WorldWideScience

Sample records for bacterial transcription initiation

  1. Role of the σ54 Activator Interacting Domain in Bacterial Transcription Initiation

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Alexander R. [Univ. of California, Berkeley, CA (United States); Wemmer, David E. [Univ. of California, Berkeley, CA (United States)

    2016-10-11

    Bacterial sigma factors are subunits of RNA polymerase that direct the holoenzyme to specific sets of promoters in the genome and are a central element of regulating transcription. Most polymerase holoenzymes open the promoter and initiate transcription rapidly after binding. However, polymerase containing the members of the σ54 family must be acted on by a transcriptional activator before DNA opening and initiation occur. A key domain in these transcriptional activators forms a hexameric AAA + ATPase that acts through conformational changes brought on by ATP hydrolysis. Contacts between the transcriptional activator and σ54 are primarily made through an N-terminal σ54 activator interacting domain (AID). To better understand this mechanism of bacterial transcription initiation, we characterized the σ54 AID by NMR spectroscopy and other biophysical methods and show that it is an intrinsically disordered domain in σ54 alone. In this paper, we identified a minimal construct of the Aquifex aeolicus σ54 AID that consists of two predicted helices and retains native-like binding affinity for the transcriptional activator NtrC1. Using the NtrC1 ATPase domain, bound with the non-hydrolyzable ATP analog ADP-beryllium fluoride, we studied the NtrC1–σ54 AID complex using NMR spectroscopy. We show that the σ54 AID becomes structured after associating with the core loops of the transcriptional activators in their ATP state and that the primary site of the interaction is the first predicted helix. Finally, understanding this complex, formed as the first step toward initiation, will help unravel the mechanism of σ54 bacterial transcription initiation.

  2. Synthesis and biological activity of novel mono-indole and mono-benzofuran inhibitors of bacterial transcription initiation complex formation.

    Science.gov (United States)

    Mielczarek, Marcin; Thomas, Ruth V; Ma, Cong; Kandemir, Hakan; Yang, Xiao; Bhadbhade, Mohan; Black, David StC; Griffith, Renate; Lewis, Peter J; Kumar, Naresh

    2015-04-15

    Our ongoing research focused on targeting transcription initiation in bacteria has resulted in synthesis of several classes of mono-indole and mono-benzofuran inhibitors that targeted the essential protein-protein interaction between RNA polymerase core and σ(70)/σ(A) factors in bacteria. In this study, the reaction of indole-2-, indole-3-, indole-7- and benzofuran-2-glyoxyloyl chlorides with amines and hydrazines afforded a variety of glyoxyloylamides and glyoxyloylhydrazides. Similarly, condensation of 2- and 7-trichloroacetylindoles with amines and hydrazines delivered amides and hydrazides. The novel molecules were found to inhibit the RNA polymerase-σ(70)/σ(A) interaction as measured by ELISA, and also inhibited the growth of both Gram-positive and Gram-negative bacteria in culture. Structure-activity relationship (SAR) studies of the mono-indole and mono-benzofuran inhibitors suggested that the hydrophilic-hydrophobic balance is an important determinant of biological activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Initiation of HIV Reverse Transcription

    Directory of Open Access Journals (Sweden)

    Roland Marquet

    2010-01-01

    Full Text Available Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.

  4. Initiation of HIV Reverse Transcription

    OpenAIRE

    Isel, Catherine; Ehresmann, Chantal; Marquet, Roland

    2010-01-01

    Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of...

  5. Pituitary apoplexy initially mistaken for bacterial meningitis

    OpenAIRE

    Wong, Sui Hsien; Das, Kumar; Javadpour, Mohsen

    2013-01-01

    We presented a case of a 62-year-old man whose initial clinical picture was suggestive of bacterial meningitis, but instead had pituitary apoplexy. We highlighted how pituitary apoplexy can mimic bacterial meningitis, learning points on how clinical assessment can aid earlier diagnosis and the importance of considering this differential diagnosis, particularly with the associated morbidity and mortality if missed.

  6. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates

    Czech Academy of Sciences Publication Activity Database

    Barvík, I.; Rejman, Dominik; Panova, Natalya; Šanderová, Hana; Krásný, Libor

    2017-01-01

    Roč. 41, č. 2 (2017), s. 131-138 ISSN 0168-6445 R&D Projects: GA ČR GA15-05228S; GA ČR GA15-11711S Institutional support: RVO:61388963 ; RVO:61388971 Keywords : RNA polymerase * non-canonical transcription initiation * transcription initiating substrate * nicotinamide adenine dinucleotide (NAD(+)) * coenzymes * RNA stability Subject RIV: EB - Genetics ; Molecular Biology; EE - Microbiology, Virology (MBU-M) OBOR OECD: Biochemistry and molecular biology; Microbiology (MBU-M) Impact factor: 12.198, year: 2016

  7. Two independent transcription initiation codes overlap on vertebrate core promoters

    NARCIS (Netherlands)

    V. Haberle (Vanja); N. Li (Nan); Y. Hadzhiev (Yavor); C. Plessy (Charles); C. Previti (Christopher); C. Nepal (Chirag); P.A. Gehrig (Paola A.); X. Dong (Xianjun); A. Akalin (Altuna); A.M. Suzuki (Ana Maria); W.F.J. van IJcken (Wilfred); O. Armant (Olivier); M. Ferg (Marco); U. Strähle (Uwe); P. Carninci (Piero); F. Müller (Ferenc); B. Lenhard (Boris)

    2014-01-01

    textabstractA core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs and recruits general transcription factors to initiate transcription. The nature and causative relationship of the DNA sequence and chromatin signals that govern the

  8. CRISPR-mediated control of the bacterial initiation of replication

    NARCIS (Netherlands)

    Wiktor, J.M.; Lesterlin, Christian; Sherratt, David J.; Dekker, C.

    2016-01-01

    Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is

  9. Shaping the growth behaviour of biofilms initiated from bacterial aggregates

    DEFF Research Database (Denmark)

    Melaugh, Gavin; Hutchison, Jaime; Kragh, Kasper Nørskov

    2016-01-01

    Bacterial biofilms are usually assumed to originate from individual cells deposited on a surface. However, many biofilm-forming bacteria tend to aggregate in the planktonic phase so that it is possible that many natural and infectious biofilms originate wholly or partially from pre-formed cell...... eventual fate during biofilm development. Specifically, initially spread aggregates perform better when competition with surrounding unaggregated bacterial cells is low, while initially rounded aggregates perform better when competition with surrounding unaggregated cells is high. These contrasting...

  10. A code for transcription initiation in mammalian genomes

    DEFF Research Database (Denmark)

    Frith, Martin C.; Valen, Eivind Dale; Krogh, Anders

    2007-01-01

    that initiation events are clustered on the chromosomes at multiple scales - clusters within clusters - indicating multiple regulatory processes. Within the smallest of such clusters, which can be interpreted as core promoters, the local DNA sequence predicts the relative transcription start usage of each...... of large- and small-scale effects: the selection of transcription start sites is largely governed by the local DNA sequence, whereas the transcriptional activity of a locus is regulated at a different level; it is affected by distal features or events such as enhancers and chromatin remodeling....

  11. Two independent transcription initiation codes overlap on vertebrate core promoters

    Science.gov (United States)

    Haberle, Vanja; Li, Nan; Hadzhiev, Yavor; Plessy, Charles; Previti, Christopher; Nepal, Chirag; Gehrig, Jochen; Dong, Xianjun; Akalin, Altuna; Suzuki, Ana Maria; van Ijcken, Wilfred F. J.; Armant, Olivier; Ferg, Marco; Strähle, Uwe; Carninci, Piero; Müller, Ferenc; Lenhard, Boris

    2014-03-01

    A core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs and recruits general transcription factors to initiate transcription. The nature and causative relationship of the DNA sequence and chromatin signals that govern the selection of most TSSs by RNA polymerase II remain unresolved. Maternal to zygotic transition represents the most marked change of the transcriptome repertoire in the vertebrate life cycle. Early embryonic development in zebrafish is characterized by a series of transcriptionally silent cell cycles regulated by inherited maternal gene products: zygotic genome activation commences at the tenth cell cycle, marking the mid-blastula transition. This transition provides a unique opportunity to study the rules of TSS selection and the hierarchy of events linking transcription initiation with key chromatin modifications. We analysed TSS usage during zebrafish early embryonic development at high resolution using cap analysis of gene expression, and determined the positions of H3K4me3-marked promoter-associated nucleosomes. Here we show that the transition from the maternal to zygotic transcriptome is characterized by a switch between two fundamentally different modes of defining transcription initiation, which drive the dynamic change of TSS usage and promoter shape. A maternal-specific TSS selection, which requires an A/T-rich (W-box) motif, is replaced with a zygotic TSS selection grammar characterized by broader patterns of dinucleotide enrichments, precisely aligned with the first downstream (+1) nucleosome. The developmental dynamics of the H3K4me3-marked nucleosomes reveal their DNA-sequence-associated positioning at promoters before zygotic transcription and subsequent transcription-independent adjustment to the final position downstream of the zygotic TSS. The two TSS-defining grammars coexist, often physically overlapping, in core promoters of constitutively expressed genes to enable

  12. TIPR: transcription initiation pattern recognition on a genome scale.

    Science.gov (United States)

    Morton, Taj; Wong, Weng-Keen; Megraw, Molly

    2015-12-01

    The computational identification of gene transcription start sites (TSSs) can provide insights into the regulation and function of genes without performing expensive experiments, particularly in organisms with incomplete annotations. High-resolution general-purpose TSS prediction remains a challenging problem, with little recent progress on the identification and differentiation of TSSs which are arranged in different spatial patterns along the chromosome. In this work, we present the Transcription Initiation Pattern Recognizer (TIPR), a sequence-based machine learning model that identifies TSSs with high accuracy and resolution for multiple spatial distribution patterns along the genome, including broadly distributed TSS patterns that have previously been difficult to characterize. TIPR predicts not only the locations of TSSs but also the expected spatial initiation pattern each TSS will form along the chromosome-a novel capability for TSS prediction algorithms. As spatial initiation patterns are associated with spatiotemporal expression patterns and gene function, this capability has the potential to improve gene annotations and our understanding of the regulation of transcription initiation. The high nucleotide resolution of this model locates TSSs within 10 nucleotides or less on average. Model source code is made available online at http://megraw.cgrb.oregonstate.edu/software/TIPR/. megrawm@science.oregonstate.edu. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. CRISPR-mediated control of the bacterial initiation of replication.

    Science.gov (United States)

    Wiktor, Jakub; Lesterlin, Christian; Sherratt, David J; Dekker, Cees

    2016-05-05

    Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is accurately regulated by the DnaA protein, which promotes the unwinding of DNA at oriC We demonstrate that the binding of CRISPR/dCas9 to any position within origin or replication blocks the initiation of replication. Serial-dilution plating, single-cell fluorescence microscopy, and flow-cytometry experiments show that ongoing rounds of chromosome replication are finished upon CRISPR/dCas9 binding, but no new rounds are initiated. Upon arrest, cells stay metabolically active and accumulate cell mass. We find that elevating the temperature from 37 to 42°C releases the CRISR/dCas9 replication inhibition, and we use this feature to recover cells from the arrest. Our simple and robust method of controlling the bacterial cell cycle is a useful asset for synthetic biology and DNA-replication studies in particular. The inactivation of CRISPR/dCas9 binding at elevated temperatures may furthermore be of wide interest for CRISPR/Cas9 applications in genomic engineering. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an

  15. DETECTION OF BACTERIAL SMALL TRANSCRIPTS FROM RNA-SEQ DATA: A COMPARATIVE ASSESSMENT.

    Science.gov (United States)

    Peña-Castillo, Lourdes; Grüell, Marc; Mulligan, Martin E; Lang, Andrew S

    2016-01-01

    Small non-coding RNAs (sRNAs) are regulatory RNA molecules that have been identified in a multitude of bacterial species and shown to control numerous cellular processes through various regulatory mechanisms. In the last decade, next generation RNA sequencing (RNA-seq) has been used for the genome-wide detection of bacterial sRNAs. Here we describe sRNA-Detect, a novel approach to identify expressed small transcripts from prokaryotic RNA-seq data. Using RNA-seq data from three bacterial species and two sequencing platforms, we performed a comparative assessment of five computational approaches for the detection of small transcripts. We demonstrate that sRNA-Detect improves upon current standalone computational approaches for identifying novel small transcripts in bacteria.

  16. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Brian Finley [Univ. of California, Berkeley, CA (United States)

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a "receiver domain" in the family of "two-component" regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  17. Transcriptional response of Musca domestica larvae to bacterial infection.

    Directory of Open Access Journals (Sweden)

    Ting Tang

    Full Text Available The house fly Musca domestica, a cosmopolitan dipteran insect, is a significant vector for human and animal bacterial pathogens, but little is known about its immune response to these pathogens. To address this issue, we inoculated the larvae with a mixture of Escherichia coli and Staphylococcus aureus and profiled the transcriptome 6, 24, and 48 h thereafter. Many genes known to controlling innate immunity in insects were induced following infection, including genes encoding pattern recognition proteins (PGRPs, various components of the Toll and IMD signaling pathways and of the proPO-activating and redox systems, and multiple antimicrobial peptides. Interestingly, we also uncovered a large set of novel immune response genes including two broad-spectrum antimicrobial peptides (muscin and domesticin, which might have evolved to adapt to house-fly's unique ecological environments. Finally, genes mediating oxidative phosphorylation were repressed at 48 h post-infection, suggesting disruption of energy homeostasis and mitochondrial function at the late stages of infection. Collectively, our data reveal dynamic changes in gene expression following bacterial infection in the house fly, paving the way for future in-depth analysis of M. domestica's immune system.

  18. Quantification of yeast and bacterial gene transcripts in retail cheeses by reverse transcription-quantitative PCR.

    Science.gov (United States)

    Monnet, Christophe; Straub, Cécile; Castellote, Jessie; Onesime, Djamila; Bonnarme, Pascal; Irlinger, Françoise

    2013-01-01

    The cheese microbiota contributes to a large extent to the development of the typical color, flavor, and texture of the final product. Its composition is not well defined in most cases and varies from one cheese to another. The aim of the present study was to establish procedures for gene transcript quantification in cheeses by reverse transcription-quantitative PCR. Total RNA was extracted from five smear-ripened cheeses purchased on the retail market, using a method that does not involve prior separation of microbial cells. 16S rRNA and malate:quinone oxidoreductase gene transcripts of Corynebacterium casei, Brevibacterium aurantiacum, and Arthrobacter arilaitensis and 26S rRNA and beta tubulin gene transcripts of Geotrichum candidum and Debaryomyces hansenii could be detected and quantified in most of the samples. Three types of normalization were applied: against total RNA, against the amount of cheese, and against a reference gene. For the first two types of normalization, differences of reverse transcription efficiencies from one sample to another were taken into account by analysis of exogenous control mRNA. No good correlation was found between the abundances of target mRNA or rRNA transcripts and the viable cell concentration of the corresponding species. However, in most cases, no mRNA transcripts were detected for species that did not belong to the dominant species. The applications of gene expression measurement in cheeses containing an undefined microbiota, as well as issues concerning the strategy of normalization and the assessment of amplification specificity, are discussed.

  19. Data from computational analysis of the peptide linkers in the MocR bacterial transcriptional regulators

    Directory of Open Access Journals (Sweden)

    Sebastiana Angelaccio

    2016-12-01

    Interpretation and discussion of reported data refer to the article “Structural properties of the linkers connecting the N- and C- terminal domains in the MocR bacterial transcriptional regulators” (T. Milano, S. Angelaccio, A. Tramonti, M. L. Di Salvo, R. Contestabile, S. Pascarella, 2016 [1].

  20. Tuning of Recombinant Protein Expression in Escherichia coli by Manipulating Transcription, Translation Initiation Rates, and Incorporation of Noncanonical Amino Acids.

    Science.gov (United States)

    Schlesinger, Orr; Chemla, Yonatan; Heltberg, Mathias; Ozer, Eden; Marshall, Ryan; Noireaux, Vincent; Jensen, Mogens Høgh; Alfonta, Lital

    2017-06-16

    Protein synthesis in cells has been thoroughly investigated and characterized over the past 60 years. However, some fundamental issues remain unresolved, including the reasons for genetic code redundancy and codon bias. In this study, we changed the kinetics of the Eschrichia coli transcription and translation processes by mutating the promoter and ribosome binding domains and by using genetic code expansion. The results expose a counterintuitive phenomenon, whereby an increase in the initiation rates of transcription and translation lead to a decrease in protein expression. This effect can be rescued by introducing slow translating codons into the beginning of the gene, by shortening gene length or by reducing initiation rates. On the basis of the results, we developed a biophysical model, which suggests that the density of co-transcriptional-translation plays a role in bacterial protein synthesis. These findings indicate how cells use codon bias to tune translation speed and protein synthesis.

  1. Initiation of mtDNA transcription is followed by pausing, and diverges across human cell types and during evolution.

    Science.gov (United States)

    Blumberg, Amit; Rice, Edward J; Kundaje, Anshul; Danko, Charles G; Mishmar, Dan

    2017-03-01

    Mitochondrial DNA (mtDNA) genes are long known to be cotranscribed in polycistrones, yet it remains impossible to study nascent mtDNA transcripts quantitatively in vivo using existing tools. To this end, we used deep sequencing (GRO-seq and PRO-seq) and analyzed nascent mtDNA-encoded RNA transcripts in diverse human cell lines and metazoan organisms. Surprisingly, accurate detection of human mtDNA transcription initiation sites (TISs) in the heavy and light strands revealed a novel conserved transcription pausing site near the light-strand TIS. This pausing site correlated with the presence of a bacterial pausing sequence motif, with reduced SNP density, and with a DNase footprinting signal in all tested cells. Its location within conserved sequence block 3 (CSBIII), just upstream of the known transcription-replication transition point, suggests involvement in such transition. Analysis of nonhuman organisms enabled de novo mtDNA sequence assembly, as well as detection of previously unknown mtDNA TIS, pausing, and transcription termination sites with unprecedented accuracy. Whereas mammals ( Pan troglodytes , Macaca mulatta , Rattus norvegicus , and Mus musculus ) showed a human-like mtDNA transcription pattern, the invertebrate pattern ( Drosophila melanogaster and Caenorhabditis elegans ) profoundly diverged. Our approach paves the path toward in vivo, quantitative, reference sequence-free analysis of mtDNA transcription in all eukaryotes. © 2017 Blumberg et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters

    DEFF Research Database (Denmark)

    Chen, Yun; Pai, Athma A.; Herudek, Jan

    2016-01-01

    Mammalian transcriptomes are complex and formed by extensive promoter activity. In addition, gene promoters are largely divergent and initiate transcription of reverse-oriented promoter upstream transcripts (PROMPTs). Although PROMPTs are commonly terminated early, influenced by polyadenylation s...

  3. Transcriptional responses of Treponema denticola to other oral bacterial species.

    Directory of Open Access Journals (Sweden)

    Juni Sarkar

    presented here provide an in-depth understanding of the transcriptional responses triggered by contact-dependent interactions between microorganisms inhabiting the periodontal pocket.

  4. The dynamic nature and territory of transcriptional machinery in the bacterial chromosome

    Directory of Open Access Journals (Sweden)

    Ding Jun Jin

    2015-05-01

    Full Text Available Our knowledge of the regulation of genes involved in bacterial growth and stress responses is extensive; however, we have only recently begun to understand how environmental cues influence the dynamic, three-dimensional distribution of RNA polymerase (RNAP in Escherichia coli on the level of single cell, using wide-field fluorescence microscopy and state-of-the-art imaging techniques. Live-cell imaging using either an agarose-embedding procedure or a microfluidic system further underscores the dynamic nature of the distribution of RNAP in response to changes in the environment. A general agreement between live-cell and fixed-cell images has validated the formaldehyde-fixing procedure, which is a technical breakthrough in the study of the cell biology of RNAP. In this review we use a systems biology perspective to summarize the advances in the cell biology of RNAP in E. coli, including the discoveries of the bacterial nucleolus, the spatial compartmentalization of the transcription machinery at the periphery of the nucleoid, and the segregation of the chromosome territories for the two major cellular functions of transcription and replication in fast-growing cells. Our understanding of the coupling of transcription and bacterial chromosome (or nucleoid structure is also summarized. Using E. coli as a simple model system, co-imaging of RNAP with DNA and other factors during growth and stress responses will continue to be a useful tool for studying bacterial growth and adaptation in changing environment.

  5. Kinetics of the stages of transcription initiation at the Escherichia coli lac UV5 promoter

    International Nuclear Information System (INIS)

    Straney, S.B.; Crothers, D.M.

    1987-01-01

    The kinetics of initiation by Escherichia coli RNA polymerase on the lac L8UV5 promoter was studied by a gel retardation method that separates protein-DNA complexes from free DNA. The binding constant of the closed complex, the forward and reverse rate constants of isomerization from closed to open complex, and the forward rate constant from the open to initiated complex were measured. Both the forward and reverse isomerization rates were found to be temperature dependent, and the activation energies for these steps were determined. The rates of open complex formation and dissociation were not affected by the addition of ribonucleotide triphosphates; however, the extent of dissociation was greatly reduced if the triphosphates added allowed a short, unstable RNA product to form. The dissociation rate was not affected by heparin, a polyanion competitor that sequesters the polymerase. The rate of initiated complex formation appeared to be dependent on whether the initiating moiety was a mononucleotide triphosphate or dinucleoside monophosphate and on the sequence of the dinucleoside. These results are compared to those found on both the lac L8UV5 and other bacterial and phage promoters by less direct measurements. We use the values obtained for the individual rate constants to investigate the predicted steady-state kinetics of initiation-limited transcription, with the conclusion that the rate-limiting step is formation of the open complex in the limit of low polymerase concentration. However, when RNA polymerase is saturating, the rate is determined by the transition from open complex into the stably initiated ternary complex

  6. Cecocentral scotoma as the initial manifestation of subacute bacterial endocarditis

    Directory of Open Access Journals (Sweden)

    Danielle Savitsky Strauss

    2011-03-01

    Full Text Available Danielle Savitsky Strauss, Samuel Baharestani, Julia Nemiroff, Kiran Amesur, David HowardNew York University Langone Medical Center, New York, NY, USAIntroduction: We report a case of a 67-year-old male who presented with a cecocentral scotoma caused by a septic embolus from subacute bacterial endocarditis (SBE.Methods: A 67-year-old man presented with sudden, painless decreased vision in the left eye. A dilated fundoscopic exam, Humphrey visual field test, transthoracic echocardiogram, abdominal computed tomography (CT, and blood cultures were all performed.Results: A dilated fundoscopic exam revealed temporal segmental optic disc pallor on the left, and Humphrey visual field testing demonstrated a dense left cecocentral scotoma. When the patient developed fever (103.9°F and palpitations, transthoracic echocardiogram revealed valvular vegetations, and contrast CT of the abdomen revealed an abscess in the dome of the liver likely due to an infectious thrombus. Blood cultures grew viridians group streptococci in three separate peripheral collections.Conclusion: This case illustrates that a sudden cecocentral scotoma may be the initial manifestation of SBE. Keywords: endocarditis, scotoma, streptococcal infections, visual fields

  7. HIV-1 reverse transcription initiation: a potential target for novel antivirals?

    NARCIS (Netherlands)

    Abbink, Truus E. M.; Berkhout, Ben

    2008-01-01

    Reverse transcription is an essential step in the retroviral life cycle, as it converts the genomic RNA into DNA. In this review, we describe recent developments concerning the initiation step of this complex, multi-step reaction. During initiation of reverse transcription, a cellular tRNA primer is

  8. Initiation of HIV-1 reverse transcription is regulated by a primer activation signal

    NARCIS (Netherlands)

    Beerens, N.; Groot, F.; Berkhout, B.

    2001-01-01

    Reverse transcription of the human immunodeficiency virus type 1 (HIV-1) RNA genome appears to be strictly regulated at the level of initiation. The primer binding site (PBS), at which the tRNA(3)(Lys) molecule anneals and reverse transcription is initiated, is present in a highly structured region

  9. Overlapping Podospora anserina transcriptional responses to bacterial and fungal non self indicate a multilayered innate immune response

    Directory of Open Access Journals (Sweden)

    Marina eLamacchia

    2016-04-01

    Full Text Available Recognition and response to non self is essential to development and survival of all organisms. It can occur between individuals of the same species or between different organisms. Fungi are established models for conspecific non self recognition in the form of vegetative incompatibility (VI, a genetically controlled process initiating a programmed cell death (PCD leading to the rejection of a fusion cell between genetically different isolates of the same species. In Podospora anserina VI is controlled by members of the hnwd gene family encoding for proteins analogous to NOD Like Receptors (NLR immune receptors in eukaryotes. It was hypothesized that the hnwd controlled VI reaction was derived from the fungal innate immune response. Here we analyze the P. anserina transcriptional responses to two bacterial species, Serratia fonticola to which P. anserina survives and S. marcescens to which P. anserina succumbs, and compare these to the transcriptional response induced under VI conditions. Transcriptional responses to both bacteria largely overlap, however the number of genes regulated and magnitude of regulation is more important when P. anserina survives. Transcriptional responses to bacteria also overlap with the VI reaction for both up or down regulated gene sets. Genes up regulated tend to be clustered in the genome, and display limited phylogenetic distribution. In all three responses we observed genes related to autophagy to be up-regulated. Autophagy contributes to the fungal survival in all three conditions. Genes encoding for secondary metabolites and histidine kinase signaling are also up regulated in all three conditions. Transcriptional responses also display differences. Genes involved in response to oxidative stress, or encoding small secreted proteins are essentially expressed in response to bacteria, while genes encoding NLR proteins are expressed during VI. Most functions encoded in response to bacteria favor survival of the

  10. Overlapping Podospora anserina Transcriptional Responses to Bacterial and Fungal Non Self Indicate a Multilayered Innate Immune Response.

    Science.gov (United States)

    Lamacchia, Marina; Dyrka, Witold; Breton, Annick; Saupe, Sven J; Paoletti, Mathieu

    2016-01-01

    Recognition and response to non self is essential to development and survival of all organisms. It can occur between individuals of the same species or between different organisms. Fungi are established models for conspecific non self recognition in the form of vegetative incompatibility (VI), a genetically controlled process initiating a programmed cell death (PCD) leading to the rejection of a fusion cell between genetically different isolates of the same species. In Podospora anserina VI is controlled by members of the hnwd gene family encoding for proteins analogous to NOD Like Receptors (NLR) immune receptors in eukaryotes. It was hypothesized that the hnwd controlled VI reaction was derived from the fungal innate immune response. Here we analyze the P. anserina transcriptional responses to two bacterial species, Serratia fonticola to which P. anserina survives and S. marcescens to which P. anserina succumbs, and compare these to the transcriptional response induced under VI conditions. Transcriptional responses to both bacteria largely overlap, however the number of genes regulated and magnitude of regulation is more important when P. anserina survives. Transcriptional responses to bacteria also overlap with the VI reaction for both up or down regulated gene sets. Genes up regulated tend to be clustered in the genome, and display limited phylogenetic distribution. In all three responses we observed genes related to autophagy to be up-regulated. Autophagy contributes to the fungal survival in all three conditions. Genes encoding for secondary metabolites and histidine kinase signaling are also up regulated in all three conditions. Transcriptional responses also display differences. Genes involved in response to oxidative stress, or encoding small secreted proteins are essentially expressed in response to bacteria, while genes encoding NLR proteins are expressed during VI. Most functions encoded in response to bacteria favor survival of the fungus while most

  11. Specific Inhibition of HER-2/neu Transcription Initiation

    Science.gov (United States)

    2006-07-01

    translation during normoxia and hypoxia, Mol. Biol. Cell 13, 1792-1801. 11. Laughner, E., Taghavi, P., Chiles , K., Mahon, P. C., and Semenza, G. L...kinase/target of rapamycin- dependent signaling pathway, J. Biol. Chem. 277, 27975-27981. 14. Zhong, H., Chiles , K., Feldser, D., Laughner, E., Hanrahan...J., and Kennedy, G. C. (2000) Unusual DNA structure of the diabetes susceptibility locus IDDM2 and its effect on transcription by the insulin

  12. Elongation factor P mediates a novel post-transcriptional regulatory pathway critical for bacterial virulence

    DEFF Research Database (Denmark)

    Zou, S Betty; Roy, Hervé; Ibba, Michael

    2012-01-01

    of the pathogen to respond to external cues are typically attenuating. Here we discuss our recent discovery of a novel post-transcriptional regulatory pathway critical for Salmonella virulence and stress resistance. The enzymes PoxA and YjeK coordinately attach a unique beta-amino acid onto a highly conserved......Bacterial pathogens detect and integrate multiple environmental signals to coordinate appropriate changes in gene expression including the selective expression of virulence factors, changes to metabolism and the activation of stress response systems. Mutations that abolish the ability...... changes in the translation machinery during stress adaptation, indicating that the role of these factors in physiology may be broadly conserved....

  13. Elongation factor P mediates a novel post-transcriptional regulatory pathway critical for bacterial virulence

    DEFF Research Database (Denmark)

    Zou, S Betty; Roy, Hervé; Ibba, Michael

    2012-01-01

    Bacterial pathogens detect and integrate multiple environmental signals to coordinate appropriate changes in gene expression including the selective expression of virulence factors, changes to metabolism and the activation of stress response systems. Mutations that abolish the ability...... of the pathogen to respond to external cues are typically attenuating. Here we discuss our recent discovery of a novel post-transcriptional regulatory pathway critical for Salmonella virulence and stress resistance. The enzymes PoxA and YjeK coordinately attach a unique beta-amino acid onto a highly conserved...

  14. Making ends meet: Coordination between RNA 3'end processing and transcription initiation

    DEFF Research Database (Denmark)

    Andersen, Pia Kjølhede; Jensen, Torben Heick; Lykke-Andersen, Søren

    2013-01-01

    RNA polymerase II (RNAPII)-mediated gene transcription initiates at promoters and ends at terminators. Transcription termination is intimately connected to 3'-end processing of the produced RNA and already when loaded at the promoter, RNAPII starts to become configured for this downstream event. ...... discuss the requirements for efficient 3'-end processing/termination and how these may relate to proper recycling of RNAPII....

  15. A transcript finishing initiative for closing gaps in the human transcriptome

    DEFF Research Database (Denmark)

    Sogayar, Mari Cleide; Camargo, Anamaria A; Bettoni, Fabiana

    2004-01-01

    We report the results of a transcript finishing initiative, undertaken for the purpose of identifying and characterizing novel human transcripts, in which RT-PCR was used to bridge gaps between paired EST clusters, mapped against the genomic sequence. Each pair of EST clusters selected for experi...

  16. Differentiation driven changes in the dynamic organization of Basal transcription initiation.

    Directory of Open Access Journals (Sweden)

    Giuseppina Giglia-Mari

    2009-10-01

    Full Text Available Studies based on cell-free systems and on in vitro-cultured living cells support the concept that many cellular processes, such as transcription initiation, are highly dynamic: individual proteins stochastically bind to their substrates and disassemble after reaction completion. This dynamic nature allows quick adaptation of transcription to changing conditions. However, it is unknown to what extent this dynamic transcription organization holds for postmitotic cells embedded in mammalian tissue. To allow analysis of transcription initiation dynamics directly into living mammalian tissues, we created a knock-in mouse model expressing fluorescently tagged TFIIH. Surprisingly and in contrast to what has been observed in cultured and proliferating cells, postmitotic murine cells embedded in their tissue exhibit a strong and long-lasting transcription-dependent immobilization of TFIIH. This immobilization is both differentiation driven and development dependent. Furthermore, although very statically bound, TFIIH can be remobilized to respond to new transcriptional needs. This divergent spatiotemporal transcriptional organization in different cells of the soma revisits the generally accepted highly dynamic concept of the kinetic framework of transcription and shows how basic processes, such as transcription, can be organized in a fundamentally different fashion in intact organisms as previously deduced from in vitro studies.

  17. Elucidating the role of transcription in shaping the 3D structure of the bacterial genome

    Science.gov (United States)

    Brandao, Hugo B.; Wang, Xindan; Rudner, David Z.; Mirny, Leonid

    Active transcription has been linked to several genome conformation changes in bacteria, including the recruitment of chromosomal DNA to the cell membrane and formation of nucleoid clusters. Using genomic and imaging data as input into mathematical models and polymer simulations, we sought to explore the extent to which bacterial 3D genome structure could be explained by 1D transcription tracks. Using B. subtilis as a model organism, we investigated via polymer simulations the role of loop extrusion and DNA super-coiling on the formation of interaction domains and other fine-scale features that are visible in chromosome conformation capture (Hi-C) data. We then explored the role of the condensin structural maintenance of chromosome complex on the alignment of chromosomal arms. A parameter-free transcription traffic model demonstrated that mean chromosomal arm alignment can be quantitatively explained, and the effects on arm alignment in genomically rearranged strains of B. subtilis were accurately predicted. H.B. acknowledges support from the Natural Sciences and Engineering Research Council of Canada for a PGS-D fellowship.

  18. A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Kahns, Søren; Lykke-Andersen, Søren

    2008-01-01

    Transcription and pre-mRNA splicing are interdependent events. Although mechanisms governing the effects of transcription on splicing are becoming increasingly clear, the means by which splicing affects transcription remain elusive. Using cell lines stably expressing HIV-1 or β-globin mRNAs, harb...... a promoter-proximal 5′ splice site via its U1 snRNA interaction can feed back to stimulate transcription initiation by enhancing preinitiation complex assembly.......Transcription and pre-mRNA splicing are interdependent events. Although mechanisms governing the effects of transcription on splicing are becoming increasingly clear, the means by which splicing affects transcription remain elusive. Using cell lines stably expressing HIV-1 or β-globin mRNAs......, harboring wild-type or various 5′ splice site mutations, we demonstrate a strong positive correlation between splicing efficiency and transcription activity. Interestingly, a 5′ splice site can stimulate transcription even in the absence of splicing. Chromatin immunoprecipitation experiments show enhanced...

  19. Landscape and Dynamics of Transcription Initiation in the Malaria Parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Sophie H. Adjalley

    2016-03-01

    Full Text Available A comprehensive map of transcription start sites (TSSs across the highly AT-rich genome of P. falciparum would aid progress toward deciphering the molecular mechanisms that underlie the timely regulation of gene expression in this malaria parasite. Using high-throughput sequencing technologies, we generated a comprehensive atlas of transcription initiation events at single-nucleotide resolution during the parasite intra-erythrocytic developmental cycle. This detailed analysis of TSS usage enabled us to define architectural features of plasmodial promoters. We demonstrate that TSS selection and strength are constrained by local nucleotide composition. Furthermore, we provide evidence for coordinate and stage-specific TSS usage from distinct sites within the same transcription unit, thereby producing transcript isoforms, a subset of which are developmentally regulated. This work offers a framework for further investigations into the interactions between genomic sequences and regulatory factors governing the complex transcriptional program of this major human pathogen.

  20. Transcriptional responses of resistant and susceptible fish clones to the bacterial pathogen Flavobacterium psychrophilum.

    Directory of Open Access Journals (Sweden)

    Christelle Langevin

    Full Text Available Flavobacterium psychrophilum is a bacterial species that represents one of the most important pathogens for aquaculture worldwide, especially for salmonids. To gain insights into the genetic basis of the natural resistance to F. psychrophilum, we selected homozygous clones of rainbow trout with contrasted susceptibility to the infection. We compared the transcriptional response to the bacteria in the pronephros of a susceptible and a resistant line by micro-array analysis five days after infection. While the basal transcriptome of healthy fish was significantly different in the resistant and susceptible lines, the transcriptome modifications induced by the bacteria involved essentially the same genes and pathways. The response to F. psychrophilum involved antimicrobial peptides, complement, and a number of enzymes and chemokines. The matrix metalloproteases mmp9 and mmp13 were among the most highly induced genes in both genetic backgrounds. Key genes of both pro- and anti-inflammatory response such as IL1 and IL10, were up-regulated with a greater magnitude in susceptible animals where the bacterial load was also much higher. While higher resistance to F. psychrophilum does not seem to be based on extensive differences in the orientation of the immune response, several genes including complement C3 showed stronger induction in the resistant fish. They may be important for the variation of susceptibility to the infection.

  1. Ribosome signatures aid bacterial translation initiation site identification.

    Science.gov (United States)

    Giess, Adam; Jonckheere, Veronique; Ndah, Elvis; Chyżyńska, Katarzyna; Van Damme, Petra; Valen, Eivind

    2017-08-30

    While methods for annotation of genes are increasingly reliable, the exact identification of translation initiation sites remains a challenging problem. Since the N-termini of proteins often contain regulatory and targeting information, developing a robust method for start site identification is crucial. Ribosome profiling reads show distinct patterns of read length distributions around translation initiation sites. These patterns are typically lost in standard ribosome profiling analysis pipelines, when reads from footprints are adjusted to determine the specific codon being translated. Utilising these signatures in combination with nucleotide sequence information, we build a model capable of predicting translation initiation sites and demonstrate its high accuracy using N-terminal proteomics. Applying this to prokaryotic translatomes, we re-annotate translation initiation sites and provide evidence of N-terminal truncations and extensions of previously annotated coding sequences. These re-annotations are supported by the presence of structural and sequence-based features next to N-terminal peptide evidence. Finally, our model identifies 61 novel genes previously undiscovered in the Salmonella enterica genome. Signatures within ribosome profiling read length distributions can be used in combination with nucleotide sequence information to provide accurate genome-wide identification of translation initiation sites.

  2. Small RNAs targeting transcription start site induce heparanase silencing through interference with transcription initiation in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Guosong Jiang

    Full Text Available Heparanase (HPA, an endo-h-D-glucuronidase that cleaves the heparan sulfate chain of heparan sulfate proteoglycans, is overexpressed in majority of human cancers. Recent evidence suggests that small interfering RNA (siRNA induces transcriptional gene silencing (TGS in human cells. In this study, transfection of siRNA against -9/+10 bp (siH3, but not -174/-155 bp (siH1 or -134/-115 bp (siH2 region relative to transcription start site (TSS locating at 101 bp upstream of the translation start site, resulted in TGS of heparanase in human prostate cancer, bladder cancer, and gastric cancer cells in a sequence-specific manner. Methylation-specific PCR and bisulfite sequencing revealed no DNA methylation of CpG islands within heparanase promoter in siH3-transfected cells. The TGS of heparanase did not involve changes of epigenetic markers histone H3 lysine 9 dimethylation (H3K9me2, histone H3 lysine 27 trimethylation (H3K27me3 or active chromatin marker acetylated histone H3 (AcH3. The regulation of alternative splicing was not involved in siH3-mediated TGS. Instead, siH3 interfered with transcription initiation via decreasing the binding of both RNA polymerase II and transcription factor II B (TFIIB, but not the binding of transcription factors Sp1 or early growth response 1, on the heparanase promoter. Moreover, Argonaute 1 and Argonaute 2 facilitated the decreased binding of RNA polymerase II and TFIIB on heparanase promoter, and were necessary in siH3-induced TGS of heparanase. Stable transfection of the short hairpin RNA construct targeting heparanase TSS (-9/+10 bp into cancer cells, resulted in decreased proliferation, invasion, metastasis and angiogenesis of cancer cells in vitro and in athymic mice models. These results suggest that small RNAs targeting TSS can induce TGS of heparanase via interference with transcription initiation, and significantly suppress the tumor growth, invasion, metastasis and angiogenesis of cancer cells.

  3. Bacterial rRNA-Targeted Reverse Transcription-PCR Used To Identify Pathogens Responsible for Fever with Neutropenia▿

    OpenAIRE

    Sakaguchi, Sachi; Saito, Masahiro; Tsuji, Hirokazu; Asahara, Takashi; Takata, Oto; Fujimura, Junya; Nagata, Satoru; Nomoto, Koji; Shimizu, Toshiaki

    2010-01-01

    The purpose of this study was to evaluate the clinical utility of bacterial rRNA-targeted reverse transcription-quantitative PCR (BrRNA RT-qPCR) assays for identifying the bacterial pathogens that cause fever with neutropenia in pediatric cancer patients, by comparing the bacterial detection rate of this technique with that of blood culture. One milliliter of blood was collected from pediatric patients who developed fever with neutropenia following cancer chemotherapy. BrRNA RT-qPCR was perfo...

  4. Events during eucaryotic rRNA transcription initiation and elongation: Conversion from the closed to the open promoter complex requires nucleotide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, E.; Paule, M.R.

    1988-05-01

    Chemical footprinting and topological analysis were carried out on the Acanthamoeba castellanii rRNA transcription initiation factor (TIF) and RNA polymerase I complexes with DNA during transcription initiation and elongation. The results show that the binding of TIF and polymerase to the promoter does not alter the supercoiling of the DNA template and the template does not become sensitive to modification by diethylpyro-carbonate, which can identify melted DNA regions. Thus, in contrast to bacterial RNA polymerase, the eucaryotic RNA polymerase I-promoter complex is in a closed configuration preceding addition of nucleotides in vitro. Initiation and 3'-O-methyl CTP-limited translocation by RNA polymerase I results in separation of the polymerase-TIF footprints, leaving the TIF footprint unaltered. In contrast, initiation and translocation result in a significant change in the conformation of the polymerase-DNA complex, culminating in an unwound DNA region of at least 10 base pairs.

  5. A Bacteriophage Capsid Protein Is an Inhibitor of a Conserved Transcription Terminator of Various Bacterial Pathogens.

    Science.gov (United States)

    Ghosh, Gairika; Reddy, Jayavardhana; Sambhare, Susmit; Sen, Ranjan

    2018-01-01

    Rho is a hexameric molecular motor that functions as a conserved transcription terminator in the majority of bacterial species and is a potential drug target. Psu is a bacteriophage P4 capsid protein that inhibits Escherichia coli Rho by obstructing its ATPase and translocase activities. In this study, we explored the anti-Rho activity of Psu for Rho proteins from different pathogens. Sequence alignment and homology modeling of Rho proteins from pathogenic bacteria revealed the conserved nature of the Psu-interacting regions in all these proteins. We chose Rho proteins from various pathogens, including Mycobacterium smegmatis , Mycobacterium bovis , Mycobacterium tuberculosis , Xanthomonas campestris , Xanthomonas oryzae , Corynebacterium glutamicum , Vibrio cholerae , Salmonella enterica , and Pseudomonas syringae The purified recombinant Rho proteins of these organisms showed variable rates of ATP hydrolysis on poly(rC) as the substrate and were capable of releasing RNA from the E. coli transcription elongation complexes. Psu was capable of inhibiting these two functions of all these Rho proteins. In vivo pulldown assays revealed direct binding of Psu with many of these Rho proteins. In vivo expression of psu induced killing of M. smegmatis , M. bovis , X. campestris , and E. coli expressing S. enterica Rho indicating Psu-induced inhibition of Rho proteins of these strains under physiological conditions. We propose that the "universal" inhibitory function of the Psu protein against the Rho proteins from both Gram-negative and Gram-positive bacteria could be useful for designing peptides with antimicrobial functions and that these peptides could contribute to synergistic antibiotic treatment of the pathogens by compromising the Rho functions. IMPORTANCE Bacteriophage-derived protein factors modulating different bacterial processes could be converted into unique antimicrobial agents. Bacteriophage P4 capsid protein Psu is an inhibitor of the E. coli transcription

  6. Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children.

    Science.gov (United States)

    Herberg, Jethro A; Kaforou, Myrsini; Wright, Victoria J; Shailes, Hannah; Eleftherohorinou, Hariklia; Hoggart, Clive J; Cebey-López, Miriam; Carter, Michael J; Janes, Victoria A; Gormley, Stuart; Shimizu, Chisato; Tremoulet, Adriana H; Barendregt, Anouk M; Salas, Antonio; Kanegaye, John; Pollard, Andrew J; Faust, Saul N; Patel, Sanjay; Kuijpers, Taco; Martinón-Torres, Federico; Burns, Jane C; Coin, Lachlan J M; Levin, Michael

    Because clinical features do not reliably distinguish bacterial from viral infection, many children worldwide receive unnecessary antibiotic treatment, while bacterial infection is missed in others. To identify a blood RNA expression signature that distinguishes bacterial from viral infection in febrile children. Febrile children presenting to participating hospitals in the United Kingdom, Spain, the Netherlands, and the United States between 2009-2013 were prospectively recruited, comprising a discovery group and validation group. Each group was classified after microbiological investigation as having definite bacterial infection, definite viral infection, or indeterminate infection. RNA expression signatures distinguishing definite bacterial from viral infection were identified in the discovery group and diagnostic performance assessed in the validation group. Additional validation was undertaken in separate studies of children with meningococcal disease (n = 24) and inflammatory diseases (n = 48) and on published gene expression datasets. A 2-transcript RNA expression signature distinguishing bacterial infection from viral infection was evaluated against clinical and microbiological diagnosis. Definite bacterial and viral infection was confirmed by culture or molecular detection of the pathogens. Performance of the RNA signature was evaluated in the definite bacterial and viral group and in the indeterminate infection group. The discovery group of 240 children (median age, 19 months; 62% male) included 52 with definite bacterial infection, of whom 36 (69%) required intensive care, and 92 with definite viral infection, of whom 32 (35%) required intensive care. Ninety-six children had indeterminate infection. Analysis of RNA expression data identified a 38-transcript signature distinguishing bacterial from viral infection. A smaller (2-transcript) signature (FAM89A and IFI44L) was identified by removing highly correlated transcripts. When this 2-transcript

  7. Molecular approaches for viable bacterial population and transcriptional analyses in a rodent model of dental caries

    Science.gov (United States)

    Klein, Marlise I.; Scott-Anne, Kathleen M.; Gregoire, Stacy; Rosalen, Pedro L.; Koo, Hyun

    2012-01-01

    SUMMARY Culturing methods are the primary approach for microbiological analysis of plaque-biofilms in rodent models of dental caries. In this study, we developed strategies for isolation of DNA and RNA from in vivo formed plaque-biofilms to analyze the viable bacterial population and gene expression. Plaque-biofilm samples from rats were treated with propidium monoazide to isolate DNA from viable cells, and the purified DNA was used to quantify total bacteria and S. mutans population via qPCR and specific primers; the same samples were also analyzed by colony forming unit (CFU) counting. In parallel, RNA was isolated from plaque-biofilm samples (from same animals) and used for transcriptional analyses via RT-qPCR. The viable population of both S. mutans and total bacteria assessed by qPCR were positively correlated with the CFU data (P0.8). However, the qPCR data showed higher bacterial cell counts, particularly for total bacteria (vs. CFU). Moreover, S. mutans proportion in the plaque-biofilm determined by qPCR analysis showed strong correlation with incidence of smooth-surface caries (P=0.0022, r=0.71). The purified RNAs presented high RNA integrity numbers (>7), which allowed measurement of the expression of genes that are critical for S. mutans virulence (e.g. gtfB and gtfC). Our data show that the viable microbial population and the gene expression can be analyzed simultaneously, providing a global assessment of the infectious aspect of the disease dental caries. Our approach could enhance the value of the current rodent model in further understanding the pathophysiology of this disease and facilitating the exploration of novel anti-caries therapies. PMID:22958384

  8. Short term memory of Caenorhabditis elegans against bacterial pathogens involves CREB transcription factor.

    Science.gov (United States)

    Prithika, Udayakumar; Vikneswari, Ramaraj; Balamurugan, Krishnaswamy

    2017-04-01

    One of the key issues pertaining to the control of memory is to respond to a consistently changing environment or microbial niche present in it. Human cyclic AMP response element binding protein (CREB) transcription factor which plays a crucial role in memory has a homolog in C. elegans, crh-1. crh-1 appears to influence memory processes to certain extent by habituation of the host to a particular environment. The discrimination between the pathogen and a non-pathogen is essential for C. elegans in a microbial niche which determines its survival. Training the nematodes in the presence of a virulent pathogen (S. aureus) and an opportunistic pathogen (P. mirabilis) separately exhibits a different behavioural paradigm. This appears to be dependent on the CREB transcription factor. Here we show that C. elegans homolog crh-1 helps in memory response for a short term against the interacting pathogens. Following conditioning of the nematodes to S. aureus and P. mirabilis, the wild type nematodes exhibited a positive response towards the respective pathogens which diminished slowly after 2h. By contrast, the crh-1 deficient nematodes had a defective memory post conditioning. The molecular data reinforces the importance of crh-1 gene in retaining the memory of nematode. Our results also suggest that involvement of neurotransmitters play a crucial role in modulating the memory of the nematode with the assistance of CREB. Therefore, we elucidate that CREB is responsible for the short term memory response in C. elegans against bacterial pathogens. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Transcription of ribosomal RNA genes is initiated in the third cell cycle of bovine embryos

    DEFF Research Database (Denmark)

    Jakobsen, Anne Sørig; Avery, Birthe; Dieleman, Steph J.

    2006-01-01

    Transcription from the embryos own ribosomal genes is initiated in most species at the same time as the maternal-embryonic transition. Recently data have indicated that a minor activation may take place during the third embryonic cell cycle in the bovine, one cell cycle before the major activatio...

  10. Structural rearrangements of the RNA polymerase III machinery during tRNA transcription initiation.

    Science.gov (United States)

    Ramsay, Ewan Phillip; Vannini, Alessandro

    2018-04-01

    RNA polymerase III catalyses the synthesis of tRNAs in eukaryotic organisms. Through combined biochemical and structural characterisation, multiple auxiliary factors have been identified alongside RNA Polymerase III as critical in both facilitating and regulating transcription. Together, this machinery forms dynamic multi-protein complexes at tRNA genes which are required for polymerase recruitment, DNA opening and initiation and elongation of the tRNA transcripts. Central to the function of these complexes is their ability to undergo multiple conformational changes and rearrangements that regulate each step. Here, we discuss the available biochemical and structural data on the structural plasticity of multi-protein complexes involved in RNA Polymerase III transcriptional initiation and facilitated re-initiation during tRNA synthesis. Increasingly, structural information is becoming available for RNA polymerase III and its functional complexes, allowing for a deeper understanding of tRNA transcriptional initiation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. TBP binding and the rate of transcription initiation from the human β-globin gene.

    NARCIS (Netherlands)

    M. Antoniou (Michael); E. Spanopoulou; F.G. Grosveld (Frank); E. de Boer (Ernie)

    1995-01-01

    textabstractDNA-protein interaction studies in vitro revealed several factors binding over the TATA box and the region of transcription initiation (cap) site of the human beta-globin promoter; TATA binding protein TBP at -30, Sp1 at -19, GATA-1 at -12 and +5, YY1 at -9 and a novel factor C1 over the

  12. High-density transcriptional initiation signals underline genomic islands in bacteria.

    Directory of Open Access Journals (Sweden)

    Qianli Huang

    Full Text Available Genomic islands (GIs, frequently associated with the pathogenicity of bacteria and having a substantial influence on bacterial evolution, are groups of "alien" elements which probably undergo special temporal-spatial regulation in the host genome. Are there particular hallmark transcriptional signals for these "exotic" regions? We here explore the potential transcriptional signals that underline the GIs beyond the conventional views on basic sequence composition, such as codon usage and GC property bias. It showed that there is a significant enrichment of the transcription start positions (TSPs in the GI regions compared to the whole genome of Salmonella enterica and Escherichia coli. There was up to a four-fold increase for the 70% GIs, implying high-density TSPs profile can potentially differentiate the GI regions. Based on this feature, we developed a new sliding window method GIST, Genomic-island Identification by Signals of Transcription, to identify these regions. Subsequently, we compared the known GI-associated features of the GIs detected by GIST and by the existing method Islandviewer to those of the whole genome. Our method demonstrates high sensitivity in detecting GIs harboring genes with biased GI-like function, preferred subcellular localization, skewed GC property, shorter gene length and biased "non-optimal" codon usage. The special transcriptional signals discovered here may contribute to the coordinate expression regulation of foreign genes. Finally, by using GIST, we detected many interesting GIs in the 2011 German E. coli O104:H4 outbreak strain TY-2482, including the microcin H47 system and gene cluster ycgXEFZ-ymgABC that activates the production of biofilm matrix. The aforesaid findings highlight the power of GIST to predict GIs with distinct intrinsic features to the genome. The heterogeneity of cumulative TSPs profiles may not only be a better identity for "alien" regions, but also provide hints to the special

  13. RNA Transcriptional Biosignature Analysis for Identifying Febrile Infants With Serious Bacterial Infections in the Emergency Department

    Science.gov (United States)

    Mahajan, Prashant; Kuppermann, Nathan; Suarez, Nicolas; Mejias, Asuncion; Casper, Charlie; Dean, J. Michael; Ramilo, Octavio

    2015-01-01

    Objectives To develop the infrastructure and demonstrate the feasibility of conducting microarray-based RNA transcriptional profile analyses for the diagnosis of serious bacterial infections in febrile infants 60 days and younger in a multicenter pediatric emergency research network. Methods We designed a prospective multicenter cohort study with the aim of enrolling more than 4000 febrile infants 60 days and younger. To ensure success of conducting complex genomic studies in emergency department (ED) settings, we established an infrastructure within the Pediatric Emergency Care Applied Research Network, including 21 sites, to evaluate RNA transcriptional profiles in young febrile infants. We developed a comprehensive manual of operations and trained site investigators to obtain and process blood samples for RNA extraction and genomic analyses. We created standard operating procedures for blood sample collection, processing, storage, shipping, and analyses. We planned to prospectively identify, enroll, and collect 1 mL blood samples for genomic analyses from eligible patients to identify logistical issues with study procedures. Finally, we planned to batch blood samples and determined RNA quantity and quality at the central microarray laboratory and organized data analysis with the Pediatric Emergency Care Applied Research Network data coordinating center. Below we report on establishment of the infrastructure and the feasibility success in the first year based on the enrollment of a limited number of patients. Results We successfully established the infrastructure at 21 EDs. Over the first 5 months we enrolled 79% (74 of 94) of eligible febrile infants. We were able to obtain and ship 1 mL of blood from 74% (55 of 74) of enrolled participants, with at least 1 sample per participating ED. The 55 samples were shipped and evaluated at the microarray laboratory, and 95% (52 of 55) of blood samples were of adequate quality and contained sufficient RNA for expression

  14. X-ray Crystal Structures Elucidate the Nucleotidyl Transfer Reaction of Transcript Initiation Using Two Nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    M Gleghorn; E Davydova; R Basu; L Rothman-Denes; K Murakami

    2011-12-31

    We have determined the X-ray crystal structures of the pre- and postcatalytic forms of the initiation complex of bacteriophage N4 RNA polymerase that provide the complete set of atomic images depicting the process of transcript initiation by a single-subunit RNA polymerase. As observed during T7 RNA polymerase transcript elongation, substrate loading for the initiation process also drives a conformational change of the O helix, but only the correct base pairing between the +2 substrate and DNA base is able to complete the O-helix conformational transition. Substrate binding also facilitates catalytic metal binding that leads to alignment of the reactive groups of substrates for the nucleotidyl transfer reaction. Although all nucleic acid polymerases use two divalent metals for catalysis, they differ in the requirements and the timing of binding of each metal. In the case of bacteriophage RNA polymerase, we propose that catalytic metal binding is the last step before the nucleotidyl transfer reaction.

  15. Secondary structure of the HIV reverse transcription initiation complex by NMR.

    Science.gov (United States)

    Puglisi, Elisabetta Viani; Puglisi, Joseph D

    2011-07-29

    Initiation of reverse transcription of genomic RNA is a key early step in replication of the human immunodeficiency virus (HIV) upon infection of a host cell. Viral reverse transcriptase initiates from a specific RNA-RNA complex formed between a host transfer RNA (tRNA(Lys)(3)) and a region at the 5' end of genomic RNA; the 3' end of the tRNA acts as a primer for reverse transcription of genomic RNA. We report here the secondary structure of the HIV genomic RNA-human tRNA(Lys)(3) initiation complex using heteronuclear nuclear magnetic resonance methods. We show that both RNAs undergo large-scale conformational changes upon complex formation. Formation of the 18-bp primer helix with the 3' end of tRNA(Lys)(3) drives large conformational rearrangements of the tRNA at the 5' end while maintaining the anticodon loop for potential loop-loop interactions. HIV RNA forms an intramolecular helix adjacent to the intermolecular primer helix. This helix, which must be broken by reverse transcription, likely acts as a kinetic block to reverse transcription. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Fay, Allison; Xu, Catherine; Bean, James M.; Saecker, Ruth M.; Glickman, Michael S.; Darst, Seth A.; Campbell, Elizabeth A. (Rockefeller); (SKI)

    2017-01-09

    RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the -10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD.

  17. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA.

    Science.gov (United States)

    Hubin, Elizabeth A; Fay, Allison; Xu, Catherine; Bean, James M; Saecker, Ruth M; Glickman, Michael S; Darst, Seth A; Campbell, Elizabeth A

    2017-01-09

    RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the -10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD.

  18. Convergent transcription at intragenic super-enhancers targets AID-initiated genomic instability.

    Science.gov (United States)

    Meng, Fei-Long; Du, Zhou; Federation, Alexander; Hu, Jiazhi; Wang, Qiao; Kieffer-Kwon, Kyong-Rim; Meyers, Robin M; Amor, Corina; Wasserman, Caitlyn R; Neuberg, Donna; Casellas, Rafael; Nussenzweig, Michel C; Bradner, James E; Liu, X Shirley; Alt, Frederick W

    2014-12-18

    Activation-induced cytidine deaminase (AID) initiates both somatic hypermutation (SHM) for antibody affinity maturation and DNA breakage for antibody class switch recombination (CSR) via transcription-dependent cytidine deamination of single-stranded DNA targets. Though largely specific for immunoglobulin genes, AID also acts on a limited set of off-targets, generating oncogenic translocations and mutations that contribute to B cell lymphoma. How AID is recruited to off-targets has been a long-standing mystery. Based on deep GRO-seq studies of mouse and human B lineage cells activated for CSR or SHM, we report that most robust AID off-target translocations occur within highly focal regions of target genes in which sense and antisense transcription converge. Moreover, we found that such AID-targeting "convergent" transcription arises from antisense transcription that emanates from super-enhancers within sense transcribed gene bodies. Our findings provide an explanation for AID off-targeting to a small subset of mostly lineage-specific genes in activated B cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Effects of Dispersal and Initial Diversity on the Composition and Functional Performance of Bacterial Communities.

    Science.gov (United States)

    Zha, Yinghua; Berga, Mercè; Comte, Jérôme; Langenheder, Silke

    2016-01-01

    Natural communities are open systems and consequently dispersal can play an important role for the diversity, composition and functioning of communities at the local scale. It is, however, still unclear how effects of dispersal differ depending on the initial diversity of local communities. Here we implemented an experiment where we manipulated the initial diversity of natural freshwater bacterioplankton communities using a dilution-to-extinction approach as well as dispersal from a regional species pool. The aim was further to test whether dispersal effects on bacterial abundance and functional parameters (average community growth rates, respiration rates, substrate utilisation ability) differ in dependence of the initial diversity of the communities. First of all, we found that both initial diversity and dispersal rates had an effect on the recruitment of taxa from a regional source, which was higher in communities with low initial diversity and at higher rates of dispersal. Higher initial diversity and dispersal also promoted higher levels of richness and evenness in local communities and affected, both, separately or interactively, the functional performance of communities. Our study therefore suggests that dispersal can influence the diversity, composition and functioning of bacterial communities and that this effect may be enhanced if the initial diversity of communities is depleted.

  20. The Role of the N-Terminal Domains of Bacterial Initiator DnaA in the Assembly and Regulation of the Bacterial Replication Initiation Complex

    Science.gov (United States)

    Zawilak-Pawlik, Anna; Nowaczyk, Małgorzata; Zakrzewska-Czerwińska, Jolanta

    2017-01-01

    The primary role of the bacterial protein DnaA is to initiate chromosomal replication. The DnaA protein binds to DNA at the origin of chromosomal replication (oriC) and assembles into a filament that unwinds double-stranded DNA. Through interaction with various other proteins, DnaA also controls the frequency and/or timing of chromosomal replication at the initiation step. Escherichia coli DnaA also recruits DnaB helicase, which is present in unwound single-stranded DNA and in turn recruits other protein machinery for replication. Additionally, DnaA regulates the expression of certain genes in E. coli and a few other species. Acting as a multifunctional factor, DnaA is composed of four domains that have distinct, mutually dependent roles. For example, C-terminal domain IV interacts with double-stranded DnaA boxes. Domain III drives ATP-dependent oligomerization, allowing the protein to form a filament that unwinds DNA and subsequently binds to and stabilizes single-stranded DNA in the initial replication bubble; this domain also interacts with multiple proteins that control oligomerization. Domain II constitutes a flexible linker between C-terminal domains III–IV and N-terminal domain I, which mediates intermolecular interactions between DnaA and binds to other proteins that affect DnaA activity and/or formation of the initiation complex. Of these four domains, the role of the N-terminus (domains I–II) in the assembly of the initiation complex is the least understood and appears to be the most species-dependent region of the protein. Thus, in this review, we focus on the function of the N-terminus of DnaA in orisome formation and the regulation of its activity in the initiation complex in different bacteria. PMID:28489024

  1. Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic Identity of T Cells.

    Science.gov (United States)

    Johnson, John L; Georgakilas, Georgios; Petrovic, Jelena; Kurachi, Makoto; Cai, Stanley; Harly, Christelle; Pear, Warren S; Bhandoola, Avinash; Wherry, E John; Vahedi, Golnaz

    2018-02-20

    T cell development is orchestrated by transcription factors that regulate the expression of genes initially buried within inaccessible chromatin, but the transcription factors that establish the regulatory landscape of the T cell lineage remain unknown. Profiling chromatin accessibility at eight stages of T cell development revealed the selective enrichment of TCF-1 at genomic regions that became accessible at the earliest stages of development. TCF-1 was further required for the accessibility of these regulatory elements and at the single-cell level, it dictated a coordinate opening of chromatin in T cells. TCF-1 expression in fibroblasts generated de novo chromatin accessibility even at chromatin regions with repressive marks, inducing the expression of T cell-restricted genes. These results indicate that a mechanism by which TCF-1 controls T cell fate is through its widespread ability to target silent chromatin and establish the epigenetic identity of T cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. The relationship between transcription initiation RNAs and CCCTC-binding factor (CTCF localization

    Directory of Open Access Journals (Sweden)

    Taft Ryan J

    2011-08-01

    Full Text Available Abstract Background Transcription initiation RNAs (tiRNAs are nuclear localized 18 nucleotide RNAs derived from sequences immediately downstream of RNA polymerase II (RNAPII transcription start sites. Previous reports have shown that tiRNAs are intimately correlated with gene expression, RNA polymerase II binding and behaviors, and epigenetic marks associated with transcription initiation, but not elongation. Results In the present work, we show that tiRNAs are commonly found at genomic CCCTC-binding factor (CTCF binding sites in human and mouse, and that CTCF sites that colocalize with RNAPII are highly enriched for tiRNAs. To directly investigate the relationship between tiRNAs and CTCF we examined tiRNAs originating near the intronic CTCF binding site in the human tumor suppressor gene, p21 (cyclin-dependent kinase inhibitor 1A gene, also known as CDKN1A. Inhibition of CTCF-proximal tiRNAs resulted in increased CTCF localization and increased p21 expression, while overexpression of CTCF-proximal tiRNA mimics decreased CTCF localization and p21 expression. We also found that tiRNA-regulated CTCF binding influences the levels of trimethylated H3K27 at the alternate upstream p21 promoter, and affects the levels of alternate p21 (p21alt transcripts. Extending these studies to another randomly selected locus with conserved CTCF binding we found that depletion of tiRNA alters nucleosome density proximal to sites of tiRNA biogenesis. Conclusions Taken together, these data suggest that tiRNAs modulate local epigenetic structure, which in turn regulates CTCF localization.

  3. Transcription initiation complexes and upstream activation with RNA polymerase II lacking the C-terminal domain of the largest subunit.

    OpenAIRE

    Buratowski, S; Sharp, P A

    1990-01-01

    RNA polymerase II assembles with other factors on the adenovirus type 2 major late promoter to generate pairs of transcription initiation complexes resolvable by nondenaturing gel electrophoresis. The pairing of the complexes is caused by the presence or absence of the C-terminal domain of the largest subunit. This domain is not required for transcription stimulation by the major late transcription factor in vitro.

  4. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes.

    Science.gov (United States)

    Wei, Yunxie; Chang, Yanli; Zeng, Hongqiu; Liu, Guoyin; He, Chaozu; Shi, Haitao

    2018-01-01

    With 1 AP2 domain and 1 B3 domain, 7 MeRAVs in apetala2/ethylene response factor (AP2/ERF) gene family have been identified in cassava. However, the in vivo roles of these remain unknown. Gene expression assays showed that the transcripts of MeRAVs were commonly regulated after Xanthomonas axonopodis pv manihotis (Xam) and MeRAVs were specifically located in plant cell nuclei. Through virus-induced gene silencing (VIGS) in cassava, we found that MeRAV1 and MeRAV2 are essential for plant disease resistance against cassava bacterial blight, as shown by the bacterial propagation of Xam in plant leaves. Through VIGS in cassava leaves and overexpression in cassava leave protoplasts, we found that MeRAV1 and MeRAV2 positively regulated melatonin biosynthesis genes and the endogenous melatonin level. Further investigation showed that MeRAV1 and MeRAV2 are direct transcriptional activators of 3 melatonin biosynthesis genes in cassava, as evidenced by chromatin immunoprecipitation-PCR in cassava leaf protoplasts and electrophoretic mobility shift assay. Moreover, cassava melatonin biosynthesis genes also positively regulated plant disease resistance. Taken together, this study identified MeRAV1 and MeRAV2 as common and upstream transcription factors of melatonin synthesis genes in cassava and revealed a model of MeRAV1 and MeRAV2-melatonin biosynthesis genes-melatonin level in plant disease resistance against cassava bacterial blight. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Regulation and initiation of cenB transcripts of Cellulomonas fimi.

    Science.gov (United States)

    Greenberg, N M; Warren, R A; Kilburn, D G; Miller, R C

    1987-01-01

    We characterized the in vivo transcription of the Cellulomonas fimi cenB gene, which encodes an extracellular endo-beta-1,4-glucanase (EC 3.2.1.4). By Northern blot (RNA blot) analysis, cenB mRNA was detected in C. fimi RNA preparations from glycerol-, glucose-, and carboxymethyl cellulose (CMC)-grown cells. The relative abundance of the specific mRNAs in these preparations appeared to depend on the carbon source provided, with the preparations from CMC-grown cells having the greatest amount of cenB transcripts, followed by glycerol- and glucose-grown cells. Therefore, the transcription of this gene could be regulated by the carbon source provided to C. fimi. High-resolution nuclease S1 protection studies were used to map cenB mRNA 5' termini with a unique 5'-labeled DNA probe and C. fimi RNA isolated in vivo. With this procedure, three 5' termini were found in abundance upstream of the translational initiation ATG codon in RNA preparations from C. fimi grown on CMC, while less-abundant 5' termini were found 52 bases closer to the ATG codon in RNA prepared from C. fimi grown on any one of the three substrates. These results are indicative of a tandem promoter arrangement, with the ATG-proximal promoter directing constitutive low-level cenB transcription and the more distal promoter directing higher levels of transcription under the inducing effects of the cellulosic substrate. The corresponding transcripts were not detected in S1 mapping experiments with RNA isolated in vivo from Escherichia coli clones harboring recombinant plasmids carrying C. fimi genomic inserts. Comparative analysis of the 5' -flanking DNA sequences of the cenB gene and the cenA and cex genes of C. fimi (N. M. Greenberg, R. A. J. Warren, D. G. Kilburn, and R. C. Miller, Jr., J. Bacteriol. 169:646-653, 1987) revealed a region of 50 bases in which these sequences displayed at least 64% homology. Images PMID:2443484

  6. The colitis-associated transcriptional profile of commensal Bacteroides thetaiotaomicron enhances adaptive immune responses to a bacterial antigen.

    Directory of Open Access Journals (Sweden)

    Jonathan J Hansen

    Full Text Available Inflammatory bowel diseases (IBD may be caused in part by aberrant immune responses to commensal intestinal microbes including the well-characterized anaerobic gut commensal Bacteroides thetaiotaomicron (B. theta. Healthy, germ-free HLA-B27 transgenic (Tg rats develop chronic colitis when colonized with complex gut commensal bacteria whereas non-transgenic (nTg rats remain disease-free. However, the role of B. theta in causing disease in Tg rats is unknown nor is much known about how gut microbes respond to host inflammation.Tg and nTg rats were monoassociated with a human isolate of B. theta. Colonic inflammation was assessed by histologic scoring and tissue pro-inflammatory cytokine measurement. Whole genome transcriptional profiling of B. theta recovered from ceca was performed using custom GeneChips and data analyzed using dChip, Significance Analysis of Microarrays, and Gene Set Enrichment Analysis (GSEA software. Western Blots were used to determine adaptive immune responses to a differentially expressed B. theta gene.B. theta monoassociated Tg rats, but not nTg or germ-free controls, developed chronic colitis. Transcriptional profiles of cecal B. theta were significantly different in Tg vs. nTg rats. GSEA revealed that genes in KEGG canonical pathways involved in bacterial growth and metabolism were downregulated in B. theta from Tg rats with colitis though luminal bacterial concentrations were unaffected. Bacterial genes in the Gene Ontology molecular function "receptor activity", most of which encode nutrient binding proteins, were significantly upregulated in B. theta from Tg rats and include a SusC homolog that induces adaptive immune responses in Tg rats.B. theta induces colitis in HLA-B27 Tg rats, which is associated with regulation of bacterial genes in metabolic and nutrient binding pathways that may affect host immune responses. These studies of the host-microbial dialogue may lead to the identification of novel microbial targets

  7. Study of the variation of the nuclear transcriptional map during de initial development of Drosophyla melanogaster embryos

    International Nuclear Information System (INIS)

    Alonso, C.E.V.

    1987-01-01

    The variation of nuclear transcriptional map during the initial development of Drosophyla melanogaster embryos were studied. Thermic treatment, chromatographic techniques and liquid scintilation in embryos inoculated with radioactive uridine were used. (L.J.C.)

  8. Nature of bacterial colonization influences transcription of mucin genes in mice during the first week of life

    Directory of Open Access Journals (Sweden)

    Bergström Anders

    2012-08-01

    Full Text Available Abstract Background Postnatal regulation of the small intestinal mucus layer is potentially important in the development of adult gut functionality. We hypothesized that the nature of bacterial colonization affects mucus gene regulation in early life. We thus analyzed the influence of the presence of a conventional microbiota as well as two selected monocolonizing bacterial strains on the transcription of murine genes involved in mucus layer development during the first week of life. Mouse pups (N = 8/group from differently colonized dams: Germ-free (GF, conventional specific pathogen free (SPF, monocolonized with either Lactobacillus acidophilus NCFM (Lb or Escherichia coli Nissle (Ec were analyzed by qPCR on isolated ileal tissue sections from postnatal days 1 and 6 (PND1, PND6 after birth with respect to: (i transcription of specific genes involved in mucus production (Muc1-4, Tff3 and (ii amounts of 16S rRNA of Lactobacillus and E. coli. Quantification of 16S rRNA genes was performed to obtain a measure for amounts of colonized bacteria. Results We found a microbiota-independent transcriptional increase of all five mucus genes from PND1 to PND6. Furthermore, the relative level of transcription of certain mucus genes on PND1 was increased by the presence of bacteria. This was observed for Tff3 in the SPF, Ec, and Lb groups; for Muc2 in SPF; and for Muc3 and Muc4 in Ec and Lb, respectively. Detection of bacterial 16S rRNA genes levels above the qPCR detection level occurred only on PND6 and only for some of the colonized animals. On PND6, we found significantly lower levels of Muc1, Muc2 and Muc4 gene transcription for Lb animals with detectable Lactobacillus levels as compared to animals with Lactobacillus levels below the detection limit. Conclusions In summary, our data show that development of the expression of genes encoding secreted (Muc2/Tff3 and membrane-bound (Muc1/Muc3/Muc4 mucus regulatory proteins, respectively, is distinct and

  9. A structural model of the E. coli PhoB Dimer in the transcription initiation complex

    Directory of Open Access Journals (Sweden)

    Tung Chang-Shung

    2012-03-01

    Full Text Available Abstract Background There exist > 78,000 proteins and/or nucleic acids structures that were determined experimentally. Only a small portion of these structures corresponds to those of protein complexes. While homology modeling is able to exploit knowledge-based potentials of side-chain rotomers and backbone motifs to infer structures for new proteins, no such general method exists to extend our understanding of protein interaction motifs to novel protein complexes. Results We use a Motif Binding Geometries (MBG approach, to infer the structure of a protein complex from the database of complexes of homologous proteins taken from other contexts (such as the helix-turn-helix motif binding double stranded DNA, and demonstrate its utility on one of the more important regulatory complexes in biology, that of the RNA polymerase initiating transcription under conditions of phosphate starvation. The modeled PhoB/RNAP/σ-factor/DNA complex is stereo-chemically reasonable, has sufficient interfacial Solvent Excluded Surface Areas (SESAs to provide adequate binding strength, is physically meaningful for transcription regulation, and is consistent with a variety of known experimental constraints. Conclusions Based on a straightforward and easy to comprehend concept, "proteins and protein domains that fold similarly could interact similarly", a structural model of the PhoB dimer in the transcription initiation complex has been developed. This approach could be extended to enable structural modeling and prediction of other bio-molecular complexes. Just as models of individual proteins provide insight into molecular recognition, catalytic mechanism, and substrate specificity, models of protein complexes will provide understanding into the combinatorial rules of cellular regulation and signaling.

  10. Effects of single-base substitutions within the acanthamoeba castellanii rRNA promoter on transcription and on binding of transcription initiation factor and RNA polymerase I

    Energy Technology Data Exchange (ETDEWEB)

    Kownin, P.; Bateman, E.; Paule, M.R.

    1988-02-01

    Single-point mutations were introduced into the promoter region of the Acanthamoeba castellanii rRNA gene by chemical mutagen treatment of a single-stranded clone in vitro, followed by reverse transcription and cloning of the altered fragment. The promoter mutants were tested for transcription initiation factor (TIF) binding by a template commitment assay plus DNase I footprinting and for transcription by an in vitro runoff assay. Point mutations within the previously identified TIF interaction region (between -20 and -47, motifs A and B) indicated that TIF interacts most strongly with a sequence centered at -29 and less tightly with sequences upstream and downstream. Some alterations of the base sequence closer to the transcription start site (and outside the TIF-protected site) also significantly decrease specific RNA synthesis in vitro. These were within the region which is protected from DNAse I digestion by polymerase I, but these mutations did not detectably affect the binding of polymerase to the promoter.

  11. The bacterial DnaA-trio replication origin element specifies single-stranded DNA initiator binding.

    Science.gov (United States)

    Richardson, Tomas T; Harran, Omar; Murray, Heath

    2016-06-16

    DNA replication is tightly controlled to ensure accurate inheritance of genetic information. In all organisms, initiator proteins possessing AAA+ (ATPases associated with various cellular activities) domains bind replication origins to license new rounds of DNA synthesis. In bacteria the master initiator protein, DnaA, is highly conserved and has two crucial DNA binding activities. DnaA monomers recognize the replication origin (oriC) by binding double-stranded DNA sequences (DnaA-boxes); subsequently, DnaA filaments assemble and promote duplex unwinding by engaging and stretching a single DNA strand. While the specificity for duplex DnaA-boxes by DnaA has been appreciated for over 30 years, the sequence specificity for single-strand DNA binding has remained unknown. Here we identify a new indispensable bacterial replication origin element composed of a repeating trinucleotide motif that we term the DnaA-trio. We show that the function of the DnaA-trio is to stabilize DnaA filaments on a single DNA strand, thus providing essential precision to this binding mechanism. Bioinformatic analysis detects DnaA-trios in replication origins throughout the bacterial kingdom, indicating that this element is part of the core oriC structure. The discovery and characterization of the novel DnaA-trio extends our fundamental understanding of bacterial DNA replication initiation, and because of the conserved structure of AAA+ initiator proteins these findings raise the possibility of specific recognition motifs within replication origins of higher organisms.

  12. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.

    Science.gov (United States)

    Anvar, Seyed Yahya; Allard, Guy; Tseng, Elizabeth; Sheynkman, Gloria M; de Klerk, Eleonora; Vermaat, Martijn; Yin, Raymund H; Johansson, Hans E; Ariyurek, Yavuz; den Dunnen, Johan T; Turner, Stephen W; 't Hoen, Peter A C

    2018-03-29

    The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing. In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells. Our findings demonstrate that our understanding of transcriptome complexity is far from complete and provides a basis to reveal largely unresolved mechanisms that coordinate transcription initiation and mRNA processing.

  13. Patterns of Transcriptional Response to 1,25-Dihydroxyvitamin D3 and Bacterial Lipopolysaccharide in Primary Human Monocytes

    Directory of Open Access Journals (Sweden)

    Silvia N. Kariuki

    2016-05-01

    Full Text Available The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D, plays an important immunomodulatory role, regulating transcription of genes in the innate and adaptive immune system. The present study examines patterns of transcriptome-wide response to 1,25D, and the bacterial lipopolysaccharide (LPS in primary human monocytes, to elucidate pathways underlying the effects of 1,25D on the immune system. Monocytes obtained from healthy individuals of African-American and European-American ancestry were treated with 1,25D, LPS, or both, simultaneously. The addition of 1,25D during stimulation with LPS induced significant upregulation of genes in the antimicrobial and autophagy pathways, and downregulation of proinflammatory response genes compared to LPS treatment alone. A joint Bayesian analysis enabled clustering of genes into patterns of shared transcriptional response across treatments. The biological pathways enriched within these expression patterns highlighted several mechanisms through which 1,25D could exert its immunomodulatory role. Pathways such as mTOR signaling, EIF2 signaling, IL-8 signaling, and Tec Kinase signaling were enriched among genes with opposite transcriptional responses to 1,25D and LPS, respectively, highlighting the important roles of these pathways in mediating the immunomodulatory activity of 1,25D. Furthermore, a subset of genes with evidence of interethnic differences in transcriptional response was also identified, suggesting that in addition to the well-established interethnic variation in circulating levels of vitamin D, the intensity of transcriptional response to 1,25D and LPS also varies between ethnic groups. We propose that dysregulation of the pathways identified in this study could contribute to immune-mediated disease risk.

  14. Frequent dual initiation of reverse transcription in murine leukemia virus-based vectors containing two primer-binding sites

    International Nuclear Information System (INIS)

    Voronin, Yegor A.; Pathak, Vinay K.

    2003-01-01

    Retroviruses package two copies of viral RNA into each virion. Although each RNA contains a primer-binding site for initiation of DNA synthesis, it is unknown whether reverse transcription is initiated on both RNAs. To determine whether a single virion is capable of initiating reverse transcription more than once, we constructed a murine leukemia virus-based vector containing a second primer-binding site (PBS) derived from spleen necrosis virus and inserted the green fluorescent protein gene (GFP) between the two PBSs. Initiation of reverse transcription at either PBS results in a provirus that expresses GFP. However, initiation at both PBSs can result in the deletion of GFP, which can be detected by flow cytometry and Southern blotting analysis. Approximately 22-29% of the proviruses formed deleted the GFP in a single replication cycle, indicating the minimum proportion of virions that initiated reverse transcription on both PBSs. These results show that a significant proportion of MLV-based vectors containing two PBSs have the capacity to initiate reverse transcription more than once

  15. Initial Therapy of Bacterial Meningitis with Cefuroxime: Experience in 167 Children

    Directory of Open Access Journals (Sweden)

    Lissette Navas

    1992-01-01

    Full Text Available The morbidity and mortality of patients with bacterial meningitis treated initially with cefuroxime were studied and compared with the results of a previous prospective study of patients treated initially with ampicillin plus chloramphenicol in the same institution from 1979 to 1983. A retrospective chart review was completed in all cases of microbiologically confirmed bacterial meningitis admitted to the Hospital for Sick Children in Toronto, Ontario between January 1, 1984 and August 1, 1988. During this period all patients were treated initially with intravenous cefuroxime. The 167 children reviewed ranged in age from six weeks to 17.1 years (median 11.6 months. The case fatality rate was 7.8% and the rate of hearing deficit 13%. There were no statistically significant differences in abnormal neurological outcome (20 versus 20%, respectively, hearing loss (12.9 versus 13%, respectively, and case fatality rate (6.4 versus 7.8%, respectively between the cohort of 1979–83 and the present study. The rate of hearing loss following meningitis caused by Haemophilus influenzae type b increased from 7.3 to 11.7% (P=0.26.

  16. Bacterial gene expression detected in human faeces by reverse transcription-PCR

    NARCIS (Netherlands)

    Fitzsimons, N.A.; Akkermans, A.D.L.; Vos, de W.M.; Vaughan, E.E.

    2003-01-01

    A method to isolate and specifically detect bacterial messenger RNA (mRNA) in human faeces is presented. The surface layer protein gene slpA of Lactobacillus acidophilus ATCC 4356(T) was chosen as a model system because it is transcribed at a high level to a relatively stable mRNA (Boot et al.,

  17. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.; Campbell, Elizabeth A.

    2017-07-13

    The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.

  18. Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites.

    Science.gov (United States)

    Mejía-Guerra, María Katherine; Li, Wei; Galeano, Narmer F; Vidal, Mabel; Gray, John; Doseff, Andrea I; Grotewold, Erich

    2015-12-01

    Core promoters are crucial for gene regulation, providing blueprints for the assembly of transcriptional machinery at transcription start sites (TSSs). Empirically, TSSs define the coordinates of core promoters and other regulatory sequences. Thus, experimental TSS identification provides an essential step in the characterization of promoters and their features. Here, we describe the application of CAGE (cap analysis of gene expression) to identify genome-wide TSSs used in root and shoot tissues of two maize (Zea mays) inbred lines (B73 and Mo17). Our studies indicate that most TSS clusters are sharp in maize, similar to mice, but distinct from Arabidopsis thaliana, Drosophila melanogaster, or zebra fish, in which a majority of genes have broad-shaped TSS clusters. We established that ∼38% of maize promoters are characterized by a broader TATA-motif consensus, and this motif is significantly enriched in genes with sharp TSSs. A noteworthy plasticity in TSS usage between tissues and inbreds was uncovered, with ∼1500 genes showing significantly different dominant TSSs, sometimes affecting protein sequence by providing alternate translation initiation codons. We experimentally characterized instances in which this differential TSS utilization results in protein isoforms with additional domains or targeted to distinct subcellular compartments. These results provide important insights into TSS selection and gene expression in an agronomically important crop. © 2015 American Society of Plant Biologists. All rights reserved.

  19. Drosophila JAK/STAT pathway reveals distinct initiation and reinforcement steps in early transcription of Sxl.

    Science.gov (United States)

    Avila, Frank W; Erickson, James W

    2007-04-03

    X-linked signal elements (XSEs) communicate the dose of X chromosomes to the regulatory-switch gene Sex-lethal (Sxl) during Drosophila sex determination. Unequal XSE expression in precellular XX and XY nuclei ensures that only XX embryos will activate the establishment promoter, SxlPe, to produce a pulse of the RNA-binding protein, SXL [1]. Once XSE protein concentrations have been assessed, SxlPe is inactivated and the maintenance promoter, SxlPm, is turned on in both sexes; however, only in females is SXL present to direct the SxlPm-derived transcripts to be spliced into functional mRNA [2, 3]. Thereafter, Sxl is maintained in the on state by positive autoregulatory RNA splicing [2]. Once set in the stable on (female) or off (male) state, Sxl controls somatic sexual development through control of downstream effectors of sexual differentiation and dosage compensation [1, 4]. Most XSEs encode transcription factors that bind SxlPe, but the XSE unpaired (upd) encodes a secreted ligand for the JAK/STAT pathway [5-7]. We show that although STAT directly regulates SxlPe, it is dispensable for promoter activation. Instead, JAK/STAT is needed to maintain high-level SxlPe expression in order to ensure Sxl autoregulation in XX embryos. Thus, upd is a unique XSE that augments, rather than defines, the initial sex-determination signal.

  20. Live Staphylococcus aureus and bacterial soluble factors induce different transcriptional responses in human airway cells.

    Science.gov (United States)

    Moreilhon, Chimène; Gras, Delphine; Hologne, Coralie; Bajolet, Odile; Cottrez, Françoise; Magnone, Virginie; Merten, Marc; Groux, Hervé; Puchelle, Edith; Barbry, Pascal

    2005-02-10

    To characterize the response of respiratory epithelium to infection by Staphylococcus aureus (S. aureus), human airway cells were incubated for 1 to 24 h with a supernatant of a S. aureus culture (bacterial supernatant), then profiled with a pangenomic DNA microarray. Because an upregulation of many genes was noticed around 3 h, three independent approaches were then used to characterize the host response to a 3-h contact either with bacterial supernatant or with live bacteria: 1) a DNA microarray containing 4,200 sequence-verified probes, 2) a semiquantitative RT-PCR with a set of 537 pairs of validated primers, or 3) ELISA assay of IL-8, IL-6, TNFalpha, and PGE(2). Among others, Fos, Jun, and EGR-1 were upregulated by the bacterial supernatant and by live bacteria. Increased expression of bhlhb2 and Mig-6, promoter regions which harbor HIF responding elements, was explained by an increased expression of the HIF-1alpha protein. Activation of the inducible form of cyclooxygenase, COX-2, and of the interleukins IL-1, IL-6, and IL-8, as well as of the NF-kappaB pathway, was observed preferentially in cells in contact with bacterial supernatant. Early infection was characterized by an upregulation of anti-apoptotic genes and a downregulation of pro-apoptotic genes. This correlated with a necrotic, rather than apoptotic cell death. Overall, this first global description of an airway epithelial infection by S. aureus demonstrates a larger global response to bacterial supernatant (in term of altered genes and variation factors) than to exponentially growing live bacteria.

  1. GATA Transcription Factor Required for Immunity to Bacterial and Fungal Pathogens

    Science.gov (United States)

    Gaddis, Nathan C.; Aballay, Alejandro

    2006-01-01

    In the past decade, Caenorhabditis elegans has been used to dissect several genetic pathways involved in immunity; however, little is known about transcription factors that regulate the expression of immune effectors. C. elegans does not appear to have a functional homolog of the key immune transcription factor NF-κB. Here we show that that the intestinal GATA transcription factor ELT-2 is required for both immunity to Salmonella enterica and expression of a C-type lectin gene, clec-67, which is expressed in the intestinal cells and is a good marker of S. enterica infection. We also found that ELT-2 is required for immunity to Pseudomonas aeruginosa, Enterococcus faecalis, and Cryptococcus neoformans. Lack of immune inhibition by DAF-2, which negatively regulates the FOXO transcription factor DAF-16, rescues the hypersusceptibility to pathogens phenotype of elt-2(RNAi) animals. Our results indicate that ELT-2 is part of a multi-pathogen defense pathway that regulates innate immunity independently of the DAF-2/DAF-16 signaling pathway. PMID:17183709

  2. Bacterial Genome Editing Strategy for Control of Transcription and Protein Stability

    DEFF Research Database (Denmark)

    Lauritsen, Ida; Martinez, Virginia; Ronda, Carlotta

    2018-01-01

    In molecular biology and cell factory engineering, tools that enable control of protein production and stability are highly important. Here, we describe protocols for tagging genes in Escherichia coli allowing for inducible degradation and transcriptional control of any soluble protein of interes...

  3. Transcription Factor Interplay between LEAFY and APETALA1/CAULIFLOWER during Floral Initiation.

    Science.gov (United States)

    Goslin, Kevin; Zheng, Beibei; Serrano-Mislata, Antonio; Rae, Liina; Ryan, Patrick T; Kwaśniewska, Kamila; Thomson, Bennett; Ó'Maoiléidigh, Diarmuid S; Madueño, Francisco; Wellmer, Frank; Graciet, Emmanuelle

    2017-06-01

    The transcription factors LEAFY (LFY) and APETALA1 (AP1), together with the AP1 paralog CAULIFLOWER (CAL), control the onset of flower development in a partially redundant manner. This redundancy is thought to be mediated, at least in part, through the regulation of a shared set of target genes. However, whether these genes are independently or cooperatively regulated by LFY and AP1/CAL is currently unknown. To better understand the regulatory relationship between LFY and AP1/CAL and to obtain deeper insights into the control of floral initiation, we monitored the activity of LFY in the absence of AP1/CAL function. We found that the regulation of several known LFY target genes is unaffected by AP1/CAL perturbation, while others appear to require AP1/CAL activity. Furthermore, we obtained evidence that LFY and AP1/CAL control the expression of some genes in an antagonistic manner. Notably, these include key regulators of floral initiation such as TERMINAL FLOWER1 ( TFL1 ), which had been previously reported to be directly repressed by both LFY and AP1. We show here that TFL1 expression is suppressed by AP1 but promoted by LFY. We further demonstrate that LFY has an inhibitory effect on flower formation in the absence of AP1/CAL activity. We propose that LFY and AP1/CAL act as part of an incoherent feed-forward loop, a network motif where two interconnected pathways or transcription factors act in opposite directions on a target gene, to control the establishment of a stable developmental program for the formation of flowers. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. A cysteine protease (cathepsin Z) from disk abalone, Haliotis discus discus: Genomic characterization and transcriptional profiling during bacterial infections.

    Science.gov (United States)

    Godahewa, G I; Perera, N C N; Lee, Sukkyoung; Kim, Myoung-Jin; Lee, Jehee

    2017-09-05

    Cathepsin Z (CTSZ) is lysosomal cysteine protease of the papain superfamily. It participates in the host immune defense via phagocytosis, signal transduction, cell-cell communication, proliferation, and migration of immune cells such as monocytes, macrophages, and dendritic cells. Hence, CTSZ is also acknowledged as an acute-phase protein in host immunity. In this study, we sought to identify the CTSZ homolog from disk abalone (AbCTSZ) and characterize it at the molecular, genomic, and transcriptional levels. AbCTSZ encodes a protein with 318 amino acids and a molecular mass of 36kDa. The structure of AbCTSZ reveals amino acid sequences that are characteristic of the signal sequence, pro-peptide, peptidase-C1 papain family cysteine protease domain, mini-loop, HIP motif, N-linked glycosylation sites, active sites, and conserved Cys residues. A pairwise comparison revealed that AbCTSZ shared the highest amino acid homology with its molluscan counterpart from Crassostrea gigas. A multiple alignment analysis revealed the conservation of functionally crucial elements of AbCTSZ, and a phylogenetic study further confirmed a proximal evolutionary relationship with its invertebrate counterparts. Further, an analysis of AbCTSZ genomic structure revealed seven exons separated by six introns, which differs from that of its vertebrate counterparts. Quantitative real time PCR (qPCR) detected the transcripts of AbCTSZ in early developmental stages and in eight different tissues. Higher levels of AbCTSZ transcripts were found in trochophore, gill, and hemocytes, highlighting its importance in the early development and immunity of disk abalone. In addition, we found that viable bacteria (Vibrio parahaemolyticus and Listeria monocytogenes) and bacterial lipopolysaccharides significantly modulated AbCTSZ transcription. Collectively, these lines of evidences suggest that AbCTSZ plays an indispensable role in the innate immunity of disk abalone. Copyright © 2017. Published by Elsevier

  5. The used of formalin, borax and initial bacterial contamination on otak-otak

    International Nuclear Information System (INIS)

    Harsojo; Kadir I

    2013-01-01

    A research has been conducted to identify the used of formalin and borax content and also study the initial bacterial contamination on otak-otak. The wrapped and unwrapped samples were irradiated with a dose of 3 kGy Further, the samples were stored at room temperature (± 30°C) and low temperature (± 4°C) up to 4 weeks. The irradiation was done at a Multipurpose Panoramic Batch Irradiator (IRPASENA) with a dose rate of 1.149 kGy/h. Those samples were stored 4 weeks at 2 different temperatures and the total bacteria were observe every week. The measured parameter were formalin and borax content in otak-otak, the amount of total aerob bacteria, total coliforms, Escherichia coli, Staphylococcus spp., identification of Salmonella. The results showed all samples used formalin but borax was not detected. Initial contamination of total aerob bacteria for unwrapped and wrapped samples were 4.3 x 10 7 and 2.0 x 10 7 cfu/g, respectively. Irradiation dose up to 3 kGy showed no bacterial growth on unwrapped and wrapped samples. Combination treatment of irradiation and storage at low temperature could eliminate all aerobic bacteria at the first week. Initial contamination of coliform bacteria on unwrapped and wrapped samples were 1.9 x 10 5 and 5.7 x 10 5 cfu/g, respectively. Initial contamination of E. coli on unwrapped and wrapped samples were 1.2 x 10 5 cfu/g. The total amount of Staphylococcus spp. on unwrapped and wrapped samples were 3.3 x 10 5 and 4.8 x 10 6 cfu/g, respectively. Irradiation at a dose of 3 kGy could eliminate coliform bacteria, E. coli and Staphylococcus spp in all samples observed. No Salmonella was detected in all samples observed. (author)

  6. Transcriptional profiling at different sites in lungs of pigs during acute bacterial respiratory infection

    DEFF Research Database (Denmark)

    Mortensen, Shila; Skovgaard, Kerstin; Hedegaard, Jakob

    2011-01-01

    The local transcriptional response was studied in different locations of lungs from pigs experimentally infected with the respiratory pathogen Actinobacillus pleuropneumoniae serotype 5B, using porcine cDNA microarrays. This infection gives rise to well-demarcated infection loci in the lung, char...... of induced genes as, in unaffected areas a large part of differently expressed genes were involved in systemic reactions to infections, while differently expressed genes in necrotic areas were mainly concerned with homeostasis regulation....

  7. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth

    DEFF Research Database (Denmark)

    Zhao, Jian; Yuan, Xuejun; Frödin, Morten

    2003-01-01

    Phosphorylation of transcription factors by mitogen-activated protein kinase (MAPK) cascades links cell signaling with the control of gene expression. Here we show that growth factors induce rRNA synthesis by activating MAPK-dependent signaling cascades that target the RNA polymerase I......-specific transcription initiation factor TIF-IA. Activation of TIF-IA and ribosomal gene transcription is sensitive to PD98059, indicating that TIF-IA is targeted by MAPK in vivo. Phosphopeptide mapping and mutational analysis reveals two serine residues (S633 and S649) that are phosphorylated by ERK and RSK kinases....... Replacement of S649 by alanine inactivates TIF-IA, inhibits pre-rRNA synthesis, and retards cell growth. The results provide a link between growth factor signaling, ribosome production, and cell growth, and may have a major impact on the mechanism of cell transformation....

  8. A reporter system coupled with high-throughput sequencing unveils key bacterial transcription and translation determinants.

    Science.gov (United States)

    Yus, Eva; Yang, Jae-Seong; Sogues, Adrià; Serrano, Luis

    2017-08-28

    Quantitative analysis of the sequence determinants of transcription and translation regulation is relevant for systems and synthetic biology. To identify these determinants, researchers have developed different methods of screening random libraries using fluorescent reporters or antibiotic resistance genes. Here, we have implemented a generic approach called ELM-seq (expression level monitoring by DNA methylation) that overcomes the technical limitations of such classic reporters. ELM-seq uses DamID (Escherichia coli DNA adenine methylase as a reporter coupled with methylation-sensitive restriction enzyme digestion and high-throughput sequencing) to enable in vivo quantitative analyses of upstream regulatory sequences. Using the genome-reduced bacterium Mycoplasma pneumoniae, we show that ELM-seq has a large dynamic range and causes minimal toxicity. We use ELM-seq to determine key sequences (known and putatively novel) of promoter and untranslated regions that influence transcription and translation efficiency. Applying ELM-seq to other organisms will help us to further understand gene expression and guide synthetic biology.Quantitative analysis of how DNA sequence determines transcription and translation regulation is of interest to systems and synthetic biologists. Here the authors present ELM-seq, which uses Dam activity as reporter for high-throughput analysis of promoter and 5'-UTR regions.

  9. Defects in the NC2 repressor affect both canonical and non-coding RNA polymerase II transcription initiation in yeast.

    Science.gov (United States)

    Gómez-Navarro, Natalia; Jordán-Pla, Antonio; Estruch, Francisco; E Pérez-Ortín, José

    2016-03-03

    The formation of the pre-initiation complex in eukaryotic genes is a key step in transcription initiation. The TATA-binding protein (TBP) is a universal component of all pre-initiation complexes for all kinds of RNA polymerase II (RNA pol II) genes, including those with a TATA or a TATA-like element, both those that encode proteins and those that transcribe non-coding RNAs. Mot1 and the negative cofactor 2 (NC2) complex are regulators of TBP, and it has been shown that depletion of these factors in yeast leads to defects in the control of transcription initiation that alter cryptic transcription levels in selected yeast loci. In order to cast light on the molecular functions of NC2, we performed genome-wide studies in conditional mutants in yeast NC2 essential subunits Ydr1 and Bur6. Our analyses show a generally increased level of cryptic transcription in all kinds of genes upon depletion of NC2 subunits, and that each kind of gene (canonical or ncRNAs, TATA or TATA-like) shows some differences in the cryptic transcription pattern for each NC2 mutant. We conclude that NC2 plays a general role in transcription initiation in RNA polymerase II genes that is related with its known TBP interchange function from free to promoter bound states. Therefore, loss of the NC2 function provokes increases in cryptic transcription throughout the yeast genome. Our results also suggest functional differences between NC2 subunits Ydr1 and Bur6.

  10. Increasing the efficiency of bacterial transcription simulations: When to exclude the genome without loss of accuracy

    Directory of Open Access Journals (Sweden)

    McMillen David R

    2008-09-01

    Full Text Available Abstract Background Simulating the major molecular events inside an Escherichia coli cell can lead to a very large number of reactions that compose its overall behaviour. Not only should the model be accurate, but it is imperative for the experimenter to create an efficient model to obtain the results in a timely fashion. Here, we show that for many parameter regimes, the effect of the host cell genome on the transcription of a gene from a plasmid-borne promoter is negligible, allowing one to simulate the system more efficiently by removing the computational load associated with representing the presence of the rest of the genome. The key parameter is the on-rate of RNAP binding to the promoter (k_on, and we compare the total number of transcripts produced from a plasmid vector generated as a function of this rate constant, for two versions of our gene expression model, one incorporating the host cell genome and one excluding it. By sweeping parameters, we identify the k_on range for which the difference between the genome and no-genome models drops below 5%, over a wide range of doubling times, mRNA degradation rates, plasmid copy numbers, and gene lengths. Results We assess the effect of the simulating the presence of the genome over a four-dimensional parameter space, considering: 24 min Conclusion Exclusion of the genome is shown to yield less than 5% difference in transcript numbers over wide ranges of values, and computational speed is improved by two to 24 times by excluding explicit representation of the genome.

  11. Initial bacterial deposition on bare and zeolite-coated aluminum alloy and stainless steel.

    Science.gov (United States)

    Chen, Gexin; Beving, Derek E; Bedi, Rajwant S; Yan, Yushan S; Walker, Sharon L

    2009-02-03

    In this study, the impact of zeolite thin film coatings on bacterial deposition and "biofouling" of surfaces has been investigated in an aqueous environment. The synthesis of two types of zeolite coatings, ZSM-5 coated on aluminum alloy and zeolite A coated on stainless steel, and the characterization of the coated and bare metal surfaces are described. The extent of cell deposition onto the bare and zeolite-coated aluminum alloy and stainless steel surfaces is investigated in a parallel plate flow chamber system under a laminar flow conditions. The initial rates of bacterial transfer to the various surfaces are compared by utilizing a marine bacterium, Halomonas pacifica g, under a range of ionic strength conditions. H. pacifica g deposited onto bare metal surfaces to a greater extent as compared with cells deposited onto the zeolite coatings. The surface properties found to have the most notable effect on attachment are the electrokinetic and hydrophobicity properties of the metal and zeolite-coated surfaces. These results suggest that a combination of two chemical mechanisms-hydrophobic and electrostatic interactions-contribute to the antifouling nature of the zeolite surface. Additional observations on the relative role of the hydrodynamic and physical phenomena are also discussed.

  12. The transcription factor TCF-1 initiates the differentiation of T(FH) cells during acute viral infection.

    Science.gov (United States)

    Xu, Lifan; Cao, Yi; Xie, Zhunyi; Huang, Qizhao; Bai, Qiang; Yang, Xia; He, Ran; Hao, Yaxing; Wang, Haoqiang; Zhao, Tingting; Fan, Zhonglei; Qin, Aijian; Ye, Jianqiang; Zhou, Xinyuan; Ye, Lilin; Wu, Yuzhang

    2015-09-01

    Induction of the transcriptional repressor Bcl-6 in CD4(+) T cells is critical for the differentiation of follicular helper T cells (T(FH) cells), which are essential for B cell-mediated immunity. In contrast, the transcription factor Blimp1 (encoded by Prdm1) inhibits T(FH) differentiation by antagonizing Bcl-6. Here we found that the transcription factor TCF-1 was essential for both the initiation of T(FH) differentiation and the effector function of differentiated T(FH) cells during acute viral infection. Mechanistically, TCF-1 bound directly to the Bcl6 promoter and Prdm1 5' regulatory regions, which promoted Bcl-6 expression but repressed Blimp1 expression. TCF-1-null T(FH) cells upregulated genes associated with non-T(FH) cell lineages. Thus, TCF-1 functions as an important hub upstream of the Bcl-6-Blimp1 axis to initiate and secure the differentiation of T(FH) cells during acute viral infection.

  13. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.; Pappas, T.; Brace, J.; Miller, P.; Oulmassov, T.; Molyneaux, J.; Anderson, J.; Bashkin, J.; Winans, S.; Joachimiak, A.; Biosciences Division; Cornell Univ.; Monsanto Co.

    2002-06-27

    Many proteobacteria are able to monitor their population densities through the release of pheromones known as N-acylhomoserine lactones. At high population densities, these pheromones elicit diverse responses that include bioluminescence, biofilm formation, production of antimicrobials, DNA exchange, pathogenesis and symbiosis1. Many of these regulatory systems require a pheromone-dependent transcription factor similar to the LuxR protein of Vibrio fischeri. Here we present the structure of a LuxR-type protein. TraR of Agrobacterium tumefaciens was solved at 1.66 A as a complex with the pheromone N-3-oxooctanoyl-l-homoserine lactone (OOHL) and its TraR DNA-binding site. The amino-terminal domain of TraR is an {alpha}/{beta}/{alpha} sandwich that binds OOHL, whereas the carboxy-terminal domain contains a helix-turn-helix DNA-binding motif. The TraR dimer displays a two-fold symmetry axis in each domain; however, these two axes of symmetry are at an approximately 90 degree angle, resulting in a pronounced overall asymmetry of the complex. The pheromone lies fully embedded within the protein with virtually no solvent contact, and makes numerous hydrophobic contacts with the protein as well as four hydrogen bonds: three direct and one water-mediated.

  14. Bacterial antigens alone can influence intestinal barrier integrity, but live bacteria are required for initiation of intestinal inflammation and injury.

    Science.gov (United States)

    Sydora, Beate C; Martin, Sarah M; Lupicki, Maryla; Dieleman, Levinus A; Doyle, Jason; Walker, John W; Fedorak, Richard N

    2006-06-01

    Intestinal flora plays a critical role in the initiation and perpetuation of inflammatory bowel disease. This study examined whether live fecal bacteria were necessary for the initiation of this inflammatory response or whether sterile fecal material would provoke a similar response. Three preparations of fecal material were prepared: (1) a slurry of live fecal bacteria, (2) a sterile lysate of bacterial antigens, and (3) a sterile filtrate of fecal water. Each preparation was introduced via gastric gavage into the intestines of axenic interleukin-10 gene-deficient mice genetically predisposed to develop inflammatory bowel disease. Intestinal barrier integrity and degrees of mucosal and systemic inflammations were determined for each preparation group. Intestinal barrier integrity, as determined by mannitol transmural flux, was altered by both live fecal bacterial and sterile lysates of bacterial antigens, although it was not altered by sterile filtrates of fecal water. However, only live fecal bacteria initiated mucosal inflammation and injury and a systemic immune response. Fecal bacterial antigens in the presence of live bacteria and sterile fecal bacterial antigens have different effects on the initiation and perpetuation of intestinal inflammation.

  15. The archaeal TFIIE homologue facilitates transcription initiation by enhancing TATA-box recognition

    NARCIS (Netherlands)

    Bell, S.D.; Brinkman, A.B.; Oost, van der J.; Jackson, S.P.

    2001-01-01

    Transcription from many archaeal promoters can be reconstituted in vitro using recombinant TATA-box binding protein (TBP) and transcription factor B (TFB)—homologues of eukaryal TBP and TFIIB—together with purified RNA polymerase (RNAP). However, all archaeal genomes sequenced to date reveal the

  16. Quantitative Characterization of Bivalent Probes for a Dual Bromodomain Protein, Transcription Initiation Factor TFIID Subunit 1.

    Science.gov (United States)

    Suh, Junghyun L; Watts, Brian; Stuckey, Jacob I; Norris-Drouin, Jacqueline L; Cholensky, Stephanie H; Dickson, Bradley M; An, Yi; Mathea, Sebastian; Salah, Eidarus; Knapp, Stefan; Khan, Abid; Adams, Alexander T; Strahl, Brian D; Sagum, Cari A; Bedford, Mark T; James, Lindsey I; Kireev, Dmitri B; Frye, Stephen V

    2018-03-28

    Multivalent binding is an efficient means to enhance the affinity and specificity of chemical probes targeting multidomain proteins in order to study their function and role in disease. While the theory of multivalent binding is straightforward, physical and structural characterization of bivalent binding encounters multiple technical difficulties. We present a case study where a combination of experimental techniques and computational simulations was used to comprehensively characterize the binding and structure-affinity relationships for a series of Bromosporine-based bivalent bromodomain ligands with a bivalent protein, Transcription Initiation Factor TFIID subunit 1 (TAF1). Experimental techniques-Isothermal Titration Calorimetry, X-ray Crystallography, Circular Dichroism, Size Exclusion Chromatography-Multi-Angle Light Scattering, and Surface Plasmon Resonance-were used to determine structures, binding affinities, and kinetics of monovalent ligands and bivalent ligands with varying linker lengths. The experimental data for monomeric ligands were fed into explicit computational simulations, in which both ligand and protein species were present in a broad range of concentrations, and in up to a 100 s time regime, to match experimental conditions. These simulations provided accurate estimates for apparent affinities (in good agreement with experimental data), individual dissociation microconstants and other microscopic details for each type of protein-ligand complex. We conclude that the expected efficiency of bivalent ligands in a cellular context is difficult to estimate by a single technique in vitro, due to higher order associations favored at the concentrations used, and other complicating processes. Rather, a combination of structural, biophysical, and computational approaches should be utilized to estimate and characterize multivalent interactions.

  17. Initial Inoculation Concentration Does Not Affect Final Bacterial Colonization of In vitro Vascular Conduits.

    Science.gov (United States)

    Heafner, Thomas A; Lewis, Clayton; Baluh, Graham; Clemens, Michael; Propper, Brandon; Arthurs, Zachary M

    2018-02-21

    Despite improved peri-operative care, prosthetic graft infections continue to cause substantial morbidity and mortality. Contemporary graft infection models have tested a conduit's infectability using varying concentrations without standardization. Using a static assay in vitro model, we sought to evaluate the impact of inoculation concentration on vascular conduit attachment. The 2-hour and 24-hour attachment of Staphylococcus aureus TCH1516 and Pseudomonas aeruginosa PA01-UW were determined on polytetrafluoroethylene (PTFE), Dacron ® , nitinol, cobalt chromium, and Viabahn ® (W.L. Gore and Associates, Newark, DE) endoprotheses. Individually and in combination, concentrations at 10 4 , 10 5 , 10 6 , 10 7 , and 10 8 were tested on 2-mm sections of each graft. After each time interval, the prosthetics were rinsed to remove non-attached bacteria, sonicated to release the attached bacteria, spiral plated, and then analyzed for the attached concentration. After two hours, the higher initial inoculation concentration translated into a higher attachment percentage, but the mean attachment percentage was only 14.8% in the 10 8 group. Pseudomonas aeruginosa had the greatest mean attachment across all material and concentration groups. The sequence of attachment on the conduits followed a constant order: Dacron, PTFE, cobalt, nitinol, and Viabahn with no difference between Dacron and PTFE. Although there were still differences at the 24-hour mark, the median attachment at each concentration was greater than the highest initial concentration (10 8 ). Initial attachment percentage is poor consistently regardless of inoculation concentration, however, Staphylococcus aureus and Pseudomonas aeruginosa are still able to achieve full attachment after 24 hours. A concentration of less than 10 7 should be used in vascular graft infection models to ensure adequate bacterial attachment.

  18. TALE-induced bHLH transcription factors that activate a pectate lyase contribute to water soaking in bacterial spot of tomato.

    Science.gov (United States)

    Schwartz, Allison R; Morbitzer, Robert; Lahaye, Thomas; Staskawicz, Brian J

    2017-01-31

    AvrHah1 [avirulence (avr) gene homologous to avrBs3 and hax2, no. 1] is a transcription activator-like (TAL) effector (TALE) in Xanthomonas gardneri that induces water-soaked disease lesions on fruits and leaves during bacterial spot of tomato. We observe that water from outside the leaf is drawn into the apoplast in X. gardneri-infected, but not X. gardneriΔavrHah1 (XgΔavrHah1)-infected, plants, conferring a dark, water-soaked appearance. The pull of water can facilitate entry of additional bacterial cells into the apoplast. Comparing the transcriptomes of tomato infected with X. gardneri vs. XgΔavrHah1 revealed the differential up-regulation of two basic helix-loop-helix (bHLH) transcription factors with predicted effector binding elements (EBEs) for AvrHah1. We mined our RNA-sequencing data for differentially up-regulated genes that could be direct targets of the bHLH transcription factors and therefore indirect targets of AvrHah1. We show that two pectin modification genes, a pectate lyase and pectinesterase, are targets of both bHLH transcription factors. Designer TALEs (dTALEs) for the bHLH transcription factors and the pectate lyase, but not for the pectinesterase, complement water soaking when delivered by XgΔavrHah1 By perturbing transcriptional networks and/or modifying the plant cell wall, AvrHah1 may promote water uptake to enhance tissue damage and eventual bacterial egression from the apoplast to the leaf surface. Understanding how disease symptoms develop may be a useful tool for improving the tolerance of crops from damaging disease lesions.

  19. Mechanistic Differences in Transcription Initiation at TATA-Less and TATA-Containing Promoters.

    Science.gov (United States)

    Donczew, Rafal; Hahn, Steven

    2018-01-01

    A yeast in vitro system was developed that is active for transcription at both TATA-containing and TATA-less promoters. Transcription with extracts made from cells depleted of TFIID subunit Taf1 demonstrated that promoters of both classes are TFIID dependent, in agreement with recent in vivo findings. TFIID depletion can be complemented in vitro by additional recombinant TATA binding protein (TBP) at only the TATA-containing promoters. In contrast, high levels of TBP did not complement Taf1 depletion in vivo and instead repressed transcription from both promoter types. We also demonstrate the importance of the TATA-like sequence found at many TATA-less promoters and describe how the presence or absence of the TATA element is likely not the only feature that distinguishes these two types of promoters. Copyright © 2017 American Society for Microbiology.

  20. Alternate capping mechanisms for transcription of spring viremia of carp virus: evidence for independent mRNA initiation.

    Science.gov (United States)

    Gupta, K C; Roy, P

    1980-01-01

    Two alternate mechanisms of mRNA capping for spring viremia of carp virus have been observed. Under normal reaction conditions, a ppG residue of the capping GTP is transferred to a pA moiety of the 5' termini of mRNA transcripts. However, in reaction conditions where GppNHp is used instead of GTP, an alternate capping mechanism occurs whereby a pG residue of the capping GTP is transferred to a ppA moiety of the transcripts. The first mechanism is identical to that described previously for vesicular stomatitis virus (G. Abraham, D. P. Rhodes, and A. K. Banerjee, Nature [London] 255:37-40, 1975; A. K. Banerjee, S. A. Moyer, and D. P. Rhodes, Virology 61:547-558, 1974), and thus appears to be a conserved function during the evolution of rhabdoviruses. The alternate mechanism of capping indicates not only that capping can take place by two procedures, but also that the substrate termini have di- or triphosphate 5' ends, indicating that they are probably independently initiated. An analog of ATP, AppNHp, has been found to completely inhibit the initiation of transcription by spring viremia of carp virus, suggesting that a cleavage between the beta and gamma phosphates of ATP is essential for the initiation of transcription. However, in the presence of GppNHp, uncapped (ppAp and pppAp), capped (GpppAp), and capped methylated (m7GpppAmpAp and GpppAmpAp) transcripts are detected. Size analyses of oligodeoxythymidylic acid-cellulose-bound transcripts resolved by formamide gel electrophoresis demonstrated that full-size mRNA transcripts are synthesized as well as larger RNA species. The presence of GppNHp and S-adenosylhomocysteine in reaction mixtures did not have any effect on the type of unmethylated transcription products. Our results favor a transcription model postulated previously (D. H. L. Bishop, in H. Fraenkel-Conrat and R. R. Wagner, ed., Comprehensive Virology, vol. 10, Plenum Press, New York, 1977; D. H. L. Bishop and A. Flamand, in D. C. Burke and W. C. Russell

  1. The Transcription Bubble of the RNA Polymerase-Promoter Open Complex Exhibits Conformational Heterogeneity and Millisecond-Scale Dynamics : Implications for Transcription Start-Site Selection

    NARCIS (Netherlands)

    Robb, Nicole C.; Cordes, Thorben; Hwang, Ling Chin; Gryte, Kristofer; Duchi, Diego; Craggs, Timothy D.; Santoso, Yusdi; Weiss, Shimon; Ebright, Richard H.; Kapanidis, Achillefs N.

    2013-01-01

    Bacterial transcription is initiated after RNA polymerase (RNAP) binds to promoter DNA, melts similar to 14 bp around the transcription start site and forms a single-stranded "transcription bubble" within a catalytically active RNAP-DNA open complex (RPo). There is significant flexibility in the

  2. An iron detection system determines bacterial swarming initiation and biofilm formation

    NARCIS (Netherlands)

    Lin, Chuan-Sheng; Tsai, Yu-Huan; Chang, Chih-Jung; Tseng, Shun-Fu; Wu, Tsung-Ru; Lu, Chia-Chen; Wu, Ting-Shu; Lu, Jang-Jih; Horng, Jim-Tong; Martel, Jan; Ojcius, David M.; Lai, Hsin-Chih; Young, John D.; Andrews, S. C.; Robinson, A. K.; Rodriguez-Quinones, F.; Touati, D.; Yeom, J.; Imlay, J. A.; Park, W.; Marx, J. J.; Braun, V.; Hantke, K.; Cornelis, P.; Wei, Q.; Vinckx, T.; Troxell, B.; Hassan, H. M.; Verstraeten, N.; Lewis, K.; Hall-Stoodley, L.; Costerton, J. W.; Stoodley, P.; Kearns, D. B.; Losick, R.; Butler, M. T.; Wang, Q.; Harshey, R. M.; Lai, S.; Tremblay, J.; Deziel, E.; Overhage, J.; Bains, M.; Brazas, M. D.; Hancock, R. E.; Partridge, J. D.; Kim, W.; Surette, M. G.; Givskov, M.; Rather, P. N.; Houdt, R. Van; Michiels, C. W.; Mukherjee, S.; Inoue, T.; Frye, J. G.; McClelland, M.; McCarter, L.; Silverman, M.; Matilla, M. A.; Wu, Y.; Outten, F. W.; Singh, P. K.; Parsek, M. R.; Greenberg, E. P.; Welsh, M. J.; Banin, E.; Vasil, M. L.; Wosten, M. M.; Kox, L. F.; Chamnongpol, S.; Soncini, F. C.; Groisman, E. A.; Laub, M. T.; Goulian, M.; Krell, T.; Lai, H. C.; Lin, C. S.; Soo, P. C.; Tsai, Y. H.; Wei, J. R.; Wyckoff, E. E.; Mey, A. R.; Leimbach, A.; Fisher, C. F.; Payne, S. M.; Livak, K. J.; Schmittgen, T. D.; Clarke, M. B.; Hughes, D. T.; Zhu, C.; Boedeker, E. C.; Sperandio, V.; Stintzi, A.; Clarke-Pearson, M. F.; Brady, S. F.; Drake, E. J.; Gulick, A. M.; Qaisar, U.; Rowland, M. A.; Deeds, E. J.; Garcia, C. A.; Alcaraz, E. S.; Franco, M. A.; Rossi, B. N. Passerini de; Mehi, O.; Skaar, E. P.; Visaggio, D.; Nishino, K.; Dietz, P.; Gerlach, G.; Beier, D.; Bustin, S. A.; Schwyn, B.; Neilands, J. B.

    2016-01-01

    Iron availability affects swarming and biofilm formation in various bacterial species. However, how bacteria sense iron and coordinate swarming and biofilm formation remains unclear. Using Serratia marcescens as a model organism, we identify here a stage-specific iron-regulatory machinery comprising

  3. Repeat associated non-ATG translation initiation: one DNA, two transcripts, seven reading frames, potentially nine toxic entities!

    Science.gov (United States)

    Pearson, Christopher E

    2011-03-01

    Diseases associated with unstable repetitive elements in the DNA, RNA, and amino acids have consistently revealed scientific surprises. Most diseases are caused by expansions of trinucleotide repeats, which ultimately lead to diseases like Huntington's disease, myotonic dystrophy, fragile X syndrome, and a series of spinocerebellar ataxias. These repeat mutations are dynamic, changing through generations and within an individual, and the repeats can be bi-directionally transcribed. Unsuspected modes of pathogenesis involve aberrant loss of protein expression; aberrant over-expression of non-mutant proteins; toxic-gain-of-protein function through expanded polyglutamine tracts that are encoded by expanded CAG tracts; and RNA-toxic-gain-of-function caused by transcripts harboring expanded CUG, CAG, or CGG tracts. A recent advance reveals that RNA transcripts with expanded CAG repeats can be translated in the complete absence of a starting ATG, and this Repeat Associated Non-ATG translation (RAN-translation) occurs across expanded CAG repeats in all reading frames (CAG, AGC, and GCA) to produce homopolymeric proteins of long polyglutamine, polyserine, and polyalanine tracts. Expanded CTG tracts expressing CUG transcripts also show RAN-translation occurring in all three frames (CUG, UGC, and GCU), to produce polyleucine, polycysteine, and polyalanine. These RAN-translation products can be toxic. Thus, one unstable (CAG)•(CTG) DNA can produce two expanded repeat transcripts and homopolymeric proteins with reading frames (the AUG-directed polyGln and six RAN-translation proteins), yielding a total of potentially nine toxic entities. The occurrence of RAN-translation in patient tissues expands our horizons of modes of disease pathogenesis. Moreover, since RAN-translation counters the canonical requirements of translation initiation, many new questions are now posed that must be addressed. This review covers RAN-translation and some of the pertinent questions.

  4. Repeat associated non-ATG translation initiation: one DNA, two transcripts, seven reading frames, potentially nine toxic entities!

    Directory of Open Access Journals (Sweden)

    Christopher E Pearson

    2011-03-01

    Full Text Available Diseases associated with unstable repetitive elements in the DNA, RNA, and amino acids have consistently revealed scientific surprises. Most diseases are caused by expansions of trinucleotide repeats, which ultimately lead to diseases like Huntington's disease, myotonic dystrophy, fragile X syndrome, and a series of spinocerebellar ataxias. These repeat mutations are dynamic, changing through generations and within an individual, and the repeats can be bi-directionally transcribed. Unsuspected modes of pathogenesis involve aberrant loss of protein expression; aberrant over-expression of non-mutant proteins; toxic-gain-of-protein function through expanded polyglutamine tracts that are encoded by expanded CAG tracts; and RNA-toxic-gain-of-function caused by transcripts harboring expanded CUG, CAG, or CGG tracts. A recent advance reveals that RNA transcripts with expanded CAG repeats can be translated in the complete absence of a starting ATG, and this Repeat Associated Non-ATG translation (RAN-translation occurs across expanded CAG repeats in all reading frames (CAG, AGC, and GCA to produce homopolymeric proteins of long polyglutamine, polyserine, and polyalanine tracts. Expanded CTG tracts expressing CUG transcripts also show RAN-translation occurring in all three frames (CUG, UGC, and GCU, to produce polyleucine, polycysteine, and polyalanine. These RAN-translation products can be toxic. Thus, one unstable (CAG•(CTG DNA can produce two expanded repeat transcripts and homopolymeric proteins with reading frames (the AUG-directed polyGln and six RAN-translation proteins, yielding a total of potentially nine toxic entities. The occurrence of RAN-translation in patient tissues expands our horizons of modes of disease pathogenesis. Moreover, since RAN-translation counters the canonical requirements of translation initiation, many new questions are now posed that must be addressed. This review covers RAN-translation and some of the pertinent

  5. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep.

    Science.gov (United States)

    Kamke, Janine; Soni, Priya; Li, Yang; Ganesh, Siva; Kelly, William J; Leahy, Sinead C; Shi, Weibing; Froula, Jeff; Rubin, Edward M; Attwood, Graeme T

    2017-08-08

    Ruminants are important contributors to global methane emissions via microbial fermentation in their reticulo-rumens. This study is part of a larger program, characterising the rumen microbiomes of sheep which vary naturally in methane yield (g CH 4 /kg DM/day) and aims to define differences in microbial communities, and in gene and transcript abundances that can explain the animal methane phenotype. Rumen microbiome metagenomic and metatranscriptomic data were analysed by Gene Set Enrichment, sparse partial least squares regression and the Wilcoxon Rank Sum test to estimate correlations between specific KEGG bacterial pathways/genes and high methane yield in sheep. KEGG genes enriched in high methane yield sheep were reassembled from raw reads and existing contigs and analysed by MEGAN to predict their phylogenetic origin. Protein coding sequences from Succinivibrio dextrinosolvens strains were analysed using Effective DB to predict bacterial type III secreted proteins. The effect of S. dextrinosolvens strain H5 growth on methane formation by rumen methanogens was explored using co-cultures. Detailed analysis of the rumen microbiomes of high methane yield sheep shows that gene and transcript abundances of bacterial type III secretion system genes are positively correlated with methane yield in sheep. Most of the bacterial type III secretion system genes could not be assigned to a particular bacterial group, but several genes were affiliated with the genus Succinivibrio, and searches of bacterial genome sequences found that strains of S. dextrinosolvens were part of a small group of rumen bacteria that encode this type of secretion system. In co-culture experiments, S. dextrinosolvens strain H5 showed a growth-enhancing effect on a methanogen belonging to the order Methanomassiliicoccales, and inhibition of a representative of the Methanobrevibacter gottschalkii clade. This is the first report of bacterial type III secretion system genes being associated with high

  6. Diblock copolymer of bacterial cellulose and poly(methyl methacrylate) initiated by chain-end-type radicals produced by mechanical scission of glycosidic linkages of bacterial cellulose.

    Science.gov (United States)

    Sakaguchi, Masato; Ohura, Takeshi; Iwata, Tadahisa; Takahashi, Shuhei; Akai, Shuji; Kan, Toshiyuki; Murai, Hisao; Fujiwara, Motoyasu; Watanabe, Osamu; Narita, Mamiko

    2010-11-08

    Bacterial cellulose (BC) was mechanically fractured in vacuum at 77 K; this resulted in the scission of the β-1,4 glycosidic linkages of BC. The chain-end-type radicals (mechanoradicals) generated from the scissions were assigned by electron spin resonance (ESR) spectral analyses. A diblock copolymer of BC and poly(methyl methacrylate) (BC-block-PMMA) was produced by the mechanical fracture of BC with MMA (methyl methacrylate) in vacuum at 77 K. Radical polymerization of MMA was initiated by the mechanoradicals located on the BC surface. The BC surface was fully covered with the PMMA chains of the BC-block-PMMA. Novel modification of the BC surface with the BC-block-PMMA was confirmed by spectral analyses of ESR, Fourier-transform infrared, (1)H NMR, and gel permeation chromatography.

  7. Amplification of pico-scale DNA mediated by bacterial carrier DNA for small-cell-number transcription factor ChIP-seq

    DEFF Research Database (Denmark)

    Jakobsen, Janus S; Bagger, Frederik O; Hasemann, Marie S

    2015-01-01

    BACKGROUND: Chromatin-Immunoprecipitation coupled with deep sequencing (ChIP-seq) is used to map transcription factor occupancy and generate epigenetic profiles genome-wide. The requirement of nano-scale ChIP DNA for generation of sequencing libraries has impeded ChIP-seq on in vivo tissues of low...... cell numbers. RESULTS: We describe a robust, simple and scalable methodology for ChIP-seq of low-abundant cell populations, verified down to 10,000 cells. By employing non-mammalian genome mapping bacterial carrier DNA during amplification, we reliably amplify down to 50 pg of ChIP DNA from...... transcription factor (CEBPA) and histone mark (H3K4me3) ChIP. We further demonstrate that genomic profiles are highly resilient to changes in carrier DNA to ChIP DNA ratios. CONCLUSIONS: This represents a significant advance compared to existing technologies, which involve either complex steps of pre...

  8. Bacterial meningitis

    NARCIS (Netherlands)

    Roos, Karen L.; van de Beek, Diederik

    2010-01-01

    Bacterial meningitis is a neurological emergency. Empiric antimicrobial and adjunctive therapy should be initiated as soon as a single set of blood cultures has been obtained. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, vomiting, photophobia, and an

  9. Real-Time Reverse Transcription PCR as a Tool to Study Virulence Gene Regulation in Bacterial Pathogens.

    Science.gov (United States)

    Aviv, Gili; Gal-Mor, Ohad

    2018-01-01

    Quantitative real-time PCR (qRT-PCR) is a highly sensitive and reliable method for detection and quantification of DNA. When combined with a prior stage of RNA reverse transcription to generate complementary DNA (cDNA), this is a powerful approach to determine and analyze gene transcriptional expression. Real-time quantitative reverse transcription PCR has become the gold standard method in studying genes expression and virulence regulation under various genetic backgrounds (e.g., in the absence of regulators) or environmental conditions. Here we demonstrate the utilization of this approach to study the transcriptional regulation of the conjugation pilus of the Salmonella enterica serovar Infantis virulence plasmid (pESI).

  10. Molecular cloning of the human gene for von Willebrand factor and identification of the transcription initiation site

    International Nuclear Information System (INIS)

    Collins, C.J.; Underdahl, J.P.; Levene, R.B.; Ravera, C.P.; Morin, M.J.; Dombalagian, M.J.; Ricca, G.; Livingston, D.M.; Lynch, D.C.

    1987-01-01

    A series of overlapping cosmid genomic clones have been isolated that contain the entire coding unit of the human gene for van Willebrand factor (vWf), a major component of the hemostatic system. The cloned segments span ≅ 175 kilobases of human DNA sequence, and hybridization analysis suggest that the vWf coding unit is ≅150 kilobases in length. Within one of these clones, the vWF transcription initiation site has been mapped and a portion of the vWf promoter region has been sequenced, revealing a typical TATA box, a downstream CCAAT box, and a perfect downstream repeat of the 8 base pairs containing the transcription start site. Sequencing of a segment of another genomic clone has revealed the vWF translation termination codon. Where tested, comparative restriction analysis of cloned and chromosomal DNA segments strongly suggests that no major alterations occurred during cloning and that there is only one complete copy of the vWf gene in the human haploid genome. Similar analyses of DNA from vWf-producing endothelial cells and nonexpressing leukocytes suggest that vWf gene expression is not accompanied by gross genomic rearrangements. In addition, there is significant homology of C-terminal coding sequences among the vWf genes of several vertebrate species

  11. Two Cassava Basic Leucine Zipper (bZIP Transcription Factors (MebZIP3 and MebZIP5 Confer Disease Resistance against Cassava Bacterial Blight

    Directory of Open Access Journals (Sweden)

    Xiaolin Li

    2017-12-01

    Full Text Available Basic domain-leucine zipper (bZIP transcription factor, one type of conserved gene family, plays an important role in plant development and stress responses. Although 77 MebZIPs have been genome-wide identified in cassava, their in vivo roles remain unknown. In this study, we analyzed the expression pattern and the function of two MebZIPs (MebZIP3 and MebZIP5 in response to pathogen infection. Gene expression analysis indicated that MebZIP3 and MebZIP5 were commonly regulated by flg22, Xanthomonas axonopodis pv. manihotis (Xam, salicylic acid (SA, and hydrogen peroxide (H2O2. Subcellular localization analysis showed that MebZIP3 and MebZIP5 are specifically located in cell nucleus. Through overexpression in tobacco, we found that MebZIP3 and MebZIP5 conferred improved disease resistance against cassava bacterial blight, with more callose depositions. On the contrary, MebZIP3- and MebZIP5-silenced plants by virus-induced gene silencing (VIGS showed disease sensitive phenotype, lower transcript levels of defense-related genes and less callose depositions. Taken together, this study highlights the positive role of MebZIP3 and MebZIP5 in disease resistance against cassava bacterial blight for further utilization in genetic improvement of cassava disease resistance.

  12. Temporal and Spatial Coexistence of Archaeal and Bacterial amoA Genes and Gene Transcripts in Lake Lucerne

    Directory of Open Access Journals (Sweden)

    Elisabeth W. Vissers

    2013-01-01

    Full Text Available Despite their crucial role in the nitrogen cycle, freshwater ecosystems are relatively rarely studied for active ammonia oxidizers (AO. This study of Lake Lucerne determined the abundance of both amoA genes and gene transcripts of ammonia-oxidizing archaea (AOA and bacteria (AOB over a period of 16 months, shedding more light on the role of both AO in a deep, alpine lake environment. At the surface, at 42 m water depth, and in the water layer immediately above the sediment, AOA generally outnumbered AOB. However, in the surface water during summer stratification, when both AO were low in abundance, AOB were more numerous than AOA. Temporal distribution patterns of AOA and AOB were comparable. Higher abundances of amoA gene transcripts were observed at the onset and end of summer stratification. In summer, archaeal amoA genes and transcripts correlated negatively with temperature and conductivity. Concentrations of ammonium and oxygen did not vary enough to explain the amoA gene and transcript dynamics. The observed herbivorous zooplankton may have caused a hidden flux of mineralized ammonium and a change in abundance of genes and transcripts. At the surface, AO might have been repressed during summer stratification due to nutrient limitation caused by active phytoplankton.

  13. Novel Sp family-like transcription factors are present in adult insect cells and are involved in transcription from the polyhedrin gene initiator promoter.

    Science.gov (United States)

    Ramachandran, A; Jain, A; Arora, P; Bashyam, M D; Chatterjee, U; Ghosh, S; Parnaik, V K; Hasnain, S E

    2001-06-29

    We earlier documented the involvement of a cellular factor, polyhedrin (polh) promoter-binding protein, in transcription from the Autographa californica nuclear polyhedrosis virus polh gene promoter. Sequences upstream of the polh promoter were found to influence polh promoter-driven transcription. Analysis of one such region, which could partially compensate for the mutated polh promoter and also activate transcription from the wild-type promoter, revealed a sequence (AcSp) containing a CACCC motif and a loose GC box resembling the binding motifs of the transcription factor Sp1. AcSp and the consensus Sp1 sequence (cSp) specifically bound factor(s) in HeLa and Spodoptera frugiperda (Sf9) insect cell nuclear extracts to generate identical binding patterns, indicating the similar nature of the factor(s) interacting with these sequences. The AcSp and cSp oligonucleotides enhanced in vivo expression of a polh promoter-driven luciferase gene. In vivo mopping of these factor(s) significantly reduced transcription from the polh promoter. Recombinant viruses carrying deletions in the upstream AcSp sequence confirmed the requirement of these factor(s) in polh promoter-driven transcription in the viral context. We demonstrate for the first time DNA-protein interactions involving novel members of the Sp family of proteins in adult insect cells and their involvement in transcription from the polh promoter.

  14. Adult bacterial meningitis-a quality registry study: earlier treatment and favourable outcome if initial management by infectious diseases physicians.

    Science.gov (United States)

    Grindborg, Ö; Naucler, P; Sjölin, J; Glimåker, M

    2015-06-01

    Acute bacterial meningitis (ABM) is challenging for the admitting physician because it is a rare but fulminant disease, usually presenting without typical symptoms, and rapid treatment is pivotal. The purpose of this study was to evaluate the effect of initial management by infectious diseases (ID) physicians vs. non-ID physicians. A total of 520 consecutive adults (>17 years old), 110 with initial ID management and 410 with non-ID management, registered in the Swedish quality registry for community-acquired ABM January 2008 to December 2013, were analysed retrospectively. Primary outcome was appropriate treatment with antibiotics and corticosteroids treatment sequences also were analysed. Appropriate treatment treatment, more appropriate diagnostic treatment sequences and favourable outcome. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  15. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation

    Directory of Open Access Journals (Sweden)

    Miller Eric S

    2010-12-01

    Full Text Available Abstract Over 50 years of biological research with bacteriophage T4 includes notable discoveries in post-transcriptional control, including the genetic code, mRNA, and tRNA; the very foundations of molecular biology. In this review we compile the past 10 - 15 year literature on RNA-protein interactions with T4 and some of its related phages, with particular focus on advances in mRNA decay and processing, and on translational repression. Binding of T4 proteins RegB, RegA, gp32 and gp43 to their cognate target RNAs has been characterized. For several of these, further study is needed for an atomic-level perspective, where resolved structures of RNA-protein complexes are awaiting investigation. Other features of post-transcriptional control are also summarized. These include: RNA structure at translation initiation regions that either inhibit or promote translation initiation; programmed translational bypassing, where T4 orchestrates ribosome bypass of a 50 nucleotide mRNA sequence; phage exclusion systems that involve T4-mediated activation of a latent endoribonuclease (PrrC and cofactor-assisted activation of EF-Tu proteolysis (Gol-Lit; and potentially important findings on ADP-ribosylation (by Alt and Mod enzymes of ribosome-associated proteins that might broadly impact protein synthesis in the infected cell. Many of these problems can continue to be addressed with T4, whereas the growing database of T4-related phage genome sequences provides new resources and potentially new phage-host systems to extend the work into a broader biological, evolutionary context.

  16. Stroke due to non-bacterial thrombotic endocarditis as initial presentation of breast invasive ductal carcinoma.

    Science.gov (United States)

    Detremerie, Celine; Timmermans, Frank; De Pauw, Michel; Gheeraert, Peter; Hemelsoet, Dimitri; Toeback, Jonas; Bové, Thierry; Vandecasteele, Els

    2017-08-01

    We present a case of a 71-year-old woman with recurrent stroke episodes due to non-bacterial thrombotic endocarditis (NBTE) leading to the diagnosis of an early-stage breast carcinoma. NBTE is associated with a variety of inflammatory states, including malignancy. NBTE presents itself with systemic embolization, mostly stroke. Treatment consists of treating the underlying condition and start of systemic anticoagulation therapy. Cardiac surgery is restricted to highly selected cases, since prognosis usually is limited by the neoplasm, which usually is in an advanced stage at time of diagnosis of NBTE. The malignancy usually is diagnosed prior to NBTE. Cases presenting with NBTE leading to the diagnosis of malignancy, however, are rarely reported. To our knowledge, we present the first case leading to the diagnosis of an early-stage breast carcinoma.

  17. Initial nitrogen enrichment conditions determines variations in nitrogen substrate utilization by heterotrophic bacterial isolates.

    Science.gov (United States)

    Ghosh, Suchismita; Ayayee, Paul A; Valverde-Barrantes, Oscar J; Blackwood, Christopher B; Royer, Todd V; Leff, Laura G

    2017-04-04

    The nitrogen (N) cycle consists of complex microbe-mediated transformations driven by a variety of factors, including diversity and concentrations of N compounds. In this study, we examined taxonomic diversity and N substrate utilization by heterotrophic bacteria isolated from streams under complex and simple N-enrichment conditions. Diversity estimates differed among isolates from the enrichments, but no significant composition were detected. Substrate utilization and substrate range of bacterial assemblages differed within and among enrichments types, and not simply between simple and complex N-enrichments. N substrate use patterns differed between isolates from some complex and simple N-enrichments while others were unexpectedly similar. Taxonomic composition of isolates did not differ among enrichments and was unrelated to N use suggesting strong functional redundancy. Ultimately, our results imply that the available N pool influences physiology and selects for bacteria with various abilities that are unrelated to their taxonomic affiliation.

  18. Engineering bacterial translation initiation - Do we have all the tools we need?

    Science.gov (United States)

    Vigar, Justin R J; Wieden, Hans-Joachim

    2017-11-01

    Reliable tools that allow precise and predictable control over gene expression are critical for the success of nearly all bioengineering applications. Translation initiation is the most regulated phase during protein biosynthesis, and is therefore a promising target for exerting control over gene expression. At the translational level, the copy number of a protein can be fine-tuned by altering the interaction between the translation initiation region of an mRNA and the ribosome. These interactions can be controlled by modulating the mRNA structure using numerous approaches, including small molecule ligands, RNAs, or RNA-binding proteins. A variety of naturally occurring regulatory elements have been repurposed, facilitating advances in synthetic gene regulation strategies. The pursuit of a comprehensive understanding of mechanisms governing translation initiation provides the framework for future engineering efforts. Here we outline state-of-the-art strategies used to predictably control translation initiation in bacteria. We also discuss current limitations in the field and future goals. Due to its function as the rate-determining step, initiation is the ideal point to exert effective translation regulation. Several engineering tools are currently available to rationally design the initiation characteristics of synthetic mRNAs. However, improvements are required to increase the predictability, effectiveness, and portability of these tools. Predictable and reliable control over translation initiation will allow greater predictability when designing, constructing, and testing genetic circuits. The ability to build more complex circuits predictably will advance synthetic biology and contribute to our fundamental understanding of the underlying principles of these processes. "This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier

  19. Selection Effects on the Positioning of Genes and Gene Structures from the Interplay of Replication and Transcription in Bacterial Genomes

    Directory of Open Access Journals (Sweden)

    Kazuharu Arakawa

    2007-01-01

    Full Text Available Bacterial chromosomes are partly shaped by the functional requirements for efficient replication, which lead to strand bias as commonly characterized by the excess of guanines over cytosines in the leading strand. Gene structures are also highly organized within bacterial genomes as a result of such functional constraints, displaying characteristic positioning and structuring along the genome. Here we analyze the gene structures in completely sequenced bacterial chromosomes to observe the positional constraints on gene orientation, length, and codon usage with regard to the positions of replication origin and terminus. Selection on these gene features is different in regions surrounding the terminus of replication from the rest of the genome, but the selection could be either positive or negative depending on the species, and these positional effects are partly attributed to the A-T enrichment near the terminus. Characteristic gene structuring relative to the position of replication origin and terminus is commonly observed among most bacterial species with circular chromosomes, and therefore we argue that the highly organized gene positioning as well as the strand bias should be considered for genomics studies of bacteria.

  20. A linguistic representation of the regulation of transcription initiation. I. An ordered array of complex symbols with distinctive features.

    Science.gov (United States)

    Collado-Vides, J

    1993-01-01

    The inadequacy of context-free grammars in the description of regulatory information contained in DNA gave the formal justification for a linguistic approach to the study of gene regulation. Based on that result, we have initiated a linguistic formalization of the regulatory arrays of 107 sigma 70 E. coli promoters. The complete sequences of promoter (Pr), operator (Op) and activator binding sites (I) have previously been identified as the smallest elements, or categories, for a combinatorial analysis of the range of transcription initiation of sigma 70 promoters. These categories are conceptually equivalent to phonemes of natural language. Several features associated with these categories are required in a complete description of regulatory arrays of promoters. We have to select the best way to describe the properties that are pertinent for the description of such regulatory regions. In this paper we define distinctive features of regulatory regions based on the following criteria: identification of subclasses of substitutable elements, simplicity, selection of the most directly related information, and distinction of one array among the whole set of promoters. Alternative ways to represent distances in between regulatory sites are discussed, permitting, together with a principle of precedence, the identification of an ordered set of complex symbols as a unique representation for a promoter and its associated regulatory sites. In the accompanying paper additional distinctive features of promoters and regulatory sites are identified.

  1. GlnR negatively regulates the transcription of the alanine dehydrogenase encoding gene ald in Amycolatopsis mediterranei U32 under nitrogen limited conditions via specific binding to its major transcription initiation site.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Ammonium assimilation is catalyzed by two enzymatic pathways, i.e., glutamine synthetase/glutamate synthase (GS/GOGAT and alanine dehydrogenase (AlaDH in Amycolatopsis mediterranei U32. Under nitrogen-rich conditions, the AlaDH pathway is the major route for ammonium assimilation, while the GS/GOGAT pathway takes over when the extracellular nitrogen supply is limited. The global nitrogen regulator GlnR was previously characterized to activate the transcription of the GS encoding gene glnA in response to nitrogen limitation and is demonstrated in this study as a repressor for the transcription of the AlaDH encoding gene ald, whose regulation is consistent with the switch of the ammonium assimilation pathways from AlaDH to GS/GOGAT responding to nitrogen limitation. Three transcription initiation sites (TISs of ald were determined with primer extension assay, among which transcription from aldP2 contributed the major transcripts under nitrogen-rich conditions but was repressed to an undetectable level in response to nitrogen limitation. Through DNase I footprinting assay, two separate regions were found to be protected by GlnR within ald promoter, within which three GlnR binding sites (a1, b1 sites in region I and a2 site in region II were defined. Interestingly, the major TIS aldP2 is located in the middle of a2 site within region II. Therefore, one may easily conclude that GlnR represses the transcription of ald via specific binding to the GlnR binding sites, which obviously blocks the transcription initiation from aldP2 and therefore reduces ald transcripts.

  2. Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance

    DEFF Research Database (Denmark)

    Wichmann, Fabienne; Asp, Torben; Widmer, Franko

    2011-01-01

    Xanthomonas translucens pv. graminis (Xtg) causes bacterial wilt, a severe disease of forage grasses such as Italian ryegrass (Lolium multiflorum Lam.). In order to gain a more detailed understanding of the genetic control of resistance mechanisms and to provide prerequisites for marker assisted...... selection, the partial transcriptomes of two Italian ryegrass genotypes, one resistant and one susceptible to bacterial wilt were compared at four time points after Xtg infection. A cDNA microarray developed from a perennial ryegrass (Lolium perenne) expressed sequence tag set consisting of 9,990 unique...... genes was used for transcriptome analysis in Italian ryegrass. An average of 4,487 (45%) of the perennial ryegrass sequences spotted on the cDNA microarray were detected by cross-hybridisation to Italian ryegrass. Transcriptome analyses of the resistant versus the susceptible genotype revealed...

  3. Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights.

    Science.gov (United States)

    Shimizu, Masahiro; Noguchi, Yasunori; Sakiyama, Yukari; Kawakami, Hironori; Katayama, Tsutomu; Takada, Shoji

    2016-12-13

    Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC-DnaA-IHF complexes remain unknown. Here, combining computer simulations with biochemical assays, we obtained models at almost-atomic resolution for the central part of the oriC-DnaA-IHF complex. This complex can be divided into three subcomplexes; the left and right subcomplexes include pentameric DnaA bound in a head-to-tail manner and the middle subcomplex contains only a single DnaA. In the left and right subcomplexes, DnaA ATPases associated with various cellular activities (AAA+) domain III formed helices with specific structural differences in interdomain orientations, provoking a bend in the bound DNA. In the left subcomplex a continuous DnaA chain exists, including insertion of IHF into the DNA looping, consistent with the DNA unwinding function of the complex. The intervening spaces in those subcomplexes are crucial for DNA unwinding and loading of DnaB helicases. Taken together, this model provides a reasonable near-atomic level structural solution of the initiation complex, including the dynamic conformations and spatial arrangements of DnaA subcomplexes.

  4. A combination of improved differential and global RNA-seq reveals pervasive transcription initiation and events in all stages of the life-cycle of functional RNAs in Propionibacterium acnes, a major contributor to wide-spread human disease.

    Science.gov (United States)

    Lin, Yu-fei; A, David Romero; Guan, Shuang; Mamanova, Lira; McDowall, Kenneth J

    2013-09-14

    Sequencing of the genome of Propionibacterium acnes produced a catalogue of genes many of which enable this organism to colonise skin and survive exposure to the elements. Despite this platform, there was little understanding of the gene regulation that gives rise to an organism that has a major impact on human health and wellbeing and causes infections beyond the skin. To address this situation, we have undertaken a genome-wide study of gene regulation using a combination of improved differential and global RNA-sequencing and an analytical approach that takes into account the inherent noise within the data. We have produced nucleotide-resolution transcriptome maps that identify and differentiate sites of transcription initiation from sites of stable RNA processing and mRNA cleavage. Moreover, analysis of these maps provides strong evidence for 'pervasive' transcription and shows that contrary to initial indications it is not biased towards the production of antisense RNAs. In addition, the maps reveal an extensive array of riboswitches, leaderless mRNAs and small non-protein-coding RNAs alongside vegetative promoters and post-transcriptional events, which includes unusual tRNA processing. The identification of such features will inform models of complex gene regulation, as illustrated here for ribonucleotide reductases and a potential quorum-sensing, two-component system. The approach described here, which is transferable to any bacterial species, has produced a step increase in whole-cell knowledge of gene regulation in P. acnes. Continued expansion of our maps to include transcription associated with different growth conditions and genetic backgrounds will provide a new platform from which to computationally model the gene expression that determines the physiology of P. acnes and its role in human disease.

  5. An MSC2 Promoter-lacZ Fusion Gene Reveals Zinc-Responsive Changes in Sites of Transcription Initiation That Occur across the Yeast Genome.

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Wu

    Full Text Available The Msc2 and Zrg17 proteins of Saccharomyces cerevisiae form a complex to transport zinc into the endoplasmic reticulum. ZRG17 is transcriptionally induced in zinc-limited cells by the Zap1 transcription factor. In this report, we show that MSC2 mRNA also increases (~1.5 fold in zinc-limited cells. The MSC2 gene has two in-frame ATG codons at its 5' end, ATG1 and ATG2; ATG2 is the predicted initiation codon. When the MSC2 promoter was fused at ATG2 to the lacZ gene, we found that unlike the chromosomal gene this reporter showed a 4-fold decrease in lacZ mRNA in zinc-limited cells. Surprisingly, β-galactosidase activity generated by this fusion gene increased ~7 fold during zinc deficiency suggesting the influence of post-transcriptional factors. Transcription of MSC2ATG2-lacZ was found to start upstream of ATG1 in zinc-replete cells. In zinc-limited cells, transcription initiation shifted to sites just upstream of ATG2. From the results of mutational and polysome profile analyses, we propose the following explanation for these effects. In zinc-replete cells, MSC2ATG2-lacZ mRNA with long 5' UTRs fold into secondary structures that inhibit translation. In zinc-limited cells, transcripts with shorter unstructured 5' UTRs are generated that are more efficiently translated. Surprisingly, chromosomal MSC2 did not show start site shifts in response to zinc status and only shorter 5' UTRs were observed. However, the shifts that occur in the MSC2ATG2-lacZ construct led us to identify significant transcription start site changes affecting the expression of ~3% of all genes. Therefore, zinc status can profoundly alter transcription initiation across the yeast genome.

  6. Hippo, TGF-β, and Src-MAPK pathways regulate transcription of the upd3 cytokine in Drosophila enterocytes upon bacterial infection.

    Science.gov (United States)

    Houtz, Philip; Bonfini, Alessandro; Liu, Xi; Revah, Jonathan; Guillou, Aurélien; Poidevin, Mickael; Hens, Korneel; Huang, Hsin-Yi; Deplancke, Bart; Tsai, Yu-Chen; Buchon, Nicolas

    2017-11-01

    Cytokine signaling is responsible for coordinating conserved epithelial regeneration and immune responses in the digestive tract. In the Drosophila midgut, Upd3 is a major cytokine, which is induced in enterocytes (EC) and enteroblasts (EB) upon oral infection, and initiates intestinal stem cell (ISC) dependent tissue repair. To date, the genetic network directing upd3 transcription remains largely uncharacterized. Here, we have identified the key infection-responsive enhancers of the upd3 gene and show that distinct enhancers respond to various stresses. Furthermore, through functional genetic screening, bioinformatic analyses and yeast one-hybrid screening, we determined that the transcription factors Scalloped (Sd), Mothers against dpp (Mad), and D-Fos are principal regulators of upd3 expression. Our study demonstrates that upd3 transcription in the gut is regulated by the activation of multiple pathways, including the Hippo, TGF-β/Dpp, and Src, as well as p38-dependent MAPK pathways. Thus, these essential pathways, which are known to control ISC proliferation cell-autonomously, are also activated in ECs to promote tissue turnover the regulation of upd3 transcription.

  7. A new look at the promoter of the human monoamine oxidase A gene: mapping transcription initiation sites and capacity to drive luciferase expression.

    Science.gov (United States)

    Denney, R M; Sharma, A; Dave, S K; Waguespack, A

    1994-09-01

    Monoamine oxidase (MAO) A (EC 1.4.3.4) oxidizes norepinephrine and serotonin and is expressed in a cell type-specific manner. Recent evidence that MAO A-deficient males in a large Dutch kindred suffer from mild mental retardation and occasional episodes of impulsive aggressive behavior makes it important to understand how the human MAO A promoter is regulated. Conventional primer extension analyses of MAO A mRNA in earlier studies predicted incorrect transcription initiation sites for the human MAO A promoter. Reverse transcription and polymerase chain reaction (PCR) readily detected MAO A mRNA initiated 5' to -135 bp but not 5' to -226 bp (5' to the ATG initiation codon). PCR-assisted primer extension and RNase protection assays reveal that most MAO A mRNA is initiated between -30 and -40, which resembles a eukaryotic initiator element. Depending on the tissue source, a minor, variable proportion of MAO A mRNAs is initiated more distally at approximately -95 and -136, within the more proximal of two 90-bp GC-rich tandem repeats. Genomic DNA segments spanning -4 to -200 and -465 or -935, but not -4 to -82, drive robust luciferase expression in mammalian cells. We conclude that (a) the primary transcription initiation site occurs at a putative initiator (lnr) element located between -30 and -40, with a minor, tissue-specific proportion of additional initiation near -95 and -136; and (b) MAO A-luciferase reporter constructs that contained all the known transcription initiation sites exhibited no evidence for inhibitory cis elements between -200 and at least -935. The apparent inhibitory activity previously reported for sequences 5' to the most proximal PvuII site may have resulted from the use of partial promoter constructs that omitted the putative lnr element.

  8. The Bacterial Effector HopX1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis

    Science.gov (United States)

    Gimenez-Ibanez, Selena; Boter, Marta; Fernández-Barbero, Gemma; Chini, Andrea; Rathjen, John P.; Solano, Roberto

    2014-01-01

    Pathogenicity of Pseudomonas syringae is dependent on a type III secretion system, which secretes a suite of virulence effector proteins into the host cytoplasm, and the production of a number of toxins such as coronatine (COR), which is a mimic of the plant hormone jasmonate-isoleuce (JA-Ile). Inside the plant cell, effectors target host molecules to subvert the host cell physiology and disrupt defenses. However, despite the fact that elucidating effector action is essential to understanding bacterial pathogenesis, the molecular function and host targets of the vast majority of effectors remain largely unknown. Here, we found that effector HopX1 from Pseudomonas syringae pv. tabaci (Pta) 11528, a strain that does not produce COR, interacts with and promotes the degradation of JAZ proteins, a key family of JA-repressors. We show that hopX1 encodes a cysteine protease, activity that is required for degradation of JAZs by HopX1. HopX1 associates with JAZ proteins through its central ZIM domain and degradation occurs in a COI1-independent manner. Moreover, ectopic expression of HopX1 in Arabidopsis induces the expression of JA-dependent genes, represses salicylic acid (SA)-induced markers, and complements the growth of a COR-deficient P. syringae pv. tomato (Pto) DC3000 strain during natural bacterial infections. Furthermore, HopX1 promoted susceptibility when delivered by the natural type III secretion system, to a similar extent as the addition of COR, and this effect was dependent on its catalytic activity. Altogether, our results indicate that JAZ proteins are direct targets of bacterial effectors to promote activation of JA-induced defenses and susceptibility in Arabidopsis. HopX1 illustrates a paradigm of an alternative evolutionary solution to COR with similar physiological outcome. PMID:24558350

  9. The Campylobacter jejuni MarR-like transcriptional regulators RrpA and RrpB both influence bacterial responses to oxidative and aerobic stresses

    Directory of Open Access Journals (Sweden)

    Ozan eGundogdu

    2015-07-01

    Full Text Available The ability of the human intestinal pathogen Campylobacter jejuni to respond to oxidative stress is central to bacterial survival both in vivo during infection and in the environment. Re-annotation of the C. jejuni NCTC11168 genome revealed the presence of two MarR-type transcriptional regulators Cj1546 and Cj1556, originally annotated as hypothetical proteins, which we have designated RrpA and RrpB (regulator of response to peroxide respectively. Previously we demonstrated a role for RrpB in both oxidative and aerobic (O2 stress and that RrpB was a DNA binding protein with auto-regulatory activity, typical of MarR-type transcriptional regulators. In this study, we show that RrpA is also a DNA binding protein and that a rrpA mutant in strain 11168H exhibits increased sensitivity to hydrogen peroxide oxidative stress. Mutation of either rrpA or rrpB reduces catalase (KatA expression. However a rrpAB double mutant exhibits higher levels of resistance to hydrogen peroxide oxidative stress, with levels of KatA expression similar to the wild-type strain. Neither the rrpA nor rrpB mutant exhibits any significant difference in sensitivity to either cumene hydroperoxide or menadione oxidative stresses, but both mutants exhibit a reduced ability to survive aerobic (O2 stress, enhanced biofilm formation and reduced virulence in the Galleria mellonella infection model. The rrpAB double mutant exhibits wild-type levels of biofilm formation and wild-type levels of virulence in the Galleria mellonella infection model. Together these data indicate a role for both RrpA and RrpB in the C. jejuni peroxide oxidative and aerobic (O2 stress responses, enhancing bacterial survival in vivo and in the environment.

  10. Reference genes for quantitative, reverse-transcription PCR in Bacillus cereus group strains throughout the bacterial life cycle.

    Science.gov (United States)

    Reiter, Lillian; Kolstø, Anne-Brit; Piehler, Armin P

    2011-08-01

    Quantitative reverse-transcription PCR (RT-qPCR) has become a major tool to better understand the biology and pathogenesis of bacteria. One prerequisite of valid RT-qPCR data is their proper normalization to stably expressed reference genes. To identify and evaluate reference genes suitable for normalization of gene expression data in Bacillus cereus group strains, mRNA levels of eleven candidate reference genes (rpsU, nifU, udp (UDP-N-acetylglucosamine 2-epimerase), BT9727_5154/BC_5475, BT9727_4034/BC_4293, BT9727_4549/BC_4813, pspA, gatB_Yqey (gatB_Yqey domain containing protein), helicase (SWF/SNF family protein), adk and pta) and a target gene (BT9727_3305/BC3547+BC3546) were quantified by RT-qPCR at different time points throughout the entire life cycle of the wild-type B. cereus ATCC 14579 and Bacillus thuringiensis subsp. konkukian 97-27, a phylogenetically closely related strain to Bacillus anthracis. The programs geNorm and Normfinder were used to calculate expression stabilities and identified the genes gatB_Yqey, rpsU and udp as the most stably expressed reference genes. Compared to this combination or the sets of reference genes as recommended by geNorm or Normfinder, normalization using a traditional housekeeping gene (adk) alone resulted in significantly different gene expression results and in a significant overestimation of the target gene transcription. Normalization of the data to the reference gene gatB_Yqey alone showed no or only small differences to the reference gene combinations indicating that gatB_Yqey may be used as a single reference gene when investigating rather large changes in mRNA transcription. Otherwise, a combination of the stably expressed reference genes is recommended. In conclusion, the present study underlines the importance of normalization to stably expressed reference genes and presents valid endogenous controls suitable for normalization of transcriptional data throughout the life cycle of B. cereus group strains

  11. A Two-Tube Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Viral and Bacterial Pathogens of Infectious Diarrhea

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2014-01-01

    Full Text Available Diarrhea caused by viral and bacterial infections is a major health problem in developing countries. The purpose of this study is to develop a two-tube multiplex PCR assay using automatic electrophoresis for simultaneous detection of 13 diarrhea-causative viruses or bacteria, with an intended application in provincial Centers for Diseases Control and Prevention, China. The assay was designed to detect rotavirus A, norovirus genogroups GI and GII, human astrovirus, enteric adenoviruses, and human bocavirus (tube 1, and Salmonella, Vibrio parahaemolyticus, diarrheagenic Escherichia coli, Campylobacter jejuni, Shigella, Yersinia, and Vibrio cholera (tube 2. The analytical specificity was examined with positive controls for each pathogen. The analytical sensitivity was evaluated by performing the assay on serial tenfold dilutions of in vitro transcribed RNA, recombinant plasmids, or bacterial culture. A total of 122 stool samples were tested by this two-tube assay and the results were compared with those obtained from reference methods. The two-tube assay achieved a sensitivity of 20–200 copies for a single virus and 102-103 CFU/mL for bacteria. The clinical performance demonstrated that the two-tube assay had comparable sensitivity and specificity to those of reference methods. In conclusion, the two-tube assay is a rapid, cost-effective, sensitive, specific, and high throughput method for the simultaneous detection of enteric bacteria and virus.

  12. Transcriptional switching by the metalloregulatory MerR protein: Initial characterization of DNA and mercury(II) binding activities

    International Nuclear Information System (INIS)

    Shewchuk, L.M.; Verdine, G.L.; Walsh, C.T.

    1989-01-01

    The MerR protein from the Tn501 mercury resistance operon is a metalloregulatory transcriptional switch, converting from repressor to activator on binding of Hg(II). The authors have determined via binding studies with 203 Hg(II) that a single Hg(II) atom binds to the MerR dimer (32 kDa) with a half-saturation concentration of 10 -7 M in the presence of up to 10 -3 M exogenous thiols. This 10 4 selective binding is specific for the binding of Hg(II) and corresponds to concentrations of metal that induce mercury(II) resistance in vivo. Extensive footprinting studies by DNase I, methylation protection, and hydroxyl radicals indicate MerR stays bound to DS1 even on addition of Hg(II) and shares no interaction in vitro with a second dyad symmetry element, DS2, centered at -79/-80. Studies with DTNB and pHMB titration of protein thiols and alkylation studies with iodo[ 14 C]acetamide, in the presence and absence of stoichiometrically bound Hg(II), allow initial assessment of roles for Cys-82, -115, -117, and -126 as potential ligands for Hg(II). A tryptic fragment of 1-120 amino acids (or 1-121 aa) still dimerizes and binds specifically to mer DNA but has lost 203 Hg(II) binding capacity

  13. Identification of EhTIF-IA: The putative E. histolytica orthologue of the human ribosomal RNA transcription initiation factor-IA.

    Science.gov (United States)

    Srivastava, Ankita; Bhattacharya, Alok; Bhattacharya, Sudha; Jhingan, Gagan Deep

    2016-03-01

    Initiation of rDNA transcription requires the assembly of a specific multi-protein complex at the rDNA promoter containing the RNA Pol I with auxiliary factors. One of these factors is known as Rrn3P in yeast and Transcription Initiation Factor IA (TIF-IA) in mammals. Rrn3p/TIF-IA serves as a bridge between RNA Pol I and the pre-initiation complex at the promoter. It is phosphorylated at multiple sites and is involved in regulation of rDNA transcription in a growth-dependent manner. In the early branching parasitic protist Entamoeba histolytica, the rRNA genes are present exclusively on circular extra chromosomal plasmids. The protein factors involved in regulation of rDNA transcription in E. histolytica are not known. We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within the database and was further cloned and expressed. Immuno-localization studies showed that EhTIF-IA co-localized partially with fibrillarin in the peripherally localized nucleolus. EhTIF-IA was shown to interact with the RNA Pol I-specific subunit RPA12 both in vivo and in vitro. Mass spectroscopy data identified RNA Pol I-specific subunits and other nucleolar proteins to be the interacting partners of EhTIF-IA. Our study demonstrates for the first time a conserved putative RNA Pol I transcription factor TIF-IA in E. histolytica.

  14. A Bioinformatics Analysis Reveals a Group of MocR Bacterial Transcriptional Regulators Linked to a Family of Genes Coding for Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Teresa Milano

    2016-01-01

    Full Text Available The MocR bacterial transcriptional regulators are characterized by an N-terminal domain, 60 residues long on average, possessing the winged-helix-turn-helix (wHTH architecture responsible for DNA recognition and binding, linked to a large C-terminal domain (350 residues on average that is homologous to fold type-I pyridoxal 5′-phosphate (PLP dependent enzymes like aspartate aminotransferase (AAT. These regulators are involved in the expression of genes taking part in several metabolic pathways directly or indirectly connected to PLP chemistry, many of which are still uncharacterized. A bioinformatics analysis is here reported that studied the features of a distinct group of MocR regulators predicted to be functionally linked to a family of homologous genes coding for integral membrane proteins of unknown function. This group occurs mainly in the Actinobacteria and Gammaproteobacteria phyla. An analysis of the multiple sequence alignments of their wHTH and AAT domains suggested the presence of specificity-determining positions (SDPs. Mapping of SDPs onto a homology model of the AAT domain hinted at possible structural/functional roles in effector recognition. Likewise, SDPs in wHTH domain suggested the basis of specificity of Transcription Factor Binding Site recognition. The results reported represent a framework for rational design of experiments and for bioinformatics analysis of other MocR subgroups.

  15. Functional role of pyruvate kinase from Lactobacillus bulgaricus in acid tolerance and identification of its transcription factor by bacterial one-hybrid.

    Science.gov (United States)

    Zhai, Zhengyuan; An, Haoran; Wang, Guohong; Luo, Yunbo; Hao, Yanling

    2015-11-19

    Lactobacillus delbrueckii subsp. bulgaricus develops acid tolerance response when subjected to acid stress conditions, such as the induction of enzymes associated with carbohydrate metabolism. In this study, pyk gene encoding pyruvate kinase was over-expressed in heterologous host Lactococcus lactis NZ9000, and SDS-PAGE analysis revealed the successful expression of this gene in NZ9000. The survival rate of Pyk-overproducing strain was 45-fold higher than the control under acid stress condition (pH 4.0). In order to determine the transcription factor (TF) which regulates the expression of pyk by bacterial one-hybrid, we constructed a TF library including 65 TFs of L. bulgaricus. Western blotting indicated that TFs in this library could be successfully expressed in host strains. Subsequently, the promoter of pfk-pyk operon in L. bulgaricus was identified by 5'-RACE PCR. The bait plasmid pH3U3-p01 carrying the deletion fragment of pfk-pyk promoter captured catabolite control protein A (CcpA) which could regulate the expression of pyk by binding to a putative catabolite-responsive element (5'-TGTAAGCCCTAACA-3') upstream the -35 region. Real-time qPCR analysis revealed the transcription of pyk was positively regulated by CcpA. This is the first report about identifying the TF of pyk in L. bulgaricus, which will provide new insight into the regulatory network.

  16. On the importance of the primer activation signal for initiation of tRNA(lys3)-primed reverse transcription of the HIV-1 RNA genome

    NARCIS (Netherlands)

    Huthoff, Hendrik; Bugala, Katarzyna; Barciszewski, Jan; Berkhout, Ben

    2003-01-01

    Initiation of reverse transcription is a complex and regulated process in all retroviruses. Several base pairing interactions have been proposed to occur between the HIV-1 RNA genome and the specific tRNA(lys3) primer. The tRNA primer can form up to 21 bp with the primer binding site (PBS), and an

  17. Alternative transcription initiation of the nitrilase gene (BrNIT2) caused by infection with Plasmodiophora brassicae Woron. in Chinese cabbage (Brassica rapa L.).

    Science.gov (United States)

    Ando, Sugihiro; Tsushima, Seiya; Kamachi, Shinichiro; Konagaya, Ken-Ichi; Tabei, Yutaka

    2008-12-01

    In clubroot disease, gall formation is induced by infection with the obligate biotroph Plasmodiophora brassicae, and cell hypertrophy is dependent on increased auxin levels. The enzyme nitrilase is suggested to play an important role in auxin biosynthesis in plants. Here, we investigated the expression of nitrilase genes in clubroot disease in Chinese cabbage (Brassica rapa L.). We isolated four isogenes of nitrilase (BrNIT1, BrNIT2, BrNIT3, and BrNIT4) from Chinese cabbage. When a BrNIT2-specific probe was used for Northern blot hybridization, enhanced accumulation of a 1.4 kb mRNA and additional shorter transcripts (1.1 kb) were only detected in clubbed roots 25 days postinoculation (dpi) onward. The expression of BrNIT1 was not strongly affected by infection with P. brassicae. BrNIT3 expression was detected in the roots at 10 and 20 dpi, and the expression was less in clubbed roots than in healthy roots at 20 dpi. Analysis of the transcription initiation point of the BrNIT2 gene suggests that 1.1 kb transcripts were generated by alternative transcription initiation between the second intron and the third exon. The sequence from the second intron to half of the third exon (+415 to +1037, 623 bp) had promoter activity in Arabidopsis during clubroot formation. Therefore, our results suggest that transcriptional regulation of BrNIT2 might be involved in auxin overproduction during clubroot development.

  18. Characterization of novel elongated Parvulin isoforms that are ubiquitously expressed in human tissues and originate from alternative transcription initiation

    Directory of Open Access Journals (Sweden)

    Hartmann-Fatu Cristina

    2006-03-01

    Full Text Available Abstract Background The peptidyl prolyl cis/trans isomerase (PPIase Parvulin (Par14/PIN4 is highly conserved in all metazoans and is assumed to play a role in cell cycle progression and chromatin remodeling. It is predominantly localized to the nucleus and binds to chromosomal DNA as well as bent oligonucleotides in vitro. Results In this study we confirm by RT-PCR the existence of a longer Parvulin isoform expressed in all tissues examined so far. This isoform contains a 5' extension including a 75 bp extended open reading frame with two coupled SNPs leading to amino acid substitutions Q16R and R18S. About 1% of all Parvulin mRNAs include the novel extension as quantified by real-time PCR. The human Parvulin promoter is TATA-less and situated in a CpG island typical for house keeping genes. Thus, different Parvulin mRNAs seem to arise by alternative transcription initiation. N-terminally extended Parvulin is protected from rapid proteinaseK degradation. In HeLa and HepG2 cell lysates two protein species of about 17 and 28 KDa are detected by an antibody against an epitope within the N-terminal extension. These two bands are also recognized by an antibody towards the PPIase domain of Parvulin. The longer Parvulin protein is encoded by the human genome but absent from rodent, bovine and non-mammalian genomes. Conclusion Due to its molecular weight of 16.6 KDa we denote the novel Parvulin isoform as Par17 following the E. coli Par10 and human Par14 nomenclature. The N-terminal elongation of Par17-QR and Par17-RS suggests these isoforms to perform divergent functions within the eukaryotic cell than the well characterized Par14.

  19. Crystallization and preliminary X-ray analysis of Psu, an inhibitor of the bacterial transcription terminator Rho

    International Nuclear Information System (INIS)

    Khamrui, Susmita; Ranjan, Amitabh; Pani, Bibhusita; Sen, Ranjan; Sen, Udayaditya

    2010-01-01

    Psu, a unique 21 kDa protein from bacteriophage P4, is a non-essential capsid-decoration protein that inhibits Rho-dependent termination specifically and efficiently both in vivo and in vitro. Psu has been crystallized using PEG as precipitant and the crystals diffracted to 2.3 Å resolution. Psu, a coat protein from bacteriophage P4, inhibits Rho-dependent transcription termination both in vivo and in vitro. The Psu protein is α-helical in nature and appeared to be a dimer in solution. It interacts with Rho and affects the ATP binding and RNA-dependent ATPase activity of Rho, which in turn reduces the rate of RNA release from the elongation complex. Crystals of Psu were grown in space group I422 in the presence of PEG, with unit-cell parameters a = b = 148.76, c = 63.38 Å and a calculated Matthews coefficient of 2.1 Å 3 Da −1 (41.5% solvent content), assuming the presence of two molecules in the asymmetric unit. A native data set was collected to 2.3 Å resolution

  20. Three novel C1q domain containing proteins from the disk abalone Haliotis discus discus: Genomic organization and analysis of the transcriptional changes in response to bacterial pathogens.

    Science.gov (United States)

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Jayasinghe, J D H E; Godahewa, G I; Park, Hae-Chul; Lee, Jehee

    2016-09-01

    The globular C1q (gC1q) domain containing proteins, commonly referred as C1q domain containing (C1qDC) proteins, are an essential family of proteins involved in various innate immune responses. In this study, three novel C1qDC proteins were identified from the disk abalone (Haliotis discus discus) transcriptome database and designated as AbC1qDC1, AbC1qDC2, and AbC1qDC3. The cDNA sequences of AbC1qDC1, AbC1qDC2, and AbC1qDC3 consisted of 807, 1305, and 660 bp open reading frames (ORFs) encoding 269, 435, and 220 amino acids (aa), respectively. Putative signal peptides and the N-terminal gC1q domain were identified in all three AbC1qDC proteins. An additional predicted motif region, known as the coiled coil region (CCR), was identified next to the signal sequence of AbC1qDC2. The genomic organization of the AbC1qDCs was determined using a bacterial artificial chromosome (BAC) library. It was found that the CDS of AbC1qDC1 was distributed among three exons, while the CDSs of AbC1qDC2 and AbC1qDC3 were distributed between two exons. Sequence analysis indicated that the AbC1qDC proteins shared <40% identity with other counterparts from different species. According to the neighbor-joining phylogenetic tree, the proteins were grouped within an invertebrate group with high evolutionary distances, which suggests that they are new members of the C1qDC family. Higher expression of AbC1qDC1 and AbC1qDC2 was detected in hepatopancreas, muscle, and mantle tissues compare to the other tissues analyzed, using reverse transcription, followed by quantitative real-time PCR (qPCR) using SYBR Green, whereas AbC1qDC3 was predominantly expressed in gill tissues, followed by muscles and the hepatopancreas. The temporal expression of AbC1qDC transcripts in gills after bacterial (Vibrio parahaemolyticus and Listeria monocytogenes) and lipopolysaccharide stimulation indicated that AbC1qDCs can be strongly induced by both Gram-negative and Gram-positive bacterial species with different

  1. Crystal structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn2+-binding FCD domains

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Meiying; Cooper, David; Grossoehmerb, Nickolas; Yu, Minmin; Hung, Li-Wei; Cieslik, Murcin; Derewendaro, Urszula; Lesley, Scott; Wilson, Ian; Giedrocb, David; Derewenda, Zygmunt

    2009-06-06

    The GntR superfamily of dimeric transcription factors, with more than 6200 members encoded in bacterial genomes, are characterized by N-terminal winged helix (WH) DNA-binding domains and diverse C-terminal, regulatory domains, which provide a basis for the classification of the constituent families. The largest of these families, FadR, contains nearly 3000 proteins with all a-helical regulatory domains classified into two related Pfam families: FadR{_}C and FCD. Only two crystal structures of the FadR family members, i.e. the E. coli FadR protein and the LldR from C. glutamicum, have been described to date in literature. Here we describe the crystal structure of TM0439, a GntR regulator with an FCD domain, found in the Thermotoga maritima genome. The FCD domain is similar to that of the LldR regulator, and contains a buried metal binding site. Using atomic absorption spectroscopy and Trp fluorescence, we show that the recombinant protein contains bound Ni{sup 2+} ions, but it is able to bind Zn{sup 2+} with K{sub D} < 70 nM . We conclude that Zn{sup 2+} is the likely physiological metal, where it may perform either or both structural and regulatory roles. Finally, we compare the TM0439 structure to two other FadR family structures recently deposited by Structural Genomics consortia. The results call for a revision in the classification of the FadR family of transcription factors.

  2. Structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn2+-binding FCD domains

    International Nuclear Information System (INIS)

    Zheng, Meiying; Cooper, David R.; Grossoehme, Nickolas E.; Yu, Minmin; Hung, Li-Wei; Cieslik, Marcin; Derewenda, Urszula; Lesley, Scott A.; Wilson, Ian A.; Giedroc, David P.; Derewenda, Zygmunt S.

    2009-01-01

    Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The GntR superfamily of dimeric transcription factors, with more than 6200 members encoded in bacterial genomes, are characterized by N-terminal winged-helix DNA-binding domains and diverse C-terminal regulatory domains which provide a basis for the classification of the constituent families. The largest of these families, FadR, contains nearly 3000 proteins with all-α-helical regulatory domains classified into two related Pfam families: FadR-C and FCD. Only two crystal structures of FadR-family members, those of Escherichia coli FadR protein and LldR from Corynebacterium glutamicum, have been described to date in the literature. Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The FCD domain is similar to that of the LldR regulator and contains a buried metal-binding site. Using atomic absorption spectroscopy and Trp fluorescence, it is shown that the recombinant protein contains bound Ni 2+ ions but that it is able to bind Zn 2+ with K d < 70 nM. It is concluded that Zn 2+ is the likely physiological metal and that it may perform either structural or regulatory roles or both. Finally, the TM0439 structure is compared with two other FadR-family structures recently deposited by structural genomics consortia. The results call for a revision in the classification of the FadR family of transcription factors

  3. Phytohormone priming elevates the accumulation of defense-related gene transcripts and enhances bacterial blight disease resistance in cassava.

    Science.gov (United States)

    Yoodee, Sunisa; Kobayashi, Yohko; Songnuan, Wisuwat; Boonchird, Chuenchit; Thitamadee, Siripong; Kobayashi, Issei; Narangajavana, Jarunya

    2018-01-01

    Cassava bacterial blight (CBB) disease caused by Xanthomonas axonopodis pv. manihotis (Xam) is a severe disease in cassava worldwide. In addition to causing significant cassava yield loss, CBB disease has not been extensively studied, especially in terms of CBB resistance genes. The present research demonstrated the molecular mechanisms underlining the defense response during Xam infection in two cassava cultivars exhibiting different degrees of disease resistance, Huay Bong60 (HB60) and Hanatee (HN). Based on gene expression analysis, ten of twelve putative defense-related genes including, leucine-rich repeat receptor-like kinases (LRR-RLKs), resistance (R), WRKY and pathogenesis-related (PR) genes, were differentially expressed between these two cassava cultivars during Xam infection. The up-regulation of defense-related genes observed in HB60 may be the mechanism required for the reduction of disease severity in the resistant cultivar. Interestingly, priming with salicylic acid (SA) or methyl jasmonate (MeJA) for 24 h before Xam inoculation could enhance the defense response in both cassava cultivars. The disease severity was decreased 10% in the resistant cultivar (HB60) and was remarkably reduced 21% in the susceptible cultivar (HN) by SA/MeJA priming. Priming with Xam inoculation modulated cassava4.1_013417, cassava4.1_030866 and cassava4.1_020555 (highest similarity to MeWRKY59, MePR1 and AtPDF2.2, respectively) expression and led to enhanced resistance of the susceptible cultivar in the second infection. The putative cis-regulatory elements were predicted in an upstream region of these three defense-related genes. The different gene expression levels in these genes between the two cultivars were due to the differences in cis-regulatory elements in their promoter regions. Taken together, our study strongly suggested that the induction of defense-related genes correlated with defense resistance against Xam infection, and exogenous application of SA or Me

  4. A NF-κB-dependent dual promoter-enhancer initiates the lipopolysaccharide-mediated transcriptional activation of the chicken lysozyme in macrophages.

    Directory of Open Access Journals (Sweden)

    James Witham

    Full Text Available The transcriptional activation of the chicken lysozyme gene (cLys by lipopolysaccharide (LPS in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR triggering eviction of the CCCTC-binding factor (CTCF from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE. In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPβ controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3' end of the gene.

  5. Structural insight into HIV-1 reverse transcription initiation in MAL-like templates (CRF01_AE, subtype G and CRF02_AG).

    Science.gov (United States)

    Kolomiets, Irina N; Zarudnaya, Margarita I; Potyahaylo, Andriy L; Hovorun, Dmytro M

    2015-01-01

    Based on the known structural model for reverse transcription initiation complex of the human immunodeficiency virus type 1 (HIV-1) MAL isolate, we attempted to predict a structural behavior of MAL-like templates (CRF01_AE, subtype G and CRF02_AG) within the initiation complex by in silico experiments. Switches from the D-duplex (dimerization-competent) conformation to the I-duplex (initiation-competent) conformation and then to conformations with an open primer activation signal (PAS) structure have been examined for four fragments of U5 and primer binding site (PBS) region, the minimal fragment (nt 121-243), fragment 1 (nt 110-243), fragment 2 (nt 113-259), and extended fragment 2 (nt 109-261). Switches from the D-duplex conformation to the I-duplex conformation in the minimal fragment or fragment 1 and from the I-duplex conformation to conformations with exposed PAS motif in fragment 1 are similar in all MAL-like templates. A PAS exposure in fragment 2 and extended fragment 2 is supported by PBS stem extension which structure is affected by subtype-specific variations in CRF01_AE (the mutated motif (116)GUUAG(120)) and CRF02_AG (7-nt deletion downstream of the PBS motif and G/C/A insertion at the 3' end of fragment 2). These switchable conformations contain the established structural elements essential for HIV-1 reverse transcription initiation as well as several elements that may also be relevant to initiation process, namely hairpins with GAAA apical loops and self-contained motifs of the duplicate insertion and the downstream palindromic sequence. Taken together, our findings suggest a role for the duplicate insertion of MAL-like templates in HIV-1 reverse transcription initiation process and possible mechanisms to realize this role.

  6. Stabilization of the U5-leader stem in the HIV-1 RNA genome affects initiation and elongation of reverse transcription

    NARCIS (Netherlands)

    Beerens, N.; Groot, F.; Berkhout, B.

    2000-01-01

    Reverse transcription of the Human Immunodeficiency Virus type I (HIV-1) RNA genome is primed by a cellular tRNA-lys3 molecule that binds to the primer binding site (PBS). The PBS is predicted to be part of an extended RNA structure, consisting of a small U5-PBS hairpin and a large U5-leader stem.

  7. Stimulated initiation of mitogen-activated protein kinase phosphatase-1 (MKP-1) gene transcription involves the synergistic action of multiple cis-acting elements in the proximal promoter.

    Science.gov (United States)

    Ryser, Stephan; Massiha, Abbas; Piuz, Isabelle; Schlegel, Werner

    2004-01-01

    Mitogen-activated protein kinases (MAPKs) are inactivated by a dual specificity phosphatase, MAPK phosphatase-1 (MKP-1). MKP-1 is transcribed as an immediate early response gene (IEG) following various stimuli. In the pituitary cell line GH4C1, MKP-1 gene transcription is strongly induced by thyrotropin-releasing hormone (TRH) as well as by epidermal growth factor (EGF) as a consequence of activated MAPK/extracellular-signal-regulated kinase (ERK) signalling. Intriguingly, reporter gene analysis with the MKP-1 promoter showed strong basal transcription, but only limited induction by TRH and EGF. Site-directed mutagenesis of the reporter construct combined with band-shift and in vivo studies revealed that part of the constitutive activity of the MKP-1 promoter resides in two GC boxes bound by Sp1 and Sp3 transcription factors in the minimal promoter. Basal transcription of transiently transfected luciferase reporter can be initiated by either of the two GC boxes or also by either of the two cAMP/Ca(2+) responsive elements or by the E-box present in the proximal promoter. On the other hand, when analysed by stable transfection, the five responsive elements are acting in synergy to transactivate the MKP-1 proximal promoter. We show in this study that the MKP-1 promoter can function as a constitutive promoter or as a rapid and transient sensor for the activation state of MAPKs/ERKs. This dual mode of transcription initiation may have different consequences for the control of a block to elongation situated in the first exon of the MKP-1 gene, as described previously [Ryser, Tortola, van Haasteren, Muda, Li and Schlegel (2001) J. Biol. Chem. 276, 33319-33327]. PMID:14609431

  8. Core promoter-specific gene regulation: TATA box selectivity and Initiator-dependent bi-directionality of serum response factor-activated transcription.

    Science.gov (United States)

    Xu, Muyu; Gonzalez-Hurtado, Elsie; Martinez, Ernest

    2016-04-01

    Gene-specific activation by enhancers involves their communication with the basal RNA polymerase II transcription machinery at the core promoter. Core promoters are diverse and may contain a variety of sequence elements such as the TATA box, the Initiator (INR), and the downstream promoter element (DPE) recognized, respectively, by the TATA-binding protein (TBP) and TBP-associated factors of the TFIID complex. Core promoter elements contribute to the gene selectivity of enhancers, and INR/DPE-specific enhancers and activators have been identified. Here, we identify a TATA box-selective activating sequence upstream of the human β-actin (ACTB) gene that mediates serum response factor (SRF)-induced transcription from TATA-dependent but not INR-dependent promoters and requires the TATA-binding/bending activity of TBP, which is otherwise dispensable for transcription from a TATA-less promoter. The SRF-dependent ACTB sequence is stereospecific on TATA promoters but activates in an orientation-independent manner a composite TATA/INR-containing promoter. More generally, we show that SRF-regulated genes of the actin/cytoskeleton/contractile family tend to have a TATA box. These results suggest distinct TATA-dependent and INR-dependent mechanisms of TFIID-mediated transcription in mammalian cells that are compatible with only certain stereospecific combinations of activators, and that a TBP-TATA binding mechanism is important for SRF activation of the actin/cytoskeleton-related gene family. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. HFR1 Sequesters PIF1 to Govern the Transcriptional Network Underlying Light-Initiated Seed Germination in Arabidopsis[C][W][OPEN

    Science.gov (United States)

    Shi, Hui; Zhong, Shangwei; Mo, Xiaorong; Liu, Na; Nezames, Cynthia D.; Deng, Xing Wang

    2013-01-01

    Seed germination is the first step for seed plants to initiate a new life cycle. Light plays a predominant role in promoting seed germination, where the initial phase is mediated by photoreceptor phytochrome B (phyB). Previous studies showed that PHYTOCHROME-INTERACTING FACTOR1 (PIF1) represses seed germination downstream of phyB. Here, we identify a positive regulator of phyB-dependent seed germination, LONG HYPOCOTYL IN FAR-RED1 (HFR1). HFR1 blocks PIF1 transcriptional activity by forming a heterodimer with PIF1 that prevents PIF1 from binding to DNA. Our whole-genomic analysis shows that HFR1 and PIF1 oppositely mediate the light-regulated transcriptome in imbibed seeds. Through the HFR1–PIF1 module, light regulates expression of numerous genes involved in cell wall loosening, cell division, and hormone pathways to initiate seed germination. The functionally antagonistic HFR1–PIF1 pair constructs a fail-safe mechanism for fine-tuning seed germination during low-level illumination, ensuring a rapid response to favorable environmental changes. This study identifies the HFR1–PIF1 pair as a central module directing the whole genomic transcriptional network to rapidly initiate light-induced seed germination. PMID:24179122

  10. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens.

    Science.gov (United States)

    Wang, Xiao'e; Basnayake, B M Vindhya S; Zhang, Huijuan; Li, Guojun; Li, Wei; Virk, Nasar; Mengiste, Tesfaye; Song, Fengming

    2009-10-01

    Transcription factors of the NAC family are known to be involved in various growth or developmental processes and in regulation of response to environmental stresses. In the present study, we report that Arabidopsis ATAF1 is a negative regulator of defense responses against both necrotrophic fungal and bacterial pathogens. Expression of ATAF1 was downregulated after infection with Botrytis cinerea or Pseudomonas syringae pv. tomato or after treatment with salicylic acid (SA), jasmonic acid, and 1-amino cyclopropane-1-carboxylic acid (the precursor of ethylene biosynthesis). Transgenic plants that overexpress the ATAF1 gene (ATAF1-OE) showed increased susceptibility while expression of an ATAF1 chimeric repressor construct (ATAF1-SRDX) exhibited enhanced resistance to P. syringae pv. tomato DC3000, B. cinerea, and Alternaria brassicicola. The ataf1 mutant plants showed no significant resistance against the pathogens tested. After inoculation with B. cinerea or P. syringae pv. tomato DC3000, expressions of defense-related genes PR-1, PR-5. and PDF1.2 were upregulated in the ATAF1-SRDX plants but attenuated or unchanged in the ATAF1-OE plants. In ATAF1-OE plants, SA-induced expression of pathogenesis-related genes and disease resistance against P. syringae pv. tomato DC3000 was partially suppressed. Increased levels of reactive oxygen species (i.e., H(2)O(2) and superoxide anion) accumulated only in the ATAF1-OE but not in the ATAF1-SRDX plants after Botrytis spp. infection. Our studies provide direct genetic evidence for the role of ATAF1 as a negative regulator of defense response against different type of pathogens.

  11. Transcriptional and metabolic signatures of Arabidopsis responses to chewing damage by an insect herbivore and bacterial infection and the consequences of their interaction

    Science.gov (United States)

    Appel, Heidi M.; Maqbool, Shahina B.; Raina, Surabhi; Jagadeeswaran, Guru; Acharya, Biswa R.; Hanley, John C.; Miller, Kathryn P.; Hearnes, Leonard; Jones, A. Daniel; Raina, Ramesh; Schultz, Jack C.

    2014-01-01

    Plants use multiple interacting signaling systems to identify and respond to biotic stresses. Although it is often assumed that there is specificity in signaling responses to specific pests, this is rarely examined outside of the gene-for-gene relationships of plant-pathogen interactions. In this study, we first compared early events in gene expression and later events in metabolite profiles of Arabidopsis thaliana following attack by either the caterpillar Spodoptera exigua or avirulent (DC3000 avrRpm1) Pseudomonas syringae pv. tomato at three time points. Transcriptional responses of the plant to caterpillar feeding were rapid, occurring within 1 h of feeding, and then decreased at 6 and 24 h. In contrast, plant response to the pathogen was undetectable at 1 h but grew larger and more significant at 6 and 24 h. There was a surprisingly large amount of overlap in jasmonate and salicylate signaling in responses to the insect and pathogen, including levels of gene expression and individual hormones. The caterpillar and pathogen treatments induced different patterns of expression of glucosinolate biosynthesis genes and levels of glucosinolates. This suggests that when specific responses develop, their regulation is complex and best understood by characterizing expression of many genes and metabolites. We then examined the effect of feeding by the caterpillar Spodoptera exigua on Arabidopsis susceptibility to virulent (DC3000) and avirulent (DC3000 avrRpm1) P. syringae pv. tomato, and found that caterpillar feeding enhanced Arabidopsis resistance to the avirulent pathogen and lowered resistance to the virulent strain. We conclude that efforts to improve plant resistance to bacterial pathogens are likely to influence resistance to insects and vice versa. Studies explicitly comparing plant responses to multiple stresses, including the role of elicitors at early time points, are critical to understanding how plants organize responses in natural settings. PMID:25278943

  12. Transcriptional and metabolic signatures of Arabidopsis responses to chewing damage by an insect herbivore and bacterial infection and the consequences of their interaction

    Directory of Open Access Journals (Sweden)

    Heidi M Appel

    2014-09-01

    Full Text Available Plants use multiple interacting signaling systems to identify and respond to biotic stresses. Although it is often assumed that there is specificity in signaling responses to specific pests, this is rarely examined outside of the gene-for-gene relationships of plant-pathogen interactions. In this study, we first compared early events in gene expression and later events in metabolite profiles of Arabidopsis thaliana following attack by either the caterpillar Spodoptera exigua or avirulent (DC3000 avrRpm1 Pseudomonas syringae pv. tomato at three time points. Transcriptional responses of the plant to caterpillar feeding were rapid, occurring within 1 h of feeding, and then decreased at 6 h and 24 h. In contrast, plant response to the pathogen was undetectable at 1 h but grew larger and more significant at 6 h and 24 h. There was a surprisingly large amount of overlap in jasmonate and salicylate signaling in responses to the insect and pathogen, including levels of gene expression and individual hormones. The caterpillar and pathogen treatments induced different patterns of expression of glucosinolate biosynthesis genes and levels of glucosinolates. This suggests that when specific responses develop, their regulation is complex and best understood by characterizing expression of many genes and metabolites. We then examined the effect of feeding by the caterpillar Spodoptera exigua on Arabidopsis susceptibility to virulent (DC3000 and avirulent (DC3000 avrRpm1 P. syringae pv. tomato, and found that caterpillar feeding enhanced Arabidopsis resistance to the avirulent pathogen and lowered resistance to the virulent strain. We conclude that efforts to improve plant resistance to bacterial pathogens are likely to influence resistance to insects and vice versa. Studies explicitly comparing plant responses to multiple stresses, including the role of elicitors at early time points, are critical to understanding how plants organize responses in natural

  13. A gonococcal homologue of meningococcal γ-glutamyl transpeptidase gene is a new type of bacterial pseudogene that is transcriptionally active but phenotypically silent

    Directory of Open Access Journals (Sweden)

    Watanabe Haruo

    2005-10-01

    Full Text Available Abstract Background It has been speculated that the γ-glutamyl transpeptidase (ggt gene is present only in Neisseria meningitidis and not among related species such as Neisseria gonorrhoeae and Neisseria lactamica, because N. meningitidis is the only bacterium with GGT activity. However, nucleotide sequences highly homologous to the meningococcal ggt gene were found in the genomes of N. gonorrhoeae isolates. Results The gonococcal homologue (ggt gonococcal homologue; ggh was analyzed. The nucleotide sequence of the ggh gene was approximately 95 % identical to that of the meningococcal ggt gene. An open reading frame in the ggh gene was disrupted by an ochre mutation and frameshift mutations induced by a 7-base deletion, but the amino acid sequences deduced from the artificially corrected ggh nucleotide sequences were approximately 97 % identical to that of the meningococcal ggt gene. The analyses of the sequences flanking the ggt and ggh genes revealed that both genes were localized in a common DNA region containing the fbp-ggt (or ggh-glyA-opcA-dedA-abcZ gene cluster. The expression of the ggh RNA could be detected by dot blot, RT-PCR and primer extension analyses. Moreover, the truncated form of ggh-translational product was also found in some of the gonococcal isolates. Conclusion This study has shown that the gonococcal ggh gene is a pseudogene of the meningococcal ggt gene, which can also be designated as Ψggt. The gonococcal ggh (Ψggt gene is the first identified bacterial pseudogene that is transcriptionally active but phenotypically silent.

  14. Low probability of initiating nirS transcription explains observed gas kinetics and growth of bacteria switching from aerobic respiration to denitrification.

    Science.gov (United States)

    Hassan, Junaid; Bergaust, Linda L; Wheat, I David; Bakken, Lars R

    2014-11-01

    In response to impending anoxic conditions, denitrifying bacteria sustain respiratory metabolism by producing enzymes for reducing nitrogen oxyanions/-oxides (NOx) to N2 (denitrification). Since denitrifying bacteria are non-fermentative, the initial production of denitrification proteome depends on energy from aerobic respiration. Thus, if a cell fails to synthesise a minimum of denitrification proteome before O2 is completely exhausted, it will be unable to produce it later due to energy-limitation. Such entrapment in anoxia is recently claimed to be a major phenomenon in batch cultures of the model organism Paracoccus denitrificans on the basis of measured e(-)-flow rates to O2 and NOx. Here we constructed a dynamic model and explicitly simulated actual kinetics of recruitment of the cells to denitrification to directly and more accurately estimate the recruited fraction (Fden). Transcription of nirS is pivotal for denitrification, for it triggers a cascade of events leading to the synthesis of a full-fledged denitrification proteome. The model is based on the hypothesis that nirS has a low probability (rden, h(-1)) of initial transcription, but once initiated, the transcription is greatly enhanced through positive feedback by NO, resulting in the recruitment of the transcribing cell to denitrification. We assume that the recruitment is initiated as [O2] falls below a critical threshold and terminates (assuming energy-limitation) as [O2] exhausts. With rden = 0.005 h(-1), the model robustly simulates observed denitrification kinetics for a range of culture conditions. The resulting Fden (fraction of the cells recruited to denitrification) falls within 0.038-0.161. In contrast, if the recruitment of the entire population is assumed, the simulated denitrification kinetics deviate grossly from those observed. The phenomenon can be understood as a 'bet-hedging strategy': switching to denitrification is a gain if anoxic spell lasts long but is a waste of energy

  15. UVB induces a genome-wide acting negative regulatory mechanism that operates at the level of transcription initiation in human cells.

    Science.gov (United States)

    Gyenis, Akos; Umlauf, David; Ujfaludi, Zsuzsanna; Boros, Imre; Ye, Tao; Tora, Làszlò

    2014-07-01

    Faithful transcription of DNA is constantly threatened by different endogenous and environmental genotoxic effects. Transcription coupled repair (TCR) has been described to stop transcription and quickly remove DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked transcription. This repair mechanism has been well characterized in the past using individual target genes. Moreover, numerous efforts investigated the fate of blocked RNA polymerase II (Pol II) during DNA repair mechanisms and suggested that stopped Pol II complexes can either backtrack, be removed and degraded or bypass the lesions to allow TCR. We investigated the effect of a non-lethal dose of UVB on global DNA-bound Pol II distribution in human cells. We found that the used UVB dose did not induce Pol II degradation however surprisingly at about 93% of the promoters of all expressed genes Pol II occupancy was seriously reduced 2-4 hours following UVB irradiation. The presence of Pol II at these cleared promoters was restored 5-6 hours after irradiation, indicating that the negative regulation is very dynamic. We also identified a small set of genes (including several p53 regulated genes), where the UVB-induced Pol II clearing did not operate. Interestingly, at promoters, where Pol II promoter clearance occurs, TFIIH, but not TBP, follows the behavior of Pol II, suggesting that at these genes upon UVB treatment TFIIH is sequestered for DNA repair by the TCR machinery. In agreement, in cells where the TCR factor, the Cockayne Syndrome B protein, was depleted UVB did not induce Pol II and TFIIH clearance at promoters. Thus, our study reveals a UVB induced negative regulatory mechanism that targets Pol II transcription initiation on the large majority of transcribed gene promoters, and a small subset of genes, where Pol II escapes this negative regulation.

  16. UVB induces a genome-wide acting negative regulatory mechanism that operates at the level of transcription initiation in human cells.

    Directory of Open Access Journals (Sweden)

    Akos Gyenis

    2014-07-01

    Full Text Available Faithful transcription of DNA is constantly threatened by different endogenous and environmental genotoxic effects. Transcription coupled repair (TCR has been described to stop transcription and quickly remove DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked transcription. This repair mechanism has been well characterized in the past using individual target genes. Moreover, numerous efforts investigated the fate of blocked RNA polymerase II (Pol II during DNA repair mechanisms and suggested that stopped Pol II complexes can either backtrack, be removed and degraded or bypass the lesions to allow TCR. We investigated the effect of a non-lethal dose of UVB on global DNA-bound Pol II distribution in human cells. We found that the used UVB dose did not induce Pol II degradation however surprisingly at about 93% of the promoters of all expressed genes Pol II occupancy was seriously reduced 2-4 hours following UVB irradiation. The presence of Pol II at these cleared promoters was restored 5-6 hours after irradiation, indicating that the negative regulation is very dynamic. We also identified a small set of genes (including several p53 regulated genes, where the UVB-induced Pol II clearing did not operate. Interestingly, at promoters, where Pol II promoter clearance occurs, TFIIH, but not TBP, follows the behavior of Pol II, suggesting that at these genes upon UVB treatment TFIIH is sequestered for DNA repair by the TCR machinery. In agreement, in cells where the TCR factor, the Cockayne Syndrome B protein, was depleted UVB did not induce Pol II and TFIIH clearance at promoters. Thus, our study reveals a UVB induced negative regulatory mechanism that targets Pol II transcription initiation on the large majority of transcribed gene promoters, and a small subset of genes, where Pol II escapes this negative regulation.

  17. Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration.

    Directory of Open Access Journals (Sweden)

    Nils Rudqvist

    Full Text Available 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland.BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value 1.5, and p-value <0.05, respectively.In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy.

  18. Bacterial meningitis

    NARCIS (Netherlands)

    Heckenberg, Sebastiaan G. B.; Brouwer, Matthijs C.; van de Beek, Diederik

    2014-01-01

    Bacterial meningitis is a neurologic emergency. Vaccination against common pathogens has decreased the burden of disease. Early diagnosis and rapid initiation of empiric antimicrobial and adjunctive therapy are vital. Therapy should be initiated as soon as blood cultures have been obtained,

  19. A downstream CpG island controls transcript initiation and elongation and the methylation state of the imprinted Airn macro ncRNA promoter.

    Directory of Open Access Journals (Sweden)

    Martha V Koerner

    Full Text Available A CpG island (CGI lies at the 5' end of the Airn macro non-protein-coding (nc RNA that represses the flanking Igf2r promoter in cis on paternally inherited chromosomes. In addition to being modified on maternally inherited chromosomes by a DNA methylation imprint, the Airn CGI shows two unusual organization features: its position immediately downstream of the Airn promoter and transcription start site and a series of tandem direct repeats (TDRs occupying its second half. The physical separation of the Airn promoter from the CGI provides a model to investigate if the CGI plays distinct transcriptional and epigenetic roles. We used homologous recombination to generate embryonic stem cells carrying deletions at the endogenous locus of the entire CGI or just the TDRs. The deleted Airn alleles were analyzed by using an ES cell imprinting model that recapitulates the onset of Igf2r imprinted expression in embryonic development or by using knock-out mice. The results show that the CGI is required for efficient Airn initiation and to maintain the unmethylated state of the Airn promoter, which are both necessary for Igf2r repression on the paternal chromosome. The TDRs occupying the second half of the CGI play a minor role in Airn transcriptional elongation or processivity, but are essential for methylation on the maternal Airn promoter that is necessary for Igf2r to be expressed from this chromosome. Together the data indicate the existence of a class of regulatory CGIs in the mammalian genome that act downstream of the promoter and transcription start.

  20. Initiation and beyond: molecular determinants of gene regulation. Mechanisms of Transcription Control, A Jacques Monod Conference, sponsored by the Centre National de la Recherche Scientifique, Roscoff, France, September 30-October 4, 1991.

    Science.gov (United States)

    Umek, R M

    1992-03-01

    The study of the mechanisms of transcriptional control continues to be an exciting area of research. The characterization of the constituents of the initiation complex and their interactions are leading to a greater understanding of gene regulation. The findings presented at this meeting emphasized the need to understand these interactions in three-dimensional space to effectively account for the observed regulation of the initiation of transcription.

  1. Low-level HCV viraemia after initial response during antiviral therapy: transcription-mediated amplification predicts treatment failure

    NARCIS (Netherlands)

    Gelderblom, Huub C.; Reesink, Henk W.; Beld, Marcel G. H. M.; Weegink, Christine J.; Jansen, Peter L. M.; Dijkgraaf, Marcel G. W.; Zaaijer, Hans L.

    2007-01-01

    BACKGROUND: In chronic hepatitis C patients with an initial virological response (IVR) during antiviral therapy (that is, HCV RNA becomes negative before week 16 of treatment) the significance of reappearing viraemia below the detection limit of PCR is not known. We studied this phenomenon in

  2. The bacterial enhancer-dependent RNA polymerase.

    Science.gov (United States)

    Zhang, Nan; Darbari, Vidya C; Glyde, Robert; Zhang, Xiaodong; Buck, Martin

    2016-11-01

    Transcription initiation is highly regulated in bacterial cells, allowing adaptive gene regulation in response to environment cues. One class of promoter specificity factor called sigma54 enables such adaptive gene expression through its ability to lock the RNA polymerase down into a state unable to melt out promoter DNA for transcription initiation. Promoter DNA opening then occurs through the action of specialized transcription control proteins called bacterial enhancer-binding proteins (bEBPs) that remodel the sigma54 factor within the closed promoter complexes. The remodelling of sigma54 occurs through an ATP-binding and hydrolysis reaction carried out by the bEBPs. The regulation of bEBP self-assembly into typically homomeric hexamers allows regulated gene expression since the self-assembly is required for bEBP ATPase activity and its direct engagement with the sigma54 factor during the remodelling reaction. Crystallographic studies have now established that in the closed promoter complex, the sigma54 factor occupies the bacterial RNA polymerase in ways that will physically impede promoter DNA opening and the loading of melted out promoter DNA into the DNA-binding clefts of the RNA polymerase. Large-scale structural re-organizations of sigma54 require contact of the bEBP with an amino-terminal glutamine and leucine-rich sequence of sigma54, and lead to domain movements within the core RNA polymerase necessary for making open promoter complexes and synthesizing the nascent RNA transcript. © 2016 The Author(s).

  3. Pseudoalteromonas spp. serve as initial bacterial attractants in mesocosms of coastal waters but have subsequent antifouling capacity in mesocosms and when embedded in paint.

    Science.gov (United States)

    Bernbom, Nete; Ng, Yoke Yin; Olsen, Stefan Møller; Gram, Lone

    2013-11-01

    The purpose of the present study was to determine if the monoculture antifouling effect of several pigmented pseudoalteromonads was retained in in vitro mesocosm systems using natural coastal seawater and when the bacteria were embedded in paint used on surfaces submerged in coastal waters. Pseudoalteromonas piscicida survived on a steel surface and retained antifouling activity for at least 53 days in sterile seawater, whereas P. tunicata survived and had antifouling activity for only 1 week. However, during the first week, all Pseudoalteromonas strains facilitated rather than prevented bacterial attachment when used to coat stainless steel surfaces and submerged in mesocosms with natural seawater. The bacterial density on surfaces coated with sterile growth medium was 10(5) cells/cm(2) after 7 days, whereas counts on surfaces precoated with Pseudoalteromonas were significantly higher, at 10(6) to 10(8) cells/cm(2). However, after 53 days, seven of eight Pseudoalteromonas strains had reduced total bacterial adhesion compared to the control. P. piscicida, P. antarctica, and P. ulvae remained on the surface, at levels similar to those in the initial coating, whereas P. tunicata could not be detected. Larger fouling organisms were observed on all plates precoated with Pseudoalteromonas; however, plates coated only with sterile growth medium were dominated by a bacterial biofilm. Suspensions of a P. piscicida strain and a P. tunicata strain were incorporated into ship paints (Hempasil x3 87500 and Hempasil 77500) used on plates that were placed at the Hempel A/S test site in Jyllinge Harbor. For the first 4 months, no differences were observed between control plates and treated plates, but after 5 to 6 months, the control plates were more fouled than the plates with pseudoalteromonad-based paint. Our study demonstrates that no single laboratory assay can predict antifouling effects and that a combination of laboratory and real-life methods must be used to determine

  4. A Conserved Pattern of Primer-Dependent Transcription Initiation in Escherichia coli and Vibrio cholerae Revealed by 5' RNA-seq.

    Directory of Open Access Journals (Sweden)

    Sergey Y Druzhinin

    2015-07-01

    Full Text Available Transcription initiation that involves the use of a 2- to ~4-nt oligoribonucleotide primer, "primer-dependent initiation," (PDI has been shown to be widely prevalent at promoters of genes expressed during the stationary phase of growth in Escherichia coli. However, the extent to which PDI impacts E. coli physiology, and the extent to which PDI occurs in other bacteria is not known. Here we establish a physiological role for PDI in E. coli as a regulatory mechanism that modulates biofilm formation. We further demonstrate using high-throughput sequencing of RNA 5' ends (5' RNA-seq that PDI occurs in the pathogenic bacterium Vibrio cholerae. A comparative global analysis of PDI in V. cholerae and E. coli reveals that the pattern of PDI is strikingly similar in the two organisms. In particular, PDI is detected in stationary phase, is not detected in exponential phase, and is preferentially apparent at promoters carrying the sequence T-1A+1 or G-1G+1 (where position +1 corresponds to the position of de novo initiation. Our findings demonstrate a physiological role for PDI and suggest PDI may be widespread among Gammaproteobacteria. We propose that PDI in both E. coli and V. cholerae occurs though a growth phase-dependent process that leads to the preferential generation of the linear dinucleotides 5´-UA-3´ and 5´-GG-3´.

  5. A Conserved Pattern of Primer-Dependent Transcription Initiation in Escherichia coli and Vibrio cholerae Revealed by 5' RNA-seq.

    Science.gov (United States)

    Druzhinin, Sergey Y; Tran, Ngat T; Skalenko, Kyle S; Goldman, Seth R; Knoblauch, Jared G; Dove, Simon L; Nickels, Bryce E

    2015-07-01

    Transcription initiation that involves the use of a 2- to ~4-nt oligoribonucleotide primer, "primer-dependent initiation," (PDI) has been shown to be widely prevalent at promoters of genes expressed during the stationary phase of growth in Escherichia coli. However, the extent to which PDI impacts E. coli physiology, and the extent to which PDI occurs in other bacteria is not known. Here we establish a physiological role for PDI in E. coli as a regulatory mechanism that modulates biofilm formation. We further demonstrate using high-throughput sequencing of RNA 5' ends (5' RNA-seq) that PDI occurs in the pathogenic bacterium Vibrio cholerae. A comparative global analysis of PDI in V. cholerae and E. coli reveals that the pattern of PDI is strikingly similar in the two organisms. In particular, PDI is detected in stationary phase, is not detected in exponential phase, and is preferentially apparent at promoters carrying the sequence T-1A+1 or G-1G+1 (where position +1 corresponds to the position of de novo initiation). Our findings demonstrate a physiological role for PDI and suggest PDI may be widespread among Gammaproteobacteria. We propose that PDI in both E. coli and V. cholerae occurs though a growth phase-dependent process that leads to the preferential generation of the linear dinucleotides 5´-UA-3´ and 5´-GG-3´.

  6. Possible roles of σ-dependent RNA polymerase pausing in transcription regulation.

    Science.gov (United States)

    Petushkov, Ivan; Esyunina, Daria; Kulbachinskiy, Andrey

    2017-12-02

    The σ subunit of bacterial RNA polymerase is required for promoter recognition during transcription initiation but may also regulate transcription elongation. The principal σ 70 subunit of Escherichia coli was shown to travel with RNA polymerase and induce transcriptional pausing at promoter-like motifs, with potential regulatory output. We recently demonstrated that an alternative σ 38 subunit can also induce RNA polymerase pausing. Here, we outline proposed regulatory roles of σ-dependent pausing in bacteria and discuss possible interplay between alternative σ variants and regulatory factors during transcription elongation.

  7. Band smearing of PCR amplified bacterial 16S rRNA genes: dependence on initial PCR target diversity.

    Science.gov (United States)

    Zrimec, Jan; Kopinč, Rok; Rijavec, Tomaž; Zrimec, Tatjana; Lapanje, Aleš

    2013-11-01

    Band smearing in agarose gels of PCR amplified bacterial 16S rRNA genes is understood to comprise amplicons of varying sizes arising from PCR errors, and requires elimination. We consider that with amplified heterogeneous DNA, delayed electro-migration is caused not by PCR errors but by dsDNA structures that arise from imperfect strand pairing. The extent of band smearing was found to be proportional to the sequence heterogeneity in 16S rRNA variable regions. Denaturing alkaline gels showed that all amplified DNA was of the correct size. A novel bioinformatic approach was used to reveal that band smearing occurred due to imperfectly paired strands of the amplified DNA. Since the smear is a structural fraction of the correct size PCR product, it carries important information on richness and diversity of the target DNA. For accurate analysis, the origin of the smear must first be identified before it is eliminated by examining the amplified DNA in denaturing alkaline gels. © 2013 Elsevier B.V. All rights reserved.

  8. A Novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors

    NARCIS (Netherlands)

    van Verk, Marcel C|info:eu-repo/dai/nl/327618671; Pappaioannou, Dimitri; Neeleman, Lyda; Bol, John F; Linthorst, Huub J M

    PR-1a is a salicylic acid-inducible defense gene of tobacco (Nicotiana tabacum). One-hybrid screens identified a novel tobacco WRKY transcription factor (NtWRKY12) with specific binding sites in the PR-1a promoter at positions -564 (box WK(1)) and -859 (box WK(2)). NtWRKY12 belongs to the class of

  9. A bacterial community analysis using reverse transcription (RT) PCR which detects the bacteria with high activity in a wastewater treatment reactor

    Science.gov (United States)

    This research used reverse transcription polymerase chain reaction (RT-PCR) method to help detect active bacteria in a single-tank deammonification reactor combining partial nitritation and anammox. The single-tank aerobic deammonification reactor effectively removed the ammonia in anaerobically di...

  10. Improved detection limit in rapid detection of human enterovirus 71 and coxsackievirus A16 by a novel reverse transcription-isothermal multiple-self-matching-initiated amplification assay.

    Science.gov (United States)

    Ding, Xiong; Nie, Kai; Shi, Lei; Zhang, Yong; Guan, Li; Zhang, Dan; Qi, Shunxiang; Ma, Xuejun

    2014-06-01

    Rapid detection of human enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) is important in the early phase of hand-foot-and-mouth disease (HFMD). In this study, we developed and evaluated a novel reverse transcription-isothermal multiple-self-matching-initiated amplification (RT-IMSA) assay for the rapid detection of EV71 and CVA16 by use of reverse transcriptase, together with a strand displacement DNA polymerase. Real-time RT-IMSA assays using a turbidimeter and visual RT-IMSA assays to detect EV71 and CVA16 were established and completed in 1 h, and the reported corresponding real-time reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assays targeting the same regions of the VP1 gene were adopted as parallel tests. Through testing VP1 RNAs transcribed in vitro, the real-time RT-IMSA assays exhibited better linearity of quantification, with R(2) values of 0.952 (for EV71) and 0.967 (for CVA16), than the real-time RT-LAMP assays, which had R(2) values of 0.803 (for EV71) and 0.904 (for CVA16). Additionally, the detection limits of the real-time RT-IMSA assays (approximately 937 for EV71 and 67 for CVA16 copies/reaction) were higher than those of real-time RT-LAMP assays (approximately 3,266 for EV71 and 430 for CVA16 copies/reaction), and similar results were observed in the visual RT-IMSA assays. The new approaches also possess high specificities for the corresponding targets, with no cross-reactivity observed. In clinical assessment, compared to commercial reverse transcription-quantitative PCR (qRT-PCR) kits, the diagnostic sensitivities of the real-time RT-IMSA assays (96.4% for EV71 and 94.6% for CVA16) were higher than those of the real-time RT-LAMP assays (91.1% for EV71 and 90.8% for CVA16). The visual RT-IMSA assays also exhibited the same results. In conclusion, this proof-of-concept study suggests that the novel RT-IMSA assay is superior to the RT-LAMP assay in terms of detection limit and has the potential to rapidly detect EV71

  11. Switchgrass SBP-box transcription factors PvSPL1 and 2 function redundantly to initiate side tillers and affect biomass yield of energy crop.

    Science.gov (United States)

    Wu, Zhenying; Cao, Yingping; Yang, Ruijuan; Qi, Tianxiong; Hang, Yuqing; Lin, Hao; Zhou, Gongke; Wang, Zeng-Yu; Fu, Chunxiang

    2016-01-01

    Switchgrass (Panicum virgatum L.) is a dedicated lignocellulosic feedstock for bioenergy production. The SQUAMOSA PROMOTER-BINDING PROTEIN (SBP-box)-LIKE transcription factors (SPLs) change plant architecture and vegetative-to-reproductive phase transition significantly, and as such, they are promising candidates for genetic improvement of switchgrass biomass yield. However, the genome-wide identification and functional characterization of SPL genes have yet to be investigated in herbaceous energy crops. We identified 35 full-length SPL genes in the switchgrass genome. The phylogenetic relationship and expression pattern of PvSPLs provided baseline information for their function characterization. Based on the global overview of PvSPLs, we explored the biological function of miR156-targeted PvSPL1 and PvSPL2, which are closely related members of SPL family in switchgrass. Our results showed that PvSPL1 and PvSPL2 acted redundantly to modulate side tiller initiation, whereas they did not affect phase transition and internode initiation. Consistently, overexpression of the miR156-resistant rPvSPL2 in the miR156-overexpressing transgenic plants greatly reduced tiller initiation, but did not rescue the delayed flowering and increased internode numbers. Furthermore, suppression of PvSPL2 activity in switchgrass increased biomass yield and reduced lignin accumulation, which thereby elevated the total amount of solubilized sugars. Our results indicate that different miR156-targeted PvSPL subfamily genes function predominantly in certain biological processes in switchgrass. We suggest that PvSPL2 and its paralogs can be utilized as the valuable targets in molecular breeding of energy crops for developing novel germplasms with high biofuel production.

  12. Lineage-specific partitions in archaeal transcription

    Directory of Open Access Journals (Sweden)

    Richard M. R. Coulson

    2006-01-01

    Full Text Available The phylogenetic distribution of the components comprising the transcriptional machinery in the crenarchaeal and euryarchaeal lineages of the Archaea was analyzed in a systematic manner by genome-wide profiling of transcription complements in fifteen complete archaeal genome sequences. Initially, a reference set of transcription-associated proteins (TAPs consisting of sequences functioning in all aspects of the transcriptional process, and originating from the three domains of life, was used to query the genomes. TAP-families were detected by sequence clustering of the TAPs and their archaeal homologues, and through extensive database searching, these families were assigned a function. The phylogenetic origins of archaeal genes matching hidden Markov model profiles of protein domains associated with transcription, and those encoding the TAP-homologues, showed there is extensive lineage-specificity of proteins that function as regulators of transcription: most of these sequences are present solely in the Euryarchaeota, with nearly all of them homologous to bacterial DNA-binding proteins. Strikingly, the hidden Markov model profile searches revealed that archaeal chromatin and histone-modifying enzymes also display extensive taxon-restrictedness, both across and within the two phyla.

  13. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep

    OpenAIRE

    Kamke, Janine; Soni, Priya; Li, Yang; Ganesh, Siva; Kelly, William J.; Leahy, Sinead C.; Shi, Weibing; Froula, Jeff; Rubin, Edward M.; Attwood, Graeme T.

    2017-01-01

    Background Ruminants are important contributors to global methane emissions via microbial fermentation in their reticulo-rumens. This study is part of a larger program, characterising the rumen microbiomes of sheep which vary naturally in methane yield (g CH4/kg DM/day) and aims to define differences in microbial communities, and in gene and transcript abundances that can explain the animal methane phenotype. Methods Rumen microbiome metagenomic and metatranscriptomic data were analysed by Ge...

  14. Molecular characterization of collagen IV evidences early transcription expression related to the immune response against bacterial infection in the red abalone (Haliotis rufescens).

    Science.gov (United States)

    Chovar-Vera, Ornella; Valenzuela-Muñoz, Valentina; Gallardo-Escárate, Cristian

    2015-02-01

    Collagen IV has been described as a structural protein of the basement membrane, which as a whole forms a specialized extracellular matrix. Recent studies have indicated a possible relationship between collagen IV and the innate immune response of invertebrate organisms. The present study characterized the alpha-1 chain of collagen IV in the red abalone Haliotis rufescens (Hr-ColIV) and evaluated its association with the innate immune response against Vibrio anguillarum. To further evidence the immune response, the matrix metalloproteinase-1 (Hr-MMP-1) and C-type lectin (Hr-CLEC) genes were also assessed. The complete sequence of Hr-ColIV was composed of 6658 bp, with a 5'UTR of 154 bp, a 3'UTR of 1177 bp, and an ORF of 5327 bp that coded for 1776 amino acids. The innate immune response generated against V. anguillarum resulted in a significant increase in the transcript levels of Hr-ColIV between 3 and 6 hpi, whereas Hr-MMP-1 and Hr-CLEC had the highest transcript activity 6 and 12 hpi, respectively. The results obtained in this study propose a putative biological function for collagen IV involved in the early innate immune response of the red abalone H. rufescens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Novel forms of Paired-like homeodomain transcription factor 2 (PITX2: Generation by alternative translation initiation and mRNA splicing

    Directory of Open Access Journals (Sweden)

    Bernard Daniel J

    2008-03-01

    Full Text Available Abstract Background Members of the Paired-like homeodomain transcription factor (PITX gene family, particularly PITX1 and PITX2, play important roles in normal development and in differentiated cell functions. Three major isoforms of PITX2 were previously reported to be produced through both alternative mRNA splicing (PITX2A and PITX2B and alternative promoter usage (PITX2C. The proteins derived from these mRNAs contain identical homeodomain and carboxyl termini. Differences in the amino-termini of the proteins may confer functional differences in some contexts. Results Here, we report the identification of two novel PITX2 isoforms. First, we demonstrate that the Pitx2c mRNA generates two protein products, PITX2Cα and PITX2Cβ, via alternative translation initiation. Second, we identified a novel mRNA splice variant, Pitx2b2, which uses the same 5' splice donor in intron 2 as Pitx2b (hereafter referred to as Pitx2b1, but employs an alternative 3' splice acceptor, leading to an in-frame deletion of 39 base pairs relative to Pitx2b1. Pitx2b2 mRNA is expressed in both murine and human pituitary. The data show that in a murine gonadotrope cell line and adult murine pituitary what was previously thought to be PITX2B1 is actually PITX2Cβ, or perhaps PITX2B2. PITX2B1 is expressed at lower levels than previously thought. PITX2Cβ and PITX2B2 activate gonadotrope-specific gene promoter-reporters similarly to known PITX2 isoforms. Conclusion We have identified and characterized two novel isoforms of PITX2, generated by alternative translation initiation (PITX2Cβ and alternative mRNA splicing (PITX2B2. These proteins show similar DNA binding and trans-activation functions as other PITX2 isoforms in vitro, though their conservation across species suggests that they may play distinct, as yet unidentified, roles in vivo.

  16. A novel embryological theory of autism causation involving endogenous biochemicals capable of initiating cellular gene transcription: a possible link between twelve autism risk factors and the autism 'epidemic'.

    Science.gov (United States)

    King, Chiara R

    2011-05-01

    Human alpha-fetoprotein is a pregnancy-associated protein with an undetermined physiological role. As human alpha-fetoprotein binds retinoids and inhibits estrogen-dependent cancer cell proliferation, and because retinoic acid (a retinol metabolite) and estradiol (an estrogen) can both initiate cellular gene transcription, it is hypothesized here that alpha-fetoprotein functions during critical gestational periods to prevent retinoic acid and maternal estradiol from inappropriately stimulating gene expression in developing brain regions which are sensitive to these chemicals. Prenatal/maternal factors linked to increased autism risk include valproic acid, thalidomide, alcohol, rubella, cytomegalovirus, depression, schizophrenia, obsessive-compulsive disorder, autoimmune disease, stress, allergic reaction, and hypothyroidism. It will be shown how each of these risk factors may initiate expression of genes which are sensitive to retinoic acid and/or estradiol - whether by direct promotion or by reducing production of alpha-fetoprotein. It is thus hypothesized here that autism is not a genetic disorder, but is rather an epigenetic disruption in brain development caused by gestational exposure to chemicals and/or conditions which either inhibit alpha-fetoprotein production or directly promote retinoic acid-sensitive or estradiol-sensitive gene expression. This causation model leads to potential chemical explanations for autistic brain morphology, the distinct symptomatology of Asperger's syndrome, and the differences between high-functioning and low-functioning autism with regard to mental retardation, physical malformation, and sex ratio. It will be discussed how folic acid may cause autism under the retinoic acid/estradiol model, and the history of prenatal folic acid supplementation will be shown to coincide with the history of what is popularly known as the autism epidemic. It is thus hypothesized here that prenatal folic acid supplementation has contributed to the

  17. Improving Conduct and Feasibility of Clinical Trials to Evaluate Antibacterial Drugs to Treat Hospital-Acquired Bacterial Pneumonia and Ventilator-Associated Bacterial Pneumonia: Recommendations of the Clinical Trials Transformation Initiative Antibacterial Drug Development Project Team.

    Science.gov (United States)

    Knirsch, Charles; Alemayehu, Demissie; Botgros, Radu; Comic-Savic, Sabrina; Friedland, David; Holland, Thomas L; Merchant, Kunal; Noel, Gary J; Pelfrene, Eric; Reith, Christina; Santiago, Jonas; Tiernan, Rosemary; Tenearts, Pamela; Goldsack, Jennifer C; Fowler, Vance G

    2016-08-15

    The etiology of hospital-acquired or ventilator-associated bacterial pneumonia (HABP/VABP) is often multidrug-resistant infections. The evaluation of new antibacterial drugs for efficacy in this population is important, as many antibacterial drugs have demonstrated limitations when studied in this population. HABP/VABP trials are expensive and challenging to conduct due to protocol complexity and low patient enrollment, among other factors. The Clinical Trials Transformation Initiative (CTTI) seeks to advance antibacterial drug development by streamlining HABP/VABP clinical trials to improve efficiency and feasibility while maintaining ethical rigor, patient safety, information value, and scientific validity. In 2013, CTTI engaged a multidisciplinary group of experts to discuss challenges impeding the conduct of HABP/VABP trials. Separate workstreams identified challenges associated with HABP/VABP protocol complexity. The Project Team developed potential solutions to streamline HABP/VABP trials using a Quality by Design approach. CTTI recommendations focus on 4 key areas to improve HABP/VABP trials: informed consent processes/practices, protocol design, choice of an institutional review board (IRB), and trial outcomes. Informed consent processes should include legally authorized representatives. Protocol design decisions should focus on eligibility criteria, prestudy antibacterial therapy considerations, use of new diagnostics, and sample size. CTTI recommends that sponsors use a central IRB and discuss trial endpoints with regulators, including defining a clinical failure and evaluating the impact of concomitant antibacterial drugs. Streamlining HABP/VABP trials by addressing key protocol elements can improve trial startup and patient recruitment/retention, reduce trial complexity and costs, and ensure patient safety while advancing antibacterial drug development. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of

  18. Streamlining Safety Data Collection in Hospital-Acquired Bacterial Pneumonia and Ventilator-Associated Bacterial Pneumonia Trials: Recommendations of the Clinical Trials Transformation Initiative Antibacterial Drug Development Project Team.

    Science.gov (United States)

    Donnelly, Helen; Alemayehu, Demissie; Botgros, Radu; Comic-Savic, Sabrina; Eisenstein, Barry; Lorenz, Benjamin; Merchant, Kunal; Pelfrene, Eric; Reith, Christina; Santiago, Jonas; Tiernan, Rosemary; Wunderink, Richard; Tenaerts, Pamela; Knirsch, Charles

    2016-08-15

    Resistant bacteria are one of the leading causes of hospital-acquired/ventilator-associated bacterial pneumonia (HABP/VABP). HABP/VABP trials are complex and difficult to conduct due to the large number of medical procedures, adverse events, and concomitant medications involved. Differences in the legislative frameworks between different regions of the world may also lead to excessive data collection. The Clinical Trials Transformation Initiative (CTTI) seeks to advance antibacterial drug development (ABDD) by streamlining clinical trials to improve efficiency and feasibility while maintaining ethical rigor, patient safety, information value, and scientific validity. In 2013, CTTI engaged a multidisciplinary group of experts to discuss challenges impeding the conduct of HABP/VABP trials. Separate workstreams identified challenges associated with current data collection processes. Experts defined "data collection" as the act of capturing and reporting certain data on the case report form as opposed to recording of data as part of routine clinical care. The ABDD Project Team developed strategies for streamlining safety data collection in HABP/VABP trials using a Quality by Design approach. Current safety data collection processes in HABP/VABP trials often include extraneous information. More targeted strategies for safety data collection in HABP/VABP trials will rely on optimal protocol design and prespecification of which safety data are essential to satisfy regulatory reporting requirements. A consensus and a cultural change in clinical trial design and conduct, which involve recognition of the need for more efficient data collection, are urgently needed to advance ABDD and to improve HABP/VABP trials in particular. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  19. A model for genesis of transcription systems.

    Science.gov (United States)

    Burton, Zachary F; Opron, Kristopher; Wei, Guowei; Geiger, James H

    2016-01-01

    Repeating sequences generated from RNA gene fusions/ligations dominate ancient life, indicating central importance of building structural complexity in evolving biological systems. A simple and coherent story of life on earth is told from tracking repeating motifs that generate α/β proteins, 2-double-Ψ-β-barrel (DPBB) type RNA polymerases (RNAPs), general transcription factors (GTFs), and promoters. A general rule that emerges is that biological complexity that arises through generation of repeats is often bounded by solubility and closure (i.e., to form a pseudo-dimer or a barrel). Because the first DNA genomes were replicated by DNA template-dependent RNA synthesis followed by RNA template-dependent DNA synthesis via reverse transcriptase, the first DNA replication origins were initially 2-DPBB type RNAP promoters. A simplifying model for evolution of promoters/replication origins via repetition of core promoter elements is proposed. The model can explain why Pribnow boxes in bacterial transcription (i.e., (-12)TATAATG(-6)) so closely resemble TATA boxes (i.e., (-31)TATAAAAG(-24)) in archaeal/eukaryotic transcription. The evolution of anchor DNA sequences in bacterial (i.e., (-35)TTGACA(-30)) and archaeal (BRE(up); BRE for TFB recognition element) promoters is potentially explained. The evolution of BRE(down) elements of archaeal promoters is potentially explained.

  20. Polycistronic transcription of fused cassettes and identification of translation initiation signals in an unusual gene cassette array from Pseudomonas aeruginosa [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Érica L. Fonseca

    2015-11-01

    Full Text Available The gene cassettes found in class 1 integrons are generally promoterless units composed by an open reading frame (ORF, a short 5’ untranslated region (UTR and a 3’ recombination site (attC. Fused gene cassettes are generated by partial or total loss of the attC from the first cassette in an array, creating, in some cases, a fusion with the ORF from the next cassette. These structures are rare and little is known about their mechanisms of mobilization and expression. The aim of this study was to evaluate the dynamic of mobilization and transcription of the gcu14-blaGES-1/aacA4 gene cassette array, which harbours a fused gene cassette represented by blaGES-1/aacA4. The cassette array was analyzed by Northern blot and real-time reverse transcription-polymerase chain reaction (RT-PCR in order to assess the transcription mechanism of blaGES-1/aacA4 fused cassette. Also, inverse polymerase chain reactions (PCR were performed to detect the free circular forms of gcu14, blaGES-1 and aacA4. The Northern blot and real time RT-PCR revealed a polycistronic transcription, in which the fused cassette blaGES-1/aacA4 is transcribed as a unique gene, while gcu14 (with a canonical attC recombination site has a monocistronic transcription. The gcu14 cassette, closer to the weak configuration of cassette promoter (PcW, had a higher transcription level than blaGES-1/aacA4, indicating that the cassette position affects the transcript amounts. The presence of ORF-11 at attI1, immediately preceding gcu14, and of a Shine-Dalgarno sequence upstream blaGES-1/aacA4 composes a scenario for the occurrence of array translation. Inverse PCR generated amplicons corresponding to gcu14, gcu14-aacA4 and gcu14-blaGES-1/aacA4 free circular forms, but not to blaGES-1 and aacA4 alone, indicating that the GES-1 truncated attC is not substrate of integrase activity and that these genes are mobilized together as a unique cassette. This study was original in showing the transcription

  1. Antisense transcription-dependent chromatin signature modulates sense transcript dynamics.

    Science.gov (United States)

    Brown, Thomas; Howe, Françoise S; Murray, Struan C; Wouters, Meredith; Lorenz, Philipp; Seward, Emily; Rata, Scott; Angel, Andrew; Mellor, Jane

    2018-02-12

    Antisense transcription is widespread in genomes. Despite large differences in gene size and architecture, we find that yeast and human genes share a unique, antisense transcription-associated chromatin signature. We asked whether this signature is related to a biological function for antisense transcription. Using quantitative RNA-FISH, we observed changes in sense transcript distributions in nuclei and cytoplasm as antisense transcript levels were altered. To determine the mechanistic differences underlying these distributions, we developed a mathematical framework describing transcription from initiation to transcript degradation. At GAL1 , high levels of antisense transcription alter sense transcription dynamics, reducing rates of transcript production and processing, while increasing transcript stability. This relationship with transcript stability is also observed as a genome-wide association. Establishing the antisense transcription-associated chromatin signature through disruption of the Set3C histone deacetylase activity is sufficient to similarly change these rates even in the absence of antisense transcription. Thus, antisense transcription alters sense transcription dynamics in a chromatin-dependent manner. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  2. An invertebrate signal transducer and activator of transcription 5 (STAT5) ortholog from the disk abalone, Haliotis discus discus: Genomic structure, early developmental expression, and immune responses to bacterial and viral stresses.

    Science.gov (United States)

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Park, Hae-Chul; Lee, Jehee

    2016-03-01

    Signal transducer and activator of transcription (STAT) family members are key signaling molecules that transduce cellular responses from the cell membrane to the nucleus upon Janus kinase (JAK) activation. Although seven STAT members have been reported in mammals, very limited information on STAT genes in molluscans is available. In this study, we identified and characterized a STAT paralog that is homologous to STAT5 from the disk abalone, Haliotis discus discus, and designated as AbSTAT5. Comparison of the deduced amino acid sequence for AbSTAT5 (790 amino acids) with other counterparts revealed conserved residues important for functions and typical domain regions, including the N-terminal domain, coiled-coil domain, DNA-binding domain, linker domain, and Src homology 2 (SH2) domains as mammalian counterparts. Analysis of STAT phylogeny revealed that AbSTAT5 was clustered with the molluscan subgroup in STAT5 clade with distinct evolution. According to the genomic structure of AbSTAT5, the coding sequence was distributed into 20 exons with 19 introns. Immunologically essential transcription factor-binding sites, such as GATA-1, HNF, SP1, C/EBP, Oct-1, AP1, c-Jun, and Sox-2, were predicted at the 5'-proximal region of AbSTAT5. Expression of AbSTAT5 mRNA was detected in different stages of embryonic development and observed at considerably higher levels in the morula and late veliger stages. Tissue-specific expressional studies revealed that the highest level of AbSTAT5 transcripts was detected in hemocytes, followed by gill tissues. Temporal expressions of AbSTAT5 were analyzed upon live bacterial (Vibrio parahemolyticus and Listeria monocytogenes), viral (viral hemorrhagic septicemia virus), and pathogen-associated molecular pattern (lipopolysaccharides and Poly I:C) stimulations, and significant elevations indicated immune modulation. These results suggest that AbSTAT5 may be involved in maintaining innate immune responses from developmental to adult stages in

  3. Bacterial Keratitis

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Bacterial Keratitis Sections What Is Bacterial Keratitis? Bacterial Keratitis Symptoms ... Lens Care Bacterial Keratitis Treatment What Is Bacterial Keratitis? Leer en Español: ¿Qué Es la Queratitis Bacteriana? ...

  4. C-terminal BRE overexpression in 11q23-rearranged and t(8;16) acute myeloid leukemia is caused by intragenic transcription initiation.

    Science.gov (United States)

    Marneth, A E; Prange, K H M; Al Hinai, A S A; Bergevoet, S M; Tesi, N; Janssen-Megens, E M; Kim, B; Sharifi, N; Yaspo, M L; Kuster, J; Sanders, M A; Stoetman, E C G; Knijnenburg, J; Arentsen-Peters, T C J M; Zwaan, C M; Stunnenberg, H G; van den Heuvel-Eibrink, M M; Haferlach, T; Fornerod, M; Jansen, J H; Valk, P J M; van der Reijden, B A; Martens, J H A

    2018-03-01

    Overexpression of the BRE (brain and reproductive organ-expressed) gene defines a distinct pediatric and adult acute myeloid leukemia (AML) subgroup. Here we identify a promoter enriched for active chromatin marks in BRE intron 4 causing strong biallelic expression of a previously unknown C-terminal BRE transcript. This transcript starts with BRE intron 4 sequences spliced to exon 5 and downstream sequences, and if translated might code for an N terminally truncated BRE protein. Remarkably, the new BRE transcript was highly expressed in over 50% of 11q23/KMT2A (lysine methyl transferase 2A)-rearranged and t(8;16)/KAT6A-CREBBP cases, while it was virtually absent from other AML subsets and normal tissues. In gene reporter assays, the leukemia-specific fusion protein KMT2A-MLLT3 transactivated the intragenic BRE promoter. Further epigenome analyses revealed 97 additional intragenic promoter marks frequently bound by KMT2A in AML with C-terminal BRE expression. The corresponding genes may be part of a context-dependent KMT2A-MLLT3-driven oncogenic program, because they were higher expressed in this AML subtype compared with other groups. C-terminal BRE might be an important contributor to this program because in a case with relapsed AML, we observed an ins(11;2) fusing CHORDC1 to BRE at the region where intragenic transcription starts in KMT2A-rearranged and KAT6A-CREBBP AML.

  5. The tRNA primer activation signal in the human immunodeficiency virus type 1 genome is important for initiation and processive elongation of reverse transcription

    NARCIS (Netherlands)

    Beerens, Nancy; Berkhout, Ben

    2002-01-01

    Human immunodeficiency virus type 1 (HIV-1) reverse transcription is primed by the cellular tRNA(3)(Lys) molecule, which binds, with its 3'-terminal 18 nucleotides (nt), to a complementary sequence in the viral genome, the primer-binding site (PBS). Besides PBS-anti-PBS pairing, additional

  6. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    International Nuclear Information System (INIS)

    Sahu, Geetaram; Farley, Kalamo; El-Hage, Nazira; Aiamkitsumrit, Benjamas; Fassnacht, Ryan; Kashanchi, Fatah; Ochem, Alex; Simon, Gary L.; Karn, Jonathan; Hauser, Kurt F.; Tyagi, Mudit

    2015-01-01

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. - Highlights: • Cocaine induces the initiation phase of HIV transcription by activating NF-ĸB. • Cocaine induced NF-ĸB phosphorylation promotes its interaction with P300. • Cocaine enhances the elongation phase of HIV transcription by stimulating MSK1. • Cocaine activated MSK1 catalyzes the phosphorylation of histone H3 at its Ser10. • Cocaine induced H3S10 phosphorylation facilitates the recruitment of P-TEFb at LTR

  7. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Geetaram; Farley, Kalamo [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); El-Hage, Nazira [Virginia Commonwealth University, Richmond, VA (United States); Aiamkitsumrit, Benjamas; Fassnacht, Ryan [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Kashanchi, Fatah [George Mason University, Manassas, VA (United States); Ochem, Alex [ICGEB, Wernher and Beit Building, Anzio Road, Observatory, 7925 Cape Town (South Africa); Simon, Gary L. [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Karn, Jonathan [Case Western Reserve University, Cleveland, OH (United States); Hauser, Kurt F. [Virginia Commonwealth University, Richmond, VA (United States); Tyagi, Mudit, E-mail: tmudit@email.gwu.edu [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037 (United States)

    2015-09-15

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. - Highlights: • Cocaine induces the initiation phase of HIV transcription by activating NF-ĸB. • Cocaine induced NF-ĸB phosphorylation promotes its interaction with P300. • Cocaine enhances the elongation phase of HIV transcription by stimulating MSK1. • Cocaine activated MSK1 catalyzes the phosphorylation of histone H3 at its Ser10. • Cocaine induced H3S10 phosphorylation facilitates the recruitment of P-TEFb at LTR.

  8. Transcription of the soybean leghemoglobin genes during nodule development

    DEFF Research Database (Denmark)

    Marcker, Anne; Lund, Marianne; Jensen, Erik Ø

    1984-01-01

    During the early stages of soybean nodule development the leghemoglobin (Lb) genes are activated sequentially in the opposite order to which they are arranged in the soybean genome. At a specific stage after the initial activation of all the Lb genes, a large increment occurs in the transcription...... of the Lb(c1), Lb(c3) and Lb(a) genes while the transcription of the Lb(c2) gene is not amplified to a similar extent. All the Lb genes retain significant activity for a long period during the lifetime of a nodule. Consequently the soybean Lb genes are not regulated by a developmental gene switching...... mechanism as is the case for vertebrate globin genes. Concomitantly with the increase in Lb gene transcription some of the other nodule specific plant genes are activated. These specific changes in the activities of the Lb and nodulin genes precede the activation of the bacterial nitrogenase gene. Thus...

  9. Deciphering Transcriptional Regulation

    DEFF Research Database (Denmark)

    Valen, Eivind

    RNA); and ii) translation, in which the mRNA is translated into a protein. This thesis focus on the ¿rst of these steps, transcription, and speci¿cally the initiation of this. Simpli¿ed, initiation is preceded by the binding of several proteins, known as transcription factors (TFs), to DNA. This takes place...... published providing an unbiased overview of the transcription start site (TSS) usage in a tissue. We have paired this method with high-throughput sequencing technology to produce a library of unprecedented depth (DeepCAGE) for the mouse hippocampus. We investigated this in detail and focused particularly...... control spanning the range from completely muted to cranked up to maximum. The volume, in this case, is the production rate of proteins. This production is the result of a two step procedure: i) transcription, in which a small part of DNA from the genome (a gene) is transcribed into an RNA molecule (an m...

  10. Novel forms of Paired-like homeodomain transcription factor 2 (PITX2): Generation by alternative translation initiation and mRNA splicing

    OpenAIRE

    Bernard Daniel J; Hjalt Tord A; Lamba Pankaj

    2008-01-01

    Abstract Background Members of the Paired-like homeodomain transcription factor (PITX) gene family, particularly PITX1 and PITX2, play important roles in normal development and in differentiated cell functions. Three major isoforms of PITX2 were previously reported to be produced through both alternative mRNA splicing (PITX2A and PITX2B) and alternative promoter usage (PITX2C). The proteins derived from these mRNAs contain identical homeodomain and carboxyl termini. Differences in the amino-t...

  11. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    Science.gov (United States)

    Sahu, Geetaram; Farley, Kalamo; El-Hage, Nazira; Aiamkitsumrit, Benjamas; Fassnacht, Ryan; Kashanchi, Fatah; Ochem, Alex; Simon, Gary L.; Karn, Jonathan; Hauser, Kurt F.; Tyagi, Mudit

    2015-01-01

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-κB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-κB at 276th serine residue. These modifications enhance the interaction of NF-κB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. PMID:25980739

  12. Sonic Hedgehog-GLI Family Zinc Finger 1 Signaling Pathway Promotes the Growth and Migration of Pancreatic Cancer Cells by Regulating the Transcription of Eukaryotic Translation Initiation Factor 5A2.

    Science.gov (United States)

    Xu, Xuanfu; Liu, Hua; Zhang, Hui; Dai, Weiqi; Guo, Chuanyong; Xie, Chuangao; Wei, Shumei; He, Shengli; Xu, Xiaorong

    2015-11-01

    The Hh (hedgehog) signaling pathway is still waiting for further studies because its downstream molecular mechanism remains elusive. Because EIF5A2 (eukaryotic translation initiation factor 5A2) gene was up-regulated upon Gli1 (GLI family zinc finger 1) in pancreatic cancer (PC) cells, we speculated that this pathway might promote tumor progression through regulating EIF5A2. We investigated regulation effect of Hh signaling pathway to EIF5A2 gene transcription by Gli1 knockdown or overexpression in PC cell lines first. Then, the regulation mechanism of Gli1 to EIF5A2 gene was studied at transcription level. Finally, we studied cancer-promoting effects of Gli1-dependent EIF5A2 in PC cells. The data showed that Gli1 up-regulated expression of EIF5A2 by promoting transcription via cis-acting elements in PC cells. Moreover, vimentin gene was up-regulated significantly by sonic hedgehog (SHh)/Gli1 expression increasing, and E-cadherin was significantly reduced. The EIF5A2 knockdown partially reversed cell proliferation and migration induced by artificial SHh overexpression and inhibited epithelial mesenchymal transition process in PC cells with SHh overexpression (P cells. Thus, EIF5A2 oncogene effect could be incorporated into cancer-promoting molecular network upon Hh signaling pathway.

  13. Pseudoalteromonas spp. Serve as Initial Bacterial Attractants in Mesocosms of Coastal Waters but Have Subsequent Antifouling Capacity in Mesocosms and when Embedded in Paint

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yin; Møller, Stefan

    2013-01-01

    . Larger fouling organisms were observed on all plates precoated with Pseudoalteromonas; however, plates coated only with sterile growth medium were dominated by a bacterial biofilm. Suspensions of a P. piscicida strain and a P. tunicata strain were incorporated into ship paints (Hempasil x3 87500......The purpose of the present study was to determine if the monoculture antifouling effect of several pigmented pseudoalteromonads was retained in in vitro mesocosm systems using natural coastal seawater and when the bacteria were embedded in paint used on surfaces submerged in coastal waters...... attachment when used to coat stainless steel surfaces and submerged in mesocosms with natural seawater. The bacterial density on surfaces coated with sterile growth medium was 105 cells/cm2 after 7 days, whereas counts on surfaces precoated with Pseudoalteromonas were significantly higher, at 106 to 108...

  14. HIV-1 transcripts use IRES-initiation under conditions where Cap-dependent translation is restricted by poliovirus 2A protease.

    Directory of Open Access Journals (Sweden)

    Raquel Amorim

    Full Text Available The 30 different species of mRNAs synthesized during the HIV-1 replication cycle are all capped and polyadenilated. Internal ribosome entry sites have been recognized in the 5' untranslated region of some mRNA species of HIV-1, which would contribute to an alternative mechanism of initiation of mRNA translation. However, the Cap-dependent translation is assumed to be the main mechanism driving the initiation of HIV-1 protein synthesis. In this work, we describe a cell system in which lower to higher levels of transient expression of the poliovirus 2A protease strongly inhibited cellular Cap-dependent translation with no toxic effect to the cells during a 72-hour time frame. In this system, the synthesis of HIV-1 proteins was inhibited in a temporal dose-dependent way. Higher levels of 2A protease expression severely inhibited HIV-1 protein synthesis during the first 24 hours of infection consequently inhibiting viral production and infectivity. Intermediate to lower levels of 2A Protease expression caused the inhibition of viral protein synthesis only during the first 48 hours of viral replication. After this period both protein synthesis and viral release were recovered to the control levels. However, the infectivity of viral progeny was still partially inhibited. These results indicate that two mechanisms of mRNA translation initiation contribute to the synthesis of HIV-1 proteins; during the first 24-48 hours of viral replication HIV-1 protein synthesis is strongly dependent on Cap-initiation, while at later time points IRES-driven translation initiation is sufficient to produce high amounts of viral particles.

  15. Transcriptional control of t lymphocyte differentiation

    NARCIS (Netherlands)

    F.J.T. Staal (Frank); F. Weerkamp (Floor); A.W. Langerak (Anton); R.W. Hendriks (Rudi); H.C. Clevers (Hans)

    2001-01-01

    textabstractInitiation of gene transcription by transcription factors (TFs) is an important regulatory step in many developmental processes. The differentiation of T cell progenitors in the thymus is tightly controlled by signaling molecules, ultimately activating

  16. Comparison of probabilistic approaches to estimate the initial bacterial levels as a start in exposure assessment: Escherichia coli O157:H7 in beef as an example

    NARCIS (Netherlands)

    Hoornstra, E.; Telman, J.

    2008-01-01

    The initial contamination of food products with pathogens is an important risk factor in microbial risk assessments. This factor contains variability and uncertainty that can be calculated from various available monitoring results. When performing dedicated quantitative risk assessments, different

  17. The Translation Initiation Factor 1A (TheIF1A) fromTamarix hispidaIs Regulated by a Dof Transcription Factor and Increased Abiotic Stress Tolerance.

    Science.gov (United States)

    Yang, Guiyan; Yu, Lili; Wang, Yucheng; Wang, Chao; Gao, Caiqiu

    2017-01-01

    Eukaryotic translation initiation factor 1A ( eIF1A ) functions as an mRNA scanner and AUG initiation codon locator. However, few studies have clarified the role of eIF1A in abiotic stress. In this study, we cloned eIF1A ( TheIF1A ) from Tamarix hispida and found its expression to be induced by NaCl and polyethylene glycol (PEG) in roots, stems, and leaves. Compared to control, TheIF1A root expression was increased 187.63-fold when exposed to NaCl for 6 h, suggesting a potential abiotic stress response for this gene. Furthermore, transgenic tobacco plants overexpressing TheIF1A exhibited enhanced seed germination and a higher total chlorophyll content under salt and mannitol stresses. Increased superoxide dismutase, peroxidase, glutathione transferase and glutathione peroxidase activities, as well as decreased electrolyte leakage rates and malondialdehyde contents, were observed in TheIF1A -transgenic tobacco and T. hispida seedlings under salt and mannitol stresses. Histochemical staining suggested that TheIF1A improves reactive oxygen species (ROS) scavenging in plants. Moreover, TheIF1A may regulate expression of stress-related genes, including TOBLTP , GST , MnSOD , NtMPK9 , poxN1 , and CDPK15 . Moreover, a 1352-bp promoter fragment of TheIF1A was isolated, and cis -elements were identified. Yeast one-hybrid assays showed that ThDof can specifically bind to the Dof motif present in the promoter. In addition, ThDof showed expression patterns similar to those of TheIF1A under NaCl and PEG stresses. These findings suggest the potential mechanism and physiological roles of TheIF1A . ThDof may be an upstream regulator of TheIF1A , and TheIF1A may function as a stress response regulator to improve plant salt and osmotic stress tolerance via regulation of associated enzymes and ROS scavenging, thereby reducing cell damage under stress conditions.

  18. BACTERIAL PLASMIDS

    Directory of Open Access Journals (Sweden)

    Marina Dinic

    2007-12-01

    Full Text Available Plasmids, extrachromosomal DNA, were identified in bacteria pertaining to family of Enterobacteriacae for the very first time. After that, they were discovered in almost every single observed strain. The structure of plasmids is made of circular double chain DNA molecules which are replicated autonomously in a host cell. Their length may vary from few up to several hundred kilobase (kb. Among the bacteria, plasmids are mostly transferred horizontally by conjugation process. Plasmid replication process can be divided into three stages: initiation, elongation, and termination. The process involves DNA helicase I, DNA gyrase, DNA polymerase III, endonuclease, and ligase.Plasmids contain genes essential for plasmid function and their preservation in a host cell (the beginning and the control of replication. Some of them possess genes whichcontrol plasmid stability. There is a common opinion that plasmids are unnecessary fora growth of bacterial population and their vital functions; thus, in many cases they can be taken up or kicked out with no lethal effects to a plasmid host cell. However,there are numerous biological functions of bacteria related to plasmids. Plasmids identification and classification are based upon their genetic features which are presented permanently in all of them, and these are: abilities to preserve themselves in a host cell and to control a replication process. In this way, plasmids classification among incompatibility groups is performed. The method of replicon typing, which is based on genotype and not on phenotype characteristics, has the same results as in compatibility grouping.

  19. Bacterial Proteasomes.

    Science.gov (United States)

    Jastrab, Jordan B; Darwin, K Heran

    2015-01-01

    Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology.

  20. Bacterial adhesion

    NARCIS (Netherlands)

    Loosdrecht, van M.C.M.

    1988-01-01

    As mentioned in the introduction of this thesis bacterial adhesion has been studied from a variety of (mostly practice oriented) starting points. This has resulted in a range of widely divergent approaches. In order to elucidate general principles in bacterial adhesion phenomena, we felt it

  1. Synthetic Transcription Amplifier System for Orthogonal Control of Gene Expression in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Anssi Rantasalo

    Full Text Available This work describes the development and characterization of a modular synthetic expression system that provides a broad range of adjustable and predictable expression levels in S. cerevisiae. The system works as a fixed-gain transcription amplifier, where the input signal is transferred via a synthetic transcription factor (sTF onto a synthetic promoter, containing a defined core promoter, generating a transcription output signal. The system activation is based on the bacterial LexA-DNA-binding domain, a set of modified, modular LexA-binding sites and a selection of transcription activation domains. We show both experimentally and computationally that the tuning of the system is achieved through the selection of three separate modules, each of which enables an adjustable output signal: 1 the transcription-activation domain of the sTF, 2 the binding-site modules in the output promoter, and 3 the core promoter modules which define the transcription initiation site in the output promoter. The system has a novel bidirectional architecture that enables generation of compact, yet versatile expression modules for multiple genes with highly diversified expression levels ranging from negligible to very strong using one synthetic transcription factor. In contrast to most existing modular gene expression regulation systems, the present system is independent from externally added compounds. Furthermore, the established system was minimally affected by the several tested growth conditions. These features suggest that it can be highly useful in large scale biotechnology applications.

  2. Bacterial Vaginosis

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... of getting other STDs, such as chlamydia and gonorrhea . These bacteria can sometimes cause pelvic inflammatory disease ( ...

  3. Base Flipping in Open Complex Formation at Bacterial Promoters

    Directory of Open Access Journals (Sweden)

    Mary E. Karpen

    2015-04-01

    Full Text Available In the process of transcription initiation, the bacterial RNA polymerase binds double-stranded (ds promoter DNA and subsequently effects strand separation of 12 to 14 base pairs (bp, including the start site of transcription, to form the so-called “open complex” (also referred to as RPo. This complex is competent to initiate RNA synthesis. Here we will review the role of σ70 and its homologs in the strand separation process, and evidence that strand separation is initiated at the −11A (the A of the non-template strand that is 11 bp upstream from the transcription start site of the promoter. By using the fluorescent adenine analog, 2-aminopurine, it was demonstrated that the −11A on the non-template strand flips out of the DNA helix and into a hydrophobic pocket where it stacks with tyrosine 430 of σ70. Open complexes are remarkably stable, even though in vivo, and under most experimental conditions in vitro, dsDNA is much more stable than its strand-separated form. Subsequent structural studies of other researchers have confirmed that in the open complex the −11A has flipped into a hydrophobic pocket of σ70. It was also revealed that RPo was stabilized by three additional bases of the non-template strand being flipped out of the helix and into hydrophobic pockets, further preventing re-annealing of the two complementary DNA strands.

  4. Transcriptional regulators of legume-rhizobia symbiosis: nuclear factors Ys and GRAS are two for tango.

    Science.gov (United States)

    Rípodas, Carolina; Clúa, Joaquín; Battaglia, Marina; Baudin, Maël; Niebel, Andreas; Zanetti, María Eugenia; Blanco, Flavio

    2014-01-01

    Transcription factors are DNA binding proteins that regulate gene expression. The nitrogen fixing symbiosis established between legume plants and soil bacteria is a complex interaction, in which plants need to integrate signals derived from the symbiont and the surrounding environment to initiate the developmental program of nodule organogenesis and the infection process. Several transcription factors that play critical roles in these processes have been reported in the past decade, including proteins of the GRAS and NF-Y families. Recently, we reported the characterization of a new GRAS domain containing-protein that interacts with a member of the C subunit of the NF-Y family, which plays an important role in nodule development and the progression of bacterial infection during the symbiotic interaction. The connection between transcription factors of these families highlights the significance of multimeric complexes in the fabulous capacity of plants to integrate and respond to multiple environmental stimuli.

  5. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, C.N.; Worton, R.G. [Univ. of Toronto and the Hospital for Sick Children, Ontario (Canada)

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  6. NMR structure of the chimeric hybrid duplex r(gcaguggc).r(gcca)d(CTGC) comprising the tRNA-DNA junction formed during initiation of HIV-1 reverse transcription

    International Nuclear Information System (INIS)

    Szyperski, Thomas; Goette, Matthias; Billeter, Martin; Perola, Emanuele; Cellai, Luciano; Heumann, Hermann; Wuethrich, Kurt

    1999-01-01

    A high-quality NMR solution structure of the chimeric hybrid duplex r(gcaguggc).r(gcca)d(CTGC) was determined using the program DYANA with its recently implemented new module FOUND, which performs exhaustive conformational grid searches for dinucleotides. To ensure conservative data interpretation, the use of 1H-1H lower distance limit constraints was avoided. The duplex comprises the tRNA-DNA junction formed during the initiation of HIV-1 reverse transcription. It forms an A-type double helix that exhibits distinct structural deviations from a standard A-conformation. In particular, the minor groove is remarkably narrow, and its width decreases from about 7.5 A in the RNA/RNA stem to about 4.5 A in the RNA/DNA segment. This is unexpected, since minor groove widths for A-RNA and RNA/DNA hybrid duplexes of ∼11 A and ∼8.5 A, respectively, were previously reported. The present, new structure supports that reverse transcriptase-associated RNaseH specificity is related primarily to conformational adaptability of the nucleic acid in 'induced-fit'-type interactions, rather than the minor groove width of a predominantly static nucleic acid duplex

  7. A transcript cleavage factor of Mycobacterium tuberculosis important for its survival.

    Directory of Open Access Journals (Sweden)

    Arnab China

    Full Text Available After initiation of transcription, a number of proteins participate during elongation and termination modifying the properties of the RNA polymerase (RNAP. Gre factors are one such group conserved across bacteria. They regulate transcription by projecting their N-terminal coiled-coil domain into the active center of RNAP through the secondary channel and stimulating hydrolysis of the newly synthesized RNA in backtracked elongation complexes. Rv1080c is a putative gre factor (MtbGre in the genome of Mycobacterium tuberculosis. The protein enhanced the efficiency of promoter clearance by lowering abortive transcription and also rescued arrested and paused elongation complexes on the GC rich mycobacterial template. Although MtbGre is similar in domain organization and shares key residues for catalysis and RNAP interaction with the Gre factors of Escherichia coli, it could not complement an E. coli gre deficient strain. Moreover, MtbGre failed to rescue E. coli RNAP stalled elongation complexes, indicating the importance of specific protein-protein interactions for transcript cleavage. Decrease in the level of MtbGre reduced the bacterial survival by several fold indicating its essential role in mycobacteria. Another Gre homolog, Rv3788 was not functional in transcript cleavage activity indicating that a single Gre is sufficient for efficient transcription of the M. tuberculosis genome.

  8. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  9. Disease notes - Bacterial root rot

    Science.gov (United States)

    Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...

  10. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...

  11. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation,

  12. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    , the production and oxidation of methane, nitrate reduction and fixation of atmospheric nitrogen are exclusively carried out by different groups of bacteria. Some bacterial species – ‘extremophiles’ – thrive in extreme environments in which no eukaryotic organisms can survive with respect to temperature, salinity...

  13. Bacterial Vaginosis

    Science.gov (United States)

    ... that coats the walls of the vagina Vaginal discharge with an unpleasant or fishlike odor Vaginal pain or itching Burning during urination Doctors are unsure of the incubation period for bacterial vaginosis. How Is the Diagnosis Made? Your child’s pediatrician can make the diagnosis ...

  14. Bacterial stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Bacterial stress. Physicochemical and chemical parameters: temperature, pressure, pH, salt concentration, oxygen, irradiation. Nutritional depravation: nutrient starvation, water shortage. Toxic compounds: Antibiotics, heavy metals, toxins, mutagens. Interactions with other cells: ...

  15. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    reduce or delay bacterial biofilm formation of a range of urinary tract infectious E.coli and Klebsiella isolates. Several other proteinaceous coatings were also found to display anti-adhesive properties, possibly providing a measure for controlling the colonization of implant materials. Several other...... components. These substances may both mediate and stabilize the bacterial biofilm. Finally, several adhesive structures were examined, and a novel physiological biofilm phenotype in E.coli biofilms was characterized, namely cell chain formation. The autotransporter protein, antigen 43, was implicated...

  16. Bacterial lipases

    OpenAIRE

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, meaning a sharp increase in lipase activity observed when the substrate starts to form an emulsion, thereby presenting to the enzyme an interfacial area. As a consequence, the kinetics of a lipase rea...

  17. Effect of immediate initiation of antiretroviral therapy on risk of severe bacterial infections in HIV-positive people with CD4 cell counts of more than 500 cells per μL

    DEFF Research Database (Denmark)

    O'Connor, Jemma L; Vjecha, Michael J; Phillips, Andrew N

    2017-01-01

    =0·52). These results were consistent when subgroups of the severe bacterial infection composite were analysed separately. INTERPRETATION: Immediate ART reduces the risk of several severe bacterial infections in HIV-positive people with high CD4 cell count. This is partly explained by ART...

  18. Structural insights into transcription complexes

    NARCIS (Netherlands)

    Berger, I.; Blanco, A.G.; Boelens, R.; Cavarelli, J.; Coll, M.; Folkers, G.E.; Nie, Y.; Pogenberg, V.; Schultz, P.; Wilmanns, M.; Moras, D.; Poterszman, A.

    2011-01-01

    Control of transcription allows the regulation of cell activity in response to external stimuli and research in the field has greatly benefited from efforts in structural biology. In this review, based on specific examples from the European SPINE2-COMPLEXES initiative, we illustrate the impact of

  19. Bacterial mitosis

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Borch, Jonas; Dam, Mette

    2003-01-01

    Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system...... movement is powered by insertional polymerization of ParM. Consistently, we find that segregating plasmids are positioned at the ends of extending ParM filaments. Thus, the process of R1 plasmid segregation in E. coli appears to be mechanistically analogous to the actin-based motility operating...

  20. Genome-wide effects of selenium and translational uncoupling on transcription in the termite gut symbiont Treponema primitia.

    Science.gov (United States)

    Matson, Eric G; Rosenthal, Adam Z; Zhang, Xinning; Leadbetter, Jared R

    2013-11-12

    When prokaryotic cells acquire mutations, encounter translation-inhibiting substances, or experience adverse environmental conditions that limit their ability to synthesize proteins, transcription can become uncoupled from translation. Such uncoupling is known to suppress transcription of protein-encoding genes in bacteria. Here we show that the trace element selenium controls transcription of the gene for the selenocysteine-utilizing enzyme formate dehydrogenase (fdhFSec) through a translation-coupled mechanism in the termite gut symbiont Treponema primitia, a member of the bacterial phylum Spirochaetes. We also evaluated changes in genome-wide transcriptional patterns caused by selenium limitation and by generally uncoupling translation from transcription via antibiotic-mediated inhibition of protein synthesis. We observed that inhibiting protein synthesis in T. primitia influences transcriptional patterns in unexpected ways. In addition to suppressing transcription of certain genes, the expected consequence of inhibiting protein synthesis, we found numerous examples in which transcription of genes and operons is truncated far downstream from putative promoters, is unchanged, or is even stimulated overall. These results indicate that gene regulation in bacteria allows for specific post-initiation transcriptional responses during periods of limited protein synthesis, which may depend both on translational coupling and on unclassified intrinsic elements of protein-encoding genes. A large body of literature demonstrates that the coupling of transcription and translation is a general and essential method by which bacteria regulate gene expression levels. However, the potential role of noncanonical amino acids in regulating transcriptional output via translational control remains, for the most part, undefined. Furthermore, the genome-wide transcriptional state in response to translational decoupling is not well quantified. The results presented here suggest that the

  1. Characterization of BRCA2 Transcriptional Regulation

    National Research Council Canada - National Science Library

    Couch, Fergus

    1998-01-01

    .... Initially, reagents for transcriptional studies were generated. The promoter was cloned into luciferase reporter vectors, and expression constructs of BRCA2, BRCA1, p53, p21, p27 and a number of other cell cycle regulating genes were generated...

  2. Expression of BCR-ABL, E2A-PBX1, and MLL-AF4 fusion transcripts in newly diagnosed children with acute lymphoblastic leukemia: a Children's Cancer Group initiative.

    Science.gov (United States)

    Gaynon, P S; Crotty, M L; Sather, H N; Bostrom, B C; Nachman, J B; Steinherz, P G; Heerema, N A; Sarquis, M; Tuel-Ahlgren, L; Uckun, F M

    1997-06-01

    We used reverse transcriptase polymerase chain reaction (RT-PCR) assays to examine primary leukemic cells in on-study diagnostic bone marrow specimens from 642 children with newly diagnosed acute lymphoblastic leukemia (ALL) for the expression of MLL-AF4, E2A-PBX1, and BCR-ABL fusion transcripts. All PCR assays were performed centrally in the Children's Cancer Group ALL Biology Reference Laboratory. MLL-AF4 transcript was found in only 0.7% of the study population which excluded infants. E2A-PBX1 transcript was found in 2.5% of the study population and 3.3% of B-precursor cases. Expression was associated with massive hepatomegaly. BCR-ABL transcript was found in 2.3% of cases and correlated with older age, induction failure, and inferior event-free survival (EFS). RT-PCR assays allow rapid identification of patients with MLL-AF4 and BCR-ABL positive ALL. These patients have a poor outcome with contemporary therapy and rapid identification facilitates timely allocation to innovative treatment programs.

  3. Theoretical analysis of transcription process with polymerase stalling

    Science.gov (United States)

    Li, Jingwei; Zhang, Yunxin

    2015-05-01

    Experimental evidence shows that in gene transcription RNA polymerase has the possibility to be stalled at a certain position of the transcription template. This may be due to the template damage or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the effective transcription rate (the rate to synthesize correct product mRNA) and the transcription effectiveness (the ratio of the effective transcription rate to the effective transcription initiation rate) are both influenced by polymerase stalling events. So far, no theoretical model has been given to discuss the gene transcription process including polymerase stalling. In this study, based on the totally asymmetric simple exclusion process, the transcription process including polymerase stalling is analyzed theoretically. The dependence of the effective transcription rate, effective transcription initiation rate, and transcription effectiveness on the transcription initiation rate, termination rate, as well as the backtracking rate, bypass rate, and detachment (degradation) rate when stalling, are discussed in detail. The results showed that backtracking restart after polymerase stalling is an ideal mechanism to increase both the effective transcription rate and the transcription effectiveness. Without backtracking, detachment of stalled polymerase can also help to increase the effective transcription rate and transcription effectiveness. Generally, the increase of the bypass rate of the stalled polymerase will lead to the decrease of the effective transcription rate and transcription effectiveness. However, when both detachment rate and backtracking rate of the stalled polymerase vanish, the effective transcription rate may also be increased by the bypass mechanism.

  4. Bacterial biofilms: prokaryotic adventures in multicellularity

    DEFF Research Database (Denmark)

    Webb, J.S.; Givskov, Michael Christian; Kjelleberg, S.

    2003-01-01

    The development of bacterial biofilms includes both the initial social behavior of undifferentiated cells, as well as cell death and differentiation in the mature biofilm, and displays several striking similarities with higher organisms. Recent advances in the field provide new insight...... into differentiation and cell death events in bacterial biofilm development and propose that biofilms have an unexpected level of multicellularity....

  5. Transcription of the T4 late genes

    OpenAIRE

    Geiduschek, E Peter; Kassavetis, George A

    2010-01-01

    Abstract This article reviews the current state of understanding of the regulated transcription of the bacteriophage T4 late genes, with a focus on the underlying biochemical mechanisms, which turn out to be unique to the T4-related family of phages or significantly different from other bacterial systems. The activator of T4 late transcription is the gene 45 protein (gp45), the sliding clamp of the T4 replisome. Gp45 becomes topologically linked to DNA through the action of its clamp-loader, ...

  6. Identification of a Transcription Factor That Regulates Host Cell Exit and Virulence of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Lalitha Srinivasan

    2016-05-01

    Full Text Available The interaction of Mycobacterium tuberculosis (Mtb with host cell death signaling pathways is characterized by an initial anti-apoptotic phase followed by a pro-necrotic phase to allow for host cell exit of the bacteria. The bacterial modulators regulating necrosis induction are poorly understood. Here we describe the identification of a transcriptional repressor, Rv3167c responsible for regulating the escape of Mtb from the phagosome. Increased cytosolic localization of MtbΔRv3167c was accompanied by elevated levels of mitochondrial reactive oxygen species and reduced activation of the protein kinase Akt, and these events were critical for the induction of host cell necrosis and macroautophagy. The increase in necrosis led to an increase in bacterial virulence as reflected in higher bacterial burden and reduced survival of mice infected with MtbΔRv3167c. The regulon of Rv3167c thus contains the bacterial mediators involved in escape from the phagosome and host cell necrosis induction, both of which are crucial steps in the intracellular lifecycle and virulence of Mtb.

  7. Theory of site-specific interactions of the combinatorial transcription factors with DNA

    International Nuclear Information System (INIS)

    Murugan, R

    2010-01-01

    We derive a functional relationship between the mean first passage time associated with the concurrent binding of multiple transcription factors (TFs) at their respective combinatorial cis-regulatory module sites (CRMs) and the number n of TFs involved in the regulation of the initiation of transcription of a gene of interest. Our results suggest that the overall search time τ s that is required by the n TFs to locate their CRMs which are all located on the same DNA chain scales with n as τ s ∼n α where α ∼ (2/5). When the jump size k that is associated with the dynamics of all the n TFs along DNA is higher than that of the critical jump size k c that scales with the size of DNA N as k c ∼ N 2/3 , we observe a similar power law scaling relationship and also the exponent α. When k c , α shows a strong dependence on both n and k. Apparently there is a critical number of combinatorial TFs n c ∼ 20 that is required to efficiently regulate the initiation of transcription of a given gene below which (2/5) 1. These results seem to be independent of the initial distances between the TFs and their corresponding CRMs and also suggest that the maximum number of TFs involved in a given combinatorial regulation of the initiation of transcription of a gene of interest seems to be restricted by the degree of condensation of the genomic DNA. The optimum number m opt of roadblock protein molecules per genome at which the search time associated with these n TFs to locate their binding sites is a minimum seems to scale as m opt ∼Ln α/2 where L is the sliding length of TFs whose maximum value seems to be such that L ≤ 10 4 bps for the E. coli bacterial genome.

  8. Euglena Transcript Processing.

    Science.gov (United States)

    McWatters, David C; Russell, Anthony G

    2017-01-01

    RNA transcript processing is an important stage in the gene expression pathway of all organisms and is subject to various mechanisms of control that influence the final levels of gene products. RNA processing involves events such as nuclease-mediated cleavage, removal of intervening sequences referred to as introns and modifications to RNA structure (nucleoside modification and editing). In Euglena, RNA transcript processing was initially examined in chloroplasts because of historical interest in the secondary endosymbiotic origin of this organelle in this organism. More recent efforts to examine mitochondrial genome structure and RNA maturation have been stimulated by the discovery of unusual processing pathways in other Euglenozoans such as kinetoplastids and diplonemids. Eukaryotes containing large genomes are now known to typically contain large collections of introns and regulatory RNAs involved in RNA processing events, and Euglena gracilis in particular has a relatively large genome for a protist. Studies examining the structure of nuclear genes and the mechanisms involved in nuclear RNA processing have revealed that indeed Euglena contains large numbers of introns in the limited set of genes so far examined and also possesses large numbers of specific classes of regulatory and processing RNAs, such as small nucleolar RNAs (snoRNAs). Most interestingly, these studies have also revealed that Euglena possesses novel processing pathways generating highly fragmented cytosolic ribosomal RNAs and subunits and non-conventional intron classes removed by unknown splicing mechanisms. This unexpected diversity in RNA processing pathways emphasizes the importance of identifying the components involved in these processing mechanisms and their evolutionary emergence in Euglena species.

  9. Initiation of protein synthesis in bacteria

    DEFF Research Database (Denmark)

    Laursen, Brian Søgaard; Sørensen, Hans Peter; Mortensen, Kim Kusk

    2005-01-01

    Valuable information on translation initiation is available from biochemical data and recently solved structures. We present a detailed description of current knowledge about the structure, function, and interactions of the individual components involved in bacterial translation initiation. The f...

  10. HIV-1 reverse transcription.

    Science.gov (United States)

    Hu, Wei-Shau; Hughes, Stephen H

    2012-10-01

    Reverse transcription and integration are the defining features of the Retroviridae; the common name "retrovirus" derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral factors that can affect reverse transcription, and discusses fidelity and recombination, two processes in which reverse transcription plays an important role. In keeping with the theme of the collection, the emphasis is on HIV-1 and HIV-1 RT.

  11. Genomic and chromatin signals underlying transcription start-site selection

    DEFF Research Database (Denmark)

    Valen, Eivind; Sandelin, Albin Gustav

    2011-01-01

    A central question in cellular biology is how the cell regulates transcription and discerns when and where to initiate it. Locating transcription start sites (TSSs), the signals that specify them, and ultimately elucidating the mechanisms of regulated initiation has therefore been a recurrent the...

  12. Bacterial subversion of host innate immune pathways.

    Science.gov (United States)

    Baxt, Leigh A; Garza-Mayers, Anna Cristina; Goldberg, Marcia B

    2013-05-10

    The pathogenesis of infection is a continuously evolving battle between the human host and the infecting microbe. The past decade has brought a burst of insights into the molecular mechanisms of innate immune responses to bacterial pathogens. In parallel, multiple specific mechanisms by which microorganisms subvert these host responses have been uncovered. This Review highlights recently characterized mechanisms by which bacterial pathogens avoid killing by innate host responses, including autophagy pathways and a proinflammatory cytokine transcriptional response, and by the manipulation of vesicular trafficking to avoid the toxicity of lysosomal enzymes.

  13. Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis Shows that WhiB Is a Transcription Factor That Cocontrols Its Regulon with WhiA To Initiate Developmental Cell Division in Streptomyces

    Directory of Open Access Journals (Sweden)

    Matthew J. Bush

    2016-04-01

    Full Text Available WhiB is the founding member of a family of proteins (the WhiB-like [Wbl] family that carry a [4Fe-4S] iron-sulfur cluster and play key roles in diverse aspects of the biology of actinomycetes, including pathogenesis, antibiotic resistance, and the control of development. In Streptomyces, WhiB is essential for the process of developmentally controlled cell division that leads to sporulation. The biochemical function of Wbl proteins has been controversial; here, we set out to determine unambiguously if WhiB functions as a transcription factor using chromatin immunoprecipitation sequencing (ChIP-seq in Streptomyces venezuelae. In the first demonstration of in vivo genome-wide Wbl binding, we showed that WhiB regulates the expression of key genes required for sporulation by binding upstream of ~240 transcription units. Strikingly, the WhiB regulon is identical to the previously characterized WhiA regulon, providing an explanation for the identical phenotypes of whiA and whiB mutants. Using ChIP-seq, we demonstrated that in vivo DNA binding by WhiA depends on WhiB and vice versa, showing that WhiA and WhiB function cooperatively to control expression of a common set of WhiAB target genes. Finally, we show that mutation of the cysteine residues that coordinate the [4Fe-4S] cluster in WhiB prevents DNA binding by both WhiB and WhiA in vivo.

  14. Transcription control engineering and applications in synthetic biology

    Directory of Open Access Journals (Sweden)

    Michael D. Engstrom

    2017-09-01

    Full Text Available In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein, a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors, giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  15. Transcription control engineering and applications in synthetic biology.

    Science.gov (United States)

    Engstrom, Michael D; Pfleger, Brian F

    2017-09-01

    In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators ( cis -factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators ( trans- factors), giving examples of how cis- and trans -acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli , we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  16. HIV-1 Reverse Transcription

    OpenAIRE

    Hu, Wei-Shau; Hughes, Stephen H.

    2012-01-01

    Reverse transcription and integration are the defining features of the Retroviridae; the common name “retrovirus” derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral fact...

  17. Transcription of the T4 late genes

    Directory of Open Access Journals (Sweden)

    Kassavetis George A

    2010-10-01

    Full Text Available Abstract This article reviews the current state of understanding of the regulated transcription of the bacteriophage T4 late genes, with a focus on the underlying biochemical mechanisms, which turn out to be unique to the T4-related family of phages or significantly different from other bacterial systems. The activator of T4 late transcription is the gene 45 protein (gp45, the sliding clamp of the T4 replisome. Gp45 becomes topologically linked to DNA through the action of its clamp-loader, but it is not site-specifically DNA-bound, as other transcriptional activators are. Gp45 facilitates RNA polymerase recruitment to late promoters by interacting with two phage-encoded polymerase subunits: gp33, the co-activator of T4 late transcription; and gp55, the T4 late promoter recognition protein. The emphasis of this account is on the sites and mechanisms of actions of these three proteins, and on their roles in the formation of transcription-ready open T4 late promoter complexes.

  18. The Transcription Factor Encyclopedia

    NARCIS (Netherlands)

    Yusuf, Dimas; Butland, Stefanie L.; Swanson, Magdalena I.; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A.; Zhang, Xiao Yu Cindy; Dickman, Christopher T. D.; Fulton, Debra L.; Lim, Jonathan S.; Schnabl, Jake M.; Ramos, Oscar H. P.; Vasseur-Cognet, Mireille; de Leeuw, Charles N.; Simpson, Elizabeth M.; Ryffel, Gerhart U.; Lam, Eric W.-F.; Kist, Ralf; Wilson, Miranda S. C.; Marco-Ferreres, Raquel; Brosens, Jan J.; Beccari, Leonardo L.; Bovolenta, Paola; Benayoun, Bérénice A.; Monteiro, Lara J.; Schwenen, Helma D. C.; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A.; Chakravarthy, Harini; Hoodless, Pamela A.; Mancarelli, M. Michela; Torbett, Bruce E.; Banham, Alison H.; Reddy, Sekhar P.; Cullum, Rebecca L.; Liedtke, Michaela; Tschan, Mario P.; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J.; Eijkelenboom, Astrid; Brown, Philip J.; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L.; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H.; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J.; van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W. Z.; Breslin, Mary B.; Lan, Michael S.; Nanan, Kyster K.; Wegner, Michael; Hou, Juan; Mullen, Rachel D.; Colvin, Stephanie C.; Noy, Peter John; Webb, Carol F.; Witek, Matthew E.; Ferrell, Scott; Daniel, Juliet M.; Park, Jason; Waldman, Scott A.; Peet, Daniel J.; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J.; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M.; Woodcroft, Mark W.; Hough, Margaret R.; Chen, Edwin; Europe-Finner, G. Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; Lebrun, David P.; Biswal, Shyam; Harvey, Christopher J.; Debruyne, Jason P.; Hogenesch, John B.; Hevner, Robert F.; Héligon, Christophe; Luo, Xin M.; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S.; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M.; Bradley, Philip H.; Wasserman, Wyeth W.

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review

  19. The transcriptional landscape

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    The application of new and less biased methods to study the transcriptional output from genomes, such as tiling arrays and deep sequencing, has revealed that most of the genome is transcribed and that there is substantial overlap of transcripts derived from the two strands of DNA. In protein codi...

  20. Mechanical Properties of Transcription

    Science.gov (United States)

    Sevier, Stuart A.; Levine, Herbert

    2017-06-01

    The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.

  1. Gene transcription analysis during interaction between potato and Ralstonia solanacearum

    NARCIS (Netherlands)

    Li, G.C.; Jin, L.P.; Wang, X.W.; Xie, K.Y.; Yang, Y.; Vossen, van der E.A.G.; Huang, S.W.; Qu, D.Y.

    2010-01-01

    Bacterial wilt (BW) caused by Ralstonia solanacearum (Rs) is an important quarantine disease that spreads worldwide and infects hundreds of plant species. The BW defense response of potato is a complicated continuous process, which involves transcription of a battery of genes. The molecular

  2. Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection.

    Directory of Open Access Journals (Sweden)

    Kyle H Rohde

    Full Text Available Intracellular pathogens such as Mycobacterium tuberculosis have evolved strategies for coping with the pressures encountered inside host cells. The ability to coordinate global gene expression in response to environmental and internal cues is one key to their success. Prolonged survival and replication within macrophages, a key virulence trait of M. tuberculosis, requires dynamic adaptation to diverse and changing conditions within its phagosomal niche. However, the physiological adaptations during the different phases of this infection process remain poorly understood. To address this knowledge gap, we have developed a multi-tiered approach to define the temporal patterns of gene expression in M. tuberculosis in a macrophage infection model that extends from infection, through intracellular adaptation, to the establishment of a productive infection. Using a clock plasmid to measure intracellular replication and death rates over a 14-day infection and electron microscopy to define bacterial integrity, we observed an initial period of rapid replication coupled with a high death rate. This was followed by period of slowed growth and enhanced intracellular survival, leading finally to an extended period of net growth. The transcriptional profiles of M. tuberculosis reflect these physiological transitions as the bacterium adapts to conditions within its host cell. Finally, analysis with a Transcriptional Regulatory Network model revealed linked genetic networks whereby M. tuberculosis coordinates global gene expression during intracellular survival. The integration of molecular and cellular biology together with transcriptional profiling and systems analysis offers unique insights into the host-driven responses of intracellular pathogens such as M. tuberculosis.

  3. Preliminary structural studies of the transcriptional regulator CmeR from Campylobacter jejuni

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chih-Chia [Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States); Shi, Feng [Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 (United States); Gu, Ruoyu; Li, Ming [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); McDermott, Gerry [Department of Anatomy, School of Medicine, University of California, San Francisco, CA 94143 (United States); Yu, Edward W., E-mail: ewyu@iastate.edu [Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Zhang, Qijing [Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 (United States); Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States)

    2007-01-01

    The transcriptional regulator CmeR from C. jejuni has been purified and crystallized and X-ray diffraction data have been collected to a resolution of 2.2 Å. In Campylobacter jejuni, a Gram-negative bacterial pathogen causing gastroenteritis in humans, the CmeR regulatory protein controls transcription of the multidrug transporter gene operon cmeABC. CmeR belongs to the TetR family of transcriptional regulators. The 210-residue CmeR consists of two functional motifs: an N-terminal DNA-binding domain and a C-terminal ligand-binding domain. It is predicted that the DNA-binding domain interacts directly with target promoters, while the C-terminal motif interacts with inducing ligands (such as bile salts). As an initial step towards confirming this structural model, recombinant CmeR protein containing a 6×His tag at the N-terminus was crystallized. Crystals of ligand-free CmeR belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 37.4, b = 57.6, c = 93.3 Å. Diffraction was observed to at least 2.2 Å at 100 K. Analysis of the detailed CmeR structure is currently in progress.

  4. Biophysical models of transcription in cells

    Science.gov (United States)

    Choubey, Sandeep

    Cells constantly face environmental challenges and deal with them by changing their gene expression patterns. They make decisions regarding which genes to express and which genes not to express based on intra-cellular and environmental cues. These decisions are often made by regulating the process of transcription. While the identities of the different molecules that take part in regulating transcription have been determined for a number of different genes, their dynamics inside the cell are still poorly understood. One key feature of these regulatory dynamics is that the numbers of the bio-molecules involved is typically small, resulting in large temporal fluctuations in transcriptional outputs (mRNA and protein). In this thesis I show that measurements of the cell-to-cell variability of the distribution of transcribing RNA polymerases along a gene provide a previously unexplored method for deciphering the mechanism of its transcription in vivo. First, I propose a simple kinetic model of transcription initiation and elongation from which I calculate transcribing RNA polymerase copy-number fluctuations. I test my theory against published data obtained for yeast genes and propose a novel mechanism of transcription. Rather than transcription being initiated through a single rate-limiting step, as was previously proposed, my single-cell analysis reveals the presence of at least two rate limiting steps. Second, I compute the distribution of inter-polymerase distance distribution along a gene and propose a method for analyzing inter-polymerase distance distributions acquired in experiments. By applying this method to images of polymerases transcribing ribosomal genes in E.coli I show that one model of regulation of these genes is consistent with inter-polymerase distance data while a number of other models are not. The analytical framework described in this thesis can be used to extract quantitative information about the dynamics of transcription from single

  5. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach...... that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  6. RESISTANCE-RELATED GENE TRANSCRIPTION AND ...

    African Journals Online (AJOL)

    jdx

    2014-02-05

    Feb 5, 2014 ... and salicylic acid signaling is used to initiate apoptosis at the site of the pathogen's entry. The dying cells can, how- ever, support the growth of necrotrophic pathogens. (Doehlemannetal.,2008). .... independent reverse transcription (RT) reactions were pooled from each leaf processed (three biological ...

  7. Systematic clustering of transcription start site landscapes

    DEFF Research Database (Denmark)

    Zhao, Xiaobei; Valen, Eivind; Parker, Brian J

    2011-01-01

    Genome-wide, high-throughput methods for transcription start site (TSS) detection have shown that most promoters have an array of neighboring TSSs where some are used more than others, forming a distribution of initiation propensities. TSS distributions (TSSDs) vary widely between promoters...

  8. Gene transcription and electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, A.S.

    1992-01-01

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  9. Transcription start site profiling uncovers divergent transcription and enhancer-associated RNAs in Drosophila melanogaster.

    Science.gov (United States)

    Meers, Michael P; Adelman, Karen; Duronio, Robert J; Strahl, Brian D; McKay, Daniel J; Matera, A Gregory

    2018-02-21

    High-resolution transcription start site (TSS) mapping in D. melanogaster embryos and cell lines has revealed a rich and detailed landscape of both cis- and trans-regulatory elements and factors. However, TSS profiling has not been investigated in an orthogonal in vivo setting. Here, we present a comprehensive dataset that links TSS dynamics with nucleosome occupancy and gene expression in the wandering third instar larva, a developmental stage characterized by large-scale shifts in transcriptional programs in preparation for metamorphosis. The data recapitulate major regulatory classes of TSSs, based on peak width, promoter-proximal polymerase pausing, and cis-regulatory element density. We confirm the paucity of divergent transcription units in D. melanogaster, but also identify notable exceptions. Furthermore, we identify thousands of novel initiation events occurring at unannotated TSSs that can be classified into functional categories by their local density of histone modifications. Interestingly, a sub-class of these unannotated TSSs overlaps with functionally validated enhancer elements, consistent with a regulatory role for "enhancer RNAs" (eRNAs) in defining developmental transcription programs. High-depth TSS mapping is a powerful strategy for identifying and characterizing low-abundance and/or low-stability RNAs. Global analysis of transcription initiation patterns in a developing organism reveals a vast number of novel initiation events that identify potential eRNAs as well as other non-coding transcripts critical for animal development.

  10. Ribonuclease E modulation of the bacterial SOS response.

    Directory of Open Access Journals (Sweden)

    Robert Manasherob

    Full Text Available Plants, animals, bacteria, and Archaea all have evolved mechanisms to cope with environmental or cellular stress. Bacterial cells respond to the stress of DNA damage by activation of the SOS response, the canonical RecA/LexA-dependent signal transduction pathway that transcriptionally derepresses a multiplicity of genes-leading to transient arrest of cell division and initiation of DNA repair. Here we report the previously unsuspected role of E. coli endoribonuclease RNase E in regulation of the SOS response. We show that RNase E deletion or inactivation of temperature-sensitive RNase E protein precludes normal initiation of SOS. The ability of RNase E to regulate SOS is dynamic, as down regulation of RNase E following DNA damage by mitomycin C resulted in SOS termination and restoration of RNase E function leads to resumption of a previously aborted response. Overexpression of the RraA protein, which binds to the C-terminal region of RNase E and modulates the actions of degradosomes, recapitulated the effects of RNase E deficiency. Possible mechanisms for RNase E effects on SOS are discussed.

  11. The effects of cocaine on HIV transcription.

    Science.gov (United States)

    Tyagi, Mudit; Weber, Jaime; Bukrinsky, Michael; Simon, Gary L

    2016-06-01

    Illicit drug users are a high-risk population for infection with the human immunodeficiency virus (HIV). A strong correlation exists between prohibited drug use and an increased rate of HIV transmission. Cocaine stands out as one of the most frequently abused illicit drugs, and its use is correlated with HIV infection and disease progression. The central nervous system (CNS) is a common target for both drugs of abuse and HIV, and cocaine intake further accelerates neuronal injury in HIV patients. Although the high incidence of HIV infection in illicit drug abusers is primarily due to high-risk activities such as needle sharing and unprotected sex, several studies have demonstrated that cocaine enhances the rate of HIV gene expression and replication by activating various signal transduction pathways and downstream transcription factors. In order to generate mature HIV genomic transcript, HIV gene expression has to pass through both the initiation and elongation phases of transcription, which requires discrete transcription factors. In this review, we will provide a detailed analysis of the molecular mechanisms that regulate HIV transcription and discuss how cocaine modulates those mechanisms to upregulate HIV transcription and eventually HIV replication.

  12. Intrinsic terminators in Mycoplasma hyopneumoniae transcription.

    Science.gov (United States)

    Fritsch, Tiago Ebert; Siqueira, Franciele Maboni; Schrank, Irene Silveira

    2015-04-08

    Mycoplasma hyopneumoniae, an important pathogen of swine, exhibits a low guanine and cytosine (GC) content genome. M. hyopneumoniae genome is organised in long transcriptional units and promoter sequences have been mapped upstream of all transcription units. These analysis provided insights into the gene organisation and transcription initiation at the genome scale. However, the presence of transcriptional terminator sequences in the M. hyopneumoniae genome is poorly understood. In silico analyses demonstrated the presence of putative terminators in 82% of the 33 monocistronic units (mCs) and in 74% of the 116 polycistronic units (pCs) considering different classes of terminators. The functional activity of 23 intrinsic terminators was confirmed by RT-PCR and qPCR. Analysis of all terminators found by three software algorithms, combined with experimental results, allowed us to propose a pattern of RNA hairpin formation during the termination process and to predict the location of terminators in the M. hyopneumoniae genome sequence. The stem-loop structures of intrinsic terminators of mycoplasma diverge from the pattern of terminators found in other bacteria due the low content of guanine and cytosine. In M. hyopneumoniae, transcription can end after a transcriptional unit and before its terminator sequence and can also continue past the terminator sequence with RNA polymerases gradually releasing the RNA.

  13. Evolution of Bacterial Suicide

    Science.gov (United States)

    Tchernookov, Martin; Nemenman, Ilya

    2013-03-01

    While active, controlled cellular suicide (autolysis) in bacteria is commonly observed, it has been hard to argue that autolysis can be beneficial to an individual who commits it. We propose a theoretical model that predicts that bacterial autolysis is evolutionarily advantageous to an individualand would fixate in physically structured environments for stationary phase colonies. We perform spatially resolved agent-based simulations of the model, which predict that lower mixing in the environment results in fixation of a higher autolysis rate from a single mutated cell, regardless of the colony's genetic diversity. We argue that quorum sensing will fixate as well, even if initially rare, if it is coupled to controlling the autolysis rate. The model does not predict a strong additional competitive advantage for cells where autolysis is controlled by quorum sensing systems that distinguish self from nonself. These predictions are broadly supported by recent experimental results in B. subtilisand S. pneumoniae. Research partially supported by the James S McDonnell Foundation grant No. 220020321 and by HFSP grant No. RGY0084/2011.

  14. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    , but the identity and significance of interspecies bacterial interactions is neglected in these analyses. There is therefore an urgent need for bridging the gap between metagenomic analysis and in vitro models suitable for studies of bacterial interactions.Bacterial interactions and coadaptation are important......The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...

  15. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors

    KAUST Repository

    Piatek, Agnieszka Anna

    2014-11-14

    Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3

  16. Transcriptional reprogramming in nonhuman primate (rhesus macaque tuberculosis granulomas.

    Directory of Open Access Journals (Sweden)

    Smriti Mehra

    2010-08-01

    Full Text Available In response to Mtb infection, the host remodels the infection foci into a dense mass of cells known as the granuloma. The key objective of the granuloma is to contain the spread of Mtb into uninfected regions of the lung. However, it appears that Mtb has evolved mechanisms to resist killing in the granuloma. Profiling granuloma transcriptome will identify key immune signaling pathways active during TB infection. Such studies are not possible in human granulomas, due to various confounding factors. Nonhuman Primates (NHPs infected with Mtb accurately reflect human TB in clinical and pathological contexts.We studied transcriptomics of granuloma lesions in the lungs of NHPs exhibiting active TB, during early and late stages of infection. Early TB lesions were characterized by a highly pro-inflammatory environment, expressing high levels of immune signaling pathways involving IFNgamma, TNFalpha, JAK, STAT and C-C/C-X-C chemokines. Late TB lesions, while morphologically similar to the early ones, exhibited an overwhelming silencing of the inflammatory response. Reprogramming of the granuloma transcriptome was highly significant. The expression of approximately two-thirds of all genes induced in early lesions was later repressed.The transcriptional characteristics of TB granulomas undergo drastic changes during the course of infection. The overwhelming reprogramming of the initial pro-inflammatory surge in late lesions may be a host strategy to limit immunopathology. We propose that these host profiles can predict changes in bacterial replication and physiology, perhaps serving as markers for latency and reactivation.

  17. Nascent RNA sequencing reveals distinct features in plant transcription.

    Science.gov (United States)

    Hetzel, Jonathan; Duttke, Sascha H; Benner, Christopher; Chory, Joanne

    2016-10-25

    Transcriptional regulation of gene expression is a major mechanism used by plants to confer phenotypic plasticity, and yet compared with other eukaryotes or bacteria, little is known about the design principles. We generated an extensive catalog of nascent and steady-state transcripts in Arabidopsis thaliana seedlings using global nuclear run-on sequencing (GRO-seq), 5'GRO-seq, and RNA-seq and reanalyzed published maize data to capture characteristics of plant transcription. De novo annotation of nascent transcripts accurately mapped start sites and unstable transcripts. Examining the promoters of coding and noncoding transcripts identified comparable chromatin signatures, a conserved "TGT" core promoter motif and unreported transcription factor-binding sites. Mapping of engaged RNA polymerases showed a lack of enhancer RNAs, promoter-proximal pausing, and divergent transcription in Arabidopsis seedlings and maize, which are commonly present in yeast and humans. In contrast, Arabidopsis and maize genes accumulate RNA polymerases in proximity of the polyadenylation site, a trend that coincided with longer genes and CpG hypomethylation. Lack of promoter-proximal pausing and a higher correlation of nascent and steady-state transcripts indicate Arabidopsis may regulate transcription predominantly at the level of initiation. Our findings provide insight into plant transcription and eukaryotic gene expression as a whole.

  18. Harnessing transcription for bioproduction in cyanobacteria

    DEFF Research Database (Denmark)

    Stensjö, Karin; Vavitsas, Konstantinos; Tyystjärvi, Taina

    2018-01-01

    Sustainable production of biofuels and other valuable compounds is one of our future challenges. One tempting possibility is to use photosynthetic cyanobacteria as production factories. Currently, tools for genetic engineering of cyanobacteria are yet not good enough to exploit the full potential...... of cyanobacteria. A wide variety of expression systems will be required to adjust both the expression of heterologous enzyme(s) and metabolic routes to the best possible balance, allowing the optimal production of a particular substance. In bacteria, transcription, especially the initiation of transcription, has...

  19. Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations

    OpenAIRE

    Nikolic, Nela; Schreiber, Frank; Dal Co, Alma; Kiviet, Daniel J.; Bergmiller, Tobias; Littmann, Sten; Kuypers, Marcel M. M.; Ackermann, Martin

    2017-01-01

    Author summary This study addresses a fundamental question in bacterial metabolism: do all individuals in a clonal population express the same metabolic functions, or do individuals specialize on different metabolic functions and assimilate different substrates? Reports about stochastic gene expression in bacterial populations raise the possibility that transcriptional differences between individuals translate into different metabolic behaviors, but the prevalence and magnitude of such effect...

  20. In vitro transcription of a torsionally constrained template

    DEFF Research Database (Denmark)

    Bentin, Thomas; Nielsen, Peter E

    2002-01-01

    of torsionally constrained DNA by free RNAP. We asked whether or not a newly synthesized RNA chain would limit transcription elongation. For this purpose we developed a method to immobilize covalently closed circular DNA to streptavidin-coated beads via a peptide nucleic acid (PNA)-biotin conjugate in principle......RNA polymerase (RNAP) and the DNA template must rotate relative to each other during transcription elongation. In the cell, however, the components of the transcription apparatus may be subject to rotary constraints. For instance, the DNA is divided into topological domains that are delineated...... constrained. We conclude that transcription of a natural bacterial gene may proceed with high efficiency despite the fact that newly synthesized RNA is entangled around the template in the narrow confines of torsionally constrained supercoiled DNA....

  1. Cerebrospinal Fluid Cathelicidin Correlates With the Bacterial Load and Outcomes in Childhood Bacterial Meningitis.

    Science.gov (United States)

    Savonius, Okko; Helve, Otto; Roine, Irmeli; Andersson, Sture; Saukkoriipi, Annika; González Mata, Antonio; Peltola, Heikki; Pelkonen, Tuula

    2018-02-01

    Large cerebrospinal fluid (CSF) bacterial load in bacterial meningitis (BM) relates to poor outcome. However, the antimicrobial peptide cathelicidin seems important to host defense. We studied how cathelicidin concentrations and bacterial load in CSF relate in childhood BM and to what extent they may predict the disease outcome. The patient data originated from a large prospective clinical trial in Latin America in 1996-2003 in which the CSF samples were collected on admission (CSF1) and 12-24 hours later (CSF2). The cathelicidin concentrations were measured by enzyme-linked immunosorbent assay and the CSF bacterial load by real-time polymerase chain reaction. This analysis comprised 76 children with meningitis caused by Haemophilus influenzae type b (n = 44), Streptococcus pneumoniae (n = 28) or Neisseria meningitidis (n = 4). The cathelicidin concentration correlated with the bacterial genome count in both samples (CSF1: ρ = 0.531, P < 0.001; CSF2: ρ = 0.553, P < 0.001). A high CSF1 ratio of cathelicidin to the bacterial genome count was associated with fewer audiologic sequelae (odds ratio: 0.11, 95% confidence interval: 0.02-0.61, P = 0.01) and more favorable neurologic outcomes (odds ratio: 3.95, 95% confidence interval: 1.22-12.8, P = 0.02), but not with better survival. In conclusion, CSF cathelicidin and the bacterial load were closely related in childhood BM. A high initial cathelicidin-to-bacterial genome count ratio predicted better outcomes in survivors.

  2. The Transcription Factor Encyclopedia

    DEFF Research Database (Denmark)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I

    2012-01-01

    mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written......ABSTRACT: Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130...... and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe....

  3. The transcription factor encyclopedia.

    Science.gov (United States)

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  4. Childhood asthma after bacterial colonization of the airway in neonates

    DEFF Research Database (Denmark)

    Bisgaard, Hans; Hermansen, Mette Northman; Buchvald, Frederik

    2007-01-01

    Pathological features of the airway in young children with severe recurrent wheeze suggest an association between bacterial colonization and the initiating events of early asthma. We conducted a study to investigate a possible association between bacterial colonization of the hypopharynx in asymp...

  5. Childhood asthma after bacterial colonization of the airway in neonates

    DEFF Research Database (Denmark)

    Bisgaard, H.; Hermansen, M.N.; Buchvald, F.

    2007-01-01

    Pathological features of the airway in young children with severe recurrent wheeze suggest an association between bacterial colonization and the initiating events of early asthma. We conducted a study to investigate a possible association between bacterial colonization of the hypopharynx in asymp...... in asymptomatic neonates and later development of recurrent wheeze, asthma, and allergy during the first 5 years of life....

  6. Machine Dictation and Transcription.

    Science.gov (United States)

    Harvey, Evelyn; And Others

    This instructional package contains both an instructor's manual and a student's manual for a course in machine dictation and transcription. The instructor's manual contains an overview with tips on teaching the course, letters for dictation, and a key to the letters. The student's manual contains an overview of the course and of the skills needed…

  7. Automatic Music Transcription

    Science.gov (United States)

    Klapuri, Anssi; Virtanen, Tuomas

    Written musical notation describes music in a symbolic form that is suitable for performing a piece using the available musical instruments. Traditionally, musical notation indicates the pitch, target instrument, timing, and duration of each sound to be played. The aim of music transcription either by humans or by a machine is to infer these musical parameters, given only the acoustic recording of a performance.

  8. Bayesian Music Transcription

    NARCIS (Netherlands)

    Cemgil, A.T.

    2004-01-01

    Music transcription refers to extraction of a human readable and interpretable description from a recording of a music performance. The final goal is to implement a program that can automatically infer a musical notation that lists the pitch levels of notes and corresponding score positions in any

  9. Abundance of bacterial and diatom fouling on various surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi

    Abundance of bacterial and diatom fouling on aluminium, fibreglass and stainless steel were studied from Dona Paula waters of the Zuari Estuary. Both these forms were reversibly attached in large numbers to surfaces during the initial 24 hr...

  10. Formaldehyde stress responses in bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Nathan Houqian Chen

    2016-03-01

    Full Text Available Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed.

  11. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Strauss, Edna; Caly, Wanda Regina

    2003-01-01

    Spontaneous bacterial peritonitis occurs in 30% of patients with ascites due to cirrhosis leading to high morbidity and mortality rates. The pathogenesis of spontaneous bacterial peritonitis is related to altered host defenses observed in end-stage liver disease, overgrowth of microorganisms, and bacterial translocation from the intestinal lumen to mesenteric lymph nodes. Clinical manifestations vary from severe to slight or absent, demanding analysis of the ascitic fluid. The diagnosis is confirmed by a number of neutrophils over 250/mm3 associated or not to bacterial growth in culture of an ascites sample. Enterobacteriae prevail and Escherichia coli has been the most frequent bacterium reported. Mortality rates decreased markedly in the last two decades due to early diagnosis and prompt antibiotic treatment. Third generation intravenous cephalosporins are effective in 70% to 95% of the cases. Recurrence of spontaneous bacterial peritonitis is common and can be prevented by the continuous use of oral norfloxacin. The development of bacterial resistance demands the search for new options in the prophylaxis of spontaneous bacterial peritonitis; probiotics are a promising new approach, but deserve further evaluation. Short-term antibiotic prophylaxis is recommended for patients with cirrhosis and ascites shortly after an acute episode of gastrointestinal bleeding.

  12. Specific Inhibition of HER-2/NEU Transcription Initiation

    National Research Council Canada - National Science Library

    Ebbinghaus, Scot W

    2007-01-01

    ... that could stabilize PPT secondary structure formation in solution. Telomestatin and a lead compound in the fluoroquinolone class stabilize the HER- 2/neu PPT secondary structure in solution and reduce HER-2/neu expression in breast cancer cells...

  13. Specific Inhibition of HER-2/neu Transcription Initiation

    National Research Council Canada - National Science Library

    Ebbinghaus, Scot W

    2006-01-01

    ... that could stabilize FPT secondary structure formation in solution. Telomestatin and a lead compound in the fluoroquinolone class stabilize the HER- 2/neu FPT secondary structure in solution and reduce HER-2/neu expression in breast cancer cells...

  14. The chemical structure of DNA sequence signals for RNA transcription

    Science.gov (United States)

    George, D. G.; Dayhoff, M. O.

    1982-01-01

    The proposed recognition sites for RNA transcription for E. coli NRA polymerase, bacteriophage T7 RNA polymerase, and eukaryotic RNA polymerase Pol II are evaluated in the light of the requirements for efficient recognition. It is shown that although there is good experimental evidence that specific nucleic acid sequence patterns are involved in transcriptional regulation in bacteria and bacterial viruses, among the sequences now available, only in the case of the promoters recognized by bacteriophage T7 polymerase does it seem likely that the pattern is sufficient. It is concluded that the eukaryotic pattern that is investigated is not restrictive enough to serve as a recognition site.

  15. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation......, resistance and QS inhibition as future antimicrobial targets, in particular those that would work to minimize selection pressures for the development of resistant bacteria....

  16. Manufacturing Initiative

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Manufacturing Technologies (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of...

  17. Requirements for DNA strand transfer during reverse transcription in mutant HIV-1 virions

    NARCIS (Netherlands)

    Berkhout, B.; van Wamel, J.; Klaver, B.

    1995-01-01

    Retroviruses convert their RNA genome into a DNA form by means of reverse transcription. According to the current model of reverse transcription, two strand transfer reactions are needed to synthesize a full-length DNA genome. Because reverse transcription is initiated close to the 5' end of the RNA

  18. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  19. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  20. Factitious Bacterial Meningitis Revisited

    Science.gov (United States)

    Peterson, E.; Thrupp, L.; Uchiyama, N.; Hawkins, B.; Wolvin, B.; Greene, G.

    1982-01-01

    Nonviable gram-negative bacilli were seen in smears of cerebrospinal fluid from eight infants in whom bacterial meningitis was ruled out. Tubes from commercial kits were the source of the factitious organisms. PMID:7153328

  1. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...... about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria......-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial...

  2. Microbial activity and bacterial community structure during degradation of microcystins

    DEFF Research Database (Denmark)

    Christoffersen, K.; Lyck, Susanne; Winding, A.

    2002-01-01

    . It was hypothesised that the bacterial community from a lake with frequent occurrence of toxic cyanobacteria can degrade microcystin along with other organic compounds. The initial dissolved microcystin concentrations ranged between 10 and 136 mug 1(-1) (microcystin-LR equivalents) in the laboratory experiment, using...... initial degradation rates occurred in 2 out of 7 cases, Microcystin was almost eliminated from the water after around 8 d. Results from concomitant measurements of bacterial abundance and net production showed an elevated bacterial activity within 1 to 2 d after the inoculation with algal lysates...

  3. DNA Topoisomerases in Transcription

    DEFF Research Database (Denmark)

    Rødgaard, Morten Terpager

    2015-01-01

    This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most of the ex......This Ph.D. thesis summarizes the main results of my studies on the interplay between DNA topoisomerases and transcription. The work was performed from 2011 to 2015 at Aarhus University in the Laboratory of Genome Research, and was supervised by associate professor Anni H. Andersen. Most...... topoisomerase-DNA cleavage complex. The second study is an investigation of how topoisomerases influence gene regulation by keeping the genome in an optimal topological state....

  4. [Diagnosis of bacterial vaginosis].

    Science.gov (United States)

    Djukić, Slobodanka; Ćirković, Ivana; Arsić, Biljana; Garalejić, Eliana

    2013-01-01

    Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2-producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent's scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up-to-date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short-term and long-term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  5. Crystal structure of enterococcus faecalis sly A-like transcriptional factor.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.; Zhang, R.; Zagnitko, O.; Dementieva, I.; Maltsev, N.; Watson, J. D.; Laskowski, R.; Gornicki, P.; Joachimiak, A.; Univ. of Chicago; European Bioinformatics Inst.

    2003-05-30

    The crystal structure of a SlyA transcriptional regulator at 1.6 {angstrom} resolution is presented, and structural relationships between members of the MarR/SlyA family are discussed. The SlyA family, which includes SlyA, Rap, Hor, and RovA proteins, is widely distributed in bacterial and archaeal genomes. Current evidence suggests that SlyA-like factors act as repressors, activators, and modulators of gene transcription. These proteins have been shown to up-regulate the expression of molecular chaperones, acid-resistance proteins, and cytolysin, and down-regulate several biosynthetic enzymes. The structure of SlyA from Enterococcus faecalis, determined as a part of an ongoing structural genomics initiative (www.mcsg.anl.gov), revealed the same winged helix DNA-binding motif that was recently found in the MarR repressor from Escherichia coli and the MexR repressor from Pseudomonas aeruginosa, a sequence homologue of MarR. Phylogenetic analysis of the MarR/SlyA family suggests that Sly is placed between the SlyA and MarR subfamilies and shows significant sequence similarity to members of both subfamilies.

  6. Eukaryotic transcription factors

    DEFF Research Database (Denmark)

    Staby, Lasse; O'Shea, Charlotte; Willemoës, Martin

    2017-01-01

    Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains...... them to participate in large interactomes, how they use only a few hydrophobic residues, short sequence motifs, prestructured motifs, and coupled folding and binding for their interactions with co-activators, and how their accessibility to post-translational modification affects their interactions...

  7. Spanish dialects: phonetic transcription

    OpenAIRE

    Moreno Bilbao, M. Asunción; Mariño Acebal, José Bernardo

    1998-01-01

    It is well known that canonical Spanish, the dialectal variant `central' of Spain, so called Castilian, can be transcribed by rules. This paper deals with the automatic grapheme to phoneme transcription rules in several Spanish dialects from Latin America. Spanish is a language spoken by more than 300 million people, has an important geographical dispersion compared among other languages and has been historically influenced by many native languages. In this paper authors expand the Castilian ...

  8. Transcription, Processing, and Function of CRISPR Cassettes in Escherichia coli

    OpenAIRE

    Pougach, Ksenia; Semenova, Ekaterina; Bogdanova, Ekaterina; Datsenko, Kirill A.; Djordjevic, Marko; Wanner, Barry L.; Severinov, Konstantin

    2010-01-01

    CRISPR/Cas, bacterial and archaeal systems of interference with foreign genetic elements such as viruses or plasmids, consist of DNA loci called CRISPR cassettes (a set of variable spacers regularly separated by palindromic repeats) and associated cas genes. When a CRISPR spacer sequence exactly matches a sequence in a viral genome, the cell can become resistant to the virus. The CRISPR/Cas systems function through small RNAs originating from longer CRISPR cassette transcripts. While laborato...

  9. Community structure of the metabolically active rumen bacterial and archaeal communities of dairy cows over the transition period

    DEFF Research Database (Denmark)

    Zhu, Zhigang; Noel, Samantha Joan; Difford, Gareth Frank

    2017-01-01

    was extracted from the rumen samples and cDNA thereof was subsequently used for characterizing the metabolically active bacterial (16S rRNA transcript amplicon sequencing) and archaeal (qPCR, T-RFLP and mcrA and 16S rRNA transcript amplicon sequencing) communities. The metabolically active bacterial community......% of the total reads, dominated by the genera Methanobrevibacter (75%) and Methanosphaera (24%), whereas the Methanomassiliicoccales order covered only 0.2% of the total reads. In conclusion, the present study showed that the structure of the metabolically active bacterial and archaeal rumen communities changed...... prepartum to postpartum decrease (from 15% to 2%) was observed in relative abundance of Methanomassiliicoccales 16S rRNA transcripts. In contrast to qPCR analysis of the 16S rRNA transcripts, quantification of mcrA transcripts revealed no change in total abundance of metabolically active methanogens over...

  10. Collective decisions among bacterial viruses

    Science.gov (United States)

    Joh, Richard; Mileyko, Yuriy; Voit, Eberhard; Weitz, Joshua

    2010-03-01

    For many temperate bacteriophages, the decision of whether to kill hosts or enter a latent state depends on the multiplicity of infection. In this talk, I present a quantitative model of gene regulatory dynamics to describe how phages make collective decisions within host cells. Unlike most previous studies, the copy number of viral genomes is treated as a variable. In the absence of feedback loops, viral mRNA transcription is expected to be proportional to the viral copy number. However, when there are nonlinear feedback loops in viral gene regulation, our model shows that gene expression patterns are sensitive to changes in viral copy number and there can be a domain of copy number where the system becomes bistable. Hence, the viral copy number is a key control parameter determining host cell fates. This suggests that bacterial viruses can respond adaptively to changes in population dynamics, and can make alternative decisions as a bet-hedging strategy. Finally, I present a stochastic version of viral gene regulation and discuss speed-accuracy trade-offs in the context of cell fate determination by viruses.

  11. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq

    DEFF Research Database (Denmark)

    Sittka, A; Lucchini, S; Papenfort, K

    2008-01-01

    Recent advances in high-throughput pyrosequencing (HTPS) technology now allow a thorough analysis of RNA bound to cellular proteins, and, therefore, of post-transcriptional regulons. We used HTPS to discover the Salmonella RNAs that are targeted by the common bacterial Sm-like protein, Hfq. Initial...... transcriptomic analysis revealed that Hfq controls the expression of almost a fifth of all Salmonella genes, including several horizontally acquired pathogenicity islands (SPI-1, -2, -4, -5), two sigma factor regulons, and the flagellar gene cascade. Subsequent HTPS analysis of 350,000 cDNAs, derived from RNA co...... would be rescued by overexpression of HilD and FlhDC, and we proved this to be correct. The combination of epitope-tagging and HTPS of immunoprecipitated RNA detected the expression of many intergenic chromosomal regions of Salmonella. Our approach overcomes the limited availability of high...

  12. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  13. Transcription and processing of mitochondrial RNA in the human pathogen Acanthamoeba castellanii.

    Science.gov (United States)

    Accari, Jessica; Barth, Christian

    2015-07-01

    The size, structure, gene content and organisation of mitochondrial genomes can be highly diverse especially amongst the protists. We investigated the transcription and processing of the mitochondrial genome of the opportunistic pathogen Acanthamoeba castellanii and here we present a detailed transcription map of the 41.6 kb genome that encodes 33 proteins, 16 tRNAs and 2 rRNAs. Northern hybridisation studies identified six major polycistronic transcripts, most of which are co-transcriptionally processed into smaller mono-, di- and tricistronic RNAs. The maturation of the polycistronic transcripts is likely to involve endonucleolytic cleavage where tRNAs serve as processing signals. Reverse transcription polymerase chain reactions across the intervening regions between the six major polycistronic transcripts suggest that these transcripts were once part of an even larger transcript. Our findings indicate that the mitochondrial genome of A. castellanii is transcribed from only one or two promoters, very similar to the mode of transcription in the mitochondria of its close relative Dictyostelium discoideum, where transcription is known to occur from only a single transcription initiation site. Transcription initiation from a minimal number of promoters despite a large genome size may be an emerging trend in the mitochondria of protists. Copyright © 2015. Published by Elsevier B.V.

  14. Post-transcriptional regulation of gene expression in Yersinia species

    Directory of Open Access Journals (Sweden)

    Chelsea A Schiano

    2012-11-01

    Full Text Available Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we will discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.

  15. Genome transcription/translation of segmented, negative-strand RNA viruses

    NARCIS (Netherlands)

    Geerts-Dimitriadou, C.

    2011-01-01

    The requirements for alignment of capped RNA leader sequences along the viral genome during influenza transcription initiation (“cap-snatching”) have long been an enigma. Previous work on Tomato spotted wilt virus (TSWV) transcription initiation has revealed that this virus displays a

  16. Problem-Solving Test: Attenuation--A Mechanism to Regulate Bacterial Tryptophan Biosynthesis

    Science.gov (United States)

    Szeberenyi, Jozsef

    2010-01-01

    Terms to be familiar with before you start to solve the test: tryptophan, transcription unit, operon, "trp" repressor, corepressor, operator, promoter, palindrome, initiation, elongation, and termination of transcription, open reading frame, coupled transcription/translation, chromosome-polysome complex. (Contains 2 figures and 1 footnote.)

  17. Optimising Antibiotic Usage to Treat Bacterial Infections

    Science.gov (United States)

    Paterson, Iona K.; Hoyle, Andy; Ochoa, Gabriela; Baker-Austin, Craig; Taylor, Nick G. H.

    2016-11-01

    The increase in antibiotic resistant bacteria poses a threat to the continued use of antibiotics to treat bacterial infections. The overuse and misuse of antibiotics has been identified as a significant driver in the emergence of resistance. Finding optimal treatment regimens is therefore critical in ensuring the prolonged effectiveness of these antibiotics. This study uses mathematical modelling to analyse the effect traditional treatment regimens have on the dynamics of a bacterial infection. Using a novel approach, a genetic algorithm, the study then identifies improved treatment regimens. Using a single antibiotic the genetic algorithm identifies regimens which minimise the amount of antibiotic used while maximising bacterial eradication. Although exact treatments are highly dependent on parameter values and initial bacterial load, a significant common trend is identified throughout the results. A treatment regimen consisting of a high initial dose followed by an extended tapering of doses is found to optimise the use of antibiotics. This consistently improves the success of eradicating infections, uses less antibiotic than traditional regimens and reduces the time to eradication. The use of genetic algorithms to optimise treatment regimens enables an extensive search of possible regimens, with previous regimens directing the search into regions of better performance.

  18. Polyphenol Compound as a Transcription Factor Inhibitor

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2015-10-01

    Full Text Available A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1, c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and β-catenin/T cell factor (Tcf.

  19. Transcriptional networks in epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Christo Venkov

    Full Text Available Epithelial-mesenchymal transition (EMT changes polarized epithelial cells into migratory phenotypes associated with loss of cell-cell adhesion molecules and cytoskeletal rearrangements. This form of plasticity is seen in mesodermal development, fibroblast formation, and cancer metastasis.Here we identify prominent transcriptional networks active during three time points of this transitional process, as epithelial cells become fibroblasts. DNA microarray in cultured epithelia undergoing EMT, validated in vivo, were used to detect various patterns of gene expression. In particular, the promoter sequences of differentially expressed genes and their transcription factors were analyzed to identify potential binding sites and partners. The four most frequent cis-regulatory elements (CREs in up-regulated genes were SRY, FTS-1, Evi-1, and GC-Box, and RNA inhibition of the four transcription factors, Atf2, Klf10, Sox11, and SP1, most frequently binding these CREs, establish their importance in the initiation and propagation of EMT. Oligonucleotides that block the most frequent CREs restrain EMT at early and intermediate stages through apoptosis of the cells.Our results identify new transcriptional interactions with high frequency CREs that modulate the stability of cellular plasticity, and may serve as targets for modulating these transitional states in fibroblasts.

  20. Bacterial meningitis in children

    International Nuclear Information System (INIS)

    Marji, S.

    2007-01-01

    To demonstrate the epidemiology, clinical manifestations and bacteriological profile of bacterial meningitis in children beyond the neonatal period in our hospital. This was a retrospective descriptive study conducted at Prince Rashid Hospital in Irbid, Jordan. The medical records of 50 children with the diagnosis of bacterial meningitis during 4 years period, were reviewed. The main cause of infection was streptococcus pneumoniae, followed by Haemophilus influenza and Niesseria meningitides. Mortality was higher in infants and meningococcal infection, while complications were more encountered in cases of streptococcus pneumoniae. Cerebrospinal fluid culture was positive in 11 cases and Latex agglutination test in 39. There is a significant reduction of the numbers of bacterial meningitis caused by Haemophilus influenza type B species. (author)

  1. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    Biofilm resilience poses major challenges to the development of novel antimicrobial agents. Biofilm bacteria can be considered small groups of “Special Forces” capable of infiltrating the host and destroying important components of the cellular defense system with the aim of crippling the host...... defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  2. Influence of initial glycerol concentration upon bacterial cells ...

    African Journals Online (AJOL)

    user

    Kinetics of winery wastewater from port wine production. Chem. Biochem. Eng. 25:493-499. Stemmet CP, Bartelds F, Van Der Schaaf J, Kuster BFM, Schouten JC. (2008). Influence of liquid viscosity and surface tension on the gas– liquid mass transfer coefficient for solid foam packings in co-current two-phase flow. Chem.

  3. Diagnosis of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Đukić Slobodanka

    2013-01-01

    Full Text Available Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2­producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent’s scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up­to­date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short­term and long­term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  4. Adult bacterial meningitis

    DEFF Research Database (Denmark)

    Meyer, C N; Samuelsson, I S; Galle, M

    2004-01-01

    Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin susceptibi......Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin...

  5. Bacterial blight of cotton

    Directory of Open Access Journals (Sweden)

    Aïda JALLOUL

    2015-04-01

    Full Text Available Bacterial blight of cotton (Gossypium ssp., caused by Xanthomonas citri pathovar malvacearum, is a severe disease occurring in all cotton-growing areas. The interactions between host plants and the bacteria are based on the gene-for-gene concept, representing a complex resistance gene/avr gene system. In light of the recent data, this review focuses on the understanding of these interactions with emphasis on (1 the genetic basis for plant resistance and bacterial virulence, (2 physiological mechanisms involved in the hypersensitive response to the pathogen, including hormonal signaling, the oxylipin pathway, synthesis of antimicrobial molecules and alteration of host cell structures, and (3 control of the disease.

  6. Bacterial meningitis in infants.

    Science.gov (United States)

    Ku, Lawrence C; Boggess, Kim A; Cohen-Wolkowiez, Michael

    2015-03-01

    Neonatal bacterial meningitis is uncommon but devastating. Morbidity among survivors remains high. The types and distribution of pathogens are related to gestational age, postnatal age, and geographic region. Confirming the diagnosis is difficult. Clinical signs are often subtle, lumbar punctures are frequently deferred, and cerebrospinal fluid (CSF) cultures can be compromised by prior antibiotic exposure. Infants with bacterial meningitis can have negative blood cultures and normal CSF parameters. Promising tests such as the polymerase chain reaction require further study. Prompt treatment with antibiotics is essential. Clinical trials investigating a vaccine for preventing neonatal Group B Streptococcus infections are ongoing. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Coupled effects of chemotaxis and growth on traveling bacterial waves.

    Science.gov (United States)

    Yan, Zhifeng; Bouwer, Edward J; Hilpert, Markus

    2014-08-01

    Traveling bacterial waves are capable of improving contaminant remediation in the subsurface. It is fairly well understood how bacterial chemotaxis and growth separately affect the formation and propagation of such waves. However, their interaction is not well understood. We therefore perform a modeling study to investigate the coupled effects of chemotaxis and growth on bacterial migration, and examine their effects on contaminant remediation. We study the waves by using different initial electron acceptor concentrations for different bacteria and substrate systems. Three types of traveling waves can occur: a chemotactic wave due to the biased movement of chemotactic bacteria resulting from metabolism-generated substrate concentration gradients; a growth/decay/motility wave due to a dynamic equilibrium between bacterial growth, decay and random motility; and an integrated wave due to the interaction between bacterial chemotaxis and growth. Chemotaxis hardly enhances the bacterial propagation if it is too weak to form a chemotactic wave or its wave speed is less than half of the growth/decay/motility wave speed. However, chemotaxis significantly accelerates bacterial propagation once its wave speed exceeds the growth/decay/motility wave speed. When convection occurs, it speeds up the growth/decay/motility wave but slows down or even eliminates the chemotactic wave due to the dispersion. Bacterial survival proves particularly important for bacterial propagation. Therefore we develop a conceptual model to estimate the speed of growth/decay/motility waves. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The Mediator complex and transcription regulation

    Science.gov (United States)

    Poss, Zachary C.; Ebmeier, Christopher C.

    2013-01-01

    The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module. PMID:24088064

  9. Transcription of TP0126, Treponema pallidum putative OmpW homolog, is regulated by the length of a homopolymeric guanosine repeat.

    Science.gov (United States)

    Giacani, Lorenzo; Brandt, Stephanie L; Ke, Wujian; Reid, Tara B; Molini, Barbara J; Iverson-Cabral, Stefanie; Ciccarese, Giulia; Drago, Francesco; Lukehart, Sheila A; Centurion-Lara, Arturo

    2015-06-01

    An effective mechanism for introduction of phenotypic diversity within a bacterial population exploits changes in the length of repetitive DNA elements located within gene promoters. This phenomenon, known as phase variation, causes rapid activation or silencing of gene expression and fosters bacterial adaptation to new or changing environments. Phase variation often occurs in surface-exposed proteins, and in Treponema pallidum subsp. pallidum, the syphilis agent, it was reported to affect transcription of three putative outer membrane protein (OMP)-encoding genes. When the T. pallidum subsp. pallidum Nichols strain genome was initially annotated, the TP0126 open reading frame was predicted to include a poly(G) tract and did not appear to have a predicted signal sequence that might suggest the possibility of its being an OMP. Here we show that the initial annotation was incorrect, that this poly(G) is instead located within the TP0126 promoter, and that it varies in length in vivo during experimental syphilis. Additionally, we show that TP0126 transcription is affected by changes in the poly(G) length consistent with regulation by phase variation. In silico analysis of the TP0126 open reading frame based on the experimentally identified transcriptional start site shortens this hypothetical protein by 69 amino acids, reveals a predicted cleavable signal peptide, and suggests structural homology with the OmpW family of porins. Circular dichroism of recombinant TP0126 supports structural homology to OmpW. Together with the evidence that TP0126 is fully conserved among T. pallidum subspecies and strains, these data suggest an important role for TP0126 in T. pallidum biology and syphilis pathogenesis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Transcription of TP0126, Treponema pallidum Putative OmpW Homolog, Is Regulated by the Length of a Homopolymeric Guanosine Repeat

    Science.gov (United States)

    Brandt, Stephanie L.; Ke, Wujian; Reid, Tara B.; Molini, Barbara J.; Iverson-Cabral, Stefanie; Ciccarese, Giulia; Drago, Francesco; Lukehart, Sheila A.; Centurion-Lara, Arturo

    2015-01-01

    An effective mechanism for introduction of phenotypic diversity within a bacterial population exploits changes in the length of repetitive DNA elements located within gene promoters. This phenomenon, known as phase variation, causes rapid activation or silencing of gene expression and fosters bacterial adaptation to new or changing environments. Phase variation often occurs in surface-exposed proteins, and in Treponema pallidum subsp. pallidum, the syphilis agent, it was reported to affect transcription of three putative outer membrane protein (OMP)-encoding genes. When the T. pallidum subsp. pallidum Nichols strain genome was initially annotated, the TP0126 open reading frame was predicted to include a poly(G) tract and did not appear to have a predicted signal sequence that might suggest the possibility of its being an OMP. Here we show that the initial annotation was incorrect, that this poly(G) is instead located within the TP0126 promoter, and that it varies in length in vivo during experimental syphilis. Additionally, we show that TP0126 transcription is affected by changes in the poly(G) length consistent with regulation by phase variation. In silico analysis of the TP0126 open reading frame based on the experimentally identified transcriptional start site shortens this hypothetical protein by 69 amino acids, reveals a predicted cleavable signal peptide, and suggests structural homology with the OmpW family of porins. Circular dichroism of recombinant TP0126 supports structural homology to OmpW. Together with the evidence that TP0126 is fully conserved among T. pallidum subspecies and strains, these data suggest an important role for TP0126 in T. pallidum biology and syphilis pathogenesis. PMID:25802057

  11. Nascent transcription affected by RNA polymerase IV in Zea mays.

    Science.gov (United States)

    Erhard, Karl F; Talbot, Joy-El R B; Deans, Natalie C; McClish, Allison E; Hollick, Jay B

    2015-04-01

    All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3'-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance. Copyright © 2015 by the Genetics Society of America.

  12. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors

    Science.gov (United States)

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-01-01

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, ‘Transcription Profile of Escherichia coli’ (www.shigen.nig.ac.jp/ecoli/tec/). PMID:26843427

  13. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors.

    Science.gov (United States)

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-03-18

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, 'Transcription Profile of Escherichia coli' (www.shigen.nig.ac.jp/ecoli/tec/). © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. The Bacterial Growth Curve.

    Science.gov (United States)

    Paulton, Richard J. L.

    1991-01-01

    A procedure that allows students to view an entire bacterial growth curve during a two- to three-hour student laboratory period is described. Observations of the lag phase, logarithmic phase, maximum stationary phase, and phase of decline are possible. A nonpathogenic, marine bacterium is used in the investigation. (KR)

  15. Bacterial fingerprints across Europe

    NARCIS (Netherlands)

    Glasner, Corinna

    2014-01-01

    Bacterial pathogens, such as Staphylococcus aureus and carbapenemase-producing Enterobacteriaceae (CPE), impose major threats to human health worldwide. Both have a ‘Jekyll & Hyde’ character, since they can be present as human commensals, but can also become harmful invasive pathogens especially

  16. [Bacterial biofilms and infection].

    Science.gov (United States)

    Lasa, I; Del Pozo, J L; Penadés, J R; Leiva, J

    2005-01-01

    In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths) and cancer (7.1 million deaths) (WHO report 2004). The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  17. EDITORIAL SPONTANEOUS BACTERIAL PERITONITIS ...

    African Journals Online (AJOL)

    hi-tech

    Spontaneous bacterial peritonitis (SBP) frequent]y occurs in patients with liver cirrhosis and ascites. It is defined as an infection of previously sterile ascitic fluid without any demonstrable intrabdominal source of infection. It is now internationally agreed that a polymorphonuclear (PMN) cell count in the ascitic fluid of over 250 ...

  18. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  19. Seizures Complicating Bacterial Meningitis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-09-01

    Full Text Available The clinical data of 116 patients, 1 month to <5 years of age, admitted for bacterial meningitis, and grouped according to those with and without seizures during hospitalization, were compared in a study at Buddhist Dalin Tzu Chi General Hospital, Chang Gung Memorial Hospital and other centers in Taiwan.

  20. Diagnosis of bacterial infection

    African Journals Online (AJOL)

    rapid and easy-to-use test for bacterial infections. Clearly, this is a very ... detect antigens or specific antibodies, e.g. group A streptococcal antigen testing can be employed to reduce antibiotic use. Culture-based tests are often ... White blood cell count 12 000 cells/mm³; or the presence of >10% ...

  1. Bacterial Meningitis Outcome

    OpenAIRE

    J Gordon Millichap

    1995-01-01

    The neurologic, psychological, and educational outcomes of bacterial meningitis in 130 children evaluated at a mean age of 8 years, and 6 years after their meningitis, are reported from the Department of Paediatrics and Clinical Epidemiology and Biostatistics Unit, University of Melbourne, and the Royal Children’s Hospital, Victoria, Australia.

  2. Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect Active-Site Networks and Transcript-Assisted Hydrolysis.

    Science.gov (United States)

    Zhang, Nan; Schäfer, Jorrit; Sharma, Amit; Rayner, Lucy; Zhang, Xiaodong; Tuma, Roman; Stockley, Peter; Buck, Martin

    2015-11-06

    In bacterial RNA polymerase (RNAP), the bridge helix and switch regions form an intricate network with the catalytic active centre and the main channel. These interactions are important for catalysis, hydrolysis and clamp domain movement. By targeting conserved residues in Escherichia coli RNAP, we are able to show that functions of these regions are differentially required during σ(70)-dependent and the contrasting σ(54)-dependent transcription activations and thus potentially underlie the key mechanistic differences between the two transcription paradigms. We further demonstrate that the transcription factor DksA directly regulates σ(54)-dependent activation both positively and negatively. This finding is consistent with the observed impacts of DksA on σ(70)-dependent promoters. DksA does not seem to significantly affect RNAP binding to a pre-melted promoter DNA but affects extensively activity at the stage of initial RNA synthesis on σ(54)-regulated promoters. Strikingly, removal of the σ(54) Region I is sufficient to invert the action of DksA (from stimulation to inhibition or vice versa) at two test promoters. The RNAP mutants we generated also show a strong propensity to backtrack. These mutants increase the rate of transcript-hydrolysis cleavage to a level comparable to that seen in the Thermus aquaticus RNAP even in the absence of a non-complementary nucleotide. These novel phenotypes imply an important function of the bridge helix and switch regions as an anti-backtracking ratchet and an RNA hydrolysis regulator. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Corticosteroids for Bacterial Keratitis

    Science.gov (United States)

    Srinivasan, Muthiah; Mascarenhas, Jeena; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Glidden, David V.; Ray, Kathryn J.; Hong, Kevin C.; Oldenburg, Catherine E.; Lee, Salena M.; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.; Acharya, Nisha R.

    2013-01-01

    Objective To determine whether there is a benefit in clinical outcomes with the use of topical corticosteroids as adjunctive therapy in the treatment of bacterial corneal ulcers. Methods Randomized, placebo-controlled, double-masked, multicenter clinical trial comparing prednisolone sodium phosphate, 1.0%, to placebo as adjunctive therapy for the treatment of bacterial corneal ulcers. Eligible patients had a culture-positive bacterial corneal ulcer and received topical moxifloxacin for at least 48 hours before randomization. Main Outcome Measures The primary outcome was best spectacle-corrected visual acuity (BSCVA) at 3 months from enrollment. Secondary outcomes included infiltrate/scar size, reepithelialization, and corneal perforation. Results Between September 1, 2006, and February 22, 2010, 1769 patients were screened for the trial and 500 patients were enrolled. No significant difference was observed in the 3-month BSCVA (−0.009 logarithm of the minimum angle of resolution [logMAR]; 95% CI, −0.085 to 0.068; P = .82), infiltrate/scar size (P = .40), time to reepithelialization (P = .44), or corneal perforation (P > .99). A significant effect of corticosteroids was observed in subgroups of baseline BSCVA (P = .03) and ulcer location (P = .04). At 3 months, patients with vision of counting fingers or worse at baseline had 0.17 logMAR better visual acuity with corticosteroids (95% CI, −0.31 to −0.02; P = .03) compared with placebo, and patients with ulcers that were completely central at baseline had 0.20 logMAR better visual acuity with corticosteroids (−0.37 to −0.04; P = .02). Conclusions We found no overall difference in 3-month BSCVA and no safety concerns with adjunctive corticosteroid therapy for bacterial corneal ulcers. Application to Clinical Practice Adjunctive topical corticosteroid use does not improve 3-month vision in patients with bacterial corneal ulcers. PMID:21987582

  4. Transcriptional Regulation in Haematopoiesis:

    DEFF Research Database (Denmark)

    Lauridsen, Felicia K B

    Haematopoietic stem cells (HSCs) are responsible for the formation of all of the distinct mature cell types found in the blood. HSCs can – as the only cells of the haematopoietic system – regenerate all of the blood cells when transplanted into a irradiated host, because they are endowed...... of distinct lineage affiliated genes in the otherwise highly purified HSCs. Taken together, these studies demonstrate the use of our model as a tool for isolating superior HSCs, and show that low-level expression of mature lineage markers is inherent in the highly purified stem cell compartment. In the second...... in transplantation studies. Consistent with this, transcriptome profiling revealed very low expression of cell cycle genes in these reporter-dim HSCs. Sequencing of >1200 single HSCs confirmed that the main source of transcriptional heterogeneity was the cell cycle. It also revealed a low-level expression...

  5. Rickettsia conorii transcriptional response within inoculation eschar.

    Directory of Open Access Journals (Sweden)

    Patricia Renesto

    Full Text Available BACKGROUND: Rickettsia conorii, the causative agent of the Mediterranean spotted fever, is transmitted to humans by the bite of infected ticks Rhipicephalus sanguineus. The skin thus constitutes an important barrier for the entry and propagation of R. conorii. Given this, analysis of the survival strategies used by the bacterium within infected skin is critical for our understanding of rickettsiosis. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the first genome-wide analysis of R. conorii gene expression from infected human skin biopsies. Our data showed that R. conorii exhibited a striking transcript signature that is remarkably conserved across patients, regardless of genotype. The expression profiles obtained using custom Agilent microarrays were validated by quantitative RT-PCR. Within eschars, the amount of detected R. conorii transcripts was of 55%, this value being of 74% for bacteria grown in Vero cells. In such infected host tissues, approximately 15% (n = 211 of the total predicted R. conorii ORFs appeared differentially expressed compared to bacteria grown in standard laboratory conditions. These genes are mostly down-regulated and encode proteins essential for bacterial replication. Some of the strategies displayed by rickettsiae to overcome the host defense barriers, thus avoiding killing, were also pointed out. The observed up-regulation of rickettsial genes associated with DNA repair is likely to correspond to a DNA-damaging agent enriched environment generated by the host cells to eradicate the pathogens. Survival of R. conorii within eschars also involves adaptation to osmotic stress, changes in cell surface proteins and up-regulation of some virulence factors. Interestingly, in contrast to down-regulated transcripts, we noticed that up-regulated ones rather exhibit a small nucleotide size, most of them being exclusive for the spotted fever group rickettsiae. CONCLUSION/SIGNIFICANCE: Because eschar is a site for rickettsial

  6. Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna Lena Jung

    2016-04-01

    Full Text Available The formation and release of outer membrane vesicles (OMVs is a phenomenon of Gram-negative bacteria. This includes Legionella pneumophila (L. pneumophila, a causative agent of severe pneumonia. Upon its transmission into the lung, L. pneumophila primarily infects and replicates within macrophages. Here, we analyzed the influence of L. pneumophila OMVs on macrophages. To this end, differentiated THP-1 cells were incubated with increasing doses of Legionella OMVs, leading to a TLR2-dependent classical activation of macrophages with the release of pro-inflammatory cytokines. Inhibition of TLR2 and NF-κB signaling reduced the induction of pro-inflammatory cytokines. Furthermore, treatment of THP-1 cells with OMVs prior to infection reduced replication of L. pneumophila in THP-1 cells. Blocking of TLR2 activation or heat denaturation of OMVs restored bacterial replication in the first 24 h of infection. With prolonged infection-time, OMV pre-treated macrophages became more permissive for bacterial replication than untreated cells and showed increased numbers of Legionella-containing vacuoles and reduced pro-inflammatory cytokine induction. Additionally, miRNA-146a was found to be transcriptionally induced by OMVs and to facilitate bacterial replication. Accordingly, IRAK-1, one of miRNA-146a's targets, showed prolonged activation-dependent degradation, which rendered THP-1 cells more permissive for Legionella replication. In conclusion, L. pneumophila OMVs are initially potent pro-inflammatory stimulators of macrophages, acting via TLR2, IRAK-1, and NF-κB, while at later time points, OMVs facilitate L. pneumophila replication by miR-146a-dependent IRAK-1 suppression. OMVs might thereby promote spreading of L. pneumophila in the host.

  7. Insulated transcriptional elements enable precise design of genetic circuits.

    Science.gov (United States)

    Zong, Yeqing; Zhang, Haoqian M; Lyu, Cheng; Ji, Xiangyu; Hou, Junran; Guo, Xian; Ouyang, Qi; Lou, Chunbo

    2017-07-03

    Rational engineering of biological systems is often complicated by the complex but unwanted interactions between cellular components at multiple levels. Here we address this issue at the level of prokaryotic transcription by insulating minimal promoters and operators to prevent their interaction and enable the biophysical modeling of synthetic transcription without free parameters. This approach allows genetic circuit design with extraordinary precision and diversity, and consequently simplifies the design-build-test-learn cycle of circuit engineering to a mix-and-match workflow. As a demonstration, combinatorial promoters encoding NOT-gate functions were designed from scratch with mean errors of 96% using our insulated transcription elements. Furthermore, four-node transcriptional networks with incoherent feed-forward loops that execute stripe-forming functions were obtained without any trial-and-error work. This insulation-based engineering strategy improves the resolution of genetic circuit technology and provides a simple approach for designing genetic circuits for systems and synthetic biology.Unwanted interactions between cellular components can complicate rational engineering of biological systems. Here the authors design insulated minimal promoters and operators that enable biophysical modeling of bacterial transcription without free parameters for precise circuit design.

  8. Modeling the integration of bacterial rRNA fragments into the human cancer genome.

    Science.gov (United States)

    Sieber, Karsten B; Gajer, Pawel; Dunning Hotopp, Julie C

    2016-03-21

    Cancer is a disease driven by the accumulation of genomic alterations, including the integration of exogenous DNA into the human somatic genome. We previously identified in silico evidence of DNA fragments from a Pseudomonas-like bacteria integrating into the 5'-UTR of four proto-oncogenes in stomach cancer sequencing data. The functional and biological consequences of these bacterial DNA integrations remain unknown. Modeling of these integrations suggests that the previously identified sequences cover most of the sequence flanking the junction between the bacterial and human DNA. Further examination of these reads reveals that these integrations are rich in guanine nucleotides and the integrated bacterial DNA may have complex transcript secondary structures. The models presented here lay the foundation for future experiments to test if bacterial DNA integrations alter the transcription of the human genes.

  9. Radiometric detection of bacterial metabolism

    International Nuclear Information System (INIS)

    Camargo, E.E.; Wagner Junior, H.N.

    1979-01-01

    The measurement of 14 CO 2 produced by the bacterial oxidation of labelled compounds is discussed as a means of evaluating the bacterial metabolism. The following items are discussed:automated radiometric detection, types of graphs, clinical applications of the radiometric system and influential factors. Complementary studies on bacterial assimilation of substances are presented. (M.A.) [pt

  10. Initial Study

    DEFF Research Database (Denmark)

    Torp, Kristian

    2009-01-01

    Congestion is a major problem in most cities and the problem is growing (Quiroga, 2000) (Faghri & Hamad, 2002). When the congestion level is increased the drivers notice this as delays in the traffic (Taylor, Woolley, & Zito, 2000), i.e., the travel time for the individual driver is simply...... increased. In the initial study presented here, the time it takes to pass an intersection is studied in details. Two major signal-controlled four-way intersections in the center of the city Aalborg are studied in details to estimate the congestion levels in these intersections, based on the time it takes...

  11. TcoF-DB: dragon database for human transcription co-factors and transcription factor interacting proteins

    KAUST Repository

    Schaefer, Ulf

    2010-10-21

    The initiation and regulation of transcription in eukaryotes is complex and involves a large number of transcription factors (TFs), which are known to bind to the regulatory regions of eukaryotic DNA. Apart from TF-DNA binding, protein-protein interaction involving TFs is an essential component of the machinery facilitating transcriptional regulation. Proteins that interact with TFs in the context of transcription regulation but do not bind to the DNA themselves, we consider transcription co-factors (TcoFs). The influence of TcoFs on transcriptional regulation and initiation, although indirect, has been shown to be significant with the functionality of TFs strongly influenced by the presence of TcoFs. While the role of TFs and their interaction with regulatory DNA regions has been well-studied, the association between TFs and TcoFs has so far been given less attention. Here, we present a resource that is comprised of a collection of human TFs and the TcoFs with which they interact. Other proteins that have a proven interaction with a TF, but are not considered TcoFs are also included. Our database contains 157 high-confidence TcoFs and additionally 379 hypothetical TcoFs. These have been identified and classified according to the type of available evidence for their involvement in transcriptional regulation and their presence in the cell nucleus. We have divided TcoFs into four groups, one of which contains high-confidence TcoFs and three others contain TcoFs which are hypothetical to different extents. We have developed the Dragon Database for Human Transcription Co-Factors and Transcription Factor Interacting Proteins (TcoF-DB). A web-based interface for this resource can be freely accessed at http://cbrc.kaust.edu.sa/tcof/ and http://apps.sanbi.ac.za/tcof/. © The Author(s) 2010.

  12. Negative elongation factor NELF controls transcription of immediate early genes in a stimulus-specific manner

    International Nuclear Information System (INIS)

    Fujita, Toshitsugu; Piuz, Isabelle; Schlegel, Werner

    2009-01-01

    The transcription rate of immediate early genes (IEGs) is controlled directly by transcription elongation factors at the transcription elongation step. Negative elongation factor (NELF) and 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) stall RNA polymerase II (pol II) soon after transcription initiation. Upon induction of IEG transcription, DSIF is converted into an accelerator for pol II elongation. To address whether and how NELF as well as DSIF controls overall IEG transcription, its expression was reduced using stable RNA interference in GH4C1 cells. NELF knock-down reduced thyrotropin-releasing hormone (TRH)-induced transcription of the IEGs c-fos, MKP-1, and junB. In contrast, epidermal growth factor (EGF)-induced transcription of these IEGs was unaltered or even slightly increased by NELF knock-down. Thus, stable knock-down of NELF affects IEG transcription stimulation-specifically. Conversely, DSIF knock-down reduced both TRH- and EGF-induced transcription of the three IEGs. Interestingly, TRH-induced activation of the MAP kinase pathway, a pathway essential for transcription of the three IEGs, was down-regulated by NELF knock-down. Thus, stable knock-down of NELF, by modulating intracellular signaling pathways, caused stimulation-specific loss of IEG transcription. These observations indicate that NELF controls overall IEG transcription via multiple mechanisms both directly and indirectly

  13. Orchestration of floral initiation by APETALA1.

    Science.gov (United States)

    Kaufmann, Kerstin; Wellmer, Frank; Muiño, Jose M; Ferrier, Thilia; Wuest, Samuel E; Kumar, Vijaya; Serrano-Mislata, Antonio; Madueño, Francisco; Krajewski, Pawel; Meyerowitz, Elliot M; Angenent, Gerco C; Riechmann, José Luis

    2010-04-02

    The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of Arabidopsis flower development. To understand the molecular mechanisms underlying AP1 function, we identified its target genes during floral initiation using a combination of gene expression profiling and genome-wide binding studies. Many of its targets encode transcriptional regulators, including known floral repressors. The latter genes are down-regulated by AP1, suggesting that it initiates floral development by abrogating the inhibitory effects of these genes. Although AP1 acts predominantly as a transcriptional repressor during the earliest stages of flower development, at more advanced stages it also activates regulatory genes required for floral organ formation, indicating a dynamic mode of action. Our results further imply that AP1 orchestrates floral initiation by integrating growth, patterning, and hormonal pathways.

  14. Human mediator subunit MED15 promotes transcriptional activation.

    Science.gov (United States)

    Nakatsubo, Takuya; Nishitani, Saori; Kikuchi, Yuko; Iida, Satoshi; Yamada, Kana; Tanaka, Aki; Ohkuma, Yoshiaki

    2014-10-01

    In eukaryotes, the Mediator complex is an essential transcriptional cofactor of RNA polymerase II (Pol II). In humans, it contains up to 30 subunits and consists of four modules: head, middle, tail, and CDK/Cyclin. One of the subunits, MED15, is located in the tail module, and was initially identified as Gal11 in budding yeast, where it plays an essential role in the transcriptional regulation of galactose metabolism with the potent transcriptional activator Gal4. For this reason, we investigated the function of the human MED15 subunit (hMED15) in transcriptional activation. First, we measured the effect of hMED15 knockdown on cell growth in HeLa cells. The growth rate was greatly reduced. By immunostaining, we observed the colocalization of hMED15 with the general transcription factors TFIIE and TFIIH in the nucleus. We measured the effects of siRNA-mediated knockdown of hMED15 on transcriptional activation using two different transcriptional activators, VP16 and SREBP1a. Treatment with siRNAs reduced transcriptional activation, and this reduction could be rescued by overexpression of HA/Flag-tagged, wild-type hMED15. To investigate hMED15 localization, we treated human MCF-7 cells with the MDM2 inhibitor Nutlin-3, thus inducing p21 transcription. We found that hMED15 localized to both the p53 binding site and the p21 promoter region, along with TFIIE and TFIIH. These results indicate that hMED15 promotes transcriptional activation.

  15. Bacterial Cell Wall Components

    Science.gov (United States)

    Ginsberg, Cynthia; Brown, Stephanie; Walker, Suzanne

    Bacterial cell-surface polysaccharides cells are surrounded by a variety of cell-surface structures that allow them to thrive in extreme environments. Components of the cell envelope and extracellular matrix are responsible for providing the cells with structural support, mediating intercellular communication, allowing the cells to move or to adhere to surfaces, protecting the cells from attack by antibiotics or the immune system, and facilitating the uptake of nutrients. Some of the most important cell wall components are polysaccharide structures. This review discusses the occurrence, structure, function, and biosynthesis of the most prevalent bacterial cell surface polysaccharides: peptidoglycan, lipopolysaccharide, arabinogalactan, and lipoarabinomannan, and capsular and extracellular polysaccharides. The roles of these polysaccharides in medicine, both as drug targets and as therapeutic agents, are also described.

  16. Bacterial meningitis in Nottingham.

    OpenAIRE

    Ispahani, P.

    1983-01-01

    Records of 171 cases of bacterial meningitis admitted to Nottingham hospitals from January 1974 to June 1980 were reviewed. The distribution of organisms producing meningitis and the factors influencing mortality in different age groups were assessed. Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae accounted for 69% of all proven cases. The overall mortality was 26% being lowest in patients with meningococcal meningitis (0%) and highest in those with pneumococcal m...

  17. [Acute care of patients with bacterial meningitis].

    Science.gov (United States)

    Stetefeld, H R; Dohmen, C

    2016-04-01

    Bacterial meningitis is a life-threatening emergency that is still associated with high mortality and poor outcome. The purpose of this article is to provide a review of clinical presentation, diagnostic procedure, therapy, and prognosis in bacterial meningitis. Prognostic factors which could be influenced positively are identified and a focused procedure in the emergency setting and for the treatment of complications are provided. This work is based on a literature search (PubMed, guidelines) and personal experience (standard operating procedures, SOP). Despite improved health care, bacterial meningitis is still associated with high mortality and poor neurological outcome, which has remained largely unaltered during recent decades. Diagnosis and, more importantly, effective therapy of bacterial meningitis are often delayed, having an immediate negative influence on clinical outcome. Neurological and nonneurological complications often necessitate intensive care and may occur rapidly or in the further course of the disease. Immediate initiation of effective therapy is crucial to positively influence mortality and neurological outcome. Antibiotics should be administered within 30 min after admission. To achieve this, a focused and well-organized procedure in the emergency setting is necessary. Because of intra- and extracranial complications, patients need to be treated on intensive care units including neurological expertise and interdisciplinary support.

  18. Neglected bacterial zoonoses.

    Science.gov (United States)

    Chikeka, I; Dumler, J S

    2015-05-01

    Bacterial zoonoses comprise a group of diseases in humans or animals acquired by direct contact with or by oral consumption of contaminated animal materials, or via arthropod vectors. Among neglected infections, bacterial zoonoses are among the most neglected given emerging data on incidence and prevalence as causes of acute febrile illness, even in areas where recognized neglected tropical diseases occur frequently. Although many other bacterial infections could also be considered in this neglected category, five distinct infections stand out because they are globally distributed, are acute febrile diseases, have high rates of morbidity and case fatality, and are reported as commonly as malaria, typhoid or dengue virus infections in carefully designed studies in which broad-spectrum diagnoses are actively sought. This review will focus attention on leptospirosis, relapsing fever borreliosis and rickettsioses, including scrub typhus, murine typhus and spotted fever group rickettsiosis. Of greatest interest is the lack of distinguishing clinical features among these infections when in humans, which confounds diagnosis where laboratory confirmation is lacking, and in regions where clinical diagnosis is often attributed to one of several perceived more common threats. As diseases such as malaria come under improved control, the real impact of these common and under-recognized infections will become evident, as will the requirement for the strategies and allocation of resources for their control. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Bacterial growth kinetics

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, J.C.; Kirchner, P.T.

    1989-01-01

    Quantitative measurement of bacterial growth may be made using a radioassay technique. This method measures, by scintillation counting, the 14 CO 2 derived from the bacterial metabolism of a 14 C-labeled substrate. Mathematical growth models may serve as reliable tools for estimation of the generation rate constant (or slope of the growth curve) and provide a basis for evaluating assay performance. Two models, i.e., exponential and logistic, are proposed. Both models yielded an accurate fit to the data from radioactive measurement of bacterial growth. The exponential model yielded high precision values of the generation rate constant, with an average relative standard deviation of 1.2%. Under most conditions the assay demonstrated no changes in the slopes of growth curves when the number of bacteria per inoculation was changed. However, the radiometric assay by scintillation method had a growth-inhibiting effect on a few strains of bacteria. The source of this problem was thought to be hypersensitivity to trace amounts of toluene remaining on the detector

  20. Mitotic bookmarking by transcription factors.

    Science.gov (United States)

    Kadauke, Stephan; Blobel, Gerd A

    2013-04-02

    Mitosis is accompanied by dramatic changes in chromatin organization and nuclear architecture. Transcription halts globally and most sequence-specific transcription factors and co-factors are ejected from mitotic chromatin. How then does the cell maintain its transcriptional identity throughout the cell division cycle? It has become clear that not all traces of active transcription and gene repression are erased within mitotic chromatin. Many histone modifications are stable or only partially diminished throughout mitosis. In addition, some sequence-specific DNA binding factors have emerged that remain bound to select sites within mitotic chromatin, raising the possibility that they function to transmit regulatory information through the transcriptionally silent mitotic phase, a concept that has been termed "mitotic bookmarking." Here we review recent approaches to studying potential bookmarking factors with regards to their mitotic partitioning, and summarize emerging ideas concerning the in vivo functions of mitotically bound nuclear factors.

  1. First Exon Length Controls Active Chromatin Signatures and Transcription

    Directory of Open Access Journals (Sweden)

    Nicole I. Bieberstein

    2012-07-01

    Full Text Available Here, we explore the role of splicing in transcription, employing both genome-wide analysis of human ChIP-seq data and experimental manipulation of exon-intron organization in transgenic cell lines. We show that the activating histone modifications H3K4me3 and H3K9ac map specifically to first exon-intron boundaries. This is surprising, because these marks help recruit general transcription factors (GTFs to promoters. In genes with long first exons, promoter-proximal levels of H3K4me3 and H3K9ac are greatly reduced; consequently, GTFs and RNA polymerase II are low at transcription start sites (TSSs and exhibit a second, promoter-distal peak from which transcription also initiates. In contrast, short first exons lead to increased H3K4me3 and H3K9ac at promoters, higher expression levels, accuracy in TSS usage, and a lower frequency of antisense transcription. Therefore, first exon length is predictive for gene activity. Finally, splicing inhibition and intron deletion reduce H3K4me3 levels and transcriptional output. Thus, gene architecture and splicing determines transcription quantity and quality as well as chromatin signatures.

  2. MicroRNA-146a regulates both transcription silencing and translation disruption of TNF-α during TLR4-induced gene reprogramming.

    Science.gov (United States)

    El Gazzar, Mohamed; Church, Ashley; Liu, Tiefu; McCall, Charles E

    2011-09-01

    Following the TLR-dependent initiation phase of acute systemic proinflammatory responses such as sepsis, an adaptive phase represses or activates a specific pattern of gene expression until the inflammation resolves. Here, we used the THP-1 sepsis cell model of bacterial LPS/endotoxin tolerance to show that TLR4-induced miR-146a supports the feed-forward adaptive processes that silence transcription and disrupt translation of acute proinflammatory genes. First, we found that miR-146a regulates a pathway that promotes the binding of transcription repressor RelB to the TNF-α promoter, a step known to precede histone and DNA modifications, which generate facultative heterochromatin to silence acute proinflammatory genes. However, once RelB binding occurred, miR-146a inhibition could not reverse compacted chromatin, and endotoxin tolerance persisted. Second, we observed that miR-146a regulates a pathway that supports assembly of the translation repressor complex of TNF-α by preventing the interaction of the RNA-binding protein effector Ago2 and RBM4. We also determined that once endotoxin tolerance is established, and specific genes have been reprogrammed, transcription and translation disruption can be reversed only by simultaneously depleting RelB and inhibiting miR-146a. Thus, miR-146a induction supports the TLR4-dependent shift from initiation to gene-specific repression at two levels. Our results also imply that therapies designed to reverse endotoxin tolerance as potential therapies for sepsis should be directed at the transcription and translation pathways of reprogramming.

  3. Integrated transcriptional and metabolic profiling in human endotoxemia.

    Science.gov (United States)

    Kamisoglu, Kubra; Calvano, Steve E; Coyle, Susette M; Corbett, Siobhan A; Androulakis, Ioannis P

    2014-12-01

    In this meta-study, we aimed to integrate biological insights gained from two levels of -omics analyses on the response to systemic inflammation induced by lipopolysaccharide in humans. We characterized the interplay between plasma metabolite compositions and transcriptional response of leukocytes through integration of transcriptomics with plasma metabonomics. We hypothesized that the drastic changes in the immediate environment of the leukocytes might have an adaptive effect on shaping their transcriptional response in conjunction with the initial inflammatory stimuli. Indeed, we observed that leukocytes, most notably, tune the activity of lipid- and protein-associated processes at the transcriptional level in accordance with the fluctuations in metabolite compositions of surrounding plasma. A closer look into the transcriptional control of only metabolic pathways uncovered alterations in bioenergetics and defenses against oxidative stress closely associated with mitochondrial dysfunction and shifts in energy production observed during inflammatory processes.

  4. Dynamic usage of transcription start sites within core promoters

    DEFF Research Database (Denmark)

    Kawaji, Hideya; Frith, Martin C; Katayama, Shintaro

    2006-01-01

    BACKGROUND: Mammalian promoters do not initiate transcription at single, well defined base pairs, but rather at multiple, alternative start sites spread across a region. We previously characterized the static structures of transcription start site usage within promoters at the base pair level......, based on large-scale sequencing of transcript 5' ends. RESULTS: In the present study we begin to explore the internal dynamics of mammalian promoters, and demonstrate that start site selection within many mouse core promoters varies among tissues. We also show that this dynamic usage of start sites...... is associated with CpG islands, broad and multimodal promoter structures, and imprinting. CONCLUSION: Our results reveal a new level of biologic complexity within promoters--fine-scale regulation of transcription starting events at the base pair level. These events are likely to be related to epigenetic...

  5. Regulation of the Hippo Pathway Transcription Factor TEAD.

    Science.gov (United States)

    Lin, Kimberly C; Park, Hyun Woo; Guan, Kun-Liang

    2017-11-01

    The TEAD transcription factor family is best known for transcriptional output of the Hippo signaling pathway and has been implicated in processes such as development, cell growth and proliferation, tissue homeostasis, and regeneration. Our understanding of the functional importance of TEADs has increased dramatically since its initial discovery three decades ago. The majority of our knowledge of TEADs is in the context of Hippo signaling as nuclear DNA-binding proteins passively activated by Yes-associated protein (YAP) and transcriptional activator with PDZ-binding domain (TAZ), transcription coactivators downstream of the Hippo pathway. However, recent studies suggest that TEAD itself is actively regulated. Here, we highlight evidence demonstrating Hippo-independent regulation of TEADs and the potential impacts these studies may have on new cancer therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. CprK crystal structures reveal mechanism for transcriptional control of halorespiration

    NARCIS (Netherlands)

    Joyce, M.G.; Levy, C.; Gabor, K.; Pop, S.M.; Biehl, B.D.; Doukov, T.I.; Ryter, J.M.; Mazon, H.; Smidt, H.; Heuvel, van den R.H.H.; Ragsdale, S.W.; Oost, van der J.; Leys, D.

    2006-01-01

    Halorespiration is a bacterial respiratory process in which haloorganic compounds act as terminal electron acceptors. This process is controlled at transcriptional level by CprK, a member of the ubiquitous CRP-FNR family. Here we present the crystal structures of oxidized CprK in presence of the

  7. 21 CFR 12.98 - Official transcript.

    Science.gov (United States)

    2010-04-01

    ..., participants, and counsel have 30 days from the time the transcript becomes available to propose corrections in the transcript of oral testimony. Corrections are permitted only for transcription errors. The... a verbatim stenographic transcript of oral testimony and for necessary copies of the transcript. (b...

  8. Insights into mRNP biogenesis provided by new genetic interactions among export and transcription factors.

    Science.gov (United States)

    Estruch, Francisco; Hodge, Christine; Gómez-Navarro, Natalia; Peiró-Chova, Lorena; Heath, Catherine V; Cole, Charles N

    2012-09-10

    The various steps of mRNP biogenesis (transcription, processing and export) are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the phenotypes of mRNA export mutant strains. Our results show that growth and mRNA export defects of dbp5 and mex67 mutant strains can be suppressed by mutation of specific transcription initiation components, but suppression was not observed for mutants acting in the very first steps of the pre-initiation complex (PIC) formation. Our results indicate that mere reduction in the amount of mRNP produced is not sufficient to suppress the defects caused by a defective mRNA export factor. Suppression occurs only with mutants affecting events within a narrow window of the mRNP biogenesis process. We propose that reducing the speed with which transcription converts from initiation and promoter clearance to elongation may have a positive effect on mRNP formation by permitting more effective recruitment of partially-functional mRNP proteins to the nascent mRNP.

  9. Openness initiative

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, S.S. [Los Alamos National Lab., NM (United States)

    1995-12-31

    Although antinuclear campaigns seem to be effective, public communication and education efforts on low-level radioactive waste have mixed results. Attempts at public information programs on low-level radioactive waste still focus on influencing public opinion. A question then is: {open_quotes}Is it preferable to have a program focus on public education that will empower individuals to make informed decisions rather than trying to influence them in their decisions?{close_quotes} To address this question, a case study with both quantitative and qualitative data will be used. The Ohio Low-Level Radioactive Waste Education Program has a goal to provide people with information they want/need to make their own decisions. The program initiated its efforts by conducting a statewide survey to determine information needed by people and where they turned for that information. This presentation reports data from the survey and then explores the program development process in which programs were designed and presented using the information. Pre and post data from the programs reveal attitude and knowledge shifts.

  10. Bacterial microleakage of Cavit, IRM, and TERM.

    Science.gov (United States)

    Deveaux, E; Hildelbert, P; Neut, C; Boniface, B; Romond, C

    1992-11-01

    In this in vitro study, a model system was developed and tested to evaluate the sealing ability of temporary restorative materials used in endodontic access preparations. The materials studied, Cavit, IRM, and TERM, were tested on 40 premolars against a known bacterial species, Streptococcus sanguis. The leakage of bacterial cells was checked 4 and 8 days after initial immersion in the culture. Thermocycling was introduced on the fourth day. After 8 days the cement thicknesses were measured after the teeth had been longitudinally sectioned. Before and after thermocycling, IRM was less leakproof than Cavit (p Cavit, whereas TERM remained leakproof. The thicknesses were as follows: Cavit, 3.73 mm; IRM, 3.45 mm; and TERM, 5.49 mm. There was no statistically significant relationship between thickness and tightness.

  11. Bacterial Dissemination to the Brain in Sepsis.

    Science.gov (United States)

    Singer, Benjamin H; Dickson, Robert P; Denstaedt, Scott J; Newstead, Michael W; Kim, Kwi; Falkowski, Nicole R; Erb-Downward, John R; Schmidt, Thomas M; Huffnagle, Gary B; Standiford, Theodore J

    2018-03-15

    Sepsis causes brain dysfunction and neuroinflammation. It is unknown whether neuroinflammation in sepsis is initiated by dissemination of bacteria to the brain and sustained by persistent infection, or whether neuroinflammation is a sterile process resulting solely from circulating inflammatory mediators. To determine if gut bacteria translocate to the brain during sepsis, and are associated with neuroinflammation. Murine sepsis was induced using cecal ligation and puncture, and sepsis survivor mice were compared with sham and unoperated control animals. Brain tissue of patients who died of sepsis was compared with patients who died of noninfectious causes. Bacterial taxa were characterized by 16S ribosomal RNA gene sequencing in both murine and human brain specimens; compared among sepsis and nonsepsis groups; and correlated with levels of S100A8, a marker of neuroinflammation using permutational multivariate ANOVA. Viable gut-associated bacteria were enriched in the brains of mice 5 days after surviving abdominal sepsis (P < 0.01), and undetectable by 14 days. The community structure of brain-associated bacteria correlated with severity of neuroinflammation (P < 0.001). Furthermore, bacterial taxa detected in brains of humans who die of sepsis were distinct from those who died of noninfectious causes (P < 0.001) and correlated with S100A8/A9 expression (P < 0.05). Although bacterial translocation is associated with acute neuroinflammation in murine sepsis, bacterial translocation did not result in chronic cerebral infection. Postmortem analysis of patients who die of sepsis suggests a role for bacteria in acute brain dysfunction in sepsis. Further work is needed to determine if modifying gut-associated bacterial communities modulates brain dysfunction after sepsis.

  12. Radiology of bacterial pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Jose E-mail: vilar_jlu@gva.es; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-08-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings.

  13. Radiology of bacterial pneumonia

    International Nuclear Information System (INIS)

    Vilar, Jose; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-01-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings

  14. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering

    DEFF Research Database (Denmark)

    Dossani, Zain Y.; Apel, Amanda Reider; Szmidt-Middleton, Heather

    2018-01-01

    . Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domain of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes...... regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein...... levels, using the same synthetic TF and a given estradiol. This set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain....

  15. Bacterial Degradation of Pesticides

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær

    This PhD project was carried out as part of the Microbial Remediation of Contaminated Soil and Water Resources (MIRESOWA) project, funded by the Danish Council for Strategic Research (grant number 2104-08-0012). The environment is contaminated with various xenobiotic compounds e.g. pesticides......D student, to construct fungal-bacterial consortia in order to potentially stimulate pesticide degradation thereby increasing the chance of successful bioaugmentation. The results of the project are reported in three article manuscripts, included in this thesis. In manuscript I, the mineralization of 2...

  16. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the Par......M protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome....

  17. Changes in bacterial meningitis.

    OpenAIRE

    Carter, P E; Barclay, S M; Galloway, W H; Cole, G F

    1990-01-01

    In 1964, one of us (WHG) undertook a retrospective study of bacterial meningitis in childhood in the north east of Scotland during the period 1946-61. We have recently carried out a similar review of cases occurring during 1971-86, to compare the incidence, mortality, and bacteriological patterns. During the earlier period 285 cases occurred, a total incidence of 16.9/100,000 children per year. In the later period 274 children were affected, an annual incidence of 17.8/100,000. The overall mo...

  18. A Transcription and Translation Protocol for Sensitive Cross-Cultural Team Research.

    Science.gov (United States)

    Clark, Lauren; Birkhead, Ana Sanchez; Fernandez, Cecilia; Egger, Marlene J

    2017-10-01

    Assurance of transcript accuracy and quality in interview-based qualitative research is foundational for data accuracy and study validity. Based on our experience in a cross-cultural ethnographic study of women's pelvic organ prolapse, we provide practical guidance to set up step-by-step interview transcription and translation protocols for team-based research on sensitive topics. Beginning with team decisions about level of detail in transcription, completeness, and accuracy, we operationalize the process of securing vendors to deliver the required quality of transcription and translation. We also share rubrics for assessing transcript quality and the team protocol for managing transcripts (assuring consistency of format, insertion of metadata, anonymization, and file labeling conventions) and procuring an acceptable initial translation of Spanish-language interviews. Accurate, complete, and systematically constructed transcripts in both source and target languages respond to the call for more transparency and reproducibility of scientific methods.

  19. Herpesviral-bacterial coinfection in periapical pathosis.

    Science.gov (United States)

    Sabeti, Mohammad; Slots, Jørgen

    2004-02-01

    Two members of the herpesvirus family, human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV), seem to be important putative pathogens of human periodontitis and symptomatic periapical lesions, causing pathosis either by inducing immunosuppression with a subsequent risk of aggressive bacterial infections or by infecting of periodontal cells directly. This study aimed to relate periapical occurrence of HCMV, EBV, and herpes simplex virus active infections to clinical characteristics of periapical lesions and periapical bacterial flora. Microbial samples were collected from 34 periapical lesions in conjunction with periapical surgery. Part of the periapical specimen was frozen for virologic examination, and another part was transferred to anaerobic transport medium for bacteriologic examination. RNA was isolated by means of a guanidinium isothiocyanate-acid phenol procedure, and cDNA was produced using herpesvirus-specific primers and reverse-transcription polymerase chain reaction amplification. Bacteriologic examination was performed according to established anaerobic culture methods. Of the 34 periapical lesions studied, 20 showed both HCMV and EBV, seven showed only HCMV, one showed only EBV, and six showed neither HCMV nor EBV. Herpes simplex virus was detected in two lesions. Higher occurrence of herpesvirus was detected in large versus small periapical lesions (p aggressive types of periapical pathosis in humans.

  20. Chromosomal contact permits transcription between coregulated genes

    CSIR Research Space (South Africa)

    Fanucchi, Stephanie

    2013-10-01

    Full Text Available Transcription of coregulated genes occurs in the context of long-range chromosomal contacts that form multigene complexes. Such contacts and transcription are lost in knockout studies of transcription factors and structural chromatin proteins...

  1. RNA search engines empower the bacterial intranet.

    Science.gov (United States)

    Dendooven, Tom; Luisi, Ben F

    2017-08-15

    RNA acts not only as an information bearer in the biogenesis of proteins from genes, but also as a regulator that participates in the control of gene expression. In bacteria, small RNA molecules (sRNAs) play controlling roles in numerous processes and help to orchestrate complex regulatory networks. Such processes include cell growth and development, response to stress and metabolic change, transcription termination, cell-to-cell communication, and the launching of programmes for host invasion. All these processes require recognition of target messenger RNAs by the sRNAs. This review summarizes recent results that have provided insights into how bacterial sRNAs are recruited into effector ribonucleoprotein complexes that can seek out and act upon target transcripts. The results hint at how sRNAs and their protein partners act as pattern-matching search engines that efficaciously regulate gene expression, by performing with specificity and speed while avoiding off-target effects. The requirements for efficient searches of RNA patterns appear to be common to all domains of life. © 2017 The Author(s).

  2. Transcriptional control of megakaryocyte development.

    Science.gov (United States)

    Goldfarb, A N

    2007-10-15

    Megakaryocytes are highly specialized cells that arise from a bipotent megakaryocytic-erythroid progenitor (MEP). This developmental leap requires coordinated activation of megakaryocyte-specific genes, radical changes in cell cycle properties, and active prevention of erythroid differentiation. These programs result from upregulation of megakaryocyte-selective transcription factors, downregulation of erythroid-selective transcription factors and ongoing mediation of common erythro-megakaryocytic transcription factors. Unlike most developmental programs, no single lineage-unique family of master regulators exerts executive control over the megakaryocytic plan. Rather, an assemblage of non-unique factors and signals converge to determine lineage and differentiation. In human megakaryopoiesis, hereditary disorders of platelet production have confirmed contributions from three distinct transcription factor families. Murine models have extended this repertoire to include multiple additional factors. At a mechanistic level, the means by which these non-unique factors collaborate in the establishment of a perfectly unique cell type remains a central question.

  3. Transcriptional Silencing of Retroviral Vectors

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M.; Pedersen, F.S.

    1996-01-01

    Although retroviral vector systems have been found to efficiently transduce a variety of cell types in vitro, the use of vectors based on murine leukemia virus in preclinical models of somatic gene therapy has led to the identification of transcriptional silencing in vivo as an important problem....... Extinction of long-term vector expression has been observed after implantation of transduced hematopoietic cells as well as fibroblasts, myoblasts and hepatocytes. Here we review the influence of vector structure, integration site and cell type on transcriptional silencing. While down-regulation of proviral...... transcription is known from a number of cellular and animal models, major insight has been gained from studies in the germ line and embryonal cells of the mouse. Key elements for the transfer and expression of retroviral vectors, such as the viral transcriptional enhancer and the binding site for the t...

  4. RNA-guided transcriptional regulation

    Science.gov (United States)

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  5. Evolution of transcriptional regulation in closely related bacteria

    Directory of Open Access Journals (Sweden)

    Tsoy Olga V

    2012-10-01

    Full Text Available Abstract Background The exponential growth of the number of fully sequenced genomes at varying taxonomic closeness allows one to characterize transcriptional regulation using comparative-genomics analysis instead of time-consuming experimental methods. A transcriptional regulatory unit consists of a transcription factor, its binding site and a regulated gene. These units constitute a graph which contains so-called “network motifs”, subgraphs of a given structure. Here we consider genomes of closely related Enterobacteriales and estimate the fraction of conserved network motifs and sites as well as positions under selection in various types of non-coding regions. Results Using a newly developed technique, we found that the highest fraction of positions under selection, approximately 50%, was observed in synvergon spacers (between consecutive genes from the same strand, followed by ~45% in divergon spacers (common 5’-regions, and ~10% in convergon spacers (common 3’-regions. The fraction of selected positions in functional regions was higher, 60% in transcription factor-binding sites and ~45% in terminators and promoters. Small, but significant differences were observed between Escherichia coli and Salmonella enterica. This fraction is similar to the one observed in eukaryotes. The conservation of binding sites demonstrated some differences between types of regulatory units. In E. coli, strains the interactions of the type “local transcriptional factor gene” turned out to be more conserved in feed-forward loops (FFLs compared to non-motif interactions. The coherent FFLs tend to be less conserved than the incoherent FFLs. A natural explanation is that the former imply functional redundancy. Conclusions A naïve hypothesis that FFL would be highly conserved turned out to be not entirely true: its conservation depends on its status in the transcriptional network and also from its usage. The fraction of positions under selection in

  6. Animal Models of Bacterial Keratitis

    Science.gov (United States)

    Marquart, Mary E.

    2011-01-01

    Bacterial keratitis is a disease of the cornea characterized by pain, redness, inflammation, and opacity. Common causes of this disease are Pseudomonas aeruginosa and Staphylococcus aureus. Animal models of keratitis have been used to elucidate both the bacterial factors and the host inflammatory response involved in the disease. Reviewed herein are animal models of bacterial keratitis and some of the key findings in the last several decades. PMID:21274270

  7. Concentration and length dependence of DNA looping in transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Lin Han

    2009-05-01

    Full Text Available In many cases, transcriptional regulation involves the binding of transcription factors at sites on the DNA that are not immediately adjacent to the promoter of interest. This action at a distance is often mediated by the formation of DNA loops: Binding at two or more sites on the DNA results in the formation of a loop, which can bring the transcription factor into the immediate neighborhood of the relevant promoter. These processes are important in settings ranging from the historic bacterial examples (bacterial metabolism and the lytic-lysogeny decision in bacteriophage, to the modern concept of gene regulation to regulatory processes central to pattern formation during development of multicellular organisms. Though there have been a variety of insights into the combinatorial aspects of transcriptional control, the mechanism of DNA looping as an agent of combinatorial control in both prokaryotes and eukaryotes remains unclear. We use single-molecule techniques to dissect DNA looping in the lac operon. In particular, we measure the propensity for DNA looping by the Lac repressor as a function of the concentration of repressor protein and as a function of the distance between repressor binding sites. As with earlier single-molecule studies, we find (at least two distinct looped states and demonstrate that the presence of these two states depends both upon the concentration of repressor protein and the distance between the two repressor binding sites. We find that loops form even at interoperator spacings considerably shorter than the DNA persistence length, without the intervention of any other proteins to prebend the DNA. The concentration measurements also permit us to use a simple statistical mechanical model of DNA loop formation to determine the free energy of DNA looping, or equivalently, the for looping.

  8. Engineering transcriptional regulation to control Pdu microcompartment formation.

    Directory of Open Access Journals (Sweden)

    Edward Y Kim

    Full Text Available Bacterial microcompartments (MCPs show great promise for the organization of engineered metabolic pathways within the bacterial cytoplasm. This subcellular organelle is composed of a protein shell of 100-200 nm diameter that natively encapsulates multi-enzyme pathways. The high energy cost of synthesizing the thousands of protein subunits required for each MCP demands precise regulation of MCP formation for both native and engineered systems. Here, we study the regulation of the propanediol utilization (Pdu MCP, for which growth on 1,2-propanediol induces expression of the Pdu operon for the catabolism of 1,2-propanediol. We construct a fluorescence-based transcriptional reporter to investigate the activation of the Ppdu promoter, which drives the transcription of 21 pdu genes. Guided by this reporter, we find that MCPs can be expressed in strains grown in rich media, provided that glucose is not present. We also characterize the response of the Ppdu promoter to a transcriptional activator of the pdu operon, PocR, and find PocR to be a necessary component of Pdu MCP formation. Furthermore, we find that MCPs form normally upon the heterologous expression of PocR even in the absence of the natural inducer 1,2-propanediol and in the presence of glucose, and that Pdu MCPs formed in response to heterologous PocR expression can metabolize 1,2-propanediol in vivo. We anticipate that this technique of overexpressing a key transcription factor may be used to study and engineer the formation, size, and/or number of MCPs for the Pdu and related MCP systems.

  9. National Capital Planning Commission Meeting Transcripts

    Data.gov (United States)

    National Capital Planning Commission — Transcripts of the monthly (with the exception of August) National Capital Planning Commission meeting transcripts are provided for research to confirm actions taken...

  10. Characterization of the LysR-type transcriptional regulator YcjZ-like from Xylella fastidiosa overexpressed in Escherichia coli.

    Science.gov (United States)

    Santiago, André S; Santos, Clelton A; Mendes, Juliano S; Toledo, Marcelo A S; Beloti, Lilian L; Souza, Alessandra A; Souza, Anete P

    2015-09-01

    The Xylella fastidiosa 9a5c strain is a xylem-limited phytopathogen that is the causal agent of citrus variegated chlorosis (CVC). This bacterium is able to form a biofilm and occlude the xylem vessels of susceptible plants, which leads to significant agricultural and economic losses. Biofilms are associated with bacterial pathogenicity because they are very resistant to antibiotics and other metal-based chemicals that are used in agriculture. The X. fastidiosa YcjZ-like (XfYcjZ-like) protein belongs to the LysR-type transcriptional regulator (LTTR) family and is involved in various cellular functions that range from quorum sensing to bacterial survival. In the present study, we report the cloning, expression and purification of XfYcjZ-like, which was overexpressed in Escherichia coli. The secondary folding of the recombinant and purified protein was assessed by circular dichroism, which revealed that XfYcjZ-like contains a typical α/β fold. An initial hydrodynamic characterization showed that XfYcjZ-like is a globular tetramer in solution. In addition, using a polyclonal antibody against XfYcjZ-like, we assessed the expression profile of this protein during the different developmental phases of X. fastidiosa in in vitro cultivated biofilm cells and demonstrated that XfYcjZ-like is upregulated in planktonic cells in response to a copper shock treatment. Finally, the ability of XfYcjZ-like to interact with its own predicted promoter was confirmed in vitro, which is a typical feature of LysR. Taken together, our findings indicated that the XfYcjZ-like protein is involved in both the organization of the architecture and the maturation of the bacterial biofilm and that it is responsive to oxidative stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    Bacteria initiate attachment to surfaces with the aid of different extracellular proteins and polymeric adhesins. To quantitatively analyse the cell-cell and cell-surface interactions provided by bacterial adhesins, it is essential to go down to single cell level where cell-to-cell variation can...... be considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...... cantilever coated with the commercial cell adhesive CellTakTM. We applied the method to study adhesion of living cells to abiotic surfaces at the single-cell level. Immobilisation of single bacterial cells to the cantilever was stable for several hours, and viability was confirmed by Live/Dead staining...

  12. Genomic structure and cloning of two transcript isoforms of human Sp8.

    NARCIS (Netherlands)

    M.A. Milona (Maria-athina); J.E. Gough (Julie); A.J. Edgar (Alasdair)

    2004-01-01

    textabstractBACKGROUND: The Specificity proteins (Sp) are a family of transcription factors that have three highly conserved zinc-fingers located towards the carboxy-terminal that bind GC-boxes and assist in the initiation of gene transcription. Human Sp1-7 genes have been

  13. Getting up to speed with transcription elongation by RNA polymerase II

    NARCIS (Netherlands)

    Jonkers, Iris; Lis, John T.

    Recent advances in sequencing techniques that measure nascent transcripts and that reveal the positioning of RNA polymerase II (Pol II) have shown that the pausing of Pol II in promoter-proximal regions and its release to initiate a phase of productive elongation are key steps in transcription

  14. Transcriptional control of DNA replication licensing by Myc

    Science.gov (United States)

    Valovka, Taras; Schönfeld, Manuela; Raffeiner, Philipp; Breuker, Kathrin; Dunzendorfer-Matt, Theresia; Hartl, Markus; Bister, Klaus

    2013-12-01

    The c-myc protooncogene encodes the Myc transcription factor, a global regulator of fundamental cellular processes. Deregulation of c-myc leads to tumorigenesis, and c-myc is an important driver in human cancer. Myc and its dimerization partner Max are bHLH-Zip DNA binding proteins involved in transcriptional regulation of target genes. Non-transcriptional functions have also been attributed to the Myc protein, notably direct interaction with the pre-replicative complex (pre-RC) controlling the initiation of DNA replication. A key component of the pre-RC is the Cdt1 protein, an essential factor in origin licensing. Here we present data suggesting that the CDT1 gene is a transcriptional target of the Myc-Max complex. Expression of the CDT1 gene in v-myc-transformed cells directly correlates with myc expression. Also, human tumor cells with elevated c-myc expression display increased CDT1 expression. Occupation of the CDT1 promoter by Myc-Max is demonstrated by chromatin immunoprecipitation, and transactivation by Myc-Max is shown in reporter assays. Ectopic expression of CDT1 leads to cell transformation. Our results provide a possible direct mechanistic link of Myc's canonical function as a transcription factor to DNA replication. Furthermore, we suggest that aberrant transcriptional activation of CDT1 by deregulated myc alleles contributes to the genomic instabilities observed in tumor cells.

  15. CTCF driven TERRA transcription facilitates completion of telomere DNA replication.

    Science.gov (United States)

    Beishline, Kate; Vladimirova, Olga; Tutton, Stephen; Wang, Zhuo; Deng, Zhong; Lieberman, Paul M

    2017-12-13

    Telomere repeat DNA forms a nucleo-protein structure that can obstruct chromosomal DNA replication, especially under conditions of replication stress. Transcription of telomere repeats can initiate at subtelomeric CTCF-binding sites to generate telomere repeat-encoding RNA (TERRA), but the role of transcription, CTCF, and TERRA in telomere replication is not known. Here, we have used CRISPR/Cas9 gene editing to mutate CTCF-binding sites at the putative start site of TERRA transcripts for a class of subtelomeres. Under replication stress, telomeres lacking CTCF-driven TERRA exhibit sister-telomere loss and upon entry into mitosis, exhibit the formation of ultra-fine anaphase bridges and micronuclei. Importantly, these phenotypes could be rescued by the forced transcription of TERRA independent of CTCF binding. Our findings indicate that subtelomeric CTCF facilitates telomeric DNA replication by promoting TERRA transcription. Our findings also demonstrate that CTCF-driven TERRA transcription acts in cis to facilitate telomere repeat replication and chromosome stability.

  16. Orchestration of floral initiation by APETALA1

    NARCIS (Netherlands)

    Kaufmann, K.; Wellmer, F.; Muino, J.M.; Ferrier, T.; Wuest, S.E.; Kumar, V.; Serrano-Mislata, A.; Madueno, F.; Krajweski, P.; Meyerowitz, E.M.; Angenent, G.C.; Riechmann, J.L.

    2010-01-01

    The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of Arabidopsis flower development. To understand the molecular mechanisms underlying AP1 function, we identified its target genes during floral initiation using a combination of gene expression profiling and genome-wide binding

  17. Orchestration of Floral Initiation by APETALA1

    NARCIS (Netherlands)

    Kaufmann, K.; Muino Acuna, J.M.

    2010-01-01

    The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of Arabidopsis flower development. To understand the molecular mechanisms underlying AP1 function, we identified its target genes during floral initiation using a combination of gene expression profiling and genome-wide binding

  18. Experimental assessment of bacterial storage yield

    DEFF Research Database (Denmark)

    Karahan-Gül, Ö.; Artan, N.; Orhon, D.

    2002-01-01

    to the amount of oxygen associated with substrate storage. Model simulation was used to evaluate the procedure for different initial experimental conditions. The procedure was tested on acetate. The same storage yield value of 0.76 gCOD/gCOD was calculated for two experiments, starting with different F/M ratios......An experimental procedure was developed for the respirometric determination of bacterial storage yield as defined in the Activated Sludge Model No. 3. The proposed approach is based on the oxygen utilization rate (OUR) profile obtained from a batch test and correlates the area under the OUR curve...

  19. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses.

    Directory of Open Access Journals (Sweden)

    Kathie-Anne Walters

    Full Text Available Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4. Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.

  20. Aerotaxis in Bacterial Turbulence

    Science.gov (United States)

    Fernandez, Vicente; Bisson, Antoine; Bitton, Cindy; Waisbord, Nicolas; Smriga, Steven; Rusconi, Roberto; Stocker, Roman

    2012-11-01

    Concentrated suspensions of motile bacteria exhibit correlated dynamics on spatial scales much larger than an individual bacterium. The resulting flows, visually similar to turbulence, can increase mixing and decrease viscosity. However, it remains unclear to what degree the collective dynamics depend on the motile behavior of bacteria at the individual level. Using a new microfluidic device to create controlled horizontal oxygen gradients, we studied the two dimensional behavior of dense suspensions of Bacillus subtilis. This system makes it possible to assess the interplay between the coherent large-scale motions of the suspension, oxygen transport, and the directional response of cells to oxygen gradients (aerotaxis). At the same time, this device has enabled us to examine the onset of bacterial turbulence and its influence on the propagation of the diffusing oxygen front, as the bacteria begin in a dormant state and transition to swimming when exposed to oxygen.

  1. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...... also shares in vivo properties of assembly and dynamics with IF proteins by forming stable filamentous structures that continuously incorporate subunits along their length and that grow in a nonpolar fashion. De novo assembly of crescentin is biphasic and involves a cell size-dependent mechanism...... a new function for MreB and providing a parallel to the role of actin in IF assembly and organization in metazoan cells. Additionally, analysis of an MreB localization mutant suggests that cell wall insertion during cell elongation normally occurs along two helices of opposite handedness, each...

  2. Bacterial polyhydroxyalkanoates: Still fabulous?

    Science.gov (United States)

    Możejko-Ciesielska, Justyna; Kiewisz, Robert

    2016-11-01

    Bacterial polyhydroxyalkanoates (PHA) are polyesters accumulated as carbon and energy storage materials under limited growth conditions in the presence of excess carbon sources. They have been developed as biomaterials with unique properties for the past many years being considered as a potential substitute for conventional non-degradable plastics. Due to the increasing concern towards global climate change, depleting petroleum resource and problems with an utilization of a growing number of synthetic plastics, PHAs have gained much more attention from industry and research. These environmentally friendly microbial polymers have great potential in biomedical, agricultural, and industrial applications. However, their production on a large scale is still limited. This paper describes the backgrounds of PHAs and discussed the current state of knowledge on the polyhydroxyalkanoates. Ability of bacteria to convert different carbon sources to PHAs, the opportunities and challenges of their introduction to global market as valuable renewable products have been also discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Biosensors of bacterial cells.

    Science.gov (United States)

    Burlage, Robert S; Tillmann, Joshua

    2017-07-01

    Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    2013-01-01

    with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell......Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing...... signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated...

  5. The DAF-16/FOXO transcription factor functions as a regulator of epidermal innate immunity.

    Science.gov (United States)

    Zou, Cheng-Gang; Tu, Qiu; Niu, Jie; Ji, Xing-Lai; Zhang, Ke-Qin

    2013-01-01

    The Caenorhabditis elegans DAF-16 transcription factor is critical for diverse biological processes, particularly longevity and stress resistance. Disruption of the DAF-2 signaling cascade promotes DAF-16 activation, and confers resistance to killing by pathogenic bacteria, such as Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis. However, daf-16 mutants exhibit similar sensitivity to these bacteria as wild-type animals, suggesting that DAF-16 is not normally activated by these bacterial pathogens. In this report, we demonstrate that DAF-16 can be directly activated by fungal infection and wounding in wild-type animals, which is independent of the DAF-2 pathway. Fungal infection and wounding initiate the Gαq signaling cascade, leading to Ca(2+) release. Ca(2+) mediates the activation of BLI-3, a dual-oxidase, resulting in the production of reactive oxygen species (ROS). ROS then activate DAF-16 through a Ste20-like kinase-1/CST-1. Our results indicate that DAF-16 in the epidermis is required for survival after fungal infection and wounding. Thus, the EGL-30-Ca(2+)-BLI-3-CST-1-DAF-16 signaling represents a previously unknown pathway to regulate epidermal damage response.

  6. Method for determining transcriptional linkage by means of inhibition of deoxyribonucleic acid transcription by ultraviolet irradiation: evaluation in application to the investigation of in vivo transcription in bacteriophage T7

    International Nuclear Information System (INIS)

    Brautigam, A.R.

    1975-01-01

    A technique is presented for mapping promotor sites that utilizes the introduction of transcription-terminating lesions in DNA through uv irradiation which prevents transcription of genes in proportion to their distance from the promotor. This technique was applied to and evaluated in investigations of the transcriptional linkage of bacteriophage T7. All results substantiate the hypothesis that transcription in vivo does not proceed beyond the first uv lesion encountered in the template DNA and that such premature termination of transcription is the principal effect of the uv irradiation on the transcriptional template function of DNA. UV-induced inhibition of the initiation of transcription is insignificant by comparison. Uv inactivation of expression of individual T7 genes was found to follow pseudo first-order kinetics, allowing a gene-specific uv inactivation cross section to be evaluated for each gene. Promotor locations were inferred from the discontinuity in the numerical values of inactivation cross sections arising at the start of each new unit. By such analysis the bacteriophage T7 genome was found to consist of seven transcription units. In vivo E. coli RNA polymerase transcribes the T7 early region as a single unit from a pomotor region located at the left end of the genome. The T7 late region was found to consist of six transcription units, with promotors located just ahead of genes 1.7, 7, 9, 11, 13 and 17

  7. Transcription of the soybean leghemoglobin genes during nodule development

    DEFF Research Database (Denmark)

    Marcker, Anne; Ø Jensen, Erik; Marcker, Kjeld A

    1984-01-01

    During the early stages of soybean nodule development the leghemoglobin (Lb) genes are activated sequentially in the opposite order to which they are arranged in the soybean genome. At a specific stage after the initial activation of all the Lb genes, a large increment occurs in the transcription...... of the Lb(c1), Lb(c3) and Lb(a) genes while the transcription of the Lb(c2) gene is not amplified to a similar extent. All the Lb genes retain significant activity for a long period during the lifetime of a nodule. Consequently the soybean Lb genes are not regulated by a developmental gene switching...

  8. Bacteriële meningitis

    NARCIS (Netherlands)

    Brouwer, M. C.; van de Beek, D.

    2012-01-01

    Bacterial meningitis is a severe disease which affects 35.000 Europeans each year and has a mortality rate of about 20%. During the past 25 years the epidemiology of bacterial meningitis has changed significantly due to the implementation of vaccination against Haemophilus influenzae, Neisseria

  9. Bacterial meningitis in immunocompromised patients

    NARCIS (Netherlands)

    van Veen, K.E.B.

    2018-01-01

    Bacterial meningitis is an acute infection of the meninges, in The Netherlands most commonly caused by Streptococcus pneumoniae and Neisseria meningitides. Risk factors for acquiring bacterial meningitis include a decreased function of the immune system. The aim of this thesis was to study

  10. The phytoalexin resveratrol regulates the initiation of hypersensitive cell death in Vitis cell.

    Directory of Open Access Journals (Sweden)

    Xiaoli Chang

    Full Text Available Resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance. The resistance of North American grapevine Vitis rupestris is correlated with a hypersensitive reaction (HR, while susceptible European Vitis vinifera cv. 'Pinot Noir' does not exhibit HR, but expresses basal defence. We have shown previously that in cell lines derived from the two Vitis species, the bacterial effector Harpin induced a rapid and sensitive accumulation of stilbene synthase (StSy transcripts, followed by massive cell death in V. rupestris. In the present work, we analysed the function of the phytoalexin resveratrol, the product of StSy. We found that cv. 'Pinot Noir' accumulated low resveratrol and its glycoside trans-piceid, whereas V. rupestris produced massive trans-resveratrol and the toxic oxidative δ-viniferin, indicating that the preferred metabolitism of resveratrol plays role in Vitis resistance. Cellular responses to resveratrol included rapid alkalinisation, accumulation of pathogenesis-related protein 5 (PR5 transcripts, oxidative burst, actin bundling, and cell death. Microtubule disruption and induction of StSy were triggered by Harpin, but not by resveratrol. Whereas most responses proceeded with different amplitude for the two cell lines, the accumulation of resveratrol, and the competence for resveratrol-induced oxidative burst differed in quality. The data lead to a model, where resveratrol, in addition to its classical role as antimicrobial phytoalexin, represents an important regulator for initiation of HR-related cell death.

  11. A mechanistic overview of herbal medicine and botanical compounds to target transcriptional factors in Breast cancer.

    Science.gov (United States)

    Zhao, Yingke; Liu, Yue

    2018-04-01

    The abnormalities of transcription factors, such as NF-κB, STAT, estrogen receptor, play a critical role in the initiation and progression of breast cancer. Due to the limitation of current treatment, transcription factors could be promising therapeutic targets, which have received close attention. In this review, we introduced herbal medicines, as well as botanical compounds that had been verified with anti-tumor properties via regulating transcription factors. Herbs, compounds, as well as formulae reported with various transcriptional targets, were summarized thoroughly, to provide implication for the future research on basic experiment and clinical application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effect of lag time distribution on the lag phase of bacterial growth - a Monte Carlo analysis

    Science.gov (United States)

    The objective of this study is to use Monte Carlo simulation to evaluate the effect of lag time distribution of individual bacterial cells incubated under isothermal conditions on the development of lag phase. The growth of bacterial cells of the same initial concentration and mean lag phase durati...

  13. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  14. Bacterial adhesion and growth on a polymer brush-coating

    NARCIS (Netherlands)

    Nejadnik, M.R.; Mei, van der H.C.; Norde, W.; Busscher, H.J.

    2008-01-01

    Biomaterials-related infections pose serious problems in implant surgery, despite the development of non-adhesive coatings. Non-adhesive coatings, like polymer brush-coatings, have so far only been investigated with respect to preventing initial bacterial adhesion, but never with respect to effects

  15. An isolated bacterial consortium for crude oil biodegradation

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... designed using DesignExpert 6.0.8 software by optimizing the amount of crude oil, microbial inoculum and sludge which are initially ... Key words: Crude oil, bacterial consortium, kinetics, bioremediation, biostimulation, natural attenuation. ... For the preparation of the consortiums, colonies were plated on.

  16. 16 CFR 1502.36 - Official transcript.

    Science.gov (United States)

    2010-01-01

    ... the time the transcript becomes available to propose corrections in the transcript of oral testimony. Corrections are permitted only for transcription errors. The presiding officer shall promptly order justified... presiding officer will arrange for a verbatim stenographic transcript of oral testimony and for necessary...

  17. Transcription elongation factor GreA has functional chaperone activity.

    Science.gov (United States)

    Li, Kun; Jiang, Tianyi; Yu, Bo; Wang, Limin; Gao, Chao; Ma, Cuiqing; Xu, Ping; Ma, Yanhe

    2012-01-01

    Bacterial GreA is an indispensable factor in the RNA polymerase elongation complex. It plays multiple roles in transcriptional elongation, and may be implicated in resistance to various stresses. In this study, we show that Escherichia coli GreA inhibits aggregation of several substrate proteins under heat shock condition. GreA can also effectively promote the refolding of denatured proteins. These facts reveal that GreA has chaperone activity. Distinct from many molecular chaperones, GreA does not form stable complexes with unfolded substrates. GreA overexpression confers the host cells with enhanced resistance to heat shock and oxidative stress. Moreover, GreA expression in the greA/greB double mutant could suppress the temperature-sensitive phenotype, and dramatically alleviate the in vivo protein aggregation. The results suggest that bacterial GreA may act as chaperone in vivo. These results suggest that GreA, in addition to its function as a transcription factor, is involved in protection of cellular proteins against aggregation.

  18. An upstream promoter element blocks the reverse transcription of the mouse insulin-degrading enzyme gene.

    Science.gov (United States)

    Zhang, Lang; Ding, Qingyang; Wang, Pan; Wang, Zhao

    2013-01-04

    Despite the prevalence of bidirectional promoters among the mammalian genomes, the majority of promoters are unidirectional. The mechanism through which unidirectional promoters are prevented from reverse transcription remains to be clarified. Here we investigate the transcriptional directionality of the mouse insulin-degrading enzyme (IDE) promoter, which contains a CpG island and has dispersed transcription initiation sites. Although IDE is unidirectionally transcribed according to its genomic context, the basic promoter region of mouse IDE has bidirectional transcriptional properties. The region between -219 and +133 of mouse IDE relative to its first transcription initiation site has bidirectional transcriptional activities, but the region between -350 and +133 can only be transcribed from the normal direction, implying that an upstream promoter element locating between -350 and -219 blocks the reverse transcription of mouse IDE. We further mapped this upstream promoter element to the region between -243 and -287. Promoter mutation analysis showed that the upstream promoter element contains two functional sub-regions. In conclusion, we identified an upstream promoter element which blocks the reverse transcription of mouse IDE. Our studies are suggestive for the transcriptional mechanism of bidirectional promoters in mammalian genomes. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  19. Transcriptional networks of TCP transcription factors in Arabidopsis development

    NARCIS (Netherlands)

    Danisman, S.D.

    2011-01-01

    Leaves are a plant’s main organs of photosynthesis and hence the development of this organ is under strict control. The different phases of leaf development are under the control of both endogenous and exogenous influences. In this work we were interested in a particular class of transcription

  20. Chromatin and Transcription in Yeast

    Science.gov (United States)

    Rando, Oliver J.; Winston, Fred

    2012-01-01

    Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field. PMID:22345607

  1. Bacterial topoisomerase I as a target for discovery of antibacterial compounds.

    Science.gov (United States)

    Tse-Dinh, Yuk-Ching

    2009-02-01

    Bacterial topoisomerase I is a potential target for discovery of new antibacterial compounds. Mutant topoisomerases identified by SOS induction screening demonstrated that accumulation of the DNA cleavage complex formed by type IA topoisomerases is bactericidal. Characterization of these mutants of Yersinia pestis and Escherichia coli topoisomerase I showed that DNA religation can be inhibited while maintaining DNA cleavage activity by decreasing the binding affinity of Mg(II) ions. This can be accomplished either by mutation of the TOPRIM motif involved directly in Mg(II) binding or by altering the charge distribution of the active site region. Besides being used to elucidate the key elements for the control of the cleavage-religation equilibrium, the SOS-inducing mutants of Y. pestis and E. coli topoisomerase I have also been utilized as models to study the cellular response following the accumulation of bacterial topoisomerase I cleavage complex. Bacterial topoisomerase I is required for preventing hypernegative supercoiling of DNA during transcription. It plays an important role in transcription of stress genes during bacterial stress response. Topoisomerase I targeting poisons may be particularly effective when the bacterial pathogen is responding to host defense, or in the presence of other antibiotics that induce the bacterial stress response.

  2. Zoonotic bacterial meningitis in human adults

    NARCIS (Netherlands)

    van Samkar, Anusha; Brouwer, Matthijs C.; van der Ende, Arie; van de Beek, Diederik

    2016-01-01

    To describe the epidemiology, etiology, clinical characteristics, treatment, outcome, and prevention of zoonotic bacterial meningitis in human adults. We identified 16 zoonotic bacteria causing meningitis in adults. Zoonotic bacterial meningitis is uncommon compared to bacterial meningitis caused by

  3. Ingestion of bacterial lipopolysaccharide inhibits peripheral taste responses to sucrose in mice

    Science.gov (United States)

    Zhu, Xiaobin; He, Lianying; McCluskey, Lynnette Phillips

    2013-01-01

    A fundamental role of the taste system is to discriminate between nutritive and toxic foods. However, it is unknown whether bacterial pathogens that might contaminate food and water modulate the transmission of taste input to the brain. We hypothesized that exogenous, bacterially-derived lipopolysaccharide (LPS), modulates neural responses to taste stimuli. Neurophysiological responses from the chorda tympani nerve, which innervates taste cells on the anterior tongue, were unchanged by acute exposure to LPS. Instead, neural responses to sucrose were selectively inhibited in mice that drank LPS during a single overnight period. Decreased sucrose sensitivity appeared 7 days after LPS ingestion, in parallel with decreased lingual expression of Tas1r2 and Tas1r3 transcripts, which are translated to T1R2+T1R3 subunits forming the sweet taste receptor. Tas1r2 and Tas1r3 mRNA expression levels and neural responses to sucrose were restored by 14 days after LPS consumption. Ingestion of LPS, rather than contact with taste receptor cells, appears to be necessary to suppress sucrose responses. Furthermore, mice lacking the Toll-like receptor (TLR) 4 for LPS were resistant to neurophysiological changes following LPS consumption. These findings demonstrate that ingestion of LPS during a single period specifically and transiently inhibits neural responses to sucrose. We suggest that LPS drinking initiates TLR4-dependent hormonal signals that downregulate sweet taste receptor genes in taste buds. Delayed inhibition of sweet taste signaling may influence food selection and the complex interplay between gastrointestinal bacteria and obesity. PMID:24215981

  4. Role of sex steroid hormones in bacterial-host interactions.

    Science.gov (United States)

    García-Gómez, Elizabeth; González-Pedrajo, Bertha; Camacho-Arroyo, Ignacio

    2013-01-01

    Sex steroid hormones play important physiological roles in reproductive and nonreproductive tissues, including immune cells. These hormones exert their functions by binding to either specific intracellular receptors that act as ligand-dependent transcription factors or membrane receptors that stimulate several signal transduction pathways. The elevated susceptibility of males to bacterial infections can be related to the usually lower immune responses presented in males as compared to females. This dimorphic sex difference is mainly due to the differential modulation of the immune system by sex steroid hormones through the control of proinflammatory and anti-inflammatory cytokines expression, as well as Toll-like receptors (TLRs) expression and antibody production. Besides, sex hormones can also affect the metabolism, growth, or virulence of pathogenic bacteria. In turn, pathogenic, microbiota, and environmental bacteria are able to metabolize and degrade steroid hormones and their related compounds. All these data suggest that sex steroid hormones play a key role in the modulation of bacterial-host interactions.

  5. Defining bacterial regulons using ChIP-seq.

    Science.gov (United States)

    Myers, Kevin S; Park, Dan M; Beauchene, Nicole A; Kiley, Patricia J

    2015-09-15

    Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is a powerful method that identifies protein-DNA binding sites in vivo. Recent studies have illustrated the value of ChIP-seq in studying transcription factor binding in various bacterial species under a variety of growth conditions. These results show that in addition to identifying binding sites, correlation of ChIP-seq data with expression data can reveal important information about bacterial regulons and regulatory networks. In this chapter, we provide an overview of the current state of knowledge about ChIP-seq methodology in bacteria, from sample preparation to raw data analysis. We also describe visualization and various bioinformatic analyses of processed ChIP-seq data. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Defining Bacterial Regulons Using ChIP-seq Methods

    Science.gov (United States)

    Myers, Kevin S.; Park, Dan M.; Beauchene, Nicole A.; Kiley, Patricia J.

    2015-01-01

    Chromatin immunoprecitation followed by high-throughput sequencing (ChIP-seq) is a powerful method that identifies protein-DNA binding sites in vivo. Recent studies have illustrated the value of ChIP-seq in studying transcription factor binding in various bacterial species under a variety of growth conditions. These results show that in addition to identifying binding sites, correlation of ChIP-seq data with expression data can reveal important information about bacterial regulons and regulatory networks. In this chapter, we provide an overview of the current state of knowledge about ChIP-seq methodology in bacteria, from sample preparation to raw data analysis. We also describe visualization and various bioinformatic analyses of processed ChIP-seq data. PMID:26032817

  7. Electromagnetism of Bacterial Growth

    Science.gov (United States)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  8. Use of adjunctive topical corticosteroids in bacterial keratitis.

    Science.gov (United States)

    Ni, Nina; Srinivasan, Muthiah; McLeod, Stephen D; Acharya, Nisha R; Lietman, Thomas M; Rose-Nussbaumer, Jennifer

    2016-07-01

    Topical corticosteroid use in the setting of infectious keratitis has been a controversial issue. The aim of this review is to provide an update on the evidence for use of topical corticosteroids in addition to antibiotics in bacterial keratitis. Judicious use of steroids is postulated to limit the inflammatory component of bacterial keratitis, but can theoretically retard healing. Three small randomized controlled trials and one large-scale trial, the Steroids for Corneal Ulcers Trial, have provided the most recent evidence to address this debate. Adjunctive topical corticosteroids initiated after at least 48 h of antibiotic usage in cases of culture-proven bacterial keratitis appear generally safe in the treatment of bacterial keratitis. They may be beneficial in cases of severe ulcers especially when initiated early in the course of the infection, in non-Nocardia ulcers, and in certain Pseudomonas ulcers. Several randomized controlled trials have greatly contributed to our understanding of the controversy over steroid use in the management of bacterial keratitis. Future studies are needed to confirm subgroup analysis findings and define optimal timing, dosage, and the most appropriate treatment populations.

  9. Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration.

    Science.gov (United States)

    Wehling, Julia; Köser, Jan; Lindner, Patrick; Lüder, Christian; Beutel, Sascha; Kroll, Stephen; Rezwan, Kurosch

    2015-03-01

    Membrane clogging and biofilm formation are the most serious problems during water filtration. Silver nanoparticle (Agnano) coatings on filtration membranes can prevent bacterial adhesion and the initiation of biofilm formation. In this study, Agnano are immobilized via direct reduction on porous zirconia capillary membranes to generate a nanocomposite material combining the advantages of ceramics being chemically, thermally and mechanically stable with nanosilver, an efficient broadband bactericide for water decontamination. The filtration of bacterial suspensions of the fecal contaminant Escherichia coli reveals highly efficient bacterial retention capacities of the capillaries of 8 log reduction values, fulfilling the requirements on safe drinking water according to the U.S. Environmental Protection Agency. Maximum bacterial loading capacities of the capillary membranes are determined to be 3×10(9)bacterialcells/750mm(2) capillary surface until back flushing is recommendable. The immobilized Agnano remain accessible and exhibit strong bactericidal properties by killing retained bacteria up to maximum bacterial loads of 6×10(8)bacterialcells/750mm(2) capillary surface and the regenerated membranes regain filtration efficiencies of 95-100%. Silver release is moderate as only 0.8% of the initial silver loading is leached during a three-day filtration experiment leading to average silver contaminant levels of 100μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Procalcitonin as Predictor of Bacterial Infection in Meconium Aspiration Syndrome.

    Science.gov (United States)

    K, Mahendiran; Batra, Prerna; Faridi, M M A; Singh, N P

    2017-12-29

     There is a lack of definite consensus on indications for initiating antibiotics in neonates with meconium aspiration syndrome (MAS), instigating researchers to search for a biomarker that can help differentiate MAS from MAS with bacterial infection.  Our primary objective was to compare serum procalcitonin (PCT) levels in full-term vigorous neonates having MAS with or without bacterial infection.  Seventy term vigorous neonates with diagnosis of MAS were enrolled. Blood samples were taken for sepsis screen, C-reactive protein (CRP), PCT, and blood culture at 6 ± 2 hours of respiratory distress. Neonates were categorized into group 1 (MAS without bacterial infection) and group 2 (MAS with bacterial infection) based on blood culture. The duration of our study was 18 months.  Mean ± standard deviation PCT level was 2.52 ± 3.99 in group 1 and 2.71 ± 4.22 in group 2, which was comparable. At cutoff of 0.1 ng/mL, PCT had a sensitivity of 90% and specificity of 8% in detecting bacterial infection. Mean total leukocyte count, absolute neutrophil count, immature to total leucocyte ratio, microerythrocyte sedimentation rate, and CRP were comparable.  Though PCT is an early and reliable marker of neonatal infection, the levels were increased in neonates with MAS irrespective of the presence of bacterial infection. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Bacterial acquisition in juveniles of several broadcast spawning coral species.

    Directory of Open Access Journals (Sweden)

    Koty H Sharp

    Full Text Available Coral animals harbor diverse microorganisms in their tissues, including archaea, bacteria, viruses, and zooxanthellae. The extent to which coral-bacterial associations are specific and the mechanisms for their maintenance across generations in the environment are unknown. The high diversity of bacteria in adult coral colonies has made it challenging to identify species-specific patterns. Localization of bacteria in gametes and larvae of corals presents an opportunity for determining when bacterial-coral associations are initiated and whether they are dynamic throughout early development. This study focuses on the early onset of bacterial associations in the mass spawning corals Montastraea annularis, M. franksi, M. faveolata, Acropora palmata, A. cervicornis, Diploria strigosa, and A. humilis. The presence of bacteria and timing of bacterial colonization was evaluated in gametes, swimming planulae, and newly settled polyps by fluorescence in situ hybridization (FISH using general eubacterial probes and laser-scanning confocal microscopy. The coral species investigated in this study do not appear to transmit bacteria via their gametes, and bacteria are not detectable in or on the corals until after settlement and metamorphosis. This study suggests that mass-spawning corals do not acquire, or are not colonized by, detectable numbers of bacteria until after larval settlement and development of the juvenile polyp. This timing lays the groundwork for developing and testing new hypotheses regarding general regulatory mechanisms that control bacterial colonization and infection of corals, and how interactions among bacteria and juvenile polyps influence the structure of bacterial assemblages in corals.

  12. Bacterial acquisition in juveniles of several broadcast spawning coral species.

    Science.gov (United States)

    Sharp, Koty H; Ritchie, Kim B; Schupp, Peter J; Ritson-Williams, Raphael; Paul, Valerie J

    2010-05-28

    Coral animals harbor diverse microorganisms in their tissues, including archaea, bacteria, viruses, and zooxanthellae. The extent to which coral-bacterial associations are specific and the mechanisms for their maintenance across generations in the environment are unknown. The high diversity of bacteria in adult coral colonies has made it challenging to identify species-specific patterns. Localization of bacteria in gametes and larvae of corals presents an opportunity for determining when bacterial-coral associations are initiated and whether they are dynamic throughout early development. This study focuses on the early onset of bacterial associations in the mass spawning corals Montastraea annularis, M. franksi, M. faveolata, Acropora palmata, A. cervicornis, Diploria strigosa, and A. humilis. The presence of bacteria and timing of bacterial colonization was evaluated in gametes, swimming planulae, and newly settled polyps by fluorescence in situ hybridization (FISH) using general eubacterial probes and laser-scanning confocal microscopy. The coral species investigated in this study do not appear to transmit bacteria via their gametes, and bacteria are not detectable in or on the corals until after settlement and metamorphosis. This study suggests that mass-spawning corals do not acquire, or are not colonized by, detectable numbers of bacteria until after larval settlement and development of the juvenile polyp. This timing lays the groundwork for developing and testing new hypotheses regarding general regulatory mechanisms that control bacterial colonization and infection of corals, and how interactions among bacteria and juvenile polyps influence the structure of bacterial assemblages in corals.

  13. Detection, characterization and regulation of antisense transcripts in HIV-1

    Directory of Open Access Journals (Sweden)

    Mesnard Jean-Michel

    2007-10-01

    Full Text Available Abstract Background We and others have recently demonstrated that the human retrovirus HTLV-I was producing a spliced antisense transcript, which led to the synthesis of the HBZ protein. The objective of the present study was to demonstrate the existence of antisense transcription in HIV-1 and to provide a better characterization of the transcript and its regulation. Results Initial experiments conducted by standard RT-PCR analysis in latently infected J1.1 cell line and pNL4.3-transfected 293T cells confirmed the existence of antisense transcription in HIV-1. A more adapted RT-PCR protocol with limited RT-PCR artefacts also led to a successful detection of antisense transcripts in several infected cell lines. RACE analyses demonstrated the existence of several transcription initiation sites mapping near the 5' border of the 3'LTR (in the antisense strand. Interestingly, a new polyA signal was identified on the antisense strand and harboured the polyA signal consensus sequence. Transfection experiments in 293T and Jurkat cells with an antisense luciferase-expressing NL4.3 proviral DNA showed luciferase reporter gene expression, which was further induced by various T-cell activators. In addition, the viral Tat protein was found to be a positive modulator of antisense transcription by transient and stable transfections of this proviral DNA construct. RT-PCR analyses in 293T cells stably transfected with a pNL4.3-derived construct further confirmed these results. Infection of 293T, Jurkat, SupT1, U937 and CEMT4 cells with pseudotyped virions produced from the antisense luciferase-expressing NL4.3 DNA clone led to the production of an AZT-sensitive luciferase signal, which was however less pronounced than the signal from NL4.3Luc-infected cells. Conclusion These results demonstrate for the first time that antisense transcription exists in HIV-1 in the context of infection. Possible translation of the predicted antisense ORF in this transcript should

  14. Type III secretion systems: the bacterial flagellum and the injectisome

    Science.gov (United States)

    Diepold, Andreas; Armitage, Judith P.

    2015-01-01

    The flagellum and the injectisome are two of the most complex and fascinating bacterial nanomachines. At their core, they share a type III secretion system (T3SS), a transmembrane export complex that forms the extracellular appendages, the flagellar filament and the injectisome needle. Recent advances, combining structural biology, cryo-electron tomography, molecular genetics, in vivo imaging, bioinformatics and biophysics, have greatly increased our understanding of the T3SS, especially the structure of its transmembrane and cytosolic components, the transcriptional, post-transcriptional and functional regulation and the remarkable adaptivity of the system. This review aims to integrate these new findings into our current knowledge of the evolution, function, regulation and dynamics of the T3SS, and to highlight commonalities and differences between the two systems, as well as their potential applications. PMID:26370933

  15. Initiation devices, initiation systems including initiation devices and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Condit, Reston A.; Rasmussen, Nikki; Wallace, Ronald S.

    2018-04-10

    Initiation devices may include at least one substrate, an initiation element positioned on a first side of the at least one substrate, and a spark gap electrically coupled to the initiation element and positioned on a second side of the at least one substrate. Initiation devices may include a plurality of substrates where at least one substrate of the plurality of substrates is electrically connected to at least one adjacent substrate of the plurality of substrates with at least one via extending through the at least one substrate. Initiation systems may include such initiation devices. Methods of igniting energetic materials include passing a current through a spark gap formed on at least one substrate of the initiation device, passing the current through at least one via formed through the at least one substrate, and passing the current through an explosive bridge wire of the initiation device.

  16. Bacterial growth on macrophyte leachate and fate of bacterial production

    International Nuclear Information System (INIS)

    Findlay, S.; Carlough, L.; Crocker, M.T.; Gill, H.K.; Meyer, J.L.; Smith, P.J.

    1986-01-01

    The role bacteria play in transferring organic carbon to other trophic levels in aquatic ecosystems depends on the efficiency with which they convert dissolved organic [ 14 C]-labelled carbon into bacterial biomass and on the ability of consumers to graze bacteria. The authors have measured the conversion efficiency for bacteria growing on macrophyte-derived dissolved organic carbon and estimated the amount of bacterial production removed by grazing. Bacteria converted this DOC into new tissue with an efficiency of 53%, substantially higher than the apparent conversion efficiency of macrophyte-derived particulate organic carbon or other types of DOC. Two estimates of grazing indicate that the decline in bacterial numbers after the bloom was probably due to grazing by flagellates. These results show the significance of the bacterial link between DOC and other trophic levels

  17. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.

    Science.gov (United States)

    Johnson, Benjamin K; Scholz, Matthew B; Teal, Tracy K; Abramovitch, Robert B

    2016-02-04

    Many tools exist in the analysis of bacterial RNA sequencing (RNA-seq) transcriptional profiling experiments to identify differentially expressed genes between experimental conditions. Generally, the workflow includes quality control of reads, mapping to a reference, counting transcript abundance, and statistical tests for differentially expressed genes. In spite of the numerous tools developed for each component of an RNA-seq analysis workflow, easy-to-use bacterially oriented workflow applications to combine multiple tools and automate the process are lacking. With many tools to choose from for each step, the task of identifying a specific tool, adapting the input/output options to the specific use-case, and integrating the tools into a coherent analysis pipeline is not a trivial endeavor, particularly for microbiologists with limited bioinformatics experience. To make bacterial RNA-seq data analysis more accessible, we developed a Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis (SPARTA). SPARTA is a reference-based bacterial RNA-seq analysis workflow application for single-end Illumina reads. SPARTA is turnkey software that simplifies the process of analyzing RNA-seq data sets, making bacterial RNA-seq analysis a routine process that can be undertaken on a personal computer or in the classroom. The easy-to-install, complete workflow processes whole transcriptome shotgun sequencing data files by trimming reads and removing adapters, mapping reads to a reference, counting gene features, calculating differential gene expression, and, importantly, checking for potential batch effects within the data set. SPARTA outputs quality analysis reports, gene feature counts and differential gene expression tables and scatterplots. SPARTA provides an easy-to-use bacterial RNA-seq transcriptional profiling workflow to identify differentially expressed genes between experimental conditions. This software will enable microbiologists with

  18. Dynamics and rRNA transcriptional activity of lactococci and lactobacilli during Cheddar cheese ripening.

    Science.gov (United States)

    Desfossés-Foucault, Émilie; LaPointe, Gisèle; Roy, Denis

    2013-08-16

    Cheddar cheese is a complex ecosystem where both the bacterial population and the cheese making process contribute to flavor and texture development. The aim of this study was to use molecular methods to evaluate the impact of milk heat treatment and ripening temperature on starter lactococci and non-starter lactic acid bacteria (NSLAB) throughout ripening of Cheddar cheese. Eight Cheddar cheese batches were manufactured (four with thermized and four with pasteurized milk) and ripened at 4, 7 and 12°C to analyze the bacterial composition and rRNA transcriptional activity reflecting the ability of lactococci and lactobacilli to synthesize proteins. Abundance and rRNA transcription of lactococci and lactobacilli were quantified after DNA and RNA extraction by using quantitative PCR (qPCR) and reverse transcription-quantitative PCR (RT-qPCR) targeting the 16S rRNA gene, respectively. Results showed that lactococci remained dominant throughout ripening, although 16S rRNA genome and cDNA copies/g of cheese decreased by four and two log copy numbers, respectively. Abundance and rRNA transcription of Lactobacillus paracasei, Lactobacillus buchneri/parabuchneri, Lactobacillus rhamnosus, Lactobacillus brevis, and Lactobacillus coryniformis as well as total lactobacilli were also estimated using specific 16S rRNA primers. L. paracasei and L. buchneri/parabuchneri concomitantly grew in cheese made from thermized milk at 7 and 12°C, although L. paracasei displayed the most rRNA transcription among Lactobacillus species. This work showed that rRNA transcriptional activity of lactococci decreased throughout ripening and supports the usefulness of RNA analysis to assess which bacterial species have the ability to synthesize proteins during ripening, and could thereby contribute to cheese quality. © 2013.

  19. Adjunctive Therapies for Bacterial Keratitis.

    Science.gov (United States)

    Dakhil, Turki Abdulaziz Bin; Stone, Donald U; Gritz, David C

    2017-01-01

    Bacterial keratitis is the most common type among all types of infectious keratitis. Currently, antibiotics are the main-stay of treatment. The objective of this systematic review is to review published clinical studies which discuss the adjunctive treatment of bacterial keratitis to guide clinical decision-making. We reviewed the role of a variety of medications and surgeries which can help in managing bacterial keratitis complications, which include as thinning, perforation, and impaired wound healing. We have included appropriate animal and laboratory studies, case reports and case series, and randomized clinical trials regarding each therapy.

  20. Expression profile of urothelial transcription factors in bladder biopsies with interstitial cystitis.

    Science.gov (United States)

    Kaga, Kanya; Inoue, Ken-Ichi; Kaga, Mayuko; Ichikawa, Tomohiko; Yamanishi, Tomonori

    2017-08-01

    To characterize interstitial cystitis pathology based on the expression profile of urothelial tissue-specific master transcription factors. Bladder carcinoma cell lines derived from the urothelial stem cells (epithelial or mesenchymal) were used to identify candidate urothelial master transcription factors. Gene expression was measured with quantitative reverse transcription polymerase chain reaction. From the initial screening of 170 transcription factors (human homologs of Drosophila segmentation genes and known master transcription factors from a database), 28 transcription factors were selected. Subsequently, messenger ribonucleic acid from bladder biopsies of interstitial cystitis patients was purified, and gene expression levels of known urothelial marker genes and candidate master transcription factors were measured. Multivariate expression data were analyzed with spss software. Factor analysis decomposed the expression profile into four axes: principal axis 1 included retinoic acid receptors and 17 candidate master transcription factors. Principal axis 2 included KRT5 and five candidates. Principal axis 3 included transcription factor TP63 and two candidates. Principal axis 4 included SHH and two candidates. Principal component analysis segregated biopsies from Hunner's lesion in the principal component 1 (retinoic acid)/principal component 2 (SOX13)/principal component 3 (TP63) space. Urothelial master transcription factors could serve as novel diagnostic markers and potentially explain the molecular pathology of interstitial cystitis. © 2017 The Japanese Urological Association.

  1. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  2. The post-transcriptional operon

    DEFF Research Database (Denmark)

    Tenenbaum, Scott A.; Christiansen, Jan; Nielsen, Henrik

    2011-01-01

    model (PTO) is used to describe data from an assortment of methods (e.g. RIP-Chip, CLIP-Chip, miRNA profiling, ribosome profiling) that globally address the functionality of mRNA. Several examples of post-transcriptional operons have been documented in the literature and demonstrate the usefulness...

  3. NAC transcription factors in senescence

    DEFF Research Database (Denmark)

    Podzimska-Sroka, Dagmara; O'Shea, Charlotte; Gregersen, Per L.

    2015-01-01

    Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes as i...

  4. Transcription factor-based biosensor

    Science.gov (United States)

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  5. HDG1 transcription factor targets

    NARCIS (Netherlands)

    Horstman, A.; Boutilier, K.A.; Sanchez Perez, Gabino

    2015-01-01

    The AIL transcription factor BABY BOOM (BBM) is required together with the related PLETHORA proteins for embryo and root meristem development and its expression is sufficient to confer pluripotency and totipotency to somatic tissues. We show that BBM and other AIL proteins interact with multiple

  6. Simultaneous transcriptional profiling of bacteria and their host cells.

    Directory of Open Access Journals (Sweden)

    Michael S Humphrys

    Full Text Available We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness. Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction.

  7. Transcriptional regulation by nonclassical action of thyroid hormone

    Directory of Open Access Journals (Sweden)

    Moeller Lars C

    2011-08-01

    Full Text Available Abstract Thyroid hormone (TH is essential for normal development, growth and metabolism. Its effects were thought to be principally mediated through triiodothyronine (T3, acting as a ligand for the nuclear TH receptors (TRs α and β residing on thyroid hormone response elements (TREs in the promoter of TH target genes. In this classical model of TH action, T3 binding to TRs leads to recruitment of basal transcription factors and increased transcription of TH responsive genes. Recently, the concept of TH action on gene expression has become more diverse and now includes nonclassical actions of T3 and T4: T3 has been shown to activate PI3K via the TRs, which ultimately increases transcription of certain genes, e.g. HIF-1α. Additionally, both T3 and thyroxine (T4 can bind to a membrane integrin, αvβ3, which leads to activation of the PI3K and MAPK signal transduction pathways and finally also increases gene transcription, e.g. of the FGF2 gene. Therefore, these initially nongenomic, nonclassical actions seem to serve as additional interfaces for transcriptional regulation by TH. Aim of this perspective is to summarize the genes that are currently known to be induced by nonclassical TH action and the mechanisms involved.

  8. Transcriptional interactions suggest niche segregation among microorganisms in the human gut

    DEFF Research Database (Denmark)

    Plichta, Damian Rafal; Juncker, Agnieszka; dos Santos, Marcelo Bertalan Quintanilha

    2016-01-01

    functional and metabolic interactions between cohabiting species 2,3. To move beyond species co-occurrence networks, we systematically identified transcriptional interactions between pairs of coexisting gut microbes using metagenomics and microarray-based metatranscriptomics data from 233 stool samples from...... biosynthesis, ATP-binding cassette (ABC) transporters, flagella assembly and bacterial chemotaxis, as well as for the metabolism of carbohydrates, amino acids and cofactors. The analysis gives the first insight into the microbial community-wide transcriptional interactions, and suggests that the regulation...

  9. Bacterial sepsis and chemokines.

    Science.gov (United States)

    Kobayashi, Makiko; Tsuda, Yasuhiro; Yoshida, Tsuyoshi; Takeuchi, Dan; Utsunomiya, Tokuichiro; Takahashi, Hitoshi; Suzuki, Fujio

    2006-01-01

    Bacterial sepsis causes a high mortality rate when it occurs in patients with compromised host defenses. Severely burned patients, typical immunocompromised hosts, are extremely susceptible to infections from various pathogens, and a local wound infection frequently escalates into sepsis. In these patients, Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa are familiar pathogens that cause opportunistic infections. Also, polymicrobial sepsis frequently occurs in these patients. In this review, therefore, the roles of chemokines in thermally injured patients infected with these 3 pathogens and polymicrobial sepsis will be discussed. These infections in thermally injured patients may be controlled immunologically, because immunocompetent hosts are resistant to infections with these pathogens. Classically activated macrophages (M1Mphi) are major effector cells for host innate immune responses against these infections. However, M1Mphi are not generated in thermally injured patients whose alternatively activated macrophages (M2Mphi) predominate. M2Mphi appear in patients early after severe burn injuries. M2Mphi inhibit M1Mphi generation through the secretion of CCL17 and IL-10. As a modulator of Mphi, two different subsets of neutrophils (PMN-I, PMN-II) are described. PMN-I direct the polarization of resident Mphi into M1Mphi through the production of CCL3. M2Mphi are induced from resident Mphi by CCL2 released from PMN-II. Therefore, as an inhibitor of CCL2, glycyrrhizin protects individuals infected with S. aureus. Sepsis stemming from P. aeruginosa wound infection is also influenced by CCL2 released from immature myeloid cells. A large number of immature myeloid cells appear in association with burn injuries. Host resistance to S. aureus, E. faecalis, P. aeruginosa or polymicrobial infections may be improved in thermally injured patients through the induction of M1Mphi, elimination of CCL2 and/or depletion of M2Mphi induced by CCL2.

  10. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont.

    Directory of Open Access Journals (Sweden)

    Ryo Futahashi

    Full Text Available The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations.

  11. Autoregulation of topoisomerase I expression by supercoiling sensitive transcription.

    Science.gov (United States)

    Ahmed, Wareed; Menon, Shruti; Karthik, Pullela V D N B; Nagaraja, Valakunja

    2016-02-29

    The opposing catalytic activities of topoisomerase I (TopoI/relaxase) and DNA gyrase (supercoiling enzyme) ensure homeostatic maintenance of bacterial chromosome supercoiling. Earlier studies in Escherichia coli suggested that the alteration in DNA supercoiling affects the DNA gyrase and TopoI expression. Although, the role of DNA elements around the promoters were proposed in regulation of gyrase, the molecular mechanism of supercoiling mediated control of TopoI expression is not yet understood. Here, we describe the regulation of TopoI expression from Mycobacterium tuberculosis and Mycobacterium smegmatis by a mechanism termed Supercoiling Sensitive Transcription (SST). In both the organisms, topoI promoter(s) exhibited reduced activity in response to chromosome relaxation suggesting that SST is intrinsic to topoI promoter(s). We elucidate the role of promoter architecture and high transcriptional activity of upstream genes in topoI regulation. Analysis of the promoter(s) revealed the presence of sub-optimal spacing between the -35 and -10 elements, rendering them supercoiling sensitive. Accordingly, upon chromosome relaxation, RNA polymerase occupancy was decreased on the topoI promoter region implicating the role of DNA topology in SST of topoI. We propose that negative supercoiling induced DNA twisting/writhing align the -35 and -10 elements to facilitate the optimal transcription of topoI. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma

    Directory of Open Access Journals (Sweden)

    Dinesh K. Singh

    2017-01-01

    Full Text Available Efforts to identify and target glioblastoma (GBM drivers have primarily focused on receptor tyrosine kinases (RTKs. Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2 transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2 and zinc-finger E-box binding homeobox 1 (ZEB1, which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  13. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma.

    Science.gov (United States)

    Singh, Dinesh K; Kollipara, Rahul K; Vemireddy, Vamsidara; Yang, Xiao-Li; Sun, Yuxiao; Regmi, Nanda; Klingler, Stefan; Hatanpaa, Kimmo J; Raisanen, Jack; Cho, Steve K; Sirasanagandla, Shyam; Nannepaga, Suraj; Piccirillo, Sara; Mashimo, Tomoyuki; Wang, Shan; Humphries, Caroline G; Mickey, Bruce; Maher, Elizabeth A; Zheng, Hongwu; Kim, Ryung S; Kittler, Ralf; Bachoo, Robert M

    2017-01-24

    Efforts to identify and target glioblastoma (GBM) drivers have primarily focused on receptor tyrosine kinases (RTKs). Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2) transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2) and zinc-finger E-box binding homeobox 1 (ZEB1), which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Bacterial Communities: Interactions to Scale

    Directory of Open Access Journals (Sweden)

    Reed M. Stubbendieck

    2016-08-01

    Full Text Available In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.

  15. Bacterial flora of sturgeon fingerling

    International Nuclear Information System (INIS)

    Arani, A.S.; Mosahab, R.

    2008-01-01

    The study on microbial populations is a suitable tool to understand and apply control methods to improve the sanitary level of production in fish breeding and rearing centers, ensure health of sturgeon fingerlings at the time of their release into the rivers and also in the conversation and restoration of these valuable stocks in the Caspian Sea, Iran. A laboratory research based on Austin methods (Austin, B., Austin, D.A. 1993) was conducted for bacterial study on 3 sturgeon species naming A. persicus, A. stellatus and A. nudiventris during different growth stages. Bacterial flora of Acinetobacter, Moraxella, Aeromonas, Vibrio, Edwardsiella, Staphylococcus, Proteus, Yersinia, Pseudomonas and Plesiomonas were determined. The factors which may induce changes in bacterial populations during different stages of fife are the followings: quality of water in rearing ponds, different conditions for growth stages, suitable time for colonization of bacterial flora in rearing pond, water temperature increase in fingerlings size and feeding condition. (author)

  16. Subdural Empyema in Bacterial Meningitis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-01-01

    Full Text Available Researchers at the University of Amsterdam, the Netherlands, evaluated the occurrence, treatment, and outcome of subdural empyema as a complication of community-acquired bacterial meningitis in 28 (2.7% adults.

  17. Crystallization and preliminary crystal structure analysis of the ligand-binding domain of PqsR (MvfR), the Pseudomonas quinolone signal (PQS) responsive quorum-sensing transcription factor of Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Xu, Ningna; Yu, Shen; Moniot, Sébastien; Weyand, Michael; Blankenfeldt, Wulf

    2012-01-01

    The ligand-binding domain of the transcription factor PqsR from P. aeruginosa has been crystallized and initial phases have been obtained using SAD data from seleno-l-methionine-labelled crystals. The opportunistic bacterial pathogen Pseudomonas aeruginosa employs three transcriptional regulators, LasR, RhlR and PqsR, to control the transcription of a large subset of its genes in a cell-density-dependent process known as quorum sensing. Here, the recombinant production, crystallization and structure solution of the ligand-binding domain of PqsR (MvfR), the LysR-type transcription factor that responds to the Pseudomonas quinolone signal (PQS), a quinolone-based quorum-sensing signal that is unique to P. aeruginosa and possibly a small number of other bacteria, is reported. PqsR regulates the expression of many virulence genes and may therefore be an interesting drug target. The ligand-binding domain (residues 91–319) was produced as a fusion with SUMO, and hexagonal-shaped crystals of purified PqsR-91–319 were obtained using the vapour-diffusion method. Crystallization in the presence of a PQS precursor allowed data collection to 3.25 Å resolution on a synchrotron beamline, and initial phases have been obtained using single-wavelength anomalous diffraction data from seleno-l-methionine-labelled crystals, revealing the space group to be P6 5 22, with unit-cell parameters a = b = 116–120, c = 115–117 Å

  18. Characterization of a novel radiation-inducible transcript, uscA, and analysis of its transcriptional regulation

    International Nuclear Information System (INIS)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho

    2010-03-01

    The transcriptional expression of the uscA promote (P uscA ) only occurred under aerobic conditions and a dose of 2Gy maximally activated transcription of P uscA . However, various environmental stress including physical shocks (pH, temperature, osmotic shock), DNA damaging agents (UV and MMC) or oxidative stressagents (paraquat, menadione, and H 2 O 2 ) didn't cause the transcriptional activationof P uscA . The transcription of uscA was initiated at 170 bp upstream of the cyoA start codon, and ended around the ampG stop codon. The size of uscA was determined through reverse transcription assay, approximately 250 bp. The deletion analysis of uscA promoter demonstrates that radiation inducibility of P uscA is mediated by sequences present between -20 and +111 relativeto +1 of P uscA and radiation causes P uscA activation thorough permitting the expression that is repressed under non-irradiated conditions

  19. Characterization of a novel radiation-inducible transcript, uscA, and analysis of its transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho

    2010-03-15

    The transcriptional expression of the uscA promote (P{sub uscA}) only occurred under aerobic conditions and a dose of 2Gy maximally activated transcription of P{sub uscA}. However, various environmental stress including physical shocks (pH, temperature, osmotic shock), DNA damaging agents (UV and MMC) or oxidative stressagents (paraquat, menadione, and H{sub 2}O{sub 2}) didn't cause the transcriptional activationof P{sub uscA}. The transcription of uscA was initiated at 170 bp upstream of the cyoA start codon, and ended around the ampG stop codon. The size of uscA was determined through reverse transcription assay, approximately 250 bp. The deletion analysis of uscA promoter demonstrates that radiation inducibility of P{sub uscA} is mediated by sequences present between -20 and +111 relativeto +1 of P{sub uscA} and radiation causes P{sub uscA} activation thorough permitting the expression that is repressed under non-irradiated conditions

  20. Arsenic uptake in bacterial calcite

    Energy Technology Data Exchange (ETDEWEB)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew G.; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and Xray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  1. Arsenic uptake in bacterial calcite

    Science.gov (United States)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03 Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  2. Current knowledge of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Đukić Slobodanka

    2011-01-01

    Full Text Available Bacterial vaginosis, earlier termed nonspecific vaginitis (anaerobic vaginosis because of the absence of recognized pathogens, is most common vaginal syndrome of women of childbearing age affecting 15-30%. This syndrome, whose aetiology and pathogenesis remains unknown, is characterized by significant changes in the vaginal ecosystem. These changes consist of a decrease in the number of lactobacilli and a large increase in the number of anaerobic organisms. The bacteria adhere to desquamated epithelial cells with a distinctive appearance of clue cells The main complaints of women with symptomatic bacterial vaginosis include vaginal discharge and odour. However, a significant number of all women who have bacterial vaginosis deny symptoms. Bacterial vaginosis is associated with a number of gynaecologic and obstetric complications including cervicitis, cervical neoplasia, pelvic inflammatory disease, postoperative infections, and preterm labour. The diagnosis is most frequently made based on vaginal smear stained according to Gram (Nugent scoring method. Metronidazole and clindamycin are the drugs of choice for treatment of women with bacterial vaginosis. Which women should undergo treatment? According to the prevailing attitude, it should include women with symptoms. Symptomatic women with frequent relapses of bacterial vaginosisas, as a rule, have poor response to the applied therapy. To achieve better efficiency in the treatment of such women, it is necessary to have more extensive understanding of all factors in the pathogenesis of the syndrome.

  3. Initial Egyptian ECMO experience

    Directory of Open Access Journals (Sweden)

    Akram Abdelbary

    2016-04-01

    Results: A total of twelve patients received ECMO between January 2014 and June 2015. The mean age was 35.9 years. (range 13–65 years, 8 males, with VV ECMO in 10 patients, and VA ECMO in 2 patients. Out of ten patients of VV ECMO, one had H1N1 pneumonia, one had advanced vasculitic lung, four had bacterial pneumonia, two traumatic lung contusions and one with organophosphorus poisoning, and one undiagnosed etiology leading to severe ARDS. Lung injury score range was 3–3.8, PaO2/FiO2 (20–76 mechanical ventilation duration before ECMO 1–14 days, Femoro-jugular cannulation in 7 patients and femoro-femoral in 2 patients and femoro-subclavian in 1 patient; all patients were initially sedated and paralyzed for (2–4 days and ventilated on pressure controlled ventilation with Pmax of 25 cm H2O and PEEP of 10 cm H2O. In VA ECMO patients were cannulated percutaneously using femoro-femoral approach. One patient showed no neurologic recovery and died after 24 h, the other had CABG on ECMO however the heart didn’t recover and died after 9 days. Heparin intravenous infusion was used initially in all patients and changed to Bivalirudin in 2 patients due to possible HIT. Pump flow ranged from 2.6 to 6.5 L/min. Average support time was 12 days (range 2–24 days. Seven patients (63.3% were successfully separated from ECMO and survived to hospital discharge. Hospital length of stay ranged from 3 to 42 days, tracheostomy was done percutaneously in 5 patients and surgically in 3. Gastrointestinal bleeding occurred in 6 patients, VAP in 7 patients, neurologic complications in 1 patient with complete recovery, cardiac arrhythmias in 3 patients, pneumothorax in 9 patients, and deep venous thrombosis in 2 patients.

  4. Utility of in vivo transcription profiling for identifying Pseudomonas aeruginosa genes needed for gastrointestinal colonization and dissemination

    DEFF Research Database (Denmark)

    Koh, Andrew Y; Mikkelsen, Per J; Smith, Roger S

    2010-01-01

    Microarray analysis of Pseudomonas aeruginosa mRNA transcripts expressed in vivo during animal infection has not been previously used to investigate potential virulence factors needed in this setting. We compared mRNA expression in bacterial cells recovered from the gastrointestinal (GI) tracts o...

  5. Bacterial Internalization, Localization, and Effectors Shape the Epithelial Immune Response during Shigella flexneri Infection.

    Science.gov (United States)

    Lippmann, Juliane; Gwinner, Frederik; Rey, Camille; Tamir, Uyanga; Law, Helen K W; Schwikowski, Benno; Enninga, Jost

    2015-09-01

    Intracellular pathogens are differentially sensed by the compartmentalized host immune system. Nevertheless, gene expression studies of infected cells commonly average the immune responses, neglecting the precise pathogen localization. To overcome this limitation, we dissected the transcriptional immune response to Shigella flexneri across different infection stages in bulk and single cells. This identified six distinct transcriptional profiles characterizing the dynamic, multilayered host response in both bystander and infected cells. These profiles were regulated by external and internal danger signals, as well as whether bacteria were membrane bound or cytosolic. We found that bacterial internalization triggers a complex, effector-independent response in bystander cells, possibly to compensate for the undermined host gene expression in infected cells caused by bacterial effectors, particularly OspF. Single-cell analysis revealed an important bacterial strategy to subvert host responses in infected cells, demonstrating that OspF disrupts concomitant gene expression of proinflammatory, apoptosis, and stress pathways within cells. This study points to novel mechanisms through which bacterial internalization, localization, and injected effectors orchestrate immune response transcriptional signatures. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Membrane-initiated actions of estrogens in neuroendocrinology: emerging principles.

    Science.gov (United States)

    Vasudevan, Nandini; Pfaff, Donald W

    2007-02-01

    Hormonal ligands for the nuclear receptor superfamily have at least two interacting mechanisms of action: 1) classical transcriptional regulation of target genes (genomic mechanisms); and 2) nongenomic actions that are initiated at the cell membrane, which could impact transcription. Although transcriptional mechanisms are increasingly well understood, membrane-initiated actions of these ligands are incompletely understood. Historically, this has led to a considerable divergence of thought in the molecular endocrine field. We have attempted to uncover principles of hormone action that are relevant to membrane-initiated actions of estrogens. There is evidence that the membrane-limited actions of hormones, particularly estrogens, involve the rapid activation of kinases and the release of calcium. Membrane actions of estrogens, which activate these rapid signaling cascades, can also potentiate nuclear transcription. These signaling cascades may occur in parallel or in series but subsequently converge at the level of modification of transcriptionally relevant molecules such as nuclear receptors and/or coactivators. In addition, other hormones or neurotransmitters may also activate cascades to crosstalk with estrogen receptor-mediated transcription. The idea of synergistic coupling between membrane-initiated and genomic actions of hormones fundamentally revises the paradigms of cell signaling in neuroendocrinology.

  7. Persistent Hg contamination and occurrence of Hg-methylating transcript (hgcA) downstream of a chlor-alkali plant in the Olt River (Romania).

    Science.gov (United States)

    Bravo, Andrea G; Loizeau, Jean-Luc; Dranguet, Perrine; Makri, Stamatina; Björn, Erik; Ungureanu, Viorel Gh; Slaveykova, Vera I; Cosio, Claudia

    2016-06-01

    Chlor-alkali plants using mercury (Hg) cell technology are acute point sources of Hg pollution in the aquatic environment. While there have been recent efforts to reduce the use of Hg cells, some of the emitted Hg can be transformed to neurotoxic methylmercury (MeHg). Here, we aimed (i) to study the dispersion of Hg in four reservoirs located downstream of a chlor-alkali plant along the Olt River (Romania) and (ii) to track the activity of bacterial functional genes involved in Hg methylation. Total Hg (THg) concentrations in water and sediments decreased successively from the initial reservoir to downstream reservoirs. Suspended fine size particles and seston appeared to be responsible for the transport of THg into downstream reservoirs, while macrophytes reflected the local bioavailability of Hg. The concentration and proportion of MeHg were correlated with THg, but were not correlated with bacterial activity in sediments, while the abundance of hgcA transcript correlated with organic matter and Cl(-) concentration, indicating the importance of Hg bioavailability in sediments for Hg methylation. Our data clearly highlights the importance of considering Hg contamination as a legacy pollutant since there is a high risk of continued Hg accumulation in food webs long after Hg-cell phase out.

  8. Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations

    Science.gov (United States)

    Streubel, Jana; Baum, Heidi; Grau, Jan; Stuttman, Johannes; Boch, Jens

    2017-01-01

    Plant-pathogenic Xanthomonas bacteria inject transcription activator-like effector proteins (TALEs) into host cells to specifically induce transcription of plant genes and enhance susceptibility. Although the DNA-binding mode is well-understood it is still ambiguous how TALEs initiate transcription and whether additional promoter elements are needed to support this. To systematically dissect prerequisites for transcriptional initiation the activity of one TALE was compared on different synthetic Bs4 promoter fragments. In addition, a large collection of artificial TALEs spanning the OsSWEET14 promoter was compared. We show that the presence of a TALE alone is not sufficient to initiate transcription suggesting the requirement of additional supporting promoter elements. At the OsSWEET14 promoter TALEs can initiate transcription from various positions, in a synergistic manner of multiple TALEs binding in parallel to the promoter, and even by binding in reverse orientation. TALEs are known to shift the transcriptional start site, but our data show that this shift depends on the individual position of a TALE within a promoter context. Our results implicate that TALEs function like classical enhancer-binding proteins and initiate transcription in both orientations which has consequences for in planta target gene prediction and design of artificial activators. PMID:28301511

  9. Transcription of minute virus of mice, an autonomous parvovirus, may be regulated by attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Asher, E.; Aloni, Y.

    1984-10-01

    To characterize the transcriptional organization and regulation of minute virus of mice, an autonomous parvovirus, viral transcriptional complexes were isolated and cleaved with restriction enzymes. The in vivo preinitiated nascent RNA was elongated in vitro in the presence of (alpha-/sup 32/P)UTP to generate runoff transcripts. The lengths of the runoff transcripts were analyzed by gel electrophoresis under denaturing conditions. On the basis of the map locations of the restriction sites and the lengths of the runoff transcripts, the in vivo initiation sites were determined. Two major initiation sites having similar activities were thus identified at residues 201 +/- 5 and 2005 +/- 5; both of them were preceded by a TATAA sequence. When uncleaved viral transcriptional complexes or isolated nuclei were incubated in vitro in the presence of (alpha-/sup 32/P)UTP or (alpha-/sup 32/P)CTP, they synthesized labeled RNA that, as determined by polyacrylamide gel electrophoresis, contained a major band of 142 nucleotides. The RNA of the major band was mapped between the initiation site at residue 201 +/- 5 and residue 342. We noticed the potential of forming two mutually exclusive stem-and-loop structures in the 142-nucleotide RNA; one of them is followed by a string of uridylic acid residues typical of a procaryotic transcription termination signal. We propose that, as in the transcription of simian virus 40, RNA transcription in minute virus of mice may be regulated by attenuation and may involve eucaryotic polymerase B, which can respond to a transcription termination signal similar to that of the procaryotic polymerase.

  10. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    Science.gov (United States)

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  11. Alternative staffing services. Contract transcription.

    Science.gov (United States)

    Tessier, C

    1992-03-01

    Contract medical transcription services can be of great assistance in meeting the demands for transcription, without jeopardizing patient, physician, or institutional confidentiality. You simply must require the contract service to provide at least the same degree of protection and preservation of confidentiality that you should require inhouse. To achieve this you must make these requirements explicit, comprehensive, comprehensible, believable, and enforceable. Discuss the requirements with prospective contractors. Review them at least annually with existing contractors and when contracts are due for renewal. Be sure to specify the consequence of breaching confidentiality, and if there are breaches, enforce the terms of the contract. Consult your institution's legal counsel both in developing the contract and in enforcing its provisions. Take into consideration your department's and institution's policies, AHIMA's statement on confidentiality, as well as local, state, and federal laws. Above all, never lose sight of the patient. Ultimately, it is not patient information that you are obligated to protect. It is the patient.

  12. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation

    Science.gov (United States)

    Barchinger, Sarah E.; Pirbadian, Sahand; Baker, Carol S.; Leung, Kar Man; Burroughs, Nigel J.; El-Naggar, Mohamed Y.

    2016-01-01

    ABSTRACT In limiting oxygen as an electron acceptor, the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 rapidly forms nanowires, extensions of its outer membrane containing the cytochromes MtrC and OmcA needed for extracellular electron transfer. RNA sequencing (RNA-Seq) analysis was employed to determine differential gene expression over time from triplicate chemostat cultures that were limited for oxygen. We identified 465 genes with decreased expression and 677 genes with increased expression. The coordinated increased expression of heme biosynthesis, cytochrome maturation, and transport pathways indicates that S. oneidensis MR-1 increases cytochrome production, including the transcription of genes encoding MtrA, MtrC, and OmcA, and transports these decaheme cytochromes across the cytoplasmic membrane during electron acceptor limitation and nanowire formation. In contrast, the expression of the mtrA and mtrC homologs mtrF and mtrD either remains unaffected or decreases under these conditions. The ompW gene, encoding a small outer membrane porin, has 40-fold higher expression during oxygen limitation, and it is proposed that OmpW plays a role in cation transport to maintain electrical neutrality during electron transfer. The genes encoding the anaerobic respiration regulator cyclic AMP receptor protein (CRP) and the extracytoplasmic function sigma factor RpoE are among the transcription factor genes with increased expression. RpoE might function by signaling the initial response to oxygen limitation. Our results show that RpoE activates transcription from promoters upstream of mtrC and omcA. The transcriptome and mutant analyses of S. oneidensis MR-1 nanowire production are consistent with independent regulatory mechanisms for extending the outer membrane into tubular structures and for ensuring the electron transfer function of the nanowires. IMPORTANCE Shewanella oneidensis MR-1 has the capacity to transfer electrons to its external surface

  13. Nascent RNA kinetics: Transient and steady state behavior of models of transcription

    Science.gov (United States)

    Choubey, Sandeep

    2018-02-01

    Regulation of transcription is a vital process in cells, but mechanistic details of this regulation still remain elusive. The dominant approach to unravel the dynamics of transcriptional regulation is to first develop mathematical models of transcription and then experimentally test the predictions these models make for the distribution of mRNA and protein molecules at the individual cell level. However, these measurements are affected by a multitude of downstream processes which make it difficult to interpret the measurements. Recent experimental advancements allow for counting the nascent mRNA number of a gene as a function of time at the single-inglr cell level. These measurements closely reflect the dynamics of transcription. In this paper, we consider a general mechanism of transcription with stochastic initiation and deterministic elongation and probe its impact on the temporal behavior of nascent RNA levels. Using techniques from queueing theory, we derive exact analytical expressions for the mean and variance of the nascent RNA distribution as functions of time. We apply these analytical results to obtain the mean and variance of nascent RNA distribution for specific models of transcription. These models of initiation exhibit qualitatively distinct transient behaviors for both the mean and variance which further allows us to discriminate between them. Stochastic simulations confirm these results. Overall the analytical results presented here provide the necessary tools to connect mechanisms of transcription initiation to single-cell measurements of nascent RNA.

  14. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    Science.gov (United States)

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  15. A transcriptional cofactor YAP regulates IFNT expression via transcription factor TEAD in bovine conceptuses.

    Science.gov (United States)

    Kusama, K; Bai, R; Sakurai, T; Bai, H; Ideta, A; Aoyagi, Y; Imakawa, K

    2016-10-01

    Interferon tau (IFNT) is the pregnancy recognition protein in all ruminants, and its expression is restricted to trophoblast cells. Interferon tau production increases as the conceptus elongates; however, its expression is downregulated soon after the initiation of conceptus attachment to the uterine epithelium. Our previous study identified that among 8 bovine IFNT genes, only 2 forms of IFNTs, IFNT2 and IFN-tau-c1, were expressed by the conceptuses during the periattachment period. To characterize whether Hippo signaling including a transcription cofactor yes-associated protein (YAP) was involved in the IFNT regulation, we examined the expression and effects of YAP and/or TEAD in human choriocarcinoma JEG3 and bovine trophoblast CT-1 cells, and in bovine conceptuses obtained from day 17, 20 or 22 pregnant animals (pregnant day 19.5 = day of conceptus attachment to the endometrium). YAP was expressed in bovine conceptuses and transfection of YAP or TEAD4, a transcription factor partner of YAP, expression plasmid increased the luciferase activity of IFNT2 and IFN-tau-c1 reporter plasmids in JEG3 cells. In the presence of YAP expression plasmid, TEAD2 or TEAD4 expression plasmid further upregulated transcriptional activity of IFNT2 or IFN-tau-c1 constructs, which were substantially reduced in the absence of the TEAD-binding site on IFNT2 or IFN-tau-c1 promoter region in JEG3 cells. In CT-1 cells, treatment with TEAD2, TEAD4, or YAP small-interfering RNA downregulated endogenous IFNT expression. It should be noted that TEAD2 and TEAD4 were predominantly localized in the nuclei of trophectoderm of Day 17 conceptuses, but nuclear localization appeared to be lower in those cells of conceptuses on days 20 and 22 of pregnancy. Moreover, the binding of TEAD4 to the TEAD-binding site of the IFN-tau-c1 promoter region in day 17 conceptuses was less in day 20 and 22 conceptuses. Furthermore, the level of YAP phosphorylation increased in day 20 and 22 conceptuses. These

  16. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters.

    Science.gov (United States)

    Erb, Ionas; van Nimwegen, Erik

    2011-01-01

    The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of 6 'proximal promoter motifs' (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters.

  17. The quest for a unified view of bacterial land colonization.

    Science.gov (United States)

    Wu, Hao; Fang, Yongjun; Yu, Jun; Zhang, Zhang

    2014-07-01

    Exploring molecular mechanisms underlying bacterial water-to-land transition represents a critical start toward a better understanding of the functioning and stability of the terrestrial ecosystems. Here, we perform comprehensive analyses based on a large variety of bacteria by integrating taxonomic, phylogenetic and metagenomic data, in the quest for a unified view that elucidates genomic, evolutionary and ecological dynamics of the marine progenitors in adapting to nonaquatic environments. We hypothesize that bacterial land colonization is dominated by a single-gene sweep, that is, the emergence of dnaE2 derived from an early duplication event of the primordial dnaE, followed by a series of niche-specific genomic adaptations, including GC content increase, intensive horizontal gene transfer and constant genome expansion. In addition, early bacterial radiation may be stimulated by an explosion of land-borne hosts (for example, plants and animals) after initial land colonization events.

  18. Asymmetric bidirectional transcription from the FSHD-causing D4Z4 array modulates DUX4 production.

    Directory of Open Access Journals (Sweden)

    Gregory J Block

    Full Text Available Facioscapulohumeral Disease (FSHD is a dominantly inherited progressive myopathy associated with aberrant production of the transcription factor, Double Homeobox Protein 4 (DUX4. The expression of DUX4 depends on an open chromatin conformation of the D4Z4 macrosatellite array and a specific haplotype on chromosome 4. Even when these requirements are met, DUX4 transcripts and protein are only detectable in a subset of cells indicating that additional constraints govern DUX4 production. Since the direction of transcription, along with the production of non-coding antisense transcripts is an important regulatory feature of other macrosatellite repeats, we developed constructs that contain the non-coding region of a single D4Z4 unit flanked by genes that report transcriptional activity in the sense and antisense directions. We found that D4Z4 contains two promoters that initiate sense and antisense transcription within the array, and that antisense transcription predominates. Transcriptional start sites for the antisense transcripts, as well as D4Z4 regions that regulate the balance of sense and antisense transcripts were identified. We show that the choice of transcriptional direction is reversible but not mutually exclusive, since sense and antisense reporter activity was often present in the same cell and simultaneously upregulated during myotube formation. Similarly, levels of endogenous sense and antisense D4Z4 transcripts were upregulated in FSHD myotubes. These studies offer insight into the autonomous distribution of muscle weakness that is characteristic of FSHD.

  19. [Bacterial colangitis: therapeutic features

    Science.gov (United States)

    Russo, M.; Carmellino, S.; Russo, G.

    1999-01-01

    Cholangitis results from the combination of bactibilia and biliary tract obstruction. In recent years considerable progress has been made in the diagnosis and treatment of cholangitis; advances in endoscopic techniques and antibiotic therapy have ameliorated the prognosis of cholangitis. The choice of an antimicrobial regimen for cholangitis should take into account the antibiotic sensitivities of bacteria colonizing biliary tree, the antibiotic excretion into bile and whether biliary obstruction or bacteremia is present. Successful treatment depends on relieving biliary obstruction and administering antibiotics effective against bacteria implicated. The initial therapy should be active against E. coli and Klebsiella spp., while it is controversial whether the empirical antibiotic regimen should also include coverage against Enterococcus, Pseudomonas and anaerobes. The ureidopenicillins are the preferred initial treatment; the combination piperacillin-tazobactam may be active against the resistant species. Second generation cephalosporins like cefamandole and cefoxitin are still useful, cefoperazone gives excellent coverage against gram-negative bacteria, while cefepime may be suitable as treatment for acute cholangitis. In severe cholangitis an aminoglycoside can be added to the beta-lactamin; once-daily aminoglycoside administration is associated with a reduced incidence of nephrotoxicity also in patients with cholestasis. Whether the fluoroquinolones are effective in treatment for cholangitis has not been fully evaluated. In patients with suppurative cholangitis prompt endoscopic drainage is mandatory, since antibiotics alone will not sterilize the biliary tract in the face of obstruction. Antibiotic prophylaxis to prevent cholangitis after ERCP should be administered particularly to patients in whom biliary drainage is expected to be difficult; antimicrobial prophylaxis with piperacillin effectively prevents ERCPinduced cholangitis. Antibiotic maintenance

  20. H-NS silences gfp, the green fluorescent protein gene: gfpTCD is a genetically Remastered gfp gene with reduced susceptibility to H-NS-mediated transcription silencing and with enhanced translation.

    Science.gov (United States)

    Corcoran, Colin P; Cameron, Andrew D S; Dorman, Charles J

    2010-09-01

    The bacterial nucleoid-associated protein H-NS, which preferentially targets and silences A+T-rich genes, binds the ubiquitous reporter gene gfp and dramatically reduces local transcription. We have redesigned gfp to reduce H-NS-mediated transcription silencing and simultaneously improve translation in vivo without altering the amino acid sequence of the GFP protein.

  1. The Human Vaginal Bacterial Biota and Bacterial Vaginosis

    Directory of Open Access Journals (Sweden)

    Sujatha Srinivasan

    2008-01-01

    Full Text Available The bacterial biota of the human vagina can have a profound impact on the health of women and their neonates. Changes in the vaginal microbiota have been associated with several adverse health outcomes including premature birth, pelvic inflammatory disease, and acquisition of HIV infection. Cultivation-independent molecular methods have provided new insights regarding bacterial diversity in this important niche, particularly in women with the common condition bacterial vaginosis (BV. PCR methods have shown that women with BV have complex communities of vaginal bacteria that include many fastidious species, particularly from the phyla Bacteroidetes and Actinobacteria. Healthy women are mostly colonized with lactobacilli such as Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners, though a variety of other bacteria may be present. The microbiology of BV is heterogeneous. The presence of Gardnerella vaginalis and Atopobium vaginae coating the vaginal epithelium in some subjects with BV suggests that biofilms may contribute to this condition.

  2. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity

    Directory of Open Access Journals (Sweden)

    Afsar U. Ahmed

    2015-11-01

    Full Text Available Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding.

  3. Insights into mRNP biogenesis provided by new genetic interactions among export and transcription factors

    Directory of Open Access Journals (Sweden)

    Estruch Francisco

    2012-09-01

    Full Text Available Abstract Background The various steps of mRNP biogenesis (transcription, processing and export are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. Results We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the phenotypes of mRNA export mutant strains. Our results show that growth and mRNA export defects of dbp5 and mex67 mutant strains can be suppressed by mutation of specific transcription initiation components, but suppression was not observed for mutants acting in the very first steps of the pre-initiation complex (PIC formation. Conclusions Our results indicate that mere reduction in the amount of mRNP produced is not sufficient to suppress the defects caused by a defective mRNA export factor. Suppression occurs only with mutants affecting events within a narrow window of the mRNP biogenesis process. We propose that reducing the speed with which transcription converts from initiation and promoter clearance to elongation may have a positive effect on mRNP formation by permitting more effective recruitment of partially-functional mRNP proteins to the nascent mRNP.

  4. Isolation of genomic DNA encoding transcription factor TFIID from Acanthamoeba castellanii: characterization of the promoter.

    Science.gov (United States)

    Wong, J M; Liu, F; Bateman, E

    1992-01-01

    We have isolated a genomic clone encoding Acanthamoeba castellanii TFIID. The clone contains the entire TFIID gene, 300 bp of 5' promoter sequences and several hundred base pairs of 3' non-coding sequence. The coding region is interrupted by two short introns, but is otherwise identical to Acanthamoeba TFIID cDNA. Comparisons between forty four Acanthamoeba intron 5' and 3' boundaries suggest a 5' splice site consensus of GTACG(T/C) and a 3' consensus of CAG. We determined the position of the transcription initiation site used in vivo, and show that the same site is used in vitro by homologous nuclear extracts. Deletion analysis of the promoter region shows that the minimal promoter required for efficient expression in vitro is located between -97 and +4 relative to the transcription start site. Three regions within the promoter are important for transcription in vitro; sequences between -97 and -35, the TATAAA box and the initiation region. The initiation region is dispensable but appears to position the transcription start site relative to the TATAAA box. The TATAAA box is absolutely required for transcription initiation whereas the upstream region stimulates transcription approximately five-fold. Images PMID:1408796

  5. Transcriptional Modulation of Squalene Synthase Genes in Barley Treated with PGPR

    Directory of Open Access Journals (Sweden)

    Anam eYousaf

    2015-09-01

    Full Text Available Phytosterol contents and food quality of plant produce is directly associated with transcription of gene Squalene Synthase (SS. In current study, barley plants were treated with different rhizobacterial strains under semi controlled (27±3°C greenhouse conditions in order to modulate expression of SS gene. Plant samples were analysed through semi-quantitative PCR to evaluate effect of rhizobacterial application on transcriptional status of squalene synthase. Results revealed that among four SS genes (i.e. SSA, SS1, SS2 and SS3, the most expressive gene was SSA; while, SS2 was screened out as the second best induced gene due to Acetobacter aceti. The most efficient bacterial strain which recorded maximum gene expression was A. aceti AC8. Moreover, AC7 was reported as the least efficient bacterial species for inducing SS gene expression. AC8 enhanced the share of SSA and SS2 up to 43% and 31%, respectively. The study also described ribosomal sequence of the most efficient bacterial strain AC8, which was used to determine its phylogenetic relationships with other microbial strains. The study would be helpful to improve quality of plant produce by modulating transcription of SS genes.

  6. Transcriptional modulation of squalene synthase genes in barley treated with PGPR

    Science.gov (United States)

    Yousaf, Anam; Qadir, Abdul; Anjum, Tehmina; Ahmad, Aqeel

    2015-01-01

    Phytosterol contents and food quality of plant produce is directly associated with transcription of gene squalene synthase (SS). In current study, barley plants were treated with different rhizobacterial strains under semi controlled (27 ± 3°C) greenhouse conditions in order to modulate expression of SS gene. Plant samples were analyzed through semi-quantitative PCR to evaluate effect of rhizobacterial application on transcriptional status of SS. Results revealed that among four SS genes (i.e., SSA, SS1, SS2, and SS3), the most expressive gene was SSA; while, SS2 was screened out as the second best induced gene due to Acetobacter aceti. The most efficient bacterial strain which recorded maximum gene expression was A. aceti AC8. Moreover, AC7 was reported as the least efficient bacterial species for inducing SS gene expression. AC8 enhanced the share of SSA and SS2 up to 43 and 31%, respectively. The study also described ribosomal sequence of the most efficient bacterial strain AC8, which was used to determine its phylogenetic relationships with other microbial strains. The study would be helpful to improve quality of plant produce by modulating transcription of SS genes. PMID:26388880

  7. Bacterial contamination of blood products.

    Science.gov (United States)

    Palavecino, Elizabeth; Jacobs, Michael; Yomtovian, Roslyn

    2004-11-01

    The occurrence of a septic reaction resulting from bacterial contamination of blood products, particularly with room-temperature stored platelets, is the most common transfusion-associated infectious risk in the United States. Bacterial contamination of blood products was first identified more than 60 years ago; yet, strategies to resolve this problem have proved daunting despite ongoing awareness and increasing concern especially in the last few years. With the recent US Food and Drug Administration (FDA) approval of culture methods for quality control testing of platelet units and the promulgation of accreditation standards by the College of American Pathologists and American Association of Blood Banks to detect bacterially contaminated platelet units and to prevent transfusion of these units, blood banks and transfusion services have finally started to address this problem, in a more standardized manner. Furthermore, as new methods of interdicting, inactivating and detecting bacterially contaminated blood products emerge, it is hoped that the problem of bacterial contamination of blood products will be overcome.

  8. Community-acquired bacterial meningitis.

    Science.gov (United States)

    Costerus, Joost M; Brouwer, Matthijs C; Bijlsma, Merijn W; van de Beek, Diederik

    2017-02-01

    Bacterial meningitis is a medical emergency and is associated with a high disease burden. We reviewed recent progress in the management of patients with community-acquired bacterial meningitis. The worldwide burden of disease of bacterial meningitis remains high, despite the decreasing incidence following introduction of routine vaccination campaigns. Delay in diagnosis and treatment remain major concerns in the management of acute bacterial meningitis. European Society of Clinical Microbiology and Infectious Diseases guidelines strive for a door-to-antibiotic-time less than 1 h. Polymerase chain reaction (PCR) has emerged as an important diagnostic tool to identify the causative organism. Point-of-care tests using fast multiplex PCR have been developed, but additional value has not been proven. Although anecdotal observations advocate pressure-based management, a randomized controlled trial will need to be performed first to determine efficacy and safety of such an aggressive treatment approach. Adjunctive dexamethasone remains the only adjunctive therapy with proven efficacy. The incidence of bacterial meningitis has been decreasing after the implementation of effective vaccines. Treatment should be administered as soon as possible and time to treatment should not exceed 1 h.

  9. Pro-neural transcription factors as cancer markers

    Directory of Open Access Journals (Sweden)

    Nikitin Alexander

    2008-05-01

    Full Text Available Abstract Background The aberrant transcription in cancer of genes normally associated with embryonic tissue differentiation at various organ sites may be a hallmark of tumour progression. For example, neuroendocrine differentiation is found more commonly in cancers destined to progress, including prostate and lung. We sought to identify proteins which are involved in neuroendocrine differentiation and differentially expressed in aggressive/metastatic tumours. Results Expression arrays were used to identify up-regulated transcripts in a neuroendocrine (NE transgenic mouse model of prostate cancer. Amongst these were several genes normally expressed in neural tissues, including the pro-neural transcription factors Ascl1 and Hes6. Using quantitative RT-PCR and immuno-histochemistry we showed that these same genes were highly expressed in castrate resistant, metastatic LNCaP cell-lines. Finally we performed a meta-analysis on expression array datasets from human clinical material. The expression of these pro-neural transcripts effectively segregates metastatic from localised prostate cancer and benign tissue as well as sub-clustering a variety of other human cancers. Conclusion By focussing on transcription factors known to drive normal tissue development and comparing expression signatures for normal and malignant mouse tissues we have identified two transcription factors, Ascl1 and Hes6, which appear effective markers for an aggressive phenotype in all prostate models and tissues examined. We suggest that the aberrant initiation of differentiation programs may confer a selective advantage on cells in all contexts and this approach to identify biomarkers therefore has the potential to uncover proteins equally applicable to pre-clinical and clinical cancer biology.

  10. Bacterial communities in the fruit bodies of ground basidiomycetes

    Science.gov (United States)

    Zagryadskaya, Yu. A.; Lysak, L. V.; Chernov, I. Yu.

    2015-06-01

    Fruit bodies of basidiomycetes at different stages of decomposition serve as specific habitats in forest biocenoses for bacteria and differ significantly with respect to the total bacterial population and abundance of particular bacterial genera. A significant increase in the total bacterial population estimated by the direct microscopic method with acridine orange staining and in the population of saprotrophic bacteria (inoculation of glucose peptone yeast agar) in fruit bodies of basidiomycetes Armillaria mellea and Coprinus comatus was recorded at the final stage of their decomposition in comparison with the initial stage. Gramnegative bacteria predominated in the tissues of fruit bodies at all the stages of decomposition and were represented at the final stage by the Aeromonas, Vibrio, and Pseudomonas genera (for fruit bodies of A. mellea) the Pseudomonas genus (for fruit bodies of C. comatus). The potential influence of bacterial communities in the fruit bodies of soil basidiomycetes on the formation of bacterial communities in the upper soil horizons in forest biocenoses is discussed. The loci connected with the development and decomposition of fruit bodies of basidiomycetes on the soil surface are promising for targeted search of Gram-negative bacteria, the important objects of biotechnology.

  11. Effects of Fe nanoparticles on bacterial growth and biosurfactant production

    International Nuclear Information System (INIS)

    Liu Jia; Vipulanandan, Cumaraswamy; Cooper, Tim F.; Vipulanandan, Geethanjali

    2013-01-01

    Environmental conditions can have a major impact on bacterial growth and production of secondary products. In this study, the effect of different concentrations of Fe nanoparticles on the growth of Serratia sp. and on its production of a specific biosurfactant was investigated. The Fe nanoparticles were produced using the foam method, and the needle-shaped nanoparticles were about 30 nm in diameter. It was found that Fe nanoparticles can have either a positive or a negative impact on the bacterial growth and biosurfactant production, depending on their concentration. At 1 mg/L of Fe nanoparticle concentration the bacterial growth increased by 57 % and biosurfactant production increased by 63 %. When the Fe nanoparticle concentration was increased to 1 g/L, the bacterial growth decreased by 77 % and biosurfactant activity was undetectable. The biosurfactant itself was not directly affected by Fe nanoparticles over the range of concentrations studied, indicating that the observed changes in biosurfactant activity resulted indirectly from the effect of nanoparticles on the bacteria. These negative effects with nanoparticle exposures were temporary, demonstrated by the restoration of biosurfactant activity when the bacteria initially exposed to Fe nanoparticles were allowed to regrow in the absence of nanoparticles. Finally, the kinetics of bacterial growth and biosurfactant production were modeled. The model’s predictions agreed with the experimental results.

  12. Effects of Fe nanoparticles on bacterial growth and biosurfactant production

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jia; Vipulanandan, Cumaraswamy, E-mail: cvipulanandan@uh.edu [University of Houston, Department of Civil and Environmental Engineering (United States); Cooper, Tim F. [University of Houston, Department of Biology and Biochemistry (United States); Vipulanandan, Geethanjali [University of Houston, Department of Biomedical Engineering (United States)

    2013-01-15

    Environmental conditions can have a major impact on bacterial growth and production of secondary products. In this study, the effect of different concentrations of Fe nanoparticles on the growth of Serratia sp. and on its production of a specific biosurfactant was investigated. The Fe nanoparticles were produced using the foam method, and the needle-shaped nanoparticles were about 30 nm in diameter. It was found that Fe nanoparticles can have either a positive or a negative impact on the bacterial growth and biosurfactant production, depending on their concentration. At 1 mg/L of Fe nanoparticle concentration the bacterial growth increased by 57 % and biosurfactant production increased by 63 %. When the Fe nanoparticle concentration was increased to 1 g/L, the bacterial growth decreased by 77 % and biosurfactant activity was undetectable. The biosurfactant itself was not directly affected by Fe nanoparticles over the range of concentrations studied, indicating that the observed changes in biosurfactant activity resulted indirectly from the effect of nanoparticles on the bacteria. These negative effects with nanoparticle exposures were temporary, demonstrated by the restoration of biosurfactant activity when the bacteria initially exposed to Fe nanoparticles were allowed to regrow in the absence of nanoparticles. Finally, the kinetics of bacterial growth and biosurfactant production were modeled. The model's predictions agreed with the experimental results.

  13. Chromatin decondensation is accompanied by a transient increase in transcriptional output.

    Science.gov (United States)

    Vaňková Hausnerová, Viola; Lanctôt, Christian

    2017-01-01

    The levels of chromatin condensation usually correlate inversely with the levels of transcription. The mechanistic links between chromatin condensation and RNA polymerase II activity remain to be elucidated. In the present work, we sought to experimentally determine whether manipulation of chromatin condensation levels can have a direct effect on transcriptional activity. We generated a U-2-OS cell line in which the nascent transcription of a reporter gene could be imaged alongside chromatin compaction levels in living cells. The transcripts were tagged at their 5' end with PP7 stem loops, which can be detected upon expression of a PP7 capsid protein fused to green fluorescent protein. Cycles of global chromatin hypercondensation and decondensation were performed by perfusing culture media of different osmolarities during imaging. We used the fluorescence recovery after photobleaching technique to analyse the transcriptional dynamics in both conditions. Surprisingly, we found that, despite a drop in signal intensity, nascent transcription appeared to continue at the same rate in hypercondensed chromatin. Furthermore, quantification of transcriptional profiles revealed that chromatin decondensation was accompanied by a brief and transient spike in transcriptional output. We propose a model whereby the initiation of transcription is not impaired in condensed chromatin, but inefficient elongation in these conditions leads to the accumulation of RNA polymerase II at the transcription site. Upon chromatin decondensation, release of the RNA polymerase II halt triggers a wave of transcription, which we detect as a transient spike in activity. The results presented here shed light on the activity of RNA polymerase II during chromatin condensation and decondensation. As such, they point to a new level of transcriptional regulation. © 2016 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  14. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    Science.gov (United States)

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  15. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    Directory of Open Access Journals (Sweden)

    João Alves Gama

    Full Text Available It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  16. Aseptic and Bacterial Meningitis: Evaluation, Treatment, and Prevention.

    Science.gov (United States)

    Mount, Hillary R; Boyle, Sean D

    2017-09-01

    The etiologies of meningitis range in severity from benign and self-limited to life-threatening with potentially severe morbidity. Bacterial meningitis is a medical emergency that requires prompt recognition and treatment. Mortality remains high despite the introduction of vaccinations for common pathogens that have reduced the incidence of meningitis worldwide. Aseptic meningitis is the most common form of meningitis with an annual incidence of 7.6 per 100,000 adults. Most cases of aseptic meningitis are viral and require supportive care. Viral meningitis is generally self-limited with a good prognosis. Examination maneuvers such as Kernig sign or Brudzinski sign may not be useful to differentiate bacterial from aseptic meningitis because of variable sensitivity and specificity. Because clinical findings are also unreliable, the diagnosis relies on the examination of cerebrospinal fluid obtained from lumbar puncture. Delayed initiation of antibiotics can worsen mortality. Treatment should be started promptly in cases where transfer, imaging, or lumbar puncture may slow a definitive diagnosis. Empiric antibiotics should be directed toward the most likely pathogens and should be adjusted by patient age and risk factors. Dexamethasone should be administered to children and adults with suspected bacterial meningitis before or at the time of initiation of antibiotics. Vaccination against the most common pathogens that cause bacterial meningitis is recommended. Chemoprophylaxis of close contacts is helpful in preventing additional infections.

  17. Bacterial meningitis antibiotic treatment.

    Science.gov (United States)

    Cohen, R; Raymond, J; Hees, L; Pinquier, D; Grimprel, E; Levy, C

    2017-12-01

    The implementation of pneumococal conjugate vaccines (PCVs) 7 then 13 valent (Prevenar13 ®) in 2010-2011 has significantly changed the profile of pneumococcal meningitis. Since 3 years, the National Pediatric Meningitis Network of the Pediatric Infectious Disease Group (GPIP) and the National Reference Centre of Pneumococci have reported no cases of meningitis due to pneumococcus resistant to third-generation cephalosporins (3GC): cefotaxime or ceftriaxone. In the light of these new data, vancomycin should no longer be prescribed at the initial phase of pneumococcal meningitis treatment (confirmed or only suspected) and this antibiotic should only be added when 3GC minimum inhibitory concentration of the strain isolated is greater than 0.5mg/L. For meningococcal meningitis, nearly 20% of strains have decreased susceptibility to penicillin and amoxicillin, but all remain susceptible to 3GC. The National Pediatric Meningitis Network is a valuable tool because it has been sufficiently exhaustive and sustainable over 15 years. Maintaining this epidemiologic surveillance will allow us to adapt, if necessary, new regimens for subsequent changes that could be induced by vaccination and/or antibiotic uses. © 2017 Elsevier Masson SAS. Tous droits réservés.

  18. The global regulatory architecture of transcription during the Caulobacter cell cycle.

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    2015-01-01

    Full Text Available Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs and a DNA methyltransferase. Using a modified global 5' RACE protocol, we globally mapped transcription start sites (TSSs at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle.

  19. Abdominal radiation causes bacterial translocation

    International Nuclear Information System (INIS)

    Guzman-Stein, G.; Bonsack, M.; Liberty, J.; Delaney, J.P.

    1989-01-01

    The purpose of this study was to determine if a single dose of radiation to the rat abdomen leads to bacterial translocation into the mesenteric lymph nodes (MLN). A second issue addressed was whether translocation correlates with anatomic damage to the mucosa. The radiated group (1100 cGy) which received anesthesia also was compared with a control group and a third group which received anesthesia alone but no abdominal radiation. Abdominal radiation lead to 100% positive cultures of MLN between 12 hr and 4 days postradiation. Bacterial translocation was almost nonexistent in the control and anesthesia group. Signs of inflammation and ulceration of the intestinal mucosa were not seen until Day 3 postradiation. Mucosal damage was maximal by Day 4. Bacterial translocation onto the MLN after a single dose of abdominal radiation was not apparently dependent on anatomical, histologic damage of the mucosa

  20. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  1. Empiric Antibiotic Therapy of Nosocomial Bacterial Infections.

    Science.gov (United States)

    Reddy, Pramod

    2016-01-01

    Broad-spectrum antibiotics are commonly used by physicians to treat various infections. The source of infection and causative organisms are not always apparent during the initial evaluation of the patient, and antibiotics are often given empirically to patients with suspected sepsis. Fear of attempting cephalosporins and carbapenems in penicillin-allergic septic patients may result in significant decrease in the spectrum of antimicrobial coverage. Empiric antibiotic therapy should sufficiently cover all the suspected pathogens, guided by the bacteriologic susceptibilities of the medical center. It is important to understand the major pharmacokinetic properties of antibacterial agents for proper use and to minimize the development of resistance. In several septic patients, negative cultures do not exclude active infection and positive cultures may not represent the actual infection. This article will review the important differences in the spectrum of commonly used antibiotics for nosocomial bacterial infections with a particular emphasis on culture-negative sepsis and colonization.

  2. Bacterial computing with engineered populations.

    Science.gov (United States)

    Amos, Martyn; Axmann, Ilka Maria; Blüthgen, Nils; de la Cruz, Fernando; Jaramillo, Alfonso; Rodriguez-Paton, Alfonso; Simmel, Friedrich

    2015-07-28

    We describe strategies for the construction of bacterial computing platforms by describing a number of results from the recently completed bacterial computing with engineered populations project. In general, the implementation of such systems requires a framework containing various components such as intracellular circuits, single cell input/output and cell-cell interfacing, as well as extensive analysis. In this overview paper, we describe our approach to each of these, and suggest possible areas for future research. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. The Calmodulin-Binding Transcription Activator CAMTA1 Is Required for Long-Term Memory Formation in Mice

    Science.gov (United States)

    Bas-Orth, Carlos; Tan, Yan-Wei; Oliveira, Ana M. M.; Bengtson, C. Peter; Bading, Hilmar

    2016-01-01

    The formation of long-term memory requires signaling from the synapse to the nucleus to mediate neuronal activity-dependent gene transcription. Synapse-to-nucleus communication is initiated by influx of calcium ions through synaptic NMDA receptors and/or L-type voltage-gated calcium channels and involves the activation of transcription factors by…

  4. Human ISWI complexes are targeted by SMARCA5 ATPase and SLIDE domains to help resolve lesion-stalled transcription

    NARCIS (Netherlands)

    Ö.Z. Aydin (Özge); J.A. Marteijn (Jurgen); C. Ribeiro-Silva (Cristina); A. Rodríguez López (Aida); N. Wijgers (Nils); G. Smeenk (Godelieve); H. van Attikum (Haico); R.A. Poot (Raymond); W. Vermeulen (Wim); H. Lans (Hannes)

    2014-01-01

    textabstractChromatin compaction of deoxyribonucleic acid (DNA) presents a major challenge to the detection and removal of DNA damage. Helix-distorting DNA lesions that block transcription are specifically repaired by transcription-coupled nucleotide excision repair, which is initiated by binding of

  5. Direct interactions between the coiled-coil tip of DksA and the trigger loop of RNA polymerase mediate transcriptional regulation

    Science.gov (United States)

    E. coli DksA is in a class of transcription factors that modify RNA polymerase (RNAP) in all three kingdoms of life. DksA potentiates the effects of the global regulator ppGpp and the initiating NTP, controlling transcription initiation without binding to DNA. Incorporating benzoyl-phenylalanine (Bp...

  6. The Journey of a Transcription Factor

    DEFF Research Database (Denmark)

    Pireyre, Marie

    in their regulation at multiple steps of their activation. Plant signaling in connection with transcription factor regulation is an exciting field, allowing research on multiple regulatory mechanisms. This thesis shed light on the importance of integrating all steps of transcription factor activation in a regulatory......Plants have developed astonishing networks regulating their metabolism to adapt to their environment. The complexity of these networks is illustrated by the expansion of families of regulators such as transcription factors in the plant kingdom. Transcription factors specifically impact...... MYBs to activate transcription of GLS biosynthetic genes. A lot is known about transcriptional regulation of these nine GLS regulators. This thesis aimed at identifying regulatory mechanisms at the protein level, allowing rapid and specific regulation of transcription factors using GLS as a model...

  7. A novel in vivo inducible expression system in Edwardsiella tarda for potential application in bacterial polyvalence vaccine.

    Science.gov (United States)

    Mu, Wei; Guan, Lingyu; Yan, Yijian; Liu, Qin; Zhang, Yuanxing

    2011-12-01

    Recombinant bacterial vector vaccine is an attractive vaccination strategy to induce the immune response to a carried protective antigen, and the main concern of bacterial vector vaccine is to establish a stable antigen expression system in vector bacteria. Edwardsiella tarda is an important facultative intracellular pathogen of both animals and humans, and its attenuated derivates are excellent bacterial vectors for use in recombinant vaccine design. In this study, we design an in vivo inducible expression system in E. tarda and establish potential recombinant E. tarda vector vaccines. With wild type strain E. tarda EIB202 as a vector, 53 different bacteria-originated promoters were examined for iron-responsive transcription in vitro, and the promoters P(dps) and P(yncE) showed high transcription activity. The transcription profiles in vivo of two promoters were further assayed, and P(dps) revealed an enhanced in vivo inducible transcription in macrophage, larvae and adult zebra fish. The gapA34 gene, encoding the protective antigen GAPDH from the fish pathogen Aeromonas hydrophila LSA34, was introduced into the P(dps)-based protein expression system, and transformed into attenuated E. tarda strains. The resultant recombinant vector vaccine WED/pUTDgap was evaluated in turbot (Scophtalmus maximus). Over 60% of the vaccinated fish survived under the challenge with A. hydrophila LSA34 and E. tarda EIB202, suggesting that the P(dps)-based antigen delivery system had great potential in bacterial vector vaccine application. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Simultaneous Profiling of 194 Distinct Receptor Transcripts in Human Cells

    Science.gov (United States)

    Kang, Byong H.; Jensen, Karin J.; Hatch, Jaime A.; Janes, Kevin A.

    2013-01-01

    Many signal transduction cascades are initiated by transmembrane receptors with the presence or absence and abundance of receptors dictating cellular responsiveness. Here, we provide a validated array of quantitative reverse-transcription polymerase chain reaction (qRT-PCR) reagents for high-throughput profiling of the presence and relative abundance of transcripts for 194 transmembrane receptors in the human genome. We found that the qRT-PCR array had greater sensitivity and specificity for the detected receptor transcript profiles compared to conventional oligonucleotide microarrays or exon microarrays. The qRT-PCR array also distinguished functional receptor presence versus absence more accurately than deep sequencing of adenylated RNA species, RNA-seq. By applying qRT-PCR-based receptor transcript profiling to 40 human cell lines representing four main tissues (pancreas, skin, breast, and colon), we identified clusters of cell lines with enhanced signaling capabilities and revealed a role for receptor silencing in defining tissue lineage. Ectopic expression of the interleukin 10 (IL-10) receptor encoding gene IL10RA in melanoma cells engaged an IL-10 autocrine loop not otherwise present in this cell type, which altered signaling, gene expression, and cellular responses to proinflammatory stimuli. Our array provides a rapid, inexpensive, and convenient means for assigning a receptor signature to any human cell or tissue type. PMID:23921087

  9. Transcription-dependent association of HDAC2 with active chromatin.

    Science.gov (United States)

    Jahan, Sanzida; Sun, Jian-Min; He, Shihua; Davie, James R

    2018-02-01

    Histone deacetylase 2 (HDAC2) catalyzes deacetylation of histones at the promoter and coding regions of transcribed genes and regulates chromatin structure and transcription. To explore the role of HDAC2 and phosphorylated HDAC2 in gene regulation, we studied the location along transcribed genes, the mode of recruitment and the associated proteins with HDAC2 and HDAC2S394ph in chicken polychromatic erythrocytes. We show that HDAC2 and HDAC2S394ph are associated with transcriptionally active chromatin and located in the interchromatin channels. HDAC2S394ph was present primarly at the upstream promoter region of the transcribed CA2 and GAS41 genes, while total HDAC2 was also found within the coding region of the CA2 gene. Recruitment of HDAC2 to these genes was partially dependent upon on-going transcription. Unmodified HDAC2 was associated with RNA binding proteins and interacted with RNA bound to the initiating and elongating forms of RNA polymerase II. HDAC2S394ph was not associated with RNA polymerase II. These results highlight the differential properties of unmodified and phosphorylated HDAC2 and the organization of acetylated transcriptionally active chromatin in the chicken polychromatic erythrocyte. © 2017 Wiley Periodicals, Inc.

  10. DBTSS/DBKERO for integrated analysis of transcriptional regulation.

    Science.gov (United States)

    Suzuki, Ayako; Kawano, Shin; Mitsuyama, Toutai; Suyama, Mikita; Kanai, Yae; Shirahige, Katsuhiko; Sasaki, Hiroyuki; Tokunaga, Katsushi; Tsuchihara, Katsuya; Sugano, Sumio; Nakai, Kenta; Suzuki, Yutaka

    2018-01-04

    DBTSS (Database of Transcriptional Start Sites)/DBKERO (Database of Kashiwa Encyclopedia for human genome mutations in Regulatory regions and their Omics contexts) is the database originally initiated with the information of transcriptional start sites and their upstream transcriptional regulatory regions. In recent years, we updated the database to assist users to elucidate biological relevance of the human genome variations or somatic mutations in cancers which may affect the transcriptional regulation. In this update, we facilitate interpretations of disease associated genomic variation, using the Japanese population as a model case. We enriched the genomic variation dataset consisting of the 13,368 individuals collected for various genome-wide association studies and the reference epigenome information in the surrounding regions using a total of 455 epigenome datasets (four tissue types from 67 healthy individuals) collected for the International Human Epigenome Consortium (IHEC). The data directly obtained from the clinical samples was associated with that obtained from various model systems, such as the drug perturbation datasets using cultured cancer cells. Furthermore, we incorporated the results obtained using the newly developed analytical methods, Nanopore/10x Genomics long-read sequencing of the human genome and single cell analyses. The database is made publicly accessible at the URL (http://dbtss.hgc.jp/). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Bacterial meningitis: an update of new treatment options.

    Science.gov (United States)

    Nau, Roland; Djukic, Marija; Spreer, Annette; Ribes, Sandra; Eiffert, Helmut

    2015-01-01

    The outcome of bacterial meningitis critically depends on the rapid initiation of bactericidal antibiotic therapy and adequate management of septic shock. In community-acquired meningitis, the choice of an optimum initial empirical antibiotic regimen depends on the regional resistance patterns. Pathogens resistant to antibacterials prevail in nosocomial bacterial meningitis. Dexamethasone is recommended as adjunctive therapy for community-acquired meningitis in developed countries. In comatose patients, aggressive measures to lower intracranial pressure <20 mmHg (in particular, external ventriculostomy, osmotherapy and temporary hyperventilation) were effective in a case-control study. Although many experimental approaches were protective in animal models, none of them has been proven effective in patients. Antibiotics, which are bactericidal but do not lyse bacteria, and inhibitors of matrix metalloproteinases or complement factor C5 appear the most promising therapeutic options. At present, vaccination is the most efficient method to reduce disease burden. Palmitoylethanolamide appears promising to enhance the resistance of the brain to infections.

  12. Crystallization and preliminary crystallographic analysis of the transcriptional regulator RfaH from Escherichia coli and its complex with ops DNA

    International Nuclear Information System (INIS)

    Vassylyeva, Marina N.; Svetlov, Vladimir; Klyuyev, Sergiy; Devedjiev, Yancho D.; Artsimovitch, Irina; Vassylyev, Dmitry G.

    2006-01-01

    The E. coli transcriptional regulator RfaH was cloned, expressed, purified and crystallized and the complex of RfaH with its target DNA oligonucleotide was cocrystallized. Complete diffraction data sets were collected for the apo protein and its nucleic acid complex at 2.4 and at 1.6 Å resolution, respectively. The bacterial transcriptional factor and virulence regulator RfaH binds to rapidly moving transcription elongation complexes through specific interactions with the exposed segment of the non-template DNA strand. To elucidate this unusual mechanism of recruitment, determination of the three-dimensional structure of RfaH and its complex with DNA was initiated. To this end, the Escherichia coli rfaH gene was cloned and expressed. The purified protein was crystallized by the sitting-drop vapor-diffusion technique. The space group was P6 1 22 or P6 5 22, with unit-cell parameters a = b = 45.46, c = 599.93 Å. A complex of RfaH and a nine-nucleotide oligodeoxyribonucleotide was crystallized by the same technique, but under different crystallization conditions, yielding crystals that belonged to space group P1 (unit-cell parameters a = 36.79, b = 44.01, c = 62.37 Å, α = 80.62, β = 75.37, γ = 75.41°). Complete diffraction data sets were collected for RfaH and its complex with DNA at 2.4 and 1.6 Å resolution, respectively. Crystals of selenomethionine-labeled proteins in both crystal forms were obtained by cross-microseeding using the native microcrystals. The structure determination of RfaH and its complex with DNA is in progress

  13. Fluid therapy for acute bacterial meningitis.

    Science.gov (United States)

    Maconochie, Ian K; Bhaumik, Soumyadeep

    2016-11-04

    Acute bacterial meningitis remains a disease with high mortality and morbidity rates. However, with prompt and adequate antimicrobial and supportive treatment, the chances for survival have improved, especially among infants and children. Careful management of fluid and electrolyte balance is an important supportive therapy. Both over- and under-hydration are associated with adverse outcomes. This is the latest update of a review first published in 2005 and updated in 2008 and 2014. To evaluate treatment of acute bacterial meningitis with differing volumes of initial fluid administration (up to 72 hours after first presentation) and the effects on death and neurological sequelae. For this 2016 update we searched the following databases up to March 2016: the Cochrane Acute Respiratory Infections Group's Specialised Register, CENTRAL, MEDLINE, CINAHL, Global Health, and Web of Science. Randomised controlled trials (RCTs) of differing volumes of fluid given in the initial management of bacterial meningitis were eligible for inclusion. All four of the original review authors extracted data and assessed trials for quality in the first publication of this review (one author, ROW, has passed away since the original review; see Acknowledgements). The current authors combined data for meta-analysis using risk ratios (RRs) for dichotomous data or mean difference (MD) for continuous data. We used a fixed-effect statistical model. We assessed the overall quality of evidence using the GRADE approach. We included three trials with a total of 420 children; there were no trials in adult populations. The largest of the three trials was conducted in settings with high mortality rates and was judged to have low risk of bias for all domains, except performance bias which was high risk. The other two smaller trials were not of high quality.The meta-analysis found no significant difference between the maintenance-fluid and restricted-fluid groups in number of deaths (RR 0.82, 95

  14. Potential role of Arabidopsis PHP as an accessory subunit of the PAF1 transcriptional cofactor.

    Science.gov (United States)

    Park, Sunchung; Ek-Ramos, Maria Julissa; Oh, Sookyung; van Nocker, Steven

    2011-08-01

    Paf1C is a transcriptional cofactor that has been implicated in various transcription-associated mechanisms spanning initiation, elongation and RNA processing, and is important for multiple aspects of development in Arabidopsis. Our recent studies suggest Arabidopsis Paf1C is crucial for proper regulation of genes within H3K27me3-enriched chromatin, and that a protein named PHP may act as an accessory subunit of Paf1C that promotes this function.

  15. Transcription of potato spindle tuber viroid by RNA polymerase II starts predominantly at two specific sites

    OpenAIRE

    Fels, Andreas; Hu, Kanghong; Riesner, Detlev

    2001-01-01

    Pospiviroidae, with their main representative potato spindle tuber viroid (PSTVd), are replicated via a rolling circle mechanism by the host-encoded DNA-dependent RNA polymerase II (pol II). In the first step, the (+)-strand circular viroid is transcribed into a (–)-strand oligomer intermediate. As yet it is not known whether transcription is initiated by promotors at specific start sites or is distributed non-specifically over the whole circle. An in vitro transcription extract was prepared ...

  16. Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Jean-François Lemay

    2011-01-01

    Full Text Available Many bacterial mRNAs are regulated at the transcriptional or translational level by ligand-binding elements called riboswitches. Although they both bind adenine, the adenine riboswitches of Bacillus subtilis and Vibrio vulnificus differ by controlling transcription and translation, respectively. Here, we demonstrate that, beyond the obvious difference in transcriptional and translational modulation, both adenine riboswitches exhibit different ligand binding properties and appear to operate under different regulation regimes (kinetic versus thermodynamic. While the B. subtilis pbuE riboswitch fully depends on co-transcriptional binding of adenine to function, the V. vulnificus add riboswitch can bind to adenine after transcription is completed and still perform translation regulation. Further investigation demonstrates that the rate of transcription is critical for the B. subtilis pbuE riboswitch to perform efficiently, which is in agreement with a co-transcriptional regulation. Our results suggest that the nature of gene regulation control, that is transcription or translation, may have a high importance in riboswitch regulatory mechanisms.

  17. Genetic and Physiological Activation of Osmosensitive Gene Expression Mimics Transcriptional Signatures of Pathogen Infection in C. elegans

    Science.gov (United States)

    Rohlfing, Anne-Katrin; Miteva, Yana; Hannenhalli, Sridhar; Lamitina, Todd

    2010-01-01

    The soil-dwelling nematode C. elegans is a powerful system for comparative molecular analyses of environmental stress response mechanisms. Infection of worms with bacterial and fungal pathogens causes the activation of well-characterized innate immune transcriptional programs in pathogen-exposed hypodermal and intestinal tissues. However, the pathophysiological events that drive such transcriptional responses are not understood. Here, we show that infection-activated transcriptional responses are, in large part, recapitulated by either physiological or genetic activation of the osmotic stress response. Microarray profiling of wild type worms exposed to non-lethal hypertonicity identified a suite of genes that were also regulated by infection. Expression profiles of five different osmotic stress resistant (osr) mutants under isotonic conditions reiterated the wild type transcriptional response to osmotic stress and also showed substantial similarity to infection-induced gene expression under isotonic conditions. Computational, transgenic, and functional approaches revealed that two GATA transcription factors previously implicated in infection-induced transcriptional responses, elt-2 and elt-3, are also essential for coordinated tissue-specific activation of osmosensitive gene expression and promote survival under osmotically stressful conditions. Together, our data suggest infection and osmotic adaptation share previously unappreciated transcriptional similarities which might be controlled via regulation of tissue-specific GATA transcription factors. PMID:20126308

  18. Orbital abscess bacterial isolates and in vitro antimicrobial susceptibility patterns in dogs and cats.

    Science.gov (United States)

    Wang, Annie L; Ledbetter, Eric C; Kern, Thomas J

    2009-01-01

    To determine bacterial populations, in vitro antimicrobial susceptibility patterns, and sources of microorganisms for dogs and cats with orbital abscess. In total, 34 dogs and 7 cats with orbital abscess participated in the study. Medical records of dogs and cats with a clinical diagnosis of orbital abscess, confirmed by cytologic or histopathologic evaluation of orbital specimens, were reviewed from the years 1990 to 2007. Animal signalment, presumptive source of microorganisms and mechanism of orbital introduction, bacterial isolates, and aerobic bacterial in vitro antimicrobial susceptibility test results were recorded. Percentages of susceptible aerobic bacterial isolates were compared among antimicrobials. Twenty dogs and five cats had positive culture results. The most frequent bacterial genera isolated from dogs were Staphylococcus, Escherichia, Bacteroides, Clostridium and Pasteurella. The most frequent bacterial genera isolated from cats were Pasteurella and Bacteroides. Aerobic bacterial isolates from dogs had the highest percentage of susceptibility to amikacin, ceftiofur, gentamicin, imipenem, ticarcillin and trimethoprim-sulfamethoxazole. Aerobic bacterial isolates from dogs had the lowest percentage of susceptibility to ampicillin, clindamycin, erythromycin and penicillin. Antimicrobial resistance was uncommon among feline aerobic bacterial isolates. The most commonly identified routes of orbital bacteria introduction were extension from adjacent anatomical structures, penetrating exogenous trauma, and foreign bodies. Mixed aerobic and anaerobic bacterial infections of the orbit occur commonly in dogs and cats. On the basis of aerobic and anaerobic bacterial isolates and in vitro susceptibility testing of aerobic bacterial isolates, cephalosporins, extended-spectrum penicillins, potentiated-penicillins and carbapenems are recommended for initial antimicrobial therapy of orbital abscess in dogs and cats.

  19. Resistance to topoisomerase cleavage complex induced lethality in Escherichia coli via titration of transcription regulators PurR and FNR

    Directory of Open Access Journals (Sweden)

    Liu I-Fen

    2011-12-01

    Full Text Available Abstract Background Accumulation of gyrase cleavage complex in Escherichia coli from the action of quinolone antibiotics induces an oxidative damage cell death pathway. The oxidative cell death pathway has also been shown to be involved in the lethality following accumulation of cleavage complex formed by bacterial topoisomerase I with mutations that result in defective DNA religation. Methods A high copy number plasmid clone spanning the upp-purMN region was isolated from screening of an E. coli genomic library and analyzed for conferring increased survival rates following accumulation of mutant topoisomerase I proteins as well as treatment with the gyrase inhibitor norfloxacin. Results Analysis of the intergenic region upstream of purM demonstrated a novel mechanism of resistance to the covalent protein-DNA cleavage complex through titration of the cellular transcription regulators FNR and PurR responsible for oxygen sensing and repression of purine nucleotide synthesis respectively. Addition of adenine to defined growth medium had similar protective effect for survival following accumulation of topoisomerase cleavage complex, suggesting that increase in purine level can protect against cell death. Conclusions Perturbation of the global regulator FNR and PurR functions as well as increase in purine nucleotide availability could affect the oxidative damage cell death pathway initiated by topoisomerase cleavage complex.

  20. Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases

    Czech Academy of Sciences Publication Activity Database

    Raindlová, Veronika; Janoušková, Martina; Slavíčková, Michaela; Perlíková, Pavla; Boháčová, Soňa; Milisavljevič, Nemanja; Šanderová, Hana; Benda, Martin; Barvík, I.; Krásný, Libor; Hocek, Michal

    2016-01-01

    Roč. 44, č. 7 (2016), s. 3000-3012 ISSN 0305-1048 R&D Projects: GA ČR GA14-04289S Institutional support: RVO:61388963 ; RVO:61388971 Keywords : Escherichia coli RNA * Bacillus subtilis * restriction endonucleases Subject RIV: CC - Organic Chemistry; EE - Microbiology, Virology (MBU-M) Impact factor: 10.162, year: 2016 http://nar.oxfordjournals.org/content/44/7/3000.full