Sample records for bacterial walls viewed

  1. Dislocation-mediated growth of bacterial cell walls

    CERN Document Server

    Amir, Ariel


    Recent experiments have illuminated a remarkable growth mechanism of rod-shaped bacteria: proteins associated with cell wall extension move at constant velocity in circles oriented approximately along the cell circumference (Garner et al., Science (2011), Dominguez-Escobar et al. Science (2011), van Teeffelen et al. PNAS (2011). We view these as dislocations in the partially ordered peptidoglycan structure, activated by glycan strand extension machinery, and study theoretically the dynamics of these interacting defects on the surface of a cylinder. Generation and motion of these interacting defects lead to surprising effects arising from the cylindrical geometry, with important implications for growth. We also discuss how long range elastic interactions and turgor pressure affect the dynamics of the fraction of actively moving dislocations in the bacterial cell wall.

  2. Beyond growth: novel functions for bacterial cell wall hydrolases. (United States)

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R


    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  3. Bacterial Cell Wall Growth, Shape and Division

    NARCIS (Netherlands)

    Derouaux, A.; Terrak, M.; den Blaauwen, T.; Vollmer, W.; Remaut, H.; Fronzes, R.


    The shape of a bacterial cell is maintained by its peptidoglycan sacculus that completely surrounds the cytoplasmic membrane. During growth the sacculus is enlarged by peptidoglycan synthesis complexes that are controlled by components linked to the cytoskeleton and, in Gram-negative bacteria, by ou

  4. Near Wall Turbulence: an experimental view (United States)

    Stanislas, Michel


    The aim of this presentation is to summarize the understanding of the near wall turbulence phenomena obtained at Laboratoire de Mécanique de Lille using both hot wire anemometry and PIV. A wind tunnel was built in 1993 specifically designed for these two measurement techniques and aimed at large Reynolds numbers. Several experiments were performed since then in the frame of different PhDs and European projects, all aimed at evidencing turbulence organization in this region. These have fully benefited of the extraordinary development of PIV in that time frame, which has allowed entering visually and quantitatively inside the complex spatial and temporal structure of near wall turbulence. The presentation will try to emphasize the benefit of this approach in terms of understanding and modelling, illustrated by some representative results obtained. M. Stanislas particularly acknowledges the financial support of Region Nord Pas de Calais, unmissing during 25 years.

  5. Resistance to antibiotics targeted to the bacterial cell wall. (United States)

    Nikolaidis, I; Favini-Stabile, S; Dessen, A


    Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three-dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed.

  6. Dental pulp response to bacterial cell wall material. (United States)

    Warfvinge, J; Dahlén, G; Bergenholtz, G


    Lipopolysaccharides (LPS) from Bacteroides oralis and Veillonella parvula and cell wall material from Lactobacillus casei were studied for their capacity to induce leukocyte migration in the dental pulp and in an implanted wound chamber. Three adult monkeys were challenged using lyophilized material sealed into buccal Class V cavities prepared in dentin. Pulp tissue responses were observed histologically eight and 72 hours after initiation of the experiment. Subjacent to cut dentinal tubules, bacterial materials induced polymorphonuclear leukocyte (PMN's) infiltration in the pulp tissue of the majority of test teeth examined. Responses were similar for the three bacterial test materials at both time periods. Topical applications of bovine serum albumin (BSA), used as a control, induced significantly less accumulation of PMN's. Assessments of induced exudate volumes and leukocyte densities in chambers implanted in rats showed comparable rankings with pulpal experiment between test (i.e., bacterial) and control (BSA) materials. Analysis of the data indicates that high-molecular-weight complexes of bacterial cell walls may adversely affect pulpal tissue across freshly exposed dentin.

  7. Studying biomolecule localization by engineering bacterial cell wall curvature.

    Directory of Open Access Journals (Sweden)

    Lars D Renner

    Full Text Available In this article we describe two techniques for exploring the relationship between bacterial cell shape and the intracellular organization of proteins. First, we created microchannels in a layer of agarose to reshape live bacterial cells and predictably control their mean cell wall curvature, and quantified the influence of curvature on the localization and distribution of proteins in vivo. Second, we used agarose microchambers to reshape bacteria whose cell wall had been chemically and enzymatically removed. By combining microstructures with different geometries and fluorescence microscopy, we determined the relationship between bacterial shape and the localization for two different membrane-associated proteins: i the cell-shape related protein MreB of Escherichia coli, which is positioned along the long axis of the rod-shaped cell; and ii the negative curvature-sensing cell division protein DivIVA of Bacillus subtilis, which is positioned primarily at cell division sites. Our studies of intracellular organization in live cells of E. coli and B. subtilis demonstrate that MreB is largely excluded from areas of high negative curvature, whereas DivIVA localizes preferentially to regions of high negative curvature. These studies highlight a unique approach for studying the relationship between cell shape and intracellular organization in intact, live bacteria.

  8. Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II

    DEFF Research Database (Denmark)

    Schneider, Tanja; Kruse, Thomas; Wimmer, Reinhard


    that plectasin, a fungal defensin, acts by directly binding the bacterial cell-wall precursor Lipid II. A wide range of genetic and biochemical approaches identify cell-wall biosynthesis as the pathway targeted by plectasin. In vitro assays for cell-wall synthesis identified Lipid II as the specific cellular...

  9. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis. (United States)

    Liu, Xiaokun; Grabherr, Heini M; Willmann, Roland; Kolb, Dagmar; Brunner, Frédéric; Bertsche, Ute; Kühner, Daniel; Franz-Wachtel, Mirita; Amin, Bushra; Felix, Georg; Ongena, Marc; Nürnberger, Thorsten; Gust, Andrea A


    Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites.

  10. Impact of wall shear stress on initial bacterial adhesion in rotating annular reactor. (United States)

    Saur, Thibaut; Morin, Emilie; Habouzit, Frédéric; Bernet, Nicolas; Escudié, Renaud


    The objective of this study was to investigate the bacterial adhesion under different wall shear stresses in turbulent flow and using a diverse bacterial consortium. A better understanding of the mechanisms governing microbial adhesion can be useful in diverse domains such as industrial processes, medical fields or environmental biotechnologies. The impact of wall shear stress-four values ranging from 0.09 to 7.3 Pa on polypropylene (PP) and polyvinyl chloride (PVC)-was carried out in rotating annular reactors to evaluate the adhesion in terms of morphological and microbiological structures. A diverse inoculum consisting of activated sludge was used. Epifluorescence microscopy was used to quantitatively and qualitatively characterize the adhesion. Attached bacterial communities were assessed by molecular fingerprinting profiles (CE-SSCP). It has been demonstrated that wall shear stress had a strong impact on both quantitative and qualitative aspects of the bacterial adhesion. ANOVA tests also demonstrated the significant impact of wall shear stress on all three tested morphological parameters (surface coverage, number of objects and size of objects) (p-values < 2.10-16). High wall shear stresses increased the quantity of attached bacteria but also altered their spatial distribution on the substratum surface. As the shear increased, aggregates or clusters appeared and their size grew when increasing the shears. Concerning the microbiological composition, the adhered bacterial communities changed gradually with the applied shear.

  11. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment. (United States)

    Grimes, Catherine Leimkuhler; Ariyananda, Lushanti De Zoysa; Melnyk, James E; O'Shea, Erin K


    Mammalian Nod2 is an intracellular protein that is implicated in the innate immune response to the bacterial cell wall and is associated with the development of Crohn's disease, Blau syndrome, and gastrointestinal cancers. Nod2 is required for an immune response to muramyl dipeptide (MDP), an immunostimulatory fragment of bacterial cell wall, but it is not known whether MDP binds directly to Nod2. We report the expression and purification of human Nod2 from insect cells. Using novel MDP self-assembled monolayers (SAMs), we provide the first biochemical evidence for a direct, high-affinity interaction between Nod2 and MDP.

  12. Wall charge and potential from a microscopic point of view

    CERN Document Server

    Bronold, F X; Heinisch, R L; Marbach, J


    Macroscopic objects floating in an ionized gas (plasma walls) accumulate electrons more efficiently than ions because the influx of electrons outruns the influx of ions. The floating potential acquired by plasma walls is thus negative with respect to the plasma potential. Until now plasma walls are typically treated as perfect absorbers for electrons and ions, irrespective of the microphysics at the surface responsible for charge deposition and extraction. This crude description, sufficient for present day technological plasmas, will run into problems in solid-state based gas discharges where, with continuing miniaturization, the wall becomes an integral part of the plasma device and the charge transfer across it has to be modelled more precisely. The purpose of this paper is to review our work, where we questioned the perfect absorber model and initiated a microscopic description of the charge transfer across plasma walls, put it into perspective, and indicate directions for future research.

  13. DBIO Best Thesis Award: Mechanics, Dynamics, and Organization of the Bacterial Cytoskeleton and Cell Wall (United States)

    Wang, Siyuan


    Bacteria come in a variety of shapes. While the peptidoglycan (PG) cell wall serves as an exoskeleton that defines the static cell shape, the internal bacterial cytoskeleton mediates cell shape by recruiting PG synthesis machinery and thus defining the pattern of cell-wall synthesis. While much is known about the chemistry and biology of the cytoskeleton and cell wall, much of their biophysics, including essential aspects of the functionality, dynamics, and organization, remain unknown. This dissertation aims to elucidate the detailed biophysical mechanisms of cytoskeleton guided wall synthesis. First, I find that the bacterial cytoskeleton MreB contributes nearly as much to the rigidity of an Escherichia coli cell as the cell wall. This conclusion implies that the cytoskeletal polymer MreB applies meaningful force to the cell wall, an idea favored by theoretical modeling of wall growth, and suggests an evolutionary origin of cytoskeleton-governed cell rigidity. Second, I observe that MreB rotates around the long axis of E. coli, and the motion depends on wall synthesis. This is the first discovery of a cell-wall assembly driven molecular motor in bacteria. Third, I prove that both cell-wall synthesis and the PG network have chiral ordering, which is established by the spatial pattern of MreB. This work links the molecular structure of the cytoskeleton and of the cell wall with organismal-scale behavior. Finally, I develop a mathematical model of cytoskeleton-cell membrane interactions, which explains the preferential orientation of different cytoskeleton components in bacteria.

  14. The bacterial aetiology of rosy discoloration of ancient wall paintings. (United States)

    Imperi, Francesco; Caneva, Giulia; Cancellieri, Laura; Ricci, Maria A; Sodo, Armida; Visca, Paolo


    The inventory of microorganisms responsible for biological deterioration of ancient paintings has become an integral part of restoration activities. Here, the microbial agent of rosy discoloration on medieval frescoes in the Crypt of the Original Sin (Matera, Italy) was investigated by a combination of microscopic, molecular and spectroscopic approaches. The bacterial community from three rosy-discoloured painting sites was characterized by 16S rRNA gene-based techniques. The eubacterial population was prevalently composed of Actinobacteria, among which Rubrobacter radiotolerans-related bacteria accounted for 63-87% of the 16S rRNA gene pool per sampled site. Archaea, with prevalence of Haloarchaea-related species, were detected in one of the three sites where they accounted for paintings.

  15. Bacterial cell wall preservation during organic matter diagenesis in sediments off Peru

    DEFF Research Database (Denmark)

    Lomstein, Bente Aagaard; Niggemann, Jutta; Jørgensen, Bo Barker;

    BACTERIAL CELL WALL PRESERVATION DURING ORGANIC MATTER DIAGENESIS IN SEDIMENTS OFF PERU The spatial distribution of total hydrolysable amino acids, total hydrolysable amino sugars and amino acid enantiomers (D- and L-forms) were investigated in surface sediments at 20 stations in the Peru margin: 9...

  16. Disturbance of the bacterial cell wall specifically interferes with biofilm formation. (United States)

    Bucher, Tabitha; Oppenheimer-Shaanan, Yaara; Savidor, Alon; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana


    In nature, bacteria communicate via chemical cues and establish complex communities referred to as biofilms, wherein cells are held together by an extracellular matrix. Much research is focusing on small molecules that manipulate and prevent biofilm assembly by modifying cellular signalling pathways. However, the bacterial cell envelope, presenting the interface between bacterial cells and their surroundings, is largely overlooked. In our study, we identified specific targets within the biosynthesis pathways of the different cell wall components (peptidoglycan, wall teichoic acids and teichuronic acids) hampering biofilm formation and the anchoring of the extracellular matrix with a minimal effect on planktonic growth. In addition, we provide convincing evidence that biofilm hampering by transglycosylation inhibitors and D-Leucine triggers a highly specific response without changing the overall protein levels within the biofilm cells or the overall levels of the extracellular matrix components. The presented results emphasize the central role of the Gram-positive cell wall in biofilm development, resistance and sustainment.

  17. Principles of Bacterial Cell-Size Determination Revealed by Cell-Wall Synthesis Perturbations

    Directory of Open Access Journals (Sweden)

    Carolina Tropini


    Full Text Available Although bacterial cell morphology is tightly controlled, the principles of size regulation remain elusive. In Escherichia coli, perturbation of cell-wall synthesis often results in similar morphologies, making it difficult to deconvolve the complex genotype-phenotype relationships underlying morphogenesis. Here we modulated cell width through heterologous expression of sequences encoding the essential enzyme PBP2 and through sublethal treatments with drugs that inhibit PBP2 and the MreB cytoskeleton. We quantified the biochemical and biophysical properties of the cell wall across a wide range of cell sizes. We find that, although cell-wall chemical composition is unaltered, MreB dynamics, cell twisting, and cellular mechanics exhibit systematic large-scale changes consistent with altered chirality and a more isotropic cell wall. This multiscale analysis enabled identification of distinct roles for MreB and PBP2, despite having similar morphological effects when depleted. Altogether, our results highlight the robustness of cell-wall synthesis and physical principles dictating cell-size control.

  18. Elucidation of the molecular recognition of bacterial cell wall by modular pneumococcal phage endolysin CPL-1. (United States)

    Pérez-Dorado, Inmaculada; Campillo, Nuria E; Monterroso, Begoña; Hesek, Dusan; Lee, Mijoon; Páez, Juan A; García, Pedro; Martínez-Ripoll, Martín; García, José L; Mobashery, Shahriar; Menéndez, Margarita; Hermoso, Juan A


    Pneumococcal bacteriophage-encoded lysins are modular proteins that have been shown to act as enzymatic antimicrobial agents (enzybiotics) in treatment of streptococcal infections. The first x-ray crystal structures of the Cpl-1 lysin, encoded by the pneumococcal phage Cp-1, in complex with three bacterial cell wall peptidoglycan (PG) analogues are reported herein. The Cpl-1 structure is folded in two well defined modules, one responsible for anchoring to the pneumococcal cell wall and the other, a catalytic module, that hydrolyzes the PG. Conformational rearrangement of Tyr-127 is a critical event in molecular recognition of a stretch of five saccharide rings of the polymeric peptidoglycan (cell wall). The PG is bound at a stretch of the surface that is defined as the peptidoglycan-binding sites 1 and 2, the juncture of which catalysis takes place. The peptidoglycan-binding site 1 binds to a stretch of three saccharides of the peptidoglycan in a conformation essentially identical to that of the peptidoglycan in solution. In contrast, binding of two peptidoglycan saccharides at the peptidoglycan-binding site 2 introduces a kink into the solution structure of the peptidoglycan, en route to catalytic turnover. These findings provide the first structural evidence on recognition of the peptidoglycan and shed light on the discrete events of cell wall degradation by Cpl-1.

  19. A new view of the bacterial cytosol environment.

    Directory of Open Access Journals (Sweden)

    Benjamin P Cossins


    Full Text Available The cytosol is the major environment in all bacterial cells. The true physical and dynamical nature of the cytosol solution is not fully understood and here a modeling approach is applied. Using recent and detailed data on metabolite concentrations, we have created a molecular mechanical model of the prokaryotic cytosol environment of Escherichia coli, containing proteins, metabolites and monatomic ions. We use 200 ns molecular dynamics simulations to compute diffusion rates, the extent of contact between molecules and dielectric constants. Large metabolites spend ∼80% of their time in contact with other molecules while small metabolites vary with some only spending 20% of time in contact. Large non-covalently interacting metabolite structures mediated by hydrogen-bonds, ionic and π stacking interactions are common and often associate with proteins. Mg(2+ ions were prominent in NIMS and almost absent free in solution. Κ(+ is generally not involved in NIMSs and populates the solvent fairly uniformly, hence its important role as an osmolyte. In simulations containing ubiquitin, to represent a protein component, metabolite diffusion was reduced owing to long lasting protein-metabolite interactions. Hence, it is likely that with larger proteins metabolites would diffuse even more slowly. The dielectric constant of these simulations was found to differ from that of pure water only through a large contribution from ubiquitin as metabolite and monatomic ion effects cancel. These findings suggest regions of influence specific to particular proteins affecting metabolite diffusion and electrostatics. Also some proteins may have a higher propensity for associations with metabolites owing to their larger electrostatic fields. We hope that future studies may be able to accurately predict how binding interactions differ in the cytosol relative to dilute aqueous solution.

  20. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity (United States)

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Wei, Yuanyuan; Huang, Haining


    Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.

  1. Structure of Ristocetin A in Complex with a Bacterial Cell-wall Mimetic

    Energy Technology Data Exchange (ETDEWEB)

    Nahoum, V.; Spector, S; Loll, P


    Antimicrobial drug resistance is a serious public health problem and the development of new antibiotics has become an important priority. Ristocetin A is a class III glycopeptide antibiotic that is used in the diagnosis of von Willebrand disease and which has served as a lead compound for the development of new antimicrobial therapeutics. The 1.0 A resolution crystal structure of the complex between ristocetin A and a bacterial cell-wall peptide has been determined. As is observed for most other glycopeptide antibiotics, it is shown that ristocetin A forms a back-to-back dimer containing concave binding pockets that recognize the cell-wall peptide. A comparison of the structure of ristocetin A with those of class I glycopeptide antibiotics such as vancomycin and balhimycin identifies differences in the details of dimerization and ligand binding. The structure of the ligand-binding site reveals a likely explanation for ristocetin A's unique anticooperativity between dimerization and ligand binding.

  2. Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach

    Energy Technology Data Exchange (ETDEWEB)

    Economou, Nicoleta J.; Zentner, Isaac J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States); Lazo, Edwin; Jakoncic, Jean; Stojanoff, Vivian [Brookhaven National Laboratory, Upton, NY 11973 (United States); Weeks, Stephen D.; Grasty, Kimberly C.; Cocklin, Simon; Loll, Patrick J. [Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 (United States)


    Using a carrier-protein strategy, the structure of teicoplanin bound to its bacterial cell-wall target has been determined. The structure reveals the molecular determinants of target recognition, flexibility in the antibiotic backbone and intrinsic radiation sensitivity of teicoplanin. Multidrug-resistant bacterial infections are commonly treated with glycopeptide antibiotics such as teicoplanin. This drug inhibits bacterial cell-wall biosynthesis by binding and sequestering a cell-wall precursor: a d-alanine-containing peptide. A carrier-protein strategy was used to crystallize the complex of teicoplanin and its target peptide by fusing the cell-wall peptide to either MBP or ubiquitin via native chemical ligation and subsequently crystallizing the protein–peptide–antibiotic complex. The 2.05 Å resolution MBP–peptide–teicoplanin structure shows that teicoplanin recognizes its ligand through a combination of five hydrogen bonds and multiple van der Waals interactions. Comparison of this teicoplanin structure with that of unliganded teicoplanin reveals a flexibility in the antibiotic peptide backbone that has significant implications for ligand recognition. Diffraction experiments revealed an X-ray-induced dechlorination of the sixth amino acid of the antibiotic; it is shown that teicoplanin is significantly more radiation-sensitive than other similar antibiotics and that ligand binding increases radiosensitivity. Insights derived from this new teicoplanin structure may contribute to the development of next-generation antibacterials designed to overcome bacterial resistance.

  3. Bacterial community radial-spatial distribution in biofilms along pipe wall in chlorinated drinking water distribution system of East China. (United States)

    Liu, Jingqing; Ren, Hongxing; Ye, Xianbei; Wang, Wei; Liu, Yan; Lou, Liping; Cheng, Dongqing; He, Xiaofang; Zhou, Xiaoyan; Qiu, Shangde; Fu, Liusong; Hu, Baolan


    Biofilms in the pipe wall may lead to water quality deterioration and biological instability in drinking water distribution systems (DWDSs). In this study, bacterial community radial-spatial distribution in biofilms along the pipe wall in a chlorinated DWDS of East China was investigated. Three pipes of large diameter (300, 600, and 600 mm) were sampled in this DWDS, including a ductile cast iron pipe (DCIP) with pipe age of 11 years and two gray cast iron pipes (GCIP) with pipe ages of 17 and 19 years, and biofilms in the upper, middle, and lower parts of each pipe wall were collected. Real-time quantitative polymerase chain reaction (qPCR) and culture-based method were used to quantify bacteria. 454 pyrosequencing was used for bacterial community analysis. The results showed that the biofilm density and total solid (TS) and volatile solid (VS) contents increased gradually from the top to the bottom along the pipe wall. Microorganisms were concentrated in the upper and lower parts of the pipe wall, together accounting for more than 80 % of the total biomass in the biofilms. The bacterial communities in biofilms were significantly different in different areas of the pipe wall and had no strong interaction. Compared with the upper and lower parts of the pipe wall, the bacterial community in the middle of the pipe wall was distributed evenly and had the highest diversity. The 16S rRNA genes of various possible pathogens, including Escherichia coli, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Salmonella enterica, were detected in the biofilms, and the abundances of these possible pathogens were highest in the middle of the pipe wall among three areas. The detachment of the biofilms is the main reason for the deterioration of the water quality in DWDSs. The results of this study suggest that the biofilms in the middle of the pipe wall have highly potential risk for drinking water safety, which provides new ideas for the study of the microbial ecology in

  4. X-ray crystallography and its impact on understanding bacterial cell wall remodeling processes. (United States)

    Büttner, Felix Michael; Renner-Schneck, Michaela; Stehle, Thilo


    The molecular structure of matter defines its properties and function. This is especially true for biological macromolecules such as proteins, which participate in virtually all biochemical processes. A three dimensional structural model of a protein is thus essential for the detailed understanding of its physiological function and the characterization of essential properties such as ligand binding and reaction mechanism. X-ray crystallography is a well-established technique that has been used for many years, but it is still by far the most widely used method for structure determination. A particular strength of this technique is the elucidation of atomic details of molecular interactions, thus providing an invaluable tool for a multitude of scientific projects ranging from the structural classification of macromolecules over the validation of enzymatic mechanisms or the understanding of host-pathogen interactions to structure-guided drug design. In the first part of this review, we describe essential methodological and practical aspects of X-ray crystallography. We provide some pointers that should allow researchers without a background in structural biology to assess the overall quality and reliability of a crystal structure. To highlight its potential, we then survey the impact X-ray crystallography has had on advancing an understanding of a class of enzymes that modify the bacterial cell wall. A substantial number of different bacterial amidase structures have been solved, mostly by X-ray crystallography. Comparison of these structures highlights conserved as well as divergent features. In combination with functional analyses, structural information on these enzymes has therefore proven to be a valuable template not only for understanding their mechanism of catalysis, but also for targeted interference with substrate binding.

  5. Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy. (United States)

    Szymańska-Chargot, Monika; Cybulska, Justyna; Zdunek, Artur


    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the I(β) content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (X(C)(RAMAN)%) varied from -25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose I(β). However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm(-1). Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX) has the most similar structure to those observed in natural primary cell walls.

  6. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Artur Zdunek


    Full Text Available Raman and Fourier Transform Infrared (FT-IR spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the Iβ content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (XCRAMAN% varied from −25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose Iβ. However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm−1. Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX has the most similar structure to those observed in natural primary cell walls.

  7. softinex, inlib, exlib, ourex, ioda, g4view, g4exa, wall (United States)

    Barrand, Guy


    Softinex names a software environment targeted to do data analysis and visualization. It covers the C++ inlib and exlib "header only" libraries that permit, through GL-ES and a maximum of common code, to build applications deliverable on the Apple AppStore (iOS), GooglePlay (Android), traditional laptops/desktops under MacOSX, Linux and Windows, but also deliverable as a web service able to display in various web browsers compatible with WebGL. In this paper we explain the coarse graining ideas, choices, code organization of softinex along a short presentation of some applications done so far (ioda, g4view, etc...). At end we present the "wall" programs that permit to visualize HEP data (plots, geometries, events) on a large display surface done with an assembly of screens driven by a set of computers. The web portal for softinex is

  8. Role of Sulfhydryl Sites on Bacterial Cell Walls in the Biosorption, Mobility and Bioavailability of Mercury and Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Myneni, Satish C.; Mishra, Bhoopesh; Fein, Jeremy


    almost complete removal of Hg from the experimental solutions at relatively low bacterial concentrations. Synchrotron based X-ray spectroscopic studies of these samples indicate that the structure and the coordination environment of Hg surface complexes on bacterial cell walls change dramatically- with sulfhydryls as the dominant Hg-binding groups in the micromolar and submicromolar range, and carboxyls and phosphoryls dominating at high micromolar concentrations. Hg interactions change from a trigonal or T-shaped HgS{sub 3} complex to HgS or HgS{sub 2} type complexes as the Hg concentration increases in the submicromolar range. Although all bacterial species studied exhibited the same types of coordination environments for Hg, the relative concentrations of the complexes change as a function of Hg concentration.

  9. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.; Wilson, Ian A.



    Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.

    IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural

  10. Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. (United States)

    Cava, Felipe; de Pedro, Miguel A; Lam, Hubert; Davis, Brigid M; Waldor, Matthew K


    Production of non-canonical D-amino acids (NCDAAs) in stationary phase promotes remodelling of peptidoglycan (PG), the polymer that comprises the bacterial cell wall. Impairment of NCDAAs production leads to excessive accumulation of PG and hypersensitivity to osmotic shock; however, the mechanistic bases for these phenotypes were not previously determined. Here, we show that incorporation of NCDAAs into PG is a critical means by which NCDAAs control PG abundance and strength. We identified and reconstituted in vitro two (of at least three) distinct processes that mediate NCDAA incorporation. Diverse bacterial phyla incorporate NCDAAs into their cell walls, either through periplasmic editing of the mature PG or via incorporation into PG precursor subunits in the cytosol. Production of NCDAAs in Vibrio cholerae requires the stress response sigma factor RpoS, suggesting that NCDAAs may aid bacteria in responding to varied environmental challenges. The widespread capacity of diverse bacteria, including non-producers, to incorporate NCDAAs suggests that these amino acids may serve as both autocrine- and paracrine-like regulators of chemical and physical properties of the cell wall in microbial communities.

  11. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  12. Some ultrastructural information on intact, living bacterial cells and related cell-wall fragments as given by FTIR (United States)

    Naumann, D.


    Living bacterial cells of Staphylococcus aureus have been measured from aqueous suspensions taking advantage of the solvent subtraction capabilities of FTIR. All spectral features, between 1800-800 cm -1, of the intact cells could be measured with a reproducibility of better than ±5% when applying strict metabolic control of cell growth and a highly standardized experimental procedure prior to IR measurements. IR bands near 1745, 1656, 1547, 1240 and 1200-1000 cm -1were tentatively assigned to: CO stretching of ester groups, amide I and amide II bands of the various peptides and proteins, asymmetric stretching of phosphate groups and complex vibrational modes resulting from polysaccharidal compounds, respectively. Absorbance subtraction of IR spectra of different intact baterial cells and cell-wall preparations yielded reasonable results on structural variations accompanying: (i) cell growth, (ii) use of different growth media, (iii) chemical treatment of cells and (iv) biochemical isolation processes of cell walls from the intact cells.

  13. Structure of ristocetin A in complex with a bacterial cell-wall mimetic


    Nahoum, Virginie; Spector, Sherri; Loll, Patrick J.


    The crystal structure of the complex between ristocetin A and the cell-wall peptide mimetic N-acetyl-lysine-d-alanine-d-alanine has been solved. Structural details explaining the anticooperativity of the antibiotic have been identified.

  14. Direct measurement of cell wall stress-stiffening and turgor pressure in live bacterial cells

    CERN Document Server

    Deng, Yi; Shaevitz, Joshua W


    The mechanical properties of gram-negative bacteria are governed by a rigid peptidoglycan (PG) cell wall and the turgor pressure generated by the large concentration of solutes in the cytoplasm. The elasticity of the PG has been measured in bulk and in isolated sacculi and shown to be compliant compared to the overall stiffness of the cell itself. However, the stiffness of the cell wall in live cells has not been measured. In particular, the effects that pressure-induced stress might have on the stiffness of the mesh-like PG network have not been addressed even though polymeric materials often exhibit large amounts of stress-stiffening. We study bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. We find strong evidence of power-law stress-stiffening in the E. coli cell wall, with an exponent of $1.07 \\pm 0.25$, such that the wall is significantly stiffer in live cells ($E\\sim32\\pm10$ MPa) than in unpres...

  15. Nanoscale Cell Wall Deformation Impacts Long-Range Bacterial Adhesion Forces on Surfaces

    NARCIS (Netherlands)

    Chen, Yun; Harapanahalli, Akshay K.; Busscher, Henk J.; Norde, Willem; van der Mei, Henny C.


    Adhesion of bacteria occurs on virtually all natural and synthetic surfaces and is crucial for their survival. Once they are adhering, bacteria start growing and form a biofilm, in which they are protected against environmental attacks. Bacterial adhesion to surfaces is mediated by a combination of

  16. Nanoscale cell wall deformation impacts long-range bacterial adhesion forces on surfaces

    NARCIS (Netherlands)

    Chen, Y.; Harapanahalli, A.K.; Busscher, H.J.; Norde, W.; Mei, van der H.C.


    Adhesion of bacteria occurs on virtually all natural and synthetic surfaces and is crucial for their survival. Once they are adhering, bacteria start growing and form a biofilm, in which they are protected against environmental attacks. Bacterial adhesion to surfaces is mediated by a combination of

  17. Murein and pseudomurein cell wall binding domains of bacteria and archaea-a comparative view

    NARCIS (Netherlands)

    Visweswaran, Ganesh Ram R.; Dijkstra, Bauke W.; Kok, Jan


    The cell wall, a major barrier protecting cells from their environment, is an essential compartment of both bacteria and archaea. It protects the organism from internal turgor pressure and gives a defined shape to the cell. The cell wall serves also as an anchoring surface for various proteins and a

  18. Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. (United States)

    Lovering, Andrew L; de Castro, Liza H; Lim, Daniel; Strynadka, Natalie C J


    Peptidoglycan glycosyltransferases (GTs) catalyze the polymerization step of cell-wall biosynthesis, are membrane-bound, and are highly conserved across all bacteria. Long considered the "holy grail" of antibiotic research, they represent an essential and easily accessible drug target for antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus. We have determined the 2.8 angstrom structure of a bifunctional cell-wall cross-linking enzyme, including its transpeptidase and GT domains, both unliganded and complexed with the substrate analog moenomycin. The peptidoglycan GTs adopt a fold distinct from those of other GT classes. The structures give insight into critical features of the catalytic mechanism and key interactions required for enzyme inhibition.

  19. Women view key sexual behaviours as the trigger for the onset and recurrence of bacterial vaginosis (United States)

    Walker, Sandra M.; Temple-Smith, Meredith J.; McNair, Ruth P.; Mooney-Somers, Julie; Vodstrcil, Lenka A.; Bellhouse, Clare E.; Fairley, Christopher K.; Bradshaw, Catriona S.


    Background Bacterial vaginosis (BV) affects a third of women of reproductive age in the US and there is increasing evidence to suggest it may be sexually transmitted. This study aimed to extend and validate the findings of our earlier smaller qualitative study by exploring in detail women’s views and experiences of the triggering factors associated with BV onset and recurrence. Methods Women aged 20–49, who had experienced one or more symptomatic episode of BV within 6 months, were opportunistically recruited to complete a 38-item questionnaire on their experience of BV. Results 103 women completed the questionnaire. Women were significantly more likely to report sexual than lifestyle factors triggered BV onset and recurrence (p<0.001). The top 3 factors women attributed to both BV onset and recurrence were identical–and all sexual. They included, in order: 1) unprotected sex; 2) sex with a new male partner; and 3) sex in general. The main lifestyle factors nominated included stress, diet, menstruation and the use of feminine hygiene products. While many women felt their BV had been transmitted through sexual contact (54%) and developed as a result of sexual activity (59%), few considered BV a sexually transmitted infection (STI) (10%). Despite this 57% felt partners should also be treated for BV. Conclusion These data concur with our earlier qualitative findings that women believe BV is triggered by sexual activity. While many women felt BV was sexually transmitted and supported partner treatment, they did not consider BV an STI. This contradiction is likely due to information conveyed to women based on current guidelines. In the absence of highly effective BV treatments, this study highlights the need for guidelines to indicate there is scientific uncertainty around the pathogenesis of BV and to contain clear health messages regarding the evidence for practices shown to be associated with a reduced risk of BV (i.e. consistent condom use. PMID:28278277

  20. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. (United States)

    Radovic-Moreno, Aleksandar F; Lu, Timothy K; Puscasu, Vlad A; Yoon, Christopher J; Langer, Robert; Farokhzad, Omid C


    Bacteria have shown a remarkable ability to overcome drug therapy if there is a failure to achieve sustained bactericidal concentration or if there is a reduction in activity in situ. The latter can be caused by localized acidity, a phenomenon that can occur as a result of the combined actions of bacterial metabolism and the host immune response. Nanoparticles (NP) have shown promise in treating bacterial infections, but a significant challenge has been to develop antibacterial NPs that may be suitable for systemic administration. Herein we develop drug-encapsulated, pH-responsive, surface charge-switching poly(D,L-lactic-co-glycolic acid)-b-poly(L-histidine)-b-poly(ethylene glycol) (PLGA-PLH-PEG) nanoparticles for treating bacterial infections. These NP drug carriers are designed to shield nontarget interactions at pH 7.4 but bind avidly to bacteria in acidity, delivering drugs and mitigating in part the loss of drug activity with declining pH. The mechanism involves pH-sensitive NP surface charge switching, which is achieved by selective protonation of the imidazole groups of PLH at low pH. NP binding studies demonstrate pH-sensitive NP binding to bacteria with a 3.5 ± 0.2- to 5.8 ± 0.1-fold increase in binding to bacteria at pH 6.0 compared to 7.4. Further, PLGA-PLH-PEG-encapsulated vancomycin demonstrates reduced loss of efficacy at low pH, with an increase in minimum inhibitory concentration of 1.3-fold as compared to 2.0-fold and 2.3-fold for free and PLGA-PEG-encapsulated vancomycin, respectively. The PLGA-PLH-PEG NPs described herein are a first step toward developing systemically administered drug carriers that can target and potentially treat Gram-positive, Gram-negative, or polymicrobial infections associated with acidity.

  1. Detection of antibodies to bacterial cell wall peptidoglycan in human sera. [/sup 125/I tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Heymer, B.; Schleifer, K.H.; Read, S.; Zabriskie, J.B.; Krause, R.M.


    A radioimmunoassay has been developed for the measurement of antibodies to peptidoglycan in human sera including patients with rheumatic feaver and juvenile rheumatoid arthritis. The assay is based on the percentage of binding of the hapten /sup 125/I-L-Ala-..gamma..-D-Glu-L-Lys-D-Ala-D-Ala, the major peptide determinant of peptidoglycan. Because of differences in the avidity of the antibodies in different sera, the amount of antibody was expressed as pentapeptide hapten-binding capacity (pentapeptide-HBC in ng/ml of serum). Fourteen out of 105 normal blood donors had a pentapeptide-HBC value greater than or equal to 75 ng/ml serum. Values in healthy children 5 to 18 years of age were less than or equal to 50 ng/ml. Sixty-eight percent of the individuals with rheumatic fever had values greater than or equal to 75 ng/ml, an indication that streptococcal infections can stimulate an immune response to peptidoglycan. Thirty-five percent of the patients with juvenile rheumatoid arthritis had values greater than or equal to 75 ng/ml. Such a finding points to a possible association between bacterial infections and juvenile rheumatoid arthritis.

  2. The Membrane Steps of Bacterial Cell Wall Synthesis as Antibiotic Targets

    Directory of Open Access Journals (Sweden)

    Yao Liu


    Full Text Available Peptidoglycan is the major component of the cell envelope of virtually all bacteria. It has structural roles and acts as a selective sieve for molecules from the outer environment. Peptidoglycan synthesis is therefore one of the most important biogenesis pathways in bacteria and has been studied extensively over the last twenty years. The pathway starts in the cytoplasm, continues in the cytoplasmic membrane and finishes in the periplasmic space, where the precursor is polymerized into the peptidoglycan layer. A number of proteins involved in this pathway, such as the Mur enzymes and the penicillin binding proteins (PBPs, have been studied and regarded as good targets for antibiotics. The present review focuses on the membrane steps of peptidoglycan synthesis that involve two enzymes, MraY and MurG, the inhibitors of these enzymes and the inhibition mechanisms. We also discuss the challenges of targeting these two cytoplasmic membrane (associated proteins in bacterial cells and the perspectives on how to overcome the issues.

  3. A Clostridium difficile Cell Wall Glycopolymer Locus Influences Bacterial Shape, Polysaccharide Production and Virulence (United States)

    Bertolo, Lisa; Monteiro, Mario A.; Agellon, Al; Viswanathan, V. K.; Vedantam, Gayatri


    Clostridium difficile is a diarrheagenic pathogen associated with significant mortality and morbidity. While its glucosylating toxins are primary virulence determinants, there is increasing appreciation of important roles for non-toxin factors in C. difficile pathogenesis. Cell wall glycopolymers (CWGs) influence the virulence of various pathogens. Five C. difficile CWGs, including PSII, have been structurally characterized, but their biosynthesis and significance in C. difficile infection is unknown. We explored the contribution of a conserved CWG locus to C. difficile cell-surface integrity and virulence. Attempts at disrupting multiple genes in the locus, including one encoding a predicted CWG exporter mviN, were unsuccessful, suggesting essentiality of the respective gene products. However, antisense RNA-mediated mviN downregulation resulted in slight morphology defects, retarded growth, and decreased surface PSII deposition. Two other genes, lcpA and lcpB, with putative roles in CWG anchoring, could be disrupted by insertional inactivation. lcpA- and lcpB- mutants had distinct phenotypes, implying non-redundant roles for the respective proteins. The lcpB- mutant was defective in surface PSII deposition and shedding, and exhibited a remodeled cell surface characterized by elongated and helical morphology, aberrantly-localized cell septae, and an altered surface-anchored protein profile. Both lcpA- and lcpB- strains also displayed heightened virulence in a hamster model of C. difficile disease. We propose that gene products of the C. difficile CWG locus are essential, that they direct the production/assembly of key antigenic surface polysaccharides, and thereby have complex roles in virulence. PMID:27741317

  4. Bacterial Community and PHB-Accumulating Bacteria Associated with the Wall and Specialized Niches of the Hindgut of the Forest Cockchafer (Melolontha hippocastani) (United States)

    Alonso-Pernas, Pol; Arias-Cordero, Erika; Novoselov, Alexey; Ebert, Christina; Rybak, Jürgen; Kaltenpoth, Martin; Westermann, Martin; Neugebauer, Ute; Boland, Wilhelm


    A characterization of the bacterial community of the hindgut wall of two larval and the adult stages of the forest cockchafer (Melolontha hippocastani) was carried out using amplicon sequencing of the 16S rRNA gene fragment. We found that, in second-instar larvae, Caulobacteraceae and Pseudomonadaceae showed the highest relative abundances, while in third-instar larvae, the dominant families were Porphyromonadaceae and Bacteroidales-related. In adults, an increase of the relative abundance of Bacteroidetes, Proteobacteria (γ- and δ- classes) and the family Enterococcaceae (Firmicutes) was observed. This suggests that the composition of the hindgut wall community may depend on the insect’s life stage. Additionally, specialized bacterial niches hitherto very poorly described in the literature were spotted at both sides of the distal part of the hindgut chamber. We named these structures “pockets.” Amplicon sequencing of the 16S rRNA gene fragment revealed that the pockets contained a different bacterial community than the surrounding hindgut wall, dominated by Alcaligenaceae and Micrococcaceae-related families. Poly-β-hydroxybutyrate (PHB) accumulation in the pocket was suggested in isolated Achromobacter sp. by Nile Blue staining, and confirmed by gas chromatography–mass spectrometry analysis (GC-MS) on cultured bacterial mass and whole pocket tissue. Raman micro-spectroscopy allowed to visualize the spatial distribution of PHB accumulating bacteria within the pocket tissue. The presence of this polymer might play a role in the colonization of these specialized niches. PMID:28293223

  5. [Bacterial prostatitis and prostatic fibrosis: modern view on the treatment and prophylaxis]. (United States)

    Zaitsev, A V; Pushkar, D Yu; Khodyreva, L A; Dudareva, A A


    Treatments of chronic bacterial prostatitis (CP) remain difficult problem. Bacterial prostatitis is a disease entity diagnosed clinically and by evidence of inflammation and infection localized to the prostate. Risk factors for UTI in men include urological interventions, such as transrectal prostate biopsy. Ensuing infections after prostate biopsy, such as UTI and bacterial prostatitis, are increasing due to increasing rates of fluoroquinolone resistance. The increasing global antibiotic resistance also significantly affects management of UTI in men, and therefore calls for alternative strategies. Prostatic inflammation has been suggested to contribute to the etiology of lower urinary tract symptoms (LUTS) by inducing fibrosis. Several studies have shown that prostatic fibrosis is strongly associated with impaired urethral function and LUTS severity. Fibrosis resulting from excessive deposition of collagen is traditionally recognized as a progressive irreversible condition and an end stage of inflammatory diseases; however, there is compelling evidence in both animal and human studies to support that the development of fibrosis could potentially be a reversible process. Prostate inflammation may induce fibrotic changes in periurethral prostatic tissues, promote urethral stiffness and LUTS. Patients experiencing CP and prostate-related LUTS could benefit from anti-inflammatory therapies, especially used in combination with the currently prescribed enzyme treatment with Longidase. Treatment results showed that longidase is highly effective in bacterial and abacterial CP. Longidase addition to standard therapeutic methods significantly reduced the disease symptoms and regression of inflammatory-proliferative alterations in the prostate.

  6. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm. (United States)

    Liu, G; Bakker, G L; Li, S; Vreeburg, J H G; Verberk, J Q J C; Medema, G J; Liu, W T; Van Dijk, J C


    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  7. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.


    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  8. Construction of Extended 3D Field of Views of the Internal Bladder Wall Surface: A Proof of Concept (United States)

    Ben-Hamadou, Achraf; Daul, Christian; Soussen, Charles


    3D extended field of views (FOVs) of the internal bladder wall facilitate lesion diagnosis, patient follow-up and treatment traceability. In this paper, we propose a 3D image mosaicing algorithm guided by 2D cystoscopic video-image registration for obtaining textured FOV mosaics. In this feasibility study, the registration makes use of data from a 3D cystoscope prototype providing, in addition to each small FOV image, some 3D points located on the surface. This proof of concept shows that textured surfaces can be constructed with minimally modified cystoscopes. The potential of the method is demonstrated on numerical and real phantoms reproducing various surface shapes. Pig and human bladder textures are superimposed on phantoms with known shape and dimensions. These data allow for quantitative assessment of the 3D mosaicing algorithm based on the registration of images simulating bladder textures.

  9. Bacterial wall products induce downregulation of vascular endothelial growth factor receptors on endothelial cells via a CD14-dependent mechanism: implications for surgical wound healing.

    LENUS (Irish Health Repository)

    Power, C


    INTRODUCTION: Vascular endothelial growth factor (VEGF) is a potent mitogenic cytokine which has been identified as the principal polypeptide growth factor influencing endothelial cell (EC) migration and proliferation. Ordered progression of these two processes is an absolute prerequisite for initiating and maintaining the proliferative phase of wound healing. The response of ECs to circulating VEGF is determined by, and directly proportional to, the functional expression of VEGF receptors (KDR\\/Flt-1) on the EC surface membrane. Systemic sepsis and wound contamination due to bacterial infection are associated with significant retardation of the proliferative phase of wound repair. The effects of the Gram-negative bacterial wall components lipopolysaccharide (LPS) and bacterial lipoprotein (BLP) on VEGF receptor function and expression are unknown and may represent an important biological mechanism predisposing to delayed wound healing in the presence of localized or systemic sepsis. MATERIALS AND METHODS: We designed a series of in vitro experiments investigating this phenomenon and its potential implications for infective wound repair. VEGF receptor density on ECs in the presence of LPS and BLP was assessed using flow cytometry. These parameters were assessed in hypoxic conditions as well as in normoxia. The contribution of CD14 was evaluated using recombinant human (rh) CD14. EC proliferation in response to VEGF was quantified in the presence and absence of LPS and BLP. RESULTS: Flow cytometric analysis revealed that LPS and BLP have profoundly repressive effects on VEGF receptor density in normoxic and, more pertinently, hypoxic conditions. The observed downregulation of constitutive and inducible VEGF receptor expression on ECs was not due to any directly cytotoxic effect of LPS and BLP on ECs, as measured by cell viability and apoptosis assays. We identified a pivotal role for soluble\\/serum CD14, a highly specific bacterial wall product receptor, in

  10. A high definition view of the COSMOS Wall at z ~ 0.73 (United States)

    Iovino, A.; Petropoulou, V.; Scodeggio, M.; Bolzonella, M.; Zamorani, G.; Bardelli, S.; Cucciati, O.; Pozzetti, L.; Tasca, L.; Vergani, D.; Zucca, E.; Finoguenov, A.; Ilbert, O.; Tanaka, M.; Salvato, M.; Kovač, K.; Cassata, P.


    Aims: We present a study of a large filamentary structure at z ~ 0.73 in the field of the COSMOS survey, the so-called COSMOS Wall. This structure encompasses a comprehensive range of environments from a dense cluster and a number of galaxy groups to filaments, less dense regions, and adjacent voids. It thus provides a valuable laboratory for the accurate mapping of environmental effects on galaxy evolution at a look-back time of ~6.5 Gyr, when the Universe was roughly half its present age. Methods: We performed deep spectroscopic observations with VIMOS at VLT of a K-band selected sample of galaxies in this complex structure, building a sample of galaxies complete in galaxy stellar mass down to a lower limit of log(ℳ∗/ℳ⊙) ~ 9.8, which is significantly deeper than previously available data. Thanks to its location within the COSMOS survey, each galaxy benefits from a wealth of ancillary information: HST-ACS data with I-band exposures down to IAB ~ 28 complemented by extensive multiwavelength ground- and space-based observations spanning the entire electromagnetic spectrum. Results: In this paper we detail the survey strategy and weighting scheme adopted to account for the biases introduced by the photometric preselection of our targets. We present our galaxy stellar mass and rest-frame magnitudes estimates together with a group catalog obtained with our new data and their member galaxies color/mass distribution. Conclusions: Owing to our new sample we can perform a detailed, high definition mapping of the complex COSMOS Wall structure. The sharp environmental information, coupled with high quality spectroscopic information and rich ancillary data available in the COSMOS field, enables a detailed study of galaxy properties as a function of local environment in a redshift slice where environmental effects are important, and in a stellar mass range where mass and environment driven effects are both at work. Based on observations collected at the European

  11. An high definition view of the COSMOS Wall at z~0.73

    CERN Document Server

    Iovino, A; Scodeggio, M; Bolzonella, M; Zamorani, G; Bardelli, S; Cucciati, O; Pozzetti, L; Tasca, L; Vergani, D; Zucca, E; Finoguenov, A; Ilbert, O; Tanaka, M; Salvato, M; Kovac, K; Cassata, P


    We present a study of a large filamentary structure at z~0.73 in the field of the COSMOS survey, the so-called COSMOS Wall. This structure encompasses a comprehensive range of environments from a dense cluster and a number of galaxy groups to filaments, less dense regions, and adjacent voids. It thus provides a valuable laboratory for the accurate mapping of environmental effects on galaxy evolution at a look-back time of ~6.5 Gyr, when the Universe was roughly half its present age. We performed deep spectroscopic observations with VIMOS at VLT of a K-band selected sample of galaxies in this complex structure, building a sample of galaxies complete in galaxy stellar mass down to a lower limit of log(M/M_sun)~ 9.8, which is significantly deeper than previously available data. Thanks to its location within the COSMOS survey, each galaxy benefits from a wealth of ancillary information. In this paper we detail the survey strategy and weighting scheme adopted to account for the biases introduced by the photometric...

  12. NMSSM Inflation and Domain Walls from a Tri-critical Point of View

    CERN Document Server

    Aval, Hadi Gholian


    In this paper we want to study the conditions in which we could bring a universe filled with different $Z_3$ vacua created during the Next to Minimal Supersymmetric Standard Model (NMSSM) electroweak symmetry breaking at $\\textit{O} (10)^2$ GeV and a three dimensional three states diluted Potts model together in the same universality class. Then we use Cardy-Jacobsen conjecture to prove that there might be a tri-critical point in the NMSSM electroweak epoch of early universe. We prove that due to the existence of this point there would be no cosmological domain wall problem. Moreover, at this point the heat capacity and correlation length diverge which lead to a huge amount of energy release at constant temperature and a new mechanism for cosmological structure formation. Also, the entropy decrease after the tri-critical phase transition could explain the problem of low initial entropy in early universe. Finally, we combine Cardy-Jacobsen and Yaffe-Svetitsky conjectures to show that there might be a tri-criti...

  13. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. (United States)

    Silver, Simon; Phung, Le T


    Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite.

  14. Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing. (United States)

    Conway, Tyrrell; Creecy, James P; Maddox, Scott M; Grissom, Joe E; Conkle, Trevor L; Shadid, Tyler M; Teramoto, Jun; San Miguel, Phillip; Shimada, Tomohiro; Ishihama, Akira; Mori, Hirotada; Wanner, Barry L


    We analyzed the transcriptome of Escherichia coli K-12 by strand-specific RNA sequencing at single-nucleotide resolution during steady-state (logarithmic-phase) growth and upon entry into stationary phase in glucose minimal medium. To generate high-resolution transcriptome maps, we developed an organizational schema which showed that in practice only three features are required to define operon architecture: the promoter, terminator, and deep RNA sequence read coverage. We precisely annotated 2,122 promoters and 1,774 terminators, defining 1,510 operons with an average of 1.98 genes per operon. Our analyses revealed an unprecedented view of E. coli operon architecture. A large proportion (36%) of operons are complex with internal promoters or terminators that generate multiple transcription units. For 43% of operons, we observed differential expression of polycistronic genes, despite being in the same operons, indicating that E. coli operon architecture allows fine-tuning of gene expression. We found that 276 of 370 convergent operons terminate inefficiently, generating complementary 3' transcript ends which overlap on average by 286 nucleotides, and 136 of 388 divergent operons have promoters arranged such that their 5' ends overlap on average by 168 nucleotides. We found 89 antisense transcripts of 397-nucleotide average length, 7 unannotated transcripts within intergenic regions, and 18 sense transcripts that completely overlap operons on the opposite strand. Of 519 overlapping transcripts, 75% correspond to sequences that are highly conserved in E. coli (>50 genomes). Our data extend recent studies showing unexpected transcriptome complexity in several bacteria and suggest that antisense RNA regulation is widespread. Importance: We precisely mapped the 5' and 3' ends of RNA transcripts across the E. coli K-12 genome by using a single-nucleotide analytical approach. Our resulting high-resolution transcriptome maps show that ca. one-third of E. coli operons are

  15. Design of 1-μm-pitch liquid crystal spatial light modulators having dielectric shield wall structure for holographic display with wide field of view (United States)

    Isomae, Yoshitomo; Shibata, Yosei; Ishinabe, Takahiro; Fujikake, Hideo


    In the development of electronic holographic displays with a wide field of view, one issue is the realization of 1-μm-pitch spatial light modulators (SLMs) using liquid crystal on silicon (LCOS) techniques. We clarified that it is necessary to suppress not only the leakage of fringe electric fields from adjacent pixels but also the effect of elastic forces in the liquid crystal to achieve full-phase modulation (2π) in individual pixels. We proposed a novel LCOS-SLM with a dielectric shield wall structure, and achieved driving of individual 1-μm-pitch pixels. We also investigated the optimum values for width and dielectric constant of the wall structure when enlarging the area that can modulate light in the pixels. These results contribute to the design of 1-μm-pitch LCOS-SLM devices for wide-viewing-angle holographic displays.

  16. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis

    Directory of Open Access Journals (Sweden)

    Zahra Armingohar


    Full Text Available Background: Several studies have reported an association between chronic periodontitis (CP and cardiovascular diseases. Detection of periodontopathogens, including red complex bacteria (RCB, in vascular lesions has suggested these bacteria to be involved in the pathogenesis of atherosclerosis and abdominal aortic aneurysms. Objective: In this study, we investigate bacteria and their DNA in vascular biopsies from patients with vascular diseases (VD; i.e. abdominal aortic aneurysms, atherosclerotic carotid, and common femoral arteries, with and without CP. Methods: DNA was extracted from vascular biopsies selected from 40 VD patients: 30 with CP and 10 without CP. The V3-V5 region of the 16S rDNA (V3-V5 was polymerase chain reaction (PCR-amplified, and the amplicons were cloned into Escherichia coli, sequenced, and classified (GenBank and the Human Oral Microbiome database. Species-specific primers were used for the detection of Porphyromonas gingivalis. In addition, 10 randomly selected vascular biopsies from the CP group were subjected to scanning electron microscopy (SEM for visualization of bacteria. Checkerboard DNA–DNA hybridization was performed to assess the presence of RCB in 10 randomly selected subgingival plaque samples from CP patients. Results: A higher load and mean diversity of bacteria were detected in vascular biopsies from VD patients with CP compared to those without CP. Enterobacteriaceae were frequently detected in vascular biopsies together with cultivable, commensal oral, and not-yet-cultured bacterial species. While 70% of the subgingival plaque samples from CP patients showed presence of RCB, only P. gingivalis was detected in one vascular biopsy. Bacterial cells were seen in all 10 vascular biopsies examined by SEM. Conclusions: A higher bacterial load and more diverse colonization were detected in VD lesions of CP patients as compared to patients without CP. This indicated that a multitude of bacterial species both

  17. Mycobacterium tuberculosis Cell Wall Fragments Released upon Bacterial Contact with the Human Lung Mucosa Alter the Neutrophil Response to Infection (United States)

    Scordo, Julia M.; Arcos, Jesús; Kelley, Holden V.; Diangelo, Lauren; Sasindran, Smitha J.; Youngmin, Ellie; Wewers, Mark D.; Wang, Shu-Hua; Balada-Llasat, Joan-Miquel; Torrelles, Jordi B.


    In 2016, the World Health Organization reported that one person dies of tuberculosis (TB) every 21 s. A host environment that Mycobacterium tuberculosis (M.tb) finds during its route of infection is the lung mucosa bathing the alveolar space located in the deepest regions of the lungs. We published that human lung mucosa, or alveolar lining fluid (ALF), contains an array of hydrolytic enzymes that can significantly alter the M.tb surface during infection by cleaving off parts of its cell wall. This interaction results in two different outcomes: modifications on the M.tb cell wall surface and release of M.tb cell wall fragments into the environment. Typically, one of the first host immune cells at the site of M.tb infection is the neutrophil. Neutrophils can mount an extracellular and intracellular innate immune response to M.tb during infection. We hypothesized that exposure of neutrophils to ALF-induced M.tb released cell wall fragments would prime neutrophils to control M.tb infection better. Our results show that ALF fragments activate neutrophils leading to an increased production of inflammatory cytokines and oxidative radicals. However, neutrophil exposure to these fragments reduces production of chemoattractants (i.e., interleukin-8), and degranulation, with the subsequent reduction of myeloperoxidase release, and does not induce cytotoxicity. Unexpectedly, these ALF fragment-derived modulations in neutrophil activity do not further, either positively or negatively, contribute to the intracellular control of M.tb growth during infection. However, secreted products from neutrophils primed with ALF fragments are capable of regulating the activity of resting macrophages. These results indicate that ALF-induced M.tb fragments could further contribute to the control of M.tb growth and local killing by resident neutrophils by switching on the total oxidative response and limiting migration of neutrophils to the infection site. PMID:28373877

  18. Atomic model of a cell-wall cross-linking enzyme in complex with an intact bacterial peptidoglycan. (United States)

    Schanda, Paul; Triboulet, Sébastien; Laguri, Cédric; Bougault, Catherine M; Ayala, Isabel; Callon, Morgane; Arthur, Michel; Simorre, Jean-Pierre


    The maintenance of bacterial cell shape and integrity is largely attributed to peptidoglycan, a highly cross-linked biopolymer. The transpeptidases that perform this cross-linking are important targets for antibiotics. Despite this biomedical importance, to date no structure of a protein in complex with an intact bacterial peptidoglycan has been resolved, primarily due to the large size and flexibility of peptidoglycan sacculi. Here we use solid-state NMR spectroscopy to derive for the first time an atomic model of an l,d-transpeptidase from Bacillus subtilis bound to its natural substrate, the intact B. subtilis peptidoglycan. Importantly, the model obtained from protein chemical shift perturbation data shows that both domains-the catalytic domain as well as the proposed peptidoglycan recognition domain-are important for the interaction and reveals a novel binding motif that involves residues outside of the classical enzymatic pocket. Experiments on mutants and truncated protein constructs independently confirm the binding site and the implication of both domains. Through measurements of dipolar-coupling derived order parameters of bond motion we show that protein binding reduces the flexibility of peptidoglycan. This first report of an atomic model of a protein-peptidoglycan complex paves the way for the design of new antibiotic drugs targeting l,d-transpeptidases. The strategy developed here can be extended to the study of a large variety of enzymes involved in peptidoglycan morphogenesis.

  19. Post-translational modifications of plant cell wall proteins and peptides: A survey from a proteomics point of view. (United States)

    Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth


    Plant cell wall proteins (CWPs) and peptides are important players in cell walls contributing to their assembly and their remodeling during development and in response to environmental constraints. Since the rise of proteomics technologies at the beginning of the 2000's, the knowledge of CWPs has greatly increased leading to the discovery of new CWP families and to the description of the cell wall proteomes of different organs of many plants. Conversely, cell wall peptidomics data are still lacking. In addition to the identification of CWPs and peptides by mass spectrometry (MS) and bioinformatics, proteomics has allowed to describe their post-translational modifications (PTMs). At present, the best known PTMs consist in proteolytic cleavage, N-glycosylation, hydroxylation of P residues into hydroxyproline residues (O), O-glycosylation and glypiation. In this review, the methods allowing the capture of the modified proteins based on the specific properties of their PTMs as well as the MS technologies used for their characterization are briefly described. A focus is done on proteolytic cleavage leading to protein maturation or release of signaling peptides and on O-glycosylation. Some new technologies, like top-down proteomics and terminomics, are described. They aim at a finer description of proteoforms resulting from PTMs or degradation mechanisms. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.

  20. Antibacterial compounds of Canadian honeys target bacterial cell wall inducing phenotype changes, growth inhibition and cell lysis that resemble action of β-lactam antibiotics.

    Directory of Open Access Journals (Sweden)

    Katrina Brudzynski

    Full Text Available Honeys show a desirable broad spectrum activity against Gram-positive and negative bacteria making antibacterial activity an intrinsic property of honey and a desirable source for new drug development. The cellular targets and underlying mechanism of action of honey antibacterial compounds remain largely unknown. To facilitate the target discovery, we employed a method of phenotypic profiling by directly comparing morphological changes in Escherichia coli induced by honeys to that of ampicillin, the cell wall-active β-lactam of known mechanism of action. Firstly, we demonstrated the purity of tested honeys from potential β-lactam contaminations using quantitative LC-ESI-MS. Exposure of log-phase E. coli to honey or ampicillin resulted in time- and concentration-dependent changes in bacterial cell shape with the appearance of filamentous phenotypes at sub-inhibitory concentrations and spheroplasts at the MBC. Cell wall destruction by both agents, clearly visible on microscopic micrographs, was accompanied by increased permeability of the lipopolysaccharide outer membrane as indicated by fluorescence-activated cell sorting (FACS. More than 90% E. coli exposed to honey or ampicillin became permeable to propidium iodide. Consistently with the FACS results, both honey-treated and ampicillin-treated E. coli cells released lipopolysaccharide endotoxins at comparable levels, which were significantly higher than controls (p<0.0001. E. coli cells transformed with the ampicillin-resistance gene (β-lactamase remained sensitive to honey, displayed the same level of cytotoxicity, cell shape changes and endotoxin release as ampicillin-sensitive cells. As expected, β-lactamase protected the host cell from antibacterial action of ampicillin. Thus, both honey and ampicillin induced similar structural changes to the cell wall and LPS and that this ability underlies antibacterial activities of both agents. Since the cell wall is critical for cell growth and

  1. Combined Analysis of Variation in Core, Accessory and Regulatory Genome Regions Provides a Super-Resolution View into the Evolution of Bacterial Populations (United States)

    McNally, Alan; Oren, Yaara; Kelly, Darren; Sreecharan, Tristan; Vehkala, Minna; Välimäki, Niko; Prentice, Michael B.; Ashour, Amgad; Avram, Oren; Pupko, Tal; Literak, Ivan; Guenther, Sebastian; Schaufler, Katharina; Wieler, Lothar H.; Zhiyong, Zong; Sheppard, Samuel K.; Corander, Jukka


    The use of whole-genome phylogenetic analysis has revolutionized our understanding of the evolution and spread of many important bacterial pathogens due to the high resolution view it provides. However, the majority of such analyses do not consider the potential role of accessory genes when inferring evolutionary trajectories. Moreover, the recently discovered importance of the switching of gene regulatory elements suggests that an exhaustive analysis, combining information from core and accessory genes with regulatory elements could provide unparalleled detail of the evolution of a bacterial population. Here we demonstrate this principle by applying it to a worldwide multi-host sample of the important pathogenic E. coli lineage ST131. Our approach reveals the existence of multiple circulating subtypes of the major drug–resistant clade of ST131 and provides the first ever population level evidence of core genome substitutions in gene regulatory regions associated with the acquisition and maintenance of different accessory genome elements. PMID:27618184

  2. The interaction of single walled carbon nanotube (SWCNT with phospholipids membrane: in point view of solvent effect

    Directory of Open Access Journals (Sweden)

    Akbar Elsagh


    Full Text Available In this research, we have studied the structural properties of phospholipids, surrounding single-walled carbon nanotube (SWCNT, by using ab-inition and molecular dynamics simulation. Carbon nanotubes (SWCNTs are very common in medical research and are being highly studied in the fields of biosensing methods for disease treatment and efficient drug delivery and health monitoring. The transportation of SWCNT through the cell membrane widely investigated because of many advantages. Because of the differences among force fields, the energy of a molecule calculated using two different force fields will not be the same. In this study difference in force field illustrated by comparing the energy of calculated by using force fields, MM+, Amber and OPLS. The quantum Mechanics (QM calculations were carried out with the GAUSSIAN 09 program based on density functional theory (DFT at B1LYP/6-31G* level. In our recent study the electronic structure of open-end of SWCNT and transportation of SWCNT through the phospholipids in skin cell membrane have been discussed for both vacuum and solvent media.

  3. Genes for all metals--a bacterial view of the periodic table. The 1996 Thom Award Lecture. (United States)

    Silver, S


    Bacterial chromosomes have genes for transport proteins for inorganic nutrient cations and oxyanions, such as NH4+, K+, Mg2+, Co2+, Fe3+, Mn2+, Zn2+ and other trace cations, and PO4(3-), SO4(2-) and less abundant oxyanions. Together these account for perhaps a few hundred genes in many bacteria. Bacterial plasmids encode resistance systems for toxic metal and metalloid ions including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. Most resistance systems function by energy-dependent efflux of toxic ions. A few involve enzymatic (mostly redox) transformations. Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. The Cd(2+)-resistance cation pump of Gram-positive bacteria is membrane P-type ATPase, which has been labeled with 32P from [gamma-32P]ATP and drives ATP-dependent Cd2+ (and Zn2+) transport by membrane vesicles. The genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson's disease, encode P-type ATPases that are similar to bacterial cadmium ATPases. The arsenic resistance system transports arsenite [As(III)], alternatively with the ArsB polypeptide functioning as a chemiosmotic efflux transporter or with two polypeptides, ArsB and ArsA, functioning as an ATPase. The third protein of the arsenic resistance system is an enzyme that reduces intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. In Gram-negative cells, a three polypeptide complex functions as a chemiosmotic cation/protein exchanger to efflux Cd2+, Zn2+ and Co2+. This pump consists of an inner membrane (CzcA), an outer membrane (CzcC) and a membrane-spanning (CzcB) protein that function together.

  4. Effects of Plant Cell Wall Matrix Polysaccharides on Bacterial Cellulose Structure Studied with Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Bum; Lee, Christopher M; Kafle, Kabindra; Park, Sunkyu; Cosgrove, Daniel; Kim, Seong H


    The crystallinity, allomorph content, and mesoscale ordering of cellulose produced by Gluconacetobacter xylinus cultured with different plant cell wall matrix polysaccharides were studied with vibrational sum frequency generation (SFG) spectroscopy and X-ray diffraction (XRD).

  5. Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases

    Directory of Open Access Journals (Sweden)

    Vorhölter Frank-Jörg


    Full Text Available Abstract Background Efficient perception of attacking pathogens is essential for plants. Plant defense is evoked by molecules termed elicitors. Endogenous elicitors or damage-associated molecular patterns (DAMPs originate from plant materials upon injury or pathogen activity. While there are comparably well-characterized examples for DAMPs, often oligogalacturonides (OGAs, generated by the activity of fungal pathogens, endogenous elicitors evoked by bacterial pathogens have been rarely described. In particular, the signal perception and transduction processes involved in DAMP generation are poorly characterized. Results A mutant strain of the phytopathogenic bacterium Xanthomonas campestris pv. campestris deficient in exbD2, which encodes a component of its unusual elaborate TonB system, had impaired pectate lyase activity and caused no visible symptoms for defense on the non-host plant pepper (Capsicum annuum. A co-incubation of X. campestris pv. campestris with isolated cell wall material from C. annuum led to the release of compounds which induced an oxidative burst in cell suspension cultures of the non-host plant. Lipopolysaccharides and proteins were ruled out as elicitors by polymyxin B and heat treatment, respectively. After hydrolysis with trifluoroacetic acid and subsequent HPAE chromatography, the elicitor preparation contained galacturonic acid, the monosaccharide constituent of pectate. OGAs were isolated from this crude elicitor preparation by HPAEC and tested for their biological activity. While small OGAs were unable to induce an oxidative burst, the elicitor activity in cell suspension cultures of the non-host plants tobacco and pepper increased with the degree of polymerization (DP. Maximal elicitor activity was observed for DPs exceeding 8. In contrast to the X. campestris pv. campestris wild type B100, the exbD2 mutant was unable to generate elicitor activity from plant cell wall material or from pectin. Conclusions To our

  6. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification. (United States)

    Longoni, Paolo; Leelavathi, Sadhu; Doria, Enrico; Reddy, Vanga Siva; Cella, Rino


    Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  7. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification

    Directory of Open Access Journals (Sweden)

    Paolo Longoni


    Full Text Available Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  8. EspA acts as a critical mediator of ESX1-dependent virulence in Mycobacterium tuberculosis by affecting bacterial cell wall integrity.

    Directory of Open Access Journals (Sweden)

    Alejandra Garces

    Full Text Available Mycobacterium tuberculosis (Mtb requires the ESX1 specialized protein secretion system for virulence, for triggering cytosolic immune surveillance pathways, and for priming an optimal CD8+ T cell response. This suggests that ESX1 might act primarily by destabilizing the phagosomal membrane that surrounds the bacterium. However, identifying the primary function of the ESX1 system has been difficult because deletion of any substrate inhibits the secretion of all known substrates, thereby abolishing all ESX1 activity. Here we demonstrate that the ESX1 substrate EspA forms a disulfide bonded homodimer after secretion. By disrupting EspA disulfide bond formation, we have dissociated virulence from other known ESX1-mediated activities. Inhibition of EspA disulfide bond formation does not inhibit ESX1 secretion, ESX1-dependent stimulation of the cytosolic pattern receptors in the infected macrophage or the ability of Mtb to prime an adaptive immune response to ESX1 substrates. However, blocking EspA disulfide bond formation severely attenuates the ability of Mtb to survive and cause disease in mice. Strikingly, we show that inhibition of EspA disulfide bond formation also significantly compromises the stability of the mycobacterial cell wall, as does deletion of the ESX1 locus or individual components of the ESX1 system. Thus, we demonstrate that EspA is a major determinant of ESX1-mediated virulence independent of its function in ESX1 secretion. We propose that ESX1 and EspA play central roles in the virulence of Mtb in vivo because they alter the integrity of the mycobacterial cell wall.

  9. La dinámica bacteriana desde el punto de vista biofísico (Bacterial dynamics from the biophysical point of view

    Directory of Open Access Journals (Sweden)

    Pérez Montiel, Ibrahim


    Full Text Available ResumenEl artículo expone de una forma sencilla y despojada de todo tecnicismo, como los sistemas abiertos reaccionan en consonancia con los cambios que se operan en el entorno, ejemplificando dicho comportamiento mediante la conocida curva de crecimiento bacteriano, la cual queda supeditada a los principios de la termodinámica no equilibrada. AbstractThe article expresses in a simple way and removing all the technicalities, how open systems react in consonance with the changes that operate in the environment, exemplifying this sound behaviour through the known bacterial growth curve which refrains subordinate to the principles of unequal thermodynamics.

  10. View of the bacterial strains of Escherichia coli M-17 and its interaction with the nanoparticles of zinc oxide by means of atomic force microscopy (United States)

    Sagitova, A.; Yaminsky, I.; Meshkov, G.


    Visualization of the structure of biological objects plays a key role in medicine, biotechnology, nanotechnology and IT-technology. Atomic force microscopy (AFM) is a promising method of studying of objects’ morphology and structure. In this work, AFM was used to determine the size and shape of the bacterial strains of Escherichia coli M-17 and visualization its interaction with the nanoparticles of zinc oxide. The suspension of E.coli bacteria was applied to natural mica and studied by contact mode using the FemtoScan multifunctional scanning probe microscope.

  11. An Inquiry into Multi-Storey Shear- Wall Housing Constructions in View of Structural Evaluation Measures: The Ataşehir- Istanbul Example

    Directory of Open Access Journals (Sweden)

    Ayşin Sev


    Full Text Available In Turkey, most of the recent housing projects are designed as high-rise box frame structures  cast in place by tunnel forms. This system offers the advantages of facilitating the construction process and minimizing the thickness of the load-bearing walls whenever highstrength concrete is used. Most significantly, it has the ability to withstand the major earthquake forces effectively. In the design phase, however, certain limitations imposed by this particular structural system should be taken into account. This research focuses on 48 high-rise residential buildings in Ataşehir Mass Housing, which were completed in 1997. These buildings are investigated with respect to their structural and architectural features, such as building configuration, plan layout, slenderness, structural system, the number of cores per building, the number of residential units using these cores and the relationship of these residential units between each other. Thus, the question of "how the architectural planning was affected by the selected structural system" is investigated.

  12. Having views, abandoning views

    DEFF Research Database (Denmark)

    Sobisch, Jan-Ulrich


    In the bKa' brgyud tradition of Tibetan Buddhism, holding a philosophical view cannot produce an understanding of ultimate reality. The article contains some arguments why views must ultimately be abandoned....

  13. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid


    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how wall...

  14. Wonderful Walls (United States)

    Greenman, Jim


    In this article, the author emphasizes the importance of "working" walls in children's programs. Children's programs need "working" walls (and ceilings and floors) which can be put to use for communication, display, storage, and activity space. The furnishings also work, or don't work, for the program in another sense: in aggregate, they serve as…

  15. Bacterial Vaginosis (United States)

    ... Issues > Conditions > Sexually Transmitted > Bacterial Vaginosis Health Issues Listen Español Text Size Email Print Share Bacterial Vaginosis Page Content Bacterial vaginosis (BV) is the most common vaginal infection in sexually active teenaged girls . It appears to be caused by ...

  16. Wall Turbulence. (United States)

    Hanratty, Thomas J.


    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  17. Bacterial gastroenteritis (United States)

    Bacterial gastroenteritis is present when bacteria cause an infection of the stomach and intestines ... has not been treated Many different types of bacteria can cause ... Campylobacter jejuni E coli Salmonella Shigella Staphylococcus ...

  18. Experimental investigations on dry stone masonry walls



    Brick unreinforced masonry walls have been widely studied both from experimental and numerical point of view, but scarce experimental information is available for dry stone masonry walls that constitute the material more frequently used in the construction of ancient historical constructions. Therefore, the present work aims at increasing the insight about the behavior of typical ancient masonry walls under cyclic loading. To attain such goal, different experimental approaches are consi...


    CERN Multimedia


    The FIRE AND RESCUE Group of TIS Commission informs that the climbing wall in the yard of the Fire-fighters Station, is intended for the sole use of the members of that service, and recalls that access to this installation is forbidden for safety reasons to all persons not belonging to the Service.CERN accepts no liability for damage or injury suffered as a result of failure to comply with this interdiction.TIS/DI

  20. Shape dynamics of growing cell walls

    CERN Document Server

    Banerjee, Shiladitya; Dinner, Aaron R


    We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy to be dissipated per unit volume. We use the model to understand and contrast growth in bacteria with different shapes such as spherical, ellipsoidal, cylindrical and toroidal morphologies. Coupling growth to cell wall constriction, we predict a discontinuous shape transformation, from partial constriction to cell division, as a function of the chemical potential driving cell-wall synthesis. Our model for cell wall energy and shape dynamics relates growth kinetics with cell geometry, and provides a unified framework to d...

  1. Oral bacterial DNAs in synovial fluids of arthritis patients


    Moen, Ketil; Johan G. Brun; Eribe, Emenike R.K.; Olsen, Ingar; Jonsson, Roland


    Arthritis may be triggered by microbial constituents, more specifically, bacterial cell wall fragments, or bacterial DNA. The aim of this study was to analyze the amount of oral bacterial DNA in synovial fluids (SF) of arthritis patients. SF from 15 rheumatoid arthritis (RA) patients, 15 arthritides (non-RA) patients and 9 osteoarthritis (control) patients were extracted for oral bacterial DNA. DNA was used in a checkerboard DNA/DNA hybridization set-up, in order to identify 40 different spec...

  2. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk


    tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters......, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...

  3. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno


    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  4. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom


    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...

  5. Permeable conformal walls and holography (United States)

    Bachas, Constantin; de Boer, Jan; Dijkgraaf, Robbert; Ooguri, Hirosi


    We study conformal field theories in two dimensions separated by domain walls, which preserve at least one Virasoro algebra. We develop tools to study such domain walls, extending and clarifying the concept of `folding' discussed in the condensed-matter literature. We analyze the conditions for unbroken supersymmetry, and discuss the holographic duals in AdS3 when they exist. One of the interesting observables is the Casimir energy between a wall and an anti-wall. When these separate free scalar field theories with different target-space radii, the Casimir energy is given by the dilogarithm function of the reflection probability. The walls with holographic duals in AdS3 separate two sigma models, whose target spaces are moduli spaces of Yang-Mills instantons on T4 or K3. In the supergravity limit, the Casimir energy is computable as classical energy of a brane that connects the walls through AdS3. We compare this result with expectations from the sigma-model point of view.

  6. Permeable conformal walls and holography

    CERN Document Server

    Bachas, C P; Dijkgraaf, R; Ooguri, H


    We study conformal field theories in two dimensions separated by domain walls, which preserve at least one Virasoro algebra. We develop tools to study such domain walls, extending and clarifying the concept of `folding' discussed in the condensed-matter literature. We analyze the conditions for unbroken supersymmetry, and discuss the holographic duals in AdS3 when they exist. One of the interesting observables is the Casimir energy between a wall and an anti-wall. When these separate free scalar field theories with different target-space radii, the Casimir energy is given by the dilogarithm function of the reflection probability. The walls with holographic duals in AdS3 separate two sigma models, whose target spaces are moduli spaces of Yang-Mills instantons on T4 or K3. In the supergravity limit, the Casimir energy is computable as classical energy of a brane that connects the walls through AdS3. We compare this result with expectations from the sigma-model point of view.

  7. [Bacterial vaginosis]. (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia


    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists.

  8. Falling walls

    CERN Multimedia

    It was 20 years ago this week that the Berlin wall was opened for the first time since its construction began in 1961. Although the signs of a thaw had been in the air for some time, few predicted the speed of the change that would ensue. As members of the scientific community, we can take a moment to reflect on the role our field played in bringing East and West together. CERN’s collaboration with the East, primarily through links with the Joint Institute for Nuclear Research, JINR, in Dubna, Russia, is well documented. Less well known, however, is the role CERN played in bringing the scientists of East and West Germany together. As the Iron curtain was going up, particle physicists on both sides were already creating the conditions that would allow it to be torn down. Cold war historian Thomas Stange tells the story in his 2002 CERN Courier article. It was my privilege to be in Berlin on Monday, the anniversary of the wall’s opening, to take part in a conference entitled &lsquo...

  9. Conductivity and Dielectric Dispersion of Gram-Positive Bacterial Cells (United States)

    van der Wal A; Minor; Norde; Zehnder; Lyklema


    The conductivity of bacterial cell suspensions has been studied over a wide range of ionic strengths and is interpreted in terms of their cell wall properties. The experimental data have been analyzed after improving the high kappaa double-layer theory of Fixman, by accounting for ionic mobility in the hydrodynamically stagnant layer, i.e., in the bacterial wall. Static conductivity and dielectric dispersion measurements both show that the counterions in the porous gel-like cell wall give rise to a considerable surface conductance. From a comparison of the mobile charge with the total cell wall charge it is inferred that the mobilities of the ions in the bacterial wall are of the same order but somewhat lower than those in the bulk electrolyte solution. The occurrence of surface conductance reduces the electrophoretic mobility in electrophoresis studies. If this effect is not taken into account, the zeta-potential will be underestimated, especially at low electrolyte concentrations.

  10. Collective Functionality through Bacterial Individuality (United States)

    Ackermann, Martin

    According to the conventional view, the properties of an organism are a product of nature and nurture - of its genes and the environment it lives in. Recent experiments with unicellular organisms have challenged this view: several molecular mechanisms generate phenotypic variation independently of environmental signals, leading to variation in clonal groups. My presentation will focus on the causes and consequences of this microbial individuality. Using examples from bacterial genetic model systems, I will first discuss different molecular and cellular mechanisms that give rise to bacterial individuality. Then, I will discuss the consequences of individuality, and focus on how phenotypic variation in clonal populations of bacteria can promote interactions between individuals, lead to the division of labor, and allow clonal groups of bacteria to cope with environmental uncertainty. Variation between individuals thus provides clonal groups with collective functionality.

  11. Design, development, and demonstration of a fully LabVIEW controlled in situ electrochemical Fourier transform infrared setup combined with a wall-jet electrode to investigate the electrochemical interface of nanoparticulate electrocatalysts under reaction conditions. (United States)

    Nesselberger, Markus; Ashton, Sean J; Wiberg, Gustav K H; Arenz, Matthias


    We present a detailed description of the construction of an in situ electrochemical ATR-FTIR setup combined with a wall-jet electrode to investigate the electrocatalytic properties of nanoparticulate catalysts in situ under controlled mass transport conditions. The presented setup allows the electrochemical interface to be probed in combination with the simultaneous determination of reaction rates. At the same time, the high level of automation allows it to be used as a standard tool in electrocatalysis research. The performance of the setup was demonstrated by probing the oxygen reduction reaction on a platinum black catalyst in sulfuric electrolyte.

  12. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric


    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  13. Bacterial vaginosis -- aftercare (United States)

    ... this page: // Bacterial vaginosis - aftercare To use the sharing features on this ... to back after you use the bathroom. Preventing Bacterial Vaginosis You can help prevent bacterial vaginosis by: Not ...

  14. Pregnancy Complications: Bacterial Vaginosis (United States)

    ... Complications & Loss > Pregnancy complications > Bacterial vaginosis and pregnancy Bacterial vaginosis and pregnancy E-mail to a friend Please ... this page It's been added to your dashboard . Bacterial vaginosis (also called BV or vaginitis) is an infection ...

  15. Concert Viewing Headphones

    Directory of Open Access Journals (Sweden)

    Kazuya Atsuta


    Full Text Available An audiovisual interface equipped with a projector, an inclina-tion sensor, and a distance sensor for zoom control has been developed that enables a user to selectively view and listen to specific performers in a video-taped group performance. Dubbed Concert Viewing Headphones, it has both image and sound processing functions. The image processing extracts the portion of the image indicated by the user and projects it free of distortion on the front and side walls. The sound processing creates imaginary microphones for those performers without one so that the user can hear the sound from any performer. Testing using images and sounds captured using a fisheye-lens camera and 37 lavalier microphones showed that sound locali-zation was fastest when an inverse square function was used for the sound mixing and that the zoom function was useful for locating the desired sound performance.

  16. Comparative study of Trombe wall, water wall and trans wall

    Energy Technology Data Exchange (ETDEWEB)

    Sodha, M.S.; Bansal, N.K.; Singh, S.; Ram, S.; Annamalai, M.; Iyer, M.V.; Nirmala, K.A.; Venkatesh, P.; Prasad, C.R.; Subramani, C.


    The thermal performances of three systems viz. Trombe wall: (1) without; and (2) with vents (forced air circulation), water wall and Transwall have been studied analytically interms of heat flux entering the living space (Maintained at 20/sup 0/C) corresponding to the meteriological data on January 19, 1981 at New Delhi (India), a typical cold winter day. Subsequent parametric studies using the simulation indicated that the Transwall system is the more efficient system for the passive heating of buildings.

  17. First Wall and Operational Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lasnier, C; Allen, S; Boedo, J; Groth, M; Brooks, N; McLean, A; LaBombard, B; Sharpe, J; Skinner, C; Whyte, D; Rudakov, D; West, W; Wong, C


    In this chapter we review numerous diagnostics capable of measurements at or near the first wall, many of which contribute information useful for safe operation of a tokamak. There are sections discussing infrared cameras, visible and VUV cameras, pressure gauges and RGAs, Langmuir probes, thermocouples, and erosion and deposition measurements by insertable probes and quartz microbalance. Also discussed are dust measurements by electrostatic detectors, laser scattering, visible and IR cameras, and manual collection of samples after machine opening. In each case the diagnostic is discussed with a view toward application to a burning plasma machine such as ITER.

  18. Domain Walls on Singularities

    CERN Document Server

    Halyo, Edi


    We describe domain walls that live on $A_2$ and $A_3$ singularities. The walls are BPS if the singularity is resolved and non--BPS if it is deformed and fibered. We show that these domain walls may interpolate between vacua that support monopoles and/or vortices.

  19. The Lamportian cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Keiliszewski, M.; Lamport, D. (Michigan State Univ. Plant Research Lab., East Lansing (United States))


    The Lamportian Warp-Weft hypothesis suggests a cellulose-extensin interpenetrating network where extensin mechanically couples the load-bearing cellulose microfibrils in a wall matrix that is best described as a microcomposite. This model is based on data gathered from the extensin-rich walls of tomato and sycamore cell suspension culture, wherein extensin precursors are insolubilized into the wall by undefined crosslinks. The authors recent work with cell walls isolated from intact tissue as well as walls from suspension cultured cells of the graminaceous monocots maize and rice, the non-graminaceous monocot asparagus, the primitive herbaceous dicot sugar beet, and the gymnosperm Douglas Fir indicate that although extensins are ubiquitous to all plant species examined, they are not the major structural protein component of most walls examined. Amino acid analyses of intact and HF-treated walls shows a major component neither an HRGP, nor directly comparable to the glycine-rich wall proteins such as those associated with seed coat walls or the 67 mole% glycine-rich proteins cloned from petunia and soybean. Clearly, structural wall protein alternatives to extensin exist and any cell wall model must take that into account. If we assume that extracellular matrices are a priori network structures, then new Hypless' structural proteins in the maize cell wall raise questions about the sort of network these proteins create: the kinds of crosslinks involved; how they are formed; and the roles played by the small amounts of HRGPs.

  20. Halogenation of microcapsule walls (United States)

    Davis, T. R.; Schaab, C. K.; Scott, J. C.


    Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.

  1. Electromagnetism of Bacterial Growth (United States)

    Ainiwaer, Ailiyasi


    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  2. Isolation of plant cell wall proteins. (United States)

    Jamet, Elisabeth; Boudart, Georges; Borderies, Giséle; Charmont, Stephane; Lafitte, Claude; Rossignol, Michel; Canut, Herve; Pont-Lezica, Rafael


    The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (1) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (2) polysaccharide networks of cellulose, hemicelluloses, and pectins form potential traps for contaminants such as intracellular proteins; (3) the presence of proteins interacting in many different ways with the polysaccharide matrix require different procedures to elute them from the cell wall. Three categories of CWP are distinguished: labile proteins that have little or no interactions with cell wall components, weakly bound proteins extractable with salts, and strongly bound proteins. Two alternative protocols are decribed for cell wall proteomics: (1) nondestructive techniques allowing the extraction of labile or weakly bound CWP without damaging the plasma membrane; (2) destructive techniques to isolate cell walls from which weakly or strongly bound CWP can be extracted. These protocols give very low levels of contamination by intracellular proteins. Their application should lead to a realistic view of the cell wall proteome at least for labile and weakly bound CWP extractable by salts.

  3. Effect of wall shear rate on biofilm deposition and grazing in drinking water flow chambers. (United States)

    Paris, Tony; Skali-Lami, Salaheddine; Block, Jean-Claude


    The effect of four-wall shear rates (34.9, 74.8, 142.5, and 194.5 s(-1)) on bacterial deposition on glass slides in drinking water flow chambers was studied. Biofilm image acquisition was performed over a 50-day period. Bacterial accumulation and surface coverage curves were obtained. Microscopic observations allowed us to obtain information about the dynamics and spatial distribution of the biofilm. During the first stage of biofilm formation (210-518 h), bacterial accumulation was a function of the wall shear rate: the higher the wall shear rate, the faster the bacterial deposition (1.1 and 1.9 x 10(4) bacterial cells . cm(-2) for wall shear rates of 34.9 and 142.5 s(-1), respectively). A new similarity relationship characteristic of a non-dimensional time and function of the wall shear rate was proposed to describe initial bacterial deposition. After 50 days of exposure to drinking water, surface coverage was more or less identical under the entire wall shear rates (7.44 +/- 0.9%), suggesting that biofilm bacterial density cannot be controlled using hydrodynamics. However, the spatial distribution of the biofilm was clearly different. Under low wall shear rate, aggregates were composed of bacterial cells able to "vibrate" independently on the surface, whereas, under a high wall shear rate, aggregates were more cohesive. Therefore, susceptibility to the hydraulic discontinuities occurring in drinking water system may not be similar. In all the flow chambers, significant decreases in bacterial biomass (up to 77%) were associated with the presence of amoebae. This grazing preferentially targeted small, isolated cells.

  4. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R


    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  5. Green walls in Vancouver

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R. [Sharp and Diamond Landscape Architecture Inc., Vancouver, BC (Canada)


    With the renewed interest in design for microclimate control and energy conservation, many cities are implementing clean air initiatives and sustainable planning policies to mitigate the effects of urban climate and the urban heat island effect. Green roofs, sky courts and green walls must be thoughtfully designed to withstand severe conditions such as moisture stress, extremes in temperature, tropical storms and strong desiccating winds. This paper focused on the installation of green wall systems. There are 2 general types of green walls systems, namely facade greening and living walls. Green facades are trellis systems where climbing plants can grow vertically without attaching to the surface of the building. Living walls are part of a building envelope system where plants are actually planted and grown in a wall system. A modular G-SKY Green Wall Panel was installed at the Aquaquest Learning Centre at the Vancouver Aquarium in Stanley Park in September 2006. This green wall panel, which was originally developed in Japan, incorporates many innovative features in the building envelope. It provides an exterior wall covered with 8 species of plants native to the Coastal Temperate Rain Forest. The living wall is irrigated by rainwater collected from the roof, stored in an underground cistern and fed through a drip irrigation system. From a habitat perspective, the building imitates an escarpment. Installation, support systems, irrigation, replacement of modules and maintenance are included in the complete wall system. Living walls reduce the surface temperature of buildings by as much as 10 degrees C when covered with vegetation and a growing medium. The project team is anticipating LEED gold certification under the United States-Canada Green Building Council. It was concluded that this technology of vegetated building envelopes is applicable for acoustical control at airports, biofiltration of indoor air, greywater treatment, and urban agriculture and vertical

  6. Staggered domain wall fermions

    CERN Document Server

    Hoelbling, Christian


    We construct domain wall fermions with a staggered kernel and investigate their spectral and chiral properties numerically in the Schwinger model. In some relevant cases we see an improvement of chirality by more than an order of magnitude as compared to usual domain wall fermions. Moreover, we present first results for four-dimensional quantum chromodynamics, where we also observe significant reductions of chiral symmetry violations for staggered domain wall fermions.

  7. Cell Wall Proteome


    Boudart, Georges; Minic, Zoran; Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth; Pont-Lezica, Rafael F


    In this chapter, we will focus on the contribution of proteomics to the identification and determination of the structure and function of CWPs as well as discussing new perspectives in this area. The great variety of proteins found in the plant cell wall is described. Some families, such as glycoside hydrolases, proteases, lectins, and inhibitors of cell wall modifying enzymes, are discussed in detail. Examples of the use of proteomic techniques to elucidate the structure of various cell wall...

  8. Remote viewing. (United States)

    Scott, C


    Remote viewing is the supposed faculty which enables a percipient, sited in a closed room, to describe the perceptions of a remote agent visiting an unknown target site. To provide convincing demonstration of such a faculty poses a range of experimental and practical problems, especially if feedback to the percipient is allowed after each trial. The precautions needed are elaborate and troublesome; many potential loopholes have to be plugged and there will be strong temptations to relax standards, requiring exceptional discipline and dedication by the experimenters. Most reports of remote viewing experiments are rather superficial and do not permit assessment of the experimental procedures with confidence; in many cases there is clear evidence of particular loopholes left unclosed. Any serious appraisal of the evidence would have to go beyond the reports. Meanwhile the published evidence is far from compelling, and certainly insufficient to justify overthrow of well-established scientific principles.

  9. Liver Cirrhosis and Intestinal Bacterial Translocation

    Institute of Scientific and Technical Information of China (English)


    Intestinal barrier dysfunction, facilitating translocation of bacteria and bacterial products, plays an important role in the pathophysiology of liver cirrhosis and its complications. Intestinal defense system including microbial barrier, immunologic barrier, mechanical barrier, chemical barrier, plays an important role in the maintenance of intestinal function. Under normal circumstances, the intestinal barrier can prevent intestinal bacteria through the intestinal wall from spreading to the body. Severe infection, trauma, shock, cirrhosis, malnutrition, immune suppression conditions, intestinal bacteria and endotoxin translocation, can lead to multiple organ dysfunction. The intestinal microlfora is not only involved in the digestion of nutrients, but also in local immunity, forming a barrier against pathogenic microorganisms. The derangement of the gut microlfora may lead to microbial translocation, deifned as the passage of viable microorganisms or bacterial products from the intestinal lumen to the mesenteric lymph nodes and other extraintestinal sites. In patients with cirrhosis, primary and intestinal lfora imbalance, intestinal bacterial overgrowth, intestinal mucosal barrier dysfunction, endotoxemia is associated with weakened immunity.

  10. FbsA-Driven Fibrinogen Polymerization: A Bacterial ``Deceiving Strategy'' (United States)

    Pierno, Matteo; Maravigna, Laura; Piazza, Roberto; Visai, Livia; Speziale, Pietro


    We show that FbsA, a cell wall protein of the bacterium Streptococcus agalactiae, promotes large-scale aggregation of human plasma fibrinogen, leading to the formation of a semiflexible polymerlike network. This extensive aggregation process takes place not only in solution, but also on FbsA-functionalized colloidal particles, and leads to the formation of a thick layer on the bacterial cell wall itself, which becomes an efficient mask against phagocytosis.

  11. Roles of tRNA in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Dare, Kiley; Ibba, Michael


    Recent research into various aspects of bacterial metabolism such as cell wall and antibiotic synthesis, degradation pathways, cellular stress, and amino acid biosynthesis has elucidated roles of aminoacyl-transfer ribonucleic acid (aa-tRNA) outside of translation. Although the two enzyme families...

  12. International Divider Walls

    NARCIS (Netherlands)

    Kruis, A.; Sneller, A.C.W.(L.)


    The subject of this teaching case is the Enterprise Resource Planning (ERP) system implementation at International Divider Walls, the world market leader in design, production, and sales of divider walls. The implementation in one of the divisions of this multinational company had been successful, a

  13. Thin Wall Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka


    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  14. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria


    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach...... that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  15. Imaging of Chest Wall Lesions in Children

    Directory of Open Access Journals (Sweden)

    A. Hekmatnia


    Full Text Available Chest wall lesions in childhood include a wide range of pathologies; Benign lesions include lipoma, neurofibroma, lymphangioma, hemangioma, and mesenchymal hamartoma."nMalignant lesions include Neuroblastoma, Rhabdo-myosarcoma, Ewing sarcoma, and Askin tumor."nSystemic diseases such as leukemia, lymphoma, Langerhans cell histiocytosis, and also infections such as tuberculosis, and actinomycosis may also cause chest wall lesions."nThe imaging characteristics of these lesions are re-viewed, but only a minority of the lesions shows diagnostic imaging features, and most of lesions re-quire biopsy and histopathological examination for "ndefinitive diagnosis."nThe role of different modalities is discussed with an emphasis on magnetic resonance imaging for demonstrating lesion morphology and local spread. Computed tomography and neuclear medicine being used mainly to assess remote disease."nIn this lecture, we discuss about imaging of chest wall lesions in children.

  16. Solar Walls in tsbi3

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne

    tsbi3 is a user-friendly and flexible computer program, which provides support to the design team in the analysis of the indoor climate and the energy performance of buildings. The solar wall module gives tsbi3 the capability of simulating solar walls and their interaction with the building....... This version, C, of tsbi3 is capable of simulating five types of solar walls say: mass-walls, Trombe-walls, double Trombe-walls, internally ventilated walls and solar walls for preheating ventilation air. The user's guide gives a description of the capabilities and how to simulate solar walls in tsbi3....

  17. Cell wall growth during elongation and division : one ring to bind them?

    NARCIS (Netherlands)

    Scheffers, Dirk-Jan


    The role of the cell division protein FtsZ in bacterial cell wall (CW) synthesis is believed to be restricted to localizing proteins involved in the synthesis of the septal wall. Elsewhere, compelling evidence is provided that in Caulobacter crescentus, FtsZ plays an additional role in CW synthesis

  18. Cellular reprogramming by gram-positive bacterial components: a review.

    LENUS (Irish Health Repository)

    Buckley, Julliette M


    LPS tolerance has been the focus of extensive scientific and clinical research over the last several decades in an attempt to elucidate the sequence of changes that occur at a molecular level in tolerized cells. Tolerance to components of gram-positive bacterial cell walls such as bacterial lipoprotein and lipoteichoic acid is a much lesser studied, although equally important, phenomenon. This review will focus on cellular reprogramming by gram-positive bacterial components and examines the alterations in cell surface receptor expression, changes in intracellular signaling, gene expression and cytokine production, and the phenomenon of cross-tolerance.

  19. "I Climbed the Great Wall"

    Institute of Scientific and Technical Information of China (English)


    I finally climbed the Great Wall, A dream of my childhood; my heart is filled with pleasure at the indescribable beauty of the Wall. China’s ancient civilization is best documented by the grandeur of the Wall.

  20. Peritonitis - spontaneous bacterial (United States)

    Spontaneous bacterial peritonitis (SBP); Ascites - peritonitis; Cirrhosis - peritonitis ... who are on peritoneal dialysis for kidney failure. Peritonitis may have other causes . These include infection from ...

  1. Identification of bacterial invasion in necrotizing enterocolitis specimens using fluorescent in situ hybridization

    NARCIS (Netherlands)

    Heida, F H; Harmsen, H J M; Timmer, A; Kooi, E M W; Bos, A F; Hulscher, J B F


    OBJECTIVE: Investigation of bacterial invasion into the intestinal wall in necrotizing enterocolitis (NEC) specimens. STUDY DESIGN: We compared 43 surgical NEC specimens with 43 age-matched controls. We used fluorescent in situ hybridization (FISH), a universal bacterial probe together with species-

  2. Conducting Wall Hall Thrusters (United States)

    Goebel, Dan M.; Hofer, Richard R.; Mikellides, Ioannis G.; Katz, Ira; Polk, James E.; Dotson, Brandon


    A unique configuration of the magnetic field near the wall of Hall thrusters, called Magnetic Shielding, has recently demonstrated the ability to significantly reduce the erosion of the boron nitride (BN) walls and extend the life of Hall thrusters by orders of magnitude. The ability of magnetic shielding to minimize interactions between the plasma and the discharge chamber walls has for the first time enabled the replacement of insulating walls with conducting materials without loss in thruster performance. The boron nitride rings in the 6 kW H6 Hall thruster were replaced with graphite that self-biased to near the anode potential. The thruster efficiency remained over 60% (within two percent of the baseline BN configuration) with a small decrease in thrust and increase in Isp typical of magnetically shielded Hall thrusters. The graphite wall temperatures decreased significantly compared to both shielded and unshielded BN configurations, leading to the potential for higher power operation. Eliminating ceramic walls makes it simpler and less expensive to fabricate a thruster to survive launch loads, and the graphite discharge chamber radiates more efficiently which increases the power capability of the thruster compared to conventional Hall thruster designs.

  3. Blood borne: bacterial components in mother's blood influence fetal development. (United States)

    Loughran, Allister J; Tuomanen, Elaine I


    Bacterial or viral infection of the mother during the course of pregnancy can cross the placenta and actively infect the fetus. However, especially for bacteria, it is more common for mothers to experience an infection that can be treated without overt fetal infection. In this setting, it is less well understood what the risk to fetal development is, particularly in terms of neurological development. This research highlight reviews recent findings indicating that bacterial components generated during infection of the mother can cross the placenta and activate the fetal innate immune system resulting in changes in the course of brain development and subsequent progression to postnatal cognitive disorders. Bacterial cell wall is a ubiquitous bacterial PAMP (pathogen-associated molecular pattern) known to activate inflammation through the stimulation of TLR2. Cell wall is released from bacteria during antibiotic treatment and new work shows that embryos exposed to cell wall from the mother demonstrate anomalous proliferation of neuronal precursor cells in a TLR2 dependent manner. Such proliferation increases the neuronal density of the cortical plate and alters brain architecture. Although there is no fetal death, subsequent cognitive development is significantly impaired. This model system suggests that bacterial infection of the mother and its treatment can impact fetal brain development and requires greater understanding to potentially eliminate a risk factor for cognitive disorders such as autism.

  4. Microbial interactions chapter: binding and entry of DNA in bacterial transformation

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.


    Genetic transformation of bacteria by DNA released from cells of a related strain is discussed. The mechanism by which the giant information-bearing molecules of DNA are transported into the bacterial cell was investigated. It was concluded that the overall process of DNA uptake consists of two main steps, binding of donor DNA to the outside of the cell and entry of the bound DNA into the cell. Each step is discussed in detail. Inasmuch as these phenomena occur at the cell surface, they are related to structures and functions of the cell wall and membrane. In addition, the development of competence, that is the formation of cell surface structures allowing DNA uptake, is examined from both a physiological and evolutionary point of view. Genetic transfer mediated by free DNA is an obvious and important form of cellular interaction. The development of competence involves another, quite distinct system of interaction between bacterial cells. Streptococcus pneumoniae, Bacillus subtilis, and Hemophilus influenzae were used as the test organisms. 259 references.

  5. Magnetotactic Bacterial Cages as Safe and Smart Gene Delivery Vehicles

    KAUST Repository

    Alsaiari, Shahad K.


    In spite of the huge advances in the area of synthetic carriers, their efficiency still poorly compares to natural vectors. Herein, we report the use of unmodified magnetotactic bacteria as a guidable delivery vehicle for DNA functionalized gold nanoparticles (AuNPs). High cargo loading is established under anaerobic conditions (bacteria is alive) through endocytosis where AuNPs are employed as transmembrane proteins mimics (facilitate endocytosis) as well as imaging agents to verify and quantify loading and release. The naturally bio-mineralized magnetosomes, within the bacteria, induce heat generation inside bacteria through magnetic hyperthermia. Most importantly after exposing the system to air (bacteria is dead) the cell wall stays intact providing an efficient bacterial vessel. Upon incubation with THP-1 cells, the magnetotactic bacterial cages (MBCs) adhere to the cell wall and are directly engulfed through the phagocytic activity of these cells. Applying magnetic hyperthermia leads to the dissociation of the bacterial microcarrier and eventual release of cargo.

  6. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria


    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...... valuable weapons for preventing pathogen contamination and fighting infectious diseases in the future....

  7. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger


    Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate...... filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...... about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria...

  8. Streamline topologies near a fixed wall using normal forms

    DEFF Research Database (Denmark)

    Hartnack, Johan


    Streamline patterns and their bifurcations in two-dimensional incompressible flow in the vicinity of a fixed wall has been investigated from a topological point of view by Bakker [Bifurcations in Flow Patterns. Kluwer Academic Publishers, 1991]. Bakkers work is revisited in a more general setting...... allowing curvature of the fixed wall and a time dependence of the streamlines. The velocity field is expanded at a point on the wall, and the expansion coefficients are considered as bifurcation parameters. A series of non-linear coordinate changes results in a much simplified system of differential...... of the Navier-Stokes equations on the local topology is considered....

  9. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.

    Directory of Open Access Journals (Sweden)

    Eric C Martens


    Full Text Available Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target

  10. Where are the Walls?

    CERN Document Server

    Olive, Keith A; Peterson, Adam J


    The reported spatial variation in the fine-structure constant at high redshift, if physical, could be due to the presence of dilatonic domains, and one or more domain walls inside our horizon. An absorption spectrum of an object in a different domain from our own would be characterized by a different value of alpha. We show that while a single wall solution is statically comparable to a dipole fit, and is a big improvement over a weighted mean (despite adding 3 parameters), a two-wall solution is a far better fit (despite adding 3 parameters over the single wall solution). We derive a simple model accounting for the two-domain wall solution. The goodness of these fits is however dependent on the extra random error which was argued to account for the large scatter in most of the data. When this error is omitted, all the above solutions are poor fits to the data. When included, the solutions that exhibit a spatial dependence agree with the data much more significantly than the Standard Model; however, the Stand...

  11. Bacterial communities associated with the lichen symbiosis. (United States)

    Bates, Scott T; Cropsey, Garrett W G; Caporaso, J Gregory; Knight, Rob; Fierer, Noah


    Lichens are commonly described as a mutualistic symbiosis between fungi and "algae" (Chlorophyta or Cyanobacteria); however, they also have internal bacterial communities. Recent research suggests that lichen-associated microbes are an integral component of lichen thalli and that the classical view of this symbiotic relationship should be expanded to include bacteria. However, we still have a limited understanding of the phylogenetic structure of these communities and their variability across lichen species. To address these knowledge gaps, we used bar-coded pyrosequencing to survey the bacterial communities associated with lichens. Bacterial sequences obtained from four lichen species at multiple locations on rock outcrops suggested that each lichen species harbored a distinct community and that all communities were dominated by Alphaproteobacteria. Across all samples, we recovered numerous bacterial phylotypes that were closely related to sequences isolated from lichens in prior investigations, including those from a lichen-associated Rhizobiales lineage (LAR1; putative N(2) fixers). LAR1-related phylotypes were relatively abundant and were found in all four lichen species, and many sequences closely related to other known N(2) fixers (e.g., Azospirillum, Bradyrhizobium, and Frankia) were recovered. Our findings confirm the presence of highly structured bacterial communities within lichens and provide additional evidence that these bacteria may serve distinct functional roles within lichen symbioses.

  12. Mouse bladder wall injection. (United States)

    Fu, Chi-Ling; Apelo, Charity A; Torres, Baldemar; Thai, Kim H; Hsieh, Michael H


    Mouse bladder wall injection is a useful technique to orthotopically study bladder phenomena, including stem cell, smooth muscle, and cancer biology. Before starting injections, the surgical area must be cleaned with soap and water and antiseptic solution. Surgical equipment must be sterilized before use and between each animal. Each mouse is placed under inhaled isoflurane anesthesia (2-5% for induction, 1-3% for maintenance) and its bladder exposed by making a midline abdominal incision with scissors. If the bladder is full, it is partially decompressed by gentle squeezing between two fingers. The cell suspension of interest is intramurally injected into the wall of the bladder dome using a 29 or 30 gauge needle and 1 cc or smaller syringe. The wound is then closed using wound clips and the mouse allowed to recover on a warming pad. Bladder wall injection is a delicate microsurgical technique that can be mastered with practice.

  13. Axion domain wall baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Daido, Ryuji; Kitajima, Naoya [Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Takahashi, Fuminobu [Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Kavli IPMU, TODIAS, University of Tokyo,Kashiwa 277-8583 (Japan)


    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m≃10{sup 8}–10{sup 13} GeV and f≃10{sup 13}–10{sup 16} GeV. Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domain wall annihilation and its implications for the future gravitational wave experiments.

  14. Timber frame walls

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik


    A ventilated cavity is usually considered good practice for removing moisture behind the cladding of timber framed walls. Timber frame walls with no cavity are a logical alternative as they are slimmer and less expensive to produce and besides the risk of a two-sided fire behind the cladding....... It was found that the specific damages made to the vapour barrier as part of the test did not have any provable effect on the moisture content. In general elements with an intact vapour barrier did not show a critical moisture content at the wind barrier after four years of exposure....

  15. Congenital Abdominal Wall Defects

    DEFF Research Database (Denmark)

    Risby, Kirsten; Jakobsen, Marianne Skytte; Qvist, Niels


    complications were seen in five (15%) children: four had detachment of the mesh and one patient developed abdominal compartment syndrome. Mesh related clinical infection was observed in five children. In hospital mortality occurred in four cases (2 gastroschisis and 2 omphalocele) and was not procedure......OBJECTIVE: To evaluate the clinical utility of GORE® DUALMESH (GDM) in the staged closure of large congenital abdominal wall defects. MATERIALS AND METHODS: Data of patients with congenital abdominal wall defects managed with GDM was analyzed for outcome regarding complete fascial closure; mesh...

  16. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael


    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation......, resistance and QS inhibition as future antimicrobial targets, in particular those that would work to minimize selection pressures for the development of resistant bacteria....

  17. Bacterial microcompartments and the modular construction of microbial metabolism. (United States)

    Kerfeld, Cheryl A; Erbilgin, Onur


    Bacterial microcompartments (BMCs) are protein-bound organelles predicted to be present across 23 bacterial phyla. BMCs facilitate carbon fixation as well as the aerobic and anaerobic catabolism of a variety of organic compounds. These functions have been linked to ecological nutrient cycling, symbiosis, pathogenesis, and cardiovascular disease. Within bacterial cells, BMCs are metabolic modules that can be further dissociated into their constituent structural and functional protein domains. Viewing BMCs as genetic, structural, functional, and evolutionary modules provides a framework for understanding both BMC-mediated metabolism and for adapting their architectures for applications in synthetic biology.

  18. Occupy Wall Street

    DEFF Research Database (Denmark)

    Jensen, Michael J.; Bang, Henrik


    This article analyzes the political form of Occupy Wall Street on Twitter. Drawing on evidence contained within the profiles of over 50,000 Twitter users, political identities of participants are characterized using natural language processing. The results find evidence of a traditional...

  19. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.


    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  20. Bacterial Wound Culture (United States)

    ... Home Visit Global Sites Search Help? Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  1. Bacterial surface adaptation (United States)

    Utada, Andrew


    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  2. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap


    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  3. [Structure and function of fungal cell wall]. (United States)

    Ohno, Naohito


    Cell wall glycans of fungi/yeasts are reviewed. Fungi/yeasts produce various kinds of polysaccharides. As part of the cell wall they are interlinked with other components forming a huge network. The insolubility and complex with multiple components makes the research very tough. Studies on beta-glucan have been performed from various views, such as chemistry, conformation, solubility, tissue distribution and metabolism, biological activity, clinical application, receptor, biosynthesis, and antibody. Studies on mannan focus on immunotoxicity, such as anaphylactoid reaction and coronary arteritis induction. alpha-glucan, chitin, and capsular polysaccharide were also mentioned in relation to structure and genes. Compared with human and animal polysaccharides, fungi/yeasts polysaccharides have very characteristic properties.

  4. Effect of flow and active mixing on bacterial growth in a colon-like geometry (United States)

    Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.

  5. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne


    Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing....... These extracellular proteases are activated in complex cascades involving auto-processing and proteolytic maturation. Thus, proteolysis has been adopted by bacterial pathogens at multiple levels to ensure the success of the pathogen in contact with the human host....

  6. Moisture Research - Optimizing Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Mantha, Pallavi [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)


    In this project, the Consortium for Advanced Residential Buildings (CARB) team evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls. Wall assemblies evaluated included code minimum walls using spray foam insulation and fiberglass batts, high R-value walls at least 12 in. thick (R-40 and R-60 assemblies), and brick walls with interior insulation.

  7. [Diagnosis of bacterial vaginosis]. (United States)

    Djukić, Slobodanka; Ćirković, Ivana; Arsić, Biljana; Garalejić, Eliana


    Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2-producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent's scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up-to-date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short-term and long-term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  8. Residence-time dependent cell wall deformation of different Staphylococcus aureus strains on gold measured using surface-enhanced-fluorescence

    NARCIS (Netherlands)

    Li, Jiuyi; Busscher, Henk J.; Swartjes, Jan J. T. M.; Chen, Yun; Harapanahalli, Akshay K.; Norde, Willem; van der Mei, Henny C.; Sjollema, Jelmer


    Bacterial adhesion to surfaces is accompanied by cell wall deformation that may extend to the lipid membrane with an impact on the antimicrobial susceptibility of the organisms. Nanoscale cell wall deformation upon adhesion is difficult to measure, except for Delta pbp4 mutants, deficient in peptido

  9. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J.; Kochkin, V.


    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  10. High-R Walls for Remodeling. Wall Cavity Moisture Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Kochkin, V. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)


    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  11. Timber frame walls

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik


    A ventilated cavity is usually considered good practice for removing moisture behind the cladding of timber framed walls. Timber frame walls with no cavity are a logical alternative as they are slimmer and less expensive to produce and besides the risk of a two-sided fire behind the cladding...... were removed in some of the elements to simulate damaged vapour barriers. The condition of the wind barriers of elements with intact vapour barriers was inspected from the inside after four years of exposure. This paper presents results with emphasis on the moisture conditions behind the wind barrier....... It was found that the specific damages made to the vapour barrier as part of the test did not have any provable effect on the moisture content. In general elements with an intact vapour barrier did not show a critical moisture content at the wind barrier after four years of exposure....

  12. Cell wall structure and function in lactic acid bacteria. (United States)

    Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius


    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts.

  13. Space, composition, vertical wall ...


    Despot, Katerina; Sandeva, Vaska


    The space in which it is an integral segment of our life is nourished with many functional and decorative elements. One aspect for consideration of vertical walls or The vertical gardens and their aesthetic impact in space called function. Vertical gardens bordering the decoration to totally functional garden in areas where there is little oxygen and space, ideal for residential buildings and public spaces where missing greenery, special place occupies in interior design where their expres...

  14. Scalable Resolution Display Walls

    KAUST Repository

    Leigh, Jason


    This article will describe the progress since 2000 on research and development in 2-D and 3-D scalable resolution display walls that are built from tiling individual lower resolution flat panel displays. The article will describe approaches and trends in display hardware construction, middleware architecture, and user-interaction design. The article will also highlight examples of use cases and the benefits the technology has brought to their respective disciplines. © 1963-2012 IEEE.

  15. Light shining through walls

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)


    Shining light through walls? At first glance this sounds crazy. However, very feeble gravitational and electroweak effects allow for this exotic possibility. Unfortunately, with present and near future technologies the opportunity to observe light shining through walls via these effects is completely out of question. Nevertheless there are quite a number of experimental collaborations around the globe involved in this quest. Why are they doing it? Are there additional ways of sending photons through opaque matter? Indeed, various extensions of the standard model of particle physics predict the existence of new particles called WISPs - extremely weakly interacting slim particles. Photons can convert into these hypothetical particles, which have no problems to penetrate very dense materials, and these can reconvert into photons after their passage - as if light was effectively traversing walls. We review this exciting field of research, describing the most important WISPs, the present and future experiments, the indirect hints from astrophysics and cosmology pointing to the existence of WISPs, and finally outlining the consequences that the discovery of WISPs would have. (orig.)

  16. The bacterial lipocalins. (United States)

    Bishop, R E


    The lipocalins were once regarded as a eukaryotic protein family, but new members have been recently discovered in bacteria. The first bacterial lipocalin (Blc) was identified in Escherichia coli as an outer membrane lipoprotein expressed under conditions of environmental stress. Blc is distinguished from most lipocalins by the absence of intramolecular disulfide bonds, but the presence of a membrane anchor is shared with two of its closest homologues, apolipoprotein D and lazarillo. Several common features of the membrane-anchored lipocalins suggest that each may play an important role in membrane biogenesis and repair. Additionally, Blc proteins are implicated in the dissemination of antibiotic resistance genes and in the activation of immunity. Recent genome sequencing efforts reveal the existence of at least 20 bacterial lipocalins. The lipocalins appear to have originated in Gram-negative bacteria and were probably transferred horizontally to eukaryotes from the endosymbiotic alpha-proteobacterial ancestor of the mitochondrion. The genome sequences also reveal that some bacterial lipocalins exhibit disulfide bonds and alternative modes of subcellular localization, which include targeting to the periplasmic space, the cytoplasmic membrane, and the cytosol. The relationships between bacterial lipocalin structure and function further illuminate the common biochemistry of bacterial and eukaryotic cells.

  17. Cell Wall Biology: Perspectives from Cell Wall Imaging

    Institute of Scientific and Technical Information of China (English)

    Kieran J.D.Lee; Susan E.Marcus; J.Paul Knox


    Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth,are major repositories for photosynthetically accumulated carbon,and,in addition,impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose,hemicelluloses,and pectic polysaccharides. During the evolution of land plants,polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.

  18. Canal Wall Reconstruction Mastoidectomy

    Institute of Scientific and Technical Information of China (English)


    Objective To investigate the advantages of canal wall reconstruction (CWR) mastoidectomy, a single-stage technique for cholesteatoma removal and posterior external canal wall reconstruction, over the open and closed procedures in terms of cholesteatoma recurrence. Methods: Between June 2002 and December 2005, 38 patients (40 ears) with cholesteatoma were admited to Sun Yat-Sen Memorial Hospital and received surgical treatments. Of these patients, 25 were male with ages ranging between 11 and 60 years (mean = 31.6 years) and 13 were female with ages ranging between 20 and 65 years (mean = 38.8 years). Canal wall reconstruction (CWR)mastoidectomy was performed in 31 ears and canal wall down (CWD) mastoidectomy in 9 ears. Concha cartilage was used for ear canal wall reconstruction in 22 of the 31 CWR procedures and cortical mastoid bone was used in the remaining 9 cases. Results At 0.5 to 4 years follow up, all but one patients remained free of signs of cholesteatoma recurrence, i.e., no retraction pocket or cholesteatoma matrix. One patient, a smoker, needed revision surgery due to cholesteatoma recurrence 1.5 year after the initial operation. The recurrence rate was therefore 3.2% (1/31). Cholesteatoma recurrence was monitored using postoperative CT scans whenever possible. In the case that needed a revision procedure, a retraction pocket was identified by otoendoscopy in the pars flacida area that eventually evolved into a cholesteatoma. A pocket extending to the epitympanum filled with cholesteatoma matrix was confirmed during the revision operation, A decision to perform a modified mastoidectomy was made as the patient refused to quit smoking. The mean air-bone gap in pure tone threshold was 45 dB before surgery and 25 dB after (p < 0.05). There was no difference between using concha cartilage and cortical mastoid bone for the reconstruction regarding air-bone gap improvement, CT findings and otoendoscopic results. Conclusion CWR mastoidectomy can be used for

  19. Left ventricular wall stress compendium. (United States)

    Zhong, L; Ghista, D N; Tan, R S


    Left ventricular (LV) wall stress has intrigued scientists and cardiologists since the time of Lame and Laplace in 1800s. The left ventricle is an intriguing organ structure, whose intrinsic design enables it to fill and contract. The development of wall stress is intriguing to cardiologists and biomedical engineers. The role of left ventricle wall stress in cardiac perfusion and pumping as well as in cardiac pathophysiology is a relatively unexplored phenomenon. But even for us to assess this role, we first need accurate determination of in vivo wall stress. However, at this point, 150 years after Lame estimated left ventricle wall stress using the elasticity theory, we are still in the exploratory stage of (i) developing left ventricle models that properly represent left ventricle anatomy and physiology and (ii) obtaining data on left ventricle dynamics. In this paper, we are responding to the need for a comprehensive survey of left ventricle wall stress models, their mechanics, stress computation and results. We have provided herein a compendium of major type of wall stress models: thin-wall models based on the Laplace law, thick-wall shell models, elasticity theory model, thick-wall large deformation models and finite element models. We have compared the mean stress values of these models as well as the variation of stress across the wall. All of the thin-wall and thick-wall shell models are based on idealised ellipsoidal and spherical geometries. However, the elasticity model's shape can vary through the cycle, to simulate the more ellipsoidal shape of the left ventricle in the systolic phase. The finite element models have more representative geometries, but are generally based on animal data, which limits their medical relevance. This paper can enable readers to obtain a comprehensive perspective of left ventricle wall stress models, of how to employ them to determine wall stresses, and be cognizant of the assumptions involved in the use of specific models.

  20. A carbon nanotube wall membrane for water treatment. (United States)

    Lee, Byeongho; Baek, Youngbin; Lee, Minwoo; Jeong, Dae Hong; Lee, Hong H; Yoon, Jeyong; Kim, Yong Hyup


    Various forms of carbon nanotubes have been utilized in water treatment applications. The unique characteristics of carbon nanotubes, however, have not been fully exploited for such applications. Here we exploit the characteristics and corresponding attributes of carbon nanotubes to develop a millimetre-thick ultrafiltration membrane that can provide a water permeability that approaches 30,000 l m(-2) h(-1) bar(-1), compared with the best water permeability of 2,400 l m(-2) h(-1) bar(-1) reported for carbon nanotube membranes. The developed membrane consists only of vertically aligned carbon nanotube walls that provide 6-nm-wide inner pores and 7-nm-wide outer pores that form between the walls of the carbon nanotubes when the carbon nanotube forest is densified. The experimental results reveal that the permeance increases as the pore size decreases. The carbon nanotube walls of the membrane are observed to impede bacterial adhesion and resist biofilm formation.

  1. Bacterial microbiome of lungs in COPD. (United States)

    Sze, Marc A; Hogg, James C; Sin, Don D


    Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death in the world. Although smoking is the main risk factor for this disease, only a minority of smokers develop COPD. Why this happens is largely unknown. Recent discoveries by the human microbiome project have shed new light on the importance and richness of the bacterial microbiota at different body sites in human beings. The microbiota plays a particularly important role in the development and functional integrity of the immune system. Shifts or perturbations in the microbiota can lead to disease. COPD is in part mediated by dysregulated immune responses to cigarette smoke and other environmental insults. Although traditionally the lung has been viewed as a sterile organ, by using highly sensitive genomic techniques, recent reports have identified diverse bacterial communities in the human lung that may change in COPD. This review summarizes the current knowledge concerning the lung microbiota in COPD and its potential implications for pathogenesis of the disease.

  2. Structure and operation of bacterial tripartite pumps. (United States)

    Hinchliffe, Philip; Symmons, Martyn F; Hughes, Colin; Koronakis, Vassilis


    In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition.

  3. Bacterial glycosyltransferase toxins. (United States)

    Jank, Thomas; Belyi, Yury; Aktories, Klaus


    Mono-glycosylation of host proteins is a common mechanism by which bacterial protein toxins manipulate cellular functions of eukaryotic target host cells. Prototypic for this group of glycosyltransferase toxins are Clostridium difficile toxins A and B, which modify guanine nucleotide-binding proteins of the Rho family. However, toxin-induced glycosylation is not restricted to the Clostridia. Various types of bacterial pathogens including Escherichia coli, Yersinia, Photorhabdus and Legionella species produce glycosyltransferase toxins. Recent studies discovered novel unexpected variations in host protein targets and amino acid acceptors of toxin-catalysed glycosylation. These findings open new perspectives in toxin as well as in carbohydrate research.

  4. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages

    Directory of Open Access Journals (Sweden)

    Marie-Pierre eChapot-Chartier


    Full Text Available Lactic acid bacteria (LAB are Gram positive bacteria widely used in the production of fermented food in particular cheese and yoghurts. Bacteriophage infections during fermentation processes have been for many years a major industrial concern and have stimulated numerous research efforts. Better understanding of the molecular mechanisms of bacteriophage interactions with their host bacteria is required for the development of efficient strategies to fight against infections. The bacterial cell wall plays key roles in these interactions. First, bacteriophages must adsorb at the bacterial surface through specific interactions with receptors that are cell wall components. At next step, phages must overcome the barrier constituted by cell wall peptidoglycan to inject DNA inside bacterial cell. Also at the end of the infection cycle, phages synthesize endolysins able to hydrolyze peptidoglycan and lyse bacterial cells to release phage progeny. In the last decade, concomitant development of genomics and structural analysis of cell wall components allowed considerable advances in the knowledge of their structure and function in several model LAB. Here, we describe the present knowledge on the structure of the cell wall glycopolymers of the best characterized LAB emphasizing their structural variations and we present the available data regarding their role in bacteria-phage specific interactions at the different steps of the infection cycle.

  5. Isotropy and anisotropy of the arterial wall. (United States)

    Weizsacker, H W; Pinto, J G


    The passive biomechanical response of intact cylindrical rat carotid arteries is studied in vitro and compared with the mechanical response of rubber tubes. Using true stress and natural strain in the definition of the incremental modulus of elasticity, the tissue wall properties are analyzed over wide ranges of simultaneous circumferential and longitudinal deformations. The type of loading chosen is 'physiological' i.e. symmetric: the cylindrical segments are subjected to internal pressure and axial prestretch without torsion or shear. Several aspects pertaining to the choice of parameters characterizing the material are discussed and the analysis pertaining to the deformational behavior of a hypothetical compliant tube with Hookean wall material is presented. The experimental results show that while rubber response can be adequately represented as linearly elastic and isotropic, the overall response of vascular tissue is highly non-linear and anisotropic. However, for states of deformation that occur in vivo, the elasticity of arteries is quite similar to that of rubber tubes and as such the arterial wall may be viewed as incrementally isotropic for the range of deformations that occur in vivo.

  6. Axions from wall decay

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S; Hagmann, C; Sikivie, P


    The authors discuss the decay of axion walls bounded by strings and present numerical simulations of the decay process. In these simulations, the decay happens immediately, in a time scale of order the light travel time, and the average energy of the radiated axions is {approx_equal} 7m{sub a} for v{sub a}/m{sub a} {approx_equal} 500. is found to increase approximately linearly with ln(v{sub a}/m{sub a}). Extrapolation of this behavior yields {approx_equal} 60 m{sub a} in axion models of interest.

  7. Abdominal wall endometriosis. (United States)

    Upadhyaya, P; Karak, A K; Sinha, A K; Kumar, B; Karki, S; Agarwal, C S


    Endometriosis of abdominal wall scar following operation on uterus and tubes is extremely rare. The late onset of symptoms after surgery is the usual cause of misdiagnosis. Scar endometriosis is a rare disease which is difficult to diagnose and should always be considered as a differential diagnosis of painful abdominal masses in women. The diagnosis is made only after excision and histopathology of the lesion. Preoperative differentials include hernia, lipoma, suture granuloma or abscess. Hence an awareness of the entity avoids delay in diagnosis, helps clinicians to a more tailored treatment and also avoids unnecessary referrals. We report a case of abdominal endometriosis. The definitive diagnosis of which was established by histopathological studies.

  8. Strengthening of Shear Walls

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg

    -plane loaded walls and disks is however not included in any guidelines, and only a small fraction of scientists have initiated research within this topic. Furthermore, studies of the principal behavior and response of a strengthened disk has not yet been investigated satisfactorily, and this is the principal...... be altered to fit the surrounding boundary conditions. The effective cohesive law will then become a function of the investigated structural geometry. A simplified approach for the latter topic was used to predict the load capacity of concrete beams in shear. Results obtained were acceptable, but the model...

  9. Seizures Complicating Bacterial Meningitis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap


    Full Text Available The clinical data of 116 patients, 1 month to <5 years of age, admitted for bacterial meningitis, and grouped according to those with and without seizures during hospitalization, were compared in a study at Buddhist Dalin Tzu Chi General Hospital, Chang Gung Memorial Hospital and other centers in Taiwan.

  10. Microcoupon Assay Of Adhesion And Growth Of Bacterial Films (United States)

    Pierson, Duane L.; Koenig, David W.


    Microbiological assay technique facilitates determination of some characteristics of sessile bacteria like those that attach to and coat interior walls of water-purification systems. Biofilms cause sickness and interfere with purification process. Technique enables direct measurement of rate of attachment of bacterial cells, their metabolism, and effects of chemicals on them. Used to quantify effects of both bactericides and growth-stimulating agents and in place of older standard plate-count and tube-dilution techniques.

  11. The pathological effect of bacterial translocation to the Henssge Nomogram


    Ivanka, Ján


    This article presents the results of measurements of the influence of pathological bacterial translocation on the intestinal wall of the area, measured per recta, and its influence on the course of a Henssge Nomogram. The gram-positive /negative bacteria which influence temperature measurements and the subsequent regressive non-stationary temperature data of biological objects when establishing the moment of death are described in a lucid, synoptic form. Based upon forensic praxis, profession...

  12. Diagnosis of bacterial hepatic abscess by CT

    Institute of Scientific and Technical Information of China (English)

    Cheng-Lin Wang; Xue-Jun Guo; Shui-Bo Qiu; Yi Lei; Zhi-Dong Yuan; Han-Bin Dong; Hui-An Liu


    BACKGROUND: Bacterial hepatic abscess usually is acute and progressive, often resulting in sepsis, impairment of liver function and disseminated intravascular coagulation. The mortality rate was as high as 80%in the past. For the purpose of early diagnosis and differential diagnosis of this disease, we probed the imaging manifestations and their characteristics in bacterial hepatic abscesses by CT scan. METHODS:Twenty-four lesions from 21 patients with bacterial hepatic abscesses that were conifrmed by clinical features, puncture and culture were reviewed for CT manifestations. Fourteen patients were male and 7 were female, with an average age of 56.2 years. All lesions underwent CT plain scan and three-phase enhanced scan and 15 patients underwent delayed-phase imaging. Three senior radiologists read the iflms in accordance with a standard. RESULTS: Among 24 lesions, 18 (75%) were situated in the right liver with diameters of 1.4-9.3 cm (average 4.5 cm). Nineteen (79.2%) lesions were round or sub-round in shape, and 22 (91.7%) had smooth, uninterrupted and sharp edges. All lesions showed low attenuation of less than 20 Hu. Twenty-two enhanced lesions (91.7%) had rim-shaped enhancement in the abscess wall, and 13 (54.2%) showed single or double-ring signs. Eighteen (75%) displayed honeycomb-like, grid-like or strip-like enhancement. Eighteen (75%) were regionally enhanced in the surroundings or upper or lower layers. Only 2 (8.3%) displayed a gas-liquid surface sign. CONCLUSIONS:  The CT ifndings of bacterial hepatic abscess are usually typical, and the diagnosis of the abscess is not dififcult. To precisely diagnose atypical cases, it is necessary to combine CT with clinical observations and follow-up.

  13. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm. (United States)

    Mellouk, Nora; Enninga, Jost


    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  14. Characters of Fractal Ultrastructure in Wood Cell Wall

    Institute of Scientific and Technical Information of China (English)

    LI Beimei; ZHAO Guangjie


    Fractal theory was introduced in order to describe the ultrastructure of wood cell wall in this paper.The cellulose chain clusters around nano-scale were viewed as a fractal object that consists of many fibrillar structural units with different scales including microfibrils.On the basis of the morphological data of wood cell wall.fractal dimensions of multi-level fibrillar structural units were calculated by fractal-geometry approach,and then the morphological and structural characteristics of fibers as well as the influences on wood properties were investigated according to the dimensions.Besides,the fractal self-nesting character of the ultrastruture was also analyzed.

  15. Warning: safety risk with some Apple AC Wall Plug Adapters

    CERN Multimedia

    CERN IT department


    Dear Mac and iOS Users, Apple has determined that some of its two prong Apple AC wall plug adapters may break and create a risk of electrical shock.   CERN users can now exchange their affected Apple wall plug adapters at the Service Desk. To find out if your adapter is affected and for any further information concerning the procedure to follow to exchange it, please check the following URL:

  16. Structure of axionic domain walls (United States)

    Huang, M. C.; Sikivie, P.


    The structure of axionic domain walls is investigated using the low-energy effective theory of axions and pions. We derive the spatial dependence of the phases of the Peccei-Quinn scalar field and the QCD quark-antiquark condensates inside an axionic domain wall. Thence an accurate estimate of the wall surface energy density is obtained. The equations of motion for axions, photons, leptons, and baryons in the neighborhood of axionic domain walls are written down and estimates are given for the wall reflection and transmission coefficients of these particles. Finally, we discuss the energy dissipation by axionic domain walls oscillating in the early universe due to the reflection of particles in the primordial soup.

  17. Structure of axionic domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Huang, M.C.; Sikivie, P.


    The structure of axionic domain walls is investigated using the low-energy effective theory of axions and pions. We derive the spatial dependence of the phases of the Peccei-Quinn scalar field and the QCD quark-antiquark condensates inside an axionic domain wall. Thence an accurate estimate of the wall surface energy density is obtained. The equations of motion for axions, photons, leptons, and baryons in the neighborhood of axionic domain walls are written down and estimates are given for the wall reflection and transmission coefficients of these particles. Finally, we discuss the energy dissipation by axionic domain walls oscillating in the early universe due to the reflection of particles in the primordial soup.

  18. Bacterial floc mediated rapid streamer formation in creeping flows

    CERN Document Server

    Hassanpourfard, Mahtab; Ghosh, Ranajay; Das, Siddhartha; Thundat, Thomas; Liu, Yang; Kumar, Aloke


    One of the central puzzles concerning the interaction of low Reynolds number (Re<<1) fluid transport with bacterial biomass is the formation of filamentous structures called streamers. In this manuscript, we report our discovery of a new kind of low Re bacterial streamers, which appear from pre-formed bacterial flocs. In sharp contrast to the biofilm-mediated streamers, these streamers form over extremely small timescales (less than a second). Our experiments, carried out in a microchannel with micropillars rely on fluorescence microscopy techniques to illustrate that floc-mediated streamers form when a freely-moving floc adheres to the micropillar wall and gets rapidly sheared by the background flow. We also show that at their inception the deformation of the flocs is dominated by recoverable large strains indicating significant elasticity. These strains subsequently increase tremendously to produce filamentous streamers. Interestingly, we find that these fully formed streamers are not static structure...

  19. Dynamical domain wall and localization

    Directory of Open Access Journals (Sweden)

    Yuta Toyozato


    Full Text Available Based on the previous works (Toyozato et al., 2013 [24]; Higuchi and Nojiri, 2014 [25], we investigate the localization of the fields on the dynamical domain wall, where the four-dimensional FRW universe is realized on the domain wall in the five-dimensional space–time. Especially we show that the chiral spinor can localize on the domain wall, which has not been succeeded in the past works as the seminal work in George et al. (2009 [23].

  20. Asymptotic Dynamics of Monopole Walls

    CERN Document Server

    Cross, R


    We determine the asymptotic dynamics of the U(N) doubly periodic BPS monopole in Yang-Mills-Higgs theory, called a monopole wall, by exploring its Higgs curve using the Newton polytope and amoeba. In particular, we show that the monopole wall splits into subwalls when any of its moduli become large. The long-distance gauge and Higgs field interactions of these subwalls are abelian, allowing us to derive an asymptotic metric for the monopole wall moduli space.

  1. The biology of bacterial peptidoglycans and their impact on host immunity and physiology


    Wheeler, Richard; Chevalier, Grégoire; Eberl, Gérard; Gomperts Boneca, Ivo


    International audience; Peptidoglycans (PGN) are a constituent of the bacterial cell wall, and are shed as bacteria divide. The presence of PGN is therefore a marker of bacterial activity that has been exploited by both plants and animals to induce defence mechanisms. Pattern recognition receptors that recognize PGN are extremely well conserved throughout evolution and shown to play important and diverse role in the development, homeostasis and activation of the immune system. In addition, PG...

  2. Cooperative Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen


    Full Text Available Bacterial Foraging Optimization (BFO is a novel optimization algorithm based on the social foraging behavior of E. coli bacteria. This paper presents a variation on the original BFO algorithm, namely, the Cooperative Bacterial Foraging Optimization (CBFO, which significantly improve the original BFO in solving complex optimization problems. This significant improvement is achieved by applying two cooperative approaches to the original BFO, namely, the serial heterogeneous cooperation on the implicit space decomposition level and the serial heterogeneous cooperation on the hybrid space decomposition level. The experiments compare the performance of two CBFO variants with the original BFO, the standard PSO and a real-coded GA on four widely used benchmark functions. The new method shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  3. Bacterial Colony Optimization

    Directory of Open Access Journals (Sweden)

    Ben Niu


    Full Text Available This paper investigates the behaviors at different developmental stages in Escherichia coli (E. coli lifecycle and developing a new biologically inspired optimization algorithm named bacterial colony optimization (BCO. BCO is based on a lifecycle model that simulates some typical behaviors of E. coli bacteria during their whole lifecycle, including chemotaxis, communication, elimination, reproduction, and migration. A newly created chemotaxis strategy combined with communication mechanism is developed to simplify the bacterial optimization, which is spread over the whole optimization process. However, the other behaviors such as elimination, reproduction, and migration are implemented only when the given conditions are satisfied. Two types of interactive communication schemas: individuals exchange schema and group exchange schema are designed to improve the optimization efficiency. In the simulation studies, a set of 12 benchmark functions belonging to three classes (unimodal, multimodal, and rotated problems are performed, and the performances of the proposed algorithms are compared with five recent evolutionary algorithms to demonstrate the superiority of BCO.

  4. Bacterial assays for recombinagens. (United States)

    Hoffmann, G R


    Two principal strategies have been used for studying recombinagenic effects of chemicals and radiation in bacteria: (1) measurement of homologous recombination involving defined alleles in a partially diploid strain, and (2) measurement of the formation and loss of genetic duplications in the bacterial chromosome. In the former category, most methods involve one allele in the bacterial chromosome and another in a plasmid, but it is also possible to detect recombination between two chromosomal alleles or between two extrachromosomal alleles. This review summarizes methods that use each of these approaches for detecting recombination and tabulates data on agents that have been found to be recombinagenic in bacteria. The assays are discussed with respect to their effectiveness in testing for recombinagens and their potential for elucidating mechanisms underlying recombinagenic effects.

  5. Bacterial transformation of terpenoids (United States)

    Grishko, V. V.; Nogovitsina, Y. M.; Ivshina, I. B.


    Data on the bacterial transformation of terpenoids published in the literature in the past decade are analyzed. Possible pathways for chemo-, regio- and stereoselective modifications of terpenoids are discussed. Considerable attention is given to new technological approaches to the synthesis of terpenoid derivatives suitable for the use in the perfume and food industry and promising as drugs and chiral intermediates for fine organic synthesis. The bibliography includes 246 references.

  6. Spontaneous bacterial peritonitis


    Al Amri Saleh


    Spontaneous bacterial peritonitis (SBP) is an infection of the ascitic fluid without obvious intra-abdominal source of sepsis; usually complicates advanced liver disease. The pathogenesis of the disease is multifactorial: low ascitic protein-content, which reflects defi-cient ascitic fluid complement and hence, reduced opsonic activity is thought to be the most important pathogenic factor. Frequent and prolonged bacteremia has been considered as another pertinent cause of SBP. This disease is...

  7. Modelling bacterial speciation



    A central problem in understanding bacterial speciation is how clusters of closely related strains emerge and persist in the face of recombination. We use a neutral Fisher–Wright model in which genotypes, defined by the alleles at 140 house-keeping loci, change in each generation by mutation or recombination, and examine conditions in which an initially uniform population gives rise to resolved clusters. Where recombination occurs at equal frequency between all members of the population, we o...

  8. Adaptive Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen


    Full Text Available Bacterial Foraging Optimization (BFO is a recently developed nature-inspired optimization algorithm, which is based on the foraging behavior of E. coli bacteria. Up to now, BFO has been applied successfully to some engineering problems due to its simplicity and ease of implementation. However, BFO possesses a poor convergence behavior over complex optimization problems as compared to other nature-inspired optimization techniques. This paper first analyzes how the run-length unit parameter of BFO controls the exploration of the whole search space and the exploitation of the promising areas. Then it presents a variation on the original BFO, called the adaptive bacterial foraging optimization (ABFO, employing the adaptive foraging strategies to improve the performance of the original BFO. This improvement is achieved by enabling the bacterial foraging algorithm to adjust the run-length unit parameter dynamically during algorithm execution in order to balance the exploration/exploitation tradeoff. The experiments compare the performance of two versions of ABFO with the original BFO, the standard particle swarm optimization (PSO and a real-coded genetic algorithm (GA on four widely-used benchmark functions. The proposed ABFO shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  9. Neglected bacterial zoonoses. (United States)

    Chikeka, I; Dumler, J S


    Bacterial zoonoses comprise a group of diseases in humans or animals acquired by direct contact with or by oral consumption of contaminated animal materials, or via arthropod vectors. Among neglected infections, bacterial zoonoses are among the most neglected given emerging data on incidence and prevalence as causes of acute febrile illness, even in areas where recognized neglected tropical diseases occur frequently. Although many other bacterial infections could also be considered in this neglected category, five distinct infections stand out because they are globally distributed, are acute febrile diseases, have high rates of morbidity and case fatality, and are reported as commonly as malaria, typhoid or dengue virus infections in carefully designed studies in which broad-spectrum diagnoses are actively sought. This review will focus attention on leptospirosis, relapsing fever borreliosis and rickettsioses, including scrub typhus, murine typhus and spotted fever group rickettsiosis. Of greatest interest is the lack of distinguishing clinical features among these infections when in humans, which confounds diagnosis where laboratory confirmation is lacking, and in regions where clinical diagnosis is often attributed to one of several perceived more common threats. As diseases such as malaria come under improved control, the real impact of these common and under-recognized infections will become evident, as will the requirement for the strategies and allocation of resources for their control.

  10. Wall parameters estimation based onsupport vector regression for through wall radar sensing (United States)

    Chen, Xi; Chen, Weidong


    In through wall radar sensing, the wall parameters estimation (WPE) problem has been a topic that attracts a lot of attention since the wall parameters, i.e., the permittivity and the thickness, are of crucial importance to locate the targets and to produce a well-focused image, but they are usually unknown in practice. To solve this problem, in this paper, the support vector regression (SVR), a powerful tool for regression analysis, is introduced, and its performance on WPE, provided it is used it in the regular way, is investigated. Unfortunately, it is shown that the regular use of SVR cannot afford satisfactory estimation results since the sample data used in SVR, namely the received echoes from the walls, are seriously interfered with the echoes from the targets which are located near the walls. In view of this limitation, a novel SVR-based WPE approach that consists of three stages is proposed by this paper. In the first stage, three regression functions are trained by SVR, one of which will output the estimate of the permittivity in the second stage, and the others are designed to output two instrumental variables for estimating the thickness. In the third stage, the estimate of thickness will be achieved by minimizing a predefined cost function wherein the estimated permittivity and the outputted instrumental variables are involved. The better robustness and higher estimation accuracy of the proposed approach compared to the regular use of SVR are validated by the numerical experimental results using finite-difference time-domain simulations.

  11. Bacterial microbiome of lungs in COPD

    Directory of Open Access Journals (Sweden)

    Sze MA


    Full Text Available Marc A Sze,1 James C Hogg,2 Don D Sin1 1Department of Medicine, 2Department of Pathology and Laboratory Medicine, The James Hogg Research Centre, Providence Heart-Lung Institute, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada Abstract: Chronic obstructive pulmonary disease (COPD is currently the third leading cause of death in the world. Although smoking is the main risk factor for this disease, only a minority of smokers develop COPD. Why this happens is largely unknown. Recent discoveries by the human microbiome project have shed new light on the importance and richness of the bacterial microbiota at different body sites in human beings. The microbiota plays a particularly important role in the development and functional integrity of the immune system. Shifts or perturbations in the microbiota can lead to disease. COPD is in part mediated by dysregulated immune responses to cigarette smoke and other environmental insults. Although traditionally the lung has been viewed as a sterile organ, by using highly sensitive genomic techniques, recent reports have identified diverse bacterial communities in the human lung that may change in COPD. This review summarizes the current knowledge concerning the lung microbiota in COPD and its potential implications for pathogenesis of the disease. Keywords: chronic obstructive pulmonary disease, bacterial microbiome, lungs

  12. Synchronizing XPath Views

    DEFF Research Database (Denmark)

    Pedersen, Dennis; Pedersen, Torben Bach


    . However, the XML data sources are often independent of the data consumers and may change their schemas without notification, invalidating the XML views defined by the data consumers. This requires the view definitions to be updated to reflect the new structure of the data sources, a process termed view...... synchronization. XPath is the most commonly used language for retrieving parts of XML documents, and is thus an important cornerstone for XML view definitions. This paper presents techniques for discovering schema changes in XML data sources and synchronizing XPath-based views to reflect these schema changes...

  13. QlikView scripting

    CERN Document Server

    Floyd, Matt


    This mini book offers information about QlikView scripting written in an easy-to-understand manner, and covers QlikView scripting from basic to advanced features in a compact format.If you are a basic orintermediate developer with some knowledge of QlikView applications and a basic understanding of QlikView scripting and data extraction and manipulation, this book will be great for you. If you are an advanced user, you can also use this book as a reference guide and teaching aid. If you are a QlikView project team member such as a business user, data/ETL professional, project manager, orsystem

  14. Flow and active mixing have a strong impact on bacterial growth dynamics in the proximal large intestine (United States)

    Cremer, Jonas; Segota, Igor; Yang, Chih-Yu; Arnoldini, Markus; Groisman, Alex; Hwa, Terence


    More than half of fecal dry weight is bacterial mass with bacterial densities reaching up to 1012 cells per gram. Mostly, these bacteria grow in the proximal large intestine where lateral flow along the intestine is strong: flow can in principal lead to a washout of bacteria from the proximal large intestine. Active mixing by contractions of the intestinal wall together with bacterial growth might counteract such a washout and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate contractions. We investigate growth along the channel under a steady nutrient inflow. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term. Based on this model, we discuss bacterial growth dynamics in the human large intestine using flow- and mixing-behavior having been observed for humans.

  15. The "Brick Wall" Graphic Organizer (United States)

    Matteson, Shirley M.


    A brick wall provides a fitting description of what happens when teachers try to teach a concept for which students are unprepared. When students are unsuccessful academically, their foundational knowledge may be missing, incomplete, or incorrect. As a result, students "hit a brick wall," and their academic progress stops because they do…

  16. Diplopia and orbital wall fractures

    NARCIS (Netherlands)

    Boffano, P.; Roccia, F.; Gallesio, C.; Karagozoglu, K.H.; Forouzanfar, T.


    Diplopia is a symptom that is frequently associated with orbital wall fractures. The aim of this article was to present the incidence and patterns of diplopia after orbital wall blow-out fractures in 2 European centers, Turin and Amsterdam, and to identify any correlation between this symptom and su

  17. Control of Wall Mounting Robot

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Pedersen, Rasmus


    This paper presents a method for designing controllers for trajectory tracking with actuator constraints. In particular, we consider a joystick-controlled wall mounting robot called WallMo. In contrast to previous works, a model-free approach is taken to the control problem, where the path...

  18. Domain Walls in SU(5)

    CERN Document Server

    Poghosian, L E; Pogosian, Levon; Vachaspati, Tanmay


    We consider the Grand Unified SU(5) model with a small or vanishing cubic term in the adjoint scalar field in the potential. This gives the model an approximate or exact Z$_2$ symmetry whose breaking leads to domain walls. The simplest domain wall has the structure of a kink across which the Higgs field changes sign ($\\Phi \\to -\\Phi$) and inside which the full SU(5) is restored. The kink is shown to be perturbatively unstable for all parameters. We then construct a domain wall solution that is lighter than the kink and show it to be perturbatively stable for a range of parameters. The symmetry in the core of this domain wall is smaller than that outside. The interactions of the domain wall with magnetic monopole is discussed and it is shown that magnetic monopoles with certain internal space orientations relative to the wall pass through the domain wall. Magnetic monopoles in other relative internal space orientations are likely to be swept away on collision with the domain walls, suggesting a scenario where ...

  19. Moisture Research - Optimizing Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L.; Mantha, P.


    The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

  20. Patterns of expression of cell wall related genes in sugarcane

    Directory of Open Access Journals (Sweden)

    Lima D.U.


    Full Text Available Our search for genes related to cell wall metabolism in the sugarcane expressed sequence tag (SUCEST database ( resulted in 3,283 reads (1% of the total reads which were grouped into 459 clusters (potential genes with an average of 7.1 reads per cluster. To more clearly display our correlation coefficients, we constructed surface maps which we used to investigate the relationship between cell wall genes and the sugarcane tissues libraries from which they came. The only significant correlations that we found between cell wall genes and/or their expression within particular libraries were neutral or synergetic. Genes related to cellulose biosynthesis were from the CesA family, and were found to be the most abundant cell wall related genes in the SUCEST database. We found that the highest number of CesA reads came from the root and stem libraries. The genes with the greatest number of reads were those involved in cell wall hydrolases (e.g. beta-1,3-glucanases, xyloglucan endo-beta-transglycosylase, beta-glucosidase and endo-beta-mannanase. Correlation analyses by surface mapping revealed that the expression of genes related to biosynthesis seems to be associated with the hydrolysis of hemicelluloses, pectin hydrolases being mainly associated with xyloglucan hydrolases. The patterns of cell wall related gene expression in sugarcane based on the number of reads per cluster reflected quite well the expected physiological characteristics of the tissues. This is the first work to provide a general view on plant cell wall metabolism through the expression of related genes in almost all the tissues of a plant at the same time. For example, developing flowers behaved similarly to both meristematic tissues and leaf-root transition zone tissues. Besides providing a basis for future research on the mechanisms of plant development which involve the cell wall, our findings will provide valuable tools for plant engineering in the

  1. Domain wall description of superconductivity

    CERN Document Server

    Brito, F A; Silva, J C M


    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted as the parameter to move type I to type II domain walls. Alternatively, this means that the domain wall surface is suffering an acceleration as one goes from one type to another. On the other hand, changing from type I to type II state means a formation of a condensate what is in perfect sense of lowering the temperature around the superconductor. One can think of this scenario as an analog of holographic scenarios where this set up is replaced by a black hole near the domain wall.

  2. Streamline topologies near a fixed wall using normal forms

    DEFF Research Database (Denmark)

    Hartnack, Johan


    Streamline patterns and their bifurcations in two-dimensional incompressible viscous flow in the vicinity of a fixed wall have been investigated from a topological point of view by Bakker [11]. Bakker's work is revisited in a more general setting allowing a curvature of the fixed wall and a time...... dependence of the streamlines. The velocity field is expanded at a point on the wall, and the expansion coefficients are considered as bifurcation parameters. A series of nonlinear coordinate changes results in a much simplified system of differential equations for the streamlines (a normal form......) encapsulating all the features of the original system. From this, a complete description of bifurcations up to codimension three close to a simple linear degeneracy is obtained. Further, the case of a non-simple degeneracy is considered. Finally the effect of the Navier-Stokes equations on the local topology...

  3. Channel Wall Landslides (United States)


    [figure removed for brevity, see original site] The multiple landslides in this VIS image occur along a steep channel wall. Note the large impact crater in the context image. The formation of the crater may have initially weakened that area of the surface prior to channel formation. Image information: VIS instrument. Latitude -2.7, Longitude 324.8 East (35.2 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal (United States)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III


    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  5. Bacterial chromosome segregation. (United States)

    Possoz, Christophe; Junier, Ivan; Espeli, Olivier


    Dividing cells have mechanisms to ensure that their genomes are faithfully segregated into daughter cells. In bacteria, the description of these mechanisms has been considerably improved in the recent years. This review focuses on the different aspects of bacterial chromosome segregation that can be understood thanks to the studies performed with model organisms: Escherichia coli, Bacillus subtilis, Caulobacter crescentus and Vibrio cholerae. We describe the global positionning of the nucleoid in the cell and the specific localization and dynamics of different chromosomal loci, kinetic and biophysic aspects of chromosome segregation are presented. Finally, a presentation of the key proteins involved in the chromosome segregation is made.

  6. Bacterial Degradation of Pesticides

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær

    This PhD project was carried out as part of the Microbial Remediation of Contaminated Soil and Water Resources (MIRESOWA) project, funded by the Danish Council for Strategic Research (grant number 2104-08-0012). The environment is contaminated with various xenobiotic compounds e.g. pesticides......D student, to construct fungal-bacterial consortia in order to potentially stimulate pesticide degradation thereby increasing the chance of successful bioaugmentation. The results of the project are reported in three article manuscripts, included in this thesis. In manuscript I, the mineralization of 2...

  7. Spontaneous bacterial peritonitis

    Directory of Open Access Journals (Sweden)

    Al Amri Saleh


    Full Text Available Spontaneous bacterial peritonitis (SBP is an infection of the ascitic fluid without obvious intra-abdominal source of sepsis; usually complicates advanced liver disease. The pathogenesis of the disease is multifactorial: low ascitic protein-content, which reflects defi-cient ascitic fluid complement and hence, reduced opsonic activity is thought to be the most important pathogenic factor. Frequent and prolonged bacteremia has been considered as another pertinent cause of SBP. This disease is associated with high mortality and recurrence. Therefore, orompt recognition and institution of therapy and plan of prophylaxis is vital.

  8. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte;


    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the Par......M protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome....

  9. Single-Walled Carbon Nanotubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    Directory of Open Access Journals (Sweden)

    Venkata K. K. Upadhyayula


    Full Text Available The possibility of using single-walled carbon nanotubes (SWCNTs aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. The Freundlich adsorption equilibrium constant (k for S.aureus and E.coli determined from batch adsorption study was found to be 9×108 and 2×108 ml/g, respectively. The visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. The results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. This is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.

  10. Unusual combination of posterior femoral head dislocation with anterior and posterior wall fractures in the ipsilateral acetabulum. (United States)

    Chen, Wei; Su, Yanling; Zhang, Yingze; Zhang, Qi; Zheng, Zhanle; Pan, Jinshe


    Although hip dislocation combined with acetabular fracture is not an uncommon injury, anterior acetabular wall fractures rarely occur in patients who have posterior fracture-dislocations of the hip. This article presents a unique case of anterior and posterior wall fractures of the ipsilateral acetabulum in a patient who sustained traumatic posterior hip dislocation that resulted from a high-speed motor vehicle accident. The initial imaging evaluation, which did not include the obturator oblique view, revealed no concomitant anterior acetabular wall fracture. Repeated manipulative reductions were unsuccessful in reducing the displaced hip joint. Pelvic computed tomography (CT) scans revealed the initially missed anterior acetabular wall fracture fragments incarcerated in the left hip joint in addition to the hip dislocation and the posterior acetabular wall fracture. The incarcerated bone fragments lay between the anterior wall and the femoral head, and between the posterior wall and the femoral head, which appeared to derive from both anterior and posterior acetabular walls, respectively. Open reduction and internal fixation was performed to manage the posterior dislocation and associated acetabular fractures. Intraoperatively, the major anterior wall fragment was used to reconstruct the defected posterior wall. This case highlights the necessity of suspicion and pre- and postoperative monitoring of the obturator oblique view and CT scans to detect the potentially existing anterior acetabular wall fracture. Early surgical intervention is important to guarantee satisfactory outcomes of such complex fracture-dislocation injuries.

  11. Green towers and green walls

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R. [Sharp and Diamond Landscape Architecture and Planning, Vancouver, BC (Canada)


    North American cities face many major environmental and health issues such as urban heat island effect, the intensity of storms, microclimate around buildings, imperviousness of sites, poor air quality and increases in respiratory disease. Several new technologies are starting to address global impacts and community level issues as well as the personal health and comfort of building occupants. These include green towers, living walls, vegetated rooftops and ecological site developments. This paper examined these forms of eco-development and presented their benefits. It discussed green walls in Japan; green towers in Malaysia, Singapore and Great Britain; green facades of climbing plants; active living walls in Canada; and passive living walls in France and Canada. It also discussed thermal walls; thematic walls; vertical gardens and structured wildlife habitat. Last, it presented testing, monitoring, research and conclusions. The Centre for the Advancement of Green Roof Technology is setting up a program to test thermal performance, to assess plant survival and to monitor green walls at the British Columbia Institute of Technology in Vancouver, Canada as much of the research out of Japan is only available in Japanese script. It was concluded that green architecture can provide shade, food, rainwater, shelter for wildlife and mimic natural systems. 15 refs.

  12. Mechanical Genomics Identifies Diverse Modulators of Bacterial Cell Stiffness. (United States)

    Auer, George K; Lee, Timothy K; Rajendram, Manohary; Cesar, Spencer; Miguel, Amanda; Huang, Kerwyn Casey; Weibel, Douglas B


    Bacteria must maintain mechanical integrity to withstand the large osmotic pressure differential across the cell membrane and wall. Although maintaining mechanical integrity is critical for proper cellular function, a fact exploited by prominent cell-wall-targeting antibiotics, the proteins that contribute to cellular mechanics remain unidentified. Here, we describe a high-throughput optical method for quantifying cell stiffness and apply this technique to a genome-wide collection of ∼4,000 Escherichia coli mutants. We identify genes with roles in diverse functional processes spanning cell-wall synthesis, energy production, and DNA replication and repair that significantly change cell stiffness when deleted. We observe that proteins with biochemically redundant roles in cell-wall synthesis exhibit different stiffness defects when deleted. Correlating our data with chemical screens reveals that reducing membrane potential generally increases cell stiffness. In total, our work demonstrates that bacterial cell stiffness is a property of both the cell wall and broader cell physiology and lays the groundwork for future systematic studies of mechanoregulation.

  13. MreB: pilot or passenger of cell wall synthesis? (United States)

    White, Courtney L; Gober, James W


    The discovery that the bacterial cell shape determinant MreB is related to actin spurred new insights into bacterial morphogenesis and development. The trafficking and mechanical roles of the eukaryotic cytoskeleton were hypothesized to have a functional ancestor in MreB based on evidence implicating MreB as an organizer of cell wall synthesis. Genetic, biochemical and cytological studies implicate MreB as a coordinator of a large multi-protein peptidoglycan (PG) synthesizing holoenzyme. Recent advances in microscopy and new biochemical evidence, however, suggest that MreB may function differently than previously envisioned. This review summarizes our evolving knowledge of MreB and attempts to refine the generalized model of the proteins organizing PG synthesis in bacteria. This is generally thought to be conserved among eubacteria and the majority of the discussion will focus on studies from a few well-studied model organisms.

  14. Spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Anastasios Koulaouzidis; Shivaram Bhat; Athar A Saeed


    Since its initial description in 1964, research has transformed spontaneous bacterial peritonitis (SBP) from a feared disease (with reported mortality of 90%) to a treatable complication of decompensated cirrhosis,albeit with steady prevalence and a high recurrence rate. Bacterial translocation, the key mechanism in the pathogenesis of SBP, is only possible because of the concurrent failure of defensive mechanisms in cirrhosis.Variants of SBP should be treated. Leucocyte esterase reagent strips have managed to shorten the 'tap-toshot' time, while future studies should look into their combined use with ascitic fluid pH. Third generation cephalosporins are the antibiotic of choice because they have a number of advantages. Renal dysfunction has been shown to be an independent predictor of mortality in patients with SBP. Albumin is felt to reduce the risk of renal impairment by improving effective intravascular volume, and by helping to bind proinflammatory molecules. Following a single episode of SBP, patients should have long-term antibiotic prophylaxis and be considered for liver transplantation.

  15. OTVE combustor wall condition monitoring (United States)

    Szemenyei, Brian; Nelson, Robert S.; Barkhoudarian, S.


    Conventional ultrasonics, eddy current, and electromagnetic acoustic transduction (EMAT) technologies were evaluated to determine their capability of measuring wall thickness/wear of individual cooling channels in test specimens simulating conditions in the throat region of an OTVE combustion chamber liner. Quantitative results are presented for the eddy current technology, which was shown to measure up to the optimum 20-mil wall thickness with near single channel resolution. Additional results demonstrate the capability of the conventional ultrasonics and EMAT technologies to detect a thinning or cracked wall. Recommendations for additional eddy current and EMAT development tests are presented.

  16. Economics of abdominal wall reconstruction. (United States)

    Bower, Curtis; Roth, J Scott


    The economic aspects of abdominal wall reconstruction are frequently overlooked, although understandings of the financial implications are essential in providing cost-efficient health care. Ventral hernia repairs are frequently performed surgical procedures with significant economic ramifications for employers, insurers, providers, and patients because of the volume of procedures, complication rates, the significant rate of recurrence, and escalating costs. Because biological mesh materials add significant expense to the costs of treating complex abdominal wall hernias, the role of such costly materials needs to be better defined to ensure the most cost-efficient and effective treatments for ventral abdominal wall hernias.

  17. Antimicrobials for bacterial bioterrorism agents. (United States)

    Sarkar-Tyson, Mitali; Atkins, Helen S


    The limitations of current antimicrobials for highly virulent pathogens considered as potential bioterrorism agents drives the requirement for new antimicrobials that are suitable for use in populations in the event of a deliberate release. Strategies targeting bacterial virulence offer the potential for new countermeasures to combat bacterial bioterrorism agents, including those active against a broad spectrum of pathogens. Although early in the development of antivirulence approaches, inhibitors of bacterial type III secretion systems and cell division mechanisms show promise for the future.

  18. Statistical characteristics of simulated walls

    CERN Document Server

    Demianski, M; Müller, V; Turchaninov, V I


    The large scale matter distribution in three different simulations of CDM models is investigated and compared with corresponding results of the Zel'dovich theory of nonlinear gravitational instability. We show that the basic characteristics of wall-like structure elements are well described by this theory, and that they can be expressed by the cosmological parameters and a few spectral moments of the perturbation spectrum. Therefore the characteristics of such elements provide reasonable estimates of these parameters. We show that the compressed matter is relaxed and gravitationally confined, what manifests itself in the existence of walls as (quasi)stationary structure elements with life time restricted by their disruption into high density clouds. The matter distribution is investigated both in the real and redshift spaces. In both cases almost the same particles form the walls, and we estimate differences in corresponding wall characteristics. The same methods are applied to several mock catalogues of 'gal...

  19. Juyongguan on the Great Wall

    Institute of Scientific and Technical Information of China (English)


    Juyongguan Pass on the Great Wall,one ofthe most important strategic passes of the oldcapital Beijing,is now repaired and a goodplace for tourists to see ancient Chinesemilitary and cultural facilities,as well asbeautiful local scenery.

  20. Actinomycosis - Left Post Chest Wall

    Directory of Open Access Journals (Sweden)

    Kafil Akhtar, M. Naim, S. Shamshad Ahmad, Nazoora Khan, Uroos Abedi, A.H. Khan*


    Full Text Available A forty year old female of weak body built presented with recurring small hard lumps in let posteriorchest wall for 3 years and discharging ulcers for 3 months duration. Clinically, the provisional diagnosiswas malignancy with secondary infection. FNAC showed features suggestive of dysplasia buthistopathology confirmed the diagnosis as actinomycosis. The present case is reported due to rare incidenceof actinomycosis at post chest wall with muscle involvement.

  1. Nano magnetic vortex wall guide

    Directory of Open Access Journals (Sweden)

    H. Y. Yuan


    Full Text Available A concept of nano magnetic vortex wall guide is introduced. Two architectures are proposed. The first one is properly designed superlattices while the other one is bilayer nanostrips. The concept is verified by micromagnetic simulations. Both guides can prevent the vortex core in a magnetic vortex wall from colliding with sample surface so that the information stored in the vortex core can be preserved during its transportation from one location to another one through the guides.



    Gülden DİNİZ; Ortaç, Ragıp; Aktaş, Safiye; TEMİR, Günyüz; HOŞGÖR, Münevver; Karaca, İrfan


    A case of four-month – old girl diagnosed as chest wall hamartoma is presented. This entity is an extremely rare but characteristic lesion of the ribs usually presenting in the neonate or infant with a mass or respiratory symptoms. Complete sponraneous regression of the lesion has been reported. Recently conservative management of asymptomatic childiren was recommended. Although rare, this condition ought to be kept in mind while dealing with infantile chest wall masses to avoid an errone...



    Gülden DİNİZ; Ortaç, Ragıp; Aktaş, Safiye; HOŞGÖR, Günyüz TEMİR2Münevver; Karaca, İrfan


    A case of four-month – old girl diagnosed as chest wall hamartoma is presented. This entity is an extremely rare but characteristic lesion of the ribs usually presenting in the neonate or infant with a mass or respiratory symptoms. Complete sponraneous regression of the lesion has been reported. Recently conservative management of asymptomatic childiren was recommended. Although rare, this condition ought to be kept in mind while dealing with infantile chest wall masses to avoid...

  4. Mastering QlikView

    CERN Document Server

    Redmond, Stephen


    If you are a business application developer or a system analyst who has learned QlikView and Qlik Sense and now want to take your learning to a higher level, then this book is for you.It is assumed that you are aware of the fundamentals of QlikView and have working knowledge of development and in-memory analytics.

  5. VMware horizon view essentials

    CERN Document Server

    von Oven, Peter


    If you are a desktop administrator or an end user of a computing project team looking to speed up to the latest VMware Horizon View solution, then this book is perfect for you. It is your ideal companion to deploy a solution to centrally manage and virtualize your desktop estate using Horizon View 6.0.

  6. Drupal 7 Views Cookbook

    CERN Document Server

    Green, J Ayen


    This is a cookbook containing plenty of easy-to-follow practical recipes with screenshots that will help you in mastering the Drupal Views module. Drupal 7 Views Cookbook is for developers or technically proficient users who are fairly comfortable with the concepts behind websites and the Drupal environment.

  7. Learning View Generalization Functions

    CERN Document Server

    Breuel, Thomas M


    Learning object models from views in 3D visual object recognition is usually formulated either as a function approximation problem of a function describing the view-manifold of an object, or as that of learning a class-conditional density. This paper describes an alternative framework for learning in visual object recognition, that of learning the view-generalization function. Using the view-generalization function, an observer can perform Bayes-optimal 3D object recognition given one or more 2D training views directly, without the need for a separate model acquisition step. The paper shows that view generalization functions can be computationally practical by restating two widely-used methods, the eigenspace and linear combination of views approaches, in a view generalization framework. The paper relates the approach to recent methods for object recognition based on non-uniform blurring. The paper presents results both on simulated 3D ``paperclip'' objects and real-world images from the COIL-100 database sho...

  8. Isolation from Gluconacetobacter diazotrophicus cell walls of specific receptors for sugarcane glycoproteins, which act as recognition factors. (United States)

    Blanco, Y; Arroyo, M; Legaz, M E; Vicente, C


    Glycoproteins from sugarcane stalks have been isolated from plants field-grown by size-exclusion chromatography. Some of these glycoproteins, previously labelled with fluorescein isothiocyanate, are able to bind to the cell wall of the sugarcane endophyte, N2-fixing Gluconacetobacter diazotrophicus, and largely removed after washing the bacterial cells with sucrose. This implies that sugarcane glycoproteins use beta-(1-->2)-fructofuranosyl fructose domains in their glycosidic moiety to bind to specific receptors in the bacterial cell walls. These receptors have been isolated by affinity chromatography on a sugarcane glycoprotein-agarose matrix, desorbed with sucrose and characterized by sodium dodecyl sulfate polyacrylamide gel electrophresisand capillary electrophoresis (CE).

  9. Epigenetics and bacterial infections. (United States)

    Bierne, Hélène; Hamon, Mélanie; Cossart, Pascale


    Epigenetic mechanisms regulate expression of the genome to generate various cell types during development or orchestrate cellular responses to external stimuli. Recent studies highlight that bacteria can affect the chromatin structure and transcriptional program of host cells by influencing diverse epigenetic factors (i.e., histone modifications, DNA methylation, chromatin-associated complexes, noncoding RNAs, and RNA splicing factors). In this article, we first review the molecular bases of the epigenetic language and then describe the current state of research regarding how bacteria can alter epigenetic marks and machineries. Bacterial-induced epigenetic deregulations may affect host cell function either to promote host defense or to allow pathogen persistence. Thus, pathogenic bacteria can be considered as potential epimutagens able to reshape the epigenome. Their effects might generate specific, long-lasting imprints on host cells, leading to a memory of infection that influences immunity and might be at the origin of unexplained diseases.

  10. Bacterial polyhydroxyalkanoates: Still fabulous? (United States)

    Możejko-Ciesielska, Justyna; Kiewisz, Robert


    Bacterial polyhydroxyalkanoates (PHA) are polyesters accumulated as carbon and energy storage materials under limited growth conditions in the presence of excess carbon sources. They have been developed as biomaterials with unique properties for the past many years being considered as a potential substitute for conventional non-degradable plastics. Due to the increasing concern towards global climate change, depleting petroleum resource and problems with an utilization of a growing number of synthetic plastics, PHAs have gained much more attention from industry and research. These environmentally friendly microbial polymers have great potential in biomedical, agricultural, and industrial applications. However, their production on a large scale is still limited. This paper describes the backgrounds of PHAs and discussed the current state of knowledge on the polyhydroxyalkanoates. Ability of bacteria to convert different carbon sources to PHAs, the opportunities and challenges of their introduction to global market as valuable renewable products have been also discussed.

  11. Brick walls and AdS/CFT (United States)

    Kay, Bernard S.; Ortíz, L.


    We discuss the relationship between the bulk-boundary correspondence in Rehren's algebraic holography (and in other `fixed-background', QFT-based, approaches to holography) and in mainstream string-theoretic `Maldacena AdS/CFT'. Especially, we contrast the understanding of black-hole entropy from the point of view of QFT in curved spacetime—in the framework of 't Hooft's `brick wall' model—with the understanding based on Maldacena AdS/CFT. We show that the brick-wall modification of a Klein-Gordon field in the Hartle-Hawking-Israel state on dimensional Schwarzschild AdS has a well-defined boundary limit with the same temperature and entropy as the brick-wall-modified bulk theory. One of our main purposes is to point out a close connection, for general AdS/CFT situations, between the puzzle raised by Arnsdorf and Smolin regarding the relationship between Rehren's algebraic holography and mainstream AdS/CFT and the puzzle embodied in the `complementarity principle' proposed by Mukohyama and Israel in their work on the brick-wall approach to black hole entropy. Working on the assumption that similar results will hold for bulk QFT other than the Klein-Gordon field and for Schwarzschild AdS in other dimensions, and recalling the first author's proposed resolution to the Mukohyama-Israel puzzle based on his `matter-gravity entanglement hypothesis', we argue that, in Maldacena AdS/CFT, the algebra of the boundary CFT is isomorphic only to a proper subalgebra of the bulk algebra, albeit (at non-zero temperature) the (GNS) Hilbert spaces of bulk and boundary theories are still the `same'—the total bulk state being pure, while the boundary state is mixed (thermal). We also argue from the finiteness of its boundary (and hence, on our assumptions, also bulk) entropy at finite temperature, that the Rehren dual of the Maldacena boundary CFT cannot itself be a QFT and must, instead, presumably be something like a string theory.

  12. Tests and analyses for the mechanical and thermal qualification of the new RFX first wall tiles

    Energy Technology Data Exchange (ETDEWEB)

    Zaccaria, P. E-mail:; Dal Bello, S.; Marcuzzi, D


    The graphite tiles of the RFX first wall were modified to achieve a more uniform power deposition on the plasma facing surface and to give housing to a large number of in-vessel probes. These design requirements led to a substantial reduction of the tile thickness with respect to the original design. For this reason, the new first wall tiles had to be carefully qualified both from the mechanical and thermal point of view, carrying out experimental tests and analyses.

  13. Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls

    Directory of Open Access Journals (Sweden)

    Canut Hervé


    new cell wall preparation described in this paper gives the lowest proportion of proteins predicted to be intracellular when compared to available protocols. The application of its principles should lead to a more realistic view of the cell wall proteome, at least for the weakly bound CWP extractable by salts. In addition, it offers a clean cell wall preparation for subsequent extraction of strongly bound CWP.

  14. Effects of the flexibility of the arterial wall on the wall shear stresses and wall tension in Abdominal Aortic Aneurysms. (United States)

    Salsac, Anne-Virginie; Fernandez, Miguel; Chomaz, Jean-Marc


    As an abdominal aortic aneurysm develops, large changes occur in the composition and structure of the arterial wall, which result in its stiffening. So far, most studies, whether experimental or numerical, have been conducted assuming the walls to be rigid. A numerical simulation of the fluid structure interactions is performed in different models of aneurysms in order to analyze the effects that the wall compliance might have on the flow topology. Both symmetric and non-symmetric models of aneurysms are considered, all idealistic in shape. The wall mechanical properties are varied in order to simulate the progressive stiffening of the walls. The spatial and temporal distributions of wall tension are calculated for the different values of the wall elasticity and compared to the results for the rigid walls. In the case of rigid walls, the calculation of the wall shear stresses and pressure compare very well with experimental results.

  15. On the influence of dislocation walls in CdTe:Cl

    Energy Technology Data Exchange (ETDEWEB)

    Venturi, Giulia, E-mail: [University of Bologna Alma Mater Studiorum, Department of Physics and Astronomy, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Castaldini, Antonio [University of Bologna Alma Mater Studiorum, Department of Physics and Astronomy, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Gros d’Aillon, Eric; Buis, Camille; Verger, Loick [CEA, LETI, MINATEC-Campus, 17 Rue des Martyrs, F-38054 Grenoble (France); Cavallini, Anna [University of Bologna Alma Mater Studiorum, Department of Physics and Astronomy, Viale Berti Pichat 6/2, 40127 Bologna (Italy)


    Studies were performed on two types of chlorine-compensated cadmium telluride crystals with a different density of native dislocations walls. The crystals were investigated by current–voltage measurements, photo-induced current transient spectroscopy and absorption measurements, in the view of investigating the influence of the density of dislocation walls on their charge transport properties and electronic levels scheme. It results that a higher density of dislocation walls increases the dark current in CdTe. To the contrary, the optical absorption properties do not seem to be influenced by the presence of dislocation walls. The PICTS measurements demonstrated that a lower density of dislocation walls provides a higher concentration of compensation-related defects and a lower concentration of the defects responsible for the peaks observed at high temperature, possibly associated to donor-pair complexes.

  16. Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis

    Directory of Open Access Journals (Sweden)

    Barbara Kędzierska


    Full Text Available Toxin-antitoxin (TA cassettes are encoded widely by bacteria. The modules typically comprise a protein toxin and protein or RNA antitoxin that sequesters the toxin factor. Toxin activation in response to environmental cues or other stresses promotes a dampening of metabolism, most notably protein translation, which permits survival until conditions improve. Emerging evidence also implicates TAs in bacterial pathogenicity. Bacterial persistence involves entry into a transient semi-dormant state in which cells survive unfavorable conditions including killing by antibiotics, which is a significant clinical problem. TA complexes play a fundamental role in inducing persistence by downregulating cellular metabolism. Bacterial biofilms are important in numerous chronic inflammatory and infectious diseases and cause serious therapeutic problems due to their multidrug tolerance and resistance to host immune system actions. Multiple TAs influence biofilm formation through a network of interactions with other factors that mediate biofilm production and maintenance. Moreover, in view of their emerging contributions to bacterial virulence, TAs are potential targets for novel prophylactic and therapeutic approaches that are required urgently in an era of expanding antibiotic resistance. This review summarizes the emerging evidence that implicates TAs in the virulence profiles of a diverse range of key bacterial pathogens that trigger serious human disease.

  17. The neglected intrinsic resistome of bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Alicia Fajardo

    Full Text Available Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature.

  18. The Neglected Intrinsic Resistome of Bacterial Pathogens (United States)

    Fajardo, Alicia; Martínez-Martín, Nadia; Mercadillo, María; Galán, Juan C.; Ghysels, Bart; Matthijs, Sandra; Cornelis, Pierre; Wiehlmann, Lutz; Tümmler, Burkhard; Baquero, Fernando; Martínez, José L.


    Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature. PMID:18286176

  19. Extracellular heme uptake and the challenges of bacterial cell membranes. (United States)

    Smith, Aaron D; Wilks, Angela


    In bacteria, the fine balance of maintaining adequate iron levels while preventing the deleterious effects of excess iron has led to the evolution of sophisticated cellular mechanisms to obtain, store, and regulate iron. Iron uptake provides a significant challenge given its limited bioavailability and need to be transported across the bacterial cell wall and membranes. Pathogenic bacteria have circumvented the iron-availability issue by utilizing the hosts' heme-containing proteins as a source of iron. Once internalized, iron is liberated from the porphyrin enzymatically for cellular processes within the bacterial cell. Heme, a lipophilic and toxic molecule, poses a significant challenge in terms of transport given its chemical reactivity. As such, pathogenic bacteria have evolved sophisticated membrane transporters to coordinate, sequester, and transport heme. Recent advances in the biochemical and structural characterization of the membrane-bound heme transport proteins are discussed in the context of ligand coordination, protein-protein interaction, and heme transfer.

  20. Characterization and bacterial toxicity of lanthanum oxide bulk and nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Brabu Balusamy; Yamuna Gowri Kandhasamy; Anitha Senthamizhan; Gopalakrishnan Chandrasekaran; Murugan Siva Subramanian; Kumaravel Tirukalikundram S


    This study evaluated the bacterial toxicity of lanthanum oxide micron and nano sized particles using shake flask method against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli,Pseudomonas aeruginosa) bacteria.Particle size,morphology and chemical composition were determined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS).Resuits indicated that lanthanum oxide nanoparticles showed antimicrobial activity against Staphylococcus aureus,but not against Escherichia coli and Pseudomonas aeruginosa.It was speculated that lanthanum oxide produced this effect by interacting with the gram-positive bacterial cell wall.Furthermore,lanthanum oxide bulk particles were found to enhance the pyocyanin pigment production in Pseudomonas aeruginosa.

  1. Isolation of the Cell Wall. (United States)

    Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth


    This chapter describes a method allowing the purification of the cell wall for studying both polysaccharides and proteins. The plant primary cell wall is mainly composed of polysaccharides (90-95 % in mass) and of proteins (5-10 %). At the end of growth, specialized cells may synthesize a lignified secondary wall composed of polysaccharides (about 65 %) and lignin (about 35 %). Due to its composition, the cell wall is the cellular compartment having the highest density and this property is used for its purification. It plays critical roles during plant development and in response to environmental constraints. It is largely used in the food and textile industries as well as for the production of bioenergy. All these characteristics and uses explain why its study as a true cell compartment is of high interest. The proposed method of purification can be used for large amount of material but can also be downscaled to 500 mg of fresh material. Tools for checking the quality of the cell wall preparation, such as protein analysis and microscopy observation, are also provided.

  2. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens (United States)

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  3. Bacterial invasion of the uterus and oviducts in bovine pyometra. (United States)

    Karstrup, C C; Pedersen, H G; Jensen, T K; Agerholm, J S


    Pyometra is a common disease of cattle that causes infertility and thereby financial losses to the cattle industry. Bacteria involved in the development and progression of pyometra have been investigated by microbial culture but their tissue invading abilities, which is an important aspect of bacterial pathogenicity and development of lesions, have not been investigated. Bacterial invasion of the uterus and oviducts was studied in 21 cows diagnosed with pyometra at the time of slaughter by applying fluorescence in situ hybridization using probes targeting 16S ribosomal RNA of Fusobacterium necrophorum, Porphyromonas levii, Trueperella pyogenes and the overall bacterial domain Bacteria. Fusobacterium necrophorum and P. levii were found to invade the endometrium, especially if the endometrium was ulcerated, and penetrated deep into the lamina propria. These species co-localized within the tissue thus indicating a synergism. Trueperella pyogenes did not invade the uterine tissue. In addition to endometrial lesions, most cows with pyometra also had salpingitis but without significant bacterial invasion of the oviductal wall.

  4. "Private Views" Ungaris

    Index Scriptorium Estoniae


    9. juulist Dunaujvarosi Kaasaegse Kunsti Instituudis eesti ja briti kunstnike ühisnäitus "Private Views. Ruum taasavastatud eesti ja briti kaasaegses kunstis". Kuraatorid Pam Skelton, Mare Tralla. Osalejad.

  5. "Private Views" Ungaris

    Index Scriptorium Estoniae


    9. juulist Dunaujvarosi Kaasaegse Kunsti Instituudis eesti ja briti kunstnike ühisnäitus "Private Views. Ruum taasavastatud eesti ja briti kaasaegses kunstis" Kuraatorid Pam Skelton, Mare Tralla. Osalejad

  6. Molecular Mechanism of Bacterial Magnetite Formation and Its Application (United States)


    human immunoglobin G (1gG) [35]. Also, the feasibility of Mmsl6 as an anchor molecule was established by manifesting the estrogen receptor hormone...functional foreign proteins. Similarly, immunoglobulin (IgG) binding cell wall protein and proteinA , 1Ml Magntetospillium magneticum AMB-1Protei nA magB...bacterial magnetic particle using magA gene fusion. were introduced to BMP membranes, using a proteinA -mrag.4 hybrid gene [34]. Using antibody bound proteinA

  7. Bacterial degradation of aminopyrine. (United States)

    Blecher, H; Blecher, R; Wegst, W; Eberspaecher, J; Lingens, F


    1. Four strains of bacteria growing with aminopyrine as sole source of carbon were isolated from soil and were identified as strains of Phenylobacterium immobilis. 2. Strain M13 and strain E, the type species of Phenylobacterium immobilis (DSM 1986), which had been isolated by enrichment with chloridazon (5-amino-4-chloro-2-phenyl-2H-pyridazin-3-one) were used to investigate the bacterial degradation of aminopyrine. 3. Three metabolites were isolated and identified as: 4-(dimethylamino)-1,2-dihydro-1,5-dimethyl-2-(2,3-dihydro-2,3-dihydroxy-4,6-cyc lohexadien-1-yl)-3H-pyrazol-3-one, 4-(dimethylamino)-1,2-dihydro-1,5-dimethyl-2-(2,3-dihydroxyphenyl)-3H-pyrazol-3 -one and 4-(dimethylamino)-1,2-dihydro-1,5-dimethyl-3H-pyrazol-3-one. 4. An enzyme extract from cells of strain m13 was shown to further metabolize the catechol derivative of aminopyrine, with the formation of 2-pyrone-6-carboxylic acid. 5. Results indicate that the benzene ring of aminopyrine is the principal site of microbial metabolism.

  8. Evolution of Bacterial Suicide (United States)

    Tchernookov, Martin; Nemenman, Ilya


    While active, controlled cellular suicide (autolysis) in bacteria is commonly observed, it has been hard to argue that autolysis can be beneficial to an individual who commits it. We propose a theoretical model that predicts that bacterial autolysis is evolutionarily advantageous to an individualand would fixate in physically structured environments for stationary phase colonies. We perform spatially resolved agent-based simulations of the model, which predict that lower mixing in the environment results in fixation of a higher autolysis rate from a single mutated cell, regardless of the colony's genetic diversity. We argue that quorum sensing will fixate as well, even if initially rare, if it is coupled to controlling the autolysis rate. The model does not predict a strong additional competitive advantage for cells where autolysis is controlled by quorum sensing systems that distinguish self from nonself. These predictions are broadly supported by recent experimental results in B. subtilisand S. pneumoniae. Research partially supported by the James S McDonnell Foundation grant No. 220020321 and by HFSP grant No. RGY0084/2011.

  9. Bacterial endocarditis prophylaxis. (United States)

    Blanco-Carrión, Andrés


    Bacterial endocarditis (BE) is a disease resulting from the association of morphological alterations of the heart and bacteraemia originating from different sources that at times can be indiscernible (infectious endocarditis). It is classified on the basis of the morphological alteration involved, depending on the clinical manifestations and course of illness, which varies according to the causative microorganism and host conditions (for example, it is characteristic in I.V. drug users). The most common microorganisms involved are: Streptococcus viridans (55%), Staphylococcus aureus (30%), Enterococcus (6%) and HACEK bacteria (corresponding to the initials: Haemophilus, Actinobacillus, Cardiobacterium, Eikenella and Kingella), although on occasions it can also be caused by fungi. The oral microbiological flora plays a very important role in the aetiopathogenesis of BE, given that the condition may be of oral or dental origin. This paper will deal with the prevention of said bacteraemia. Prophylaxis will be undertaken using amoxicillin or clindamycin according to action protocols, with special emphasis placed on oral hygiene in patients with structural defects of the heart.

  10. Abdominal wall hernia and pregnancy

    DEFF Research Database (Denmark)

    Jensen, K K; Henriksen, N A; Jorgensen, L N


    PURPOSE: There is no consensus as to the treatment strategy for abdominal wall hernias in fertile women. This study was undertaken to review the current literature on treatment of abdominal wall hernias in fertile women before or during pregnancy. METHODS: A literature search was undertaken in Pub......Med and Embase in combination with a cross-reference search of eligible papers. RESULTS: We included 31 papers of which 23 were case reports. In fertile women undergoing sutured or mesh repair, pain was described in a few patients during the last trimester of a subsequent pregnancy. Emergency surgery...... of incarcerated hernias in pregnant women, as well as combined hernia repair and cesarean section appears as safe procedures. No major complications were reported following hernia repair before or during pregnancy. The combined procedure of elective cesarean section and abdominal wall hernia repair was reported...

  11. Catalysts of plant cell wall loosening


    Cosgrove, Daniel J.


    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyl...

  12. Diffusion-damped domain wall dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Varga, R; Infante, G [Inst. Phys., Fac. Sci., UPJS, Park Angelinum 9, 04154 Kosice (Slovakia); Badini-Confalonieri, G A; Vazquez, M, E-mail: rvarga@upjs.s [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049, Madrid (Spain)


    In the given work, the influence of diffusional damping on the domain wall dynamics of heat treated FeSiBP microwires is presented. Two regions of the domain wall dynamics have been found. At low applied fields diffusion damping prevails, keeping the domain wall velocity and mobility low. At higher fields, the diffusional effects are overcomed and domain wall velocity increases steeply and so does the domain wall mobility.

  13. Insights from twenty years of bacterial genome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jun, Se Ran [ORNL; Nookaew, Intawat [ORNL; Leuze, Michael Rex [ORNL; Ahn, Tae-Hyuk [ORNL; Karpinets, Tatiana V [ORNL; Lund, Ole [Technical University of Denmark; Kora, Guruprasad H [ORNL; Wassenaar, Trudy [Molecular Microbiology & Genomics Consultants, Zotzenheim, Germany; Poudel, Suresh [ORNL; Ussery, David W [ORNL


    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome

  14. Flows around bacterial swarms (United States)

    Dauparas, Justas; Lauga, Eric


    Flagellated bacteria on nutrient-rich substrates can differentiate into a swarming state and move in dense swarms across surfaces. A recent experiment (HC Berg, Harvard University) measured the flow in the fluid around the swarm. A systematic chiral flow was observed in the clockwise direction (when viewed from above) ahead of a E.coli swarm with flow speeds of about 10 μm/s, about 3 times greater than the radial velocity at the edge of the swarm. The working hypothesis is that this flow is due to the flagella of cells stalled at the edge of a colony which extend their flagellar filaments outwards, moving fluid over the virgin agar. In this talk we quantitatively test his hypothesis. We first build an analytical model of the flow induced by a single flagellum in a thin film and then use the model, and its extension to multiple flagella, to compare with experimental measurements.

  15. Wall conditioning of JET with the ITER-Like Wall

    NARCIS (Netherlands)

    Douai, D.; Brezinsek, S.; Esser, H. G.; Joffrin, E.; Keenan, T.; Knipe, S.; Kogut, D.; Lomas, P. J.; Marsen, S.; Nunes, I.; Philipps, V.; Pitts, R.A.; Shimada, M.; P. de Vries,


    The initial conditioning cycle of \\{JET\\} İLW\\} is analysed and compared with restart and operation in 2008 with a carbon dominated wall. Comparable water and oxygen decay times are observed during bake-out in both cases. Despite a 2 × 10−3 mbar l/s leak rate duri

  16. Domain wall description of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Brito, F.A. [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil); Freire, M.L.F. [Departamento de Física, Universidade Estadual da Paraíba, 58109-753 Campina Grande, Paraíba (Brazil); Mota-Silva, J.C. [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil); Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970 João Pessoa, Paraíba (Brazil)


    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath.

  17. Explosive Fragmentation of Dividing Walls (United States)


    drilled into the sides which accepted the scale rebar and held it in position at the proper depth in the wall, about 6.35 umm (0.25 in) from the surface...impulse applied to the panel is varied, the wall response can vary from little or no response, incipient spalla- tion, localized spallation similar to...ballistic plugging behavior, mas- sive spallat !on and even the shearing of the panel out of its support. Panels supported on one edge often have a

  18. New insights into bacterial adaptation through in vivo and in silico experimental evolution. (United States)

    Hindré, Thomas; Knibbe, Carole; Beslon, Guillaume; Schneider, Dominique


    Microbiology research has recently undergone major developments that have led to great progress towards obtaining an integrated view of microbial cell function. Microbial genetics, high-throughput technologies and systems biology have all provided an improved understanding of the structure and function of bacterial genomes and cellular networks. However, integrated evolutionary perspectives are needed to relate the dynamics of adaptive changes to the phenotypic and genotypic landscapes of living organisms. Here, we review evolution experiments, carried out both in vivo with microorganisms and in silico with artificial organisms, that have provided insights into bacterial adaptation and emphasize the potential of bacterial regulatory networks to evolve.

  19. Steady at the wheel: conservative sex and the benefits of bacterial transformation (United States)

    Ambur, Ole Herman; Engelstädter, Jan; Johnsen, Pål J.


    Many bacteria are highly sexual, but the reasons for their promiscuity remain obscure. Did bacterial sex evolve to maximize diversity and facilitate adaptation in a changing world, or does it instead help to retain the bacterial functions that work right now? In other words, is bacterial sex innovative or conservative? Our aim in this review is to integrate experimental, bioinformatic and theoretical studies to critically evaluate these alternatives, with a main focus on natural genetic transformation, the bacterial equivalent of eukaryotic sexual reproduction. First, we provide a general overview of several hypotheses that have been put forward to explain the evolution of transformation. Next, we synthesize a large body of evidence highlighting the numerous passive and active barriers to transformation that have evolved to protect bacteria from foreign DNA, thereby increasing the likelihood that transformation takes place among clonemates. Our critical review of the existing literature provides support for the view that bacterial transformation is maintained as a means of genomic conservation that provides direct benefits to both individual bacterial cells and to transformable bacterial populations. We examine the generality of this view across bacteria and contrast this explanation with the different evolutionary roles proposed to maintain sex in eukaryotes.  This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’. PMID:27619692

  20. Meningitis bacteriana Bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Ana Teresa Alvarado Guevara


    causales son virales lo cual conlleva a las diferentes sub-clasificaciones. También en ciertos casos puede ser ocasionada por hongos, bacterias atípicas, micobacterias y parásitos.In Costa Rica the bacterial meningitis had turn into a high-priority subject in which to monitoring epidemiologist. It had been talked about in the last months, to dice an increase in the attention is published of this subject, due to this phenomenon it becomes necessary to make a revision of topic. Meningitis is an inflammation of leptomeninges and colonization of the subarachnoid cerebrospinal fluid (LCR due to different agents, which produces meningeal symptoms (ex. migraine, neck rigidity, and photophobia and pleocytosis in LCR. De pending on the variables to take into account is possible to group it in different classifications, taking into account the time of evolution are possible to be divided in acute or chronic, to first with few hours or days of beginning of the symptoms, whereas the chronicle also presents a silence course but of the disease of approximately 4 weeks of instauration. There is a difference according to its etiologic agent; they can be infectious and non-infectious. Examples of common non-infectious causes include medications (ex, nonsteroidal anti-inflammatory drugs, and antibiotics and carcinomatosis. A classification exists as well according to the causal agent. The acute bacterial meningitis remarks a bacterial origin of the syndrome, which characterizes by the by an acute onset of meningeal symptoms and neutrophilic pleocytosis. Each one of the bacteriological agents, parasitic or fungus finishes by characterizing the different presentations of the clinical features (ex, meningocóccica meningitis, Cryptococcus meningitis. Finally, there is also the aseptic meningitis, denominated in this form because it’s nonpyogenic cellular response caused by many types of agents. The patients show an acute beginning of symptoms, fever and lymphocytic pleocytosis. After

  1. Bacterial Communities: Interactions to Scale

    Directory of Open Access Journals (Sweden)

    Reed M. Stubbendieck


    Full Text Available In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.

  2. Bacterial Chromosome Organization and Segregation


    Toro, Esteban; Shapiro, Lucy


    Bacterial chromosomes are generally ∼1000 times longer than the cells in which they reside, and concurrent replication, segregation, and transcription/translation of this crowded mass of DNA poses a challenging organizational problem. Recent advances in cell-imaging technology with subdiffraction resolution have revealed that the bacterial nucleoid is reliably oriented and highly organized within the cell. Such organization is transmitted from one generation to the next by progressive segrega...

  3. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten


    phosphorylation. Protein-tyrosine phosphorylation in bacteria is particular with respect to very low occupancy of phosphorylation sites in vivo; this has represented a major challenge for detection techniques. Only the recent breakthroughs in gel-free high resolution mass spectrometry allowed the systematic...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  4. Surface micropattern limits bacterial contamination


    Mann, Ethan E.; Manna, Dipankar; Mettetal, Michael R; May, Rhea M.; Dannemiller, Elisa M; Chung, Kenneth K.; Brennan, Anthony B; Reddy, Shravanthi T


    Background Bacterial surface contamination contributes to transmission of nosocomial infections. Chemical cleansers used to control surface contamination are often toxic and incorrectly implemented. Additional non-toxic strategies should be combined with regular cleanings to mitigate risks of human error and further decrease rates of nosocomial infections. The Sharklet micropattern (MP), inspired by shark skin, is an effective tool for reducing bacterial load on surfaces without toxic additiv...

  5. Bacterial cellulose/boehmite composites

    Energy Technology Data Exchange (ETDEWEB)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L. [Universidade Estadual Paulista Julio de Mesquita Filho. UNESP. Instituto de Quimica de Araraquara, SP (Brazil); Caiut, Jose Mauricio A. [Universidade de Sao Paulo. Departamento de Quimica - FFCLRP/USP, Ribeirao Preto, SP (Brazil)


    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  6. The Influence of Wall Binders

    DEFF Research Database (Denmark)

    Rose, Jørgen


    This report is an analysis of the thermal bridge effects that occur in wall binders in masonry buildings. The effects are analyzed using a numerical calculation programme.The results are compared to the values given in the danish standard, DS418....

  7. Solar Walls for concrete renovation

    DEFF Research Database (Denmark)

    Gramkow, Lotte; Vejen, Niels Kristian; Olsen, Lars


    This repport gives a short presentation of three full-scale testing solar walls, the construction including the architectural design, materials and components, transportation and storage of solar enegy, the effect on the construction behind, statics and practical experience.The results...... of the measurments (energy- and temperature conditions, airchange-, termovisions- and moist measurments), operation- and user experience from the three buildings are describet....

  8. Partial domain wall partition functions

    CERN Document Server

    Foda, O


    We consider six-vertex model configurations on a rectangular lattice with n (N) horizontal (vertical) lines, and "partial domain wall boundary conditions" defined as 1. all 2n arrows on the left and right boundaries point inwards, 2. n_u (n_l) arrows on the upper (lower) boundary, such that n_u + n_l = N - n, also point inwards, 3. all remaining n+N arrows on the upper and lower boundaries point outwards, and 4. all spin configurations on the upper and lower boundaries are summed over. To generate (n-by-N) "partial domain wall configurations", one can start from A. (N-by-N) configurations with domain wall boundary conditions and delete n_u (n_l) upper (lower) horizontal lines, or B. (2n-by-N) configurations that represent the scalar product of an n-magnon Bethe eigenstate and an n-magnon generic state on an N-site spin-1/2 chain, and delete the n lines that represent the Bethe eigenstate. The corresponding "partial domain wall partition function" is computed in construction {A} ({B}) as an N-by-N (n-by-n) det...

  9. New Bricks in the Wall

    Institute of Scientific and Technical Information of China (English)



    @@ Whenever a newcomer enters the classroom, he points at the wall. "Look at that!" says Li Shunye, indicating a picture of something that looks a bit like a pink furry fox, only with an oversized tail. "It's a squirrel," says the 9-year-old. "I made it."

  10. Fandom and the fourth wall

    Directory of Open Access Journals (Sweden)

    Jenna Kathryn Ballinger


    Full Text Available I use the Teen Wolf fandom as an example to examine the ways social media has created a more complicated, nuanced relationship with fans. The collapse of the fourth wall between fans and The Powers That Be can have both positive and negative impacts, depending on the willingness of participants to maintain mutual respect and engage in meaningful dialogue.

  11. Overlap/Domain-wall reweighting

    CERN Document Server

    Fukaya, H; Cossu, G; Hashimoto, S; Kaneko, T; Noaki, J


    We investigate the eigenvalues of nearly chiral lattice Dirac operators constructed with five-dimensional implementations. Allowing small violation of the Ginsparg-Wilson relation, the HMC simulation is made much faster while the eigenvalues are not significantly affected. We discuss the possibility of reweighting the gauge configurations generated with domain-wall fermions to those of exactly chiral lattice fermions.

  12. Shear wall ultimate drift limits

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, T.A. [Duffy, (T.A.) Tijeras, NM (United States); Goldman, A. [Goldman, (A.), Sandia, Los Alamos, NM (United States); Farrar, C.R. [Los Alamos National Lab., NM (United States)


    Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated.

  13. Statistical characteristics of simulated walls (United States)

    Demiański, M.; Doroshkevich, A. G.; Müller, V.; Turchaninov, V.


    The large-scale matter distribution in three different simulations of CDM models is investigated and compared with corresponding results of the Zel'dovich theory of non-linear gravitational instability. We show that the basic characteristics of wall-like structure elements are well described by this theory, and that they can be expressed by the cosmological parameters and a few spectral moments of the perturbation spectrum. Therefore the characteristics of such elements provide reasonable estimates of these parameters. We show that the compressed matter is relaxed and gravitationally confined and manifests itself in the existence of walls as (quasi-)stationary structure elements with a lifetime restricted by their disruption into high-density clouds. The matter distribution is investigated in both real and redshift spaces. In both cases almost the same particles form the walls, and we estimate differences in corresponding wall characteristics. The same methods are applied to several mock catalogues of `galaxies', which allows us to characterize a large-scale bias between the spatial distribution of dark matter and of simulated `galaxies'.

  14. Chuck Close: "Off the Wall." (United States)

    Gardner, Michael


    Describes the planning and design process of "Off the Wall," a student-developed CD-ROM multimedia project about the life and work of artist Chuck Close-the product of a studio-based course in Learning Experiments Design at the University of Georgia. The design includes an element of gaming; text is kept sparse; navigational elements are rendered…

  15. Designing a Sound Reducing Wall (United States)

    Erk, Kendra; Lumkes, John; Shambach, Jill; Braile, Larry; Brickler, Anne; Matthys, Anna


    Acoustical engineers use their knowledge of sound to design quiet environments (e.g., classrooms and libraries) as well as to design environments that are supposed to be loud (e.g., concert halls and football stadiums). They also design sound barriers, such as the walls along busy roadways that decrease the traffic noise heard by people in…

  16. Thin Wall Austempered Ductile Iron (TWADI

    Directory of Open Access Journals (Sweden)

    M. Górny


    Full Text Available In this paper the analysis of thin walled castings made of ductile iron is considered. It is shown that thin wall austempered ductile iron can be obtained by means of short-term heat treatment of thin wall castings without addition of alloying elements. Metallographic examinations of 2 mm thin walled castings along with casting with thicker wall thickness (20x28 mm after different austempring conditions are presented. It has been proved that short-term heat treatment amounted 20 minutes of austenitizing at 880 oC followed by holding at 400 oC for 5 minutes causes ausferrite matrix in 2 mm wall thickness castings, while casting with thicker wall thickness remain untransformed and martensite is still present in a matrix. Finally there are shown that thin wall ductile iron is an excellent base material for austempering heat treatments. As a result high mechanical properties received in thin wall plates made of austempered ductile iron.

  17. PPOOLEX experiments on wall condensation

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))


    This report summarizes the results of the wall condensation experiments carried out in December 2008 and January 2009 with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool. Altogether five experiments, each consisting of several blows, were carried out. The main purpose of the experiment series was to study wall condensation phenomenon inside the dry well compartment while steam is discharged through it into the condensation pool and to produce comparison data for CFD calculations at VTT. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. For the wall condensation experiments the test facility was equipped with a system for collecting and measuring the amount of condensate from four different wall segments of the dry well compartment. A thermo graphic camera was used in a couple of experiments for filming the outside surface of the dry well wall. The effect of the initial temperature level of the dry well structures and of the steam flow rate for the accumulation of condensate was studied. The initial temperature level of the dry well structures varied from 23 to 99 deg. C. The steam flow rate varied from 90 to 690 g/s and the temperature of incoming steam from 115 to 160 deg. C. During the initial phase of steam discharge the accumulation of condensate was strongly controlled by the temperature level of the dry well structures; the lower the initial temperature level was the more condensate was accumulated. As the dry well structural temperatures increased the condensation process slowed down. Most of the condensate usually accumulated during the first 200 seconds of the discharge. However, the condensation process never completely stopped because a small temperature difference remained between the dry well atmosphere and inner wall

  18. Cytoplasmic streaming in plant cells: the role of wall slip. (United States)

    Wolff, K; Marenduzzo, D; Cates, M E


    We present a computer simulation study, via lattice Boltzmann simulations, of a microscopic model for cytoplasmic streaming in algal cells such as those of Chara corallina. We modelled myosin motors tracking along actin lanes as spheres undergoing directed motion along fixed lines. The sphere dimension takes into account the fact that motors drag vesicles or other organelles, and, unlike previous work, we model the boundary close to which the motors move as walls with a finite slip layer. By using realistic parameter values for actin lane and myosin density, as well as for endoplasmic and vacuole viscosity and the slip layer close to the wall, we find that this simplified view, which does not rely on any coupling between motors, cytoplasm and vacuole other than that provided by viscous Stokes flow, is enough to account for the observed magnitude of streaming velocities in intracellular fluid in living plant cells.

  19. LIF Measurement of Interacting Gas Jet Flow with Plane Wall (United States)

    Yanagi, A.; Kurihara, S.; Yamazaki, S.; Ota, M.; Maeno, K.


    Discharging rarefied gas jets in low-pressure conditions are interesting and important phenomena from an engineering point of view. For example they relate to the attitude control of the space satellite, or the semiconductor technology. The jets, however, deform to the complicated shapes by interacting with solid walls. In this paper we have performed the experiments the flow visualization as a first step by applying the LIF (Laser Induced Fluorescence) method on the jet-wall interaction. Jet is spouting out from a φ1.0 mm circular hole into the low pressure air chamber, impinging on a flat plate. The LIF visualization of interacting rarefied gas jet is carried out by using the iodine (I2) tracer and argon ion laser.

  20. Gullies and Layers in Crater Wall in Newton (United States)


    This dramatic view of gullies emergent from layered outcrops occurs on the wall of a crater within the much larger impact basin, Newton. Newton Crater and its surrounding terrain exhibit many examples of gullies on the walls of craters and troughs. The gullies exhibit meandering channels with fan-shaped aprons of debris located downslope. The gullies are considered to have been formed by erosion--both from a fluid (such as water) running downslope, and by slumping and landsliding processes driven by the force of gravity. This picture was obtained by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) in March 2001; it is illuminated from the upper left and covers an area 3 km (1.9 mi) across.

  1. Through-the-wall radar imaging

    CERN Document Server

    Amin, Moeness G


    Wall Attenuation and Dispersion, A. Hussein Muqaibel, M.A. Alsunaidi, Nuruddeen M. Iya, and A. Safaai-JaziAntenna Elements, Arrays, and Systems for Through-the-Wall Radar Imaging, A. Hoorfar and A. FathyBeamforming for Through-the-Wall Radar Imaging, G. Alli and D. DiFilippoImage and Localization of Behind-the-Wall Targets Using Collocated and Distributed Apertures, Y.D. Zhang and A. HuntConventional and Emerging Waveforms for Detection and Imaging of Targets behind Walls, F. Ahmad and R.M. NarayananInverse Scattering Approaches in Through-the-Wall Imaging, K. Sarabandi, M. Thiel, M. Dehmollai

  2. Life behind cell walls: paradigm lost, paradigm regained. (United States)

    Lamport, D T


    This review of the living cell wall and its protein components is in two parts. The first is anecdotal. A personal account spanning over 40 years research may perhaps be an antidote to one stereotypical view of scientists as detached and humorless. The second part deals with the meaning of function, particularly as it applies to hydroxyproline-rich glycoproteins. Function is a difficult word to define objectively. However, with help from such luminaries as Humpty Dumpty: "A word means what I want it to mean, neither more nor less," and Wittgenstein: "Giving examples of usage ... is the only way to talk about meaning," it is possible to construct a ziggurat representing increasingly complex levels of organization from molecular structure to ecology. Forty years ago I suggested that hydroxyproline-rich structural proteins played a key role in cell wall functioning. But because the bulk of the wall is carbohydrate, there has been an understandable resistance to paradigm change. Expansins, paradoxically, contribute greatly to this resistance because their modus operandi as cell-wall-loosening proteins is based on the idea that they break hydrogen bonds between polysaccharide chains allowing slippage. However, this view is not consistent with the recent discovery [Grobe et al. (1999) Eur. J. Biochem 263: 33-40] that beta-expansins may be proteases, as it implies that the extensin network is not a straightjacket but a substrate for expansin in muro. Such a direct role for extensins in both negative and positive regulation of cell expansion and elongation may constitute a major morphogenetic mechanism operating at all levels of plant growth and development.

  3. A Broader View

    Institute of Scientific and Technical Information of China (English)


    A new series of books presents Chinese scholars’ assessment of world affairs and China’s role in them A theoretical series of books entitled World Politics—Views From China has recently drawn readers’ attention. Published by Beijing-based New World Press, the eight-volume series presents the views of Chinese scholars on current world affairs and international relations, with respective focuses on the international order, national interests, strategies of the great powers, China’s foreign affairs, international security, non-traditional security, the world economy and global governance.

  4. Vascular defense responses in rice: peroxidase accumulation in xylem parenchyma cells and xylem wall thickening (United States)

    Hilaire, E.; Young, S. A.; Willard, L. H.; McGee, J. D.; Sweat, T.; Chittoor, J. M.; Guikema, J. A.; Leach, J. E.


    The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae is a vascular pathogen that elicits a defensive response through interaction with metabolically active rice cells. In leaves of 12-day-old rice seedlings, the exposed pit membrane separating the xylem lumen from the associated parenchyma cells allows contact with bacterial cells. During resistant responses, the xylem secondary walls thicken within 48 h and the pit diameter decreases, effectively reducing the area of pit membrane exposed for access by bacteria. In susceptible interactions and mock-inoculated controls, the xylem walls do not thicken within 48 h. Xylem secondary wall thickening is developmental and, in untreated 65-day-old rice plants, the size of the pit also is reduced. Activity and accumulation of a secreted cationic peroxidase, PO-C1, were previously shown to increase in xylem vessel walls and lumen. Peptide-specific antibodies and immunogold-labeling were used to demonstrate that PO-C1 is produced in the xylem parenchyma and secreted to the xylem lumen and walls. The timing of the accumulation is consistent with vessel secondary wall thickening. The PO-C1 gene is distinct but shares a high level of similarity with previously cloned pathogen-induced peroxidases in rice. PO-C1 gene expression was induced as early as 12 h during resistant interactions and peaked between 18 and 24 h after inoculation. Expression during susceptible interactions was lower than that observed in resistant interactions and was undetectable after infiltration with water, after mechanical wounding, or in mature leaves. These data are consistent with a role for vessel secondary wall thickening and peroxidase PO-C1 accumulation in the defense response in rice to X. oryzae pv. oryzae.

  5. Near-wall behavior of turbulent wall-bounded flows

    Energy Technology Data Exchange (ETDEWEB)

    Buschmann, Matthias H. [Institut fuer Luft- und Kaeltetechnik Dresden, Bertolt-Brecht-Allee 20, 01309 Dresden (Germany)], E-mail:; Indinger, Thomas [Technische Universitaet Muenchen, Institute of Aerodynamics, Boltzmannstr., 15, 85748 Garching (Germany); Gad-el-Hak, Mohamed [Virginia Commonwealth University, Richmond, VA 23284-3015 (United States)


    A data base compiling a large number of results from direct numerical simulations and physical experiments is used to explore the properties of shear and normal Reynolds stresses very close to the wall of turbulent channel/pipe flows and boundary layers. Three types of scaling are mainly investigated, classical inner, standard mixed, and pure outer scaling. The study focuses on the wall behavior, the location and the value of the peak Reynolds shear stress and the three normal stresses. A primary observation is that all of these parameters show a significant Karman number dependence. None of the scalings investigated works in an equal manner for all parameters. It is found that the respective first-order Taylor series expansion satisfactorily represents each stress only in a surprisingly thin layer very close to the wall. In some cases, a newly introduced scaling based on u{sub {tau}}{sup 3/2}u{sub e}{sup 1/2} offers a remedy.

  6. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. (United States)

    Nuri, Reut; Shprung, Tal; Shai, Yechiel


    Multidrug resistance bacteria are a major concern worldwide. These pathogens cannot be treated with conventional antibiotics and thus alternative therapeutic agents are needed. Antimicrobial peptides (AMPs) are considered to be good candidates for this purpose. Most AMPs are short and positively charged amphipathic peptides, which are found in all known forms of life. AMPs are known to kill bacteria by binding to the negatively charged bacterial surface, and in most cases cause membrane disruption. Resistance toward AMPs can be developed, by modification of bacterial surface molecules, secretion of protective material and up-regulation or elimination of specific proteins. Because of the general mechanisms of attachment and action of AMPs, bacterial resistance to AMPs often involves biophysical and biochemical changes such as surface rigidity, cell wall thickness, surface charge, as well as membrane and cell wall modification. Here we focus on the biophysical, surface and surrounding changes that bacteria undergo in acquiring resistance to AMPs. In addition we discuss the question of whether bacterial resistance to administered AMPs might compromise our innate immunity to endogenous AMPs. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

  7. The Human Vaginal Bacterial Biota and Bacterial Vaginosis

    Directory of Open Access Journals (Sweden)

    Sujatha Srinivasan


    Full Text Available The bacterial biota of the human vagina can have a profound impact on the health of women and their neonates. Changes in the vaginal microbiota have been associated with several adverse health outcomes including premature birth, pelvic inflammatory disease, and acquisition of HIV infection. Cultivation-independent molecular methods have provided new insights regarding bacterial diversity in this important niche, particularly in women with the common condition bacterial vaginosis (BV. PCR methods have shown that women with BV have complex communities of vaginal bacteria that include many fastidious species, particularly from the phyla Bacteroidetes and Actinobacteria. Healthy women are mostly colonized with lactobacilli such as Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners, though a variety of other bacteria may be present. The microbiology of BV is heterogeneous. The presence of Gardnerella vaginalis and Atopobium vaginae coating the vaginal epithelium in some subjects with BV suggests that biofilms may contribute to this condition.

  8. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies (United States)

    Williams, J.H.; Johnson, C.D.


    Imaging with acoustic and optical televiewers results in continuous and oriented 360?? views of the borehole wall from which the character, relation, and orientation of lithologic and structural planar features can be defined for studies of fractured-rock aquifers. Fractures are more clearly defined under a wider range of conditions on acoustic images than on optical images including dark-colored rocks, cloudy borehole water, and coated borehole walls. However, optical images allow for the direct viewing of the character of and relation between lithology, fractures, foliation, and bedding. The most powerful approach is the combined application of acoustic and optical imaging with integrated interpretation. Imaging of the borehole wall provides information useful for the collection and interpretation of flowmeter and other geophysical logs, core samples, and hydraulic and water-quality data from packer testing and monitoring. ?? 2003 Elsevier B.V. All rights reserved.

  9. [Acromegaly: current view]. (United States)

    Kršek, Michal


    Acromegaly is a rare disorder caused by autonomous oversecretion of growth hormone mostly by pituitary adenoma. Untreated acromegaly leads to significantly increased morbidity and mortality and impaired quality of life. Early diagnosis and treatment is therefore essential for improvement of patients prognosis and management of acromegaly should be concentrated in specialized centres. Present article summarizes current view on diagnosis and treatment of acromegaly.

  10. The workplace window view

    DEFF Research Database (Denmark)

    Lottrup, Lene Birgitte Poulsen; Stigsdotter, Ulrika K.; Meilby, Henrik


    Office workers’ job satisfaction and ability to work are two important factors for the viability and competitiveness of most companies, and existing studies in contexts other than workplaces show relationships between a view of natural elements and, for example, student performance and neighbourh...... be an important asset in workforce work ability and job satisfaction....

  11. News and Views. (United States)

    Journal of Blacks in Higher Education, 1998


    The "News and Views" section of this journal contains reports and comments on various issues related to current aspects of black higher education. The topics reviewed include affirmative action, college admissions policies, faculty diversity, and black enrollment in professional schools. Profiles of some black educators are also…

  12. VMware view security essentials

    CERN Document Server

    Langenhan, Daniel


    A practical and fast-paced guide that gives you all the information you need to secure your virtual environment.This book is a ""how-to"" for the novice, a ""reference guide"" for the advanced user, and a ""go to"" for the experienced user in all the aspects of VMware View desktop virtualization security.

  13. Diversity and abundance of the bacterial community of the red Macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae?

    Directory of Open Access Journals (Sweden)

    Lilibeth N Miranda

    Full Text Available Macroalgae harbor microbial communities whose bacterial biodiversity remains largely uncharacterized. The goals of this study were 1 to examine the composition of the bacterial community associated with Porphyra umbilicalis Kützing from Schoodic Point, ME, 2 determine whether there are seasonal trends in species diversity but a core group of bacteria that are always present, and 3 to determine how the microbial community associated with a laboratory strain ( established in the presence of antibiotics has changed. P. umbilicalis blades (n = 5, fall 2010; n = 5, winter 2011; n = 2, clonal were analyzed by pyrosequencing over two variable regions of the 16 S rDNA (V5-V6 and V8; 147,880 total reads. The bacterial taxa present were classified at an 80% confidence threshold into eight phyla (Bacteroidetes, Proteobacteria, Planctomycetes, Chloroflexi, Actinobacteria, Deinococcus-Thermus, Firmicutes, and the candidate division TM7. The Bacteroidetes comprised the majority of bacterial sequences on both field and lab blades, but the Proteobacteria (Alphaproteobacteria, Gammaproteobacteria were also abundant. Sphingobacteria (Bacteroidetes and Flavobacteria (Bacteroidetes had inverse abundances on natural versus blades. Bacterial communities were richer and more diverse on blades sampled in fall compared to winter. Significant differences were observed between microbial communities among all three groups of blades examined. Only two OTUs were found on all 12 blades, and only one of these, belonging to the Saprospiraceae (Bacteroidetes, was abundant. Lewinella (as 66 OTUs was found on all field blades and was the most abundant genus. Bacteria from the Bacteroidetes, Proteobacteria and Planctomycetes that are known to digest the galactan sulfates of red algal cell walls were well-represented. Some of these taxa likely provide essential morphogenetic and beneficial nutritive factors to P. umbilicalis and may have had

  14. New Treatments for Bacterial Keratitis

    Directory of Open Access Journals (Sweden)

    Raymond L. M. Wong


    Full Text Available Purpose. To review the newer treatments for bacterial keratitis. Data Sources. PubMed literature search up to April 2012. Study Selection. Key words used for literature search: “infectious keratitis”, “microbial keratitis”, “infective keratitis”, “new treatments for infectious keratitis”, “fourth generation fluoroquinolones”, “moxifloxacin”, “gatifloxacin”, “collagen cross-linking”, and “photodynamic therapy”. Data Extraction. Over 2400 articles were retrieved. Large scale studies or publications at more recent dates were selected. Data Synthesis. Broad spectrum antibiotics have been the main stay of treatment for bacterial keratitis but with the emergence of bacterial resistance; there is a need for newer antimicrobial agents and treatment methods. Fourth-generation fluoroquinolones and corneal collagen cross-linking are amongst the new treatments. In vitro studies and prospective clinical trials have shown that fourth-generation fluoroquinolones are better than the older generation fluoroquinolones and are as potent as combined fortified antibiotics against common pathogens that cause bacterial keratitis. Collagen cross-linking was shown to improve healing of infectious corneal ulcer in treatment-resistant cases or as an adjunct to antibiotics treatment. Conclusion. Fourth-generation fluoroquinolones are good alternatives to standard treatment of bacterial keratitis using combined fortified topical antibiotics. Collagen cross-linking may be considered in treatment-resistant infectious keratitis or as an adjunct to antibiotics therapy.

  15. Bacterial carbonatogenesis; La carbonatogenese bacterienne

    Energy Technology Data Exchange (ETDEWEB)

    Castanier, S. [Angers Univ., 49 (France). Faculte des Sciences; Le Metayer-Levrel, G.; Perthuisot, J.P. [Nantes Univ., 44 (France). Laboratoire de Biogeologie, Faculte des Sciences et des Techniques


    Several series of experiments in the laboratory as well as in natural conditions teach that the production of carbonate particles by heterotrophic bacteria follows different ways. The `passive` carbonatogenesis is generated by modifications of the medium that lead to the accumulation of carbonate and bicarbonate ions and to the precipitation of solid particles. The `active` carbonatogenesis is independent of the metabolic pathways. The carbonate particles are produced by ionic exchanges through the cell membrane following still poorly known mechanisms. Carbonatogenesis appears to be the response of heterotrophic bacterial communities to an enrichment of the milieu in organic matter. The active carbonatogenesis seems to start first. It is followed by the passive one which induces the growth of initially produced particles. The yield of heterotrophic bacterial carbonatogenesis and the amounts of solid carbonates production by bacteria are potentially very high as compared to autotrophic or chemical sedimentation from marine, paralic or continental waters. Furthermore, the bacterial processes are environmentally very ubiquitous; they just require organic matter enrichment. Thus, apart from purely evaporite and autotrophic ones, all Ca and/or Mg carbonates must be considered as from heterotrophic bacterial origin. By the way, the carbon of carbonates comes from primary organic matter. Such considerations ask questions about some interpretations from isotopic data on carbonates. Finally, bacterial heterotrophic carbonatogenesis appears as a fundamental phase in the relationships between atmosphere and lithosphere and in the geo-biological evolution of Earth. (author) 43 refs.

  16. Brick walls on the brane

    Energy Technology Data Exchange (ETDEWEB)

    Medved, A J M [Department of Physics and Theoretical Physics Institute, University of Alberta, Edmonton (Canada)


    The so-called 'brick-wall model' is a semiclassical approach that has been used to explain black hole entropy in terms of thermal matter fields. Here, we apply the brick-wall formalism to thermal bulk fields in a Randall-Sundrum brane world scenario. In this case, the black hole entity is really a string-like object in the anti-de Sitter bulk, while appearing as a Schwarzchild black hole to observers living on the brane. In spite of these exotic circumstances, we establish that the Bekenstein-Hawking entropy law is preserved. Although a similar calculation was recently considered in the literature, this prior study invoked a simplifying assumption (which we avoid) that cannot be adequately justified.

  17. Creating universes with thick walls

    CERN Document Server

    Ulvestad, Andrew


    We study the dynamics of a spherically symmetric false vacuum bubble embedded in a true vacuum region separated by a "thick wall", which is generated by a scalar field in a quartic potential. We study the "Farhi-Guth-Guven" (FGG) quantum tunneling process by constructing numerical solutions relevant to this process. The ADM mass of the spacetime is calculated, and we show that there is a lower bound that is a significant fraction of the scalar field mass. We argue that the zero mass solutions used to by some to argue against the physicality of the FGG process are artifacts of the thin wall approximation used in earlier work. We argue that the zero mass solutions should not be used to question the viability of the FGG process.

  18. Brick Walls on the Brane

    CERN Document Server

    Medved, A J M


    The so-called ``brick-wall model'' is a semi-classical approach that has been used to explain black hole entropy in terms of thermal matter fields. Here, we apply the brick-wall formalism to thermal bulk fields in a Randall-Sundrum brane world scenario. In this case, the black hole entity is really a string-like object in the anti-de Sitter bulk, while appearing as a Schwarzchild black hole to observers living on the brane. In spite of these exotic circumstances, we establish that the Bekenstein-Hawking entropy law is preserved. Although a similar calculation was recently considered in the literature, this prior work invoked a simplifying assumption (which we avoid) that can not be adequately justified.

  19. The Inside View (United States)


    Bio-Imaging Research, Inc., has been included in Spinoff 1990 and 1993 with spinoffs from their ACTIS (Advanced Computed Tomography Inspection System) product developed under a Marshall Space Flight Center SBIR (Small Business Innovative Research) contract. The latest application is for noninvasive nuclear waste drum inspection. With the ACTIS CT (computed tomography, CATScan) scanner, radioactive waste is examined to prove that they do not contain one-half percent free liquid or that the drum wall has lost integrity before being moved across state lines or before being permanently disposed.

  20. Droplets Evaporation on Heated Wall

    Directory of Open Access Journals (Sweden)

    Misyura S. Y.


    Full Text Available Various modes of evaporation in a wide range of droplet sizes and wall temperatures have been investigated in the present work. For any initial drop size there are three typical boiling regime: 1 the nucleate boiling; 2 the transitional regime; 3 the film boiling. The width of the transition region of boiling crisis increases with increasing the initial volume V0. Evaporation of large droplets at high superheat depends on the initial droplet shape.

  1. Walled-off pancreatic necrosis

    Institute of Scientific and Technical Information of China (English)

    Michael; Stamatakos; Charikleia; Stefanaki; Konstantinos; Kontzoglou; Spyros; Stergiopoulos; Georgios; Giannopoulos; Michael; Safioleas


    Walled-off pancreatic necrosis (WOPN), formerly known as pancreatic abscess is a late complication of acute pancreatitis. It can be lethal, even though it is rare. This critical review provides an overview of the continually expanding knowledge about WOPN, by review of current data from references identified in Medline and PubMed, to September 2009, using key words, such as WOPN, infected pseudocyst, severe pancreatitis, pancreatic abscess, acute necrotizing pancreatitis (ANP), pancreas, inflammation and al...

  2. Statistical characteristics of simulated walls


    Demianski, M.; Doroshkevich, A. G.; V.; Mueller; Turchaninov, V.


    The large scale matter distribution in three different simulations of CDM models is investigated and compared with corresponding results of the Zel'dovich theory of nonlinear gravitational instability. We show that the basic characteristics of wall-like structure elements are well described by this theory, and that they can be expressed by the cosmological parameters and a few spectral moments of the perturbation spectrum. Therefore the characteristics of such elements provide reasonable esti...

  3. Moss Chloroplasts Are Surrounded by a Peptidoglycan Wall Containing D-Amino Acids[OPEN (United States)

    Hirano, Takayuki; Tanidokoro, Koji; Shimizu, Yasuhiro; Kawarabayasi, Yutaka; Ohshima, Toshihisa; Sato, Momo; Tadano, Shinji; Ishikawa, Hayato; Takio, Susumu; Takechi, Katsuaki; Takano, Hiroyoshi


    It is believed that the plastids in green plants lost peptidoglycan (i.e., a bacterial cell wall-containing d-amino acids) during their evolution from an endosymbiotic cyanobacterium. Although wall-like structures could not be detected in the plastids of green plants, the moss Physcomitrella patens has the genes required to generate peptidoglycan (Mur genes), and knocking out these genes causes defects in chloroplast division. Here, we generated P. patens knockout lines (∆Pp-ddl) for a homolog of the bacterial peptidoglycan-synthetic gene encoding d-Ala:d-Ala ligase. ∆Pp-ddl had a macrochloroplast phenotype, similar to other Mur knockout lines. The addition of d-Ala-d-Ala (DA-DA) to the medium suppressed the appearance of giant chloroplasts in ∆Pp-ddl, but the addition of l-Ala-l-Ala (LA-LA), DA-LA, LA-DA, or d-Ala did not. Recently, a metabolic method for labeling bacterial peptidoglycan was established using ethynyl-DA-DA (EDA-DA) and click chemistry to attach an azide-modified fluorophore to the ethynyl group. The ∆Pp-ddl line complemented with EDA-DA showed that moss chloroplasts are completely surrounded by peptidoglycan. Our findings strongly suggest that the moss plastids have a peptidoglycan wall containing d-amino acids. By contrast, no plastid phenotypes were observed in the T-DNA tagged ddl mutant lines of Arabidopsis thaliana. PMID:27325639

  4. Thermal insulation properties of walls

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich


    Full Text Available Heat-protective qualities of building structures are determined by the qualities of the used materials, adequate design solutions and construction and installation work of high quality. This rule refers both to the structures made of materials similar in their structure and nature and mixed, combined by a construction system. The necessity to ecaluate thermal conductivity is important for a product and for a construction. Methods for evaluating the thermal protection of walls are based on the methods of calculation, on full-scale tests in a laboratory or on objects. At the same time there is a reason to believe that even deep and detailed calculation may cause deviation of the values from real data. Using finite difference method can improve accuracy of the results, but it doesn’t solve all problems. The article discusses new approaches to evaluating thermal insulation properties of walls. The authors propose technique of accurate measurement of thermal insulation properties in single blocks and fragments of walls and structures.

  5. Tube wall thickness measurement apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, P.R.


    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and radius by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  6. Tube wall thickness measurement apparatus (United States)

    Lagasse, P.R.


    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and radius by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  7. Tube wall thickness measurement apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, Paul R. (Santa Fe, NM)


    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and circumference by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  8. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd


    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  9. Methods & Strategies: Put Your Walls to Work (United States)

    Jackson, Julie; Durham, Annie


    This column provides ideas and techniques to enhance your science teaching. This month's issue discusses planning and using interactive word walls to support science and reading instruction. Many classrooms have word walls displaying vocabulary that students have learned in class. Word walls serve as visual scaffolds to support instruction. To…

  10. Static domain wall in braneworld gravity

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, M.C.B.; Carlesso, P.F. [UNESP, Universidade Estadual Paulista, Instituto de Fisica Teiorica, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, Barra-Funda, Caixa Postal 70532-2, Sao Paulo, SP (Brazil); Hoff da Silva, J.M. [UNESP, Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)


    In this paper we consider a static domain wall inside a 3-brane. Different from the standard achievement obtained in General Relativity, the analysis performed here gives a consistency condition for the existence of static domain walls in a braneworld gravitational scenario. Also the behavior of the domain wall's gravitational field in the newtonian limit is shown. (orig.)

  11. To detect anomalies in diaphragm walls

    NARCIS (Netherlands)

    Spruit, R.


    Diaphragm walls are potentially ideal retaining walls for deep excavations in densely built-up areas, as they cause no vibrations during their construction and provide structural elements with high strength and stiffness. In the recent past, however, several projects using diaphragm walls as soil an

  12. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li


    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  13. Binding domains of Bacillus anthracis phage endolysins recognize cell culture age-related features on the bacterial surface. (United States)

    Paskaleva, Elena E; Mundra, Ruchir V; Mehta, Krunal K; Pangule, Ravindra C; Wu, Xia; Glatfelter, Willing S; Chen, Zijing; Dordick, Jonathan S; Kane, Ravi S


    Bacteriolytic enzymes often possess a C-terminal binding domain that recognizes specific motifs on the bacterial surface and a catalytic domain that cleaves covalent linkages within the cell wall peptidoglycan. PlyPH, one such lytic enzyme of bacteriophage origin, has been reported to be highly effective against Bacillus anthracis, and can kill up to 99.99% of the viable bacteria. The bactericidal activity of this enzyme, however, appears to be strongly dependent on the age of the bacterial culture. Although highly bactericidal against cells in the early exponential phase, the enzyme is substantially less effective against stationary phase cells, thus limiting its application in real-world settings. We hypothesized that the binding domain of PlyPH may differ in affinity to cells in different Bacillus growth stages and may be primarily responsible for the age-restricted activity. We therefore employed an in silico approach to identify phage lysins differing in their specificity for the bacterial cell wall. Specifically we focused our attention on Plyβ, an enzyme with improved cell wall-binding ability and age-independent bactericidal activity. Although PlyPH and Plyβ have dissimilar binding domains, their catalytic domains are highly homologous. We characterized the biocatalytic mechanism of Plyβ by identifying the specific bonds cleaved within the cell wall peptidoglycan. Our results provide an example of the diversity of phage endolysins and the opportunity for these biocatalysts to be used for broad-based protection from bacterial pathogens.

  14. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates

    NARCIS (Netherlands)

    Delaire, Caroline; van Genuchten, Case M.; Amrose, Susan E.; Gadgil, Ashok J.


    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment o

  15. Distinguishing fungal and bacterial keratitis on clinical signs

    Directory of Open Access Journals (Sweden)

    Astrid Leck


    Full Text Available In many settings, laboratory support for the diagnosis of the type of microbial keratitis is not available. Experienced ophthalmologists have long maintained that it is sometimes possible to distinguish fungal from bacterial microbial keratitis on the basis of clinical signs. Formal data to support this view are limited, and it is important to establish the validity of such claims to understand whether signs can reliably guide clinical decisions. In addition, antifungal treatment is often in limited supply and prohibitively expensive. Therefore, it is not feasible or desirable to prescribe empirical antifungal therapy to every patient who presents with microbial keratitis in tropical regions, where fungal infections are more frequent. Here we review research to determine whether it is possible to reliably distinguish bacterial and fungal infection clinical features alone.

  16. The role of bacterial biofilms in chronic infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas


    treatment depends on accurate and fast diagnosis. However, in cases where the bacteria succeed in forming a biofilm within the human host, the infection often turns out to be untreatable and will develop into a chronic state. The important hallmarks of chronic biofilm-based infections are extreme resistance...... to antibiotics and many other conventional antimicrobial agents, and an extreme capacity for evading the host defences. In this thesis, I will assemble the current knowledge on biofilms with an emphasis on chronic infections, guidelines for diagnosis and treatment of these infections, before relating this to my...... previous research into the area of biofilms. I will present evidence to support a view that the biofilm lifestyle dominates chronic bacterial infections, where bacterial aggregation is the default mode, and that subsequent biofilm development progresses by adaptation to nutritional and environmental...

  17. Critical cell wall hole size for lysis in Gram-positive bacteria (United States)

    Mitchell, Gabriel; Wiesenfeld, Kurt; Nelson, Daniel; Weitz, Joshua


    Gram-positive bacteria transport molecules necessary for their survival through holes in their cell wall. The holes in cell walls need to be large enough to let critical nutrients pass through. However, the cell wall must also function to prevent the bacteria's membrane from protruding through a large hole into the environment and lysing the cell. As such, we hypothesize that there exists a range of cell wall hole sizes that allow for molecule transport but prevent membrane protrusion. Here we develop and analyze a biophysical theory of the response of a Gram-positive cell's membrane to the formation of a hole in the cell wall. We predict a critical hole size in the range 15-24nm beyond which lysis occurs. To test our theory, we measured hole sizes in Streptococcus pyogenes cells undergoing enzymatic lysis via transmission electron microscopy. The measured hole sizes are in strong agreement with our theoretical prediction. Together, the theory and experiments provide a means to quantify the mechanisms of death of Gram-positive cells via enzymatically mediated lysis and provides insight into the range of cell wall hole sizes compatible with bacterial homeostasis.

  18. Beyond the quasi-particle: stochastic domain wall dynamics in soft ferromagnetic nanowires (United States)

    Hayward, T. J.; Omari, K. A.


    We study the physical origins of stochastic domain wall pinning in soft ferromagnetic nanowires using focused magneto-optic Kerr effect measurements and dynamic micromagnetic simulations. Our results illustrate the ubiquitous nature of these effects in Ni80Fe20 nanowires, and show that they are not only a result of the magnetisation history of the system (i.e. the magnetisation structure of the injected domain walls), and the onset of non-linear propagation dynamics above the Walker breakdown field, but also a complex interplay between the two. We show that this means that, while micromagnetics can be used to make qualitative predictions of the behaviour of domain walls at defect sites, making quantitative predictions is much more challenging. Together, our results reinforce the view that even in these simple pseudo-one dimensional nanomagnets, domain walls must be considered as complex, dynamically evolving objects rather than simple quasi-particles.

  19. Biosynthesis of silver nanoparticle and its application in cell wall disruption to release carbohydrate and lipid from C. vulgaris for biofuel production

    Directory of Open Access Journals (Sweden)

    Sirajunnisa Abdul Razack


    Full Text Available Microalgae are the fledging feedstocks yielding raw materials for the production of third generation biofuel. Assorted and conventional cell wall disruption techniques were helpful in extracting lipids and carbohydrates, nevertheless the disadvantages have led the biotechnologists to explore new process to lyse cell wall in a faster and an economical manner. Silver nanoparticles have the ability to break the cell wall of microalgae and release biomolecules effectively. Green synthesis of silver nanoparticles was performed using a novel bacterial isolate of Bacillus subtilis. Characterisation of nanosilver and its effect on cell wall lysis of microalgae were extensively analysed. Cell wall damage was confirmed by lactate dehydrogenase assay and visually by SEM analysis. This first piece of research work on direct use of nanoparticles for cell wall lysis would potentially be advantageous over its conventional approaches and a greener, cost effective and non laborious method for the production of biodiesel.

  20. Ultrasonic Imaging of Propagation of Contraction and Relaxation in the Heart Walls at High Temporal Resolution (United States)

    Yoshiara, Hiroki; Hasegawa, Hideyuki; Kanai, Hiroshi; Tanaka, Motonao


    Strain and strain rate imaging have been shown to be useful for the assessment of regional myocardial function. However, some of the mechanisms of transition in myocardial contraction/relaxation remain unclear. In this study, the RF echoes from the left ventricular (LV) wall were acquired in both the longitudinal-axis view and the apical view by scanning ultrasonic beams sparsely to improve the temporal resolution, and a frame rate of about 600 Hz was realized. The phased tracking method was applied to multiple points in the heart wall to estimate the strain rate. The spatial distribution of the strain rate measured about every 2 ms showed the continuous transition in the myocardium. In the apical view, the propagation speed of contraction from the apex to the base side in the interventricular septum was found to be about 0.8 m/s. These results indicate the potential of this method in the estimation of the physiological function of the myocardium.

  1. Studio with a view (United States)

    Hoover, Anthony K.


    Berklee College of Music (in Boston) needed a new studio in which to teach stereo mixing and critical listening. A small synthesis lab (adjacent to the main lobby, directly over the cafeteria kitchen, penetrated by exhaust ducts, and next to a bathroom) was chosen for renovation. The primary requirements were for maximum visibility to assure hopeful future engineers a full view of all the cool gear, and comfortable seating for fifteen students. The challenges, to be discussed, included isolation with a view, quiet HVAC, and great sound, in a space that was acoustically too small and in the wrong place. The best verification of success is its popularity, which has prevented the author from booking time for listening or testing.

  2. Stereoscopic optical viewing system (United States)

    Tallman, Clifford S.


    An improved optical system which provides the operator a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  3. Cell wall composition of Bacillus subtilis changes as a function of pH and Zn²⁺ exposure: insights from cryo-XPS measurements. (United States)

    Ramstedt, Madeleine; Leone, Laura; Persson, Per; Shchukarev, Andrey


    Bacteria play an important role in the biogeochemical cycling of metals in the environment. Consequently, there is an interest to understand how the bacterial surfaces interact with metals in solution and how this affects the bacterial surface. In this work we have used a surface-sensitive analysis technique, cryogenic X-ray photoelectron spectroscopy (cryo-XPS), to monitor the surface of Bacillus subtilis cells as a function of pH and Zn(2+) content in saline solution. The objective of the study was twofold: (1) to investigate the agreement between two data treatment methods for XPS, as well as investigate to what extent sample pretreatment may influence XPS data of bacterial samples, and (2) to characterize how the surface chemistry of bacterial cells is influenced by different external conditions. (1) It was found that the two data treatment methods gave rise to comparable results. However, identical samples analyzed fast-frozen or dry exhibited larger differences in surface chemistry, indicating that sample pretreatment can to large extents influence the obtained surface composition of bacterial samples. (2) The bacterial cell wall (in fast-frozen samples) undergoes dramatic compositional changes with pH and with Zn(2+) exposure. The compositional changes are interpreted as an adaptive metal resistance response changing the biochemical composition of the bacterial cell wall. These results have implications for how adsorption processes at the surface of bacterial cells are analyzed, understood, modeled, and predicted.

  4. Thin Wall Austempered Ductile Iron (TWADI)


    M. Górny; E. Fraś


    In this paper the analysis of thin walled castings made of ductile iron is considered. It is shown that thin wall austempered ductile iron can be obtained by means of short-term heat treatment of thin wall castings without addition of alloying elements. Metallographic examinations of 2 mm thin walled castings along with casting with thicker wall thickness (20x28 mm) after different austempring conditions are presented. It has been proved that short-term heat treatment amounted 20 minutes of a...

  5. Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lesniewska, E.; Adrian, M.; Klinguer, A.; Pugin, A


    Despite cell wall reinforcement being a well-known defence mechanism of plants, it remains poorly characterized from a physical point of view. The objective of this work was to further describe this mechanism. Vitis vinifera cv Gamay cells were treated with UV-light (254 nm), a well-known elicitor of defence mechanisms in grapevines, and physical cell wall modifications were observed using the atomic force microscopy (AFM) under native conditions. The grapevine cell suspensions were continuously observed in their culture medium from 30 min to 24 h after elicitation. In the beginning, cellulose fibrils covered by a matrix surrounded the control and treated cells. After 3 h, the elicited cells displayed sprouted expansions around the cell wall that correspond to pectin chains. These expansions were not observed on untreated grapevine cells. The AFM tip was used to determine the average surface elastic modulus of cell wall that account for cell wall mechanical properties. The elasticity is diminished in UV-treated cells. In a comparative study, grapevine cells showed the same decrease in cell wall elasticity when treated with a fungal biotic elicitor of defence response. These results demonstrate cell wall strengthening by UV stress.

  6. High-resolution electron microscopical study of cyst walls of Entamoeba spp. (United States)

    Chávez-Munguía, Bibiana; Martínez-Palomo, Adolfo


    Knowledge of the fine structural organization, molecular composition and permeability properties of the cell surface of intestinal protozoan cysts is important to understand the biologic basis of their resistance. Recent studies on the biology of the cyst walls of Entamoeba histolytica and Entamoeba invadens have considerably advanced knowledge on the cellular processes involved in the transport and surface deposition of the main cyst wall components. Using transmission electron microscopy, cytochemistry, scanning electron microscopy and freeze-fracture techniques, we have obtained new information. In mature cysts the permeability of Entamoeba cysts is limited to small molecules not by the cyst wall, but by the plasma membrane, as demonstrated with the use of ruthenium red as an electron-dense tracer. Cell walls of E. histolytica cysts are made up of five to seven layers of unordered fibrils 7-8 nm thick. Alcian blue stains a regular mesh of fibrils approximately 4 nm thick, running perpendicularly to the cyst wall. In addition, abundant ionogenic groups are seen in cyst walls treated with cationized ferritin. In the mature cysts of E. histolytica and E. invadens small cytoplasmic vesicles with granular material were in close contact with the plasma membrane, suggesting a process of fusion and deposition of granular material to the cell wall. The plasma membrane of mature cysts is devoid of intramembrane particles when analyzed with the freeze-fracture technique. When viewed with scanning electron microscopy the surface of E. histolytica cysts clearly differs from that of Entamoeba coli and E. invadens.

  7. Mechanism of bubble detachment from vibrating walls

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjun; Park, Jun Kwon, E-mail:; Kang, Kwan Hyoung [Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); Kang, In Seok [Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of)


    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  8. Pulmonary complications of abdominal wall defects. (United States)

    Panitch, Howard B


    The abdominal wall is an integral component of the chest wall. Defects in the ventral abdominal wall alter respiratory mechanics and can impair diaphragm function. Congenital abdominal wall defects also are associated with abnormalities in lung growth and development that lead to pulmonary hypoplasia, pulmonary hypertension, and alterations in thoracic cage formation. Although infants with ventral abdominal wall defects can experience life-threatening pulmonary complications, older children typically experience a more benign respiratory course. Studies of lung and chest wall function in older children and adolescents with congenital abdominal wall defects are few; such investigations could provide strategies for improved respiratory performance, avoidance of respiratory morbidity, and enhanced exercise ability for these children.


    Energy Technology Data Exchange (ETDEWEB)

    Sexton, W.


    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to &apos

  10. Molecular mechanisms underlying bacterial persisters

    DEFF Research Database (Denmark)

    Maisonneuve, Etienne; Gerdes, Kenn


    All bacteria form persisters, cells that are multidrug tolerant and therefore able to survive antibiotic treatment. Due to the low frequencies of persisters in growing bacterial cultures and the complex underlying molecular mechanisms, the phenomenon has been challenging to study. However, recent...

  11. Bacterial Cytotoxins Target Rho GTPases (United States)

    Schmidt, Gudula; Aktories, Klaus


    Low molecular mass GTPases of the Rho family, which are involved in the regulation of the actin cytoskeleton and in various signal transduction processes, are the eukaryotic targets of bacterial protein toxins. The toxins covalently modify Rho proteins by ADP ribosylation, glucosylation, and deamidation, thereby inactivating and activating the GTPases.

  12. Disease notes - Bacterial root rot (United States)

    Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...

  13. Bacterial canker resistance in tomato

    NARCIS (Netherlands)

    Sen, Y.


    Clavibacter michiganensis subsp. michiganensis (Cmm) is the pathogen causing bacterial  canker in tomato. The disease was described for the first time in 1910 in Michigan, USA. Cmmis considered the most harmful bacteria threatening tomato. Disease transmission occurs via seed and symptoms becom

  14. Biotechnological applications of bacterial cellulases

    Directory of Open Access Journals (Sweden)

    Esther Menendez


    Full Text Available Cellulases have numerous applications in several industries, including biofuel production, food and feed industry, brewing, pulp and paper, textile, laundry, and agriculture.Cellulose-degrading bacteria are widely spread in nature, being isolated from quite different environments. Cellulose degradation is the result of a synergic process between an endoglucanase, an exoglucanase and a,β-glucosidase. Bacterial endoglucanases degrade ß-1,4-glucan linkages of cellulose amorphous zones, meanwhile exoglucanases cleave the remaining oligosaccharide chains, originating cellobiose, which is hydrolyzed by ß-glucanases. Bacterial cellulases (EC are comprised in fourteen Glycosil Hydrolase families. Several advantages, such as higher growth rates and genetic versatility, emphasize the suitability and advantages of bacterial cellulases over other sources for this group of enzymes. This review summarizes the main known cellulolytic bacteria and the best strategies to optimize their cellulase production, focusing on endoglucanases, as well as it reviews the main biotechnological applications of bacterial cellulases in several industries, medicine and agriculture.

  15. Food irradiation and bacterial toxins

    Energy Technology Data Exchange (ETDEWEB)

    Tranter, H.S.; Modi, N.K.; Hambleton, P.; Melling, J.; Rose, S.; Stringer, M.F.


    The authors' findings indicate that irradiation confers no advantage over heat processing in respect of bacterial toxins (clostridium botulinum, neurotoxin A and staphylococcal enterotoxin A). It follows that irradiation at doses less than the ACINF recommended upper limit of 10 kGy could not be used to improve the ambient temperature shelf life on non-acid foods.

  16. Extracardiac manifestations of bacterial endocarditis. (United States)

    Heffner, J E


    Bacterial endocarditis is an elusive disease that challenges clinicians' diagnostic capabilities. Because it can present with various combinations of extravalvular signs and symptoms, the underlying primary disease can go unnoticed.A review of the various extracardiac manifestations of bacterial endocarditis suggests three main patterns by which the valvular infection can be obscured. (1) A major clinical event may be so dramatic that subtle evidence of endocarditis is overlooked. The rupture of a mycotic aneurysm may simulate a subarachnoid hemorrhage from a congenital aneurysm. (2) The symptoms of bacterial endocarditis may be constitutional complaints easily attributable to a routine, trivial illness. Symptoms of low-grade fever, myalgias, back pain and anorexia may mimic a viral syndrome. (3) Endocarditis poses a difficult diagnostic dilemma when it generates constellations of findings that are classic for other disorders. Complaints of arthritis and arthralgias accompanied by hematuria and antinuclear antibody may suggest systemic lupus erythematosus; a renal biopsy study showing diffuse proliferative glomerulonephritis may support this diagnosis. The combination of fever, petechiae, altered mental status, thrombocytopenia, azotemia and anemia may promote the diagnosis of thrombotic thrombocytopenic purpura. When the protean guises of bacterial endocarditis create these clinical difficulties, errors in diagnosis occur and appropriate therapy is delayed. Keen awareness of the varied disease presentations will improve success in managing endocarditis by fostering rapid diagnosis and prompt therapy.

  17. Changes in the repertoire of natural antibodies caused by immunization with bacterial antigens

    DEFF Research Database (Denmark)

    Shilova, N V; Navakouski, M J; Huflejt, M


    The repertoire of natural anti-glycan antibodies in naïve chickens and in chickens immunized with bacteria Burkholderia mallei, Burkholderia pseudomallei, and Francisella tularensis as well as with peptides from an outer membrane protein of B. pseudomallei was studied. A relatively restricted...... pattern of natural antibodies (first of all IgY against bacterial cell wall peptidoglycan fragments, L-Rha, and core N-acetyllactosamine) shrank and, moreover, the level of detectable antibodies decreased as a result of immunization....

  18. Magnetic domain wall induced ferroelectricity in double perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai Yang; Zhao, Hong Jian, E-mail:, E-mail:; Chen, Xiang Ming, E-mail:, E-mail: [Laboratory of Dielectric Materials, Department of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China); Zhang, Wen Qing [Department of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444 (China)


    Recently, a magnetically induced ferroelectricity occurring at magnetic domain wall of double perovskite Lu{sub 2}CoMnO{sub 6} has been reported experimentally. However, there exists a conflict whether the electric polarization is along b or c direction. Here, by first-principles calculations, we show that the magnetic domain wall (with ↑↑↓↓ spin configuration) can lead to the ferroelectric displacements of R{sup 3+}, Ni{sup 2+}, Mn{sup 4+}, and O{sup 2−} ions in double perovskites R{sub 2}NiMnO{sub 6} (R = rare earth ion) via exchange striction. The resulted electric polarization is along b direction with the P2{sub 1} symmetry. We further reveal the origin of the ferroelectric displacements as that: (1) on a structural point of view, such displacements make the two out-of-plane Ni-O-Mn bond angles as well as Ni-Mn distance unequal, and (2) on an energy point of view, such displacements weaken the out-of-plane Ni-Mn super-exchange interaction obviously. Finally, our calculations show that such a kind of ferroelectric order is general in ferromagnetic double perovskites.

  19. Tube wall thickness measurement apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, P.R.


    An apparatus is described for measuring the thickness of a tube's wall for the tube's entire length and circumference by determining the deviation of the tube wall thickness from the known thickness of a selected standard item, the apparatus comprising: a. a base; b. a first support member having first and second ends, the first end being connected to the base, the first support member having a sufficiently small circumference that the tube can be slid over the first support member; c. a spherical element, the spherical element being connected to the second end of the first support member. The spherical element has a sufficiently small circumference at its equator that the tube can be slid over the spherical element, the spherical element having at its equator a larger circumference than the first support member; d. a second support member having first and second ends, the first end being connected to the base, the second support member being spaced apart form the first support member; e. a positioning element connected to and moveable relative to the second support member; and f. an indicator connected to the positioning element and being moveable thereby to a location proximate the spherical element. The indicator includes a contact ball for contacting the selected standard item and holding it against the spherical element, the contact ball contacting the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item, the rotatable needle being operatively connected to and responsive to the position of the contact ball.

  20. Effect of Gluconacetobacter xylinus cultivation conditions on the selected properties of bacterial cellulose

    Directory of Open Access Journals (Sweden)

    Fijałkowski Karol


    Full Text Available The aim of the study was to analyze the changes in the parameters of bacterial cultures and bacterial cellulose (BC synthesized by four reference strains of Gluconacetobacter xylinus during 31-day cultivation in stationary conditions. The study showed that the most visible changes in the analyzed parameters of BC, regardless of the bacterial strain used for their synthesis, were observed in the first 10–14 days of the experiment. It was also revealed, that among parameters showing dependence associated with the particular bacterial strain were the rate and period of BC synthesis, the growth rate of bacteria anchored to the cellulose fibrils, the capacity to absorb water and the water release rate. The results presented in this work may be useful in the selection of optimum culturing conditions and period from the point of view of good efficiency of the cellulose synthesis process.

  1. New evidence for TiO2 uniform surfaces leading to complete bacterial reduction in the dark: critical issues. (United States)

    Nesic, Jelena; Rtimi, Sami; Laub, Danièle; Roglic, Goran M; Pulgarin, Cesar; Kiwi, John


    This study presents new evidence for the events leading to Escherichia coli reduction in the absence of light irradiation on TiO2-polyester (from now on TiO2-PES. By transmission electron microscopy (TEM) the diffusion of TiO2 NP's aggregates with the E. coli outer lipo-polyssacharide (LPS) layer is shown to be a prerequisite for the loss of bacterial cultivability. Within 30 min in the dark the TiO2 aggregates interact with E. coli cell wall leading within 120 min to the complete loss of bacterial cultivability on a TiO2-PES 5% TiO2 sample. The bacterial reduction was observed to increase with a higher TiO2 loading on the PES up to 5%. Bacterial disinfection on TiO2-PES in the dark was slower compared to the runs under low intensity simulated sunlight light irradiation. The interaction between the TiO2 aggregates and the E. coli cell wall is discussed in terms of the competition between the TiO2 units collapsing to form TiO2-aggregates at a physiologic pH-value followed by the electrostatic interaction with the bacteria surface. TiO2-PES samples were able to carry repetitive bacterial inactivation. This presents a potential for practical applications. X-ray photoelectron spectroscopy (XPS) evidence was found for the reduction of Ti4+ to Ti3+ contributing to redox interactions between TiO2-PES and the bacterial cell wall. Insight is provided into the mechanism of interaction between the E. coli cell wall and TiO2 NP's. The properties of the TiO2-PES surface like percentage atomic concentration, TiO2-loading, optical absorption, surface charge and crystallographic phases are reported in this study.

  2. A simple yeast-based strategy to identify host cellular processes targeted by bacterial effector proteins.

    Directory of Open Access Journals (Sweden)

    Eran Bosis

    Full Text Available Bacterial effector proteins, which are delivered into the host cell via the type III secretion system, play a key role in the pathogenicity of gram-negative bacteria by modulating various host cellular processes to the benefit of the pathogen. To identify cellular processes targeted by bacterial effectors, we developed a simple strategy that uses an array of yeast deletion strains fitted into a single 96-well plate. The array is unique in that it was optimized computationally such that despite the small number of deletion strains, it covers the majority of genes in the yeast synthetic lethal interaction network. The deletion strains in the array are screened for hypersensitivity to the expression of a bacterial effector of interest. The hypersensitive deletion strains are then analyzed for their synthetic lethal interactions to identify potential targets of the bacterial effector. We describe the identification, using this approach, of a cellular process targeted by the Xanthomonas campestris type III effector XopE2. Interestingly, we discover that XopE2 affects the yeast cell wall and the endoplasmic reticulum stress response. More generally, the use of a single 96-well plate makes the screening process accessible to any laboratory and facilitates the analysis of a large number of bacterial effectors in a short period of time. It therefore provides a promising platform for studying the functions and cellular targets of bacterial effectors and other virulence proteins.

  3. Induction of chronic arthritis in rats : the role of intestinal bacteria and bacterial cell wall fragments

    NARCIS (Netherlands)

    J. Kool (Jeanette)


    textabstractRheumatoid arthritis is a chronic, disabling joint disease occurring in about 1% of the population. Women are more often affected than men, and there is a genetic predisposition based on the presence of the HLA-DR4 (Dw4, Dw14, Dwl5) gene or the HLA-DRl gene. Results from investigations i

  4. The membrane steps of bacterial cell wall synthesis as antibiotic targets

    NARCIS (Netherlands)

    Liu, Yao; Breukink, Eefjan


    Peptidoglycan is the major component of the cell envelope of virtually all bacteria. It has structural roles and acts as a selective sieve for molecules from the outer environment. Peptidoglycan synthesis is therefore one of the most important biogenesis pathways in bacteria and has been studied ext

  5. Capillary gas chromatographic analysis of alditol acetates of neutral and amino sugars in bacterial cell walls. (United States)

    Fox, A; Morgan, S L; Hudson, J R; Zhu, Z T; Lau, P Y


    Several improvements in the preparation of alditol acetates of neutral and amino sugars and in the preparation of glass capillary columns for their separation are described. Modifications in sample preparation permitted the simultaneous processing of multiple samples and eliminated extraneous background peaks. Efficient and inert columns were tailor-made for the separation of alditol acetates of neutral and amino sugars by leaching glass capillaries with aqueous hydrochloric acid and dynamically coating with SP-2330.

  6. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian.

    Directory of Open Access Journals (Sweden)

    Yoshitaro Akiyama

    Full Text Available The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called "wall preference". This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian "wall-preference" behavior only appears to be a "preference" behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and

  7. Pathogen-induced conditioning of the primary xylem vessels - a prerequisite for the formation of bacterial emboli by Pectobacterium atrosepticum. (United States)

    Gorshkov, V Y; Daminova, A G; Mikshina, P V; Petrova, O E; Ageeva, M V; Salnikov, V V; Gorshkova, T A; Gogolev, Y V


    Representatives of Pectobacterium genus are some of the most harmful phytopathogens in the world. In the present study, we have elucidated novel aspects of plant-Pectobacterium atrosepticum interactions. This bacterium was recently demonstrated to form specific 'multicellular' structures - bacterial emboli in the xylem vessels of infected plants. In our work, we showed that the process of formation of these structures includes the pathogen-induced reactions of the plant. The colonisation of the plant by P. atrosepticum is coupled with the release of a pectic polysaccharide, rhamnogalacturonan I, into the vessel lumen from the plant cell wall. This polysaccharide gives rise to a gel that serves as a matrix for bacterial emboli. P. atrosepticum-caused infection involves an increase of reactive oxygen species (ROS) levels in the vessels, creating the conditions for the scission of polysaccharides and modification of plant cell wall composition. Both the release of rhamnogalacturonan I and the increase in ROS precede colonisation of the vessels by bacteria and occur only in the primary xylem vessels, the same as the subsequent formation of bacterial emboli. Since the appearance of rhamnogalacturonan I and increase in ROS levels do not hamper the bacterial cells and form a basis for the assembly of bacterial emboli, these reactions may be regarded as part of the susceptible response of the plant. Bacterial emboli thus represent the products of host-pathogen integration, since the formation of these structures requires the action of both partners.

  8. Prostatitis-bacterial - self-care (United States)

    ... this page: // Prostatitis- bacterial - self-care To use the sharing features ... enable JavaScript. You have been diagnosed with bacterial prostatitis . This is an infection of the prostate gland. ...

  9. Cognitive outcome in adults after bacterial meningitis.

    NARCIS (Netherlands)

    Hoogman, M.; Beek, D. van de; Weisfelt, M.; Gans, J. de; Schmand, B.


    OBJECTIVE: To evaluate cognitive outcome in adult survivors of bacterial meningitis. METHODS: Data from three prospective multicentre studies were pooled and reanalysed, involving 155 adults surviving bacterial meningitis (79 after pneumococcal and 76 after meningococcal meningitis) and 72 healthy c

  10. Post-human Viewing

    DEFF Research Database (Denmark)

    Blaagaard, Bolette


    to become part of a global cultural flow, thus calling into question the physical connection between viewer and image. This article analyses what happens to that connection when not only the image but also the physical body is mediated and challenged in post-human relations, and examines the ensuing ethical......This article discusses the relationship between theories of photography and mobile phone footage. In doing so, it asks if theories of photography still apply in a technologically saturated world of imagery. Technology is an increasingly important part of viewing imagery today and enables imagery...

  11. Taking a Long View

    DEFF Research Database (Denmark)

    Ougaard, Morten

    a global perspective which leads to a more positive assessment. I will do this from a historical materialist perspective and therefore I begin with a discussion of the long view in Marx. This leads on to a discussion of Marx’s law of the long term declining rate of profit (LTFRP) and its counteracting...... factors (CFs). The next step is, drawing on regulation theory, to relate the mobilization of such CFs to the successive stages of capitalist development after World War Two, up to the present crisis, and after this, in the final two sections I discuss the potential for mobilizing ‘surplus labour...

  12. Abe's Political Views

    Institute of Scientific and Technical Information of China (English)


    Abe discussed much about his views of politics and diplomacy in his election program, showing that he means to be a tough party president and prime minister. First, on the issue of constitutional revision and collective self-defense right, Abe strongly advocates completely revising the Constitution to remove the limit that Japan can only exercise military power in self-defense. At the same time, by enacting a law, Japan would be able to send its self-defense forces overseas at any time. Abe claims that J...

  13. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions. (United States)

    He, Tianliang; Zhang, Xiaobo


    Deep-sea hydrothermal vents are considered to be one of the most spectacular ecosystems on Earth. Microorganisms form the basis of the food chain in vents controlling the vent communities. However, the diversity of bacterial communities in deep-sea hydrothermal vents from different oceans remains largely unknown. In this study, the pyrosequencing of 16S rRNA gene was used to characterize the bacterial communities of the venting sulfide, seawater, and tubeworm trophosome from East Pacific Rise, South Atlantic Ridge, and Southwest Indian Ridge, respectively. A total of 23,767 operational taxonomic units (OTUs) were assigned into 42 different phyla. Although Proteobacteria, Actinobacteria, and Bacteroidetes were the predominant phyla in all vents, differences of bacterial diversity were observed among different vents from three oceanic regions. The sulfides of East Pacific Rise possessed the most diverse bacterial communities. The bacterial diversities of venting seawater were much lower than those of vent sulfides. The symbiotic bacteria of tubeworm Ridgeia piscesae were included in the bacterial community of vent sulfides, suggesting their significant ecological functions as the primary producers in the deep-sea hydrothermal vent ecosystems. Therefore, our study presented a comprehensive view of bacterial communities in deep-sea hydrothermal vents from different oceans.

  14. [Extracellular hydrolases of strain Bacillus sp. 739 and their involvement in the lysis of micromycete cell walls]. (United States)

    Aktuganov, G E; Galimzianova, N F; Melent'ev, A I; Kuz'mina, L Iu


    The mycolytic bacterial strain Bacillus sp. 739 produces extracellular enzymes which degrade in vitro the cell walls of a number of phytopathogenic and saprophytic fungi. When Bacillus sp. 739 was cultivated with Bipolaris sorokiniana, a cereal root-rot pathogen, the fungus degradation process correlated with the levels of the beta-1,3-glucanase and protease activity. The comparative characteristic of Bacillus sp. 739 enzymatic preparations showed that efficient hydrolysis of the fungus cell walls was the result of the action of the complex of enzymes produced by the strain when grown on chitin-containing media. Among the enzymes of this complex, chitinases and beta-1,3-glucanases hydrolyzed most actively the disintegrated cell walls of B. sorokiniana. However, only beta-1,3-glucanases were able to degrade the cell walls of native fungal mycelium in the absence of other hydrolases, which is indicative of their key role in the mycolytic activity of Bacillus sp. 739.

  15. Dissecting the functional significance of non-catalytic carbohydrate binding modules in the deconstruction of plant cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States). Complex Carbohydrate Research Center


    The project seeks to investigate the mechanism by which CBMs potentiate the activity of glycoside hydrolases against complete plant cell walls. The project is based on the hypothesis that the wide range of CBMs present in bacterial enzymes maximize the potential target substrates by directing the cognate enzymes not only to different regions of a specific plant cell wall, but also increases the range of plant cell walls that can be degraded. In addition to maximizing substrate access, it was also proposed that CBMs can target specific subsets of hydrolases with complementary activities to the same region of the plant cell wall, thereby maximizing the synergistic interactions between these enzymes. This synergy is based on the premise that the hydrolysis of a specific polysaccharide will increase the access of closely associated polymers to enzyme attack. In addition, it is unclear whether the catalytic module and appended CBM of modular enzymes have evolved unique complementary activities.

  16. Effect of inactive yeast cell wall on growth performance, survival rate and immune parameters in Pacific White Shrimp (Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Rutchanee Chotikachinda


    Full Text Available Effects of dietary inactive yeast cell wall on growth performance, survival rate, and immune parameters in pacific white shrimp (Litopenaeus vannamei was investigated. Three dosages of inactive yeast cell wall (0, 1, and 2 g kg-1 were tested in three replicate groups of juvenile shrimps with an average initial weight of 7.15±0.05 g for four weeks. There was no significant difference in final weight, survival rate, specific growth rate, feed conversion ratio, feed intake, protein efficiency ratio, and apparent net protein utilization of each treatments. However, different levels of inactive yeast cell wall showed an effect on certain immune parameters (p<0.05. Total hemocyte counts, granular hemocyte count, and bacterial clearance were better in shrimp fed diets supplemented with 1 and 2 g kg-1 inactive yeast cell wall as compared with thecontrol group.

  17. Anterior chest wall examination reviewed

    Directory of Open Access Journals (Sweden)

    F. Trotta


    Full Text Available Anterior chest wall involvement is not infrequently observed within inflammatory arthropaties, particularly if one considers seronegative spondiloarthritides and SAPHO syndrome. Physical examination is unreliable and conventional X-rays analysis is an unsatisfactory tool during diagnostic work-up of this region. Scintigraphic techniques yield informations both on the activity and on the anatomical extent of the disease while computerized tomography visualize the elementary lesions, such as erosions, which characterize the process. Moreover, when available, magnetic resonance imaging couple the ability to finely visualize such lesions with the possibility to show early alterations and to characterize the “activity” of the disease, presenting itself as a powerful tool both for diagnosis and follow-up. This review briefly shows the applications of imaging techniques for the evaluation of the anterior chest wall focusing on what has been done in the SAPHO syndrome which can be considered prototypical for this regional involvement since it is the osteo-articular target mainly affected by the disease.

  18. Optimal relative view angles for an object viewed multiple times (United States)

    Gilani, Syed U.; Shende, Apoorva; Nguyen, Bao; Stilwell, Daniel J.


    Typically, the detection of an object of interest improves as we view the object from multiple angles. For cases where viewing angle matters, object detection can be improved further by optimally selecting the relative angles of multiple views. This motivates the search for viewing angles that maximize the expected probability of detection. Although our work is motivated by applications in subsea sensing, our fundamental analysis is easily adapted for other classes of applications. The specific challenge that motivates our work is the selection of optimal viewing angles for subsea sensing in which sonar is used for bathymetric imaging.

  19. Evaluating rammed earth walls: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P. [Deakin University, Geelong (Australia). Built Environment Research Group; La Trobe University, Wodonga (Australia); Luther, M.B. [Deakin University, Geelong (Australia). Built Environment Research Group


    The following research has been undertaken as a response to the recent controversy regarding the suitability of rammed earth wall construction as an effective building envelope in regard to its thermal performance. The R-value for rammed earth walls is low hence they might be expected to conduct heat into a building during summer. However the large mass of these walls and the associated thermal lag in heat transfer from outside to inside may result in the walls performing satisfactorily in a building which is only occupied during working hours. Internal rammed earth walls may act as moderators of large diurnal temperature swings helping to produce an even comfortable temperature within a building. Empirical (in situ) measurements of temperature and heat flux were taken on the walls of an existing rammed earth office building in New South Wales, Australia during the summer. An analysis was performed which established a methodology to measure the heat flow associated with the walls, floor, ceiling, windows and infiltration for one office during occupied hours and the net energy transferred between the office and these elements was established. During this time the earth walls performed well. External walls were found to transmit comparatively little heat to the office and the internal walls absorbed heat during this time. Diffuse sky radiation transmitted by the window and infiltration are both likely to be important factors in the summer heat load. (author)

  20. Persistence of antibiotic resistance in bacterial populations. (United States)

    Andersson, Dan I; Hughes, Diarmaid


    Unfortunately for mankind, it is very likely that the antibiotic resistance problem we have generated during the last 60 years due to the extensive use and misuse of antibiotics is here to stay for the foreseeable future. This view is based on theoretical arguments, mathematical modeling, experiments and clinical interventions, suggesting that even if we could reduce antibiotic use, resistant clones would remain persistent and only slowly (if at all) be outcompeted by their susceptible relatives. In this review, we discuss the multitude of mechanisms and processes that are involved in causing the persistence of chromosomal and plasmid-borne resistance determinants and how we might use them to our advantage to increase the likelihood of reversing the problem. Of particular interest is the recent demonstration that a very low antibiotic concentration can be enriching for resistant bacteria and the implication that antibiotic release into the environment could contribute to the selection for resistance. Several mechanisms are contributing to the stability of antibiotic resistance in bacterial populations and even if antibiotic use is reduced it is likely that most resistance mechanisms will persist for considerable times.

  1. Automated Identification of the Heart Wall Throughout the Entire Cardiac Cycle Using Optimal Cardiac Phase for Extracted Features (United States)

    Takahashi, Hiroki; Hasegawa, Hideyuki; Kanai, Hiroshi


    In most methods for evaluation of cardiac function based on echocardiography, the heart wall is currently identified manually by an operator. However, this task is very time-consuming and suffers from inter- and intraobserver variability. The present paper proposes a method that uses multiple features of ultrasonic echo signals for automated identification of the heart wall region throughout an entire cardiac cycle. In addition, the optimal cardiac phase to select a frame of interest, i.e., the frame for the initiation of tracking, was determined. The heart wall region at the frame of interest in this cardiac phase was identified by the expectation-maximization (EM) algorithm, and heart wall regions in the following frames were identified by tracking each point classified in the initial frame as the heart wall region using the phased tracking method. The results for two subjects indicate the feasibility of the proposed method in the longitudinal axis view of the heart.

  2. Bacterial resistance to Quaternary Ammonium Compounds (QAC) disinfectants. (United States)

    Bragg, Robert; Jansen, Arina; Coetzee, Marisa; van der Westhuizen, Wouter; Boucher, Charlotte


    of the bacterial cell wall and leaking of the cytoplasm out of the cells. Our main focus is on the control of bacterial and viral diseases in the poultry industry in a post-antibiotic era, but the principles remain similar for disease control in any veterinary field as well as in human medicine.

  3. Near wall flow parameters in the blade end-wall corner region (United States)

    Bhargava, R. K.; Raj, R.

    The effects of secondary end-wall corner flows on near wall flow parameters in turbomachinary are studied. Important near wall flow parameters such as the wall shear stress vector, the mean wall pressure, the wall pressure fluctuations, and the correlation of the wall pressure fluctuation with the velocity fluctuation in three-dimensional turbulent flows are first experimentally investigated. The blade end-wall corner region is simulated by mounting airfoil section of symmetric blades on both sides of the flat plate with semicircular leading edge. Observed changes in the maximum values of the wall shear stress and its location from the corner line could be associated with the streching and attenuation of the horseshoe vortex. The values of wall pressure fluctuation intensity in the blade end-wall corner region are found to be influenced by the changes of the strength of the horseshoe vortex. The correlation of the wall pressure fluctuation with the velocity fluctuation indicated higher values of correlation coefficient in the inner region as compared to the outer region of the shear layer. The values of wall pressure-velocity correlation coefficient in the blade end-wall corner region also decrease in the streamwise direction while increasing in the presence of favorable and adverse pressure gradients.

  4. Bacterial surface antigen-specific monoclonal antibodies used to detect beer spoilage pediococci. (United States)

    Whiting, M S; Ingledew, W M; Lee, S Y; Ziola, B


    Fourteen monoclonal antibodies (Mabs) were isolated that react with surface antigens of Pediococcus beer spoilage organisms, including P. damnosus, P. pentosaceous, P. acidilactici, and unspeciated isolates. Immunoblotting, enzyme immunoassays (EIAs) of protease- and neuraminidase-treated surface antigen extracts, carbohydrate competition EIAs, and cardiolipin EIAs were used to characterize the bacterial antigens involved in Mab binding. Antigen stability in situ was tested by protease treatment or surface antigen extraction of washed bacteria. In most cases, the Mabs bind to Pediococcus surface antigens that appear to be covalently bound cell wall polymers resistant to alteration or removal from the bacterial surface. These bacterial surface antigen reactive Mabs show good potential for rapid, sensitive, and specific immunoassay detection of Pediococcus beer spoilage organisms.

  5. [Bacterial efflux pumps - their role in antibiotic resistance and potential inhibitors]. (United States)

    Hricová, Kristýna; Kolář, Milan


    Efflux pumps capable of actively draining antibiotic agents from bacterial cells may be considered one of potential mechanisms of the development of antimicrobial resistance. The most important group of efflux pumps capable of removing several types of antibiotics include RND (resistance - nodulation - division) pumps. These are three proteins that cross the bacterial cell wall, allowing direct expulsion of the agent out from the bacterial cell. The most investigated efflux pumps are the AcrAB-TolC system in Escherichia coli and the MexAB-OprM system in Pseudomonas aeruginosa. Moreover, efflux pumps are able to export other than antibacterial agents such as disinfectants, thus decreasing their effectiveness. One potential approach to inactivation of an efflux pump is to use the so-called efflux pump inhibitors (EPIs). Potential inhibitors tested in vitro involve, for example, phenylalanyl-arginyl-b-naphthylamide (PAbN), carbonyl cyanide m-chlorophenylhydrazone (CCCP) or agents of the phenothiazine class.

  6. The bacterial lux reporter system: applications in bacterial localisation studies. (United States)

    Gahan, Cormac G M


    Bacterial production of visible light is a natural phenomenon occurring in marine (Vibrio and Photobacterium) and terrestrial (Photorhabdus) species. The mechanism underpinning light production in these organisms is similar and involves the oxidation of an aldehyde substrate in a reaction catalysed by the bacterial luciferase enzyme. The genes encoding the luciferase and a fatty acid reductase complex which synthesizes the substrate are contained in a single operon (the lux operon). This provides a useful reporter system as cloning the operon into a recipient host bacterium will generate visible light without the requirement to add exogenous substrate. The light can be detected in vivo in the living animal using a sensitive detection system and is therefore ideally suited to bioluminescence imaging protocols. The system has therefore been widely used to track bacteria during infection or colonisation of the host. As bacteria are currently being examined as bactofection vectors for gene delivery, particularly to tumour tissue, the use of bioluminescence imaging offers a powerful means to investigate vector amplification in situ. The implications of this technology for bacterial localization, tumour targeting and gene transfer (bactofection) studies are discussed.

  7. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection (United States)

    Willmann, Roland; Lajunen, Heini M.; Erbs, Gitte; Newman, Mari-Anne; Kolb, Dagmar; Tsuda, Kenichi; Katagiri, Fumiaki; Fliegmann, Judith; Bono, Jean-Jacques; Cullimore, Julie V.; Jehle, Anna K.; Götz, Friedrich; Kulik, Andreas; Molinaro, Antonio; Lipka, Volker; Gust, Andrea A.; Nürnberger, Thorsten


    Recognition of microbial patterns by host pattern recognition receptors is a key step in immune activation in multicellular eukaryotes. Peptidoglycans (PGNs) are major components of bacterial cell walls that possess immunity-stimulating activities in metazoans and plants. Here we show that PGN sensing and immunity to bacterial infection in Arabidopsis thaliana requires three lysin-motif (LysM) domain proteins. LYM1 and LYM3 are plasma membrane proteins that physically interact with PGNs and mediate Arabidopsis sensitivity to structurally different PGNs from Gram-negative and Gram-positive bacteria. lym1 and lym3 mutants lack PGN-induced changes in transcriptome activity patterns, but respond to fungus-derived chitin, a pattern structurally related to PGNs, in a wild-type manner. Notably, lym1, lym3, and lym3 lym1 mutant genotypes exhibit supersusceptibility to infection with virulent Pseudomonas syringae pathovar tomato DC3000. Defects in basal immunity in lym3 lym1 double mutants resemble those observed in lym1 and lym3 single mutants, suggesting that both proteins are part of the same recognition system. We further show that deletion of CERK1, a LysM receptor kinase that had previously been implicated in chitin perception and immunity to fungal infection in Arabidopsis, phenocopies defects observed in lym1 and lym3 mutants, such as peptidoglycan insensitivity and enhanced susceptibility to bacterial infection. Altogether, our findings suggest that plants share with metazoans the ability to recognize bacterial PGNs. However, as Arabidopsis LysM domain proteins LYM1, LYM3, and CERK1 form a PGN recognition system that is unrelated to metazoan PGN receptors, we propose that lineage-specific PGN perception systems have arisen through convergent evolution. PMID:22106285

  8. Metatranscriptomics reveals overall active bacterial composition in caries lesions

    Directory of Open Access Journals (Sweden)

    Aurea Simón-Soro


    Full Text Available Background: Identifying the microbial species in caries lesions is instrumental to determine the etiology of dental caries. However, a significant proportion of bacteria in carious lesions have not been cultured, and the use of molecular methods has been limited to DNA-based approaches, which detect both active and inactive or dead microorganisms. Objective: To identify the RNA-based, metabolically active bacterial composition of caries lesions at different stages of disease progression in order to provide a list of potential etiological agents of tooth decay. Design: Non-cavitated enamel caries lesions (n=15 and dentin caries lesions samples (n=12 were collected from 13 individuals. RNA was extracted and cDNA was constructed, which was used to amplify the 16S rRNA gene. The resulting 780 bp polymerase chain reaction products were pyrosequenced using Titanium-plus chemistry, and the sequences obtained were used to determine the bacterial composition. Results: A mean of 4,900 sequences of the 16S rRNA gene with an average read length of 661 bp was obtained per sample, giving a comprehensive view of the active bacterial communities in caries lesions. Estimates of bacterial diversity indicate that the microbiota of cavities is highly complex, each sample containing between 70 and 400 metabolically active species. The composition of these bacterial consortia varied among individuals and between caries lesions of the same individuals. In addition, enamel and dentin lesions had a different bacterial makeup. Lactobacilli were found almost exclusively in dentin cavities. Streptococci accounted for 40% of the total active community in enamel caries, and 20% in dentin caries. However, Streptococcus mutans represented only 0.02–0.73% of the total bacterial community. Conclusions: The data indicate that the etiology of dental caries is tissue dependent and that the disease has a clear polymicrobial origin. The low proportion of mutans streptococci

  9. Distribution of Triplet Separators in Bacterial Genomes

    Institute of Scientific and Technical Information of China (English)

    HU Rui; ZHENG Wei-Mou


    Distributions of triplet separator lengths for two bacterial complete genomes are analyzed. The theoretical distributions for the independent random sequence and the first-order Markov chain are derived and compared with the distributions of the bacterial genomes. A prominent double band structure, which does not exist in the theoretical distributions, is observed in the bacterial distributions for most triplets.``

  10. Xyloglucan antibodies inhibit auxin-induced elongation and cell wall loosening of azuki bean epicotyls but not of oat coleoptiles. (United States)

    Hoson, T; Masuda, Y; Sone, Y; Misaki, A


    Polyclonal antibodies were raised in rabbits against isoprimeverose (Xyl(1)Glc(1)), xyloglucan heptasaccharides (Xyl(3)Glc(4)), and octasaccharides (Gal(1)Xyl(3)Glc(4)). Antibodies specific for hepta- and octasaccharides suppressed auxin-induced elongation of epicotyl segments of azuki bean (Vigna angularis Ohwi and Ohashi cv Takara). These antibodies also inhibited auxin-induced cell wall loosening (decrease in the minimum stress-relaxation time and the relaxation rate of the cell walls) of azuki segments. However, none of the antibodies influenced auxin-induced elongation or cell wall loosening of coleoptile segments of oat (Avena sativa L. cv Victory). Auxin caused a decrease in molecular mass of xyloglucans in the cell walls of azuki epicotyls and oat coleoptiles. The antibodies inhibited such a change in molecular mass of xyloglucans in both species. Preimmune serum exhibited little or no inhibitory effect on auxin-induced elongation, cell wall loosening, or breakdown of xyloglucans. The results support the view that the breakdown of xyloglucans is associated with the cell wall loosening responsible for auxin-induced elongation in dicotyledons. The view does not appear to be applicable to poaceae, because the inhibition of xyloglucan breakdown by the antibodies did not influence auxin-induced elongation or cell wall loosening of oat coleoptiles.

  11. Advancements in subsurface barrier wall technology

    Energy Technology Data Exchange (ETDEWEB)

    Mutch, R.D. Jr.; Ash, R.E. IV; Caputi, J.R. [Eckenfelder Inc., Mahwah, NJ (United States)


    Subsurface barrier walls have been an important component of site remediation efforts for nearly thirty years. However, until the last decade, limited design options were available for barrier wall construction. Most barrier walls were constructed using traditional technologies such as soil-bentonite slurry trench and, in some instances, conventional compacted clay. While other technologies certainly existed, such as vibrating beam and sheet pile walls, they represented a minor share of the remediation market. Today the remediation engineer considering a subsurface barrier wall-based remediation is confronted with a baffling array, of new technologies and permutations of these technologies. Moreover, new technologies are entering the marketplace seemingly on a monthly basis. A partial listing of available barrier wall technologies is presented.

  12. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao


    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  13. Antibiotic drugs targeting bacterial RNAs

    Directory of Open Access Journals (Sweden)

    Weiling Hong


    Full Text Available RNAs have diverse structures that include bulges and internal loops able to form tertiary contacts or serve as ligand binding sites. The recent increase in structural and functional information related to RNAs has put them in the limelight as a drug target for small molecule therapy. In addition, the recognition of the marked difference between prokaryotic and eukaryotic rRNA has led to the development of antibiotics that specifically target bacterial rRNA, reduce protein translation and thereby inhibit bacterial growth. To facilitate the development of new antibiotics targeting RNA, we here review the literature concerning such antibiotics, mRNA, riboswitch and tRNA and the key methodologies used for their screening.

  14. Electromagnetic Signals from Bacterial DNA

    CERN Document Server

    Widom, A; Srivastava, Y N; Sivasubramanian, S


    Chemical reactions can be induced at a distance due to the propagation of electromagnetic signals during intermediate chemical stages. Although is is well known at optical frequencies, e.g. photosynthetic reactions, electromagnetic signals hold true for muck lower frequencies. In E. coli bacteria such electromagnetic signals can be generated by electric transitions between energy levels describing electrons moving around DNA loops. The electromagnetic signals between different bacteria within a community is a "wireless" version of intercellular communication found in bacterial communities connected by "nanowires". The wireless broadcasts can in principle be of both the AM and FM variety due to the magnetic flux periodicity in electron energy spectra in bacterial DNA orbital motions.

  15. Bacterial survival in Martian conditions

    CERN Document Server

    D'Alessandro, Giuseppe Galletta; Giulio Bertoloni; Maurizio


    We shortly discuss the observable consequences of the two hypotheses about the origin of life on Earth and Mars: the Lithopanspermia (Mars to Earth or viceversa) and the origin from a unique progenitor, that for Earth is called LUCA (the LUCA hypothesis). To test the possibility that some lifeforms similar to the terrestrial ones may survive on Mars, we designed and built two simulators of Martian environments where to perform experiments with different bacterial strains: LISA and mini-LISA. Our LISA environmental chambers can reproduce the conditions of many Martian locations near the surface trough changes of temperature, pressure, UV fluence and atmospheric composition. Both simulators are open to collaboration with other laboratories interested in performing experiments on many kind of samples (biological, minerals, electronic) in situations similar to that of the red planet. Inside LISA we have studied the survival of several bacterial strains and endospores. We verified that the UV light is the major re...

  16. Bacterial streamers in curved microchannels (United States)

    Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard


    Biofilms, generally identified as microbial communities embedded in a self-produced matrix of extracellular polymeric substances, are involved in a wide variety of health-related problems ranging from implant-associated infections to disease transmissions and dental plaque. The usual picture of these bacterial films is that they grow and develop on surfaces. However, suspended biofilm structures, or streamers, have been found in natural environments (e.g., rivers, acid mines, hydrothermal hot springs) and are always suggested to stem from a turbulent flow. We report the formation of bacterial streamers in curved microfluidic channels. By using confocal laser microscopy we are able to directly image and characterize the spatial and temporal evolution of these filamentous structures. Such streamers, which always connect the inner corners of opposite sides of the channel, are always located in the middle plane. Numerical simulations of the flow provide evidences for an underlying hydrodynamic mechanism behind the formation of the streamers.

  17. Bacterial chromosome organization and segregation. (United States)

    Badrinarayanan, Anjana; Le, Tung B K; Laub, Michael T


    If fully stretched out, a typical bacterial chromosome would be nearly 1 mm long, approximately 1,000 times the length of a cell. Not only must cells massively compact their genetic material, but they must also organize their DNA in a manner that is compatible with a range of cellular processes, including DNA replication, DNA repair, homologous recombination, and horizontal gene transfer. Recent work, driven in part by technological advances, has begun to reveal the general principles of chromosome organization in bacteria. Here, drawing on studies of many different organisms, we review the emerging picture of how bacterial chromosomes are structured at multiple length scales, highlighting the functions of various DNA-binding proteins and the impact of physical forces. Additionally, we discuss the spatial dynamics of chromosomes, particularly during their segregation to daughter cells. Although there has been tremendous progress, we also highlight gaps that remain in understanding chromosome organization and segregation.

  18. Dynamics of bacterial gene regulation (United States)

    Narang, Atul


    The phenomenon of diauxic growth is a classical problem of bacterial gene regulation. The most well studied example of this phenomenon is the glucose-lactose diauxie, which occurs because the expression of the lac operon is strongly repressed in the presence of glucose. This repression is often explained by appealing to molecular mechanisms such as cAMP activation and inducer exclusion. I will begin by analyzing data showing that these molecular mechanisms cannot explain the strong lac repression because they exert a relatively weak effect. I will then present a minimal model accounting only for enzyme induction and dilution, which yields strong repression despite the absence of catabolite repression and inducer exclusion. The model also explains the growth patterns observed in batch and continuous cultures of various bacterial strains and substrate mixtures. The talk will conclude with a discussion of the experimental evidence regarding positive feedback, the key component of the minimal model.

  19. Transport and coherent structures in wall turbulence

    CERN Document Server

    Tardu, Sedat


    Wall bounded turbulent flows are of major importance in industrial and environmental fluid mechanics. The structure of the wall turbulence is intrinsically related to the coherent structures that play a fundamental role in the transport process. The comprehension of their regeneration mechanism is indispensable for the development of efficient strategies in terms of drag control and near wall turbulence management. This book provides an up-to-date overview on the progress made in this specific area in recent years.

  20. Electron-wall Interaction in Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Y. Raitses; D. Staack; M. Keidar; N.J. Fisch


    Electron-wall interaction effects in Hall thrusters are studied through measurements of the plasma response to variations of the thruster channel width and the discharge voltage. The discharge voltage threshold is shown to separate two thruster regimes. Below this threshold, the electron energy gain is constant in the acceleration region and therefore, secondary electron emission (SEE) from the channel walls is insufficient to enhance electron energy losses at the channel walls. Above this voltage threshold, the maximum electron temperature saturates.

  1. Motional Effect on Wall Shear Stresses

    DEFF Research Database (Denmark)

    Kock, Samuel Alberg; Torben Fründ, Ernst; Yong Kim, Won

    Atherosclerosis is the leading cause of death and severe disability. Wall Shear Stress (WSS), the stress exerted on vessel walls by the flowing blood is a key factor in the development of atherosclerosis. Computational Fluid Dynamics (CFD) is widely used for WSS estimations. Most CFD simulations...... are based on static models to ease computational burden leading to inaccurate estimations. The aim of this work was to estimate the effect of vessel wall deformations (expansion and bending) on WSS levels....

  2. Bacterial Interstitial Nephritis in Children


    Bobadilla Chang, Fernando; Departamento de Ciencias Dinámicas Facultad de Medicina Universidad Nacional Mayor de San Marcos Lima, Perú; Villanueva, Dolores; Departamento de Ciencias Dinámicas Facultad de Medicina Universidad Nacional Mayor de San Marcos Lima, Perú


    OBJECTIVE: To assess the diagnosis approach to urinary tract infections in children. MATERIAL AND METHODS: Medical records from 103 children with diagnosis of interstitial bacterial nephritis were retrospectively reviewed. Diagnosis was supported by the dramatic involvement of renal parenquima, which is not addressed as "urinary tract infection". RESULTS: From all 103 patients, 49 were 2-years-old or younger, 33 were between 2 and 5-years-old, and 21 were between 6 to 10. Clinical picture inc...

  3. Bacterial canker resistance in tomato


    Sen, Y.


    Clavibacter michiganensis subsp. michiganensis (Cmm) is the pathogen causing bacterial  canker in tomato. The disease was described for the first time in 1910 in Michigan, USA. Cmmis considered the most harmful bacteria threatening tomato. Disease transmission occurs via seed and symptoms become visible at least 20 days after infection. Due to its complex strategy and transmission, Cmm is under quarantine regulation in EU and other countries. There is no method to stop disease progress i...

  4. Small intestinal bacterial overgrowth syndrome

    Institute of Scientific and Technical Information of China (English)

    Jan; Bures; Jiri; Cyrany; Darina; Kohoutova; Miroslav; Frstl; Stanislav; Rejchrt; Jaroslav; Kvetina; Viktor; Vorisek; Marcela; Kopacova


    Human intestinal microbiota create a complex polymi-crobial ecology. This is characterised by its high population density, wide diversity and complexity of interaction. Any dysbalance of this complex intestinal microbiome, both qualitative and quantitative, might have serious health consequence for a macro-organism, including small intestinal bacterial overgrowth syndrome (SIBO).SIBO is defined as an increase in the number and/or alteration in the type of bacteria in the upper gastro-intestinal tract. There...

  5. Biotechnological applications of bacterial cellulases


    Esther Menendez; Paula Garcia-Fraile; Raul Rivas


    Cellulases have numerous applications in several industries, including biofuel production, food and feed industry, brewing, pulp and paper, textile, laundry, and agriculture.Cellulose-degrading bacteria are widely spread in nature, being isolated from quite different environments. Cellulose degradation is the result of a synergic process between an endoglucanase, an exoglucanase and a,β-glucosidase. Bacterial endoglucanases degrade ß-1,4-glucan linkages of cellulose amorphous zones, mean...

  6. Bacterial motility on abiotic surfaces


    Gibiansky, Maxsim


    Bacterial biofilms are structured microbial communities which are widespread both in nature and in clinical settings. When organized into a biofilm, bacteria are extremely resistant to many forms of stress, including a greatly heightened antibiotic resistance. In the early stages of biofilm formation on an abiotic surface, many bacteria make use of their motility to explore the surface, finding areas of high nutrition or other bacteria to form microcolonies. They use motility appendages, incl...

  7. Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Theerthankar Das

    Full Text Available Calcium (Ca(2+ has an important structural role in guaranteeing the integrity of the outer lipopolysaccharide layer and cell walls of bacterial cells. Extracellular DNA (eDNA being part of the slimy matrix produced by bacteria promotes biofilm formation through enhanced structural integrity of the matrix. Here, the concurrent role of Ca(2+ and eDNA in mediating bacterial aggregation and biofilm formation was studied for the first time using a variety of bacterial strains and the thermodynamics of DNA to Ca(2+ binding. It was found that the eDNA concentrations under both planktonic and biofilm growth conditions were different among bacterial strains. Whilst Ca(2+ had no influence on eDNA release, presence of eDNA by itself favours bacterial aggregation via attractive acid-base interactions in addition, its binding with Ca(2+ at biologically relevant concentrations was shown further increase in bacterial aggregation via cationic bridging. Negative Gibbs free energy (ΔG values in iTC data confirmed that the interaction between DNA and Ca(2+ is thermodynamically favourable and that the binding process is spontaneous and exothermic owing to its highly negative enthalpy. Removal of eDNA through DNase I treatment revealed that Ca(2+ alone did not enhance cell aggregation and biofilm formation. This discovery signifies the importance of eDNA and concludes that existence of eDNA on bacterial cell surfaces is a key facilitator in binding of Ca(2+ to eDNA thereby mediating bacterial aggregation and biofilm formation.

  8. Cytochemical Differences in Bacterial Glycocalyx (United States)

    Krautgartner, Wolf Dietrich; Vitkov, Ljubomir; Hannig, Matthias; Pelz, Klaus; Stoiber, Walter


    To examine new cytochemical aspects of the bacterial adhesion, a strain 41452/01 of the oral commensal Streptococcus sanguis and a wild strain of Staphylococcus aureus were grown with and without sucrose supplementation for 6 days. Osmiumtetraoxyde (OsO4), uranyl acetate (UA), ruthenium red (RR), cupromeronic blue (CB) staining with critical electrolytic concentrations (CECs), and the tannic acid-metal salt technique (TAMST) were applied for electron microscopy. Cytochemically, only RR-positive fimbriae in S. sanguis were visualized. By contrast, some types of fimbriae staining were observed in S. aureus glycocalyx: RR-positive, OsO4-positive, tannophilic and CB-positive with ceasing point at 0.3 M MgCl2. The CB staining with CEC, used for the first time for visualization of glycoproteins of bacterial glycocalyx, also reveals intacellular CB-positive substances-probably the monomeric molecules, that is, subunits forming the fimbriae via extracellular assembly. Thus, glycosylated components of the biofilm matrix can be reliably related to single cells. The visualization of intracellular components by CB with CEC enables clear distinction between S. aureus and other bacteria, which do not produce CB-positive substances. The small quantities of tannophilic substances found in S. aureus makes the use of TAMST for the same purpose difficult. The present work protocol enables, for the first time, a partial cytochemical differentiation of the bacterial glycocalyx.


    Directory of Open Access Journals (Sweden)

    Vinicius Orso


    Full Text Available Objective : To analyze aspects related to the diagnostic difficulty in patients with bacterial spondylodiscitis. Methods : Cross-sectional observational study with retrospective data collected in the period from March 2004 to January 2014.Twenty-one patients diagnosed with bacterial spondylodiscitis were analyzed. Results : Women were the most affected, as well as older individuals. Pain in the affected region was the initial symptom in 52% of patients, and 45.5% of the patients had low back pain, and those with dorsal discitis had back pain as the main complaint; the patients with thoracolumbar discitis had pain in that region, and only one patient had sacroiliac discitis. The average time between onset of symptoms and treatment was five months. The lumbar segment was the most affected with 11 cases (52%, followed by thoracolumbar in 24%, dorsal in 19% of cases and a case in the sacroiliac segment. Only seven patients had fever. Pain in the affected level was coincidentally the most common symptom. Conclusions : Early diagnosis of bacterial spondylodiscitis remains a challenge due to the nonspecific signs and symptoms reported by the patient and the wide variability of laboratory results and imaging. The basis for early diagnosis remains the clinical suspicion at the time of initial treatment.

  10. Detergent-compatible bacterial amylases. (United States)

    Niyonzima, Francois N; More, Sunil S


    Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted.

  11. Interaction and modulation of two antagonistic cell wall enzymes of mycobacteria.

    Directory of Open Access Journals (Sweden)

    Erik C Hett

    Full Text Available Bacterial cell growth and division require coordinated cell wall hydrolysis and synthesis, allowing for the removal and expansion of cell wall material. Without proper coordination, unchecked hydrolysis can result in cell lysis. How these opposing activities are simultaneously regulated is poorly understood. In Mycobacterium tuberculosis, the resuscitation-promoting factor B (RpfB, a lytic transglycosylase, interacts and synergizes with Rpf-interacting protein A (RipA, an endopeptidase, to hydrolyze peptidoglycan. However, it remains unclear what governs this synergy and how it is coordinated with cell wall synthesis. Here we identify the bifunctional peptidoglycan-synthesizing enzyme, penicillin binding protein 1 (PBP1, as a RipA-interacting protein. PBP1, like RipA, localizes both at the poles and septa of dividing cells. Depletion of the ponA1 gene, encoding PBP1 in M. smegmatis, results in a severe growth defect and abnormally shaped cells, indicating that PBP1 is necessary for viability and cell wall stability. Finally, PBP1 inhibits the synergistic hydrolysis of peptidoglycan by the RipA-RpfB complex in vitro. These data reveal a post-translational mechanism for regulating cell wall hydrolysis and synthesis through protein-protein interactions between enzymes with antagonistic functions.

  12. Virtual gap dielectric wall accelerator (United States)

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A


    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  13. Creating universes with thick walls (United States)

    Ulvestad, Andrew; Albrecht, Andreas


    We study the dynamics of a spherically symmetric false vacuum bubble embedded in a true vacuum region separated by a “thick wall”, which is generated by a scalar field in a quartic potential. We study the “Farhi-Guth-Guven” (FGG) quantum tunneling process by constructing numerical solutions relevant to this process. The Arnowitt-Deser-Misner mass of the spacetime is calculated, and we show that there is a lower bound that is a significant fraction of the scalar field mass. We argue that the zero mass solutions used to by some to argue against the physicality of the FGG process are artifacts of the thin wall approximation used in earlier work. We argue that the zero mass solutions should not be used to question the viability of the FGG process.

  14. Four ways across the wall

    CERN Document Server

    Pioline, Boris


    An important question in the study of N=2 supersymmetric string or field theories is to compute the jump of the BPS spectrum across walls of marginal stability in the space of parameters or vacua. I survey four apparently different answers for this problem, two of which are based on the mathematics of generalized Donaldson-Thomas invariants (the Kontsevich-Soibelman and the Joyce-Song formulae), while the other two are based on the physics of multi-centered black hole solutions (the Coulomb branch and the Higgs branch formulae, discovered in joint work with J. Manschot and A. Sen). Explicit computations indicate that these formulae are equivalent, though a combinatorial proof is currently lacking.


    Institute of Scientific and Technical Information of China (English)

    Liu Zhao-rong; Liu Bao-yu; Qin Kai-rong


    In this paper, a method was proposed that the wall shear stress of artery could be determined by measuring the centerline axial velocity and radial motion of arterial wall simultaneously.The method is simple in application and can get higher precision when it is used to determine the shear stress of arterial wall in vivo.As an example, the shear stress distribution in periodic oscillatory flow of human carotid was calculated and discussed.The computed results show that the shear stress distribution at any given instant is almost uniform and will be zero at the centerline and tends to maximum at the vessel wall.

  16. Microanalysis of Plant Cell Wall Polysaccharides

    Institute of Scientific and Technical Information of China (English)

    Nicolai Obel; Veronika Erben; Tatjana Schwarz; Stefan Kühne; Andrea Fodor; Markus Pauly


    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first iso-lating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apo-plastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.

  17. Relevant surgical anatomy of the chest wall. (United States)

    Naidu, Babu V; Rajesh, Pala B


    The chest wall, like other regional anatomy, is a remarkable fusion of form and function. Principal functions are the protection of internal viscera and an expandable cylinder facilitating variable gas flow into the lungs. Knowledge of the anatomy of the whole cylinder (ribs, sternum, vertebra, diaphragm, intercostal spaces, and extrathoracic muscles) is therefore not only important in the local environment of a specific chest wall resection but also in its relation to overall function. An understanding of chest wall kinematics might help define the loss of function after resection and the effects of various chest wall substitutes. Therefore, this article is not an exhaustive anatomic description but a focused summary and discussion.

  18. Great attractor really a great wall

    Energy Technology Data Exchange (ETDEWEB)

    Stebbins, A.; Turner, M.S.


    Some of the cosmological consequences are discussed of a late time phase transition which produces light domain walls. The observed peculiar velocity field of the Universe and the observed isotropy of the microwave background radiation severely constrain the wall surface density in such a scenario. The most interesting consequence of such a phase transition is the possibility that the local, coherent streaming motion reported by the Seven Samurai could be explained by the repulsive effect of a relic domain wall with the Hubble volume (the Great Wall).

  19. Skyrmions from Instantons inside Domain Walls

    CERN Document Server

    Eto, M; Ohashi, K; Tong, D; Eto, Minoru; Nitta, Muneto; Ohashi, Keisuke; Tong, David


    Some years ago, Atiyah and Manton described a method to construct approximate Skyrmion solutions from Yang-Mills instantons. Here we present a dynamical realization of this construction using domain walls in a five-dimensional gauge theory. The non-abelian gauge symmetry is broken in each vacuum but restored in the core of the domain wall, allowing instantons to nestle inside the wall. We show that the worldvolume dynamics of the wall is given by the Skyrme model, including the four-derivative term, and the instantons appear as Skyrmions.

  20. Determination of arterial wall shear stress

    Institute of Scientific and Technical Information of China (English)


    The arteries can remodel their structure and function to adapt themselves to the mechanical environment. In various factors that lead to vascular remodeling, the shear stress on the arterial wall induced by the blood flow is of great importance. However, there are many technique difficulties in measuring the wall shear stress directly at present. In this paper, through analyzing the pulsatile blood flow in arteries, a method has been proposed that can determine the wall shear stress quantitatively by measuring the velocity on the arterial axis, and that provides a necessary means to discuss the influence of arterial wall shear stress on vascular remodeling.

  1. Molecular regulation of plant cell wall extensibility (United States)

    Cosgrove, D. J.


    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  2. False color viewing device (United States)

    Kronberg, J.W.


    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage. 7 figs.

  3. Heuristic reevaluation of the bacterial hypothesis of peptic ulcer disease in the 1950s. (United States)

    Šešelja, Dunja; Straßer, Christian


    Throughout the first half of the twentieth century the research on peptic ulcer disease (PUD) focused on two rivaling hypothesis: the "acidity" and the "bacterial" one. According to the received view, the latter was dismissed during the 1950s only to be revived with Warren's and Marshall's discovery of Helicobacter pylori in the 1980s. In this paper we investigate why the bacterial hypothesis was largely abandoned in the 1950s, and whether there were good epistemic reasons for its dismissal. Of special interest for our research question is Palmer's 1954 large-scale study, which challenged the bacterial hypothesis with serious counter-evidence, and which by many scholars is considered as the shifting point in the research on PUD. However, we show that: (1) The perceived refutatory impact of Palmer's study was disproportionate to its methodological rigor. This undermines its perceived status as a crucial experiment against the bacterial hypothesis. (2) In view of this and other considerations we argue that the bacterial hypothesis was worthy of pursuit in the 1950s.

  4. Electromagnetic approaches to wall characterization, wall mitigation, and antenna design for through-the-wall radar systems (United States)

    Thajudeen, Christopher

    Through-the-wall imaging (TWI) is a topic of current interest due to its wide range of public safety, law enforcement, and defense applications. Among the various available technologies such as, acoustic, thermal, and optical imaging, which can be employed to sense and image targets of interest, electromagnetic (EM) imaging, in the microwave frequency bands, is the most widely utilized technology and has been at the forefront of research in recent years. The primary objectives for any Through-the-Wall Radar Imaging (TWRI) system are to obtain a layout of the building and/or inner rooms, detect if there are targets of interest including humans or weapons, determine if there are countermeasures being employed to further obscure the contents of a building or room of interest, and finally to classify the detected targets. Unlike conventional radar scenarios, the presence of walls, made of common construction materials such as brick, drywall, plywood, cinder block, and solid concrete, adversely affects the ability of any conventional imaging technique to properly image targets enclosed within building structures as the propagation through the wall can induce shadowing effects on targets of interest which may result in image degradation, errors in target localization, and even complete target masking. For many applications of TWR systems, the wall ringing signals are strong enough to mask the returns from targets not located a sufficient distance behind the wall, beyond the distance of the wall ringing, and thus without proper wall mitigation, target detection becomes extremely difficult. The results presented in this thesis focus on the development of wall parameter estimation, and intra-wall and wall-type characterization techniques for use in both the time and frequency domains as well as analysis of these techniques under various real world scenarios such as reduced system bandwidth scenarios, various wall backing scenarios, the case of inhomogeneous walls, presence

  5. Bacterial adhesion and biofilms on surfaces

    Institute of Scientific and Technical Information of China (English)

    Trevor Roger Garrett; Manmohan Bhakoo; Zhibing Zhang


    Bacterial adhesion has become a significant problem in industry and in the domicile,and much research has been done for deeper understanding of the processes involved.A generic biological model of bacterial adhesion and population growth called the bacterial biofilm growth cycle,has been described and modified many times.The biofilm growth cycle encompasses bacterial adhesion at all levels,starting with the initial physical attraction of bacteria to a substrate,and ending with the eventual liberation of cell dusters from the biofilm matrix.When describing bacterial adhesion one is simply describing one or more stages of biofilm development,neglecting the fact that the population may not reach maturity.This article provides an overview of bacterial adhesion.cites examples of how bac-terial adhesion affects industry and summarises methods and instrumentation used to improve our understanding of the adhesive prop-erties of bacteria.

  6. Domain wall solitons and Hopf algebraic translational symmetries in noncommutative field theories (United States)

    Sasai, Yuya; Sasakura, Naoki


    Domain wall solitons are the simplest topological objects in field theories. The conventional translational symmetry in a field theory is the generator of a one-parameter family of domain wall solutions, and induces a massless moduli field which propagates along a domain wall. We study similar issues in braided noncommutative field theories possessing Hopf algebraic translational symmetries. As a concrete example, we discuss a domain wall soliton in the scalar ϕ4 braided noncommutative field theory in Lie-algebraic noncommutative space-time, [xi,xj]=2iκγijkxk (i,j,k=1,2,3), which has a Hopf algebraic translational symmetry. We first discuss the existence of a domain wall soliton in view of Derrick’s theorem, and construct explicitly a one-parameter family of solutions in perturbation of the noncommutativity parameter κ. We then find the massless moduli field which propagates on the domain wall soliton. We further extend our analysis to the general Hopf algebraic translational symmetry.

  7. Domain wall solitons and Hopf algebraic translational symmetries in noncommutative field theories

    CERN Document Server

    Sasai, Yuya


    Domain wall solitons are the simplest topological objects in field theories. The conventional translational symmetry in a field theory is the generator of a one-parameter family of domain wall solutions, and induces a massless moduli field which propagates along a domain wall. We study similar issues in braided noncommutative field theories possessing Hopf algebraic translational symmetries. As a concrete example, we discuss a domain wall soliton in the scalar phi^4 braided noncommutative field theory in Lie-algebraic noncommutative spacetime, [x^i,x^j]=2i kappa epsilon^{ijk}x_k (i,j,k=1,2,3), which has a Hopf algebraic translational symmetry. We first discuss the existence of a domain wall soliton in view of Derrick's theorem, and construct explicitly a one-parameter family of solutions in perturbation of the noncommutativity parameter kappa. We then find the massless moduli field which propagates on the domain wall soliton. We further extend our analysis to the general Hopf algebraic translational symmetry.

  8. Global learning communities: Science classrooms without walls (United States)

    Kerlin, Steven C.

    The physical walls of a classroom have typically acted as the boundary of school science learning communities. The participants in these learning communities are the students and the teacher in individual classrooms. These participants contribute to scientific discourse about a specific content area under study. Scientific learning communities, on the other hand, long ago moved beyond the confines of a laboratory, meeting room or any one physical location. Scientists engage in ongoing discourse with many members of the scientific community in different locations all over the world. These same technological advances can now be used by science teachers and students to venture out of their classroom and become involved in a global learning community (GLC). The context of this study, From Local to Extreme Environments (FLEXE), is a science curriculum that attempts to expand the boundaries of the science classroom and involve students in a GLC. FLEXE participants are not limited to conversations with students and a teacher in one classroom. Students and teachers in many classrooms in multiple countries, deep-sea scientists, and university education researchers are involved in the FLEXE community. This study was framed by theories of sociocultural learning, discourse and learning communities. These theoretical research perspectives acted as lenses for the examination of communication of student participants in a GLC. Student views of their collaboration and their scientific writing were studied within a principle contrast of U.S. students in domestic or international class partnerships. A mixed methods approach was used to study the GLC established in the FLEXE program. Statistical analyses were used with "quick questions" (QQs) that follow each online session, in order to characterize students' views of the online global learning environment. Argumentation analysis was used to examine and compare how students supported their scientific claims with a number of different

  9. Bacterial morphologies in carbonaceous meteorites and comet dust (United States)

    Wickramasinghe, Chandra; Wallis, Max K.; Gibson, Carl H.; Wallis, Jamie; Al-Mufti, Shirwan; Miyake, Nori


    Three decades ago the first convincing evidence of microbial fossils in carbonaceous chondrites was discovered and reported by Hans Dieter Pflug and his collaborators. In addition to morphology, other data, notably laser mass spectroscopy, confirmed the identification of such structures as putative bacterial fossils. Balloon-borne cryosampling of the stratosphere enables recovery of fragile cometary dust aggregates with their structure and carbonaceous matter largely intact. SEM studies of texture and morphology of particles in the Cardiff collection, together with EDX identifications, show two main types of putative bio-fossils - firstly organic-walled hollow spheres around 10μm across, secondly siliceous diatom skeletons similar to those found in carbonaceous chondrites and terrestrial sedimentary rocks and termed 'acritarchs'. Since carbonaceous chondrites (particularly Type 1 chondrites) are thought to be extinct comets the data reviewed in this article provide strong support for theories of cometary panspermia.

  10. Bacterial morphologies in carbonaceous meteorites and comet dust

    CERN Document Server

    Wickramasinghe, N Chandra; Gibson, Carl H; Wallis, Jamie; Al-Mufti, Shirwan; Miyake, Nori


    Three decades ago the first convincing evidence of microbial fossils in carbonaceous chondrites was discovered and reported by Hans Dieter Pflug and his collaborators. In addition to morphology, other data, notably laser mass spectroscopy, confirmed the identification of such structures as putative bacterial fossils. Balloon-borne cryosampling of the stratosphere enables recovery of fragile cometary dust aggregates with their structure and carbonaceous matter largely intact. Scanning electron microscope studies of texture and morphology of particles in the Cardiff collection, together with Energy Dispersive X-ray identifications, show two main types of putative bio-fossils - firstly organic-walled hollow spheres around 10 microns across, secondly siliceous diatom skeletons similar to those found in carbonaceous chondrites and terrestrial sedimentary rocks and termed "acritarchs". Since carbonaceous chondrites (particularly Type 1 chondrites) are thought to be extinct comets the data reviewed in this article p...

  11. Interconnections between cell wall polymers, wall mechanics, and cortical microtubules: Teasing out causes and consequences. (United States)

    Xiao, Chaowen; Anderson, Charles T


    In plants, cell wall components including cellulose, hemicelluloses, and pectins interact with each other to form complex extracellular network structures that control cell growth and maintain cell shape. However, it is still not clear exactly how different wall polymers interact, how the conformations and interactions of cell wall polymers relate to wall mechanics, and how these factors impinge on intracellular structures such as the cortical microtubule cytoskeleton. Here, based on studies of Arabidopsis thaliana xxt1 xxt2 mutants, which lack detectable xyloglucan in their walls and display aberrant wall mechanics, altered cellulose patterning and biosynthesis, and reduced cortical microtubule stability, we discuss the potential relationships between cell wall biosynthesis, wall mechanics, and cytoskeletal dynamics in an effort to better understand their roles in controlling plant growth and morphogenesis.

  12. Responses of synovial fluid and peripheral blood mononuclear cells to bacterial antigens and autologous antigen presenting cells. (United States)

    Klasen, I S; Melief, M J; Swaak, T J; Severijnen, A J; Hazenberg, M P


    The specificity of T cells in the inflamed joints of patients with rheumatoid arthritis (RA) has been the subject of much study. Bacterial antigens are suspect in the aetiology of rheumatic diseases. The responsiveness of the mononuclear cell fraction of peripheral blood and synovial fluid of patients with RA and of patients with rheumatic diseases other than RA to bacterial antigens such as cell wall fragments of the anaerobic intestinal flora, cell wall fragments of Streptococcus pyogenes, intestinal flora derived peptidoglycan polysaccharide complexes, the 65 kilodalton protein of Mycobacterium tuberculosis, and muramyldipeptide was investigated. No significant difference in response was found to all these bacterial antigens in the synovial fluid of patients with RA compared with the responses in patients with other rheumatic diseases. The highest responsiveness in the synovial fluid of the patients with RA was to the streptococcal cell wall fragments and to the 65 kilodalton protein. Higher responses to several bacterial antigens in the synovial fluid of patients with RA were found compared with peripheral blood from the same patient group. The antigen presenting cell population of the synovial fluid in patients with RA and the patients with other rheumatic diseases was found to be stimulatory for autologous peripheral blood T cells even in the absence of antigen. This suggests an important role for the synovial antigen presenting cell in the aetiology of inflammatory joint diseases. PMID:8447692

  13. When Walls are No Longer Barriers: Perception of Wall Height in Parkour


    Taylor, J. Eric T.; Witt, Jessica; Sugovic, Mila


    Through training, skilled parkour athletes (traceurs) overcome everyday obstacles, such as walls, that are typically insurmountable. Traceurs and untrained novices estimated the height of walls and reported their anticipated ability to climb the wall. The traceurs perceived the walls as shorter than did novices. This result suggests that perception is scaled by the perceiver’s anticipated ability to act, and is consistent with the action-specific account of perception.

  14. Bacterial meningitis and diseases caused by bacterial toxins. (United States)

    Rings, D M


    Bacterial meningitis most commonly occurs in young calves secondary to septicemia. Clinical signs of hyperirritability are usually seen. Meningitis can be confirmed by cerebrospinal fluid analysis and culture or by necropsy. Intoxications by the exotoxins of Clostridium perfringens types C and D, C. botulinum, and C. tetani are difficult to confirm. The clinical signs of these intoxications vary from flaccid paralysis (botulism) to muscular rigidity (tetanus). Treatment of affected cattle has been unrewarding in botulism and enterotoxemia, whereas early aggressive treatment of tetanus cases can often be successfully resolved. Botulism and enterotoxemia can be proved using mouse inoculation tests, whereas tetanus is diagnosed largely by ruling out other diseases.

  15. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)


    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  16. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.


    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  17. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection (United States)

    Chen, Zhuo; Zhang, Yaxin; Wang, Dong; Li, Linsen; Zhou, Shanyong; Huang, Joy H.; Chen, Jincan; Hu, Ping; Huang, Mingdong


    Photodynamic antimicrobial chemotherapy (PACT) is an effective method for killing bacterial cells in view of the increasing problem of multiantibiotic resistance. We herein reported the PACT effect on bacteria involved in skin infections using a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-Lys). Compared with its anionic ZnPc counterpart, ZnPc-Lys showed an enhanced antibacterial efficacy in vitro and in an animal model of localized infection. Meanwhile, ZnPc-Lys was observed to significantly reduce the wound skin blood flow during wound healing, indicating an anti-inflammation activity. This study provides new insight on the mechanisms of PACT in bacterial skin infection.

  18. Phenotypic resistance and the dynamics of bacterial escape from phage control

    DEFF Research Database (Denmark)

    Bull, James J.; Vegge, Christina Skovgaard; Schmerer, Matthew


    The canonical view of phage - bacterial interactions in dense, liquid cultures is that the phage will eliminate most of the sensitive cells; genetic resistance will then ascend to restore high bacterial densities. Yet there are various mechanisms by which bacteria may remain sensitive to phages...... mathematical models of these processes and suggest how different types of this 'phenotypic' resistance may be elucidated. We offer preliminary in vitro studies of a previously characterized E. coli model system and Campylobacter jejuni illustrating apparent phenotypic resistance. As phenotypic resistance may...

  19. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates. (United States)

    Delaire, Caroline; van Genuchten, Case M; Amrose, Susan E; Gadgil, Ashok J


    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment option for groundwater containing arsenic and bacterial contamination. However, the mechanisms of bacteria attenuation and the impact of major groundwater ions are not well understood. In this work, using the model indicator Escherichia coli (E. coli), we show that physical removal via enmeshment in EC precipitate flocs is the primary process of bacteria attenuation in the presence of HCO3(-), which significantly inhibits inactivation, possibly due to a reduction in the lifetime of reactive oxidants. We demonstrate that the adhesion of EC precipitates to cell walls, which results in bacteria encapsulation in flocs, is driven primarily by interactions between EC precipitates and phosphate functional groups on bacteria surfaces. In single solute electrolytes, both P (0.4 mM) and Ca/Mg (1-13 mM) inhibited the adhesion of EC precipitates to bacterial cell walls, whereas Si (0.4 mM) and ionic strength (2-200 mM) did not impact E. coli attenuation. Interestingly, P (0.4 mM) did not affect E. coli attenuation in electrolytes containing Ca/Mg, consistent with bivalent cation bridging between bacterial phosphate groups and inorganic P sorbed to EC precipitates. Finally, we found that EC precipitate adhesion is largely independent of cell wall composition, consistent with comparable densities of phosphate functional groups on Gram-positive and Gram-negative cells. Our results are critical to predict the performance of Fe-EC to eliminate bacterial contaminants from waters with diverse chemical compositions.

  20. Multi-view TWRI scene reconstruction using a joint Bayesian sparse approximation model (United States)

    Tang, V. H.; Bouzerdoum, A.; Phung, S. L.; Tivive, F. H. C.


    This paper addresses the problem of scene reconstruction in conjunction with wall-clutter mitigation for com- pressed multi-view through-the-wall radar imaging (TWRI). We consider the problem where the scene behind- the-wall is illuminated from different vantage points using a different set of frequencies at each antenna. First, a joint Bayesian sparse recovery model is employed to estimate the antenna signal coefficients simultaneously, by exploiting the sparsity and inter-signal correlations among antenna signals. Then, a subspace-projection technique is applied to suppress the signal coefficients related to the wall returns. Furthermore, a multi-task linear model is developed to relate the target coefficients to the image of the scene. The composite image is reconstructed using a joint Bayesian sparse framework, taking into account the inter-view dependencies. Experimental results are presented which demonstrate the effectiveness of the proposed approach for multi-view imaging of indoor scenes using a reduced set of measurements at each view.

  1. Views from Space (United States)

    Kitmacher, Gary H.


    aircraft like the high-flying U-2 spy planes for. Weather satellites permitted weather predictions as never before. Satellites were developed in the first ten years of the space program for earth resources and mapping. In this paper and presentation we will observe some of the best views taken in space and from space...of the Earth, and the moon and beyond. We will travel in space with our astronauts. Some of the photographs we will see are famous and others not nearly so. We will discuss some of the history behind the pictures and some of the benefits that have been gained from the views from space.

  2. Bloodstream infections during the onset of necrotizing enterocolitis and their relation with the pro-inflammatory response, gut wall integrity and severity of disease in NEC

    NARCIS (Netherlands)

    Heida, F. H.; Hulscher, J. B. F.; Schurink, M.; van Vliet, M. J.; Kooi, E. M. W.; Kasper, D. C.; Pones, M.; Bos, A. F.; Benkoe, T. M.


    Introduction: Bacterial involvement is believed to play a pivotal role in the development and disease outcome of NEC. However, whether a bloodstream infection (BSI) predisposes to NEC (e.g. by activating the pro-inflammatory response) or result from the loss of gut wall integrity during NEC developm

  3. Bloodstream infections during the onset of necrotizing enterocolitis and their relation with the pro-inflammatory response, gut wall integrity and severity of disease in NEC

    NARCIS (Netherlands)

    Heida, F.H.; Hulscher, J.B.; Schurink, M.; Vliet, M.J. van; Kooi, E.M.; Kasper, D.C.; Pones, M.; Bos, A.F; Benkoe, T.M.


    INTRODUCTION: Bacterial involvement is believed to play a pivotal role in the development and disease outcome of NEC. However, whether a bloodstream infection (BSI) predisposes to NEC (e.g. by activating the pro-inflammatory response) or result from the loss of gut wall integrity during NEC developm

  4. Designing and building walls with Rammed Earth

    NARCIS (Netherlands)

    Galiouna, E.A.; Hammer, L.; Piscitelli, G.


    This "designers' manual" is made during the TIDO-course AR0533 Innovation & Sustainability. Today, a lot of people in the world live in earth dwellings. There are many different techniques for constructing solid walls of raw earth (adobe, bale, cob, mud wall, light clay, wattle and daub, earth bags

  5. THz reflectometric imaging of medieval wall paintings

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Jepsen, Peter Uhd


    Terahertz time-domain reflectometry has been applied to the investigation of a medieval Danish wall painting. The technique has been able to detect the presence of carbonblack layer on the surface of the wall painting and a buried insertion characterized by high reflectivity values has been found...

  6. Mechanics of the Toxoplasma gondii oocyst wall (United States)

    The ability of microorganisms to survive under extreme conditions is closely related to the physicochemical properties of their wall. In the ubiquitous protozoan parasite Toxoplasma gondii, the oocyst stage possesses a bilayered wall that protects the dormant but potentially infective parasites from...

  7. Moduli of Monopole Walls and Amoebas

    CERN Document Server

    Cherkis, Sergey A


    We study doubly-periodic monopoles, also called monopole walls, determining their spectral data and computing the dimensions of their moduli spaces. Using spectral data we identify the moduli, and compare our results with a perturbative analysis. We also identify an SL(2,Z) action on monopole walls, in which the S transformation corresponds to the Nahm transform.

  8. Domain Wall Propagation through Spin Wave Emission

    NARCIS (Netherlands)

    Wang, X.S.; Yan, P.; Shen, Y.H.; Bauer, G.E.W.; Wang, X.R.


    We theoretically study field-induced domain wall motion in an electrically insulating ferromagnet with hard- and easy-axis anisotropies. Domain walls can propagate along a dissipationless wire through spin wave emission locked into the known soliton velocity at low fields. In the presence of damping

  9. [The cell wall of Coelastrum (Chlorophycees)]. (United States)

    Reymond, O


    The cell wall of Coelastrum is usually composed of three layers. The outermost layer was studied most extensively. It consists of erect tubules which often bear long bristles whose function may be to stabilize the algae in its enviroment. The cell wall can modify its morphology according to the enviroment.

  10. Moduli of monopole walls and amoebas (United States)

    Cherkis, Sergey A.; Ward, Richard S.


    We study doubly-periodic monopoles, also called monopole walls, determining their spectral data and computing the dimensions of their moduli spaces. Using spectral data we identify the moduli, and compare our results with a perturbative analysis. We also identify an SL(2, {Z}) action on monopole walls, in which the S transformation corresponds to the Nahm transform.

  11. Risk Assessment of Energy-Efficient Walls

    Energy Technology Data Exchange (ETDEWEB)

    Pallin, Simon B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kehrer, Manfred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    This multi-year project aims to provide the residential construction industry with energy-efficient wall designs that are moisture durable. The present work focused on the initial step of this project, which is to develop a moisture durability protocol that identifies energy efficient wall designs that have a low probability of experiencing moisture problems.

  12. Detection of Anomalies in Diaphragm Walls

    NARCIS (Netherlands)

    Spruit, R.; Van Tol, F.; Broere, W.


    If a calamity with a retaining wall occurs, the impact on surrounding buildings and infrastructure is at least an order of magnitude more severe than without the calamity. In 2005 and 2006 major leaks in the retaining walls of underground stations in Amsterdam and Rotterdam occurred. After these cas

  13. Radiation Damping at a Bubble Wall

    CERN Document Server

    Lee, J; Lee, C H; Jang, J; Lee, Jae-weon; Kim, Kyungsub; Lee, Chul H.; Jang, Ji-ho


    The first order phase transition proceeds via nucleation and growth of true vacuum bubbles. When charged particles collide with the bubble they could radiate electromagnetic wave. We show that, due to an energy loss of the particles by the radiation, the damping pressure acting on the bubble wall depends on the velocity of the wall even in a thermal equilibrium state.

  14. Full size testing of sheet pile walls

    NARCIS (Netherlands)

    Kuilen, J.W.G. van de; Linden, M.L.R. van der; Katsma, H.; Stolle, P.


    Azobé (Lophira alata) is widely used in timber sheet pile walls in the Netherlands. The boards in these walls are coupled and therefore load-sharing can be expected. A simulation model based on the finite element method DIANA (DIANA, 1992) was developed and load-sharing could be calculated. To check

  15. Statistical analysis of silo wall pressures

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Berntsen, Kasper Nikolaj


    Previously published silo wall pressure measurements during plug flow of barley in alarge concrete silo are re-analysed under the hypothesis that the wall pressures are gamma-distributed.The fits of the gamma distribution type to the local pressure data from each measuring cell are satisfactory...

  16. Bacterial contamination of anesthesia machines’ internal breathing-circuit-systems (United States)

    Spertini, Verena; Borsoi, Livia; Berger, Jutta; Blacky, Alexander; Dieb-Elschahawi, Magda; Assadian, Ojan


    Background: Bacterial contamination of anesthesia breathing machines and their potential hazard for pulmonary infection and cross-infection among anesthetized patients has been an infection control issue since the 1950s. Disposable equipment and bacterial filters have been introduced to minimize this risk. However, the machines’ internal breathing-circuit-system has been considered to be free of micro-organisms without providing adequate data supporting this view. The aim of the study was to investigate if any micro-organisms can be yielded from used internal machines’ breathing-circuit-system. Based on such results objective reprocessing intervals could be defined. Methods: The internal parts of 40 anesthesia machines’ breathing-circuit-system were investigated. Chi-square test and logistic regression analysis were performed. An on-site process observation of the re-processing sequence was conducted. Results: Bacterial growth was found in 17 of 40 machines (43%). No significant difference was ascertained between the contamination and the processing intervals. The most common contaminants retrieved were coagulase negative Staphylococci, aerobe spore forming bacteria and Micrococcus species. In one breathing-circuit-system, Escherichia coli, and in one further Staphylococcus aureus were yielded. Conclusion: Considering the availability of bacterial filters installed on the outlet of the breathing-circuit-systems, the type of bacteria retrieved and the on-site process observation, we conclude that the contamination found is best explained by a lack of adherence to hygienic measures during and after re-processing of the internal breathing-circuit-system. These results support an extension of the re-processing interval of the anesthesia apparatus longer than the manufacturer’s recommendation of one week. However, the importance of adherence to standard hygienic measures during re-processing needs to be emphasized. PMID:22242095

  17. NetView technical research (United States)


    This is the Final Technical Report for the NetView Technical Research task. This report is prepared in accordance with Contract Data Requirements List (CDRL) item A002. NetView assistance was provided and details are presented under the following headings: NetView Management Systems (NMS) project tasks; WBAFB IBM 3090; WPAFB AMDAHL; WPAFB IBM 3084; Hill AFB; McClellan AFB AMDAHL; McClellan AFB IBM 3090; and Warner-Robins AFB.

  18. SPR salt wall leaching experiments in lab-scale vessel : data report.

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Stephen Walter; O' Hern, Timothy John; Hartenberger, Joel David


    During cavern leaching in the Strategic Petroleum Reserve (SPR), injected raw water mixes with resident brine and eventually interacts with the cavern salt walls. This report provides a record of data acquired during a series of experiments designed to measure the leaching rate of salt walls in a labscale simulated cavern, as well as discussion of the data. These results should be of value to validate computational fluid dynamics (CFD) models used to simulate leaching applications. Three experiments were run in the transparent 89-cm (35-inch) ID diameter vessel previously used for several related projects. Diagnostics included tracking the salt wall dissolution rate using ultrasonics, an underwater camera to view pre-installed markers, and pre- and post-test weighing and measuring salt blocks that comprise the walls. In addition, profiles of the local brine/water conductivity and temperature were acquired at three locations by traversing conductivity probes to map out the mixing of injected raw water with the surrounding brine. The data are generally as expected, with stronger dissolution when the salt walls were exposed to water with lower salt saturation, and overall reasonable wall shape profiles. However, there are significant block-to-block variations, even between neighboring salt blocks, so the averaged data are considered more useful for model validation. The remedial leach tests clearly showed that less mixing and longer exposure time to unsaturated water led to higher levels of salt wall dissolution. The data for all three tests showed a dividing line between upper and lower regions, roughly above and below the fresh water injection point, with higher salt wall dissolution in all cases, and stronger (for remedial leach cases) or weaker (for standard leach configuration) concentration gradients above the dividing line.

  19. 2003 Plant Cell Walls Gordon Conference

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Cosgrove


    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  20. Wind Load Test of Earthbag Wall

    Directory of Open Access Journals (Sweden)

    Ryan Scott


    Full Text Available Earthbag construction is a sustainable, low-cost, housing option for developing countries. Earthbag structures are built of individual soil-filled fabric bags (i.e., sand bags stacked in a running bond pattern. Once stacked, earthbags are compacted and the soil inside the bags is dried in-place to form earthen bricks. Barbed wires are placed between each course to affect shear transfer within the wall. Results of an out-of-plane load test on a full-scale earthbag wall are presented in this paper. The wall was subjected to out-of-plane pressure up to 3.16 kPa, which resulted in plastic deformations up to 50 mm. The wall did not collapse during loading. Wall behavior and force transfer mechanisms are discussed.

  1. New Paranal Views (United States)


    Last year saw very good progress at ESO's Paranal Observatory , the site of the Very Large Telescope (VLT). The third and fourth 8.2-m Unit Telescopes, MELIPAL and YEPUN had "First Light" (cf. PR 01/00 and PR 18/00 ), while the first two, ANTU and KUEYEN , were busy collecting first-class data for hundreds of astronomers. Meanwhile, work continued towards the next phase of the VLT project, the combination of the telescopes into the VLT Interferometer. The test instrument, VINCI (cf. PR 22/00 ) is now being installed in the VLTI Laboratory at the centre of the observing platform on the top of Paranal. Below is a new collection of video sequences and photos that illustrate the latest developments at the Paranal Observatory. The were obtained by the EPR Video Team in December 2000. The photos are available in different formats, including "high-resolution" that is suitable for reproduction purposes. A related ESO Video News Reel for professional broadcasters will soon become available and will be announced via the usual channels. Overview Paranal Observatory (Dec. 2000) Video Clip 02a/01 [MPEG - 4.5Mb] ESO PR Video Clip 02a/01 "Paranal Observatory (December 2000)" (4875 frames/3:15 min) [MPEG Video+Audio; 160x120 pix; 4.5Mb] [MPEG Video+Audio; 320x240 pix; 13.5 Mb] [RealMedia; streaming; 34kps] [RealMedia; streaming; 200kps] ESO Video Clip 02a/01 shows some of the construction activities at the Paranal Observatory in December 2000, beginning with a general view of the site. Then follow views of the Residencia , a building that has been designed by Architects Auer and Weber in Munich - it integrates very well into the desert, creating a welcome recreational site for staff and visitors in this harsh environment. The next scenes focus on the "stations" for the auxiliary telescopes for the VLTI and the installation of two delay lines in the 140-m long underground tunnel. The following part of the video clip shows the start-up of the excavation work for the 2.6-m VLT Survey

  2. An ultra-high temperature flow-through capillary device for bacterial spore lysis. (United States)

    Hukari, Kyle W; Patel, Kamlesh D; Renzi, Ronald F; West, Jay A A


    Rapid and specific characterization of bacterial endospores is dependent on the ability to rupture the cell wall to enable analysis of the intracellular components. In particular, bacterial spores from the bacillus genus are inherently robust and very difficult to lyze or solubilize. Standard protocols for spore inactivation include chemical treatment, sonication, pressure, and thermal lysis. Although these protocols are effective for the inactivation of these agents, they are less well suited for sample preparation for analysis using proteomic and genomic approaches. To overcome this difficulty, we have designed a simple capillary device to perform thermal lysis of bacterial spores. Using this device, we were able to super heat (195 degrees C) an ethylene glycol lysis buffer to perform rapid flow-through rupture and solubilization of bacterial endospores. We demonstrated that the lysates from this preparation method are compatible with CGE as well as DNA amplification analysis. We further demonstrated the flow-through lysing device could be directly coupled to a miniaturized electrophoresis instrument for integrated sample preparation and analysis. In this arrangement, we were enabled to perform sample lysis, fluorescent dye labeling, and protein electrophoresis analysis of bacterial spores in less than 10 min. The described sample preparation device is rapid, simple, inexpensive, and easily integratable with various microfluidic devices.

  3. Effect of cell physicochemical characteristics and motility on bacterial transport in groundwater (United States)

    Becker, M.W.; Collins, S.A.; Metge, D.W.; Harvey, R.W.; Shapiro, A.M.


    The influence of physicochemical characteristics and motility on bacterial transport in groundwater were examined in flow-through columns. Four strains of bacteria isolated from a crystalline rock groundwater system were investigated, with carboxylate-modified and amidine-modified latex microspheres and bromide as reference tracers. The bacterial isolates included a gram-positive rod (ML1), a gram-negative motile rod (ML2), a nonmotile mutant of ML2 (ML2m), and a gram-positive coccoid (ML3). Experiments were repeated at two flow velocities, in a glass column packed with glass beads, and in another packed with iron-oxyhydroxide coated glass beads. Bacteria breakthrough curves were interpreted using a transport equation that incorporates a sorption model from microscopic observation of bacterial deposition in flow-cell experiments. The model predicts that bacterial desorption rate will decrease exponentially with the amount of time the cell is attached to the solid surface. Desorption kinetics appeared to influence transport at the lower flow rate, but were not discernable at the higher flow rate. Iron-oxyhydroxide coatings had a lower-than-expected effect on bacterial breakthrough and no effect on the microsphere recovery in the column experiments. Cell wall type and shape also had minor effects on breakthrough. Motility tended to increase the adsorption rate, and decrease the desorption rate. The transport model predicts that at field scale, desorption rate kinetics may be important to the prediction of bacteria transport rates. ?? 2003 Elsevier B.V. All rights reserved.

  4. Unified theory of bacterial sialometabolism: how and why bacteria metabolize host sialic acids. (United States)

    Vimr, Eric R


    Sialic acids are structurally diverse nine-carbon ketosugars found mostly in humans and other animals as the terminal units on carbohydrate chains linked to proteins or lipids. The sialic acids function in cell-cell and cell-molecule interactions necessary for organismic development and homeostasis. They not only pose a barrier to microorganisms inhabiting or invading an animal mucosal surface, but also present a source of potential carbon, nitrogen, and cell wall metabolites necessary for bacterial colonization, persistence, growth, and, occasionally, disease. The explosion of microbial genomic sequencing projects reveals remarkable diversity in bacterial sialic acid metabolic potential. How bacteria exploit host sialic acids includes a surprisingly complex array of metabolic and regulatory capabilities that is just now entering a mature research stage. This paper attempts to describe the variety of bacterial sialometabolic systems by focusing on recent advances at the molecular and host-microbe-interaction levels. The hope is that this focus will provide a framework for further research that holds promise for better understanding of the metabolic interplay between bacterial growth and the host environment. An ability to modify or block this interplay has already yielded important new insights into potentially new therapeutic approaches for modifying or blocking bacterial colonization or infection.

  5. Normal left ventricular wall motion measured with two-dimensional myocardial tagging

    DEFF Research Database (Denmark)

    Qi, P; Thomsen, C; Ståhlberg, F;


    Using a myocardial tagging technique, normal left ventricular wall motion was studied in 3 true short axis views and a double oblique 4-chamber view in 14 and 11 volunteers, respectively. Three orthogonal directions of left ventricular motion were observed throughout the systole; a concentric...... contraction towards the center of the left ventricle, a motion of the base of the heart towards the apex, and a rotation of the left ventricle around its long axis. The direction of left ventricular rotation changed from early systole to late systole. The base and middle levels of the left ventricle rotated...... that MR imaging with myocardial tagging is a method that can be used to study normal left ventricular wall motion, and that is promising for future use in patient groups....

  6. Mirror, mirror on the wall

    CERN Multimedia


    RICH 2, one of the two Ring Imaging Cherenkov detectors of the LHCb experiment, is being prepared to join the other detector elements ready for the first proton-proton collisions at LHC. The mirrors of the RICH2 detector are meticulously assembled in a clean room.In a large dark room, men in white move around an immense structure some 7 metres high, 10 metres wide and nearly 2.5 metres deep. Apparently effortlessly, they are installing the two large high-precision spherical mirrors. These mirrors will focus Cherenkov light, created by the charged particles that will traverse this detector, onto the photon detectors. Each spherical mirror wall is made up of facets like a fly's eye. Twenty-eight individual thin glass mirrors will all point to the same point in space to within a few micro-radians. The development of these mirrors has been technically demanding : Ideally they should be massless, sturdy, precise and have high reflectivity. In practice, though not massless, they are made from a mere 6 mm thin gl...

  7. Bacterial bioaugmentation for improving methane and hydrogen production from microalgae (United States)


    Background The recalcitrant cell walls of microalgae may limit their digestibility for bioenergy production. Considering that cellulose contributes to the cell wall recalcitrance of the microalgae Chlorella vulgaris, this study investigated bioaugmentation with a cellulolytic and hydrogenogenic bacterium, Clostridium thermocellum, at different inoculum ratios as a possible method to improve CH4 and H2 production of microalgae. Results Methane production was found to increase by 17?~?24% with the addition of C. thermocellum, as a result of enhanced cell disruption and excess hydrogen production. Furthermore, addition of C. thermocellum enhanced the bacterial diversity and quantities, leading to higher fermentation efficiency. A two-step process of addition of C. thermocellum first and methanogenic sludge subsequently could recover both hydrogen and methane, with a 9.4% increase in bioenergy yield, when compared with the one-step process of simultaneous addition of C. thermocellum and methanogenic sludge. The fluorescence peaks of excitation-emission matrix spectra associated with chlorophyll can serve as biomarkers for algal cell degradation. Conclusions Bioaugmentation with C. thermocellum improved the degradation of C. vulgaris biomass, producing higher levels of methane and hydrogen. The two-step process, with methanogenic inoculum added after the hydrogen production reached saturation, was found to be an energy-efficiency method for hydrogen and methane production. PMID:23815806

  8. Bacterial coronal leakage after obturation with three root canal sealers. (United States)

    Timpawat, S; Amornchat, C; Trisuwan, W R


    The purpose of this study was to compare the bacterial leakage of root canals obturated with three root canal sealers, using Endodontalis faecalis as a microbial tracer to determine the length of time for bacteria to penetrate through the obturated root canal to the root apex. Seventy-five, single-rooted teeth with straight root canals had the crown cut off at the cementoenamel junction. Root canals were instrumented by a step-back technique. The prepared teeth were randomly divided into 3 groups of 19 teeth each and another 2 groups as positive and negative controls (9 teeth each). The experimental groups were dependent on the sealer used: AH-Plus, Apexit, and Ketac-Endo. The root canals were obturated using a lateral condensation technique. After 24 h the teeth were attached to microcentrifuge tubes with 2 mm of the root apex submerged in Brain Heart Infusion broth in glass test tubes. The coronal portions of the root canal filling materials were placed in contact with E. faecalis. The teeth were observed for bacterial leakage daily for 30 and 60 days. With the chi2 test for comparing pairs of groups at the 0.05 level (p 0.06), but Apexit had significantly higher leakage (p 0.05), but Apexit leaked more than AH-Plus. The conclusion drawn from this experiment was that epoxy resin root canal sealer was found to be more adaptable to the root canal wall and filling material than a calcium hydroxide sealer when bacterial coronal leakage was studied.

  9. When Iron Crumbles: Berlin and the Wall. A Social Studies Unit Recommended for Grades 9-12 and Community College. (United States)

    Chan, Adrian; And Others

    This unit, designed for use with high school and community college students, uses primary materials, literature, and interactive lesson plans to present the city of Berlin (Germany) as a case study of some of the 20th century's most significant events. In lesson 1, students take a pre-test, view a video about the Berlin Wall, and discuss the kinds…

  10. Wall shear stress measurement in blade end-wall corner region (United States)

    Bhargava, R.; Raj, R.; Boldman, D. R.


    The magnitude and the direction of wall shear stress and surface pressure in the blade end-wall corner region were investigated. The measurements were obtained on a specially designed Preston tube, the tip of which could be concentrically rotated about its axis of rotation at the measurement location. The magnitude of wall shear stress in the vicinity of the corner was observed to increase significantly (170 percent) compared to its far-upstream value; the increase was consistently higher on the blade surface compared to the value on the plate surface of the blade end-wall corner. On both surfaces in the blade end-wall corner, the variation of the wall shear stress direction was found to be more predominant in the vicinity of the blade leading-edge location. The trend of the measured wall shear stress direction showed good agreement with the limiting streamline directions obtained from the flow visualization studies.

  11. ‘Occupy Wall Street’ and IPE: Insights and Implications

    Directory of Open Access Journals (Sweden)

    Elizabeth Cobbett


    Full Text Available The academic discipline of International Political Economy (IPE is a hard-nosed and empirically-oriented field of study. The usual subjects of IPE often include the organization of international trade, global finance, transnational production, national welfare and competitiveness, productivity levels and of course state actions and expenditures. The actions of a handful of protestors such as the ‘Occupy Wall Street’(OWS movement rarely attract academic attention. In this case, however, we should take note. In our view, the actions of OWS provide further clues that we are entering an era of significant transformation in the organization and structure of world order. The insights generated by reflecting on this movement suggest that the inter-subjective mentality at the heart of global capitalism is no longer coherent, with the implication thatwe are at long last about to leave behind a half century of American hegemony.


    Directory of Open Access Journals (Sweden)

    Ivančica Strunjak-Perović


    Full Text Available With development of the fish culturing in the sea, the interest in their health also increased. The reason for this are diseases or rather mortality that occur in such controlled cultures and cause great economic losses. By growing large quantities of fish in rather small species, natural conditions are changed, so fish is more sensitive and prone to infection agents (viruses, bacteria, parasites. Besides, a large fish density in the cultural process accelerates spreading if the diseases, but also enables a better perception of them. In wild populations sick specimen very quickly become predator’s prey, witch makes it difficult to note any pathological changes in such fish. There are lots of articles on viral, bacterial and parasitic diseases nowdays, but this work deals exclusively with bacterial deseases that occur in the controlled sea cultures (vibriosis, furunculosis, pastherelosis, nocardiosis, mycobaceriosis, edwardsielosis, yersiniosis, deseases caused by bacteria of genera Flexibacter, Pseudomonas, Aeromonas, Streptococus and bacteria nephryithis. Yet, the knowledge of these deseases vary, depending on wether a fish species is being cultured for a longer period of time or is only being introduced in the controlled culture.

  13. Bacterial Culture of Neonatal Sepsis

    Directory of Open Access Journals (Sweden)

    AH Movahedian


    Full Text Available Neonatal bacterial sepsis is one of the major cause of morbidity and mortality in neonates. This retrospective study was performed to determine the incidence of bacterial sepsis with focus on Gram negative organisms in neonates admitted at Beheshti Hospital in Kashan, during a 3-yr period, from September 2002 to September 2005. Blood culture was performed on all neonates with risk factors or signs of suggestive sepsis. Blood samples were cultured using brain heart infusion (BHI broth according to standard method. From the 1680 neonates 36% had positive blood culture for Pseudomans aeruginosa, 20.7% for Coagulase negative Staphylococci, and 17% for Klebsiella spp. Gram-negative organisms accounted for 72.1% of all positive cultures. The overall mortality rate was 19.8% (22 /111 of whom 63.6% (14 /22 were preterm. Pseudomona aeruginosa and Klebsiella spp. showed a high degree of resistance to commonly used antibiotics (ampicillin, gentamicin as well as third generation cephalosporins. Continued local surveillance studies are urged to monitor emerging antimicrobial resistance and to guide interventions to minimize its occurrence.

  14. Periodontal diseases as bacterial infection

    Directory of Open Access Journals (Sweden)

    A. Bascones Martínez

    Full Text Available The periodontal disease is conformed by a group of illnesses affecting the gums and dental support structures. They are caused by certain bacteria found in the bacterial plaque. These bacteria are essential to the onset of illness; however, there are predisposing factors in both the host and the microorganisms that will have an effect on the pathogenesis of the illness. Periodontopathogenic bacterial microbiota is needed, but by itself, it is not enough to cause the illness, requiring the presence of a susceptible host. These diseases have been classified as gingivitis, when limited to the gums, and periodontitis, when they spread to deeper tissues. Classification of periodontal disease has varied over the years.The one used in this work was approved at the International Workshop for a Classification of Periodontal Diseases and Conditions, held in 1999. This study is an overview of the different periodontal disease syndromes. Later, the systematic use of antibiotic treatment consisting of amoxicillin, amoxicillinclavulanic acid, and metronidazole as first line coadjuvant treatment of these illnesses will be reviewed.

  15. Bioinformatic Comparison of Bacterial Secretomes

    Institute of Scientific and Technical Information of China (English)

    Catharine Song; Aseem Kumar; Mazen Saleh


    The rapid increasing number of completed bacterial genomes provides a good op-portunity to compare their proteomes. This study was undertaken to specifically compare and contrast their secretomes-the fraction of the proteome with pre-dicted N-terminal signal sequences, both type Ⅰ and type Ⅱ. A total of 176 theoreti-cal bacterial proteomes were examined using the ExProt program. Compared with the Gram-positives, the Gram-negative bacteria were found, on average, to con-tain a larger number of potential Sec-dependent sequences. In the Gram-negative bacteria but not in the others, there was a positive correlation between proteome size and secretome size, while there was no correlation between secretome size and pathogenicity. Within the Gram-negative bacteria, intracellular pathogens were found to have the smallest secretomes. However, the secretomes of certain bacte-ria did not fit into the observed pattern. Specifically, the secretome of Borrelia burgdoferi has an unusually large number of putative lipoproteins, and the signal peptides of mycoplasmas show closer sequence similarity to those of the Gram-negative bacteria. Our analysis also suggests that even for a theoretical minimal genome of 300 open reading frames, a fraction of this gene pool (up to a maximum of 20%) may code for proteins with Sec-dependent signal sequences.

  16. Bacterial pericarditis in a cat

    Directory of Open Access Journals (Sweden)

    Nicole LeBlanc


    Full Text Available Case summary A 4-year-old male neutered domestic shorthair cat was presented to the Oregon State University cardiology service for suspected pericardial effusion. Cardiac tamponade was documented and pericardiocentesis yielded purulent fluid with cytologic results supportive of bacterial pericarditis. The microbial population consisted of Pasteurella multocida, Actinomyces canis, Fusobacterium and Bacteroides species. Conservative management was elected consisting of intravenous antibiotic therapy with ampicillin sodium/sulbactam sodium and metronidazole for 48 h followed by 4 weeks of oral antibiotics. Re-examination 3 months after the initial incident indicated no recurrence of effusion and the cat remained free of clinical signs 2 years after presentation. Relevance and novel information Bacterial pericarditis is a rare cause of pericardial effusion in cats. Growth of P multocida, A canis, Fusobacterium and Bacteroides species has not previously been documented in feline septic pericarditis. Conservative management with broad-spectrum antibiotics may be considered when further diagnostic imaging or exploratory surgery to search for a primary nidus of infection is not feasible or elected.

  17. Induction of bacterial lipoprotein tolerance is associated with suppression of toll-like receptor 2 expression.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai


    Tolerance to bacterial cell wall components including lipopolysaccharide (LPS) may represent an essential regulatory mechanism during bacterial infection. Two members of the Toll-like receptor (TLR) family, TLR2 and TLR4, recognize the specific pattern of bacterial cell wall components. TLR4 has been found to be responsible for LPS tolerance. However, the role of TLR2 in bacterial lipoprotein (BLP) tolerance and LPS tolerance is unclear. Pretreatment of human THP-1 monocytic cells with a synthetic bacterial lipopeptide induced tolerance to a second BLP challenge with diminished tumor necrosis factor-alpha and interleukin-6 production, termed BLP tolerance. Furthermore, BLP-tolerized THP-1 cells no longer responded to LPS stimulation, indicating a cross-tolerance to LPS. Induction of BLP tolerance was CD14-independent, as THP-1 cells that lack membrane-bound CD14 developed tolerance both in serum-free conditions and in the presence of a specific CD14 blocking monoclonal antibody (MEM-18). Pre-exposure of THP-1 cells to BLP suppressed mitogen-activated protein kinase phosphorylation and nuclear factor-kappaB activation in response to subsequent BLP and LPS stimulation, which is comparable with that found in LPS-tolerized cells, indicating that BLP tolerance and LPS tolerance may share similar intracellular pathways. However, BLP strongly enhanced TLR2 expression in non-tolerized THP-1 cells, whereas LPS stimulation had no effect. Furthermore, a specific TLR2 blocking monoclonal antibody (2392) attenuated BLP-induced, but not LPS-induced, tumor necrosis factor-alpha and interleukin-6 production, indicating BLP rather than LPS as a ligand for TLR2 engagement and activation. More importantly, pretreatment of THP-1 cells with BLP strongly inhibited TLR2 activation in response to subsequent BLP stimulation. In contrast, LPS tolerance did not prevent BLP-induced TLR2 overexpression. These results demonstrate that BLP tolerance develops through down-regulation of TLR2

  18. A high-throughput screening assay to identify bacterial antagonists against Fusarium verticillioides. (United States)

    Figueroa-López, Alejandro Miguel; Cordero-Ramírez, Jesús Damián; Quiroz-Figueroa, Francisco Roberto; Maldonado-Mendoza, Ignacio Eduardo


    A high-throughput antagonistic assay was developed to screen for bacterial isolates capable of controlling the maize fungal phytopathogen Fusarium verticillioides. This assay combines a straightforward methodology, in which the fungus is challenged with bacterial isolates in liquid medium, with a novel approach that uses the plant lectin wheat germ agglutinin (WGA) coupled to a fluorophore (Alexa-Fluor® 488) under the commercial name of WGA, Alexa Fluor® 488 conjugate. The assay is performed in a 96-well plate format, which reduces the required laboratory space and streamlines quantitation and automation of the process, making it fast and accurate. The basis of our assay is that fungal biomass can be assessed by WGA, Alexa Fluor® 488 conjugate staining, which recognizes the chitin in the fungal cell wall and thus permits the identification of potential antagonistic bacteria that inhibit fungal growth. This principle was validated by chitin-competition binding assays against WGA, Alexa Fluor® 488 conjugate; confocal laser microscopy confirmed that the fluorescent WGA, Alexa Fluor® 488 conjugate binds to the chitin of the fungal cell wall. The majority of bacterial isolates did not bind to the WGA, Alexa Fluor® 488 conjugate. Furthermore, including washing steps significantly reduced any bacterial staining to background levels, even in the rare cases where bacterial isolates were capable of binding to WGA. Confirmatory conventional agar plate antagonistic assays were also conducted to validate our technique. We are now successfully employing this large-scale antagonistic assay as a pre-screening step for potential fungal antagonists in extensive bacteria collections (on the order of thousands of isolates).

  19. Interaction between resource identity and bacterial community composition regulates bacterial respiration in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    A. P. F. Pires

    Full Text Available Abstract Resource identity and composition structure bacterial community, which in turn determines the magnitude of bacterial processes and ecological services. However, the complex interaction between resource identity and bacterial community composition (BCC has been poorly understood so far. Using aquatic microcosms, we tested whether and how resource identity interacts with BCC in regulating bacterial respiration and bacterial functional diversity. Different aquatic macrophyte leachates were used as different carbon resources while BCC was manipulated through successional changes of bacterial populations in batch cultures. We observed that the same BCC treatment respired differently on each carbon resource; these resources also supported different amounts of bacterial functional diversity. There was no clear linear pattern of bacterial respiration in relation to time succession of bacterial communities in all leachates, i.e. differences on bacterial respiration between different BCC were rather idiosyncratic. Resource identity regulated the magnitude of respiration of each BCC, e.g. Ultricularia foliosa leachate sustained the greatest bacterial functional diversity and lowest rates of bacterial respiration in all BCC. We conclude that both resource identity and the BCC interact affecting the pattern and the magnitude of bacterial respiration in aquatic ecosystems.

  20. Forensic identification using skin bacterial communities


    FIERER Noah; Lauber, Christian L.; Zhou, Nick; McDonald, Daniel; Costello, Elizabeth K.; Knight, Rob


    Recent work has demonstrated that the diversity of skin-associated bacterial communities is far higher than previously recognized, with a high degree of interindividual variability in the composition of bacterial communities. Given that skin bacterial communities are personalized, we hypothesized that we could use the residual skin bacteria left on objects for forensic identification, matching the bacteria on the object to the skin-associated bacteria of the individual who touched the object....

  1. Drag Reduction of Bacterial Cellulose Suspensions

    Directory of Open Access Journals (Sweden)

    Satoshi Ogata


    Full Text Available Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechanical shear.

  2. In vivo bacterial morphogenetic protein interactions


    van der Ploeg, R.; den Blaauwen, T.; Meghea, A.


    This chapter will discuss none-invasive techniques that are widely used to study protein-protein interactions. As an example, their application in exploring interactions between proteins involved in bacterial cell division will be evaluated. First, bacterial morphology and cell division of the rod-shaped bacterium Escherichia coli will be introduced. Next, three bacterial two-hybrid methods and three Förster resonance energy transfer detection methods that are frequently applied to detect int...

  3. Accelerating forward genetics for cell wall deconstruction

    Directory of Open Access Journals (Sweden)

    Danielle eVidaurre


    Full Text Available One of the biggest challenges of cell wall biology is the elucidation of the genes involved the cell wall and their function due to the recalcitrance of the cell wall. Through traditional genetic approaches, many simple yet elegant screens have been able to identify components of the cell wall and their networks. Despite progress in the identification of several genes of the cell wall, there remain many unknown players whose function has yet to be determined. Exhausting the genetic toolbox by performing secondary screens on a genetically mutated background, chemical genetics using small molecules and improved cell wall imaging hold promise for new gene discovery and function. With the recent introduction of next-generation sequencing technologies, it is now possible to quickly and efficiently map and clone genes of interest in Arabidopsis and any model organism with a completed genome sequence. The combination of a classical genetics approach and cutting edge technology will propel cell wall biology of Arabidopsis and other useful crops forward into the future.

  4. Recent advances in plant cell wall proteomics. (United States)

    Jamet, Elisabeth; Albenne, Cécile; Boudart, Georges; Irshad, Muhammad; Canut, Hervé; Pont-Lezica, Rafael


    The plant extracellular matrix contains typical polysaccharides such as cellulose, hemicelluloses, and pectins that interact to form dense interwoven networks. Plant cell walls play crucial roles during development and constitute the first barrier of defense against invading pathogens. Cell wall proteomics has greatly contributed to the description of the protein content of a compartment specific to plants. Around 400 cell wall proteins (CWPs) of Arabidopsis, representing about one fourth of its estimated cell wall proteome, have been described. The main points to note are that: (i) the diversity of enzymes acting on polysaccharides suggests a great plasticity of cell walls; (ii) CWPs such as proteases, polysaccharide hydrolytic enzymes, and lipases may contribute to the generation of signals; (iii) proteins of unknown functions were identified, suggesting new roles for cell walls. Recently, the characterization of PTMs such as N- and O-glycosylations improved our knowledge of CWP structure. The presence of many glycoside hydrolases and proteases suggests a complex regulation of CWPs involving various types of post-translational events. The first 3-D structures to be resolved gave clues about the interactions between CWPs, or between CWPs and polysaccharides. Future work should include: extracting and identifying CWPs still recalcitrant to proteomics, describing the cell wall interactome, improving quantification, and unraveling the roles of each of the CWPs.

  5. Automatic configuration of modular vault walls

    Directory of Open Access Journals (Sweden)

    Grković Vladan


    Full Text Available Products such as modular partition walls of vault rooms (with or without vault doors are made at the request of the client who chooses the safety degree and provides the available dimensions of the wall that should be made. Modular construction of vault walls is the system of construction of industrially made elements which are composed in situ, which allows design of products adjusted to individual requirements of clients. Since the vault wall modules repeat in every new project and since they differ only by their number and dimensions, the use of modern CA (Computer Aided tools and the possibility of application of parameter and variant design shorten design time and eliminate possible errors in the process of design of modular vault walls, which reduces the costs of production and increases the level of product quality. The paper presents the procedure for calculation of parameters of parts, modules and the entire vault wall in Microsoft Excel based on which the 3D model of a modular vault wall is automatically configured and developed in software package Autodesk Inventor. [Projekat Ministarstva nauke Republike Srbije, br. TR37020

  6. MolView users guide

    Energy Technology Data Exchange (ETDEWEB)

    Walenz, B.P.


    A system for viewing molecular data in a CAVE virtual reality environment is presented. The system, called MolView, consists of a frontend driver program that prepares the data and a backend CAVE program that displays the data. Both are written so that modifications and extensions are relatively easy to accomplish.

  7. Wall shear stress at the initiation site of cerebral aneurysms. (United States)

    Geers, A J; Morales, H G; Larrabide, I; Butakoff, C; Bijlenga, P; Frangi, A F


    Hemodynamics are believed to play an important role in the initiation of cerebral aneurysms. In particular, studies have focused on wall shear stress (WSS), which is a key regulator of vascular biology and pathology. In line with the observation that aneurysms predominantly occur at regions of high WSS, such as bifurcation apices or outer walls of vascular bends, correlations have been found between the aneurysm initiation site and high WSS. The aim of our study was to analyze the WSS field at an aneurysm initiation site that was neither a bifurcation apex nor the outer wall of a vascular bend. Ten cases with aneurysms on the A1 segment of the anterior cerebral artery were analyzed and compared with ten controls. Aneurysms were virtually removed from the vascular models of the cases to mimic the pre-aneurysm geometry. Computational fluid dynamics (CFD) simulations were created to assess the magnitude, gradient, multidirectionality, and pulsatility of the WSS. To aid the inter-subject comparison of hemodynamic variables, we mapped the branch surfaces onto a two-dimensional parametric space. This approach made it possible to view the whole branch at once for qualitative evaluation. It also allowed us to empirically define a patch for quantitative analysis, which was consistent among subjects and encapsulated the aneurysm initiation sites in our dataset. To test the sensitivity of our results, CFD simulations were repeated with a second independent observer virtually removing the aneurysms and with a 20 % higher flow rate at the inlet. We found that branches harboring aneurysms were characterized by high WSS and high WSS gradients. Among all assessed variables, the aneurysm initiation site most consistently coincided with peaks of temporal variation in the WSS magnitude.

  8. Bacterial contamination of hospital physicians' stethoscopes. (United States)

    Bernard, L; Kereveur, A; Durand, D; Gonot, J; Goldstein, F; Mainardi, J L; Acar, J; Carlet, J


    Because stethoscopes might be potential vectors of nosocomial infections, this study, conducted in a 450-bed general hospital, was devised to evaluate the bacterial contamination of stethoscopes; bacterial survival on stethoscope membranes; the kinetics of the bacterial load on stethoscope membranes during clinical use; and the efficacy of 70% alcohol or liquid soap for membrane disinfection. Among the 355 stethoscopes tested, 234 carried > or =2 different bacterial species; 31 carried potentially pathogenic bacteria. Although some bacteria deposited onto membranes could survive 6 to 18 hours, none survived after disinfection.

  9. Bacterial Nanocellulose as a Microbiological Derived Nanomaterial

    Directory of Open Access Journals (Sweden)

    Stanisławska A.


    Full Text Available Bacterial nanocellulose (BNC is a nanofibrilar polymer produced by strains such as Gluconacetobacter xylinus, one of the best bacterial species which given the highest efficiency in cellulose production. Bacterial cellulose is a biomaterial having unique properties such as: chemical purity, good mechanical strength, high flexibility, high absorbency, possibility of forming any shape and size and many others. Such a large number of advantages contributes to the widespread use of the BNC in food technology, paper, electronic industry, but also the architecture in use. However, the greatest hopes are using the BNC in medicine. This text contains information about bacterial nanocellulose, its specific mechanical and biological properties and current applications.

  10. High resolution PIV of flow over biofilm covered walls (United States)

    Hartenberger, Joel; Perlin, Marc; Ceccio, Steven


    Microbial, 'slime' biofilms detrimentally affect the performance of engineered systems used every day from heat exchangers to large ocean-going vessels. The presence of a slime layer on a pipe wall or external boundary often leads to a significant increase in drag and may alter the nature of the turbulence in the adjacent flow. Despite these consequences, relatively few efforts have been undertaken to understand the underlying physical processes which couple biofilm characteristics with increased drag and other alterations to the flow. Experiments performed in a 1:14 scale replica of the US Navy's Large Cavitation Channel (LCC) at the University of Michigan investigate the effect of biofilm composition, coverage and thickness on the development of an external turbulent boundary layer (TBL) through the use of conventional and micro PIV. A range of fields of view (FOVs) were used to capture both the inner and outer regions of the boundary layer. The fine resolution of micro PIV gives an in-depth look at the near-wall region of the flow and may provide evidence linking specific biofilm features with flow characteristics while the less resolved, larger FOVs capture flow behavior to the freestream. Measurement techniques used to characterize the biofilm will be presented along with a description of the mean flow and turbulent fluctuations in the TBL.

  11. Large Scale Organization of a Near Wall Turbulent Boundary Layer (United States)

    Stanislas, Michel; Dekou Tiomajou, Raoul Florent; Foucaut, Jean Marc


    This study lies in the context of large scale coherent structures investigation in a near wall turbulent boundary layer. An experimental database at high Reynolds numbers (Re θ = 9830 and Re θ = 19660) was obtained in the LML wind tunnel with stereo-PIV at 4 Hz and hot wire anemometry at 30 kHz. A Linear Stochastic Estimation procedure, is used to reconstruct a 3 component field resolved in space and time. Algorithms were developed to extract coherent structures from the reconstructed field. A sample of 3D view of the structures is depicted in Figure 1. Uniform momentum regions are characterized with their mean hydraulic diameter in the YZ plane, their life time and their contribution to Reynolds stresses. The vortical motions are characterized by their position, radius, circulation and vorticity in addition to their life time and their number computed at a fixed position from the wall. The spatial organization of the structures was investigated through a correlation of their respective indicative functions in the spanwise direction. The simplified large scale model that arise is compared to the ones available in the literature. Streamwise low (green) and high (yellow) uniform momentum regions with positive (red) and negative (blue) vortical motions. This work was supported by Campus International pour la Sécurité et l'Intermodalité des Transports.

  12. Active Learning with Multiple Views

    CERN Document Server

    Knoblock, C A; Muslea, I; 10.1613/jair.2005


    Active learners alleviate the burden of labeling large amounts of data by detecting and asking the user to label only the most informative examples in the domain. We focus here on active learning for multi-view domains, in which there are several disjoint subsets of features (views), each of which is sufficient to learn the target concept. In this paper we make several contributions. First, we introduce Co-Testing, which is the first approach to multi-view active learning. Second, we extend the multi-view learning framework by also exploiting weak views, which are adequate only for learning a concept that is more general/specific than the target concept. Finally, we empirically show that Co-Testing outperforms existing active learners on a variety of real world domains such as wrapper induction, Web page classification, advertisement removal, and discourse tree parsing.

  13. Estimation of Virtual View Synthesis Distortion Toward Virtual View Position. (United States)

    Fang, Lu; Xiang, Yijian; Cheung, Ngai-Man; Wu, Feng


    We propose an analytical model to estimate the depth-error-induced virtual view synthesis distortion (VVSD) in 3D video, taking the distance between reference and virtual views (virtual view position) into account. In particular, we start with a comprehensive preanalysis and discussion over several possible VVSD scenarios. Taking intrinsic characteristic of each scenario into consideration, we specifically classify them into four clusters: 1) overlapping region; 2) disocclusion and boundary region; 3) edge region; and 4) infrequent region. We propose to model VVSD as the linear combination of the distortion under different scenarios (DDSs) weighted by the probability under different scenarios (PDSs). We show analytically that DDS and PDS can be related to the virtual view position using quadratic/biquadratic models and linear models, respectively. Experimental results verify that the proposed model is capable of estimating the relationship between VVSD and the distance between reference and virtual views. Therefore, our model can be used to inform a reference view setup for capturing, or distortion at certain virtual view positions, when depth information is compressed.

  14. Domain wall solutions with Abelian gauge fields

    CERN Document Server

    Rozowsky, J S; Wali, K C


    We study kink (domain wall) solutions in a model consisting of two complex scalar fields coupled to two independent Abelian gauge fields in a Lagrangian that has $U(1)\\times U(1)$ gauge plus $\\mathbb{Z}_2$ discrete symmetry. We find consistent solutions such that while the U(1) symmetries of the fields are preserved while in their respective vacua, they are broken on the domain wall. The gauge field solutions show that the domain wall is sandwiched between domains with constant magnetic fields.

  15. Development of wall ranging radiation inspection robot

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. J.; Yoon, J. S.; Park, Y. S.; Hong, D. H.; Oh, S. C.; Jung, J. H.; Chae, K. S


    With the aging of nation's nuclear facilities, the target of this project is to develop an under water wall ranging robotic vehicle which inspects the contamination level of the research reactor (TRIGA MARK III) as a preliminary process to dismantling. The developed vehicle is driven by five thrusters and consists of small sized control boards, and absolute position detector, and a radiation detector. Also, the algorithm for autonomous navigation is developed and its performance is tested through under water experiments. Also, the test result at the research reactor shows that the vehicle firmly attached the wall while measuring the contamination level of the wall.

  16. Thin wall ductile and austempered iron castings


    E. Fraś; M. Górny


    It has been shown that it is possible to produce thin wall castings made of ductile iron with wall thickness in the range of 1.2 to 2.9 mm(without chills, cold laps and misruns). Thin wall ductile iron castings can be lighter (380 g) than their substitutes made of aluminium alloys (580g). The kinetics of austenitising transformation was studied in unalloyed ductile iron. The advance of transformations during austenitising was monitored by measurement the fraction of martensite and also by dil...

  17. Flow Modeling Based Wall Element Technique

    Directory of Open Access Journals (Sweden)

    Sabah Tamimi


    Full Text Available Two types of flow where examined, pressure and combination of pressure and Coquette flow of confined turbulent flow with a one equation model used to depict the turbulent viscosity of confined flow in a smooth straight channel when a finite element technique based on a zone close to a solid wall has been adopted for predicting the distribution of the pertinent variables in this zone and examined even with case when the near wall zone was extended away from the wall. The validation of imposed technique has been tested and well compared with other techniques.

  18. Do Stops Slow Down Electroweak Bubble Walls?

    CERN Document Server

    John, P


    We compute the wall velocity in the MSSM. We therefore generalize the SMequations of motion for bubble walls moving through a hot plasma at theelectroweak phase transition and calculate the friction terms which describethe viscosity of the plasma. We give the general expressions and apply them toa simple model where stops, tops and W bosons contribute to the friction. In awide range of parameters including those which fulfil the requirements ofbaryogenesis we find a wall velocity of order v = 0.001-0.01 much below the SMvalue.

  19. Effects of the bacteriocin PsVP-10 produced by Pseudomonas sp. on sensitive bacterial strains. (United States)

    Padilla, Carlos; Lobos, Olga; Brevis, Pedro; Abaca, Paulina; Hubert, Elizabeth


    The bacteriocin PsVP-10 is a 2.6 Kda peptide which was isolated and purified from Pseudomonas sp. This bacteriocin possesses lethal activity over Enterococcus faecalis, Salmonella typhimurium and Shigella flexneri. The experimental assays showed that the bacteriocin is able to be adsorbed by all cells of these bacterial species and also by their isolated cell walls. It was observed that the resistant mutants and their respective cell walls are unable to adsorb the bacteriocin. Assays performed with spheroplasts obtained from sensitive bacterial species and their resistant mutants show a rapid lethal effect of the bacteriocin PsVP-10. This results indicated furthermore, it is also shown that the optimal pH and temperature for the adsorption were 7.2 and 37 degrees C, respectively. The study carried out with organic solvents like methanol, ethanol, isopropanol and the detergents sodium dodecyl sulfate and triton X-100 showed a moderate inhibition of the bacteriocin lethal action for the Gram negative cells. The enzymes lysozime, protease XIV and trypsine type III-S did not present any effect over the adsorption capacity of the bacteriocin with any of the bacterial species studied.

  20. Inorganic polyphosphate occurs in the cell wall of Chlamydomonas reinhardtii and accumulates during cytokinesis

    Directory of Open Access Journals (Sweden)

    Freimoser Florian M


    Full Text Available Abstract Background Inorganic polyphosphate (poly P, linear chains of phosphate residues linked by energy rich phosphoanhydride bonds, is found in every cell and organelle and is abundant in algae. Depending on its localization and concentration, poly P is involved in various biological functions. It serves, for example, as a phosphate store and buffer against alkali, is involved in energy metabolism and regulates the activity of enzymes. Bacteria defective in poly P synthesis are impaired in biofilm development, motility and pathogenicity. PolyP has also been found in fungal cell walls and bacterial envelopes, but has so far not been measured directly or stained specifically in the cell wall of any plant or alga. Results Here, we demonstrate the presence of poly P in the cell wall of Chlamydomonas reinhardtii by staining with specific poly P binding proteins. The specificity of the poly P signal was verified by various competition experiments, by staining with different poly P binding proteins and by correlation with biochemical quantification. Microscopical investigation at different time-points during growth revealed fluctuations of the poly P signal synchronous with the cell cycle: The poly P staining peaked during late cytokinesis and was independent of the high intracellular poly P content, which fluctuated only slightly during the cell cycle. Conclusion The presented staining method provides a specific and sensitive tool for the study of poly P in the extracellular matrices of algae and could be used to describe the dynamic behaviour of cell wall poly P during the cell cycle. We assume that cell wall poly P and intracellular poly P are regulated by distinct mechanisms and it is suggested that cell wall bound poly P might have important protective functions against toxic compounds or pathogens during cytokinesis, when cells are more vulnerable.

  1. Extended recombinant bacterial ghost system. (United States)

    Lubitz, W; Witte, A; Eko, F O; Kamal, M; Jechlinger, W; Brand, E; Marchart, J; Haidinger, W; Huter, V; Felnerova, D; Stralis-Alves, N; Lechleitner, S; Melzer, H; Szostak, M P; Resch, S; Mader, H; Kuen, B; Mayr, B; Mayrhofer, P; Geretschläger, R; Haslberger, A; Hensel, A


    Controlled expression of cloned PhiX174 gene E in Gram-negative bacteria results in lysis of the bacteria by formation of an E-specific transmembrane tunnel structure built through the cell envelope complex. Bacterial ghosts from a variety of bacteria are used as non-living candidate vaccines. In the recombinant ghost system, foreign proteins are attached on the inside of the inner membrane as fusions with specific anchor sequences. Ghosts have a sealed periplasmic space and the export of proteins into this space vastly extends the capacity of ghosts or recombinant ghosts to function as carriers of foreign antigens. In addition, S-layer proteins forming shell-like self assembly structures can be expressed in candidate vaccine strains prior to E-mediated lysis. Such recombinant S-layer proteins carrying foreign epitopes further extend the possibilities of ghosts as carriers of foreign epitopes. As ghosts have inherent adjuvant properties, they can be used as adjuvants in combination with subunit vaccines. Subunits or other ligands can also be coupled to matrixes like dextran which are used to fill the internal lumen of ghosts. Oral, aerogenic or parenteral immunization of experimental animals with recombinant ghosts induced specific humoral and cellular immune responses against bacterial and target components including protective mucosal immunity. The most relevant advantage of recombinant bacterial ghosts as immunogens is that no inactivation procedures that denature relevant immunogenic determinants are employed in this production. This fact explains the superior quality of ghosts when compared to other inactivated vaccines. The endotoxic component of the outer membrane does not limit the use of ghosts as vaccine candidates but triggers the release of several potent immunoregulatory cytokines. As carriers, there is no limitation in the size of foreign antigens that can be inserted in the membrane and the capacity of all spaces including the membranes, peri

  2. Persistence in a single species CSTR model with suspended flocs and wall attached biofilms. (United States)

    Mašić, Alma; Eberl, Hermann J


    We consider a mathematical model for a bacterial population in a continuously stirred tank reactor (CSTR) with wall attachment. This is a modification of the Freter model, in which we model the sessile bacteria as a microbial biofilm. Our analysis indicates that the results of the algebraically simpler original Freter model largely carry over. In a computational simulation study, we find that the vast majority of bacteria in the reactor will eventually be sessile. However, we also find that suspended biomass is relatively more efficient in removing substrate from the reactor than biofilm bacteria.

  3. The bacterial cytoskeleton and its putative role in membrane vesicle formation observed in a Gram-positive bacterium producing starch-degrading enzymes. (United States)

    Mayer, Frank; Gottschalk, Gerhard


    Bacteria may possess various kinds of cytoskeleton. In general, bacterial cytoskeletons may play a role in the control and preservation of the cell shape. Such functions become especially evident when the bacteria do not possess a true wall and are nevertheless elongated (e.g. Mycoplasma spp.) or under extreme cultivation conditions whereby loss of the entire bacterial cell wall takes place. Bacterial cytoskeletons may control and preserve the cell shape only if a number of preconditions are fulfilled. They should be present not only transiently, but permanently, they should be located as a lining close to the inner face of the cytoplasmic membrane, enclosing the entire cytoplasm, and they should comprise structural elements (fibrils) crossing the inner volume of the cell in order to provide the necessary stability for the lining. Complete loss of the cell wall layers had earlier been observed to occur during extensive production of bacterial starch-degrading enzymes in an optimized fermentation process by a Gram-positive bacterium. Even under these conditions, the cells had maintained their elongated shape and full viability. Which of the various kinds of bacterial cytoskeleton might have been responsible for shape preservation? Only one of them, the primary or basic cytoskeleton turns out to fulfil the necessary preconditions listed above. Its structural features now provided a first insight into a possible mechanism of formation of membrane blebs and vesicles as observed in the Gram-positive eubacterium Thermoanaerobacterium thermosulfurogenes EM1, and the putative role of the cytoskeletal web in this process.

  4. Combined Visualization of Wall Thickness and Wall Shear Stress for the Evaluation of Aneurysms. (United States)

    Glaßer, Sylvia; Lawonn, Kai; Hoffmann, Thomas; Skalej, Martin; Preim, Bernhard


    For an individual rupture risk assessment of aneurysms, the aneurysm's wall morphology and hemodynamics provide valuable information. Hemodynamic information is usually extracted via computational fluid dynamic (CFD) simulation on a previously extracted 3D aneurysm surface mesh or directly measured with 4D phase-contrast magnetic resonance imaging. In contrast, a noninvasive imaging technique that depicts the aneurysm wall in vivo is still not available. Our approach comprises an experiment, where intravascular ultrasound (IVUS) is employed to probe a dissected saccular aneurysm phantom, which we modeled from a porcine kidney artery. Then, we extracted a 3D surface mesh to gain the vessel wall thickness and hemodynamic information from a CFD simulation. Building on this, we developed a framework that depicts the inner and outer aneurysm wall with dedicated information about local thickness via distance ribbons. For both walls, a shading is adapted such that the inner wall as well as its distance to the outer wall is always perceivable. The exploration of the wall is further improved by combining it with hemodynamic information from the CFD simulation. Hence, the visual analysis comprises a brushing and linking concept for individual highlighting of pathologic areas. Also, a surface clustering is integrated to provide an automatic division of different aneurysm parts combined with a risk score depending on wall thickness and hemodynamic information. In general, our approach can be employed for vessel visualization purposes where an inner and outer wall has to be adequately represented.

  5. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. (United States)

    Malanovic, Nermina; Lohner, Karl


    A number of cationic antimicrobial peptides, effectors of innate immunity, are supposed to act at the cytoplasmic membrane leading to permeabilization and eventually membrane disruption. Thereby, interaction of antimicrobial peptides with anionic membrane phospholipids is considered to be a key factor in killing of bacteria. Recently, evidence was provided that killing takes place only when bacterial cell membranes are completely saturated with peptides. This adds to an ongoing debate, which role cell wall components such as peptidoglycan, lipoteichoic acid and lipopolysaccharide may play in the killing event, i.e. if they rather entrap or facilitate antimicrobial peptides access to the cytoplasmic membrane. Therefore, in this review we focused on the impact of Gram-positive cell wall components for the mode of action and activity of antimicrobial peptides as well as in innate immunity. This led us to conclude that interaction of antimicrobial peptides with peptidoglycan may not contribute to a reduction of their antimicrobial activity, whereas interaction with anionic lipoteichoic acids may reduce the local concentration of antimicrobial peptides on the cytoplasmic membrane necessary for sufficient destabilization of the membranes and bacterial killing. Further affinity studies of antimicrobial peptides toward the different cell wall as well as membrane components will be needed to address this problem on a quantitative level. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.

  6. New pathways for bacterial polythioesters. (United States)

    Wübbeler, Jan Hendrik; Steinbüchel, Alexander


    Polythioesters (PTE) contain sulfur in the backbone and represent persistent biopolymers, which are produced by certain chemical procedures as well as biotechnological in vitro and in vivo techniques. Different building blocks can be incorporated, resulting in PTE with variable features that could become interesting for special purposes. Particularly, the option to produce PTE in large-scale and in accordance with the methods of white biotechnology or green chemistry is valuable due to economical potentials and public environmental consciousness. This review is focused on the synthesis of PTE by the three established bacterial production strains Ralstonia eutropha, Escherichia coli and Advenella mimigardefordensis. In addition, an overview of the in vitro production and degradation of PTE is depicted.

  7. Cooperative Model of Bacterial Sensing

    CERN Document Server

    Shi, Y; Shi, Yu; Duke, Thomas


    Bacterial chemotaxis is controlled by the signalling of a cluster of receptors. A cooperative model is presented, in which coupling between neighbouring receptor dimers enhances the sensitivity with which stimuli can be detected, without diminishing the range of chemoeffector concentration over which chemotaxis can operate. Individual receptor dimers have two stable conformational states: one active, one inactive. Noise gives rise to a distribution between these states, with the probability influenced by ligand binding, and also by the conformational states of adjacent receptor dimers. The two-state model is solved, based on an equivalence with the Ising model in a randomly distributed magnetic field. The model has only two effective parameters, and unifies a number of experimental findings. According to the value of the parameter comparing coupling and noise, the signal can be arbitrarily sensitive to changes in the fraction of receptor dimers to which ligand is bound. The counteracting effect of a change of...

  8. Antigenic Variation in Bacterial Pathogens. (United States)

    Palmer, Guy H; Bankhead, Troy; Seifert, H Steven


    Antigenic variation is a strategy used by a broad diversity of microbial pathogens to persist within the mammalian host. Whereas viruses make use of a minimal proofreading capacity combined with large amounts of progeny to use random mutation for variant generation, antigenically variant bacteria have evolved mechanisms which use a stable genome, which aids in protecting the fitness of the progeny. Here, three well-characterized and highly antigenically variant bacterial pathogens are discussed: Anaplasma, Borrelia, and Neisseria. These three pathogens display a variety of mechanisms used to create the structural and antigenic variation needed for immune escape and long-term persistence. Intrahost antigenic variation is the focus; however, the role of these immune escape mechanisms at the population level is also presented.

  9. Bacterial interactions in dental biofilm. (United States)

    Huang, Ruijie; Li, Mingyun; Gregory, Richard L


    Biofilms are masses of microorganisms that bind to and multiply on a solid surface, typically with a fluid bathing the microbes. The microorganisms that are not attached but are free floating in an aqueous environment are termed planktonic cells. Traditionally, microbiology research has addressed results from planktonic bacterial cells. However, many recent studies have indicated that biofilms are the preferred form of growth of most microbes and particularly those of a pathogenic nature. Biofilms on animal hosts have significantly increased resistance to various antimicrobials compared to planktonic cells. These microbial communities form microcolonies that interact with each other using very sophisticated communication methods (i.e., quorum-sensing). The development of unique microbiological tools to detect and assess the various biofilms around us is a tremendously important focus of research in many laboratories. In the present review, we discuss the major biofilm mechanisms and the interactions among oral bacteria.

  10. Autoproteolytic Activation of Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Aimee Shen


    Full Text Available Protease domains within toxins typically act as the primary effector domain within target cells. By contrast, the primary function of the cysteine protease domain (CPD in Multifunctional Autoprocessing RTX-like (MARTX and Clostridium sp. glucosylating toxin families is to proteolytically cleave the toxin and release its cognate effector domains. The CPD becomes activated upon binding to the eukaryotic-specific small molecule, inositol hexakisphosphate (InsP6, which is found abundantly in the eukaryotic cytosol. This property allows the CPD to spatially and temporally regulate toxin activation, making it a prime candidate for developing anti-toxin therapeutics. In this review, we summarize recent findings related to defining the regulation of toxin function by the CPD and the development of inhibitors to prevent CPD-mediated activation of bacterial toxins.

  11. Bacterial Ice Crystal Controlling Proteins

    Directory of Open Access Journals (Sweden)

    Janet S. H. Lorv


    Full Text Available Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  12. Acute myocarditis with normal wall motion detected with 2D speckle tracking echocardiography

    Directory of Open Access Journals (Sweden)

    Thomas Sturmberger


    Full Text Available We present the case of a 26-year-old male with acute tonsillitis who was referred for coronary angiography because of chest pain, elevated cardiac biomarkers, and biphasic T waves. The patient had no cardiovascular risk factors. Echocardiography showed no wall motion abnormalities and no pericardial effusion. 2D speckle tracking revealed distinct decreased regional peak longitudinal systolic strain in the lateral and posterior walls. Ischemic disease was extremely unlikely in view of his young age, negative family history regarding coronary artery disease, and lack of regional wall motion abnormalities on the conventional 2D echocardiogram. Coronary angiography was deferred as myocarditis was suspected. To confirm the diagnosis, cardiac magnetic resonance tomography (MRT was performed, showing subepicardial delayed hyperenhancement in the lateral and posterior walls correlating closely with the strain pattern obtained by 2D speckle tracking echocardiography. With a working diagnosis of acute myocarditis associated with acute tonsillitis, we prescribed antibiotics and nonsteroidal anti-inflammatory drugs. The patient’s clinical signs resolved along with normalization of serum creatine kinase (CK levels, and the patient was discharged on the third day after admission. Learning points: • Acute myocarditis can mimic acute coronary syndromes. • Conventional 2D echocardiography lacks specific features for detection of subtle regional wall motion abnormalities. • 2D speckle tracking expands the scope of echocardiography in identifying myocardial dysfunction derived from edema in acute myocarditis.

  13. 8.3 Microbiology and Biodegradation: A New Bacterial Communication System (United States)


    Approved for Public Release; Distribution Unlimited 8.3 Microbiology and Biodegradation: A new bacterial communication system The views, opinions and...palustris , Molecular Microbiology , (02 2010): 0. doi: 10.1111/j.1365-2958.2009.07037.x H. Hirakawa, C. S. Harwood, K. B. Pechter, A. L. Schaefer, E. P...hydrogen Proctor and Gamble Award in Applied and Environmental Microbiology to Caroline Harwood Peter Greenberg was recipient of the Doctor of Science

  14. The STAPL pView

    KAUST Repository

    Buss, Antal


    The Standard Template Adaptive Parallel Library (STAPL) is a C++ parallel programming library that provides a collection of distributed data structures (pContainers) and parallel algorithms (pAlgorithms) and a generic methodology for extending them to provide customized functionality. STAPL algorithms are written in terms of pViews, which provide a generic access interface to pContainer data by abstracting common data structure concepts. Briefly, pViews allow the same pContainer to present multiple interfaces, e.g., enabling the same pMatrix to be \\'viewed\\' (or used) as a row-major or column-major matrix, or even as a vector. In this paper, we describe the stapl pView concept and its properties. pViews generalize the iterator concept and enable parallelism by providing random access to, and an ADT for, collections of elements. We illustrate how pViews provide support for managing the tradeoff between expressivity and performance and examine the performance overhead incurred when using pViews. © 2011 Springer-Verlag Berlin Heidelberg.

  15. Axions from cosmic string and wall decay

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C A


    If inflation occurred with a reheat temperature > T{sub PQ}, axions from the decay of global axion strings and domain walls would make an important contribution to the cosmological energy density, comparable to that from vacuum misalignment. Several groups have numerically studied the evolution of axion strings and walls in the past, however substantial uncertainties remain in their contribution to the present density {Omega}{sub a,string+wall} {approx} 1-100 (f{sub a}/10{sup 12} GeV){sup 7/6}, where f{sub a} is the axion decay constant. I will describe the numerical methods used in our simulations and show results for several string and wall configurations.

  16. NEW RSW & Wall Fine Fully Tetrahedral Grid (United States)

    National Aeronautics and Space Administration — NEW RSW Fine Fully Tetrahedral Grid with Viscous Wind Tunnel wall at the root. This grid is for a node-based unstructured solver. Note that the CGNS file is very...

  17. Function of laccases in cell wall biosynthesis

    DEFF Research Database (Denmark)

    Larsen, Anders; Holm, Preben Bach; Andersen, Jeppe Reitan


    substrate specificities and expression patterns. As part of the strategic research centre Bio4Bio, the present project deals with laccase functions in relation to cell wall formation in grasses based on a study of the model species Brachypodium distachyon. Thirty-one isozymes have been retrieved from......Laccases are multicopper oxidases capable of polymerizing monolignols. Histochemical assays have shown temporal and spatial correlation with secondary cell wall formation in both herbs and woody perennials. However, in plants laccases constitutes a relatively large group of isoenzymes with unique...... hybridization. Specific isozymes that show high correlation with the process of secondary cell wall formation will be further studied in a reverse genetic study in which candidates will be knocked out using RNA interference. Phenotypes of knock-out mutants are to be described in relation to cell wall...

  18. Statics of Thin-Walled Pretwisted Beams

    DEFF Research Database (Denmark)

    Krenk, Steen; Gunneskov, O.


    The displacement and strain fields of thin-walled pretwisted beams are prescribed in terms of generalized displacements for extension, bending, torsion and warping. Differential equations and boundary conditions are obtained from the elastic potential energy functional without assuming coincidenc...

  19. Manufacturing Advanced Channel Wall Rocket Liners Project (United States)

    National Aeronautics and Space Administration — This SBIR will adapt and demonstrate a low cost flexible method of manufacturing channel wall liquid rocket nozzles and combustors, while providing developers a...

  20. Plant Wall Degradative Compounds and Systems (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The present invention relates to cell wall degradative systems, in particular to systems containing enzymes that bind to and/or depolymerize cellulose. These systems...