultures and the complex underlying molecular mechanisms, the phenomenon has been challenging to study. However, recent...

  5. Biotechnological applications of bacterial cellulases

    Directory of Open Access Journals (Sweden)

    Esther Menendez

    2015-08-01

    Full Text Available Cellulases have numerous applications in several industries, including biofuel production, food and feed industry, brewing, pulp and paper, textile, laundry, and agriculture.Cellulose-degrading bacteria are widely spread in nature, being isolated from quite different environments. Cellulose degradation is the result of a synergic process between an endoglucanase, an exoglucanase and a,β-glucosidase. Bacterial endoglucanases degrade ß-1,4-glucan linkages of cellulose amorphous zones, meanwhile exoglucanases cleave the remaining oligosaccharide chains, originating cellobiose, which is hydrolyzed by ß-glucanases. Bacterial cellulases (EC 3.2.1.4 are comprised in fourteen Glycosil Hydrolase families. Several advantages, such as higher growth rates and genetic versatility, emphasize the suitability and advantages of bacterial cellulases over other sources for this group of enzymes. This review summarizes the main known cellulolytic bacteria and the best strategies to optimize their cellulase production, focusing on endoglucanases, as well as it reviews the main biotechnological applications of bacterial cellulases in several industries, medicine and agriculture.

  6. Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase

    International Nuclear Information System (INIS)

    Zhang, R.; Evans, G.; Rotella, F.J.; Westbrook, E.M.; Beno, D.; Huberman, E.; Joachimiak, A.; Collart, F.R.

    1999-01-01

    IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the first step unique to GTP synthesis. To provide a basis for the evaluation of IMPDH inhibitors as antimicrobial agents, we have expressed and characterized IMPDH from the pathogenic bacterium Streptococcus pyogenes. Our results show that the biochemical and kinetic characteristics of S. pyogenes IMPDH are similar to other bacterial IMPDH enzymes. However, the lack of sensitivity to mycophenolic acid and the K m for NAD (1180 μM) exemplify some of the differences between the bacterial and mammalian IMPDH enzymes, making it an attractive target for antimicrobial agents. To evaluate the basis for these differences, we determined the crystal structure of the bacterial enzyme at 1.9 (angstrom) with substrate bound in the catalytic site. The structure was determined using selenomethionine-substituted protein and multiwavelength anomalous (MAD) analysis of data obtained with synchrotron radiation from the undulator beamline (19ID) of the Structural Biology Center at Argonne's Advanced Photon Source. S. pyogenes IMPDH is a tetramer with its four subunits related by a crystallographic 4-fold axis. The protein is composed of two domains: a TIM barrel domain that embodies the catalytic framework and a cystathione β-synthase (CBS) dimer domain of so far unknown function. Using information provided by sequence alignments and the crystal structure, we prepared several site-specific mutants to examine the role of various active site regions in catalysis. These variants implicate the active site flap as an essential catalytic element and indicate there are significant differences in the catalytic environment of bacterial and mammalian IMPDH enzymes. Comparison of the structure of bacterial IMPDH with the known partial structures from eukaryotic organisms will provide an explanation of their distinct properties and contribute to the design of specific bacterial IMPDH inhibitors

  7. Bacterial cells with improved tolerance to polyamines

    DEFF Research Database (Denmark)

    2017-01-01

    Provided are bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as polyamines, and methods of preparing and using such bacterial cells for production of polyamines and other compounds....

  8. Bacterial cells with improved tolerance to polyols

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to bacterial cells genetically modified to improve their tolerance to certain commodity chemicals, such as diols and other polyols, and to methods of preparing and using such bacterial cells for production of polyols and other compounds....

  9. Adjunctive Corticosteroids in Adults with Bacterial Meningitis

    NARCIS (Netherlands)

    van de Beek, Diederik; de Gans, Jan

    2005-01-01

    Bacterial meningitis is a complex disorder in which neurologic injury is caused, in part, by the causative organism and, in part, by the host's own inflammatory response. In studies of experimental bacterial meningitis, adjuvant treatment with corticosteroids, specifically dexamethasone, has

  10. Endocarditis in adults with bacterial meningitis

    NARCIS (Netherlands)

    Lucas, Marjolein J.; Brouwer, Matthijs C.; van der Ende, Arie; van de Beek, Diederik

    2013-01-01

    Endocarditis may precede or complicate bacterial meningitis, but the incidence and impact of endocarditis in bacterial meningitis are unknown. We assessed the incidence and clinical characteristics of patients with meningitis and endocarditis from a nationwide cohort study of adults with

  11. Dexamethasone in adults with bacterial meningitis

    NARCIS (Netherlands)

    de Gans, Jan; van de Beek, Diederik

    2002-01-01

    Background: Mortality and morbidity rates are high among adults with acute bacterial meningitis, especially those with pneumococcal meningitis. In studies of bacterial meningitis in animals, adjuvant treatment with corticosteroids has beneficial effects. Methods: We conducted a prospective,

  12. Cognitive outcome in adults after bacterial meningitis

    NARCIS (Netherlands)

    Hoogman, Martine; van de Beek, Diederik; Weisfelt, Martijn; de Gans, Jan; Schmand, Ben

    2007-01-01

    OBJECTIVE: To evaluate cognitive outcome in adult survivors of bacterial meningitis. METHODS: Data from three prospective multicentre studies were pooled and reanalysed, involving 155 adults surviving bacterial meningitis (79 after pneumococcal and 76 after meningococcal meningitis) and 72 healthy

  13. Cognitive outcome in adults after bacterial meningitis.

    NARCIS (Netherlands)

    Hoogman, M.; Beek, D. van de; Weisfelt, M.; Gans, J. de; Schmand, B.A.

    2007-01-01

    OBJECTIVE: To evaluate cognitive outcome in adult survivors of bacterial meningitis. METHODS: Data from three prospective multicentre studies were pooled and reanalysed, involving 155 adults surviving bacterial meningitis (79 after pneumococcal and 76 after meningococcal meningitis) and 72 healthy

  14. Antimicrobial susceptibility in community-acquired bacterial ...

    African Journals Online (AJOL)

    Objectives: To determine the antimicrobial susceptibility patterns of Streptococcus pneumoniae and Haemophilus influenzae, two bacterial pathogens commonly associated with communityacquired pneumonia. Design: Cross-sectional study. Setting: Bacterial isolates were obtained from adults suspected to have ...

  15. (PCR) in the diagnosis of bacterial infections

    African Journals Online (AJOL)

    ... bacterial infections that can be diagnosed using the technique which include among others; Tuberculosis (TB), whooping cough, brain abscesses and spinal infection, otitis media with effusion, Mycoplasmal pneumonia, endophthalmitis and bacterial meningitis. Keywords: Polymerase chain reaction, Diagnosis, Bacteria, ...

  16. RNA search engines empower the bacterial intranet.

    Science.gov (United States)

    Dendooven, Tom; Luisi, Ben F

    2017-08-15

    RNA acts not only as an information bearer in the biogenesis of proteins from genes, but also as a regulator that participates in the control of gene expression. In bacteria, small RNA molecules (sRNAs) play controlling roles in numerous processes and help to orchestrate complex regulatory networks. Such processes include cell growth and development, response to stress and metabolic change, transcription termination, cell-to-cell communication, and the launching of programmes for host invasion. All these processes require recognition of target messenger RNAs by the sRNAs. This review summarizes recent results that have provided insights into how bacterial sRNAs are recruited into effector ribonucleoprotein complexes that can seek out and act upon target transcripts. The results hint at how sRNAs and their protein partners act as pattern-matching search engines that efficaciously regulate gene expression, by performing with specificity and speed while avoiding off-target effects. The requirements for efficient searches of RNA patterns appear to be common to all domains of life. © 2017 The Author(s).

  17. The Bacterial Sequential Markov Coalescent.

    Science.gov (United States)

    De Maio, Nicola; Wilson, Daniel J

    2017-05-01

    Bacteria can exchange and acquire new genetic material from other organisms directly and via the environment. This process, known as bacterial recombination, has a strong impact on the evolution of bacteria, for example, leading to the spread of antibiotic resistance across clades and species, and to the avoidance of clonal interference. Recombination hinders phylogenetic and transmission inference because it creates patterns of substitutions (homoplasies) inconsistent with the hypothesis of a single evolutionary tree. Bacterial recombination is typically modeled as statistically akin to gene conversion in eukaryotes, i.e. , using the coalescent with gene conversion (CGC). However, this model can be very computationally demanding as it needs to account for the correlations of evolutionary histories of even distant loci. So, with the increasing popularity of whole genome sequencing, the need has emerged for a faster approach to model and simulate bacterial genome evolution. We present a new model that approximates the coalescent with gene conversion: the bacterial sequential Markov coalescent (BSMC). Our approach is based on a similar idea to the sequential Markov coalescent (SMC)-an approximation of the coalescent with crossover recombination. However, bacterial recombination poses hurdles to a sequential Markov approximation, as it leads to strong correlations and linkage disequilibrium across very distant sites in the genome. Our BSMC overcomes these difficulties, and shows a considerable reduction in computational demand compared to the exact CGC, and very similar patterns in simulated data. We implemented our BSMC model within new simulation software FastSimBac. In addition to the decreased computational demand compared to previous bacterial genome evolution simulators, FastSimBac provides more general options for evolutionary scenarios, allowing population structure with migration, speciation, population size changes, and recombination hotspots. FastSimBac is

  18. Bacterial reproductive pathogens of cats and dogs.

    Science.gov (United States)

    Graham, Elizabeth M; Taylor, David J

    2012-05-01

    With the notable exception of Brucella canis, exogenous bacterial pathogens are uncommon causes of reproductive disease in cats and dogs. Most bacterial reproductive infections are endogenous, and predisposing factors for infection are important. This article reviews the etiology, pathogenesis, clinical presentation, diagnosis, treatment, and public health significance of bacterial reproductive pathogens in cats and dogs.

  19. Triad pattern algorithm for predicting strong promoter candidates in bacterial genomes

    Directory of Open Access Journals (Sweden)

    Sakanyan Vehary

    2008-05-01

    Full Text Available Abstract Background Bacterial promoters, which increase the efficiency of gene expression, differ from other promoters by several characteristics. This difference, not yet widely exploited in bioinformatics, looks promising for the development of relevant computational tools to search for strong promoters in bacterial genomes. Results We describe a new triad pattern algorithm that predicts strong promoter candidates in annotated bacterial genomes by matching specific patterns for the group I σ70 factors of Escherichia coli RNA polymerase. It detects promoter-specific motifs by consecutively matching three patterns, consisting of an UP-element, required for interaction with the α subunit, and then optimally-separated patterns of -35 and -10 boxes, required for interaction with the σ70 subunit of RNA polymerase. Analysis of 43 bacterial genomes revealed that the frequency of candidate sequences depends on the A+T content of the DNA under examination. The accuracy of in silico prediction was experimentally validated for the genome of a hyperthermophilic bacterium, Thermotoga maritima, by applying a cell-free expression assay using the predicted strong promoters. In this organism, the strong promoters govern genes for translation, energy metabolism, transport, cell movement, and other as-yet unidentified functions. Conclusion The triad pattern algorithm developed for predicting strong bacterial promoters is well suited for analyzing bacterial genomes with an A+T content of less than 62%. This computational tool opens new prospects for investigating global gene expression, and individual strong promoters in bacteria of medical and/or economic significance.

  20. Bacterial toxin-antitoxin gene system as containment control in yeast cells

    DEFF Research Database (Denmark)

    Kristoffersen, P.; Jensen, G. B.; Gerdes, K.

    2000-01-01

    The potential of a bacterial toxin-antitoxin gene system for use in containment control in eukaryotes was explored. The Escherichia coli relE and relB genes were expressed in the yeast Saccharomyces cerevisiae, Expression of the relE gene was highly toxic to yeast cells. However, expression...... fermentation processes in which the escape of genetically modified cells would be considered highly risky....

  1. Molecular characterization, expression analysis and RNAi knock-down of elongation factor 1α and 1γ from Nilaparvata lugens and its yeast-like symbiont.

    Science.gov (United States)

    Wang, W X; Zhu, T H; Li, K L; Chen, L F; Lai, F X; Fu, Q

    2017-06-01

    In the present paper, four cDNAs encoding the alpha and gamma subunits of elongation factor 1 (EF-1) were cloned and sequenced from Nilaparvata lugens, named NlEF-1α, NlEF-1γ, and its yeast-like symbiont (YLS), named YsEF-1α and YsEF-1γ, respectively. Comparisons with sequences from other species indicated a greater conservation for EF-1α than for EF-1γ. NlEF-1α has two identical copies. The deduced amino acid sequence homology of NlEF-1α and NlEF-1γ is 96 and 64%, respectively, compared with Homalodisca vitripennis and Locusta migratoria. The deduced amino acid sequence homology of YsEF-1α and YsEF-1γ is 96 and 74%, respectively, compared with Metarhizium anisopliae and Ophiocordyceps sinensis. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis revealed that the expression level of NlEF-1α and NlEF-1γ mRNA in hemolymph, ovary, fat body and salivary glands were higher than the midgut and leg tissue. YsEF-1α and YsEF-1γ was highly expressed in fat body. The expression level of NlEF-1α was higher than that of NlEF-1γ. Through RNA interference (RNAi) of the two genes, the mortality of nymph reached 92.2% at the 11th day after treatment and the ovarian development was severely hindered. The RT-qPCR analysis verified the correlation between mortality, sterility and the down-regulation of the target genes. The expression and synthesis of vitellogenin (Vg) protein in insects injected with NlEF-1α and NlEF-1γ double-stranded RNA (dsRNA) was significantly lower than control groups. Attempts to knockdown the YsEF-1 genes in the YLS was unsuccessful. However, the phenotype of N. lugens injected with YsEF-1α dsRNA was the same as that injected with NlEF-1α dsRNA, possibly due to the high similarity (up to 71.9%) in the nucleotide sequences between NlEF-1α and YsEF-1α. We demonstrated that partial silencing of NlEF-1α and NlEF-1γ genes caused lethal and sterility effect on N. lugens. NlEF-1γ shares low identity with that of

  2. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy.

    Science.gov (United States)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-08-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analyzing size and number of intracellular bacterial colonies in infected tissue culture cells. Cells are seeded in 48-well plates and infected with a GFP-expressing bacterial pathogen. Following gentamicin treatment to remove extracellular pathogens, cells are fixed and cell nuclei stained. This is followed by automated microscopy and subsequent semi-automated spot detection to determine the number of intracellular bacterial colonies, their size distribution, and the average number per host cell. Multiple 48-well plates can be processed sequentially and the procedure can be completed in one working day. As a model we quantified intracellular bacterial colonies formed by uropathogenic Escherichia coli (UPEC) during infection of human kidney cells (HKC-8). Urinary tract infections caused by UPEC are among the most common bacterial infectious diseases in humans. UPEC can colonize tissues of the urinary tract and is responsible for acute, chronic, and recurrent infections. In the bladder, UPEC can form intracellular quiescent reservoirs, thought to be responsible for recurrent infections. In the kidney, UPEC can colonize renal epithelial cells and pass to the blood stream, either via epithelial cell disruption or transcellular passage, to cause sepsis. Intracellular colonies are known to be clonal, originating from single invading UPEC. In our experimental setup, we found UPEC CFT073 intracellular bacterial colonies to be heterogeneous in size and present in nearly one third of the HKC-8 cells. This high-throughput experimental format substantially reduces experimental time and enables fast screening of the intracellular bacterial load and cellular distribution of multiple

  3. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.

    Science.gov (United States)

    Johnson, Benjamin K; Scholz, Matthew B; Teal, Tracy K; Abramovitch, Robert B

    2016-02-04

    Many tools exist in the analysis of bacterial RNA sequencing (RNA-seq) transcriptional profiling experiments to identify differentially expressed genes between experimental conditions. Generally, the workflow includes quality control of reads, mapping to a reference, counting transcript abundance, and statistical tests for differentially expressed genes. In spite of the numerous tools developed for each component of an RNA-seq analysis workflow, easy-to-use bacterially oriented workflow applications to combine multiple tools and automate the process are lacking. With many tools to choose from for each step, the task of identifying a specific tool, adapting the input/output options to the specific use-case, and integrating the tools into a coherent analysis pipeline is not a trivial endeavor, particularly for microbiologists with limited bioinformatics experience. To make bacterial RNA-seq data analysis more accessible, we developed a Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis (SPARTA). SPARTA is a reference-based bacterial RNA-seq analysis workflow application for single-end Illumina reads. SPARTA is turnkey software that simplifies the process of analyzing RNA-seq data sets, making bacterial RNA-seq analysis a routine process that can be undertaken on a personal computer or in the classroom. The easy-to-install, complete workflow processes whole transcriptome shotgun sequencing data files by trimming reads and removing adapters, mapping reads to a reference, counting gene features, calculating differential gene expression, and, importantly, checking for potential batch effects within the data set. SPARTA outputs quality analysis reports, gene feature counts and differential gene expression tables and scatterplots. SPARTA provides an easy-to-use bacterial RNA-seq transcriptional profiling workflow to identify differentially expressed genes between experimental conditions. This software will enable microbiologists with

  4. Metals affect soil bacterial and fungal functional diversity differently.

    Science.gov (United States)

    Stefanowicz, Anna M; Niklińska, Maria; Laskowski, Ryszard

    2008-03-01

    Heavy metals can cause a decrease in the taxonomic diversity of soil communities. Because of functional redundancy, it remains unclear to what extent different functions performed by the soil microbial communities may be affected by pollution. We studied the impact of metal contamination on soil bacterial and fungal functional diversity, active microbial biomass, and soil respiration rate. Soil samples were collected from 39 sites along three forest and five meadow pollution transects near an abandoned Pb/Zn smelter in Avonmouth (UK) and Ni smelter in Clydach (UK), in a Cu mining and smelting region near Glogów (Poland), and in a Zn/Pb mining and smelting region near Olkusz (Poland). Biolog GN2 and SFN2 plates were used to study the bacterial and fungal functional diversity, which subsequently was expressed as Shannon's diversity index (H'). The active microbial biomass was measured as substrate-induced respiration. We found that the bacterial functional diversity significantly decreased, whereas the fungal functional diversity slightly increased, with increasing metal concentration. We also observed a slight negative effect of metal pollution on the active microbial biomass. No relationship was found between metal contamination and total soil respiration rate. This suggests a higher sensitivity of bacterial functional diversity as an indicator for the effects of metal pollution compared with overall soil respiration. All microbial parameters were affected by nutrient concentrations and/or soil pH.

  5. Assessing Bacterial Interactions Using Carbohydrate-Based Microarrays

    Directory of Open Access Journals (Sweden)

    Andrea Flannery

    2015-12-01

    Full Text Available Carbohydrates play a crucial role in host-microorganism interactions and many host glycoconjugates are receptors or co-receptors for microbial binding. Host glycosylation varies with species and location in the body, and this contributes to species specificity and tropism of commensal and pathogenic bacteria. Additionally, bacterial glycosylation is often the first bacterial molecular species encountered and responded to by the host system. Accordingly, characterising and identifying the exact structures involved in these critical interactions is an important priority in deciphering microbial pathogenesis. Carbohydrate-based microarray platforms have been an underused tool for screening bacterial interactions with specific carbohydrate structures, but they are growing in popularity in recent years. In this review, we discuss carbohydrate-based microarrays that have been profiled with whole bacteria, recombinantly expressed adhesins or serum antibodies. Three main types of carbohydrate-based microarray platform are considered; (i conventional carbohydrate or glycan microarrays; (ii whole mucin microarrays; and (iii microarrays constructed from bacterial polysaccharides or their components. Determining the nature of the interactions between bacteria and host can help clarify the molecular mechanisms of carbohydrate-mediated interactions in microbial pathogenesis, infectious disease and host immune response and may lead to new strategies to boost therapeutic treatments.

  6. Bacterial cheating limits antibiotic resistance

    Science.gov (United States)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  7. Bacterial streamers in curved microchannels

    Science.gov (United States)

    Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard

    2009-11-01

    Biofilms, generally identified as microbial communities embedded in a self-produced matrix of extracellular polymeric substances, are involved in a wide variety of health-related problems ranging from implant-associated infections to disease transmissions and dental plaque. The usual picture of these bacterial films is that they grow and develop on surfaces. However, suspended biofilm structures, or streamers, have been found in natural environments (e.g., rivers, acid mines, hydrothermal hot springs) and are always suggested to stem from a turbulent flow. We report the formation of bacterial streamers in curved microfluidic channels. By using confocal laser microscopy we are able to directly image and characterize the spatial and temporal evolution of these filamentous structures. Such streamers, which always connect the inner corners of opposite sides of the channel, are always located in the middle plane. Numerical simulations of the flow provide evidences for an underlying hydrodynamic mechanism behind the formation of the streamers.

  8. Pesticide degrading natural multidrug resistance bacterial flora.

    Science.gov (United States)

    Rangasamy, Kirubakaran; Athiappan, Murugan; Devarajan, Natarajan; Samykannu, Gopinath; Parray, Javid A; Aruljothi, K N; Shameem, Nowsheen; Alqarawi, Abdulaziz A; Hashem, Abeer; Abd Allah, Elsayed Fathi

    2018-01-01

    Multidrug-resistant (MDR) bacteria are a growing threat to humans across the world. Antibiotic resistance is a global problem that has developed through continuous antibiotic use, combinatorial antibiotic use, pesticide-antibiotic cross-resistance, and horizontal gene transfer, as well as various other modes. Pesticide-antibiotic cross-resistance and the subsequent expansion of drug-resistant bacteria are critically documented in this review, the primary focus of which is to assess the impact of indiscriminate pesticide use on the development of microbial communities with parallel pesticide and multidrug resistance. The consumption of pesticide-contaminated food products and the use of broad-spectrum antibiotics by humans and in livestock animals have favored the development of both antibiotic and pesticide-resistant bacterial flora via natural selection. Pesticide resistance mainly develops through defensive bacterial adaptations such as biofilm formation, induced mutations, and horizontal/vertical gene transfer through plasmids or transposons, as well as through the increased expression of certain hydrolytic enzymes. Pesticide resistance genes are always transferred as gene clusters, and they may also carry genes essential for antibiotic resistance. Moreover, for some induced mutations, the mutated active site of the affected enzyme may allow degradation of both pesticides and antibiotics, resulting in cross-resistance. A few studies have shown that the sub-lethal exposure of wild-type strains to herbicides induces antibiotic resistance. This review concludes that xenobiotic exposure leads to cross-resistance in wild microbial flora, which requires further study to develop therapeutic approaches to overcome the threats of MDR bacteria and superbugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Bacterial antagonist mediated protein molecules

    OpenAIRE

    Urbizu, Lucia Paola; Sparo, Mónica Delfina; Sanchez Bruni, Sergio Fabian

    2016-01-01

    Bacterial antagonism mediated by ribosomally synthesised peptides has gained considerable attention in recent years because of its potential applications in the control of undesirable microbiota. These peptides, generally referred to as bacteriocins, are defined as a heterogeneous group of ribosomally synthesised, proteinaceous substances (with or without further modifications) extracellularly secreted by many Gram-positive and some Gram-negative bacteria. Their mode of activity is primarily ...

  10. Bacterial Biofilms in Jones Tubes.

    Science.gov (United States)

    Ahn, Eric S; Hauck, Matthew J; Kirk Harris, Jonathan; Robertson, Charles E; Dailey, Roger A

    To investigate the presence and microbiology of bacterial biofilms on Jones tubes (JTs) by direct visualization with scanning electron microscopy and polymerase chain reaction (PCR) of representative JTs, and to correlate these findings with inflammation and/or infection related to the JT. In this study, prospective case series were performed. JTs were recovered from consecutive patients presenting to clinic for routine cleaning or recurrent irritation/infection. Four tubes were processed for scanning electron microscopy alone to visualize evidence of biofilms. Two tubes underwent PCR alone for bacterial quantification. One tube was divided in half and sent for scanning electron microscopy and PCR. Symptoms related to the JTs were recorded at the time of recovery. Seven tubes were obtained. Five underwent SEM, and 3 out of 5 showed evidence of biofilms (60%). Two of the 3 biofilms demonstrated cocci and the third revealed rods. Three tubes underwent PCR. The predominant bacteria identified were Pseudomonadales (39%), Pseudomonas (16%), and Staphylococcus (14%). Three of the 7 patients (43%) reported irritation and discharge at presentation. Two symptomatic patients, whose tubes were imaged only, revealed biofilms. The third symptomatic patient's tube underwent PCR only, showing predominantly Staphylococcus (56%) and Haemophilus (36%) species. Two of the 4 asymptomatic patients also showed biofilms. All symptomatic patients improved rapidly after tube exchange and steroid antibiotic drops. Bacterial biofilms were variably present on JTs, and did not always correlate with patients' symptoms. Nevertheless, routine JT cleaning is recommended to treat and possibly prevent inflammation caused by biofilms.

  11. Bacterial sex in dental plaque

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2013-06-01

    Full Text Available Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.

  12. Polymorphism in Bacterial Flagella Suspensions

    Science.gov (United States)

    Schwenger, Walter J.

    Bacterial flagella are a type of biological polymer studied for its role in bacterial motility and the polymorphic transitions undertaken to facilitate the run and tumble behavior. The naturally rigid, helical shape of flagella gives rise to novel colloidal dynamics and material properties. This thesis studies methods in which the shape of bacterial flagella can be controlled using in vitro methods and the changes the shape of the flagella have on both single particle dynamics and bulk material properties. We observe individual flagellum in both the dilute and semidilute regimes to observe the effects of solvent condition on the shape of the filament as well as the effect the filament morphology has on reptation through a network of flagella. In addition, we present rheological measurements showing how the shape of filaments effects the bulk material properties of flagellar suspensions. We find that the individual particle dynamics in suspensions of flagella can vary with geometry from needing to reptate linearly via rotation for helical filaments to the prevention of long range diffusion for block copolymer filaments. Similarly, for bulk material properties of flagella suspensions, helical geometries show a dramatic enhancement in elasticity over straight filaments while block copolymers form an elastic gel without the aid of crosslinking agents.

  13. Detergent-compatible bacterial amylases.

    Science.gov (United States)

    Niyonzima, Francois N; More, Sunil S

    2014-10-01

    Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted.

  14. Diversity of aquatic bacterial populations

    International Nuclear Information System (INIS)

    Teska, J.D.

    1988-01-01

    A study was designed to evaluate the feasibility of adapting the automated Quantum II for the identification of bacterial fish pathogens. Optimal incubation conditions were determined for each of the species used, and, by using a Chi-square goodness of fit test, it was shown that isolates could be sorted into like-species groups with a Ward's hierarchical cluster analysis technique. In a second study, population profiles, growth kinetics, and transformation kinetics were evaluated for bacteria isolated from 4 aquatic environments located in the southeastern United States. Gradual long-term accumulation of organic acids in the waters of the Okefenokee Swamp, located in southeast Georgia and northeast Florida, has resulted in acidic water ranging from pH 3.5 to 4.5. A study was designed to evaluate the metabolic efficiency of surface-water gram-negative nonfermentative bacteria and ascertain whether aquatic bacterial populations exhibit adaptation to the low pH conditions. Using the computerized AMBIS the uptake and incorporation of 35 S-methionine into bacterial proteins under 5 levels of pH was quantitated for each of the test organisms

  15. Bacterial biofilm and associated infections

    Directory of Open Access Journals (Sweden)

    Muhsin Jamal

    2018-01-01

    Full Text Available Microscopic entities, microorganisms that drastically affect human health need to be thoroughly investigated. A biofilm is an architectural colony of microorganisms, within a matrix of extracellular polymeric substance that they produce. Biofilm contains microbial cells adherent to one-another and to a static surface (living or non-living. Bacterial biofilms are usually pathogenic in nature and can cause nosocomial infections. The National Institutes of Health (NIH revealed that among all microbial and chronic infections, 65% and 80%, respectively, are associated with biofilm formation. The process of biofilm formation consists of many steps, starting with attachment to a living or non-living surface that will lead to formation of micro-colony, giving rise to three-dimensional structures and ending up, after maturation, with detachment. During formation of biofilm several species of bacteria communicate with one another, employing quorum sensing. In general, bacterial biofilms show resistance against human immune system, as well as against antibiotics. Health related concerns speak loud due to the biofilm potential to cause diseases, utilizing both device-related and non-device-related infections. In summary, the understanding of bacterial biofilm is important to manage and/or to eradicate biofilm-related diseases. The current review is, therefore, an effort to encompass the current concepts in biofilm formation and its implications in human health and disease.

  16. Dialkylresorcinols as bacterial signaling molecules.

    Science.gov (United States)

    Brameyer, Sophie; Kresovic, Darko; Bode, Helge B; Heermann, Ralf

    2015-01-13

    It is well recognized that bacteria communicate via small diffusible molecules, a process termed quorum sensing. The best understood quorum sensing systems are those that use acylated homoserine lactones (AHLs) for communication. The prototype of those systems consists of a LuxI-like AHL synthase and a cognate LuxR receptor that detects the signal. However, many proteobacteria possess LuxR receptors, yet lack any LuxI-type synthase, and thus these receptors are referred to as LuxR orphans or solos. In addition to the well-known AHLs, little is known about the signaling molecules that are sensed by LuxR solos. Here, we describe a novel cell-cell communication system in the insect and human pathogen Photorhabdus asymbiotica. We identified the LuxR homolog PauR to sense dialkylresorcinols (DARs) and cyclohexanediones (CHDs) instead of AHLs as signals. The DarABC synthesis pathway produces the molecules, and the entire system emerged as important for virulence. Moreover, we have analyzed more than 90 different Photorhabdus strains by HPLC/MS and showed that these DARs and CHDs are specific to the human pathogen P. asymbiotica. On the basis of genomic evidence, 116 other bacterial species are putative DAR producers, among them many human pathogens. Therefore, we discuss the possibility of DARs as novel and widespread bacterial signaling molecules and show that bacterial cell-cell communication goes far beyond AHL signaling in nature.

  17. Acute bacterial meningitis in adults.

    Science.gov (United States)

    McGill, Fiona; Heyderman, Robert S; Panagiotou, Stavros; Tunkel, Allan R; Solomon, Tom

    2016-12-17

    Over the past several decades, the incidence of bacterial meningitis in children has decreased but there remains a significant burden of disease in adults, with a mortality of up to 30%. Although the pathogenesis of bacterial meningitis is not completely understood, knowledge of bacterial invasion and entry into the CNS is improving. Clinical features alone cannot determine whether meningitis is present and analysis of cerebrospinal fluid is essential for diagnosis. Newer technologies, such as multiplex PCR, and novel diagnostic platforms that incorporate proteomics and genetic sequencing, might help provide a quicker and more accurate diagnosis. Even with appropriate antimicrobial therapy, mortality is high and so attention has focused on adjunctive therapies; adjunctive corticosteroids are beneficial in certain circumstances. Any further improvements in outcome are likely to come from either modulation of the host response or novel approaches to therapy, rather than new antibiotics. Ultimately, the best hope to reduce the disease burden is with broadly protective vaccines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Modulating the bacterial surface with small RNAs: a new twist on PhoP/Q-mediated lipopolysaccharide modification

    DEFF Research Database (Denmark)

    Overgaard, Martin; Kallipolitis, Birgitte; Valentin-Hansen, Poul

    2009-01-01

    Summary In recent years, small non-coding RNAs have emerged as important regulatory components in bacterial stress responses and in bacterial virulence. Many of these are conserved in related species and act on target mRNAs by sequence complementarity. They are tightly controlled...... of bacterial surface properties by regulating lipopolysaccharide modification. The small RNA is expressed as part of the PhoP/PhoQ two-component system that plays a major role in virulence of pathogenic species. This work expands the list of global regulators known to control small RNA expression...

  19. Cold storage of human milk: effect on its bacterial composition.

    Science.gov (United States)

    Marín, María L; Arroyo, Rebeca; Jiménez, Esther; Gómez, Adolfo; Fernández, Leonides; Rodríguez, Juan M

    2009-09-01

    In the last few years, it has been proved that human milk contains bacteria that constitute an important factor in the initiation and development of the neonatal gut microbiota. In this context, the objective of this study was to evaluate the effect of cold storage on the natural bacterial composition of breast milk. Breast milk samples provided by 34 healthy women and collected either by manual expression (n = 27) or breast pump (n = 7), were plated onto several culture media immediately after arrival at the laboratory (day 0) and after storage at -20 degrees C for 6 weeks. A high number of isolates from 8 of the women were identified at the species level. No statistically significant differences were observed between the counts obtained at both sampling times in those media in which growth was detected. In all of the culture media, bacterial counts in pump-collected samples were higher than in those obtained by manual expression. Staphylococci and streptococci were the predominant bacteria in both fresh and frozen samples, Staphylococcus epidermidis being the most abundant species at both sampling times. Lactic acid bacteria and bifidobacteria were also present in fresh and frozen breast milk samples, but among them, only 1 species (Lactobacillus gasseri) could be isolated at both sampling times. The results of this study suggest that cold storage of milk at -20 degrees C for 6 weeks does not significantly affect either the quantitative or the qualitative bacterial composition of breast milk.

  20. Social behavior and decision making in bacterial conjugation.

    Science.gov (United States)

    Koraimann, Günther; Wagner, Maria A

    2014-01-01

    Bacteria frequently acquire novel genes by horizontal gene transfer (HGT). HGT through the process of bacterial conjugation is highly efficient and depends on the presence of conjugative plasmids (CPs) or integrated conjugative elements (ICEs) that provide the necessary genes for DNA transmission. This review focuses on recent advancements in our understanding of ssDNA transfer systems and regulatory networks ensuring timely and spatially controlled DNA transfer (tra) gene expression. As will become obvious by comparing different systems, by default, tra genes are shut off in cells in which conjugative elements are present. Only when conditions are optimal, donor cells-through epigenetic alleviation of negatively acting roadblocks and direct stimulation of DNA transfer genes-become transfer competent. These transfer competent cells have developmentally transformed into specialized cells capable of secreting ssDNA via a T4S (type IV secretion) complex directly into recipient cells. Intriguingly, even under optimal conditions, only a fraction of the population undergoes this transition, a finding that indicates specialization and cooperative, social behavior. Thereby, at the population level, the metabolic burden and other negative consequences of tra gene expression are greatly reduced without compromising the ability to horizontally transfer genes to novel bacterial hosts. This undoubtedly intelligent strategy may explain why conjugative elements-CPs and ICEs-have been successfully kept in and evolved with bacteria to constitute a major driving force of bacterial evolution.

  1. Enhanced virus resistance in transgenic maize expressing a dsRNA-specific endoribonuclease gene from E. coli.

    Science.gov (United States)

    Cao, Xiuling; Lu, Yingui; Di, Dianping; Zhang, Zhiyan; Liu, He; Tian, Lanzhi; Zhang, Aihong; Zhang, Yanjing; Shi, Lindan; Guo, Bihong; Xu, Jin; Duan, Xifei; Wang, Xianbing; Han, Chenggui; Miao, Hongqin; Yu, Jialin; Li, Dawei

    2013-01-01

    Maize rough dwarf disease (MRDD), caused by several Fijiviruses in the family Reoviridae, is a global disease that is responsible for substantial yield losses in maize. Although some maize germplasm have low levels of polygenic resistance to MRDD, highly resistant cultivated varieties are not available for agronomic field production in China. In this work, we have generated transgenic maize lines that constitutively express rnc70, a mutant E. coli dsRNA-specific endoribonuclease gene. Transgenic lines were propagated and screened under field conditions for 12 generations. During three years of evaluations, two transgenic lines and their progeny were challenged with Rice black-streaked dwarf virus (RBSDV), the causal agent of MRDD in China, and these plants exhibited reduced levels of disease severity. In two normal years of MRDD abundance, both lines were more resistant than non-transgenic plants. Even in the most serious MRDD year, six out of seven progeny from one line were resistant, whereas non-transgenic plants were highly susceptible. Molecular approaches in the T12 generation revealed that the rnc70 transgene was integrated and expressed stably in transgenic lines. Under artificial conditions permitting heavy virus inoculation, the T12 progeny of two highly resistant lines had a reduced incidence of MRDD and accumulation of RBSDV in infected plants. In addition, we confirmed that the RNC70 protein could bind directly to RBSDV dsRNA in vitro. Overall, our data show that RNC70-mediated resistance in transgenic maize can provide efficient protection against dsRNA virus infection.

  2. Knock down of Whitefly Gut Gene Expression and Mortality by Orally Delivered Gut Gene-Specific dsRNAs.

    Science.gov (United States)

    Vyas, Meenal; Raza, Amir; Ali, Muhammad Yousaf; Ashraf, Muhammad Aleem; Mansoor, Shahid; Shahid, Ahmad Ali; Brown, Judith K

    2017-01-01

    Control of the whitefly Bemisia tabaci (Genn.) agricultural pest and plant virus vector relies on the use of chemical insecticides. RNA-interference (RNAi) is a homology-dependent innate immune response in eukaryotes, including insects, which results in degradation of the corresponding transcript following its recognition by a double-stranded RNA (dsRNA) that shares 100% sequence homology. In this study, six whitefly 'gut' genes were selected from an in silico-annotated transcriptome library constructed from the whitefly alimentary canal or 'gut' of the B biotype of B. tabaci, and tested for knock down efficacy, post-ingestion of dsRNAs that share 100% sequence homology to each respective gene target. Candidate genes were: Acetylcholine receptor subunit α, Alpha glucosidase 1, Aquaporin 1, Heat shock protein 70, Trehalase1, and Trehalose transporter1. The efficacy of RNAi knock down was further tested in a gene-specific functional bioassay, and mortality was recorded in 24 hr intervals, six days, post-treatment. Based on qPCR analysis, all six genes tested showed significantly reduced gene expression. Moderate-to-high whitefly mortality was associated with the down-regulation of osmoregulation, sugar metabolism and sugar transport-associated genes, demonstrating that whitefly survivability was linked with RNAi results. Silenced Acetylcholine receptor subunit α and Heat shock protein 70 genes showed an initial low whitefly mortality, however, following insecticide or high temperature treatments, respectively, significantly increased knockdown efficacy and death was observed, indicating enhanced post-knockdown sensitivity perhaps related to systemic silencing. The oral delivery of gut-specific dsRNAs, when combined with qPCR analysis of gene expression and a corresponding gene-specific bioassay that relates knockdown and mortality, offers a viable approach for functional genomics analysis and the discovery of prospective dsRNA biopesticide targets. The approach can

  3. Enhanced virus resistance in transgenic maize expressing a dsRNA-specific endoribonuclease gene from E. coli.

    Directory of Open Access Journals (Sweden)

    Xiuling Cao

    Full Text Available Maize rough dwarf disease (MRDD, caused by several Fijiviruses in the family Reoviridae, is a global disease that is responsible for substantial yield losses in maize. Although some maize germplasm have low levels of polygenic resistance to MRDD, highly resistant cultivated varieties are not available for agronomic field production in China. In this work, we have generated transgenic maize lines that constitutively express rnc70, a mutant E. coli dsRNA-specific endoribonuclease gene. Transgenic lines were propagated and screened under field conditions for 12 generations. During three years of evaluations, two transgenic lines and their progeny were challenged with Rice black-streaked dwarf virus (RBSDV, the causal agent of MRDD in China, and these plants exhibited reduced levels of disease severity. In two normal years of MRDD abundance, both lines were more resistant than non-transgenic plants. Even in the most serious MRDD year, six out of seven progeny from one line were resistant, whereas non-transgenic plants were highly susceptible. Molecular approaches in the T12 generation revealed that the rnc70 transgene was integrated and expressed stably in transgenic lines. Under artificial conditions permitting heavy virus inoculation, the T12 progeny of two highly resistant lines had a reduced incidence of MRDD and accumulation of RBSDV in infected plants. In addition, we confirmed that the RNC70 protein could bind directly to RBSDV dsRNA in vitro. Overall, our data show that RNC70-mediated resistance in transgenic maize can provide efficient protection against dsRNA virus infection.

  4. Differential effects of silencing crustacean hyperglycemic hormone gene expression on the metabolic profiles of the muscle and hepatopancreas in the crayfish Procambarus clarkii.

    Directory of Open Access Journals (Sweden)

    Wenfeng Li

    Full Text Available In order to functionally characterize the metabolic roles of crustacean hyperglycemic hormone (CHH, gene expression of CHH in the crayfish (Procambarus clarkii was knocked down by in vivo injection of CHH double-stranded RNA (dsRNA, followed by metabolomic analysis of 2 CHH target tissues (the muscle and hepatopancreas using nuclear magnetic resonance spectroscopy. Compared to the levels in untreated and saline-injected (SAI animals, levels of CHH transcript, but not those of molt-inhibiting hormone (a CHH-family peptide, in the eyestalk ganglia of CHH dsRNA-injected (DSI animals were significantly decreased at 24, 48, and 72 hour post injection (hpi, with concomitant changes in levels of CHH peptide in the sinus gland (a neurohemal organ and hemolymph. Green fluorescence protein (GFP dsRNA failed to affect levels of CHH transcript in the eyestalk ganglia of GFP DSI animals. Number of metabolites whose levels were significantly changed by CHH dsRNA was 149 and 181 in the muscle and 24 and 12 in the hepatopancreas, at 24 and 48 hpi, respectively. Principal component analysis of these metabolites show that metabolic effects of silencing CHH gene expression were more pronounced in the muscle (with the cluster of CHH DSI group clearly being separated from that of SAI group at 24 hpi than in the hepatopancreas. Moreover, pathway analysis of the metabolites closely related to carbohydrate and energy metabolism indicate that, for CHH DSI animals at 24 hpi, metabolic profile of the muscle was characterized by reduced synthesis of NAD+ and adenine ribonucleotides, diminished levels of ATP, lower rate of utilization of carbohydrates through glycolysis, and a partially rescued TCA cycle, whereas that of the hepatopancreas by unaffected levels of ATP, lower rate of utilization of carbohydrates, and increased levels of ketone bodies. The combined results of metabolic changes in response to silenced CHH gene expression reveal that metabolic functions of CHH

  5. Differential effects of silencing crustacean hyperglycemic hormone gene expression on the metabolic profiles of the muscle and hepatopancreas in the crayfish Procambarus clarkii.

    Science.gov (United States)

    Li, Wenfeng; Chiu, Kuo-Hsun; Tien, Yi-Chun; Tsai, Shih-Fu; Shih, Li-Jane; Lee, Chien-Hsun; Toullec, Jean-Yves; Lee, Chi-Ying

    2017-01-01

    In order to functionally characterize the metabolic roles of crustacean hyperglycemic hormone (CHH), gene expression of CHH in the crayfish (Procambarus clarkii) was knocked down by in vivo injection of CHH double-stranded RNA (dsRNA), followed by metabolomic analysis of 2 CHH target tissues (the muscle and hepatopancreas) using nuclear magnetic resonance spectroscopy. Compared to the levels in untreated and saline-injected (SAI) animals, levels of CHH transcript, but not those of molt-inhibiting hormone (a CHH-family peptide), in the eyestalk ganglia of CHH dsRNA-injected (DSI) animals were significantly decreased at 24, 48, and 72 hour post injection (hpi), with concomitant changes in levels of CHH peptide in the sinus gland (a neurohemal organ) and hemolymph. Green fluorescence protein (GFP) dsRNA failed to affect levels of CHH transcript in the eyestalk ganglia of GFP DSI animals. Number of metabolites whose levels were significantly changed by CHH dsRNA was 149 and 181 in the muscle and 24 and 12 in the hepatopancreas, at 24 and 48 hpi, respectively. Principal component analysis of these metabolites show that metabolic effects of silencing CHH gene expression were more pronounced in the muscle (with the cluster of CHH DSI group clearly being separated from that of SAI group at 24 hpi) than in the hepatopancreas. Moreover, pathway analysis of the metabolites closely related to carbohydrate and energy metabolism indicate that, for CHH DSI animals at 24 hpi, metabolic profile of the muscle was characterized by reduced synthesis of NAD+ and adenine ribonucleotides, diminished levels of ATP, lower rate of utilization of carbohydrates through glycolysis, and a partially rescued TCA cycle, whereas that of the hepatopancreas by unaffected levels of ATP, lower rate of utilization of carbohydrates, and increased levels of ketone bodies. The combined results of metabolic changes in response to silenced CHH gene expression reveal that metabolic functions of CHH on the

  6. Recent progresses on AI-2 bacterial quorum sensing inhibitors.

    Science.gov (United States)

    Zhu, Peng; Li, Minyong

    2012-01-01

    Quorum sensing (QS) is a communication procedure that predominates gene expression in response to cell density and fluctuations in the neighboring environment as a result of discerning molecules termed autoinducers (AIs). It has been embroiled that QS can govern bacterial behaviors such as the secretion of virulence factors, biofilm formation, bioluminescence production, conjugation, sporulation and swarming motility. Autoinducer 2 (AI-2), a QS signaling molecule brought up to be involved in interspecies communication, exists in both gram-negative and -positive bacteria. Therefore, novel approaches to interrupt AI-2 quorum sensing are being recognized as next generation antimicrobials. In the present review article, we summarized recent progresses on AI-2 bacterial quorum sensing inhibitors and discussed their potential as the antibacterial agents.

  7. Defining bacterial regulons using ChIP-seq.

    Science.gov (United States)

    Myers, Kevin S; Park, Dan M; Beauchene, Nicole A; Kiley, Patricia J

    2015-09-15

    Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is a powerful method that identifies protein-DNA binding sites in vivo. Recent studies have illustrated the value of ChIP-seq in studying transcription factor binding in various bacterial species under a variety of growth conditions. These results show that in addition to identifying binding sites, correlation of ChIP-seq data with expression data can reveal important information about bacterial regulons and regulatory networks. In this chapter, we provide an overview of the current state of knowledge about ChIP-seq methodology in bacteria, from sample preparation to raw data analysis. We also describe visualization and various bioinformatic analyses of processed ChIP-seq data. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Defining Bacterial Regulons Using ChIP-seq Methods

    Science.gov (United States)

    Myers, Kevin S.; Park, Dan M.; Beauchene, Nicole A.; Kiley, Patricia J.

    2015-01-01

    Chromatin immunoprecitation followed by high-throughput sequencing (ChIP-seq) is a powerful method that identifies protein-DNA binding sites in vivo. Recent studies have illustrated the value of ChIP-seq in studying transcription factor binding in various bacterial species under a variety of growth conditions. These results show that in addition to identifying binding sites, correlation of ChIP-seq data with expression data can reveal important information about bacterial regulons and regulatory networks. In this chapter, we provide an overview of the current state of knowledge about ChIP-seq methodology in bacteria, from sample preparation to raw data analysis. We also describe visualization and various bioinformatic analyses of processed ChIP-seq data. PMID:26032817

  9. In search of a bacterial species definition

    Directory of Open Access Journals (Sweden)

    Edgardo Moreno

    2002-06-01

    Full Text Available Abstract: The bacterial species concept was examined within the framework of plant and animal associated α-2 proteobacteria, taking into consideration the phylogenetic, taxonomic and biological approaches as well as the microbiologists perception. The virtue of the phylogenetic approach is that it gives an evolutionary perspective of the bacterial lineage; however the methods used possess low resolution for defining species located at the terminal branches of the phylogenetic trees. The merit of the taxonomic approach is that species are defined on the basis of multiple characteristics allowing high resolution at the terminal branches of dendograms; its disadvantage is the inaccuracy in the earlier nodes. On an individual level, the qualitative biological characteristics used for the definition of species frequently reveal shortcomings because many of these properties are the result of coevolution, parallel evolution or the horizontal transfer of genes. Nevertheless, when considered together with !be phylogenetic and taxonomic approaches, important uncertainties are discovered: these must be weighed if a practical definition of bacterial species is conceived. The microbiologists' perception is !be criterion expressed by a group of sponsors who, based on scientific and practical grounds, propose a new bacterial species. The success of this new proposal is measured by its widespread acceptance and its permanence. A difficult problem concerned with defining bacterial species is how to distinguish if they are independent evolutionary units or if they are reticulate evolutionary units. In the first case the inherence is vertically transmitted as a result of binary fission and clonal expansion. This may be !be case of some animal cell associated bacteria in which recombination appears to be precluded or exceptional. In the second case adaptive changes occurring within an individual can be horizontaIly transferred to many or all group members. This

  10. Antibiotic Capture by Bacterial Lipocalins Uncovers an Extracellular Mechanism of Intrinsic Antibiotic Resistance.

    Science.gov (United States)

    El-Halfawy, Omar M; Klett, Javier; Ingram, Rebecca J; Loutet, Slade A; Murphy, Michael E P; Martín-Santamaría, Sonsoles; Valvano, Miguel A

    2017-03-14

    The potential for microbes to overcome antibiotics of different classes before they reach bacterial cells is largely unexplored. Here we show that a soluble bacterial lipocalin produced by Burkholderia cenocepacia upon exposure to sublethal antibiotic concentrations increases resistance to diverse antibiotics in vitro and in vivo These phenotypes were recapitulated by heterologous expression in B. cenocepacia of lipocalin genes from Pseudomonas aeruginosa , Mycobacterium tuberculosis , and methicillin-resistant Staphylococcus aureus Purified lipocalin bound different classes of bactericidal antibiotics and contributed to bacterial survival in vivo Experimental and X-ray crystal structure-guided computational studies revealed that lipocalins counteract antibiotic action by capturing antibiotics in the extracellular space. We also demonstrated that fat-soluble vitamins prevent antibiotic capture by binding bacterial lipocalin with higher affinity than antibiotics. Therefore, bacterial lipocalins contribute to antimicrobial resistance by capturing diverse antibiotics in the extracellular space at the site of infection, which can be counteracted by known vitamins. IMPORTANCE Current research on antibiotic action and resistance focuses on targeting essential functions within bacterial cells. We discovered a previously unrecognized mode of general bacterial antibiotic resistance operating in the extracellular space, which depends on bacterial protein molecules called lipocalins. These molecules are highly conserved in most bacteria and have the ability to capture different classes of antibiotics outside bacterial cells. We also discovered that liposoluble vitamins, such as vitamin E, overcome in vitro and in vivo antibiotic resistance mediated by bacterial lipocalins, providing an unexpected new alternative to combat resistance by using this vitamin or its derivatives as antibiotic adjuvants. Copyright © 2017 El-Halfawy et al.

  11. Inducing gene expression by targeting promoter sequences using small activating RNAs

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2015-02-01

    Full Text Available Vector-based systems comprised of exogenous nucleic acid sequences remain the standard for ectopic expression of a particular gene. Such systems offer robust overexpression, but have inherent drawbacks such the tedious process of construction, excluding sequences (e.g. introns and untranslated regions important for gene function and potential insertional mutagenesis of host genome associated with the use of viral vectors. We and others have recently reported that short double-stranded RNAs (dsRNAs can induce endogenous gene expression by targeting promoter sequences in a phenomenon referred to as RNA activation (RNAa and such dsRNAs are termed small activating RNAs (saRNAs. To date, RNAa has been successfully utilized to induce the expression of different genes such as tumor suppressor genes. Here, we describe a detailed protocol for target selection and dsRNA design with associated experiments to facilitate RNAa in cultured cells. This technique may be applied to selectively activate endogenous gene expression for studying gene function, interrogating molecular pathways and reprogramming cell fate.

  12. Dissociation of Tissue Destruction and Bacterial Expansion during Bubonic Plague.

    Directory of Open Access Journals (Sweden)

    Françoise Guinet

    2015-10-01

    Full Text Available Activation and/or recruitment of the host plasmin, a fibrinolytic enzyme also active on extracellular matrix components, is a common invasive strategy of bacterial pathogens. Yersinia pestis, the bubonic plague agent, expresses the multifunctional surface protease Pla, which activates plasmin and inactivates fibrinolysis inhibitors. Pla is encoded by the pPla plasmid. Following intradermal inoculation, Y. pestis has the capacity to multiply in and cause destruction of the lymph node (LN draining the entry site. The closely related, pPla-negative, Y. pseudotuberculosis species lacks this capacity. We hypothesized that tissue damage and bacterial multiplication occurring in the LN during bubonic plague were linked and both driven by pPla. Using a set of pPla-positive and pPla-negative Y. pestis and Y. pseudotuberculosis strains in a mouse model of intradermal injection, we found that pPla is not required for bacterial translocation to the LN. We also observed that a pPla-cured Y. pestis caused the same extensive histological lesions as the wild type strain. Furthermore, the Y. pseudotuberculosis histological pattern, characterized by infectious foci limited by inflammatory cell infiltrates with normal tissue density and follicular organization, was unchanged after introduction of pPla. However, the presence of pPla enabled Y. pseudotuberculosis to increase its bacterial load up to that of Y. pestis. Similarly, lack of pPla strongly reduced Y. pestis titers in LNs of infected mice. This pPla-mediated enhancing effect on bacterial load was directly dependent on the proteolytic activity of Pla. Immunohistochemistry of Pla-negative Y. pestis-infected LNs revealed extensive bacterial lysis, unlike the numerous, apparently intact, microorganisms seen in wild type Y. pestis-infected preparations. Therefore, our study demonstrates that tissue destruction and bacterial survival/multiplication are dissociated in the bubo and that the primary action of Pla

  13. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas.

    Science.gov (United States)

    Gilani, Razia Alam; Rafique, Mazhar; Rehman, Abdul; Munis, Muhammad Farooq Hussain; Rehman, Shafiq Ur; Chaudhary, Hassan Javed

    2016-02-01

    Chlorpyrifos is an organophosphorus pesticide commonly used in agriculture. It is noxious to a variety of organisms that include living soil biota along with beneficial arthropods, fish, birds, humans, animals, and plants. Exposure to chlorpyrifos may cause detrimental effects as delayed seedling emergence, fruit deformities, and abnormal cell division. Contamination of chlorpyrifos has been found about 24 km from the site of its application. There are many physico-chemical and biological approaches to remove organophosphorus pesticides from the ecosystem, among them most promising is biodegradation. The 3,5,6-trichloro-2-pyridinol (TCP) and diethylthiophosphate (DETP) as primary products are made when chlorpyrifos is degraded by soil microorganisms which further break into nontoxic metabolites as CO(2), H(2)O, and NH(3). Pseudomonas is a diversified genus possessing a series of catabolic pathways and enzymes involved in pesticide degradation. Pseudomonas putida MAS-1 is reported to be more efficient in chlorpyrifos degradation by a rate of 90% in 24 h among Pseudomonas genus. The current review analyzed the comparative potential of bacterial species in Pseudomonas genus for degradation of chlorpyrifos thus, expressing an ecofriendly approach for the treatment of environmental contaminants like pesticides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Molecular Basis of Bacterial Longevity

    Directory of Open Access Journals (Sweden)

    Kieran B. Pechter

    2017-11-01

    Full Text Available It is well known that many bacteria can survive in a growth-arrested state for long periods of time, on the order of months or even years, without forming dormant structures like spores or cysts. How is such longevity possible? What is the molecular basis of such longevity? Here we used the Gram-negative phototrophic alphaproteobacterium Rhodopseudomonas palustris to identify molecular determinants of bacterial longevity. R. palustris maintained viability for over a month after growth arrest due to nutrient depletion when it was provided with light as a source of energy. In transposon sequencing (Tn-seq experiments, we identified 117 genes that were required for long-term viability of nongrowing R. palustris cells. Genes in this longevity gene set are annotated to play roles in a number of cellular processes, including DNA repair, tRNA modification, and the fidelity of protein synthesis. These genes are critically important only when cells are not growing. Three genes annotated to affect translation or posttranslational modifications were validated as bona fide longevity genes by mutagenesis and complementation experiments. These genes and others in the longevity gene set are broadly conserved in bacteria. This raises the possibility that it will be possible to define a core set of longevity genes common to many bacterial species.

  15. Phenotypic signatures arising from unbalanced bacterial growth.

    Science.gov (United States)

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-08-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identify "phenotypic signatures" by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains.

  16. Interaction between resource identity and bacterial community composition regulates bacterial respiration in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    A. P. F. Pires

    Full Text Available Abstract Resource identity and composition structure bacterial community, which in turn determines the magnitude of bacterial processes and ecological services. However, the complex interaction between resource identity and bacterial community composition (BCC has been poorly understood so far. Using aquatic microcosms, we tested whether and how resource identity interacts with BCC in regulating bacterial respiration and bacterial functional diversity. Different aquatic macrophyte leachates were used as different carbon resources while BCC was manipulated through successional changes of bacterial populations in batch cultures. We observed that the same BCC treatment respired differently on each carbon resource; these resources also supported different amounts of bacterial functional diversity. There was no clear linear pattern of bacterial respiration in relation to time succession of bacterial communities in all leachates, i.e. differences on bacterial respiration between different BCC were rather idiosyncratic. Resource identity regulated the magnitude of respiration of each BCC, e.g. Ultricularia foliosa leachate sustained the greatest bacterial functional diversity and lowest rates of bacterial respiration in all BCC. We conclude that both resource id