WorldWideScience

Sample records for bacterial population dynamics

  1. Population dynamics of bacterial persistence

    OpenAIRE

    Patra, Pintu

    2014-01-01

    The life of microorganisms is characterized by two main tasks, rapid growth under conditions permitting growth and survival under stressful conditions. The environments, in which microorganisms dwell, vary in space and time. The microorganisms innovate diverse strategies to readily adapt to the regularly fluctuating environments. Phenotypic heterogeneity is one such strategy, where an isogenic population splits into subpopulations that respond differently under identical environments. Bacteri...

  2. Population Dynamics of Bacterial Persistence

    OpenAIRE

    Patra, Pintu; Klumpp, Stefan

    2013-01-01

    Persistence is a prime example of phenotypic heterogeneity, where a microbial population splits into two distinct subpopulations with different growth and survival properties as a result of reversible phenotype switching. Specifically, persister cells grow more slowly than normal cells under unstressed growth conditions, but survive longer under stress conditions such as the treatment with bactericidal antibiotics. We analyze the population dynamics of such a population for several typical ex...

  3. Population dynamics of bacterial persistence.

    Directory of Open Access Journals (Sweden)

    Pintu Patra

    Full Text Available Persistence is a prime example of phenotypic heterogeneity, where a microbial population splits into two distinct subpopulations with different growth and survival properties as a result of reversible phenotype switching. Specifically, persister cells grow more slowly than normal cells under unstressed growth conditions, but survive longer under stress conditions such as the treatment with bactericidal antibiotics. We analyze the population dynamics of such a population for several typical experimental scenarios, namely a constant environment, shifts between growth and stress conditions, and periodically switching environments. We use an approximation scheme that allows us to map the dynamics to a logistic equation for the subpopulation ratio and derive explicit analytical expressions for observable quantities that can be used to extract underlying dynamic parameters from experimental data. Our results provide a theoretical underpinning for the study of phenotypic switching, in particular for organisms where detailed mechanistic knowledge is scarce.

  4. Optimal control methods for controlling bacterial populations with persister dynamics

    Science.gov (United States)

    Cogan, N. G.

    2016-06-01

    Bacterial tolerance to antibiotics is a well-known phenomena; however, only recent studies of bacterial biofilms have shown how multifaceted tolerance really is. By joining into a structured community and offering shared protection and gene transfer, bacterial populations can protect themselves genotypically, phenotypically and physically. In this study, we collect a line of research that focuses on phenotypic (or plastic) tolerance. The dynamics of persister formation are becoming better understood, even though there are major questions that remain. The thrust of our results indicate that even without detailed description of the biological mechanisms, theoretical studies can offer strategies that can eradicate bacterial populations with existing drugs.

  5. Dynamics of Sequence -Discrete Bacterial Populations Inferred Using Metagenomes

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Sarah; Bendall, Matthew; Kang, Dongwan; Froula, Jeff; Egan, Rob; Chan, Leong-Keat; Tringe, Susannah; McMahon, Katherine; Malmstrom, Rex

    2014-03-14

    From a multi-year metagenomic time series of two dissimilar Wisconsin lakes we have assembled dozens of genomes using a novel approach that bins contigs into distinct genome based on sequence composition, e.g. kmer frequencies, and contig coverage patterns at various times points. Next, we investigated how these genomes, which represent sequence-discrete bacterial populations, evolved over time and used the time series to discover the population dynamics. For example, we explored changes in single nucleotide polymorphism (SNP) frequencies as well as patterns of gene gain and loss in multiple populations. Interestingly, SNP diversity was purged at nearly every genome position in some populations during the course of this study, suggesting these populations may have experienced genome-wide selective sweeps. This represents the first direct, time-resolved observations of periodic selection in natural populations, a key process predicted by the ecotype model of bacterial diversification.

  6. Dynamics of adaptive immunity against phage in bacterial populations

    CERN Document Server

    Bradde, Serena; Tesileanu, Tiberiu; Balasubramanian, Vijay

    2015-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a "winner-take-all" scenario, leading to a specialized spacer ...

  7. Dynamics of adaptive immunity against phage in bacterial populations

    Science.gov (United States)

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  8. Bacterial population structure and dynamics during the development of almond drupes

    Science.gov (United States)

    Aims: To describe the bacterial populations and their dynamics during the development of almond drupes. Methods and Results: We examined 16S rRNA gene libraries derived from the bacterial populations on almond drupes at three stages of development: 1) when the drupes were full sized, but before embr...

  9. Population Dynamics of Patients with Bacterial Resistance in Hospital Environment

    OpenAIRE

    Leilei Qu; Qiuhui Pan; Xubin Gao; Mingfeng He

    2016-01-01

    During the past decades, the increase of antibiotic resistance has become a major concern worldwide. The researchers found that superbugs with new type of resistance genes (NDM-1) have two aspects of transmission characteristics; the first is that the antibiotic resistance genes can horizontally transfer among bacteria, and the other is that the superbugs can spread between humans through direct contact. Based on these two transmission mechanisms, we study the dynamics of population in hospit...

  10. Population-Dynamic Modeling of Bacterial Horizontal Gene Transfer by Natural Transformation.

    Science.gov (United States)

    Mao, Junwen; Lu, Ting

    2016-01-01

    Natural transformation is a major mechanism of horizontal gene transfer (HGT) and plays an essential role in bacterial adaptation, evolution, and speciation. Although its molecular underpinnings have been increasingly revealed, natural transformation is not well characterized in terms of its quantitative ecological roles. Here, by using Neisseria gonorrhoeae as an example, we developed a population-dynamic model for natural transformation and analyzed its dynamic characteristics with nonlinear tools and simulations. Our study showed that bacteria capable of natural transformation can display distinct population behaviors ranging from extinction to coexistence and to bistability, depending on their HGT rate and selection coefficient. With the model, we also illustrated the roles of environmental DNA sources-active secretion and passive release-in impacting population dynamics. Additionally, by constructing and utilizing a stochastic version of the model, we examined how noise shapes the steady and dynamic behaviors of the system. Notably, we found that distinct waiting time statistics for HGT events, namely a power-law distribution, an exponential distribution, and a mix of the both, are associated with the dynamics in the regimes of extinction, coexistence, and bistability accordingly. This work offers a quantitative illustration of natural transformation by revealing its complex population dynamics and associated characteristics, therefore advancing our ecological understanding of natural transformation as well as HGT in general. PMID:26745428

  11. Imaging the Population Dynamics of Bacterial Communities in the Zebrafish Gut

    Science.gov (United States)

    Jemielita, Matthew; Taormina, Michael; Burns, Adam; Zac Stephens, W.; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2013-03-01

    The vertebrate gut is home to a diverse microbial ecosystem whose composition has a strong influence on the development and health of the host organism. While researchers are increasingly able to identify the constituent members of the microbiome, very little is known about the spatial and temporal dynamics of commensal microbial communities, including the mechanisms by which communities nucleate, grow, and interact. We address these issues using a model organism: the larval zebrafish (Danio rerio) prepared microbe-free and inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging with light sheet fluorescence microscopy enables visualization of individual bacterial cells as well as growing colonies over the entire volume of the gut over periods up to 24 hours. We analyze the structure and dynamics of imaged bacterial communities, uncovering correlations between population size, growth rates, and the timing of inoculations that suggest the existence of active changes in the host environment induced by early bacterial exposure. Our data provide the first visualizations of gut microbiota development over an extended period of time in a vertebrate.

  12. Critical dynamics of self-gravitating Langevin particles and bacterial populations

    Science.gov (United States)

    Sire, Clément; Chavanis, Pierre-Henri

    2008-12-01

    We study the critical dynamics of the generalized Smoluchowski-Poisson system (for self-gravitating Langevin particles) or generalized Keller-Segel model (for the chemotaxis of bacterial populations). These models [P. H. Chavanis and C. Sire, Phys. Rev. E 69, 016116 (2004)] are based on generalized stochastic processes leading to the Tsallis statistics. The equilibrium states correspond to polytropic configurations with index n similar to polytropic stars in astrophysics. At the critical index n3=d/(d-2) (where d⩾2 is the dimension of space), there exists a critical temperature Θc (for a given mass) or a critical mass Mc (for a given temperature). For Θ>Θc or MMc the system collapses and forms, in a finite time, a Dirac peak containing a finite fraction Mc of the total mass surrounded by a halo. We study these regimes numerically and, when possible, analytically by looking for self-similar or pseudo-self-similar solutions. This study extends the critical dynamics of the ordinary Smoluchowski-Poisson system and Keller-Segel model in d=2 corresponding to isothermal configurations with n3→+∞ . We also stress the analogy between the limiting mass of white dwarf stars (Chandrasekhar’s limit) and the critical mass of bacterial populations in the generalized Keller-Segel model of chemotaxis.

  13. BACTERIAL POPULATION DYNAMICS IN WASTE OILY EMULSIONS FROM THE METAL-PROCESSING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Paweł Kaszycki

    2014-07-01

    Full Text Available Oil-containing wastewaters are regarded as main industrial pollutants of soil and water environments. They can occur as free-floating oil, unstable or stable oil-in-water (O/W emulsions, and in the case of extreme organic load, as water-in-oil (W/O emulsions. In this study two types of oily effluents, a typical O/W emulsion marked as E1 and a W/O emulsion E2, both discharged by local metal processing plants were examined to test their toxicity to microbial communities and the ability to serve as nutrient sources for bacterial growth. The organic contaminant load of the samples was evaluated on the basis of chemical oxygen demand (COD parameter values and was equal to 48 200 mg O2·dm-3 and >300 000 mg O2·dm-3 for E1 and E2, respectively.Both emulsions proved to be non toxic to bacterial communities and were shown to contain biodiverse autochthonous microflora consisting of several bacterial strains adapted to the presence of xenobiotics (the total of 1.36 · 106 CFU·cm-3 and 1.72 · 105 CFU·cm-3 was determined for E1 and E2, respectively. These indigenous bacteria as well as exogenously inoculated specialized allochthonous microorganisms were biostimulated so as to proliferate within the wastewater environment whose organic content served as the only source of carbon. The most favorable cultivation conditions were determined as fully aerobic growth at the temperature of 25 ºC. In 9 to 18 day-tests, autochthonous as well as bioaugmented allochthonous bacterial population dynamics were monitored. For both emulsions tested there was a dramatic increase (up to three orders of magnitude in bacterial frequency, as compared to the respective initial values. The resultant high biomass densities suggest that the effluents are susceptible to bioremediation. A preliminary xenobiotic biodegradation test confirmed that mixed auto- and allochthonous bacterial consortia obtained upon inoculation of the samples with microbiocenoses preselected for efficient

  14. Population Dynamics of a Salmonella Lytic Phage and Its Host: Implications of the Host Bacterial Growth Rate in Modelling

    OpenAIRE

    Santos, Sílvio Roberto Branco; Carvalho, Carla A. O. C. M.; Azeredo, Joana; Ferreira, E. C.

    2014-01-01

    The prevalence and impact of bacteriophages in the ecology of bacterial communities coupled with their ability to control pathogens turn essential to understand and predict the dynamics between phage and bacteria populations. To achieve this knowledge it is essential to develop mathematical models able to explain and simulate the population dynamics of phage and bacteria. We have developed an unstructured mathematical model using delay-differential equations to predict the interactions betwee...

  15. Red Sea Acropora hemprichii Bacterial Population Dynamics under Adverse Anthropogenic Conditions

    KAUST Repository

    Lizcano, Javier

    2012-08-01

    Reef-building corals are cornerstones of life in the oceans. Understanding their interactions with microorganisms and their surrounding physicochemical conditions is important to comprehend reef functioning and ultimately protect coral reef ecosystems. Corals associate with a complex and specific array of microorganisms that supposedly affect their physiology and therefore can significantly determine the condition of a coral ecosystem. As environmental conditions may shape bacterial diversity and ecology in the coral symbiosis, ecosystem changes might have unfavorable consequences for the holobiont, to date poorly understood. Here, we were studying microbial community changes in A. hemprichii as a consequence of simulated eutrophication and overfishing over a period of 16 weeks by using in situ caging and slow release fertilizer treatments in an undisturbed Red Sea reef (22.18ºN, 38.57ºW). We used 16S rDNA amplicon sequencing to evaluate the individual and combined effects of overnutrification and fishing pressure, two of the most common local threats to coral reefs. With our data we hope to better understand bacterial population dynamics under anthropogenic influences and its role in coral resilience. Projecting further, this data will be useful to better predict the consequences of human activity on reef ecosystems.

  16. Prophage-mediated dynamics of 'Candidatus Liberibacter asiaticus' populations, the destructive bacterial pathogens of citrus huanglongbing.

    Directory of Open Access Journals (Sweden)

    Lijuan Zhou

    Full Text Available Prophages are highly dynamic components in the bacterial genome and play an important role in intraspecies variations. There are at least two prophages in the chromosomes of Candidatus Liberibacter asiaticus' (Las Floridian isolates. Las is both unculturable and the most prevalent species of Liberibacter pathogens that cause huanglongbing (HLB, a worldwide destructive disease of citrus. In this study, seven new prophage variants resulting from two hyper-variable regions were identified by screening clone libraries of infected citrus, periwinkle and psyllids. Among them, Types A and B share highly conserved sequences and localize within the two prophages, FP1 and FP2, respectively. Although Types B and C were abundant in all three libraries, Type A was much more abundant in the libraries from the Las-infected psyllids than from the Las-infected plants, and Type D was only identified in libraries from the infected host plants but not from the infected psyllids. Sequence analysis of these variants revealed that the variations may result from recombination and rearrangement events. Conventional PCR results using type-specific molecular markers indicated that A, B, C and D are the four most abundant types in Las-infected citrus and periwinkle. However, only three types, A, B and C are abundant in Las-infected psyllids. Typing results for Las-infected citrus field samples indicated that mixed populations of Las bacteria present in Floridian isolates, but only the Type D population was correlated with the blotchy mottle symptom. Extended cloning and sequencing of the Type D region revealed a third prophage/phage in the Las genome, which may derive from the recombination of FP1 and FP2. Dramatic variations in these prophage regions were also found among the global Las isolates. These results are the first to demonstrate the prophage/phage-mediated dynamics of Las populations in plant and insect hosts, and their correlation with insect transmission and

  17. The influence of light and water mass on bacterial population dynamics in the Amundsen Sea Polynya

    Directory of Open Access Journals (Sweden)

    Inga Richert

    2015-04-01

    Full Text Available Abstract Despite being perpetually cold, seasonally ice-covered and dark, the coastal Southern Ocean is highly productive and harbors a diverse microbiota. During the austral summer, ice-free coastal patches (or polynyas form, exposing pelagic organisms to sunlight, triggering intense phytoplankton blooms. This strong seasonality is likely to influence bacterioplankton community composition (BCC. For the most part, we do not fully understand the environmental drivers controlling high-latitude BCC and the biogeochemical cycles they mediate. In this study, the Amundsen Sea Polynya was used as a model system to investigate important environmental factors that shape the coastal Southern Ocean microbiota. Population dynamics in terms of occurrence and activity of abundant taxa was studied in both environmental samples and microcosm experiments by using 454 pyrosequencing of 16S rRNA genes. We found that the BCC in the photic epipelagic zone had low richness, with dominant bacterial populations being related to taxa known to benefit from high organic carbon and nutrient loads (copiotrophs. In contrast, the BCC in deeper mesopelagic water masses had higher richness, featuring taxa known to benefit from low organic carbon and nutrient loads (oligotrophs. Incubation experiments indicated that direct impacts of light and competition for organic nutrients are two important factors shaping BCC in the Amundsen Sea Polynya.

  18. Nonlinearity in bacterial population dynamics: Proposal for experiments for the observation of abrupt transitions in patches

    OpenAIRE

    Kenkre, V. M.; Kumar, Niraj

    2008-01-01

    An explicit proposal for experiments leading to abrupt transitions in spatially extended bacterial populations in a Petri dish is presented on the basis of an exact formula obtained through an analytic theory. The theory provides accurately the transition expressions in spite of the fact that the actual solutions, which involve strong nonlinearity, are inaccessible to it. The analytic expressions are verified through numerical solutions of the relevant nonlinear equation. The experimental set...

  19. An obligatory bacterial mutualism in a multi-drug environment exhibits strong oscillatory population dynamics

    Science.gov (United States)

    Conwill, Arolyn; Yurtsev, Eugene; Gore, Jeff

    2014-03-01

    A common mechanism of antibiotic resistance in bacteria involves the production of an enzyme that inactivates the antibiotic. By inactivating the antibiotic, resistant cells can protect other cells in the population that would otherwise be sensitive to the drug. In a multidrug environment, an obligatory mutualism arises because populations of different strains rely on each other to breakdown antibiotics in the environment. Here, we experimentally track the population dynamics of two E. coli strains in the presence of two different antibiotics: ampicillin and chloramphenicol. Together the strains are able to grow in antibiotic concentrations that inhibit growth of either one of the strains alone. Although mutualisms are often thought to stabilize population dynamics, we observe strong oscillatory dynamics even when there is long-term coexistence between the two strains. We expect that our results will provide insight into the evolution of antibiotic resistance and, more generally, the evolutionary origin of phenotypic diversity, cooperation, and ecological stability.

  20. Population dynamics of a Salmonella lytic phage and its host: implications of the host bacterial growth rate in modelling.

    Science.gov (United States)

    Santos, Sílvio B; Carvalho, Carla; Azeredo, Joana; Ferreira, Eugénio C

    2014-01-01

    The prevalence and impact of bacteriophages in the ecology of bacterial communities coupled with their ability to control pathogens turn essential to understand and predict the dynamics between phage and bacteria populations. To achieve this knowledge it is essential to develop mathematical models able to explain and simulate the population dynamics of phage and bacteria. We have developed an unstructured mathematical model using delay-differential equations to predict the interactions between a broad-host-range Salmonella phage and its pathogenic host. The model takes into consideration the main biological parameters that rule phage-bacteria interactions likewise the adsorption rate, latent period, burst size, bacterial growth rate, and substrate uptake rate, among others. The experimental validation of the model was performed with data from phage-interaction studies in a 5 L bioreactor. The key and innovative aspect of the model was the introduction of variations in the latent period and adsorption rate values that are considered as constants in previous developed models. By modelling the latent period as a normal distribution of values and the adsorption rate as a function of the bacterial growth rate it was possible to accurately predict the behaviour of the phage-bacteria population. The model was shown to predict simulated data with a good agreement with the experimental observations and explains how a lytic phage and its host bacteria are able to coexist. PMID:25051248

  1. Population dynamics of a Salmonella lytic phage and its host: implications of the host bacterial growth rate in modelling.

    Directory of Open Access Journals (Sweden)

    Sílvio B Santos

    Full Text Available The prevalence and impact of bacteriophages in the ecology of bacterial communities coupled with their ability to control pathogens turn essential to understand and predict the dynamics between phage and bacteria populations. To achieve this knowledge it is essential to develop mathematical models able to explain and simulate the population dynamics of phage and bacteria. We have developed an unstructured mathematical model using delay-differential equations to predict the interactions between a broad-host-range Salmonella phage and its pathogenic host. The model takes into consideration the main biological parameters that rule phage-bacteria interactions likewise the adsorption rate, latent period, burst size, bacterial growth rate, and substrate uptake rate, among others. The experimental validation of the model was performed with data from phage-interaction studies in a 5 L bioreactor. The key and innovative aspect of the model was the introduction of variations in the latent period and adsorption rate values that are considered as constants in previous developed models. By modelling the latent period as a normal distribution of values and the adsorption rate as a function of the bacterial growth rate it was possible to accurately predict the behaviour of the phage-bacteria population. The model was shown to predict simulated data with a good agreement with the experimental observations and explains how a lytic phage and its host bacteria are able to coexist.

  2. Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations.

    Science.gov (United States)

    Helfrich, Stefan; Pfeifer, Eugen; Krämer, Christina; Sachs, Christian Carsten; Wiechert, Wolfgang; Kohlheyer, Dietrich; Nöh, Katharina; Frunzke, Julia

    2015-11-01

    Almost all bacterial genomes contain DNA of viral origin, including functional prophages or degenerated phage elements. A frequent but often unnoted phenomenon is the spontaneous induction of prophage elements (SPI) even in the absence of an external stimulus. In this study, we have analyzed SPI of the large, degenerated prophage CGP3 (187 kbp), which is integrated into the genome of the Gram-positive Corynebacterium glutamicum ATCC 13032. Time-lapse fluorescence microscopy of fluorescent reporter strains grown in microfluidic chips revealed the sporadic induction of the SOS response as a prominent trigger of CGP3 SPI but also displayed a considerable fraction (∼30%) of RecA-independent SPI. Whereas approx. 20% of SOS-induced cells recovered from this stress and resumed growth, the spontaneous induction of CGP3 always led to a stop of growth and likely cell death. A carbon source starvation experiment clearly emphasized that SPI only occurs in actively proliferating cells, whereas sporadic SOS induction was still observed in resting cells. These data highlight the impact of sporadic DNA damage on the activity of prophage elements and provide a time-resolved, quantitative description of SPI as general phenomenon of bacterial populations. PMID:26235130

  3. Modeling physiological processes that relate toxicant exposure and bacterial population dynamics.

    Directory of Open Access Journals (Sweden)

    Tin Klanjscek

    Full Text Available Quantifying effects of toxicant exposure on metabolic processes is crucial to predicting microbial growth patterns in different environments. Mechanistic models, such as those based on Dynamic Energy Budget (DEB theory, can link physiological processes to microbial growth.Here we expand the DEB framework to include explicit consideration of the role of reactive oxygen species (ROS. Extensions considered are: (i additional terms in the equation for the "hazard rate" that quantifies mortality risk; (ii a variable representing environmental degradation; (iii a mechanistic description of toxic effects linked to increase in ROS production and aging acceleration, and to non-competitive inhibition of transport channels; (iv a new representation of the "lag time" based on energy required for acclimation. We estimate model parameters using calibrated Pseudomonas aeruginosa optical density growth data for seven levels of cadmium exposure. The model reproduces growth patterns for all treatments with a single common parameter set, and bacterial growth for treatments of up to 150 mg(Cd/L can be predicted reasonably well using parameters estimated from cadmium treatments of 20 mg(Cd/L and lower. Our approach is an important step towards connecting levels of biological organization in ecotoxicology. The presented model reveals possible connections between processes that are not obvious from purely empirical considerations, enables validation and hypothesis testing by creating testable predictions, and identifies research required to further develop the theory.

  4. Population dynamics

    Directory of Open Access Journals (Sweden)

    Cooch, E. G.

    2004-06-01

    Full Text Available Increases or decreases in the size of populations over space and time are, arguably, the motivation for much of pure and applied ecological research. The fundamental model for the dynamics of any population is straightforward: the net change over time in the abundance of some population is the simple difference between the number of additions (individuals entering the population minus the number of subtractions (individuals leaving the population. Of course, the precise nature of the pattern and process of these additions and subtractions is often complex, and population biology is often replete with fairly dense mathematical representations of both processes. While there is no doubt that analysis of such abstract descriptions of populations has been of considerable value in advancing our, there has often existed a palpable discomfort when the ‘beautiful math’ is faced with the often ‘ugly realities’ of empirical data. In some cases, this attempted merger is abandoned altogether, because of the paucity of ‘good empirical data’ with which the theoretician can modify and evaluate more conceptually–based models. In some cases, the lack of ‘data’ is more accurately represented as a lack of robust estimates of one or more parameters. It is in this arena that methods developed to analyze multiple encounter data from individually marked organisms has seen perhaps the greatest advances. These methods have rapidly evolved to facilitate not only estimation of one or more vital rates, critical to population modeling and analysis, but also to allow for direct estimation of both the dynamics of populations (e.g., Pradel, 1996, and factors influencing those dynamics (e.g., Nichols et al., 2000. The interconnections between the various vital rates, their estimation, and incorporation into models, was the general subject of our plenary presentation by Hal Caswell (Caswell & Fujiwara, 2004. Caswell notes that although interest has traditionally

  5. Genotypic characterisation of the dynamics of the lactic acid bacterial population of Comté cheese

    OpenAIRE

    Depouilly, Anna; Dufrene, Franck; Beuvier, Éric; Berthier, Françoise

    2004-01-01

    Caractérisation génotypique de la dynamique des populations de bactéries lactiques dans les fromages de Comté. Les espèces et souches de bactéries lactiques ont été suivies dans quatre fromages commerciaux de Comté fabriqués dans trois fromageries différentes en caractérisant génétiquement des isolats à neuf stades de fabrication et d'affinage. Elles ont été aussi suivies dans les laits crus et les cultures de levains correspondants. Dix espèces ont été identifiées : Streptococcus thermophilu...

  6. Virial theorem and dynamical evolution of self-gravitating Brownian particles and bacterial populations in an unbounded domain

    OpenAIRE

    Chavanis, Pierre-Henri; Sire, Clement

    2005-01-01

    We derive the Virial theorem appropriate to the generalized Smoluchowski-Poisson system describing self-gravitating Brownian particles and bacterial populations (chemotaxis). We extend previous works by considering the case of an unbounded domain and an arbitrary equation of state. We use the Virial theorem to study the diffusion (evaporation) of an isothermal Brownian gas above the critical temperature T_c in dimension d=2 and show how the effective diffusion coefficient and the Einstein rel...

  7. Prophage-Mediated Dynamics of ‘Candidatus Liberibacter asiaticus’ Populations, the Destructive Bacterial Pathogens of Citrus Huanglongbing

    OpenAIRE

    Lijuan Zhou; Powell, Charles A.; Wenbin Li; Mike Irey; Yongping Duan

    2013-01-01

    Prophages are highly dynamic components in the bacterial genome and play an important role in intraspecies variations. There are at least two prophages in the chromosomes of Candidatus Liberibacter asiaticus' (Las) Floridian isolates. Las is both unculturable and the most prevalent species of Liberibacter pathogens that cause huanglongbing (HLB), a worldwide destructive disease of citrus. In this study, seven new prophage variants resulting from two hyper-variable regions were identified by s...

  8. Prophage-Mediated Dynamics of ‘Candidatus Liberibacter asiaticus’ Populations, the Destructive Bacterial Pathogens of Citrus Huanglongbing

    OpenAIRE

    Zhou, Lijuan; Powell, Charles A.; Li, Wenbin; Irey, Mike; Duan, Yongping

    2013-01-01

    Prophages are highly dynamic components in the bacterial genome and play an important role in intraspecies variations. There are at least two prophages in the chromosomes of Candidatus Liberibacter asiaticus’ (Las) Floridian isolates. Las is both unculturable and the most prevalent species of Liberibacter pathogens that cause huanglongbing (HLB), a worldwide destructive disease of citrus. In this study, seven new prophage variants resulting from two hyper-variable regions were identified by s...

  9. Bacterial population genetics, evolution and epidemiology.

    OpenAIRE

    Spratt, B. G.; Maiden, M C

    1999-01-01

    Asexual bacterial populations inevitably consist of an assemblage of distinct clonal lineages. However, bacterial populations are not entirely asexual since recombinational exchanges occur, mobilizing small genome segments among lineages and species. The relative contribution of recombination, as opposed to de novo mutation, in the generation of new bacterial genotypes varies among bacterial populations and, as this contribution increases, the clonality of a given population decreases. In con...

  10. Dynamics of bacterial populations during bench-scale bioremediation of oily seawater and desert soil bioaugmented with coastal microbial mats.

    Science.gov (United States)

    Ali, Nidaa; Dashti, Narjes; Salamah, Samar; Sorkhoh, Naser; Al-Awadhi, Husain; Radwan, Samir

    2016-03-01

    This study describes a bench-scale attempt to bioremediate Kuwaiti, oily water and soil samples through bioaugmentation with coastal microbial mats rich in hydrocarbonoclastic bacterioflora. Seawater and desert soil samples were artificially polluted with 1% weathered oil, and bioaugmented with microbial mat suspensions. Oil removal and microbial community dynamics were monitored. In batch cultures, oil removal was more effective in soil than in seawater. Hydrocarbonoclastic bacteria associated with mat samples colonized soil more readily than seawater. The predominant oil degrading bacterium in seawater batches was the autochthonous seawater species Marinobacter hydrocarbonoclasticus. The main oil degraders in the inoculated soil samples, on the other hand, were a mixture of the autochthonous mat and desert soil bacteria; Xanthobacter tagetidis, Pseudomonas geniculata, Olivibacter ginsengisoli and others. More bacterial diversity prevailed in seawater during continuous than batch bioremediation. Out of seven hydrocarbonoclastic bacterial species isolated from those cultures, only one, Mycobacterium chlorophenolicum, was of mat origin. This result too confirms that most of the autochthonous mat bacteria failed to colonize seawater. Also culture-independent analysis of seawater from continuous cultures revealed high-bacterial diversity. Many of the bacteria belonged to the Alphaproteobacteria, Flavobacteria and Gammaproteobacteria, and were hydrocarbonoclastic. Optimal biostimulation practices for continuous culture bioremediation of seawater via mat bioaugmentation were adding the highest possible oil concentration as one lot in the beginning of bioremediation, addition of vitamins, and slowing down the seawater flow rate. PMID:26751253

  11. Jellyfish modulate bacterial dynamic and community structure.

    Directory of Open Access Journals (Sweden)

    Tinkara Tinta

    Full Text Available Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  12. Insights from Genomics into Bacterial Pathogen Populations

    OpenAIRE

    Wilson, DJ

    2012-01-01

    Bacterial pathogens impose a heavy burden of disease on human populations worldwide. The gravest threats are posed by highly virulent respiratory pathogens, enteric pathogens, and HIV-associated infections. Tuberculosis alone is responsible for the deaths of 1.5 million people annually. Treatment options for bacterial pathogens are being steadily eroded by the evolution and spread of drug resistance. However, population-level whole genome sequencing offers new hope in the fight against pathog...

  13. Raw Cow Milk Bacterial Population Shifts Attributable to Refrigeration

    OpenAIRE

    Lafarge, Véronique; Ogier, Jean-Claude; Girard, Victoria; Maladen, Véronique; Leveau, Jean-Yves; Gruss, Alexandra; Delacroix-Buchet, Agnès

    2004-01-01

    We monitored the dynamic changes in the bacterial population in milk associated with refrigeration. Direct analyses of DNA by using temporal temperature gel electrophoresis (TTGE) and denaturing gradient gel electrophoresis (DGGE) allowed us to make accurate species assignments for bacteria with low-GC-content (low-GC%) (55%) genomes, respectively. We examined raw milk samples before and after 24-h conservation at 4°C. Bacterial identification was facilitated by comparison with an extensive b...

  14. Population dynamics of toxic phytoplankton and bacterial flora in the waters of the low Adriatic sea; Dinamica di popolazione di fitoplancton tossico e flora batterica nel basso Adriatico

    Energy Technology Data Exchange (ETDEWEB)

    Caroppo, C.; Stabili, L.; Cavallo, R.A.; Pastore, M. [CNR, Ist. Sperimentale Talassografico Attlio Cerruti, Taranto (Italy); Marchiori, E. [Rome Univ., Rome (Italy). Dipt. di Chimica Organica; Bruno, M. [Istituto Superiore di Sanita' , Laboratorio di Igiene Ambientale, Rome (Italy)

    2000-07-01

    The coastal areas of the Southern Adriatic Sea, in particular the Apulian ones, may be considered an example of intact ecosystem and represent an ideal term of comparison to other marine ecosystems having higher levels of pollution (Northern Adriatic Sea). In order to evaluate the sanitary levels of this environment, four transect were investigated during two years monitoring (April 1995-March 1997) along the Otranto Channel coasts, by joint research groups of the Environmental Hygiene Laboratory of the Istituto Superiore di Sanita' and the Istituto Sperimentale Talassografico A. Cerruti of CNR in Taranto. The study underlines the phytoplanktic and bacterial population dynamics, and the detection of the microbiological water quality along the coast tract Brindisi-Lecce-Otranto-S. Maria di Leuca. The results acquired pointed out population dynamics of some potantially toxic species of Dinophysis genus and Pseudo-nitzschia delicatissima. These depended on the winter nutrient loads due to the ASW (Adriatic Superficial Waters) and to the LIW (Levantine Intermediate Waters). The bacterial community was mainly constituted by genera Aeromonas, Photobacterium, Cytophaga and Pseudomonas. Also the presence of Enterobacteriaceae family was relevant. Among the pathogenic vibrios the most frequently isolated species were Vibrio alginolyticus and Vibrio vulnificus. [Italian] Considerando che le zone del basso Adriatico, in particolare quelle pugliesi, costituiscono un biotopo ancora relativamente inalterato, esse sono state oggetto di un'indagine sperimentale condotta in 24 mesi di attivita' (aprile 1995-marzo 1997) lungo le coste del Canale di Otranto, ad opera di un gruppo congiunto del Laboratorio di Igiene Ambientale dell'Istituto Superiore di Sanita' e dei laboratori dell'Istituto Sperimentale Talassografico A. Cerruti del CNR di Taranto, ai fini di valutare lo stato di salute di questo ambiente, che fornisce, con buona probabilita', un

  15. Effect of oxygen and temperature on the dynamic of the dominant bacterial populations of pig manure and on the persistence of pig-associated genetic markers, assessed in river water microcosms

    OpenAIRE

    2011-01-01

    Aims: The aim is to evaluate the dynamic of Bacteroides-Prevotella and Bacillus-Streptococcus-Lactobacillus populations originating from pig manure and the persistence of pig-associated markers belonging to these groups according to temperature and oxygen. Methods and Results: River water was inoculated with pig manure and incubated under microaerophilic and aerobic conditions, at 4 and 20 degrees C over 43 days. The diversity of bacterial populations was analysed by capillary electrophoresis...

  16. Dynamics of bacterial populations during bench‐scale bioremediation of oily seawater and desert soil bioaugmented with coastal microbial mats

    OpenAIRE

    Ali, Nidaa; Dashti, Narjes; Salamah, Samar; Sorkhoh, Naser; Al‐Awadhi, Husain; Samir RADWAN

    2016-01-01

    Summary This study describes a bench‐scale attempt to bioremediate Kuwaiti, oily water and soil samples through bioaugmentation with coastal microbial mats rich in hydrocarbonoclastic bacterioflora. Seawater and desert soil samples were artificially polluted with 1% weathered oil, and bioaugmented with microbial mat suspensions. Oil removal and microbial community dynamics were monitored. In batch cultures, oil removal was more effective in soil than in seawater. Hydrocarbonoclastic bacteria ...

  17. Model for Mutation in Bacterial Populations

    Science.gov (United States)

    Donangelo, R.; Fort, H.

    2002-07-01

    We describe the evolution of E. coli populations through a Bak-Sneppen-type model which incorporates random mutations. We show that, for a value of the mutation level which coincides with the one estimated from experiments, this model reproduces the measures of mean fitness relative to that of a common ancestor, performed for over 10 000 bacterial generations.

  18. A model for mutation in bacterial populations

    OpenAIRE

    Donangelo, R.; Fort, H.

    2002-01-01

    We describe the evolution of $E.coli$ populations through a Bak-Sneppen type model which incorporates random mutations. We show that, for a value of the mutation level which coincides with the one estimated from experiments, this model reproduces the measures of mean fitness relative to that of a common ancestor, performed for over 10,000 bacterial generations.

  19. Market Squid Population Dynamics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains population dynamics data on paralarvae, juvenile and adult market squid collected off California and the US Pacific Northwest. These data were...

  20. Nonlinear Stochastic Modelling of Antimicrobial resistance in Bacterial Populations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber

    This thesis applies mathematical modelling and statistical methods to investigate the dynamics and mechanisms of bacterial evolution. More specifically it is concerned with the evolution of antibiotic resistance in bacteria populations, which is an increasing problem for the treatment of infections...... in humans and animals. To prevent the evolution and spread of resistance, there is a need for further understanding of its dynamics. A grey-box modelling approach based on stochastic differential equations is the main and innovative method applied to study bacterial systems in this thesis. Through...... for bacterial growth in an environment with multiple substrates. Models based on stochastic differential equations are also used in studies of mutation and conjugation. Mutation and conjugation are important mechanisms for the development of resistance. Earlier models for conjugation have described...

  1. Population dynamics of reindeer

    Directory of Open Access Journals (Sweden)

    L. M. Baskin

    1990-09-01

    Full Text Available Five types of reindeer populations are distinguished in terms of population dynamics, population density, social structure and migration distance. Differences in the biological rhythms of the populations result in calving occuring 20 days before snow melting in all populations as well as maximal utilization by the deer of young green vegetation in summer. The growth of antlers may serve as a regulatior of biological rhytms. Populations differ in the level of social motivation. Formation of groups of not less than 30-35 animals ensures cooperative protection from insects and management of the group by man. The fidelity to the calving sites, summer ranges and constant migration routes is based on the common orientation reactions of the animals and social attraction. The direction and migration routes are detemined by obligate learning. The dynamics of populations depends on the fertility of 2 and 3 year old females which is determined by feeding conditions in summer and the activity of males during the rut. Migration plays an important role in the population dynamics.

  2. Estimating Population Dynamics without Population Data

    OpenAIRE

    Robert Chambers; Vangelis Tzouvelekas

    2012-01-01

    We develop a biologically correct cost system for production systems facing invasive pests that allows the estimation of population dynamics without a priori knowledge of their true values. We apply that model to a data set for olive producers in Crete and derive from it predictions about the underlying populations dynamics. Those dynamics are compared to information on population dynamics obtained from pest sampling with extremely favorable results.

  3. Midgut bacterial dynamics in Aedes aegypti.

    Science.gov (United States)

    Terenius, Olle; Lindh, Jenny M; Eriksson-Gonzales, Karolina; Bussière, Luc; Laugen, Ane T; Bergquist, Helen; Titanji, Kehmia; Faye, Ingrid

    2012-06-01

    In vector mosquitoes, the presence of midgut bacteria may affect the ability to transmit pathogens. We have used a laboratory colony of Aedes aegypti as a model for bacterial interspecies competition and show that after a blood meal, the number of species (culturable on Luria-Bertani agar) that coexist in the midgut is low and that about 40% of the females do not harbor any cultivable bacteria. We isolated species belonging to the genera Bacillus, Elizabethkingia, Enterococcus, Klebsiella, Pantoea, Serratia, and Sphingomonas, and we also determined their growth rates, antibiotic resistance, and ex vivo inhibition of each other. To investigate the possible existence of coadaptation between midgut bacteria and their host, we fed Ae. aegypti cohorts with gut bacteria from human, a frog, and two mosquito species and followed the bacterial population growth over time. The dynamics of the different species suggests coadaptation between host and bacteria, and interestingly, we found that Pantoea stewartii isolated from Ae. aegypti survive better in Ae. aegypti as compared to P. stewartii isolated from the malaria mosquito Anopheles gambiae. PMID:22283178

  4. Which games are growing bacterial populations playing?

    Science.gov (United States)

    Li, Xiang-Yi; Pietschke, Cleo; Fraune, Sebastian; Altrock, Philipp M; Bosch, Thomas C G; Traulsen, Arne

    2015-07-01

    Microbial communities display complex population dynamics, both in frequency and absolute density. Evolutionary game theory provides a natural approach to analyse and model this complexity by studying the detailed interactions among players, including competition and conflict, cooperation and coexistence. Classic evolutionary game theory models typically assume constant population size, which often does not hold for microbial populations. Here, we explicitly take into account population growth with frequency-dependent growth parameters, as observed in our experimental system. We study the in vitro population dynamics of the two commensal bacteria (Curvibacter sp. (AEP1.3) and Duganella sp. (C1.2)) that synergistically protect the metazoan host Hydra vulgaris (AEP) from fungal infection. The frequency-dependent, nonlinear growth rates observed in our experiments indicate that the interactions among bacteria in co-culture are beyond the simple case of direct competition or, equivalently, pairwise games. This is in agreement with the synergistic effect of anti-fungal activity observed in vivo. Our analysis provides new insight into the minimal degree of complexity needed to appropriately understand and predict coexistence or extinction events in this kind of microbial community dynamics. Our approach extends the understanding of microbial communities and points to novel experiments. PMID:26236827

  5. Dinâmica das populações bacterianas em solos de Cerrados Dynamic of bacterial populations from Cerrado soils

    Directory of Open Access Journals (Sweden)

    João Carlos Pereira

    1999-05-01

    Full Text Available Nos ambientes tropicais, os Cerrados destacam-se pelo seu potencial agrícola. Apesar das funções dos microrganismos no crescimento das plantas e na produtividade das culturas, existem poucas informações dos efeitos resultantes do manejo do solo, na ecologia microbiana. Neste estudo, foram avaliados os efeitos das condições ambientais e das práticas agrícolas sobre as populações bacterianas. As densidades das populações em solos com vegetação nativa foram variáveis e diferenciadas. Em Sete Lagoas, MG, as populações de actinomicetos variaram de 1,7 a 50 X 10(4 UFC/g de solo seco, enquanto em Planaltina as densidades das populações bacterianas em solo com primeiro e segundo ano de cultivo de soja foram semelhantes, mas superiores ao solo com vegetação nativa. A utilização agrícola deste solo não resultou em desequilíbrios acentuados das populações de actinomicetos provenientes de esporos e hifas. As relações esporos/hifas variaram de 1,1 a 5,8. Na rizosfera da soja, os coeficientes de correlação entre as populações de actinomicetos com as demais populações bacterianas foram significativos. Os resultados evidenciam que as práticas agrícolas utilizadas na introdução da cultura da soja em solos de Cerrados pode influenciar o equilíbrio das populações na comunidade bacteriana.Among tropical environments, Cerrados stand out because of its agriculture potencial. Although microorganisms play an important role on soil sustainability and crop production, few information is available on the effects of soil management systems on Cerrado's microbial ecology. In this study the effects of environmental conditions and soil management practices on bacterial populations were evaluated. Bacterial population densities in soil under native vegetation were variable and diferentiated. Actinomycetes densities varied from 1.7 to 50 X 10(4 CFU/g dry soil in Sete Lagoas region, Brazil, whereas bacterial populations in both the

  6. Bacterial Population Genetics in a Forensic Context

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S P

    2009-11-02

    This report addresses the recent Department of Homeland Security (DHS) call for a Phase I study to (1) assess gaps in the forensically relevant knowledge about the population genetics of eight bacterial agents of concern, (2) formulate a technical roadmap to address those gaps, and (3) identify new bioinformatics tools that would be necessary to analyze and interpret population genetic data in a forensic context. The eight organisms that were studied are B. anthracis, Y. pestis, F. tularensis, Brucella spp., E. coli O157/H7, Burkholderia mallei, Burkholderia pseudomallei, and C. botulinum. Our study focused on the use of bacterial population genetics by forensic investigators to test hypotheses about the possible provenance of an agent that was used in a crime or act of terrorism. Just as human population genetics underpins the calculations of match probabilities for human DNA evidence, bacterial population genetics determines the level of support that microbial DNA evidence provides for or against certain well-defined hypotheses about the origins of an infecting strain. Our key findings are: (1) Bacterial population genetics is critical for answering certain types of questions in a probabilistic manner, akin (but not identical) to 'match probabilities' in DNA forensics. (2) A basic theoretical framework for calculating likelihood ratios or posterior probabilities for forensic hypotheses based on microbial genetic comparisons has been formulated. This 'inference-on-networks' framework has deep but simple connections to the population genetics of mtDNA and Y-STRs in human DNA forensics. (3) The 'phylogeographic' approach to identifying microbial sources is not an adequate basis for understanding bacterial population genetics in a forensic context, and has limited utility, even for generating 'leads' with respect to strain origin. (4) A collection of genotyped isolates obtained opportunistically from international locations

  7. Dynamics of bacterial gene regulation

    Science.gov (United States)

    Narang, Atul

    2009-03-01

    The phenomenon of diauxic growth is a classical problem of bacterial gene regulation. The most well studied example of this phenomenon is the glucose-lactose diauxie, which occurs because the expression of the lac operon is strongly repressed in the presence of glucose. This repression is often explained by appealing to molecular mechanisms such as cAMP activation and inducer exclusion. I will begin by analyzing data showing that these molecular mechanisms cannot explain the strong lac repression because they exert a relatively weak effect. I will then present a minimal model accounting only for enzyme induction and dilution, which yields strong repression despite the absence of catabolite repression and inducer exclusion. The model also explains the growth patterns observed in batch and continuous cultures of various bacterial strains and substrate mixtures. The talk will conclude with a discussion of the experimental evidence regarding positive feedback, the key component of the minimal model.

  8. Efeito do cultivo da soja na dinâmica da população bacteriana, em solos de cerrado Effects of soybean cultivation on the bacterial population dynamics in cerrado soils

    Directory of Open Access Journals (Sweden)

    JOÃO CARLOS PEREIRA

    2000-06-01

    Full Text Available Este trabalho teve por objetivo avaliar a influência do cultivo da soja sobre a dinâmica da população bacteriana, em dois solos de Cerrado do Estado de São Paulo, originalmente cobertos com Paspalum notatum (em Barretos e Brachiaria decumbens (em S��o Carlos. Nesses solos, a densidade da população de bactérias em geral variou de 398,1 x 10³ a 467,7 x 10³ e de 123 x 10³ a 218,8 x 10³ ufc (unidades formadoras de colônias/g de solo seco, respectivamente. O cultivo da soja, em ambos os solos, resultou em incrementos variados nos números de ufc/g de solo seco da população de bactérias em geral, das resistentes aos antibióticos estreptomicina e cloranfenicol, e de actinomicetos. A população de actinomicetos ocorreu no solo principalmente como esporos, e as variações das relações esporos/hifas entre os solos não-rizosférico e rizosférico não foram significativas. Os resultados evidenciam que o cultivo da soja influenciou de forma diferenciada a população desses solos.The effect of soybean cultivation on the population dynamics of the bacterial community was evaluated in two "Cerrado" soils of São Paulo State, Brazil. The experimental areas, in the vicinities of the cities of São Carlos and Barretos, were previously cultivated, respectively, with Paspalum notatum and Brachiaria decumbens. The bacterial population densities in these soils varied from 398.1 x 10³ to 467.7 x 10³ cfu (colony forming units and from 123 x 10³ to 218.8 x 10³ cfu/g of dried soil, respectively, in São Carlos and Barretos soils. Soybean cultivation in both soils resulted in increments in the total bacterial population density, in the actinomycetes population, and in the bacterial population resistant to the antibiotics streptomycin and chloramphenicol. Actinomycetes were present in these soils mainly as spores. Soybean cultivation did not alter the actinomycetes spores/hyphae ratio when comparing rhizospheric and non-rhizospheric soils

  9. Population Genomics and the Bacterial Species Concept

    OpenAIRE

    Riley, Margaret A.; Lizotte-Waniewski, Michelle

    2009-01-01

    In recent years, the importance of horizontal gene transfer (HGT) in bacterial evolution has been elevated to such a degree that many bacteriologists now question the very existence of bacterial species. If gene transfer is as rampant as comparative genomic studies have suggested, how could bacterial species survive such genomic fluidity? And yet, most bacteriologists recognize, and name, as species, clusters of bacterial isolates that share complex phenotypic properties. The Core Genome Hypo...

  10. Detecting rare gene transfer events in bacterial populations

    Directory of Open Access Journals (Sweden)

    Kaare Magne Nielsen

    2014-01-01

    Full Text Available Horizontal gene transfer (HGT enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research.

  11. Kinetics of Suicide of Bacterial Populations

    International Nuclear Information System (INIS)

    Based on a number of assumptions, formulas are presented for the survival of hypothetical bacterial cultures under self-irradiation by incorporated tritium in the chromosomal material. The formulas average over different classes of cells in the balanced growing populations taking into account the increased rate of inactivation of cells with more DNA, and that nuclear division causes the number of independent chromosomes to increase. The partial multinuclearity tends to make the logarithmic survival curves concave downward, but heterogeneity in amount of DNA in the chromosomes does the opposite. Details of how the resultant effects compensate for various patterns of DNA replication and how the target numbers and final slope are given. If DNA synthesis takes only a small fraction of the total cycle, the survival curves are the well-known one or two target curves and intermediate forms depending on the point in the cell cycle that the synthesis takes place. If synthesis takes almost all of the cell cycle as is the case for enteric bacteria growing in glucose minimal medium, the apparent target numbers are lower and are, in fact, unity if nuclear division is midway in the cell cycle. This is consistent with the experimental results in studies of survival, and in cytological and other studies of the nuclear replication cycle. The effect of gaps in DNA synthesis at various parts of the cell cycle are given and their relevance to various biological systems is discussed. The apparent target number is lowest if synthesis takes place at the end of the cell cycle than if it takes place earlier. Means are provided so that the sensitivity of the resting genome can be calculated from the results of measurements of balanced growing populations. (author)

  12. Discrete modelling of bacterial conjugation dynamics

    CERN Document Server

    Goni-Moreno, Angel

    2012-01-01

    In bacterial populations, cells are able to cooperate in order to yield complex collective functionalities. Interest in population-level cellular behaviour is increasing, due to both our expanding knowledge of the underlying biological principles, and the growing range of possible applications for engineered microbial consortia. Researchers in the field of synthetic biology - the application of engineering principles to living systems - have, for example, recently shown how useful decision-making circuits may be distributed across a bacterial population. The ability of cells to interact through small signalling molecules (a mechanism known as it quorum sensing) is the basis for the majority of existing engineered systems. However, horizontal gene transfer (or conjugation) offers the possibility of cells exchanging messages (using DNA) that are much more information-rich. The potential of engineering this conjugation mechanism to suit specific goals will guide future developments in this area. Motivated by a l...

  13. Lysozyme as a recognition element for monitoring of bacterial population.

    Science.gov (United States)

    Zheng, Laibao; Wan, Yi; Yu, Liangmin; Zhang, Dun

    2016-01-01

    Bacterial infections remain a significant challenge in biomedicine and environment safety. Increasing worldwide demand for point-of-care techniques and increasing concern on their safe development and use, require a simple and sensitive bioanalysis for pathogen detection. However, this goal is not yet achieved. A design for fluorescein isothiocyanate-labeled lysozyme (FITC-LYZ), which provides quantitative binding information for gram-positive bacteria, Micrococcus luteus, and detects pathogen concentration, is presented. The functional lysozyme is used not only as the pathogenic detection platform, but also as a tracking reagent for microbial population in antibacterial tests. A nonlinear relationship between the system response and the logarithm of the bacterial concentration was observed in the range of 1.2×10(2)-1.2×10(5) cfu mL(-1). The system has a potential for further applications and provides a facile and simple method for detection of pathogenic bacteria. Meanwhile, the fluorescein isothiocyanate -labeled lysozyme is also employed as the tracking agent for antibacterial dynamic assay, which show a similar dynamic curve compared with UV-vis test. PMID:26695267

  14. Metagenomic reconstructions of bacterial CRISPR loci constrain population histories.

    Science.gov (United States)

    Sun, Christine L; Thomas, Brian C; Barrangou, Rodolphe; Banfield, Jillian F

    2016-04-01

    Bacterial CRISPR-Cas systems provide insight into recent population history because they rapidly incorporate, in a unidirectional manner, short fragments (spacers) from coexisting infective virus populations into host chromosomes. Immunity is achieved by sequence identity between transcripts of spacers and their targets. Here, we used metagenomics to study the stability and dynamics of the type I-E CRISPR-Cas locus of Leptospirillum group II bacteria in biofilms sampled over 5 years from an acid mine drainage (AMD) system. Despite recovery of 452,686 spacers from CRISPR amplicons and metagenomic data, rarefaction curves of spacers show no saturation. The vast repertoire of spacers is attributed to phage/plasmid population diversity and retention of old spacers, despite rapid evolution of the targeted phage/plasmid genome regions (proto-spacers). The oldest spacers (spacers found at the trailer end) are conserved for at least 5 years, and 12% of these retain perfect or near-perfect matches to proto-spacer targets. The majority of proto-spacer regions contain an AAG proto-spacer adjacent motif (PAM). Spacers throughout the locus target the same phage population (AMDV1), but there are blocks of consecutive spacers without AMDV1 target sequences. Results suggest long-term coexistence of Leptospirillum with AMDV1 and periods when AMDV1 was less dominant. Metagenomics can be applied to millions of cells in a single sample to provide an extremely large spacer inventory, allow identification of phage/plasmids and enable analysis of previous phage/plasmid exposure. Thus, this approach can provide insights into prior bacterial environment and genetic interplay between hosts and their viruses. PMID:26394009

  15. Perturbation Theory for Population Dynamics

    CERN Document Server

    Fernandez, Francisco M

    2007-01-01

    We prove that a recently proposed homotopy perturbation method for the treatment of population dynamics is just the Taylor expansion of the population variables about initial time. Our results show that this perturbation method fails to provide the global features of the ecosystem dynamics.

  16. Proton dynamics in bacterial spores, a neutron scattering investigation

    International Nuclear Information System (INIS)

    In the present study we investigated the dynamical properties of entire bacterial spores by neutron scattering, in order to compare the dynamics observed on the picosecond time-scale to results extracted from other physical measurements. The main objective was to provide a better understanding of the uncommon resistance properties of bacterial spores due to the peculiarities of their core. Elastic incoherent neutron scattering (EINS) measurements as a function of temperature were performed on the thermal (λ = 2.23 Angstroms) high-energy resolution backscattering spectrometer IN13 (Institut Laue-Langevin, Grenoble, France). From elastic incoherent measurements, it is possible to extract atomic mean square displacements (MSD), which represent the sample's flexibility at a given temperature, and the effective force constant that is a measure of protein resilience. We used a temperature range that progressively led to the complete inactivation of the spore population. This procedure allowed us to follow the dynamics of the spore components along with major structural changes, notably originating from the core deep rearrangement. Results show that the elastic intensities and mean square displacements have a non-linear behaviour as function of temperature, which is in agreement with a model presenting more pronounced variations at around 330 K and 400 K. Based on the available literature on thermal properties of bacterial spores, mainly referring to differential scanning calorimetry, they are suggested to be associated to main endothermic transitions induced by coat and/or core bacterial response to heat treatment

  17. Bacterial predator-prey dynamics in microscale patchy landscapes.

    Science.gov (United States)

    Hol, Felix J H; Rotem, Or; Jurkevitch, Edouard; Dekker, Cees; Koster, Daniel A

    2016-02-10

    Soil is a microenvironment with a fragmented (patchy) spatial structure in which many bacterial species interact. Here, we explore the interaction between the predatory bacterium Bdellovibrio bacteriovorus and its prey Escherichia coli in microfabricated landscapes. We ask how fragmentation influences the prey dynamics at the microscale and compare two landscape geometries: a patchy landscape and a continuous landscape. By following the dynamics of prey populations with high spatial and temporal resolution for many generations, we found that the variation in predation rates was twice as large in the patchy landscape and the dynamics was correlated over shorter length scales. We also found that while the prey population in the continuous landscape was almost entirely driven to extinction, a significant part of the prey population in the fragmented landscape persisted over time. We observed significant surface-associated growth, especially in the fragmented landscape and we surmise that this sub-population is more resistant to predation. Our results thus show that microscale fragmentation can significantly influence bacterial interactions. PMID:26865299

  18. Investigation of bacterial populations in a biological nutrient removal system

    OpenAIRE

    Kavanaugh, Rathi G.

    1991-01-01

    Bacterial populations proliferating in a pilot scale biological nutrient removal system (BNR) were studied. The objective of the research was to develop media and methods to identify bacterial populations in BNR systems. Samples were obtained from the last aerobic zone of a University of Cape Town (UCT)-type system. The most probable numbers (MPN) of bacteria in the samples were analyzed in liquid media containing volatile fatty acids as sole sources of carbon. Samples...

  19. Punctuated equilibrium in an evolving bacterial population

    OpenAIRE

    Chaudhuri, Indranath; Bose, Indrani

    1999-01-01

    Recently, Lenski et al have carried out an experiment on bacterial evolution. Their findings support the theory of punctuated equilibrium in biological evolution. We show that the M=2 Bak-Sneppen model can explain some of the experimental results in a qualitative manner.

  20. Learning, evolution and population dynamics

    OpenAIRE

    JÜRGEN JOST; WEI LI

    2010-01-01

    We study a complementarity game as a systematic tool for the investigation of the interplay between individual optimization and population effects and for the comparison of different strategy and learning schemes. The game randomly pairs players from opposite populations. The game is symmetric at the individual level, but has many equilibria that are more or less favorable to the members of the two populations. Which of these equilibria then is attained is decided by the dynamics at the popul...

  1. Population expansions shared among coexisting bacterial lineages are revealed by genetic evidence

    OpenAIRE

    Morena Avitia; Escalante, Ana E.; Rebollar, Eria A.; Alejandra Moreno-Letelier; Eguiarte, Luis E.; Valeria Souza

    2014-01-01

    Comparative population studies can help elucidate the influence of historical events upon current patterns of biodiversity among taxa that coexist in a given geographic area. In particular, comparative assessments derived from population genetics and coalescent theory have been used to investigate population dynamics of bacterial pathogens in order to understand disease epidemics. In contrast, and despite the ecological relevance of non-host associated and naturally occurring bacteria, there ...

  2. Discreteness effects in population dynamics

    Science.gov (United States)

    Guevara Hidalgo, Esteban; Lecomte, Vivien

    2016-05-01

    We analyse numerically the effects of small population size in the initial transient regime of a simple example population dynamics. These effects play an important role for the numerical determination of large deviation functions of additive observables for stochastic processes. A method commonly used in order to determine such functions is the so-called cloning algorithm which in its non-constant population version essentially reduces to the determination of the growth rate of a population, averaged over many realizations of the dynamics. However, the averaging of populations is highly dependent not only on the number of realizations of the population dynamics, and on the initial population size but also on the cut-off time (or population) considered to stop their numerical evolution. This may result in an over-influence of discreteness effects at initial times, caused by small population size. We overcome these effects by introducing a (realization-dependent) time delay in the evolution of populations, additional to the discarding of the initial transient regime of the population growth where these discreteness effects are strong. We show that the improvement in the estimation of the large deviation function comes precisely from these two main contributions.

  3. Population expansions shared among coexisting bacterial lineages are revealed by genetic evidence.

    Science.gov (United States)

    Avitia, Morena; Escalante, Ana E; Rebollar, Eria A; Moreno-Letelier, Alejandra; Eguiarte, Luis E; Souza, Valeria

    2014-01-01

    Comparative population studies can help elucidate the influence of historical events upon current patterns of biodiversity among taxa that coexist in a given geographic area. In particular, comparative assessments derived from population genetics and coalescent theory have been used to investigate population dynamics of bacterial pathogens in order to understand disease epidemics. In contrast, and despite the ecological relevance of non-host associated and naturally occurring bacteria, there is little understanding of the processes determining their diversity. Here we analyzed the patterns of genetic diversity in coexisting populations of three genera of bacteria (Bacillus, Exiguobacterium, and Pseudomonas) that are abundant in the aquatic systems of the Cuatro Cienegas Basin, Mexico. We tested the hypothesis that a common habitat leaves a signature upon the genetic variation present in bacterial populations, independent of phylogenetic relationships. We used multilocus markers to assess genetic diversity and (1) performed comparative phylogenetic analyses, (2) described the genetic structure of bacterial populations, (3) calculated descriptive parameters of genetic diversity, (4) performed neutrality tests, and (5) conducted coalescent-based historical reconstructions. Our results show a trend of synchronic expansions across most populations independent of both lineage and sampling site. Thus, we provide empirical evidence supporting the analysis of coexisting bacterial lineages in natural environments to advance our understanding of bacterial evolution beyond medical or health-related microbes. PMID:25548732

  4. Population expansions shared among coexisting bacterial lineages are revealed by genetic evidence

    Directory of Open Access Journals (Sweden)

    Morena Avitia

    2014-12-01

    Full Text Available Comparative population studies can help elucidate the influence of historical events upon current patterns of biodiversity among taxa that coexist in a given geographic area. In particular, comparative assessments derived from population genetics and coalescent theory have been used to investigate population dynamics of bacterial pathogens in order to understand disease epidemics. In contrast, and despite the ecological relevance of non-host associated and naturally occurring bacteria, there is little understanding of the processes determining their diversity. Here we analyzed the patterns of genetic diversity in coexisting populations of three genera of bacteria (Bacillus, Exiguobacterium, and Pseudomonas that are abundant in the aquatic systems of the Cuatro Cienegas Basin, Mexico. We tested the hypothesis that a common habitat leaves a signature upon the genetic variation present in bacterial populations, independent of phylogenetic relationships. We used multilocus markers to assess genetic diversity and (1 performed comparative phylogenetic analyses, (2 described the genetic structure of bacterial populations, (3 calculated descriptive parameters of genetic diversity, (4 performed neutrality tests, and (5 conducted coalescent-based historical reconstructions. Our results show a trend of synchronic expansions across most populations independent of both lineage and sampling site. Thus, we provide empirical evidence supporting the analysis of coexisting bacterial lineages in natural environments to advance our understanding of bacterial evolution beyond medical or health-related microbes.

  5. Self-similar dynamics of bacterial chemotaxis

    CERN Document Server

    Ngamsaad, Waipot

    2012-01-01

    We investigate the pattern formation of colony generated by chemotactic bacteria through a continuum model. In a simplified case, the dynamics of system is governed by a density-dependent convection-reaction-diffusion equation, $u_t = (u^{m})_{xx} - 2\\kappa(u^m)_{x}+ u - u^{m}$. This equation admits the analytical solutions that show the self-similarity of the bacterial colony's morphogenesis. In addition, we found that the colony evolves long time as the sharp traveling wave. The roles of chemotaxis on the regulation of pattern formation in these results are also discussed.

  6. Population dynamics of active and total ciliate populations in arable soil amended with wheat

    DEFF Research Database (Denmark)

    Ekelund, F.; Frederiksen, Helle B.; Ronn, R.

    2002-01-01

    population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil...... mathematical modeling. Following the addition of fresh organic material, bacterial numbers increased more than 1,400-fold. There was a temporary increase in the number of active ciliates, followed by a rapid decline, although the size of the bacterial prey populations remained high. During this initial burst...

  7. Measurement of Behavioral Evolution in Bacterial Populations

    Science.gov (United States)

    Austin, Robert

    2013-03-01

    A curious aspect of bacterial behavior under stress is the induction of filamentation: the anomalous growth of certain bacteria in which cells continue to elongate but do not divide into progeny. We show that E.coli under the influence of the genotoxic antibiotic ciprofloxacin have robust filamentous growth, which provides individual bacteria a mesoscopic niche for evolution until resistant progeny can bud off and propagate. Hence, filamentation is a form of genomic amplification where even a single, isolated bacteria can have access to multiple genomes. We propose a model that predicts that the first arrival time of the normal sized progeny should follow a Gompertz distribution with the mean first arrival time proportional to the elongation rate of filament. These predictions agree with our experimental measurements. Finally, we suggest bacterial filament growth and budding has many similarities to tumor growth and metastasis and can serve as a simpler model to study those complicated processes. Sponsored by the NCI/NIH Physical Sciences Oncology Centers

  8. Community structure of actively growing bacterial populations in plant pathogen suppressive soil

    NARCIS (Netherlands)

    Hjort, K.; Lembke, A.; Speksnijder, A.G.C.L.; Smalla, K.; Jansson, J.K.

    2007-01-01

    The bacterial community in soil was screened by using various molecular approaches for bacterial populations that were activated upon addition of different supplements. Plasmodiophora brassicae spores, chitin, sodium acetate, and cabbage plants were added to activate specific bacterial populations a

  9. Daily changes in bacterial-feeding nematode populations oscillate with similar periods as bacterial populations after a nutrient impulse in soil

    NARCIS (Netherlands)

    Zelenev, V.V.; Berkelmans, R.A.; Bruggen, van A.H.C.; Bongers, A.M.T.; Semenov, A.M.

    2004-01-01

    Previously, we showed that bacterial populations oscillated in a regular manner in response to a nutrient impulse in soil. For this paper we investigated if the wave-like fluctuations in bacterial populations could be explained by their interactions with populations of bacterial-feeding nematodes (B

  10. Physical Limits on Bacterial Navigation in Dynamic Environments

    CERN Document Server

    Hein, Andrew M; Carrara, Francesco; Stocker, Roman; Levin, Simon A

    2015-01-01

    Many chemotactic bacteria inhabit environments in which chemicals appear as localized pulses and evolve by processes such as diffusion and mixing. We show that, in such environments, physical limits on the accuracy of temporal gradient sensing govern when and where bacteria can accurately measure the cues they use to navigate. Chemical pulses are surrounded by a predictable dynamic region, outside which bacterial cells cannot resolve gradients above noise. The outer boundary of this region initially expands in proportion to $\\sqrt{t}$, before rapidly contracting. Our analysis also reveals how chemokinesis - the increase in swimming speed many bacteria exhibit when absolute chemical concentration exceeds a threshold - may serve to enhance chemotactic accuracy and sensitivity when the chemical landscape is dynamic. More generally, our framework provides a rigorous method for partitioning bacteria into populations that are "near" and "far" from chemical hotspots in complex, rapidly evolving environments such as ...

  11. BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology.

    Directory of Open Access Journals (Sweden)

    Thomas E Gorochowski

    Full Text Available Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments, population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI recognized MIT license. Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java version 1.6 or higher.

  12. BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology.

    Science.gov (United States)

    Gorochowski, Thomas E; Matyjaszkiewicz, Antoni; Todd, Thomas; Oak, Neeraj; Kowalska, Kira; Reid, Stephen; Tsaneva-Atanasova, Krasimira T; Savery, Nigel J; Grierson, Claire S; di Bernardo, Mario

    2012-01-01

    Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments, population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI) recognized MIT license. Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java version 1.6 or higher. PMID:22936991

  13. Population dynamics in variable environments

    CERN Document Server

    Tuljapurkar, Shripad

    1990-01-01

    Demography relates observable facts about individuals to the dynamics of populations. If the dynamics are linear and do not change over time, the classical theory of Lotka (1907) and Leslie (1945) is the central tool of demography. This book addresses the situation when the assumption of constancy is dropped. In many practical situations, a population will display unpredictable variation over time in its vital rates, which must then be described in statistical terms. Most of this book is concerned with the theory of populations which are subject to random temporal changes in their vital rates, although other kinds of variation (e. g. , cyclical) are also dealt with. The central questions are: how does temporal variation work its way into a population's future, and how does it affect our interpretation of a population's past. The results here are directed at demographers of humans and at popula­ tion biologists. The uneven mathematical level is dictated by the material, but the book should be accessible to re...

  14. Patterned progression of bacterial populations in the premature infant gut.

    Science.gov (United States)

    La Rosa, Patricio S; Warner, Barbara B; Zhou, Yanjiao; Weinstock, George M; Sodergren, Erica; Hall-Moore, Carla M; Stevens, Harold J; Bennett, William E; Shaikh, Nurmohammad; Linneman, Laura A; Hoffmann, Julie A; Hamvas, Aaron; Deych, Elena; Shands, Berkley A; Shannon, William D; Tarr, Phillip I

    2014-08-26

    In the weeks after birth, the gut acquires a nascent microbiome, and starts its transition to bacterial population equilibrium. This early-in-life microbial population quite likely influences later-in-life host biology. However, we know little about the governance of community development: does the gut serve as a passive incubator where the first organisms randomly encountered gain entry and predominate, or is there an orderly progression of members joining the community of bacteria? We used fine interval enumeration of microbes in stools from multiple subjects to answer this question. We demonstrate via 16S rRNA gene pyrosequencing of 922 specimens from 58 subjects that the gut microbiota of premature infants residing in a tightly controlled microbial environment progresses through a choreographed succession of bacterial classes from Bacilli to Gammaproteobacteria to Clostridia, interrupted by abrupt population changes. As infants approach 33-36 wk postconceptional age (corresponding to the third to the twelfth weeks of life depending on gestational age at birth), the gut is well colonized by anaerobes. Antibiotics, vaginal vs. Caesarian birth, diet, and age of the infants when sampled influence the pace, but not the sequence, of progression. Our results suggest that in infants in a microbiologically constrained ecosphere of a neonatal intensive care unit, gut bacterial communities have an overall nonrandom assembly that is punctuated by microbial population abruptions. The possibility that the pace of this assembly depends more on host biology (chiefly gestational age at birth) than identifiable exogenous factors warrants further consideration. PMID:25114261

  15. Bacterial Swarming: A Model System for Studying Dynamic Self-assembly

    OpenAIRE

    Copeland, Matthew F.; Weibel, Douglas B.

    2009-01-01

    Bacterial swarming is an example of dynamic self-assembly in microbiology in which the collective interaction of a population of bacterial cells leads to emergent behavior. Swarming occurs when cells interact with surfaces, reprogram their physiology and behavior, and adapt to changes in their environment by coordinating their growth and motility with other cells in the colony. This review summarizes the salient biological and biophysical features of this system and describes our current unde...

  16. Oscillatory dynamics in a bacterial cross-protection mutualism.

    Science.gov (United States)

    Yurtsev, Eugene Anatoly; Conwill, Arolyn; Gore, Jeff

    2016-05-31

    Cooperation between microbes can enable microbial communities to survive in harsh environments. Enzymatic deactivation of antibiotics, a common mechanism of antibiotic resistance in bacteria, is a cooperative behavior that can allow resistant cells to protect sensitive cells from antibiotics. Understanding how bacterial populations survive antibiotic exposure is important both clinically and ecologically, yet the implications of cooperative antibiotic deactivation on the population and evolutionary dynamics remain poorly understood, particularly in the presence of more than one antibiotic. Here, we show that two Escherichia coli strains can form an effective cross-protection mutualism, protecting each other in the presence of two antibiotics (ampicillin and chloramphenicol) so that the coculture can survive in antibiotic concentrations that inhibit growth of either strain alone. Moreover, we find that daily dilutions of the coculture lead to large oscillations in the relative abundance of the two strains, with the ratio of abundances varying by nearly four orders of magnitude over the course of the 3-day period of the oscillation. At modest antibiotic concentrations, the mutualistic behavior enables long-term survival of the oscillating populations; however, at higher antibiotic concentrations, the oscillations destabilize the population, eventually leading to collapse. The two strains form a successful cross-protection mutualism without a period of coevolution, suggesting that similar mutualisms may arise during antibiotic treatment and in natural environments such as the soil. PMID:27194723

  17. Flood trends and population dynamics

    Science.gov (United States)

    Di Baldassarre, G.

    2012-04-01

    Since the earliest recorded civilizations, such as those in Mesopotamia and Egypt that developed in the fertile floodplains of the Tigris and Euphrates and Nile rivers, humans tend to settle in flood prone areas as they offer favorable conditions for economic development. However, floodplains are also exposed to flood disasters that might cause severe socio-economic and environmental damages not to mention losses of human lives. A flood event turns to be a disaster when it coincides with a vulnerable environment exceeding society's capacity to manage the adverse consequences. This presentation discusses the link between hydrological risk and population change by referring to the outcomes of scientific works recently carried out in Africa and Europe. More specifically, it is shown that the severity of flood disasters, currently affecting more than 100 million people a year, might be seriously exacerbated because of population change. In fact, flood exposure and/or vulnerability might increase because of rapid population growth (and its spatial and temporal dynamics, e.g. urbanization) in the African continent and because of population ageing in many European countries. Lastly, timely and economically sustainable actions to mitigate this increasing hydrological risk are critically evaluated.

  18. Nonlinear dynamics of interacting populations

    CERN Document Server

    Bazykin, Alexander D

    1998-01-01

    This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative the

  19. Effect of isolate of ruminal fibrolytic bacterial culture supplementation on fibrolytic bacterial population and survivability of inoculated bacterial strain in lactating Murrah buffaloes

    Directory of Open Access Journals (Sweden)

    Brishketu Kumar

    2013-02-01

    Full Text Available Aim: The present study was conducted to evaluate the effect of bacterial culture supplementation on ruminal fibrolytic bacterial population as well as on survivability of inoculated bacterial strain in lactating Murrah buffaloes kept on high fibre diet. Materials and Methods: Fibrolytic bacterial strains were isolated from rumen liquor of fistulated Murrah buffaloes and live bacterial culture were supplemented orally in treatment group of lactating Murrah buffaloes fed on high fibre diet to see it's effect on ruminal fibrolytic bacterial population as well as to see the effect of survivability of the inoculated bacterial strain at three different time interval in comparison to control group. Results: It has been shown by real time quantification study that supplementation of bacterial culture orally increases the population of major fibre degrading bacteria i.e. Ruminococcus flavefaciens, Ruminococcus albus as well as Fibrobacter succinogenes whereas there was decrease in secondary fibre degrading bacterial population i.e. Butyrivibrio fibrisolvens over the different time periods. However, the inoculated strain of Ruminococcus flavefaciens survived significantly over the period of time, which was shown in stability of increased inoculated bacterial population. Conclusion: The isolates of fibrolytic bacterial strains are found to be useful in increasing the number of major ruminal fibre degrading bacteria in lactating buffaloes and may act as probiotic in large ruminants on fibre-based diets. [Vet World 2013; 6(1.000: 14-17

  20. Dynamics of Similar Populations: The Link Between Population Dynamics and Evolution

    OpenAIRE

    Meszena, G.; Gyllenberg, M.; F.J.A. Jacobs; J.A.J. Metz

    2005-01-01

    We provide the link between population dynamics and the dynamics of Darwinian evolution via studying the joint population dynamics of "similar" populations. Similarity implies that the "relative" dynamics of the populations is slow compared to, and decoupled from, their "aggregated" dynamics. The relative dynamics is simple, and captured by a Taylor expansion in the difference between the populations. The emerging evolution is directional, except at the "singular" points of the evolutionary s...

  1. Design and Evaluation of PCR Primers for Analysis of Bacterial Populations in Wine by Denaturing Gradient Gel Electrophoresis

    OpenAIRE

    Lopez, Isabel; Ruiz-Larrea, Fernanda; Cocolin, Luca; Orr, Erica; Phister, Trevor; Marshall, Megan; VanderGheynst, Jean; Mills, David A.

    2003-01-01

    Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified ribosomal DNA (rDNA) is routinely used to compare levels of diversity of microbial communities and to monitor population dynamics. While using PCR-DGGE to examine the bacteria in wine fermentations, we noted that several commonly used PCR primers for amplifying bacterial 16S rDNA also coamplified yeast, fungal, or plant DNA present in samples. Unfortunately, amplification of nonbacterial DNA can result in a masking of bacterial p...

  2. Influence of acid precipitation on bacterial populations in lakes

    Energy Technology Data Exchange (ETDEWEB)

    Rao, S.S.; Dutka, B.J.

    1983-01-01

    Relative abundance of total, respiring, aerobic heterotrophic, nitrogen cycle and sulfur cycle bacteria was measured in acid stressed and non-acid stressed hardwater lakes. Data indicated that bacterial populations and densities were nearly an order of magnitude less in acid stressed waters than in non-acid stressed waters. Nitrifying bacteria and some sulfur cycle bacteria (Thiobacillus sp.) were very low or absent in acid stressed waters. Surface sediments of acid stressed lakes contained 3 to 4 times more organic matter than the amount found in the relatively more enriched lake. Methodology and data are presented. 20 references, 1 figure, 1 table.

  3. Determination of Plasmid Segregational Stability in a Growing Bacterial Population.

    Science.gov (United States)

    Kramer, M Gabriela

    2016-01-01

    Bacterial plasmids are extensively used as cloning vectors for a number of genes for academic and commercial purposes. Moreover, attenuated bacteria carrying recombinant plasmids expressing genes with anti-tumor activity have shown promising therapeutic results in animal models of cancer. Equitable plasmid distribution between daughter cells during cell division, i.e., plasmid segregational stability, depends on many factors, including the plasmid copy number, its replication mechanism, the levels of recombinant gene expression, the type of bacterial host, and the metabolic burden associated with all these factors. Plasmid vectors usually code for antibiotic-resistant functions, and, in order to enrich the culture with bacteria containing plasmids, antibiotic selective pressure is commonly used to eliminate plasmid-free segregants from the growing population. However, administration of antibiotics can be inconvenient for many industrial and therapeutic applications. Extensive ongoing research is being carried out to develop stably-inherited plasmid vectors. Here, I present an easy and precise method for determining the kinetics of plasmid loss or maintenance for every ten generations of bacterial growth in culture. PMID:26846807

  4. [Geographical hematology and population dynamics].

    Science.gov (United States)

    Ruffié, J; Bernard, J

    1979-01-01

    Hemotypology, which is based on the study of a large number of immunological and enzyme systems in the blood, has shown the extraordinary polymorphism of the human species and the lack of a genetic barrier between groups once considered as separate races. The typological mode of thought predominated in anthropology until the middle of this century. Mankind was divided into races according to a theoretical profile characteristic of each one, the holotype, which all the members of the same race were thought to resemble. Today we tend toward the substitution of population thinking: the human species, like all the other animal or plant species, is made up of populations, reproductive units whose members are more likely to mate within the group than outside it. A population is never totally closed and it is the interpopulational genetic flux which assures the homogeneity of the species. Three factors play a fundamental role in the genetic structure of human populations: 1. An ancestral genetic heritage from the distant past is modified by external contribution such as genetic flux and hybridization; 2. Chance is an especially important factor in very isolated small groups; 3. Natural selection: the majority of all genetic factors are not neutral, as we used to think, but possess a certain selective value. This nonneutrality doubtless explains the maintenance of the hemotypological polymorphism in man, as in the model proposed by A.E. Mourant and J. Ruffié. Following these ideas, sometimes it is possible to find the hemotypological traces of important events, especially of the great migrations of the beginning of the neolithic or the beginning of the historic period. Examples are cited which concern the peopling of sub-Saharan Africa, the western Mediterranean and western Europe, and of the continental Far East and Japan. This conceptual revolution, based on the dynamic idea of populations and not on that of the typological conception of race, has shed new light on the

  5. Scale-Invariant Correlations in Dynamic Bacterial Clusters

    Science.gov (United States)

    Chen, Xiao; Dong, Xu; Be'er, Avraham; Swinney, Harry L.; Zhang, H. P.

    2012-04-01

    In Bacillus subtilis colonies, motile bacteria move collectively, spontaneously forming dynamic clusters. These bacterial clusters share similarities with other systems exhibiting polarized collective motion, such as bird flocks or fish schools. Here we study experimentally how velocity and orientation fluctuations within clusters are spatially correlated. For a range of cell density and cluster size, the correlation length is shown to be 30% of the spatial size of clusters, and the correlation functions collapse onto a master curve after rescaling the separation with correlation length. Our results demonstrate that correlations of velocity and orientation fluctuations are scale invariant in dynamic bacterial clusters.

  6. Mucin dynamics in intestinal bacterial infection.

    Directory of Open Access Journals (Sweden)

    Sara K Lindén

    Full Text Available BACKGROUND: Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract. METHODOLOGY/PRINCIPAL FINDINGS: Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17 in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05. Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon. CONCLUSION: Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.

  7. Plant Pathogen Population Dynamics in Potato Fields

    OpenAIRE

    Morgan, G. D.; Stevenson, W. R.; MacGuidwin, A. E.; Kelling, K. A.; Binning, L. K.; Zhu, J.

    2002-01-01

    Modern technologies incorporating Geographic Information Systems (GIS), Global Positioning Systems (GPS), remote sensing, and geostatistics provide unique opportunities to advance ecological understanding of pests across a landscape. Increased knowledge of the population dynamics of plant pathogens will promote management strategies, such as site-specific management, and cultural practices minimizing the introduction and impact of plant pathogens. The population dynamics of Alternaria solani,...

  8. Assessment of bacterial and structural dynamics in aerobic granular biofilms

    Directory of Open Access Journals (Sweden)

    David G. Weissbrodt

    2013-07-01

    Full Text Available Aerobic granular sludge is based on self-granulated flocs forming mobile biofilms with a gel-like consistence. Bacterial and structural dynamics from flocs to granules were followed in anaerobic-aerobic sequencing batch reactors fed with synthetic wastewater, namely a bubble column (BC-SBR operated under wash-out conditions for fast granulation, and two stirred-tank enrichments of Accumulibacter (PAO-SBR and Competibacter (GAO-SBR operated at steady-state. In the BC-SBR, granules formed within two weeks by swelling of Zoogloea colonies around flocs, developing subsequently smooth zoogloeal biofilms. However, Zoogloea predominance (37-79% led to deteriorated nutrient removal during the first months of reactor operation. Upon maturation, improved nitrification (80-100%, nitrogen removal (43-83%, and high but unstable dephosphatation (75-100% were obtained. Proliferation of dense clusters of nitrifiers, Accumulibacter, and Competibacter from granule cores outwards resulted in heterogeneous bioaggregates, inside which only low abundance Zoogloea (<5% were detected in biofilm interstices. The presence of different extracellular glycoconjugates detected by fluorescence lectin-binding analysis showed the complex nature of the intracellular matrix of these granules. In the PAO-SBR, granulation occurred within two months with abundant and active Accumulibacter populations (56±10% that were selected under full anaerobic uptake of volatile fatty acids and that aggregated as dense clusters within heterogeneous granules. Flocs self-granulated in the GAO-SBR after 480 days during a period of over-aeration caused by biofilm growth on the oxygen sensor. Granules were dominated by heterogeneous clusters of Competibacter (37±11%. Zoogloea were never abundant in biomass of both PAO- and GAO-SBRs. This study showed that Zoogloea, Accumulibacter, and Competibacter affiliates can form granules, and that the granulation mechanisms rely on the dominant population

  9. The Niches of Bacterial Populations in Productive Waters : Examples from Coastal Waters and Four Eutrophic Lakes

    OpenAIRE

    Eiler, Alexander

    2006-01-01

    Recent research in microbial ecology has focused on how aquatic bacterial communities are assembled. Only a few of these studies follow a “Gleasonian” approach where the roles of single bacterial populations are in focus. In this thesis, novel molecular tools were used to describe the distribution and evolutionary relationships of microbes in productive aquatic environments. Many new phylogenetic groups of bacteria were identified, likely representing bacterial populations restricted to produ...

  10. Population dynamical responses to climate change

    DEFF Research Database (Denmark)

    Forchhammer, Mads; Schmidt, Niels Martin; Høye, Toke Thomas;

    2008-01-01

    bewildering number of interactions. For example, individuals within a population may compete for space and other resources and, being embedded in an ecosystem, individuals in any population may also interact with individuals of competing species as well as those from adjacent trophic levels. In principal, the......it is well established that climatic as well as biological factors, in concert, form the mechanistic basis for our understanding of how populations develop over time and across space. Although this seemingly suggests simplicity, the climate-biology dichotomy of population dynamics embraces a...... approaches, we analyse concurrently the influence of climatic variability and trophic interactions on the temporal population dynamics of species in the terrestrial vertebrate community at Zackenberg. We describe and contrast the population dynamics of three predator species (arctic fox Alopex lagopus, stoat...

  11. Bacterial profile of dentine caries and the impact of pH on bacterial population diversity.

    Directory of Open Access Journals (Sweden)

    Nima Kianoush

    Full Text Available Dental caries is caused by the release of organic acids from fermentative bacteria, which results in the dissolution of hydroxyapatite matrices of enamel and dentine. While low environmental pH is proposed to cause a shift in the consortium of oral bacteria, favouring the development of caries, the impact of this variable has been overlooked in microbial population studies. This study aimed to detail the zonal composition of the microbiota associated with carious dentine lesions with reference to pH. We used 454 sequencing of the 16S rRNA gene (V3-V4 region to compare microbial communities in layers ranging in pH from 4.5-7.8 from 25 teeth with advanced dentine caries. Pyrosequencing of the amplicons yielded 449,762 sequences. Nine phyla, 97 genera and 409 species were identified from the quality-filtered, de-noised and chimera-free sequences. Among the microbiota associated with dentinal caries, the most abundant taxa included Lactobacillus sp., Prevotella sp., Atopobium sp., Olsenella sp. and Actinomyces sp. We found a disparity between microbial communities localised at acidic versus neutral pH strata. Acidic conditions were associated with low diversity microbial populations, with Lactobacillus species including L. fermentum, L. rhamnosus and L. crispatus, being prominent. In comparison, the distinctive species of a more diverse flora associated with neutral pH regions of carious lesions included Alloprevotella tanerrae, Leptothrix sp., Sphingomonas sp. and Streptococcus anginosus. While certain bacteria were affected by the pH gradient, we also found that ∼ 60% of the taxa associated with caries were present across the investigated pH range, representing a substantial core. We demonstrated that some bacterial species implicated in caries progression show selective clustering with respect to pH gradient, providing a basis for specific therapeutic strategies.

  12. Immigration-extinction dynamics of stochastic populations

    Science.gov (United States)

    Meerson, Baruch; Ovaskainen, Otso

    2013-07-01

    How high should be the rate of immigration into a stochastic population in order to significantly reduce the probability of observing the population become extinct? Is there any relation between the population size distributions with and without immigration? Under what conditions can one justify the simple patch occupancy models, which ignore the population distribution and its dynamics in a patch, and treat a patch simply as either occupied or empty? We answer these questions by exactly solving a simple stochastic model obtained by adding a steady immigration to a variant of the Verhulst model: a prototypical model of an isolated stochastic population.

  13. Compositional stability of a salivary bacterial population against supragingival microbiota shift following periodontal therapy.

    Directory of Open Access Journals (Sweden)

    Wataru Yamanaka

    Full Text Available Supragingival plaque is permanently in contact with saliva. However, the extent to which the microbiota contributes to the salivary bacterial population remains unclear. We compared the compositional shift in the salivary bacterial population with that in supragingival plaque following periodontal therapy. Samples were collected from 19 patients with periodontitis before and after periodontal therapy (mean sample collection interval, 25.8 ± 2.6 months, and their bacterial composition was investigated using barcoded pyrosequencing analysis of the 16S rRNA gene. Phylogenetic community analysis using the UniFrac distance metric revealed that the overall bacterial community composition of saliva is distinct from that of supragingival plaque, both pre- and post-therapy. Temporal variation following therapy in the salivary bacterial population was significantly smaller than in the plaque microbiota, and the post-therapy saliva sample was significantly more similar to that pre-therapy from the same individual than to those from other subjects. Following periodontal therapy, microbial richness and biodiversity were significantly decreased in the plaque microbiota, but not in the salivary bacterial population. The operational taxonomic units whose relative abundances changed significantly after therapy were not common to the two microbiotae. These results reveal the compositional stability of salivary bacterial populations against shifts in the supragingival microbiota, suggesting that the effect of the supragingival plaque microbiota on salivary bacterial population composition is limited.

  14. Bacterial Subversion of Host Actin Dynamics at the Plasma Membrane

    OpenAIRE

    Carabeo, Rey

    2011-01-01

    Invasion of non-phagocytic cells by a number of bacterial pathogens involves the subversion of the actin cytoskeletal remodelling machinery to produce actin-rich cell surface projections designed to engulf the bacteria. The signalling that occurs to induce these actin-rich structures has considerable overlap amongst a diverse group of bacteria. The molecular organisation within these structures act in concert to internalise the invading pathogen. This dynamic process could be subdivided into ...

  15. Malthusian Population Dynamics: Theory and Evidence

    OpenAIRE

    Ashraf, Quamrul; Galor, Oded

    2008-01-01

    This paper empirically tests the existence of Malthusian population dynamics in the pre-Industrial Revolution era. The theory suggests that, during the agricultural stage of development, resource surpluses beyond the maintenance of subsistence consumption were channeled primarily into population growth. In particular, societies naturally blessed by higher land productivity would have supported larger populations, given the level of socioeconomic development. Moreover, given land productivity,...

  16. Metatranscriptomic Analysis of Groundwater Reveals an Active Anammox Bacterial Population

    Science.gov (United States)

    Jewell, T. N. M.; Karaoz, U.; Thomas, B. C.; Banfield, J. F.; Brodie, E.; Williams, K. H.; Beller, H. R.

    2014-12-01

    Groundwater is a major natural resource, yet little is known about the contribution of microbial anaerobic ammonium oxidation (anammox) activity to subsurface nitrogen cycling. During anammox, energy is generated as ammonium is oxidized under anaerobic conditions to dinitrogen gas, using nitrite as the final electron acceptor. This process is a global sink for fixed nitrogen. Only a narrow range of monophyletic bacteria within the Planctomycetes carries out anammox, and the full extent of their metabolism, and subsequent impact on nitrogen cycling and microbial community structure, is still unknown. Here, we employ a metatranscriptomic analysis on enriched mRNA to identify the abundance and activity of a population of anammox bacteria within an aquifer at Rifle, CO. Planktonic biomass was collected over a two-month period after injection of up to 1.5 mM nitrate. Illumina-generated sequences were mapped to a phylogenetically binned Rifle metagenome database. We identified transcripts for genes with high protein sequence identities (81-98%) to those of anammox strain KSU-1 and to two of the five anammox bacteria genera, Brocadia and Kuenenia, suggesting an active, if not diverse, anammox population. Many of the most abundant anammox transcripts mapped to a single scaffold, indicative of a single dominant anammox species. Transcripts of the genes necessary for the anammox pathway were present, including an ammonium transporter (amtB), nitrite/formate transporter, nitrite reductase (nirK), and hydrazine oxidoreductase (hzoB). The form of nitrite reductase encoded by anammox is species-dependent, and we only identified nirK, with no evidence of anammox nirS. In addition to the anammox pathway we saw evidence of the anammox bacterial dissimilatory nitrate reduction to ammonium pathway (narH, putative nrfA, and nrfB), which provides an alternate means of generating substrates for anammox from nitrate, rather than relying on an external pool. Transcripts for hydroxylamine

  17. Population dynamics of Borrelia burgdorferi in Lyme disease

    Directory of Open Access Journals (Sweden)

    SebastianChristophBinder

    2012-03-01

    Full Text Available Many chronic inflammatory diseases are known to be caused by persistent bacterial or viral infections. A well-studied example is the tick-borne infection by the gram-negative Spirochaetes of the genus Borrelia in humans and other mammals, causing severe symptoms of chronic inflammation and subsequent tissue damage (Lyme Disease, particularly in large joints and the central nervous system, but also in the heart and other tissues of untreated patients. Although killed efficiently by human phagocytic cells in vitro, Borrelia exhibits a remarkably high infectivity in mice and men. In experimentally infected mice, the first immune response almost clears the infection. However, approximately one week post infection, the bacterial population recovers and reaches an even larger size before entering the chronic phase. We developed a mathematical model describing the bacterial growth and the immune response against Borrelia burgdorferi in the C3H mouse strain that has been established as an experimental model for Lyme disease. The peculiar dynamics of the infection exclude two possible mechanistic explanations for the regrowth of the almost cleared bacteria. Neither the hypothesis of bacterial dissemination to different tissue nor a limitation of phagocytic capacity were compatible with experiment. The mathematical model predicts that Borrelia recovers from the strong initial immune response by the regrowth of an immune-resistant sub-population of the bacteria. The chronic phase appears as an equilibration of bacterial growth and adaptive immunity. This result has major implications for the development of the chronic phase of Borrelia infections as well as on potential protective clinical interventions.

  18. How Resource Phenology Affects Consumer Population Dynamics.

    Science.gov (United States)

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics. PMID:26807744

  19. Mathematical Modelling of Bacterial Populations in Bio-remediation Processes

    Science.gov (United States)

    Vasiliadou, Ioanna A.; Vayenas, Dimitris V.; Chrysikopoulos, Constantinos V.

    2011-09-01

    An understanding of bacterial behaviour concerns many field applications, such as the enhancement of water, wastewater and subsurface bio-remediation, the prevention of environmental pollution and the protection of human health. Numerous microorganisms have been identified to be able to degrade chemical pollutants, thus, a variety of bacteria are known that can be used in bio-remediation processes. In this study the development of mathematical models capable of describing bacterial behaviour considered in bio-augmentation plans, such as bacterial growth, consumption of nutrients, removal of pollutants, bacterial transport and attachment in porous media, is presented. The mathematical models may be used as a guide in designing and assessing the conditions under which areas contaminated with pollutants can be better remediated.

  20. Curating Transient Population in Urban Dynamics System

    CERN Document Server

    Thakur, Gautam S; Stewart, Robert N; Urban, Marie L; Bhaduri, Budhendra L

    2016-01-01

    For past several decades, research efforts in population modelling has proven its efficacy in understanding the basic information about residential and commercial areas, as well as for the purposes of planning, development and improvement of the community as an eco-system. More or less, such efforts assume static nature of population distribution, in turn limited by the current ability to capture the dynamics of population change at a finer resolution of space and time. Fast forward today, more and more people are becoming mobile, traveling across borders impacting the nuts and bolts of our urban fabric. Unfortunately, our current efforts are being surpassed by the need to capture such transient population. It is becoming imperative to identify and define them, as well as measure their dynamics and interconnectedness. In this work, we intend to research urban population mobility patterns, gauge their transient nature, and extend our knowledge of their visited locations. We plan to achieve this by designing an...

  1. Population Dynamics and Air Pollution

    DEFF Research Database (Denmark)

    Flachs, Esben Meulengracht; Sørensen, Jan; Bønløkke, Jacob;

    2013-01-01

    Objective. To explore how three different assumptions on demographics affect the health impact of Danish emitted air pollution in Denmark from 2005 to 2030, with health impact modeled from 2005 to 2050. Methods. Modeled air pollution from Danish sources was used as exposure in a newly developed......) a static year 2005 population, (2) morbidity and mortality fixed at the year 2005 level, or (3) an expected development. Results. The health impact of air pollution was estimated at 672,000, 290,000, and 280,000 lost life years depending on demographic assumptions and the corresponding social costs at 430.......4 M€, 317.5 M€, and 261.6 M€ through the modeled years 2005–2050. Conclusion. The modeled health impact of air pollution differed widely with the demographic assumptions, and thus demographics and assumptions on demographics played a key role in making health impact assessments on air pollution....

  2. Detection, Diversity, and Population Dynamics of Waterborne Phytophthora ramorum Populations.

    Science.gov (United States)

    Eyre, C A; Garbelotto, M

    2015-01-01

    Sudden oak death, the tree disease caused by Phytophthora ramorum, has significant environmental and economic impacts on natural forests on the U.S. west coast, plantations in the United Kingdom, and in the worldwide nursery trade. Stream baiting is vital for monitoring and early detection of the pathogen in high-risk areas and is performed routinely; however, little is known about the nature of water-borne P. ramorum populations. Two drainages in an infested California forest were monitored intensively using stream-baiting for 2 years between 2009 and 2011. Pathogen presence was determined both by isolation and polymerase chain reaction (PCR) from symptomatic bait leaves. Isolates were analyzed using simple sequence repeats to study population dynamics and genetic structure through time. Isolation was successful primarily only during spring conditions, while PCR extended the period of pathogen detection to most of the year. Water populations were extremely diverse, and changed between seasons and years. A few abundant genotypes dominated the water during conditions considered optimal for aerial populations, and matched those dominant in aerial populations. Temporal patterns of genotypic diversification and evenness were identical among aerial, soil, and water populations, indicating that all three substrates are part of the same epidemiological cycle, strongly influenced by rainfall and sporulation on leaves. However, there was structuring between substrates, likely arising due to reduced selection pressure in the water. Additionally, water populations showed wholesale mixing of genotypes without the evident spatial autocorrelation present in leaf and soil populations. PMID:25026455

  3. Grazing activity and ruminal bacterial population associated with frothy bloat in steers grazing winter wheat

    Science.gov (United States)

    Two grazing experiments were designed to elucidate the shifts in rumen bacterial populations (Exp. 1) and grazing activities (Exp. 2) in wheat forage diets between bloated and non-bloated steers. In Exp. 1, the bacterial DNA density was greatest for Ruminococcus flavefaciens, Streptococcus bovis, a...

  4. Population dynamics of Virginia's hunted black bear (Ursus americanus) population.

    OpenAIRE

    Klenzendorf, Sybille A.

    2002-01-01

    The Cooperative Alleghany Bear Study (CABS) was initiated in 1994 by the Virginia Department of Game and Inland Fisheries (VDGIF) and the Virginia Polytechnic Institute and State University (VPI&SU) to investigate population dynamics on Virginiaâ s hunted bear population. CABS personnel handled 746 different bears (1.5M:1F) 1,368 times on its northern study area during June 1994 to September 2000. The sex ratio for summer captures was 1.5M:1F, which differed from 1:1 (n = 1,008, Z = 6.17,...

  5. Multispecies population dynamics of prebiotic compositional assemblies.

    Science.gov (United States)

    Markovitch, Omer; Lancet, Doron

    2014-09-21

    Present life portrays a two-tier phenomenology: molecules compose supramolecular structures, such as cells or organisms, which in turn portray population behaviors, including selection, evolution and ecological dynamics. Prebiotic models have often focused on evolution in populations of self-replicating molecules, without explicitly invoking the intermediate molecular-to-supramolecular transition. Here, we explore a prebiotic model that allows one to relate parameters of chemical interaction networks within molecular assemblies to emergent population dynamics. We use the graded autocatalysis replication domain (GARD) model, which simulates the network dynamics within amphiphile-containing molecular assemblies, and exhibits quasi-stationary compositional states termed compotype species. These grow by catalyzed accretion, divide and propagate their compositional information to progeny in a replication-like manner. The model allows us to ask how molecular network parameters influence assembly evolution and population dynamics parameters. In 1000 computer simulations, each embodying different parameter set of the global chemical interaction network parameters, we observed a wide range of behaviors. These were analyzed by a multi species logistic model often used for analyzing population ecology (r-K or Lotka-Volterra competition model). We found that compotypes with a larger intrinsic molecular repertoire show a higher intrinsic growth (r) and lower carrying capacity (K), as well as lower replication fidelity. This supports a prebiotic scenario initiated by fast-replicating assemblies with a high molecular diversity, evolving into more faithful replicators with narrower molecular repertoires. PMID:24831416

  6. Habit Formation, Dynastic Altruism, and Population Dynamics

    OpenAIRE

    Schäfer, Andreas; Valente, Simone

    2007-01-01

    We study the general equilibrium properties of two growth models with overlapping generations, habit formation and endogenous fertility. In the neoclassical model, habits modify the economy's growth rate and generate transitional dynamics in fertility; station- ary income per capita is associated with either increasing or decreasing population and output, depending on the strength of habits. In the AK specification, growing population and increasing consumption per capita require that the hab...

  7. Population dynamics of microbial communities in the zebrafish gut

    Science.gov (United States)

    Jemielita, Matthew; Taormina, Michael; Burns, Adam; Hampton, Jennifer; Rolig, Annah; Wiles, Travis; Guillemin, Karen; Parthasarathy, Raghuveer

    2015-03-01

    The vertebrate intestine is home to a diverse microbial community, which plays a crucial role in the development and health of its host. Little is known about the population dynamics and spatial structure of this ecosystem, including mechanisms of growth and interactions between species. We have constructed an experimental model system with which to explore these issues, using initially germ-free larval zebrafish inoculated with defined communities of fluorescently tagged bacteria. Using light sheet fluorescence microscopy combined with computational image analysis we observe and quantify the entire bacterial community of the intestine during the first 24 hours of colonization, during which time the bacterial population grows from tens to tens of thousands of bacteria. We identify both individual bacteria and clusters of bacteria, and quantify the growth rate and spatial distribution of these distinct subpopulations. We find that clusters of bacteria grow considerably faster than individuals and are located in specific regions of the intestine. Imaging colonization by two species reveals spatial segregation and competition. These data and their analysis highlight the importance of spatial organization in the establishment of gut microbial communities, and can provide inputs to physical models of real-world ecological dynamics.

  8. Adherent bacterial populations on the bovine rumen wall: distribution patterns of adherent bacteria.

    OpenAIRE

    McCowan, R P; Cheng, K J; Costerton, J W

    1980-01-01

    Fourteen tissue sites from the bovine reticulo-rumen were examined by scanning electron microscopy to determine the distribution patterns of bacterial populations adhering to the epithelium. Although diet variations did not appear to influence the total number of tissue-adherent bacteria present in adult Herefords, diet affected their distribution. It appeared that the distribution of the bacterial populations may be directly affected by the physical state of the digesta. The digesta may be m...

  9. Bacterial incorporation of tritiated thymidine and populations of bacteriophagous fauna in the rhizosphere of wheat

    DEFF Research Database (Denmark)

    Christensen, Henrik; Griffiths, Bryan; Christensen, Søren

    1992-01-01

    Bacterial and microfaunal populations, and bacterial productivity measured by tritiated thymidine (3HTdr) incorporation, in the rhizosphere of wheat seedlings were measured. Soil from planted pots was fractionated into rhizosphere and non-rhizosphere (bulk) soil, while unplanted soil was taken from...... pots without plants. Total bacterial counts and biovolume did not differ between fractions but viable (plate) counts were 8 times higher in the rhizosphere compared to bulk and unplanted soil. 3HTdr was incorporated at a constant rate with low variability in bulk or unplanted soil. In rhizosphere soil...... 3HTdr incorporation was lower than in bulk or unplanted soils and showed high variability. The populations of bacterial-feeding protozoa and nematodes indicated that rhizosphere bacterial activity was actually 3–4 times greater in rhizosphere than bulk soil in accordance with the results of the...

  10. Population dynamics on complex food webs

    Czech Academy of Sciences Publication Activity Database

    Berec, Luděk

    Singapore : World Scientific Publishing Co, 2010 - (Mondaini, R.), s. 167-193 ISBN 978-981-4304-90-0 Institutional research plan: CEZ:AV0Z50070508 Keywords : population dynamics Subject RIV: EH - Ecology, Behaviour http://ebooks.worldscinet.com/ISBN/9789814304900/9789814304900_0012.html

  11. Dynamical inference of hidden biological populations

    Science.gov (United States)

    Luchinsky, D. G.; Smelyanskiy, V. N.; Millonas, M.; McClintock, P. V. E.

    2008-10-01

    Population fluctuations in a predator-prey system are analyzed for the case where the number of prey could be determined, subject to measurement noise, but the number of predators was unknown. The problem of how to infer the unmeasured predator dynamics, as well as the model parameters, is addressed. Two solutions are suggested. In the first of these, measurement noise and the dynamical noise in the equation for predator population are neglected; the problem is reduced to a one-dimensional case, and a Bayesian dynamical inference algorithm is employed to reconstruct the model parameters. In the second solution a full-scale Markov Chain Monte Carlo simulation is used to infer both the unknown predator trajectory, and also the model parameters, using the one-dimensional solution as an initial guess.

  12. Bacterial population structure of the jute-retting environment.

    Science.gov (United States)

    Munshi, Tulika K; Chattoo, Bharat B

    2008-08-01

    Jute is one of the most versatile bast fibers obtained through the process of retting, which is a result of decomposition of stalks by the indigenous microflora. However, bacterial communities associated with the retting of jute are not well characterized. To investigate the presence of microorganisms during the process of jute retting, full-cycle rRNA approach was followed, and two 16S rRNA gene libraries, from jute-retting locations of Krishnanagar and Barrackpore, were constructed. Phylotypes affiliating to seven bacterial divisions were identified in both libraries. The bulk of clones came from Proteobacteria ( approximately 37, 41%) and a comparatively smaller proportion of clones from the divisions-Firmicutes ( approximately 11, 12%), Cytophaga-Flexibacter-Bacteroidetes group (CFB; approximately 9, 7%), Verrucomicrobia ( approximately 6, 5%), Acidobacteria ( approximately 4, 5%), Chlorobiales ( approximately 5, 5%), and Actinobacteria ( approximately 4, 2%) were identified. Percent coverage value and diversity estimations of phylotype richness, Shannon-Weiner index, and evenness confirmed the diverse nature of both the libraries. Evaluation of the retting waters by whole cell rRNA-targeted flourescent in situ hybridization, as detected by domain- and group-specific probes, we observed a considerable dominance of the beta-Proteobacteria (25.9%) along with the CFB group (24.4%). In addition, 32 bacterial species were isolated on culture media from the two retting environments and identified by 16S rDNA analysis, confirming the presence of phyla, Proteobacteria ( approximately 47%), Firmicutes ( approximately 22%), CFB group ( approximately 19%), and Actinobacteria ( approximately 13%) in the retting niche. Thus, our study presents the first quantification of the dominant and diverse bacterial phylotypes in the retting ponds, which will further help in improving the retting efficiency, and hence the fiber quality. PMID:18097714

  13. Influence of zinc on bacterial populations and their proteolytic enzyme activities in freshwater environments: a cross-site comparison.

    Science.gov (United States)

    Rasmussen, Lauren; Olapade, Ola A

    2016-04-01

    Temporal responses of indigenous bacterial populations and proteolytic enzyme (i.e., aminopeptidase) activities in the bacterioplankton assemblages from 3 separate freshwater environments were examined after exposure to various zinc (Zn) concentrations under controlled microcosm conditions. Zn concentrations (ranging from 0 to 10 μmol/L) were added to water samples collected from the Kalamazoo River, Rice Creek, and Huron River and examined for bacterial abundance and aminopeptidase activities at various time intervals over a 48 h incubation period in the dark. The results showed that the Zn concentrations did not significantly influence total bacterial counts directly; however, aminopeptidase activities varied significantly to increasing zinc treatments over time. Also, analysis of variance and linear regression analyses revealed significant positive relationships between bacterial numbers and their hydrolytic enzyme activities, suggesting that both probably co-vary with increasing Zn concentrations in aquatic systems. The results from this study serve as additional evidence of the ecological role of Zn as an extracellular peptidase cofactor on the dynamics of bacterial assemblages in aquatic environments. PMID:26877164

  14. Bacterial-biota dynamics of eight bryophyte species from different ecosystems.

    Science.gov (United States)

    Koua, Faisal Hammad Mekky; Kimbara, Kazuhide; Tani, Akio

    2015-03-01

    Despite the importance of bryophyte-associated microorganisms in various ecological aspects including their crucial roles in the soil-enrichment of organic mass and N2 fixation, nonetheless, little is known about the microbial diversity of the bryophyte phyllospheres (epi-/endophytes). To get insights into bacterial community structures and their dynamics on the bryophyte habitats in different ecosystems and their potential biological roles, we utilized the 16S rRNA gene PCR-DGGE and subsequent phylogenetic analyses to investigate the bacterial community of eight bryophyte species collected from three distinct ecosystems from western Japan. Forty-two bacterial species belonging to γ-proteobacteria and Firmicutes with 71.4% and 28.6%, respectively, were identified among 90 DGGE gel band population. These DGGE-bands were assigned to 13 different genera with obvious predomination the genus Clostridium with 21.4% from the total bacterial community. These analyses provide new insights into bryophyte-associated bacteria and their relations to the ecosystems. PMID:25737654

  15. Pseudomonas aeruginosa PAO1 Pyocin Production Affects Population Dynamics within Mixed-Culture Biofilms▿ †

    OpenAIRE

    Waite, Richard D.; Curtis, Michael A.

    2008-01-01

    Transcriptomic and phenotypic studies showed that pyocins are produced in Pseudomonas aeruginosa PAO1 aerobic and anaerobic biofilms. Pyocin activity was found to be high in slow-growing anaerobic biofilms but transient in aerobic biofilms. Biofilm coculture of strain PAO1 and a pyocin-sensitive isolate showed that pyocin production had a significant impact on bacterial population dynamics, particularly under anaerobic conditions.

  16. Populations of Stored Product Mite Tyrophagus putrescentiae Differ in Their Bacterial Communities

    Science.gov (United States)

    Erban, Tomas; Klimov, Pavel B.; Smrz, Jaroslav; Phillips, Thomas W.; Nesvorna, Marta; Kopecky, Jan; Hubert, Jan

    2016-01-01

    Background: Tyrophagus putrescentiae colonizes different human-related habitats and feeds on various post-harvest foods. The microbiota acquired by these mites can influence the nutritional plasticity in different populations. We compared the bacterial communities of five populations of T. putrescentiae and one mixed population of T. putrescentiae and T. fanetzhangorum collected from different habitats. Material: The bacterial communities of the six mite populations from different habitats and diets were compared by Sanger sequencing of cloned 16S rRNA obtained from amplification with universal eubacterial primers and using bacterial taxon-specific primers on the samples of adults/juveniles or eggs. Microscopic techniques were used to localize bacteria in food boli and mite bodies. The morphological determination of the mite populations was confirmed by analyses of CO1 and ITS fragment genes. Results: The following symbiotic bacteria were found in compared mite populations: Wolbachia (two populations), Cardinium (five populations), Bartonella-like (five populations), Blattabacterium-like symbiont (three populations), and Solitalea-like (six populations). From 35 identified OTUs97, only Solitalea was identified in all populations. The next most frequent and abundant sequences were Bacillus, Moraxella, Staphylococcus, Kocuria, and Microbacterium. We suggest that some bacterial species may occasionally be ingested with food. The bacteriocytes were observed in some individuals in all mite populations. Bacteria were not visualized in food boli by staining, but bacteria were found by histological means in ovaria of Wolbachia-infested populations. Conclusion: The presence of Blattabacterium-like, Cardinium, Wolbachia, and Solitalea-like in the eggs of T. putrescentiae indicates mother to offspring (vertical) transmission. Results of this study indicate that diet and habitats influence not only the ingested bacteria but also the symbiotic bacteria of T. putrescentiae. PMID

  17. Population dynamics of walruses in Greenland

    Directory of Open Access Journals (Sweden)

    Lars Witting

    2013-08-01

    Full Text Available The historical and current dynamics of the three Atlantic walrus (Odobenus rosmarus rosmarus populations that occur in Greenland are estimated using age- and sex-structured population models with exponential growth, density-regulated growth and selection-delayed dynamics. These models are integrated with data in a Bayesian framework, where the likelihood of the simulated population trajectories are evaluated from recent abundance estimates and age-structure information from a selective hunt. The overall decline in the Baffin Bay population caused by historical catches is unclear due to incomplete catch reporting prior to 1950s. However, it is estimated that the population declined by 40% from the 1960s to 2005; decreased catches (≈ 140 to ≈ 70 have subsequently allowed this population to increase. The 2012 abundance estimate is 1,400 (95% CI: 1,000-2,000 individuals, and the annual natural growth rate in this population is now 7.7% (95% CI: 6.7-8.9%. Averaging across models, it is estimated that West Greenland/Baffin Island walruses declined by 80% from 7,000 (95% CI: 5,400-10,000 in 1900 to 1,350 (CI: 950-1,950 in 1960. Hereafter they increased to 3,100 (95% CI: 2,500-4,400 in 1993, and owing to increased catches they have experienced a minor decline between 1994 and the early 2000s. Annual catches where then cut from 190 to the current quota of 61, and the population is again increasing with a 2012 estimate of 3,900 (95% CI: 2,500-5,300 individuals. A 2012 estimate of 1,400 (95% CI: 700-3,100 walruses in East Greenland is recovered relative to 1888; the year prior to our first historical catches by European sealers. The historical trajectory, however, is uncertain: Density regulation estimates a relatively flat trajectory, with a maximal depletion in 1890 to 80% of the initial abundance, and a slow continuous increase to almost no current growth. A recovered population is also estimated by selection-delayed dynamics. However, this model

  18. Characterization by culture-dependent and culture-1 independent methods of the 2 bacterial population of suckling-lamb packaged in different atmospheres

    NARCIS (Netherlands)

    Oses, S.M.; Diez, A.M.; Melero, B.; Luning, P.A.; Jaime, I.; Rovira, J.

    2013-01-01

    This study offers insight into the dynamics of bacterial populations in fresh cuts of suckling lamb under four different atmospheric conditions: air (A), and three Modified Atmosphere Packaging (MAP) environments, 15%O2/30%CO2/55%N2 (C, commercial), 70%O2/30%CO2 (O), and 15%O2/85%CO2 (H) for 18 days

  19. Environmental colour affects aspects of single-species population dynamics.

    OpenAIRE

    Petchey, O L

    2000-01-01

    Single-species populations of ciliates (Colpidium and Paramecium) experienced constant temperature or white or reddened temperature fluctuations in aquatic microcosms in order to test three hypotheses about how environmental colour influences population dynamics. (i) Models predict that the colour of population dynamics is tinged by the colour of the environmental variability. However, environmental colour had no effect on the colour of population dynamics. All population dynamics in this exp...

  20. Evaluation of a routine antiseptic and two disinfectants for reducing bacterial population of cow hoof

    OpenAIRE

    Moosa Javdani,; Seifollah Dehghani,; Ali Ghashghaii; Zahra Nikousefat

    2011-01-01

    A routine antiseptic and two disinfectant agents were used separately for reducing bacterial population of cow hoof: 1) 7.5% povidone–iodine scrub mixed with 10% povidone–iodine solution, 2) 10% copper sulfate, and 3) 8% formaldehyde. Swabbing for microbial colony counts were used to evaluate pre and post–scrub of hooves of eight cows. The results revealed no significant differences in reduction of bacterial colony count between post–scrubs of povidone–iodine and formaldehyde. B...

  1. Humpback Whale Populations Share a Core Skin Bacterial Community: Towards a Health Index for Marine Mammals?

    OpenAIRE

    Apprill, Amy; Robbins, Jooke; Eren, A. Murat; Pack, Adam A.; Reveillaud, Julie; Mattila, David; Moore, Michael; Niemeyer, Misty; Kathleen M T Moore; Mincer, Tracy J.

    2014-01-01

    Microbes are now well regarded for their important role in mammalian health. The microbiology of skin – a unique interface between the host and environment - is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae), and examine the potential for a core bacterial community and its variability with host (endogenous) or geo...

  2. Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations

    OpenAIRE

    Perron, Gabriel G.; Lee, Alexander E. G.; Wang, Yun; Huang, Wei E.; Barraclough, Timothy G.

    2011-01-01

    Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains wi...

  3. Galactic civilizations - Population dynamics and interstellar diffusion

    Science.gov (United States)

    Newman, W. I.; Sagan, C.

    1981-01-01

    A model is developed of the interstellar diffusion of galactic civilizations which takes into account the population dynamics of such civilizations. The problem is formulated in terms of potential theory, with a family of nonlinear partial differential and difference equations specifying population growth and diffusion for an organism with advantageous genes that undergoes random dispersal while increasing in population locally, and a population at zero population growth. In the case of nonlinear diffusion with growth and saturation, it is found that the colonization wavefront from the nearest independently arisen galactic civilization can have reached the earth only if its lifetime exceeds 2.6 million years, or 20 million years if discretization can be neglected. For zero population growth, the corresponding lifetime is 13 billion years. It is concluded that the earth is uncolonized not because interstellar spacefaring civilizations are rare, but because there are too many worlds to be colonized in the plausible colonization lifetime of nearby civilizations, and that there exist no very old galactic civilizations with a consistent policy of the conquest of inhabited worlds.

  4. Dynamics of bacterial community in the gut of Cornu aspersum

    Directory of Open Access Journals (Sweden)

    ZDRAVKA KOLEVA

    2015-12-01

    Full Text Available The dynamics of the bacterial community in the intestinal tract of Cornu aspersum was investigated during different states of its life cycle. Two approaches were applied – culture and non-culture. The non-culture approach was performed by ARDRA of 16S rDNA using two of the six tested endonucleases. Data were analyzed by hierarchical cluster analysis. The restriction of 16S rDNA samples from the snail of different physiological states with endonucleases HinfI and Csp6I resulted in generation of different profiles depending on the snail states. By the culture approach we found that the total number of cultivable bacteria, representatives of Enterobacteriaceae, lactic acid bacteria, amylolitic and cellulolytic bacteria were the most abundant in active state of the snails. Cellulolytic bacteria were not detected in juveniles of C. aspersum. Escherichia coli, Clostridium perfringens as well as bacteria from the genus Salmonella, Shigella and Pseudomonas were not detected. Bacteria of the genus Aeromonas were found in juveniles of C. aspersum, after that their number decrease and were not found in hibernating snails. On the base of the two applied approaches this study shows that the bacterial flora in the intestinal tract of C. aspersum is affected by the seasonal and environmental variations and undergoes quantitative and qualitative changes during the different states of the life cycle. The snails harbor in their gut intestinal bacteria, which possess biochemical potentiality to degrade the plant components.

  5. Bacterial population in traditional sourdough evaluated by molecular methods

    NARCIS (Netherlands)

    Randazzo, C.L.; Heilig, G.H.J.; Restuccia, C.; Giudici, P.; Caggia, C.

    2005-01-01

    Aims: To study the microbial communities in artisanal sourdoughs, manufactured by traditional procedure in different areas of Sicily, and to evaluate the lactic acid bacteria (LAB) population by classical and culture-independent approaches. Methods and Results: Forty-five LAB isolates were identifie

  6. Adaptive dynamics for physiologically structured population models.

    Science.gov (United States)

    Durinx, Michel; Metz, J A J Hans; Meszéna, Géza

    2008-05-01

    We develop a systematic toolbox for analyzing the adaptive dynamics of multidimensional traits in physiologically structured population models with point equilibria (sensu Dieckmann et al. in Theor. Popul. Biol. 63:309-338, 2003). Firstly, we show how the canonical equation of adaptive dynamics (Dieckmann and Law in J. Math. Biol. 34:579-612, 1996), an approximation for the rate of evolutionary change in characters under directional selection, can be extended so as to apply to general physiologically structured population models with multiple birth states. Secondly, we show that the invasion fitness function (up to and including second order terms, in the distances of the trait vectors to the singularity) for a community of N coexisting types near an evolutionarily singular point has a rational form, which is model-independent in the following sense: the form depends on the strategies of the residents and the invader, and on the second order partial derivatives of the one-resident fitness function at the singular point. This normal form holds for Lotka-Volterra models as well as for physiologically structured population models with multiple birth states, in discrete as well as continuous time and can thus be considered universal for the evolutionary dynamics in the neighbourhood of singular points. Only in the case of one-dimensional trait spaces or when N = 1 can the normal form be reduced to a Taylor polynomial. Lastly we show, in the form of a stylized recipe, how these results can be combined into a systematic approach for the analysis of the (large) class of evolutionary models that satisfy the above restrictions. PMID:17943289

  7. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock

    Science.gov (United States)

    Kamath, Pauline L.; Foster, Jeffrey T.; Drees, Kevin P.; Luikart, Gordon; Quance, Christine; Anderson, Neil J.; Clarke, P. Ryan; Cole, Eric K.; Drew, Mark L.; Edwards, William H.; Rhyan, Jack C.; Treanor, John J.; Wallen, Rick L.; White, Patrick J.; Robbe-Austerman, Suelee; Cross, Paul C.

    2016-01-01

    Whole-genome sequencing has provided fundamental insights into infectious disease epidemiology, but has rarely been used for examining transmission dynamics of a bacterial pathogen in wildlife. In the Greater Yellowstone Ecosystem (GYE), outbreaks of brucellosis have increased in cattle along with rising seroprevalence in elk. Here we use a genomic approach to examine Brucella abortus evolution, cross-species transmission and spatial spread in the GYE. We find that brucellosis was introduced into wildlife in this region at least five times. The diffusion rate varies among Brucella lineages (B3 to 8 km per year) and over time. We also estimate 12 host transitions from bison to elk, and 5 from elk to bison. Our results support the notion that free-ranging elk are currently a self-sustaining brucellosis reservoir and the source of livestock infections, and that control measures in bison are unlikely to affect the dynamics of unrelated strains circulating in nearby elk populations.

  8. Noise-induced effects in population dynamics

    Science.gov (United States)

    Spagnolo, Bernardo; Cirone, Markus; La Barbera, Antonino; de Pasquale, Ferdinando

    2002-03-01

    We investigate the role of noise in the nonlinear relaxation of two ecosystems described by generalized Lotka-Volterra equations in the presence of multiplicative noise. Specifically we study two cases: (i) an ecosystem with two interacting species in the presence of periodic driving; (ii) an ecosystem with a great number of interacting species with random interaction matrix. We analyse the interplay between noise and periodic modulation for case (i) and the role of the noise in the transient dynamics of the ecosystem in the presence of an absorbing barrier in case (ii). We find that the presence of noise is responsible for the generation of temporal oscillations and for the appearance of spatial patterns in the first case. In the other case we obtain the asymptotic behaviour of the time average of the ith population and discuss the effect of the noise on the probability distributions of the population and of the local field.

  9. The diversity of a distributed genome in bacterial populations

    CERN Document Server

    Baumdicker, F; Pfaffelhuber, P

    2009-01-01

    The distributed genome hypothesis states that the set of genes in a population of bacteria is distributed over all individuals that belong to the specific taxon. It implies that certain genes can be gained and lost from generation to generation. We use the random genealogy given by a Kingman coalescent in order to superimpose events of gene gain and loss along ancestral lines. Gene gains occur at constant rate along ancestral lines. We assume that gained genes have never been present in the population before. Gene losses occur at a rate proportional to the number of genes present along the ancestral line. In this "infinitely many genes model" we derive moments for several statistics within a sample: the average number of genes per individual, the average number of genes differing between individuals, the number of incongruent pairs of genes, the total number of different genes in the sample and the gene frequency spectrum. We demonstrate that the model gives a reasonable fit with gene frequency data from mari...

  10. Polyphasic Approach to Bacterial Dynamics during the Ripening of Spanish Farmhouse Cheese, Using Culture-Dependent and -Independent Methods▿

    OpenAIRE

    Martín-Platero, Antonio M.; Valdivia, Eva; Maqueda, Mercedes; Martín-Sánchez, Inés; Martínez-Bueno, Manuel

    2008-01-01

    We studied the dynamics of the microbial population during ripening of Cueva de la Magahá cheese using a combination of classical and molecular techniques. Samples taken during ripening of this Spanish goat's milk cheese in which Lactococcus lactis and Streptococcus thermophilus were used as starter cultures were analyzed. All bacterial isolates were clustered by using randomly amplified polymorphic DNA (RAPD) and identified by 16S rRNA gene sequencing, species-specific PCR, and multiplex PCR...

  11. Influence of copper on Euplotes sp. and associated bacterial population

    Directory of Open Access Journals (Sweden)

    Guilherme Oliveira Andrade da Silva

    2014-05-01

    Full Text Available The influence of copper on the ciliate Euplotes sp. and associated bacteria isolated from sediment samples of Guanabara Bay were investigated in bioassays. This region is highly affected by heavy metals such as copper, from solid waste constantly dumped in the bay and other sources such as industrial effluents, antifouling paints, atmospheric deposition and urban drainage, and even today there are few data on the metal toxicity to the ecosystem of the Bay of Guanabara. Bioassays were conducted to estimate the LC50-24 h of copper, in order to determine the concentration of metal bearing 50% of the population mortality. The results indicated that the concentrations of 0.05 and 0.009 mg L-1 presented no toxicity to Euplotes sp. The associated bacteria are tolerant to copper concentrations used in bioassays, and suggest that they could be used as a potential agent in the bioremediation of areas affected by copper.

  12. A Quantitative Test of Population Genetics Using Spatio-Genetic Patterns in Bacterial Colonies

    OpenAIRE

    Korolev, Kirill; Xavier, Joao; Foster, Kevin; Nelson, David R.

    2011-01-01

    It is widely accepted that population-genetics theory is the cornerstone of evolutionary analyses. Empirical tests of the theory, however, are challenging because of the complex relationships between space, dispersal, and evolution. Critically, we lack quantitative validation of the spatial models of population genetics. Here we combine analytics, on- and off-lattice simulations, and experiments with bacteria to perform quantitative tests of the theory. We study two bacterial species, the gut...

  13. Population Dynamic of Dendronephthya sp.-Associated Bacteria in Natural and Artificial Habitats

    Directory of Open Access Journals (Sweden)

    SUSAN SOKA

    2011-06-01

    Full Text Available Dendronephthya sp. is a soft coral that has huge distribution starting from Indopacific, Tonga, Solomon Islands to Great Barrier Reef in Australia. However, this soft corals survive only in short period after cultivation in artificial habitat (aquarium. Recent study showed that the soft coral Dendronephtya sp. has an association or symbiotic relationship with several bacteria, commonly known as coral associated bacteria (CAB. In this study, we compared the population dynamic of Dendronephthya sp.-associated bacteria in natural and artificial habitat, resulting different bacterial community profiles using terminal restriction fragment length polymorphism (T-RFLP analysis of bacterial community DNA. There were 15 main classes of bacterial population identified along with uncultured microorganism, uncultured organism, uncultured bacteria and unidentified organism. Members of Actinobacteria, Arthrobacteria, Chlorobia, Caldilineae, -proteobacteria and Proteobacteria were predicted to give contributions in the survival ability of both Dendronephthya sp. The cultivation of soft corals after 2 weeks in artificial habitat increases bacterial population similarity on 2 different samples by 10%. Bacterial population similarity in artificial habitat would increase along with the longer cultivation time of soft corals.

  14. Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals?

    Science.gov (United States)

    Apprill, Amy; Robbins, Jooke; Eren, A Murat; Pack, Adam A; Reveillaud, Julie; Mattila, David; Moore, Michael; Niemeyer, Misty; Moore, Kathleen M T; Mincer, Tracy J

    2014-01-01

    Microbes are now well regarded for their important role in mammalian health. The microbiology of skin--a unique interface between the host and environment--is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae), and examine the potential for a core bacterial community and its variability with host (endogenous) or geographic/environmental (exogenous) specific factors. Skin biopsies or freshly sloughed skin from 56 individuals were sampled from populations in the North Atlantic, North Pacific and South Pacific oceans and bacteria were characterized using 454 pyrosequencing of SSU rRNA genes. Phylogenetic and statistical analyses revealed the ubiquity and abundance of bacteria belonging to the Flavobacteria genus Tenacibaculum and the Gammaproteobacteria genus Psychrobacter across the whale populations. Scanning electron microscopy of skin indicated that microbial cells colonize the skin surface. Despite the ubiquity of Tenacibaculum and Psychrobater spp., the relative composition of the skin-bacterial community differed significantly by geographic area as well as metabolic state of the animals (feeding versus starving during migration and breeding), suggesting that both exogenous and endogenous factors may play a role in influencing the skin-bacteria. Further, characteristics of the skin bacterial community from these free-swimming individuals were assembled and compared to two entangled and three dead individuals, revealing a decrease in the central or core bacterial community members (Tenacibaculum and Psychrobater spp.), as well as the emergence of potential pathogens in the latter cases. This is the first discovery of a cross-population, shared skin bacterial community. This research suggests that the skin bacteria may be connected to humpback health and immunity and could possibly serve

  15. Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals?

    Directory of Open Access Journals (Sweden)

    Amy Apprill

    Full Text Available Microbes are now well regarded for their important role in mammalian health. The microbiology of skin--a unique interface between the host and environment--is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae, and examine the potential for a core bacterial community and its variability with host (endogenous or geographic/environmental (exogenous specific factors. Skin biopsies or freshly sloughed skin from 56 individuals were sampled from populations in the North Atlantic, North Pacific and South Pacific oceans and bacteria were characterized using 454 pyrosequencing of SSU rRNA genes. Phylogenetic and statistical analyses revealed the ubiquity and abundance of bacteria belonging to the Flavobacteria genus Tenacibaculum and the Gammaproteobacteria genus Psychrobacter across the whale populations. Scanning electron microscopy of skin indicated that microbial cells colonize the skin surface. Despite the ubiquity of Tenacibaculum and Psychrobater spp., the relative composition of the skin-bacterial community differed significantly by geographic area as well as metabolic state of the animals (feeding versus starving during migration and breeding, suggesting that both exogenous and endogenous factors may play a role in influencing the skin-bacteria. Further, characteristics of the skin bacterial community from these free-swimming individuals were assembled and compared to two entangled and three dead individuals, revealing a decrease in the central or core bacterial community members (Tenacibaculum and Psychrobater spp., as well as the emergence of potential pathogens in the latter cases. This is the first discovery of a cross-population, shared skin bacterial community. This research suggests that the skin bacteria may be connected to humpback health and immunity and could

  16. Effect of Cinnamon (Cinnamomum zylenicum) supplementation on the intestinal selected bacterial population in Japanese quail

    OpenAIRE

    A. Baraa Mohamed,; F. A. Huseen; O. T. Jawad

    2011-01-01

    The present experiment was conducted to investigate the effects of adding graded levels (0, 1.0 and 1.5%) of Cinnamon (Cinnamomum zylenicum) in the basal diet on the intestinal bacterial population of the Japanese quail. Sixty Japanese quail were randomly distributed into 3 groups. Each treatment contained four replicates (5 birds/replicate). The results showed significant (P

  17. An Observation of Bacterial Population Changes in Fields Treated with Anaerobic Soil Disinfestation

    Science.gov (United States)

    Anaerobic soil disinfestation (ASD) has proven to be effective for pathogen and nematode control as an alternative to fumigation. It has been hypothesized that various bacterial populations could play key roles in the disinfestation process through the production of secondary metabolites. In this st...

  18. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure.

    Science.gov (United States)

    Rungrassamee, Wanilada; Klanchui, Amornpan; Maibunkaew, Sawarot; Karoonuthaisiri, Nitsara

    2016-01-01

    The intestinal microbiota play important roles in health of their host, contributing to maintaining the balance and resilience against pathogen. To investigate effects of pathogen to intestinal microbiota, the bacterial dynamics upon a shrimp pathogen, Vibrio harveyi, exposures were determined in two economically important shrimp species; the black tiger shrimp (BT) and the Pacific white shrimp (PW). Both shrimp species were reared under the same diet and environmental conditions. Shrimp survival rates after the V. harveyi exposure revealed that the PW shrimp had a higher resistance to the pathogen than the BT shrimp. The intestinal bacterial profiles were determined by denaturing gradient gel electrophoresis (DGGE) and barcoded pyrosequencing of the 16S rRNA sequences under no pathogen challenge control and under pathogenic V. harveyi challenge. The DGGE profiles showed that the presence of V. harveyi altered the intestinal bacterial patterns in comparison to the control in BT and PW intestines. This implies that bacterial balance in shrimp intestines was disrupted in the presence of V. harveyi. The barcoded pyrosequencing analysis showed the similar bacterial community structures in intestines of BT and PW shrimp under a normal condition. However, during the time course exposure to V. harveyi, the relative abundance of bacteria belong to Vibrio genus was higher in the BT intestines at 12h after the exposure, whereas relative abundance of vibrios was more stable in PW intestines. The principle coordinates analysis based on weighted-UniFrac analysis showed that intestinal bacterial population in the BT shrimp lost their ability to restore their bacterial balance during the 72-h period of exposure to the pathogen, while the PW shrimp were able to reestablish their bacterial population to resemble those seen in the unexposed control group. This observation of bacterial disruption might correlate to different mortality rates observed between the two shrimp species

  19. A network-based approach for resistance transmission in bacterial populations.

    Science.gov (United States)

    Gehring, Ronette; Schumm, Phillip; Youssef, Mina; Scoglio, Caterina

    2010-01-01

    Horizontal transfer of mobile genetic elements (conjugation) is an important mechanism whereby resistance is spread through bacterial populations. The aim of our work is to develop a mathematical model that quantitatively describes this process, and to use this model to optimize antimicrobial dosage regimens to minimize resistance development. The bacterial population is conceptualized as a compartmental mathematical model to describe changes in susceptible, resistant, and transconjugant bacteria over time. This model is combined with a compartmental pharmacokinetic model to explore the effect of different plasma drug concentration profiles. An agent-based simulation tool is used to account for resistance transfer occurring when two bacteria are adjacent or in close proximity. In addition, a non-linear programming optimal control problem is introduced to minimize bacterial populations as well as the drug dose. Simulation and optimization results suggest that the rapid death of susceptible individuals in the population is pivotal in minimizing the number of transconjugants in a population. This supports the use of potent antimicrobials that rapidly kill susceptible individuals and development of dosage regimens that maintain effective antimicrobial drug concentrations for as long as needed to kill off the susceptible population. Suggestions are made for experiments to test the hypotheses generated by these simulations. PMID:19747924

  20. Characteristics of phylogenetic diversity in airborne bacterial populations in China

    Science.gov (United States)

    Chaudhry, Zahra; Santarpia, Joshua L.; Martins, J. V.

    2011-05-01

    Considering their potential implications for human health, agricultural productivity, and ecosystem stability, surprisingly little is known about the composition or dynamics of the atmosphere's biological aerosols. The few studies that have examined phylogenetic diversity in China focused on a single sampling period, whereas this study spans 3 months and includes over 300 samples. The 300+ samples were categorized by month and direction of their back-trajectory. DNA extraction was carried out on the pooled samples in a quantitative manner to allow for comparison between the amount of extracted material and the amount of initial total aerosol mass. Within an individual month, samples originating from similar land types and approximately equidistant to the sampling location exhibited similar diversity, whereas samples originating from much greater distances and from different land types included phyla unique to that location. Phyla from the same origin also varied from one month to the next. The biological diversity found from the Phylochips reinforces the hypothesis that air samples carry a biological record of their history.

  1. Model Studies of the Dynamics of Bacterial Flagellar Motors

    Energy Technology Data Exchange (ETDEWEB)

    Bai, F; Lo, C; Berry, R; Xing, J

    2009-03-19

    The Bacterial Flagellar Motor is a rotary molecular machine that rotates the helical filaments which propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation and switching mechanism of the motor. In our previous paper, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here we further analyze this model. In this paper we show (1) the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with the latest experiment by Lo et al.; (2) with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, recently observed by Yuan and Berg; (3) the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwelling time distribution. Predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental verification.

  2. Population dynamics of species-rich ecosystems: the mixture of matrix population models approach

    DEFF Research Database (Denmark)

    Mortier, Frédéric; Rossi, Vivien; Guillot, Gilles;

    2013-01-01

    Matrix population models are widely used to predict population dynamics, but when applied to species-rich ecosystems with many rare species, the small population sample sizes hinder a good fit of species-specific models. This issue can be overcome by assigning species to groups to increase the size...... group species with similar population dynamics....

  3. Analysis of urban - rural population dynamics for China

    OpenAIRE

    Shen, J.

    1991-01-01

    The multiregional demography approach is used in an analysis of the urban - rural population dynamics of China. Multiregional population-accounts and methods of estimation of demographic rates are developed on the basis of the multiregional population-accounts concept. An accounts-based urban - rural population projection model is established and used to project the population of China from 1988 to 2087.

  4. Novel, deep-branching heterotrophic bacterial populations recovered from thermal spring metagenomes

    Directory of Open Access Journals (Sweden)

    Daniel R Colman

    2016-03-01

    Full Text Available Thermal spring ecosystems are a valuable resource for the discovery of novel hyperthermophilic Bacteria and Archaea, and harbor deeply-branching lineages that provide insight regarding the nature of early microbial life. We characterized bacterial populations in two circumneutral (pH ~ 8 Yellowstone National Park thermal (T ~ 80 oC spring filamentous ‘streamer’ communities using random metagenomic DNA sequence to investigate the metabolic potential of these novel populations. Four de novo assemblies representing three abundant, deeply-branching bacterial phylotypes were recovered. Analysis of conserved phylogenetic marker genes indicated that two of the phylotypes represent separate groups of an uncharacterized phylum (for which we propose the candidate phylum name ‘Pyropristinus’. The third new phylotype falls within the proposed Calescamantes phylum. Metabolic reconstructions of the 'Pyropristinus' and Calescamantes populations showed that these organisms appear to be chemoorganoheterotrophs, and have the genomic potential for aerobic respiration and oxidative phosphorylation via archaeal-like V-type, and bacterial F-type ATPases, respectively. A survey of similar phylotypes (> 97% nt identity within 16S rRNA gene datasets suggest that the newly described organisms are restricted to terrestrial thermal springs ranging from 70 - 90 oC and pH values of ~ 7 - 9. The characterization of these lineages is important for understanding the diversity of deeply-branching bacterial phyla, and their functional role in high-temperature circumneutral ‘streamer’ communities.

  5. Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations

    OpenAIRE

    San Millan, Alvaro; Heilbron, Karl; MacLean, R. Craig

    2014-01-01

    Plasmids have a key role in the horizontal transfer of genes among bacteria. Although plasmids are catalysts for bacterial evolution, it is challenging to understand how they can persist in bacterial populations over the long term because of the burden they impose on their hosts (the ‘plasmid paradox'). This paradox is especially perplexing in the case of ‘small' plasmids, which are unable to self-transfer by conjugation. Here, for the first time, we investigate how interactions between co-in...

  6. Evaluation of a routine antiseptic and two disinfectants for reducing bacterial population of cow hoof

    Directory of Open Access Journals (Sweden)

    Moosa Javdani,

    2011-03-01

    Full Text Available A routine antiseptic and two disinfectant agents were used separately for reducing bacterial population of cow hoof: 1 7.5% povidone–iodine scrub mixed with 10% povidone–iodine solution, 2 10% copper sulfate, and 3 8% formaldehyde. Swabbing for microbial colony counts were used to evaluate pre and post–scrub of hooves of eight cows. The results revealed no significant differences in reduction of bacterial colony count between post–scrubs of povidone–iodine and formaldehyde. Bacterial colony counts after the povidone–iodine scrub solution and formaldehyde scrub were significantly different from those obtained after the copper sulfate scrub. Significant reduction in number of microbial colony in post–scrub by povidone–iodine, formaldehyde, and copper sulfate were observed which were different from the control (warm tap water.

  7. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations.

    Science.gov (United States)

    Bendall, Matthew L; Stevens, Sarah Lr; Chan, Leong-Keat; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Froula, Jeff; Kang, Dongwan; Tringe, Susannah G; Bertilsson, Stefan; Moran, Mary A; Shade, Ashley; Newton, Ryan J; McMahon, Katherine D; Malmstrom, Rex R

    2016-07-01

    Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Here, from a 9-year metagenomic study of a freshwater lake (2005-2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by >1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. These patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the 'ecotype model' of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment. PMID:26744812

  8. Dynamic properties of bacterial pili measured by optical tweezers

    Science.gov (United States)

    Fallman, Erik G.; Andersson, Magnus J.; Schedin, Staffan S.; Jass, Jana; Uhlin, Bernt Eric; Axner, Ove

    2004-10-01

    The ability of uropathogenic Escherichia coli (UPEC) to cause urinary tract infections is dependent on their ability to colonize the uroepithelium. Infecting bacteria ascend the urethra to the bladder and then kidneys by attaching to the uroepithelial cells via the differential expression of adhesins. P pili are associated with pyelonephritis, the more severe infection of the kidneys. In order to find means to treat pyelonephritis, it is therefore of interest to investigate the properties P pili. The mechanical behavior of individual P pili of uropathogenic Escherichia coli has recently been investigated using optical tweezers. P pili, whose main part constitutes the PapA rod, composed of ~1000 PapA subunits in a helical arrangement, are distributed over the bacterial surface and mediate adhesion to host cells. We have earlier studied P pili regarding its stretching/elongation properties where we have found and characterized three different elongation regions, of which one constitute an unfolding of the quaternary (helical) structure of the PapA rod. It was shown that this unfolding takes place at an elongation independent force of 27 +/- 2 pN. We have also recently performed studies on its folding properties and shown that the unfolding/folding of the PapA rod is completely reversible. Here we present a study of the dynamical properties of the PapA rod. We show, among other things, that the unfolding force increases and that the folding force decreases with the speed of unfolding and folding respectively. Moreover, the PapA rod can be folded-unfolded a significant number of times without loosing its characteristics, a phenomenon that is believed to be important for the bacterium to keep close contact to the host tissue and consequently helps the bacterium to colonize the host tissue.

  9. Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities.

    Science.gov (United States)

    Hall, James P J; Wood, A Jamie; Harrison, Ellie; Brockhurst, Michael A

    2016-07-19

    Horizontal gene transfer is a fundamental process in bacterial evolution that can accelerate adaptation via the sharing of genes between lineages. Conjugative plasmids are the principal genetic elements mediating the horizontal transfer of genes, both within and between bacterial species. In some species, plasmids are unstable and likely to be lost through purifying selection, but when alternative hosts are available, interspecific plasmid transfer could counteract this and maintain access to plasmid-borne genes. To investigate the evolutionary importance of alternative hosts to plasmid population dynamics in an ecologically relevant environment, we established simple soil microcosm communities comprising two species of common soil bacteria, Pseudomonas fluorescens and Pseudomonas putida, and a mercury resistance (Hg(R)) plasmid, pQBR57, both with and without positive selection [i.e., addition of Hg(II)]. In single-species populations, plasmid stability varied between species: although pQBR57 survived both with and without positive selection in P. fluorescens, it was lost or replaced by nontransferable Hg(R) captured to the chromosome in P. putida A simple mathematical model suggests these differences were likely due to pQBR57's lower intraspecific conjugation rate in P. putida By contrast, in two-species communities, both models and experiments show that interspecific conjugation from P. fluorescens allowed pQBR57 to persist in P. putida via source-sink transfer dynamics. Moreover, the replacement of pQBR57 by nontransferable chromosomal Hg(R) in P. putida was slowed in coculture. Interspecific transfer allows plasmid survival in host species unable to sustain the plasmid in monoculture, promoting community-wide access to the plasmid-borne accessory gene pool and thus potentiating future evolvability. PMID:27385827

  10. Source–sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities

    Science.gov (United States)

    Wood, A. Jamie

    2016-01-01

    Horizontal gene transfer is a fundamental process in bacterial evolution that can accelerate adaptation via the sharing of genes between lineages. Conjugative plasmids are the principal genetic elements mediating the horizontal transfer of genes, both within and between bacterial species. In some species, plasmids are unstable and likely to be lost through purifying selection, but when alternative hosts are available, interspecific plasmid transfer could counteract this and maintain access to plasmid-borne genes. To investigate the evolutionary importance of alternative hosts to plasmid population dynamics in an ecologically relevant environment, we established simple soil microcosm communities comprising two species of common soil bacteria, Pseudomonas fluorescens and Pseudomonas putida, and a mercury resistance (HgR) plasmid, pQBR57, both with and without positive selection [i.e., addition of Hg(II)]. In single-species populations, plasmid stability varied between species: although pQBR57 survived both with and without positive selection in P. fluorescens, it was lost or replaced by nontransferable HgR captured to the chromosome in P. putida. A simple mathematical model suggests these differences were likely due to pQBR57’s lower intraspecific conjugation rate in P. putida. By contrast, in two-species communities, both models and experiments show that interspecific conjugation from P. fluorescens allowed pQBR57 to persist in P. putida via source–sink transfer dynamics. Moreover, the replacement of pQBR57 by nontransferable chromosomal HgR in P. putida was slowed in coculture. Interspecific transfer allows plasmid survival in host species unable to sustain the plasmid in monoculture, promoting community-wide access to the plasmid-borne accessory gene pool and thus potentiating future evolvability. PMID:27385827

  11. Bacterial populations and adaptations in the mucus layers on living corals

    Energy Technology Data Exchange (ETDEWEB)

    Ducklow, H.W.; Mitchell, R.

    1979-07-01

    The external mucus layers of the stony coral Porites astreoides and the soft corals Palythoa sp. and Heteroxenia fuscesens are inhabited by communities of marine heterotrophic bacteria. Population levels of bacteria in coral mucus may be regulated by the self-cleaning behavior of the host. Bacterial populations in coral mucus respond to stresses applied to the host coral by growing to higher population levels in the mucus, indicating that these are populations of viable organisms closely attuned to host metabolism. Members of these microbial populations utilize the mucus compounds and may play a role in processing coral mucus for reef detritus feeders. One such species, Vibrio alginolyticus, grows rapidly on Heteroxenia mucus, is attracted to dissolved mucus, and possesses a mechanism to maintain itself on the coral surface.

  12. Proton dynamics in bacterial spores, a neutron scattering investigation

    Directory of Open Access Journals (Sweden)

    Noue Alexandre Colas de la

    2015-01-01

    Full Text Available Results from first neutron scattering experiments on bacterial spores are reported. The elastic intensities and mean square displacements have a non-linear behaviour as function of temperature, which is in agreement with a model presenting more pronounced variations at around 330 K (57 ∘C and 400 K (127 ∘C. Based on the available literature on thermal properties of bacterial spores, mainly referring to differential scanning calorimetry, they are suggested to be associated to main endothermic transitions induced by coat and/or core bacterial response to heat treatment.

  13. Proton dynamics in bacterial spores, a neutron scattering investigation

    Science.gov (United States)

    Colas de la Noue, Alexandre; Peters, Judith; Gervais, Patrick; Martinez, Nicolas; Perrier-Cornet, Jean-Marie; Natali, Francesca

    2015-01-01

    Results from first neutron scattering experiments on bacterial spores are reported. The elastic intensities and mean square displacements have a non-linear behaviour as function of temperature, which is in agreement with a model presenting more pronounced variations at around 330 K (57 ∘C) and 400 K (127 ∘C). Based on the available literature on thermal properties of bacterial spores, mainly referring to differential scanning calorimetry, they are suggested to be associated to main endothermic transitions induced by coat and/or core bacterial response to heat treatment.

  14. Effect of manure and NPK to increase soil bacterial population of Azotobacter and Azospirillus in chili (Capsicum annum) cultivation

    OpenAIRE

    SUPRIYADI; MUJIYATI

    2009-01-01

    Mujiyati, Supriyadi. 2009. Effect of manure and NPK to increase soil bacterial population of Azotobacter and Azospirillum in chili (Capsicum annum) cultivation. Nusantara Bioscience 1: 59-64. The objectives of this research were to find out the increase number of two bacterials populations, Azotobacter and Azospirillum, due to the use of manure fertilizer. The exsperiment was conducted using group randomly designed with two treatments. The plant populations were treated (i) whithout fertilize...

  15. Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters

    OpenAIRE

    Michaud, Luigi; Blancheton, Jean-paul; V. Bruni; Piedrahita, Raul

    2006-01-01

    Competition between heterotrophic and nitrifying bacteria is of major practical importance in aquaculture biofilter design and operation. This competition must be understood to minimize the negative impact of heterotrophic bacteria on an aquaculture system. On the other hand, the heterotrophic population is suspected of having a positive effect against pathogenic bacteria. Little information is available on the bacterial communities present within aquaculture systems, except for nitrifying ba...

  16. Population dynamic theory of size-dependent cannibalism

    NARCIS (Netherlands)

    D. Claessen; A.M. de Roos; L. Persson

    2004-01-01

    Cannibalism is characterized by four aspects: killing victims, gaining energy from victims, size-dependent interactions and intraspecific competition. In this review of mathematical models of cannibalistic populations, we relate the predicted population dynamic consequences of cannibalism to its fou

  17. A novel approach for estimating growth phases and parameters of bacterial population in batch culture

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Using mathematical analysis, a new method has been developed for studying the growth kinetics of bacterial populations in batch culture. First, sampling data were smoothed with the spline interpolation method. Second, the instantaneous rates were derived by numerical differential techniques and finally, the derived data were fitted with the Gaussian function to obtain growth parameters. We named this the Spline-Numerical-Gaussian or SNG method. This method yielded more accurate estimates of the growth rates of bacterial populations and new parameters. It was possible to divide the growth curve into four different but continuous phases based on changes in the instantaneous rates. The four phases are the accelerating growth phase, the constant growth phase, the decelerating growth phase and the declining phase. Total DNA content was measured by flow cytometry and varied depending on the growth phase. The SNG system provides a very powerful tool for describing the kinetics of bacterial population growth. The SNG method avoids the unrealistic assumptions generally used in the traditional growth equations.

  18. The population structure of antibiotic-producing bacterial symbionts of Apterostigma dentigerum ants: impacts of coevolution and multipartite symbiosis.

    Science.gov (United States)

    Caldera, Eric J; Currie, Cameron R

    2012-11-01

    Fungus-growing ants (Attini) are part of a complex symbiosis with Basidiomycetous fungi, which the ants cultivate for food, Ascomycetous fungal pathogens (Escovopsis), which parasitize cultivars, and Actinobacteria, which produce antibiotic compounds that suppress pathogen growth. Earlier studies that have characterized the association between attine ants and their bacterial symbionts have employed broad phylogenetic approaches, with conclusions ranging from a diffuse coevolved mutualism to no specificity being reported. However, the geographic mosaic theory of coevolution proposes that coevolved interactions likely occur at a level above local populations but within species. Moreover, the scale of population subdivision is likely to impact coevolutionary dynamics. Here, we describe the population structure of bacteria associated with the attine Apterostigma dentigerum across Central America using multilocus sequence typing (MLST) of six housekeeping genes. The majority (90%) of bacteria that were isolated grouped into a single clade within the genus Pseudonocardia. In contrast to studies that have suggested that Pseudonocardia dispersal is high and therefore unconstrained by ant associations, we found highly structured ([Formula: see text]) and dispersal-limited (i.e., significant isolation by distance; [Formula: see text], [Formula: see text]) populations over even a relatively small scale (e.g., within the Panama Canal Zone). Estimates of recombination versus mutation were uncharacteristically low compared with estimates for free-living Actinobacteria (e.g., [Formula: see text] in La Selva, Costa Rica), which suggests that recombination is constrained by association with ant hosts. Furthermore, Pseudonocardia population structure was correlated with that of Escovopsis species ([Formula: see text], [Formula: see text]), supporting the bacteria's role in disease suppression. Overall, the population dynamics of symbiotic Pseudonocardia are more consistent with a

  19. Chromosome Painting In Silico in a Bacterial Species Reveals Fine Population Structure

    Science.gov (United States)

    Yahara, Koji; Furuta, Yoshikazu; Oshima, Kenshiro; Yoshida, Masaru; Azuma, Takeshi; Hattori, Masahira; Uchiyama, Ikuo; Kobayashi, Ichizo

    2013-01-01

    Identifying population structure forms an important basis for genetic and evolutionary studies. Most current methods to identify population structure have limitations in analyzing haplotypes and recombination across the genome. Recently, a method of chromosome painting in silico has been developed to overcome these shortcomings and has been applied to multiple human genome sequences. This method detects the genome-wide transfer of DNA sequence chunks through homologous recombination. Here, we apply it to the frequently recombining bacterial species Helicobacter pylori that has infected Homo sapiens since their birth in Africa and shows wide phylogeographic divergence. Multiple complete genome sequences were analyzed including sequences from Okinawa, Japan, that we recently sequenced. The newer method revealed a finer population structure than revealed by a previous method that examines only MLST housekeeping genes or a phylogenetic network analysis of the core genome. Novel subgroups were found in Europe, Amerind, and East Asia groups. Examination of genetic flux showed some singleton strains to be hybrids of subgroups and revealed evident signs of population admixture in Africa, Europe, and parts of Asia. We expect this approach to further our understanding of intraspecific bacterial evolution by revealing population structure at a finer scale. PMID:23505045

  20. Population dynamics in biological treatment process. ; Population dynamics of bacteria for biological phosphorus removal. Population dynamics to kankyo joka. ; Datsurin kin gun no population dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Okada, M. (Hiroshima Univ., Hiroshima (Japan). Faculty of Engineering)

    1992-09-10

    The microbial industry can easily cultivate only the specific microorganism by introducing the closed reaction system and the sterile operation. When the superior bacteria is selected or it is created by the gene manipulation, therefore, it is not so much difficult that it is utilized for production. Since the water treatment is an open reaction system many microorganisms can join, however, it becomes to be important that how the necessary microorganisms, for example, the dephosphorylation bacteria etc. out of them are let fixed in the reaction system, and win in a competition with the other microorganisms, and in addition, are let display their functions stably for a long period. In this regard, in this paper, concerning to the issues that whether the dephosphorylation bacteria exists or not, how the behavior of dephosphorylation bacteria in the activated sludge should be clarified, what kind of behavior the dephosphorylation bacteria shows in the dephosphorylation activated sludge and so forth, grasping the population dynamics of microorganism, and furthermore, including the methodology to control it, is outlined. 31 refs., 2 figs., 1 tab.

  1. A comparison of bacterial populations in enhanced biological phosphorus removal processes using membrane filtration or gravity sedimentation for solids-liquid separation.

    Science.gov (United States)

    Hall, Eric R; Monti, Alessandro; Mohn, William W

    2010-05-01

    In an earlier phase of this study, we compared the performances of pilot scale treatment systems operated in either a conventional enhanced biological phosphorus removal (CEBPR) mode, or a membrane enhanced biological phosphorus removal (MEBPR) mode. In the present investigation, we characterized the bacterial community populations in these processes during parallel operation with the same municipal wastewater feed. The objectives of the study were (1) to assess the similarity of the bacterial communities supported in the two systems over time, (2) to determine if distinct bacterial populations are associated with the MEBPR and CEBPR processes, and (3) to relate the dynamics of the community composition to changes in treatment process configuration and to treatment process performance. The characteristics of the bacterial populations were first investigated with ribosomal intergenic spacer analysis, or RISA. To further understand the bacterial population dynamics, important RISA phylotypes were isolated and identified through 16S RNA gene sequencing. The parallel MEBPR and CEBPR systems developed bacterial communities that were distinct. The CEBPR community appeared to exhibit greater diversity, and this may have been the primary reason why the CEBPR treatment train demonstrated superior functional stability relative to the MEBPR counterpart. Moreover, the more diverse bacterial population apparent in the CEBPR system was observed to be more dynamic than that of the MEBPR process. Several RISA bands were found to be characteristic of either the membrane or conventional biological system. In particular, the MEBPR configuration appeared to be selective for the slow-growing organism Magnospira bakii and for the foam-associated Microthrix parvicella and Gordonia sp., while gravity separation led to the washout of M. parvicella. In both pilot trains, sequence analysis confirmed the presence of EBPR-related organisms such as Accumulibacter phosphatis. The survey of the

  2. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Foster, Brian; Kang, Dongwan; Tringe, Susannah G.; Bertilsson, Stefan; Moran, Mary Ann; Shade, Ashley; Newton, Ryan J.; Stevens, Sarah; McMcahon, Katherine D.; Mamlstrom, Rex R.

    2014-05-12

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ecotype model? of diversification, but not previously observed in natural populations.

  3. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Foster, Brian; Kang, Dongwan; Tringe, Susannah G.; Bertilsson, Stefan; Moran, Mary Ann; Shade, Ashley; Newton, Ryan J.; Stevens, Sarah; McMahon, Katherine D.; Malmstrom, Rex R.

    2014-06-18

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ‘ecotype model’ of diversification, but not previously observed in natural populations.

  4. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    Science.gov (United States)

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus. PMID:22625420

  5. Local extinction synchronizes population dynamics in spatial networks

    OpenAIRE

    Matter, Stephen F.; Roland, Jens

    2009-01-01

    Spatial population theory predicts that synchrony in the dynamics of local populations should decrease as dispersal among populations decreases. Thus, it would be expected that the extinction of local populations and the attendant loss of immigrants to surrounding populations would reduce synchrony. We tested this hypothesis through a large-scale experiment, simulation of the experimental system and general models. Experimental removal of two adjacent subpopulations of the Rocky Mountain Apol...

  6. Effect of Cinnamon (Cinnamomum zylenicum supplementation on the intestinal selected bacterial population in Japanese quail

    Directory of Open Access Journals (Sweden)

    A. Baraa Mohamed,

    2011-05-01

    Full Text Available The present experiment was conducted to investigate the effects of adding graded levels (0, 1.0 and 1.5% of Cinnamon (Cinnamomum zylenicum in the basal diet on the intestinal bacterial population of the Japanese quail. Sixty Japanese quail were randomly distributed into 3 groups. Each treatment contained four replicates (5 birds/replicate. The results showed significant (P<0.05 improvement in lactobacillus of birds fed 1.5% cinnamon. Total bacterial count, coli form and fungi count was significantly (P<0.05 lower compared to the control. In conclusion, 1.5% level of cinnamon may be used for antimicrobial balance in gut for Japanese quail.

  7. Cryptic population dynamics: rapid evolution masks trophic interactions.

    Directory of Open Access Journals (Sweden)

    Takehito Yoshida

    2007-09-01

    Full Text Available Trophic relationships, such as those between predator and prey or between pathogen and host, are key interactions linking species in ecological food webs. The structure of these links and their strengths have major consequences for the dynamics and stability of food webs. The existence and strength of particular trophic links has often been assessed using observational data on changes in species abundance through time. Here we show that very strong links can be completely missed by these kinds of analyses when changes in population abundance are accompanied by contemporaneous rapid evolution in the prey or host species. Experimental observations, in rotifer-alga and phage-bacteria chemostats, show that the predator or pathogen can exhibit large-amplitude cycles while the abundance of the prey or host remains essentially constant. We know that the species are tightly linked in these experimental microcosms, but without this knowledge, we would infer from observed patterns in abundance that the species are weakly or not at all linked. Mathematical modeling shows that this kind of cryptic dynamics occurs when there is rapid prey or host evolution for traits conferring defense against attack, and the cost of defense (in terms of tradeoffs with other fitness components is low. Several predictions of the theory that we developed to explain the rotifer-alga experiments are confirmed in the phage-bacteria experiments, where bacterial evolution could be tracked. Modeling suggests that rapid evolution may also confound experimental approaches to measuring interaction strength, but it identifies certain experimental designs as being more robust against potential confounding by rapid evolution.

  8. Evolutionary dynamics with fluctuating population sizes and strong mutualism

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R.

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  9. Evolutionary dynamics with fluctuating population sizes and strong mutualism.

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems. PMID:26382443

  10. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon under different growth stages.

    Directory of Open Access Journals (Sweden)

    Wanilada Rungrassamee

    Full Text Available Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon, bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15, 1- (J1, 2- (J2, and 3-month-old (J3 juveniles using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases were obtained, which were categorized by barcode for PL15 (7,045 sequences, J1 (3,055 sequences, J2 (13,130 sequences and J3 (1,890 sequences. Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities.

  11. BIGSdb: Scalable analysis of bacterial genome variation at the population level

    Directory of Open Access Journals (Sweden)

    Maiden Martin CJ

    2010-12-01

    Full Text Available Abstract Background The opportunities for bacterial population genomics that are being realised by the application of parallel nucleotide sequencing require novel bioinformatics platforms. These must be capable of the storage, retrieval, and analysis of linked phenotypic and genotypic information in an accessible, scalable and computationally efficient manner. Results The Bacterial Isolate Genome Sequence Database (BIGSDB is a scalable, open source, web-accessible database system that meets these needs, enabling phenotype and sequence data, which can range from a single sequence read to whole genome data, to be efficiently linked for a limitless number of bacterial specimens. The system builds on the widely used mlstdbNet software, developed for the storage and distribution of multilocus sequence typing (MLST data, and incorporates the capacity to define and identify any number of loci and genetic variants at those loci within the stored nucleotide sequences. These loci can be further organised into 'schemes' for isolate characterisation or for evolutionary or functional analyses. Isolates and loci can be indexed by multiple names and any number of alternative schemes can be accommodated, enabling cross-referencing of different studies and approaches. LIMS functionality of the software enables linkage to and organisation of laboratory samples. The data are easily linked to external databases and fine-grained authentication of access permits multiple users to participate in community annotation by setting up or contributing to different schemes within the database. Some of the applications of BIGSDB are illustrated with the genera Neisseria and Streptococcus. The BIGSDB source code and documentation are available at http://pubmlst.org/software/database/bigsdb/. Conclusions Genomic data can be used to characterise bacterial isolates in many different ways but it can also be efficiently exploited for evolutionary or functional studies. BIGSDB

  12. Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborea

    OpenAIRE

    Bengtsson, Mia M.; Sjøtun, Kjersti; Øvreås, Lise

    2010-01-01

    Seasonal variations of the cell density and bacterial community composition in biofilms growing on the surface of the kelp Laminaria hyperborea from 2 sites on the southwestern coast of Norway were investigated using total cell enumeration and denaturing gradient gel electrophoresis (DGGE) fingerprinting. The major taxonomical groups of bacteria inhabiting the biofilms were identified by DGGE band sequence classification. The microbial cell density of the biofilm appeared to be ...

  13. Bacterial dynamics within the mucus, tissue and skeleton of the coral Porites lutea during different seasons

    Science.gov (United States)

    Li, Jie; Chen, Qi; Long, Li-Juan; Dong, Jun-De; Yang, Jian; Zhang, Si

    2014-12-01

    Investigation of the response of coral microbial communities to seasonal ecological environment at the microscale will advance our understanding of the relationship between coral-associated bacteria community and coral health. In this study, we examined bacteria community composition from mucus, tissue and skeleton of Porites lutea and surrounding seawater every three months for 1 year on Luhuitou fringing reef. The bacterial communities were analyzed using pyrosequencing of the V1-V2 region of the 16S rRNA gene, which demonstrated diverse bacterial consortium profiles in corals. The bacterial communities in all three coral compartments studied were significantly different from the surrounding seawater. Moreover, they had a much more dynamic seasonal response compared to the seawater communities. The bacterial communities in all three coral compartments collected in each seasonal sample tended to cluster together. Analysis of the relationship between bacterial assemblages and the environmental parameters showed that the bacterial community correlated to dissolved oxygen and rainfall significantly at our study site. This study highlights a dynamic relationship between the high complexity of coral associated bacterial community and seasonally varying ecosystem parameters.

  14. Statistical Dynamics of Regional Populations and Economies

    CERN Document Server

    Huo, Jie; Hao, Rui; Wang, Peng

    2016-01-01

    A practical statistical analysis on the regional populations and GDPs of China is conducted. The result shows that the distribution of the populations and that of the GDPs obeys the shifted power law, respectively. To understand these characteristics, a generalized Langevin equation describing variation of population is proposed based on the correlation between population and GDP as well as the random fluctuations of the related factors. The equation is transformed into the Fokker-Plank equation, and the solution demonstrates a transform of population distribution from the normal Gaussian distribution to a shifted power law. It also suggests a critical point of time at which the transform occurs. The shifted power law distribution in the supercritical situation is qualitatively in accordance with the practical result. The distribution of the GDPs is derived based on the Cobb-Douglas production function, and presents a change from a shifted power law to the Gaussian distribution. This result indicates that the...

  15. Local extinction synchronizes population dynamics in spatial networks.

    Science.gov (United States)

    Matter, Stephen F; Roland, Jens

    2010-03-01

    Spatial population theory predicts that synchrony in the dynamics of local populations should decrease as dispersal among populations decreases. Thus, it would be expected that the extinction of local populations and the attendant loss of immigrants to surrounding populations would reduce synchrony. We tested this hypothesis through a large-scale experiment, simulation of the experimental system and general models. Experimental removal of two adjacent subpopulations of the Rocky Mountain Apollo butterfly, Parnassius smintheus within a network consisting of 15 other local populations resulted in a decrease in immigration to surrounding populations that was proportional to their connectivity to the removal populations. These populations also showed a significant increase in synchrony during population removal. The spatial extent of the synchrony showed good agreement with the predicted loss of immigrants owing to the removals. Simulation of the Parnassius system showed a similar short-term result and also indicated that permanent loss of populations produces structural changes increasing synchrony. General models indicate that an increase in synchrony following extinction occurs when populations undergoing extinction have different carrying capacities than surrounding populations. The result is not owing to biased migration per se, but rather is because of the number of immigrants relative to the carrying capacity. Synchrony following extinction should be most common for patchy populations, but can occur in any situation where carrying capacities differ. Overall, our results indicate that local extinction can create a positive feedback for extinction risk, increasing the probability of extinction for population networks by synchronizing their dynamics. PMID:19889700

  16. Stochastic population dynamics under resource constraints

    Science.gov (United States)

    Gavane, Ajinkya S.; Nigam, Rahul

    2016-06-01

    This paper investigates the population growth of a certain species in which every generation reproduces thrice over a period of predefined time, under certain constraints of resources needed for survival of population. We study the survival period of a species by randomizing the reproduction probabilities within a window at same predefined ages and the resources are being produced by the working force of the population at a variable rate. This randomness in the reproduction rate makes the population growth stochastic in nature and one cannot predict the exact form of evolution. Hence we study the growth by running simulations for such a population and taking an ensemble averaged over 500 to 5000 such simulations as per the need. While the population reproduces in a stochastic manner, we have implemented a constraint on the amount of resources available for the population. This is important to make the simulations more realistic. The rate of resource production then is tuned to find the rate which suits the survival of the species. We also compute the mean life time of the species corresponding to different resource production rate. Study for these outcomes in the parameter space defined by the reproduction probabilities and rate of resource production is carried out.

  17. Phase-space approach to multi-population dynamics

    CERN Document Server

    Budko, Neil V

    2015-01-01

    Simultaneous deterministic dynamics of multiple populations described by a large set of ODE's is considered in the phase space of population sizes and ODE's parameters. The problem is formulated as a multidimensional phase-space conservation law and is solved explicitly for non-interacting multi-population models. Solutions for populations competing for a limited resource and populations with migration are obtained by simple iterative methods. The proposed approach also allows considering phase-space interaction between populations, which is intractable by other methods.

  18. Galactic civilizations: Population dynamics and interstellar diffusion

    Science.gov (United States)

    Newman, W. I.; Sagan, C.

    1978-01-01

    The interstellar diffusion of galactic civilizations is reexamined by potential theory; both numerical and analytical solutions are derived for the nonlinear partial differential equations which specify a range of relevant models, drawn from blast wave physics, soil science, and, especially, population biology. An essential feature of these models is that, for all civilizations, population growth must be limited by the carrying capacity of the environment. Dispersal is fundamentally a diffusion process; a density-dependent diffusivity describes interstellar emigration. Two models are considered: the first describing zero population growth (ZPG), and the second which also includes local growth and saturation of a planetary population, and for which an asymptotic traveling wave solution is found.

  19. Dynamic population mapping using mobile phone data

    OpenAIRE

    Deville, Pierre; Linard, Catherine; Martin, Samuel; Gilbert, Marius; Stevens, Forrest R.; Gaughan, Andrea E.; Vincent D. Blondel; Tatem, Andrew J

    2014-01-01

    Knowing where people are is critical for accurate impact assessments and intervention planning, particularly those focused on population health, food security, climate change, conflicts, and natural disasters. This study demonstrates how data collected by mobile phone network operators can cost-effectively provide accurate and detailed maps of population distribution over national scales and any time period while guaranteeing phone users’ privacy. The methods outlined may be applied to estima...

  20. Population Dynamics and Non-Hermitian Localization

    OpenAIRE

    Dahmen, Karin A.; Nelson, David R; Shnerb, Nadav M.

    1999-01-01

    We review localization with non-Hermitian time evolution as applied to simple models of population biology with spatially varying growth profiles and convection. Convection leads to a constant imaginary vector potential in the Schroedinger-like operator which appears in linearized growth models. We illustrate the basic ideas by reviewing how convection affects the evolution of a population influenced by a simple square well growth profile. Results from discrete lattice growth models in both o...

  1. Active Marine Subsurface Bacterial Population Composition in Low Organic Carbon Environments from IODP Expedition 320

    Science.gov (United States)

    Shepard, A.; Reese, B. K.; Mills, H. J.; IODP Expedition 320 Shipboard Science Party

    2011-12-01

    The marine subsurface environment contains abundant and active microorganisms. These microbial populations are considered integral players in the marine subsurface biogeochemical system with significance in global geochemical cycles and reservoirs. However, variations in microbial community structure, activity and function associated with the wide-ranging sedimentary and geochemical environments found globally have not been fully resolved. Integrated Ocean Drilling Program Expedition 320 recovered sediments from site U1332. Two sampling depths were selected for analysis that spanned differing lithological units in the sediment core. Sediments were composed of mostly clay with zeolite minerals at 8 meters below sea floor (mbsf). At 27 mbsf, sediments were composed of alternating clayey radiolarian ooze and nannofossil ooze. The concentration of SO42- had little variability throughout the core and the concentration of Fe2+ remained close to, or below, detection limits (0.4 μM). Total organic carbon content ranged from a low of 0.03 wt% to a high of 0.07 wt% between 6 and 30 mbsf providing an opportunity to evaluate marine subsurface microbial communities under extreme electron donor limiting conditions. The metabolically active fraction of the bacterial population was isolated by the extraction and amplification of 16S ribosomal RNA. Pyrosequencing of 16S rRNA transcripts and subsequent bioinformatic analyses provided a robust data set (15,931 total classified sequences) to characterize the community at a high resolution. As observed in other subsurface environments, the overall diversity of active bacterial populations decreased with depth. The population shifted from a diverse but evenly distributed community at approximately 8 mbsf to a Firmicutes dominated population at 27 mbsf (80% of sequences). A total of 95% of the sequences at 27 mbsf were grouped into three genera: Lactobacillus (phylum Firmicutes) at 80% of the total sequences, Marinobacter (phylum

  2. An individual-based approach to explain plasmid invasion in bacterial populations

    DEFF Research Database (Denmark)

    Seoane, Jose Miguel; Yankelevich, Tatiana; Dechesne, Arnaud;

    2011-01-01

    We present an individual-based experimental framework to identify and estimate the main parameters governing bacterial conjugation at the individual cell scale. From this analysis, we have established that transient periods of unregulated plasmid transfer within newly formed transconjugant cells......, together with contact mechanics arising from cellular growth and division, are the two main processes determining the emergent inability of the pWW0 TOL plasmid to fully invade spatially structured Pseudomonas putida populations. We have also shown that pWW0 conjugation occurs mainly at advanced stages...... observe, however, that transient periods of elevated plasmid transfer in newly formed transconjugant cells are offset by unfavorable cell-to-cell contact mechanics, which ultimately precludes the pWWO TOL plasmid from fully invading tightly packed multicellular P. putida populations such as microcolonies...

  3. Impact of bioremediation treatments on the biodegradation of buried oil and predominant bacterial populations

    International Nuclear Information System (INIS)

    The feasibility of using mineral fertilizers as a bioremediation treatment for oil buried in fine sediments was tested in field trials at a site in the south-west of England. The plots were divided into three blocks of four treatments including untreated, fertilized, oiled unfertilized and oiled fertilized plots. The changes in residual hydrocarbons were monitored to study the biodegradation of Arabian Light Crude Oil which is known to have a high portion of biodegradable components. Samples were extracted at random points at intervals of 0, 42 and 101 days. The analysis process identified a range of aliphatic and aromatic hydrocarbons, as well as a range of geochemical biomarkers. The final results suggested that the oil in the fertilized plots was more degraded than in the oiled, unfertilized control plots. Three way, factorial analysis of variance was used to analyse the data from the oiled fertilized and oiled unfertilized plots. No significant effect of treatment on the degradation of aromatic hydrocarbons was observed. The results also showed that oil treatment and treatment with oil and fertilizer increased the abundance of hydrocarbon-degrading bacterial population. One significant observation was that different bacterial populations were stimulated in response to oil alone and a bioremediation treatment. It was concluded that the addition of inorganic fertilizers to the oiled oxic fine sediment substantially enhanced the level of biodegradation compared to untreated oiled sediment. Bioremediation is a feasible treatment for oil spills where the oil is buried in fine sediment. 14 refs., 1 tab., 4 figs

  4. EFFECT OF REFINED PETROLEUM PRODUCTS CONTAMINATION ON BACTERIAL POPULATION AND PHYSICOCHEMICAL CHARACTERISTICS OF CULTIVATED AGRICULTURAL SOIL

    Directory of Open Access Journals (Sweden)

    Adewale Sogo Olalemi

    2012-10-01

    Full Text Available An investigation into the effect of refined petroleum products contamination on bacterial population and physicochemical characteristics of cultivated agricultural soil was carried out. The soil samples obtained from the Teaching and Research Farm, Obakekere, Federal University of Technology, Akure, Ondo State were contaminated with varying volumes of petrol, diesel and kerosene. The results revealed higher bacterial populations in uncontaminated soils than contaminated soils. The counts of bacteria ranged from 3.0 × 105 to 5.0 × 105 cfu/g in uncontaminated soils and 1.0 × 105 to 3.0 × 105 cfu/g in contaminated soils. The isolated bacteria were identified as Bacillus subtilis, Flavobacterium lutescens, Micrococcus luteus, Corynebacterium variabilis, Pseudomonas fluorescens. The contamination had no significant effect on pH, potassium, sodium, organic carbon and nitrogen content of the soils, while the moisture, calcium, phosphorus and magnesium content of the contaminated soils were significantly different (P < 0.05 compared with the uncontaminated soils. The ability of Bacillus subtilis, Flavobacterium lutescens, Micrococcus luteus, and Pseudomonas fluorescens to utilize the refined petroleum products suggest that these bacteria had potential to bioremediate petroleum contaminated soils.

  5. Dynamic of bacterial communities attached to lightened phytodetritus.

    Science.gov (United States)

    Petit, Morgan; Bonin, Patricia; Amiraux, Rémi; Michotey, Valérie; Guasco, Sophie; Armitano, Joshua; Jourlin-Castelli, Cécile; Vaultier, Frédéric; Méjean, Vincent; Rontani, Jean-François

    2015-09-01

    The effects of singlet oxygen ((1)O2) transfer to bacteria attached on phytodetritus were investigated under laboratory-controlled conditions. For this purpose, a nonaxenic culture of Emiliania huxleyi in late stationary phase was studied for bacterial viability. Our results indicated that only 9 ± 3% of attached bacteria were alive compared to 46 ± 23% for free bacteria in the E. huxleyi culture. Apparently, under conditions of low irradiance (36 W m(-2)), during the culture, the cumulative dose received (22,000 kJ m(-2)) was sufficiently important to induce an efficient (1)O2 transfer to attached bacteria during the senescence of E. huxleyi cells. At this stage, attached bacteria appeared to be dominated by pigmented bacteria (Maribacter, Roseobacter, Roseovarius), which should resist to (1)O2 stress probably due to their high contents of carotenoids. After subsequent irradiation of the culture until fully photodegradation of chlorophyll, DGGE analyses showed that the diversity of bacteria attached to E. huxleyi cells is modified by light. Photooxidative alterations of bacteria were confirmed by the increasing amounts of cis-vaccenic photoproducts (bacterial marker) per bacteria observed during irradiation time. Interestingly, preliminary chemotaxis experiments showed that Shewanella oneidensis considered here as a model of motile bacteria was attracted by phytodetritus producing or not (1)O2. This lack of repulsive effects could explain the high mortality rate of bacteria measured on E. huxleyi cells. PMID:25687611

  6. Dynamic population mapping using mobile phone data.

    Science.gov (United States)

    Deville, Pierre; Linard, Catherine; Martin, Samuel; Gilbert, Marius; Stevens, Forrest R; Gaughan, Andrea E; Blondel, Vincent D; Tatem, Andrew J

    2014-11-11

    During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography. PMID:25349388

  7. Effects of culling on mesopredator population dynamics.

    Science.gov (United States)

    Beasley, James C; Olson, Zachary H; Beatty, William S; Dharmarajan, Guha; Rhodes, Olin E

    2013-01-01

    Anthropogenic changes in land use and the extirpation of apex predators have facilitated explosive growth of mesopredator populations. Consequently, many species have been subjected to extensive control throughout portions of their range due to their integral role as generalist predators and reservoirs of zoonotic disease. Yet, few studies have monitored the effects of landscape composition or configuration on the demographic or behavioral response of mesopredators to population manipulation. During 2007 we removed 382 raccoons (Procyon lotor) from 30 forest patches throughout a fragmented agricultural ecosystem to test hypotheses regarding the effects of habitat isolation on population recovery and role of range expansion and dispersal in patch colonization of mesopredators in heterogeneous landscapes. Patches were allowed to recolonize naturally and demographic restructuring of patches was monitored from 2008-2010 using mark-recapture. An additional 25 control patches were monitored as a baseline measure of demography. After 3 years only 40% of experimental patches had returned to pre-removal densities. This stagnant recovery was driven by low colonization rates of females, resulting in little to no within-patch recruitment. Colonizing raccoons were predominantly young males, suggesting that dispersal, rather than range expansion, was the primary mechanism driving population recovery. Contrary to our prediction, neither landscape connectivity nor measured local habitat attributes influenced colonization rates, likely due to the high dispersal capability of raccoons and limited role of range expansion in patch colonization. Although culling is commonly used to control local populations of many mesopredators, we demonstrate that such practices create severe disruptions in population demography that may be counterproductive to disease management in fragmented landscapes due to an influx of dispersing males into depopulated areas. However, given the slow repopulation

  8. Dynamic bacterial communities on reverse-osmosis membranes in a full-scale desalination plant.

    Science.gov (United States)

    Manes, C-L de O; West, N; Rapenne, S; Lebaron, P

    2011-01-01

    To better understand biofouling of seawater reverse osmosis (SWRO) membranes, bacterial diversity was characterized in the intake water, in subsequently pretreated water and on SWRO membranes from a full-scale desalination plant (FSDP) during a 9 month period. 16S rRNA gene fingerprinting and sequencing revealed that bacterial communities in the water samples and on the SWRO membranes were very different. For the different sampling dates, the bacterial diversity of the active and the total bacterial fractions of the water samples remained relatively stable over the sampling period whereas the bacterial community structure on the four SWRO membrane samples was significantly different. The richness and evenness of the SWRO membrane bacterial communities increased with usage time with an increase in the Shannon diversity index of 2.2 to 3.7. In the oldest SWRO membrane (330 days), no single operational taxonomic unit (OTU) dominated and the majority of the OTUs fell into the Alphaproteobacteria or the Planctomycetes. In striking contrast, a Betaproteobacteria OTU affiliated to the genus Ideonella was dominant and exclusively found in the membrane used for the shortest time (10 days). This suggests that bacteria belonging to this genus could be one of the primary colonizers of the SWRO membrane. Knowledge of the dominant bacterial species on SWRO membranes and their dynamics should help guide culture studies for physiological characterization of biofilm forming species. PMID:21108068

  9. Multistability in simplest models of the population dynamics

    Science.gov (United States)

    Zhdanova, Oksana L.; Frisman, Efim Ya.

    2016-06-01

    The investigation of dynamics behavior of population number and genetic structure has been conducted for a homogeneous limited population influenced by density-dependent selection in single di-allelic genetic locus. The detailed investigation of the mechanisms of the loss of stability in the considered model is carried out. It is shown that coexistence of several different asymptotic dynamic regimes (with own attraction basins) is possible in numerous enough parametric regions which are meaningful biologically.

  10. Artificial nighttime light changes aphid-parasitoid population dynamics

    OpenAIRE

    Dirk Sanders; Rachel Kehoe; Katie Tiley; Jonathan Bennie; Dave Cruse; Davies, Thomas W; F J Frank van Veen; Gaston, Kevin J

    2015-01-01

    Artificial light at night (ALAN) is recognized as a widespread and increasingly important anthropogenic environmental pressure on wild species and their interactions. Understanding of how these impacts translate into changes in population dynamics of communities with multiple trophic levels is, however, severely lacking. In an outdoor mesocosm experiment we tested the effect of ALAN on the population dynamics of a plant-aphid-parasitoid community with one plant species, three aphid species an...

  11. Brown trout population dynamics versus long term habitat history

    OpenAIRE

    Capra, H.; Souchon, Y.; Lamouroux, N.

    2004-01-01

    The influence of stream discharge and habitat suitability history was investigated over 12 years on three natural brown trout (Salmo trutta) population dynamics. Discharge and habitat (described by Weighted Usable Area, WUA) variability during three "bottleneck" periods of population dynamics (spawning, fry, and summer) were used to explain variability of trout age-class densities (young of the year, juveniles, and adults). Discharge and WUA variability for each period was described with mean...

  12. Evolution of Sex-Ratio in Structured Population Dynamics

    OpenAIRE

    Ripoll i Missé, Jordi

    2005-01-01

    In this Thesis we address the study of some non-linear evolution equations (e.g. pde's) modelling the dynamics of sexually-reproducing structured populations, with special emphasis on biological evolution driven by natural selection. The latter is incorporated into the models through the adaptive dynamics, which is a way of describing how the hereditary characteristics of the population evolve. The sex-ratio, defined as the proportion between females and males, is analyzed from the evolutiona...

  13. Dynamic properties of bacterial pili measured by optical tweezers

    CERN Document Server

    Fallman, Erik; Schedin, Staffan; Jass, Jana; Uhlin, Bernt Eric; Axner, Ove

    2014-01-01

    The ability of uropathogenic Escherichia coli (UPEC) to cause urinary tract infections is dependent on their ability to colonize the uroepithelium. Infecting bacteria ascend the urethra to the bladder and then kidneys by attaching to the uroepithelial cells via the differential expression of adhesins. P pili are associated with pyelonephritis, the more severe infection of the kidneys. In order to find means to treat pyelonephritis, it is therefore of interest to investigate the properties P pili. The mechanical behavior of individual P pili of uropathogenic Escherichia coli has recently been investigated using optical tweezers. P pili, whose main part constitutes the PapA rod, composed of ~1000 PapA subunits in a helical arrangement, are distributed over the bacterial surface and mediate adhesion to host cells. We have earlier studied P pili regarding its stretching/elongation properties where we have found and characterized three different elongation regions, of which one constitute an unfolding of the quate...

  14. Effect of Soil Tillage Practices on Dynamic of Bacterial Communities in Soil

    Directory of Open Access Journals (Sweden)

    Mirna Mrkonjić Fuka

    2016-03-01

    Full Text Available Several studies have indicated that intensive tillage has notable effect on properties of the soil microbiota that may influence numerous important soils functions, e.g. mobilization of nutrients or change of the overall emission rates of greenhouse gases. Therefore, the aim of our study was to investigate dynamic of microbial communities in soil planted with soybean under different tillage systems. Moreover, abundance of populations harboring the nitrous- oxide reductase gene (nosZ as an indicator for potential shift s in N2O emission rates was studied. The study was established at chernozem soil of Northern Baranja region in Republic of Croatia as completely randomized block design of four replicate plots for each tillage system in three years experiment. The soil was managed as followed: CT - conventional tillage (moldboard ploughing at 25-30 cm depth, DH - multiple discs harrowing (10-15 cm depth, and NT – no-tillage system. Soil samples were collected in summer and autumn in year 2003. Our results suggested that the reduction of tillage had no effects on the bacterial community structure. This might be a result of the very dry climatic conditions at the investigated site and /or a result of plant species effect (soybean. Slight effects of the tillage management became visible at least when samples were taken in autumn for microbes harboring the N2O reductase gene, indicating that there might be shift s in denitrification pattern in response to changes in tillage practice.

  15. Dynamics of Litter Decomposition, Microbiota Populations, and Nutrient Movement Following Nitrogen and Phosphorus Additions to a Deciduous Forest Stand

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.M.

    2002-10-29

    The objective of this study was quantification of the dynamics of litter decomposition, microbiota populations, and nutrient movement in response to nitrogen and phosphorus additions to a deciduous forest stand. Nitrogen (urea) was applied at rates of 0, 550, and 1100 kg/ha in combination with phosphorus (concentrated superphosphate) at rates of 0, 275, and 550 kg/ha. Total loss of organic material from white oak, red maple, and black gum litter bags over a 16-month period was 34, 35, and 45%, respectively. Phosphorus treatment retarded weight loss from litter bags of all species. Weight loss for the 0-, 275-, and 55-kg/ha levels of phosphorus averaged 23, 20, and 19% for white oak; 26, 25, and 25% for red maple; 29, 27 and 26% for black gum. Weight losses were increased by a small amount (1 to 2%) or not at all by nitrogen treatment. The NP interfaction weight loss means were intermediate to the main treatment means. The increase in decomposition associated with nitrogen was offset by the decrease associated with phosphorus. Litter and soil bacterial populations were significantly increased by nitrogen additions, while litter and soil fungi did not respond to nitrogen. Soil fungal populations were increased by phosphorus addition, while litter bacterial populations were reduced. Litter fungi and soil bacteria did not respond to phosphorus. Combined additions of nitrogen and phosphorus increased bacterial populations, though not as much as nitrogen alone. There was a good correlation (r = 0.70) between bacterial population and litter weight loss.

  16. Explaining "Noise" as Environmental Variations in Population Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ginn, Timothy R.; Loge, Frank J.; Scheibe, Timothy D.

    2007-03-01

    The impacts of human activities on our own and other populations on the plant are making news at an alarming pace. Global warming, ocean and freshwater contamination and acidification, deforestation, habitat destruction and incursion, and in general a burgeoning human population are associated with a complete spectrum of changes to the dynamics of populations. Effects on songbirds, insects, coral reefs, ocean mammals, anadromous fishes, just to name a few, and humans, have been linked to human industry and population growth. The linkage, however, remains often ghostly and often tenuous at best, because of the difficulty in quantitatively combining ecological processes with environmental fate and transport processes. Establishing quantitative tools, that is, models, for the combined dynamics of populations and environmental chemical/thermal things is needed. This truly interdisciplinary challenge is briefly reviewed, and two approaches to integrating chemical and biological intermingling are addressed in the context of salmon populations in the Pacific Northwest.

  17. Stage-Structured Population Dynamics of AEDES AEGYPTI

    Science.gov (United States)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  18. Dynamics of a bacterial flagellum under reverse rotation

    CERN Document Server

    Adhyapak, Tapan Chandra

    2016-01-01

    To initiate tumbling of an E. coli, one of the helical flagella reverses its sense of rotation. It then transforms from its normal form first to the transient semicoiled state and subsequently to the curly-I state. The dynamics of polymorphism is effectively modeled by describing flagellar elasticity through an extended Kirchhoff free energy. However, the complete landscape of the free energy remains undetermined because the ground state energies of the polymorphic forms are not known. We investigate how variations in these ground state energies affect the dynamics of a reversely rotated flagellum of a swimming bacterium. We find that the flagellum exhibits a number of distinct dynamical states and comprehensively summarize them in a state diagram. As a result, we conclude that tuning the landscape of the extended Kirchhoff free energy alone cannot generate the intermediate full-length semicoiled state. However, our model suggests an ad hoc method to realize the sequence of polymorphic states as observed for ...

  19. Contributions of Alan C. Lazer to mathematical population dynamics

    Directory of Open Access Journals (Sweden)

    Chris Cosner

    2000-10-01

    Full Text Available This paper is a survey of the contributions that Professor Alan C. Lazer has made to the mathematical theory of population dynamics. Specific areas where Professor Lazer has made important contributions include time periodic population models with diffusion and nonautonomous models for many competing species.

  20. Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation.

    OpenAIRE

    Pizarro, J.; Jedlicki, E; Orellana, O; J. Romero; Espejo, R T

    1996-01-01

    The composition of bacterial populations in copper bioleaching systems was investigated by analysis of DNA obtained either directly from ores or leaching solutions or after laboratory cultures. This analysis consisted of the characterization of the spacer regions between the 16 and 23S genes in the bacterial rRNA genetic loci after PCR amplification. The sizes of the spacer regions, amplified from DNAs obtained from samples, were compared with the sizes of those obtained from cultures of the ...

  1. Impact of Bioreactor Environment and Recovery Method on the Profile of Bacterial Populations from Water Distribution Systems

    OpenAIRE

    Luo, Xia; Jellison, Kristen L.; Huynh, Kevin; Widmer, Giovanni

    2015-01-01

    Multiple rotating annular reactors were seeded with biofilms flushed from water distribution systems to assess (1) whether biofilms grown in bioreactors are representative of biofilms flushed from the water distribution system in terms of bacterial composition and diversity, and (2) whether the biofilm sampling method affects the population profile of the attached bacterial community. Biofilms were grown in bioreactors until thickness stabilized (9 to 11 weeks) and harvested from reactor coup...

  2. Contamination of Soil by Copper Affects the Dynamics, Diversity, and Activity of Soil Bacterial Communities Involved in Wheat Decomposition and Carbon Storage▿ †

    Science.gov (United States)

    Bernard, L.; Maron, P. A.; Mougel, C.; Nowak, V.; Lévêque, J.; Marol, C.; Balesdent, J.; Gibiat, F.; Ranjard, L.

    2009-01-01

    A soil microcosm experiment was conducted to evaluate the influence of copper contamination on the dynamics and diversity of bacterial communities actively involved in wheat residue decomposition. In the presence of copper, a higher level of CO2 release was observed, which did not arise from greater wheat decomposition but from a higher level of stimulation of soil organic matter mineralization (known as the priming effect). Such functional modifications may be related to significant modifications in the diversity of active bacterial populations characterized using the DNA stable-isotope probing approach. PMID:19801474

  3. Population dynamics of an expanding passerine at the distribution margin

    OpenAIRE

    Karvonen, J.; Orell, M; Rytkönen, S; Broggi, Juli; Belda, Eduardo

    2012-01-01

    Individuals may be maladapted to novel environments at the species' distribution margin. We investigated population dynamics in a marginal habitat where reproduction has been proven poor. Survival, population growth rate (λ) and its components, breeding and natal dispersal were studied in great tits Parus major breeding at the northern margin of its distribution in northern Finland. We used long term capture-mark-recapture data sets. Study area size and population density were used to explain...

  4. Mathematical Model to Simulate Tuberculosis Disease Population Dynamics

    Directory of Open Access Journals (Sweden)

    O. K. Koriko

    2008-01-01

    Full Text Available A mathematical model to depict Tuberculosis disease population dynamics was presented. The model population was compartmentalised as appropriate and the resulting model equations were solved numerically while different instances of the disease transmission were simulated. The graphical profiles of the various sub-populations with time were presented and discussed based on the results from our simulations. Also, the disease-free and endemic equilibrium of the system were established and analyzed for stability.

  5. Salicornia ramosissima population dynamics and tolerance of salinity

    OpenAIRE

    Silva, Helena; Caldeira, Gustavo; Freitas, Helena

    2007-01-01

    Abstract Field and greenhouse studies have been conducted to clarify aspects of population dynamics and NaCl tolerance of Salicornia ramosissima J. Woods. Two populations, Varela and Verdemilho, were monitored in the field during two consecutive life cycles and aspects of their morphology and density were recorded monthly. In the laboratory seedlings were exposed to different salinity for 10 weeks and growth and mortality rate were recorded weekly. The growth of the populations differed sign...

  6. Population Dynamics and Livelihood Change on Ukara Island, Lake Victoria

    OpenAIRE

    Lounio, Tomi

    2014-01-01

    This study is about the relation between population dynamics and livelihood change in the Kara farming system on Ukara Island, Tanzania. The population densities on Ukara have been exceptionally high since the 18th century, which has been made possible by a complex set of soil conserving measures utilised by the local Kara farmers. According to the data derived from national censuses, the population densities on Ukara have been rising rapidly since the late 1970s. This research is based on 49...

  7. Geography, European colonization, and past population dynamics in Africa

    OpenAIRE

    Vaz Silva, Luis

    2007-01-01

    Past population dynamics in Africa have remained largely elusive due to the lack of demographic data. Researchers are understandably deterred from trying to explain what is not known and African historical population estimates suffer from this lack of interest. In this paper I explain present day African population densities using mostly ecological factors as explanatory variables. I find evidence supporting the view that ecological factors deeply affected precolonial patterns of human settle...

  8. A Particle Population Control Method for Dynamic Monte Carlo

    Science.gov (United States)

    Sweezy, Jeremy; Nolen, Steve; Adams, Terry; Zukaitis, Anthony

    2014-06-01

    A general particle population control method has been derived from splitting and Russian Roulette for dynamic Monte Carlo particle transport. A well-known particle population control method, known as the particle population comb, has been shown to be a special case of this general method. This general method has been incorporated in Los Alamos National Laboratory's Monte Carlo Application Toolkit (MCATK) and examples of it's use are shown for both super-critical and sub-critical systems.

  9. Archaeal and bacterial community dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Garcia-Ruiz, Maria Jesus; Rodriguez-Sanchez, Alejandro; Osorio, Francisco; Gonzalez-Lopez, Jesus

    2016-07-01

    Two-stage technologies have been developed for anaerobic digestion of waste-activated sludge. In this study, the archaeal and bacterial community structure dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester treating urban sewage sludge have been studied by the means of high-throughput sequencing techniques and physicochemical parameters such as pH, dried sludge, volatile dried sludge, acid concentration, alkalinity, and biogas generation. The coupled analyses of archaeal and bacterial communities and physicochemical parameters showed a direct relationship between archaeal and bacterial populations and bioprocess performance during start-up and working operation of a two-stage anaerobic digester. Moreover, results demonstrated that archaeal and bacterial community structure was affected by changes in the acid/alkalinity ratio in the bioprocess. Thus, a predominance of the acetoclastic methanogen Methanosaeta was observed in the methanogenic bioreactor at high-value acid/alkaline ratio, while a predominance of Methanomassilicoccaeceae archaea and Methanoculleus genus was observed in the methanogenic bioreactor at low-value acid/alkaline ratio. Biodiversity tag-iTag sequencing studies showed that methanogenic archaea can be also detected in the acidogenic bioreactor, although its biological activity was decreased after 4 months of operation as supported by physicochemical analyses. Also, studies of the VFA producers and VFA consumers microbial populations showed as these microbiota were directly affected by the physicochemical parameters generated in the bioreactors. We suggest that the results obtained in our study could be useful for future implementations of two-stage anaerobic digestion processes at both bench- and full-scale. PMID:26940050

  10. Spatial-Temporal Survey and Occupancy-Abundance Modeling To Predict Bacterial Community Dynamics in the Drinking Water Microbiome

    OpenAIRE

    Pinto, Ameet; Schroeder, Joanna; Lunn, Mary; Sloan, William; Raskin, Lutgarde

    2014-01-01

    ABSTRACT Bacterial communities migrate continuously from the drinking water treatment plant through the drinking water distribution system and into our built environment. Understanding bacterial dynamics in the distribution system is critical to ensuring that safe drinking water is being supplied to customers. We present a 15-month survey of bacterial community dynamics in the drinking water system of Ann Arbor, MI. By sampling the water leaving the treatment plant and at nine points in the d...

  11. Growth-rate-dependent dynamics of a bacterial genetic oscillator

    Science.gov (United States)

    Osella, Matteo; Lagomarsino, Marco Cosentino

    2013-01-01

    Gene networks exhibiting oscillatory dynamics are widespread in biology. The minimal regulatory designs giving rise to oscillations have been implemented synthetically and studied by mathematical modeling. However, most of the available analyses generally neglect the coupling of regulatory circuits with the cellular “chassis” in which the circuits are embedded. For example, the intracellular macromolecular composition of fast-growing bacteria changes with growth rate. As a consequence, important parameters of gene expression, such as ribosome concentration or cell volume, are growth-rate dependent, ultimately coupling the dynamics of genetic circuits with cell physiology. This work addresses the effects of growth rate on the dynamics of a paradigmatic example of genetic oscillator, the repressilator. Making use of empirical growth-rate dependencies of parameters in bacteria, we show that the repressilator dynamics can switch between oscillations and convergence to a fixed point depending on the cellular state of growth, and thus on the nutrients it is fed. The physical support of the circuit (type of plasmid or gene positions on the chromosome) also plays an important role in determining the oscillation stability and the growth-rate dependence of period and amplitude. This analysis has potential application in the field of synthetic biology, and suggests that the coupling between endogenous genetic oscillators and cell physiology can have substantial consequences for their functionality.

  12. Noise Induced Phenomena in Population Dynamics

    OpenAIRE

    Valenti, D.; Giuffrida, A; Denaro, G.; Pizzolato, N; Curcio, L; Spagnolo, B.; Mazzola, S.; Basilone, G.; Bonanno, A.

    2015-01-01

    Noise through its interaction with the nonlinearity of the living systems can give rise to counter-intuitive phenomena. In this paper we shortly review the noise induced effects in different ecosystems. The transient dynamics of these ecosystems are analyzed through generalized Lotka-Volterra equations in the presence of multiplicative noise, which models the interaction between the species and the environment. We find noise induced phenomena such as quasi-deterministic oscillations, stochast...

  13. feedback between population and evolutionary dynamics determines the fate of social microbial populations.

    Directory of Open Access Journals (Sweden)

    Alvaro Sanchez

    Full Text Available The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50-100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators "spiral" to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the

  14. Network Evolution Induced by the Dynamical Rules of Two Populations

    OpenAIRE

    Platini, T.; Zia, R. K. P.

    2010-01-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely; extrovert ($a$) and introvert ($b$). In our model, each group is characterized by its size ($N_a$ and $N_b$) and preferred degree ($\\kappa_a$ and $\\kappa_b\\ll\\kappa_a$). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the...

  15. Modelling the Dynamics of an Aedes albopictus Population

    CERN Document Server

    Basuki, Thomas Anung; Barbuti, Roberto; Maggiolo-Schettini, Andrea; Milazzo, Paolo; Rossi, Elisabetta; 10.4204/EPTCS.33.2

    2010-01-01

    We present a methodology for modelling population dynamics with formal means of computer science. This allows unambiguous description of systems and application of analysis tools such as simulators and model checkers. In particular, the dynamics of a population of Aedes albopictus (a species of mosquito) and its modelling with the Stochastic Calculus of Looping Sequences (Stochastic CLS) are considered. The use of Stochastic CLS to model population dynamics requires an extension which allows environmental events (such as changes in the temperature and rainfalls) to be taken into account. A simulator for the constructed model is developed via translation into the specification language Maude, and used to compare the dynamics obtained from the model with real data.

  16. Dynamic Metabolic Modeling of Denitrifying Bacterial Growth: The Cybernetic Approach

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyun-Seob; Liu, Chongxuan

    2015-06-29

    Denitrification is a multistage reduction process converting nitrate ultimately to nitrogen gas, carried out mostly by facultative bacteria. Modeling of the denitrification process is challenging due to the complex metabolic regulation that modulates sequential formation and consumption of a series of nitrogen oxide intermediates, which serve as the final electron acceptors for denitrifying bacteria. In this work, we examined the effectiveness and accuracy of the cybernetic modeling framework in simulating the growth dynamics of denitrifying bacteria in comparison with kinetic models. In four different case studies using the literature data, we successfully simulated diauxic and triauxic growth patterns observed in anoxic and aerobic conditions, only by tuning two or three parameters. In order to understand the regulatory structure of the cybernetic model, we systematically analyzed the effect of cybernetic control variables on simulation accuracy. The results showed that the consideration of both enzyme synthesis and activity control through u- and v-variables is necessary and relevant and that uvariables are of greater importance in comparison to v-variables. In contrast, simple kinetic models were unable to accurately capture dynamic metabolic shifts across alternative electron acceptors, unless an inhibition term was additionally incorporated. Therefore, the denitrification process represents a reasonable example highlighting the criticality of considering dynamic regulation for successful metabolic modeling.

  17. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang;

    2016-01-01

    acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a 'last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm...... subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance...... development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates...

  18. A quantitative model of honey bee colony population dynamics.

    Directory of Open Access Journals (Sweden)

    David S Khoury

    Full Text Available Since 2006 the rate of honey bee colony failure has increased significantly. As an aid to testing hypotheses for the causes of colony failure we have developed a compartment model of honey bee colony population dynamics to explore the impact of different death rates of forager bees on colony growth and development. The model predicts a critical threshold forager death rate beneath which colonies regulate a stable population size. If death rates are sustained higher than this threshold rapid population decline is predicted and colony failure is inevitable. The model also predicts that high forager death rates draw hive bees into the foraging population at much younger ages than normal, which acts to accelerate colony failure. The model suggests that colony failure can be understood in terms of observed principles of honey bee population dynamics, and provides a theoretical framework for experimental investigation of the problem.

  19. Growth dynamics and the evolution of cooperation in microbial populations

    Science.gov (United States)

    Cremer, Jonas; Melbinger, Anna; Frey, Erwin

    2012-02-01

    Microbes providing public goods are widespread in nature despite running the risk of being exploited by free-riders. However, the precise ecological factors supporting cooperation are still puzzling. Following recent experiments, we consider the role of population growth and the repetitive fragmentation of populations into new colonies mimicking simple microbial life-cycles. Individual-based modeling reveals that demographic fluctuations, which lead to a large variance in the composition of colonies, promote cooperation. Biased by population dynamics these fluctuations result in two qualitatively distinct regimes of robust cooperation under repetitive fragmentation into groups. First, if the level of cooperation exceeds a threshold, cooperators will take over the whole population. Second, cooperators can also emerge from a single mutant leading to a robust coexistence between cooperators and free-riders. We find frequency and size of population bottlenecks, and growth dynamics to be the major ecological factors determining the regimes and thereby the evolutionary pathway towards cooperation.

  20. Generational Spreading Speed and the Dynamics of Population Range Expansion.

    Science.gov (United States)

    Bateman, Andrew W; Neubert, Michael G; Krkošek, Martin; Lewis, Mark A

    2015-09-01

    Some of the most fundamental quantities in population ecology describe the growth and spread of populations. Population dynamics are often characterized by the annual rate of increase, λ, or the generational rate of increase, R0. Analyses involving R0 have deepened our understanding of disease dynamics and life-history complexities beyond that afforded by analysis of annual growth alone. While range expansion is quantified by the annual spreading speed, a spatial analog of λ, an R0-like expression for the rate of spread is missing. Using integrodifference models, we derive the appropriate generational spreading speed for populations with complex (stage-structured) life histories. The resulting measure, relevant to locations near the expanding edge of a (re)colonizing population, incorporates both local population growth and explicit spatial dispersal rather than solely growth across a population, as is the case for R0. The calculations for generational spreading speed are often simpler than those for annual spreading speed, and analytic or partial analytic solutions can yield insight into the processes that facilitate or slow a population's spatial spread. We analyze the spatial dynamics of green crabs, sea otters, and teasel as examples to demonstrate the flexibility of our methods and the intuitive insights that they afford. PMID:26655354

  1. Differences in bacterial diversity of host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory.

    Science.gov (United States)

    Medina, R F; Nachappa, P; Tamborindeguy, C

    2011-04-01

    Host-associated differentiation (HAD) is the presence of genetically divergent, host-associated populations. It has been suggested that microbial symbionts of insect herbivores may play a role in HAD by allowing their insect hosts to use different plant species. The objective of this study was to document if host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory corresponded with differences in the composition of their associated bacteria. To test this hypothesis, we characterized the symbionts present in P. notabilis associated with these two tree species through metagenomic analyses using 454 sequencing. Differences in bacterial diversity were found between P. notabilis populations associated with pecan and water hickory. The bacteria, Pantoea agglomerans and Serratia marcescens, were absent in the P. notabilis water hickory population, whereas both species accounted for more than 69.72% of bacterial abundance in the pecan population. PMID:21261774

  2. Dynamics and functions of bacterial communities in bark, charcoal and sand filters treating greywater.

    Science.gov (United States)

    Dalahmeh, Sahar S; Jönsson, Håkan; Hylander, Lars D; Hui, Nan; Yu, Dan; Pell, Mikael

    2014-05-01

    This study explored the effects of greywater application on the dynamics and functions of biofilms developed in bark, activated charcoal and sand filters used for removal of organic matter and nitrogen. Duplicate columns (20 cm diameter, 60 cm deep) were packed with bark, charcoal or sand with effective size 1.4 mm and uniformity coefficient 2.2, and dosed with 32 L m(-2) day(-1) of an artificial greywater (14 g BOD5 m(-2) day(-1)) for 116 days. Potential respiration rate (PRR), determined in filter samples after addition of excess glucose, and bacterial diversity and composition, analysed by 454-pyrosequencing of bacterial 16S ribosomal DNA, were measured at different times and depths in the filters. The bark and charcoal filters were more efficient in removing BOD5 than the sand (98, 97% and 75%, respectively). The highest PRR in the 0-2 cm layer of the columns on day 84 was found in the bark filters, followed by the charcoal and sand filters (632 ± 66, 222 ± 34 and 56 ± 2 mg O2 L(-1), respectively; n = 2). Bacterial community in the bark filters showed the highest richness. The charcoal and sand filters both developed more diverse and dynamic (changing over time and depth) bacterial communities than the bark. In addition to the greywater, the lignocelluosic composition of the bark and its lower pH probably selected for the bacterial community structure and the organic content provided additional substrate, as shown by its higher PRR and its different nitrifying bacterial genera. In the oligotrophic charcoal and sand, the composition of the greywater itself defined the bacterial community. Thus, the initially low bacterial biomass in the latter filters was enriched over time, allowing a diversified bacterial community to develop. The top layers of the bark and charcoal filters displayed a high dominance of Rhizobium, Pseudomonas and Acinetobacter, which were less evident in the 60 cm layer, whereas in the sand filters these genera were

  3. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering

    CERN Document Server

    Drescher, Knut; Cisneros, Luis H; Ganguly, Sujoy; Goldstein, Raymond E; 10.1073/pnas.1019079108

    2011-01-01

    Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell-cell and cell-surface scattering - the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report the first direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell-cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dom...

  4. Differences in activity profile of bacterial cultures studied by dynamic speckle patterns

    Science.gov (United States)

    Ramírez-Miquet, E. E.; Otero, I.; Rodríguez, D.; Darias, J. G.; Combarro, A. M.; Contreras, O. R.

    2013-02-01

    We outline the main differences in the activity profile of bacterial cultures studied by dynamic laser speckle (or biospeckle) patterns. The activity is detected in two sorts of culture mediums. The optical setup and the experimental procedure are presented. The experimentally obtained images are processed by the temporal difference method and a qualitative assessment is made with the time history of speckle patterns of the sample. The main differences are studied after changing the culture medium composition. We conclude that the EC medium is suitable to detect the E. coli bacterial presence in early hours and that Mueller Hinton agar delays some additional hours to make possible the assessment of bacteria in time.

  5. Strongly Deterministic Population Dynamics in Closed Microbial Communities

    Science.gov (United States)

    Frentz, Zak; Kuehn, Seppe; Leibler, Stanislas

    2015-10-01

    Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES) as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.

  6. Evolutionary dynamics of general group interactions in structured populations

    Science.gov (United States)

    Li, Aming; Broom, Mark; Du, Jinming; Wang, Long

    2016-02-01

    The evolution of populations is influenced by many factors, and the simple classical models have been developed in a number of important ways. Both population structure and multiplayer interactions have been shown to significantly affect the evolution of important properties, such as the level of cooperation or of aggressive behavior. Here we combine these two key factors and develop the evolutionary dynamics of general group interactions in structured populations represented by regular graphs. The traditional linear and threshold public goods games are adopted as models to address the dynamics. We show that for linear group interactions, population structure can favor the evolution of cooperation compared to the well-mixed case, and we see that the more neighbors there are, the harder it is for cooperators to persist in structured populations. We further show that threshold group interactions could lead to the emergence of cooperation even in well-mixed populations. Here population structure sometimes inhibits cooperation for the threshold public goods game, where depending on the benefit to cost ratio, the outcomes are bistability or a monomorphic population of defectors or cooperators. Our results suggest, counterintuitively, that structured populations are not always beneficial for the evolution of cooperation for nonlinear group interactions.

  7. Inferences about ungulate population dynamics derived from age ratios

    Science.gov (United States)

    Harris, N.C.; Kauffman, M.J.; Mills, L.S.

    2008-01-01

    Age ratios (e.g., calf:cow for elk and fawn:doe for deer) are used regularly to monitor ungulate populations. However, it remains unclear what inferences are appropriate from this index because multiple vital rate changes can influence the observed ratio. We used modeling based on elk (Cervus elaphus) life-history to evaluate both how age ratios are influenced by stage-specific fecundity and survival and how well age ratios track population dynamics. Although all vital rates have the potential to influence calf:adult female ratios (i.e., calf:xow ratios), calf survival explained the vast majority of variation in calf:adult female ratios due to its temporal variation compared to other vital rates. Calf:adult female ratios were positively correlated with population growth rate (??) and often successfully indicated population trajectories. However, calf:adult female ratios performed poorly at detecting imposed declines in calf survival, suggesting that only the most severe declines would be rapidly detected. Our analyses clarify that managers can use accurate, unbiased age ratios to monitor arguably the most important components contributing to sustainable ungulate populations, survival rate of young and ??. However, age ratios are not useful for detecting gradual declines in survival of young or making inferences about fecundity or adult survival in ungulate populations. Therefore, age ratios coupled with independent estimates of population growth or population size are necessary to monitor ungulate population demography and dynamics closely through time.

  8. Neutron Star Population Dynamics; 1, Millisecond Pulsars

    CERN Document Server

    Cordes, J M; Chernoff, David F.

    1997-01-01

    We study the field millisecond pulsar (MSP) population to infer its intrinsic distribution in spin period and luminosity and to determine its spatial distribution within the Galaxy. Our likelihood analysis on data from extant surveys (22 pulsars with periods 0.65 ms (99% confidence), a period distribution proportional to P^{-2.0 +- 0.33} and a pseudo-luminosity distribution proportional to L_p^{-2.0 +- 0.2} (where L_p = flux density times distance^2, for L_p >= 1.1 mJy kpc^2). We find a vertical scale height 0.65{+0.16,-0.12} kpc. We use our results to estimate the total number and birthrate of MSPs in the disk of the Galaxy. We limit the density contribution of a diffuse halo-like component to <1% of the midplane value. The MSP velocity dispersion is smaller that that of young, long-period pulsars by about a factor of 5. Our best estimate of the 1D velocity kick that is unique to MSP evolution is approximately 40 km s^-1. We discuss the evolutionary relationship of MSPs and low-mass X-ray binaries and pr...

  9. Predicting when climate-driven phenotypic change affects population dynamics.

    Science.gov (United States)

    McLean, Nina; Lawson, Callum R; Leech, Dave I; van de Pol, Martijn

    2016-06-01

    Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that observe changes in one type of response typically assume that effects on population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates (e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we distinguish four mechanisms that can prevent lower-level responses from impacting population dynamics. Testable hypotheses were identified from the literature that suggest life-history and ecological characteristics which could predict when these mechanisms are likely to be important. A quantitative example on birds illustrates how, even with limited data and without fully-parameterized population models, new insights can be gained; differences among species in the impacts of climate-driven phenological changes on population growth were not explained by the number of broods or density dependence. Our approach helps to predict the types of species in which climate sensitivities of phenotypic traits have strong demographic and population consequences, which is crucial for conservation prioritization of data-deficient species. PMID:27062059

  10. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp.

    Directory of Open Access Journals (Sweden)

    Cécile Clavaud

    Full Text Available The bacterial and fungal communities associated with dandruff were investigated using culture-independent methodologies in the French subjects. The major bacterial and fungal species inhabiting the scalp subject's were identified by cloning and sequencing of the conserved ribosomal unit regions (16S for bacterial and 28S-ITS for fungal and were further quantified by quantitative PCR. The two main bacterial species found on the scalp surface were Propionibacterium acnes and Staphylococcus epidermidis, while Malassezia restricta was the main fungal inhabitant. Dandruff was correlated with a higher incidence of M. restricta and S. epidermidis and a lower incidence of P. acnes compared to the control population (p<0.05. These results suggested for the first time using molecular methods, that dandruff is linked to the balance between bacteria and fungi of the host scalp surface.

  11. Stochastic population dynamics of a montane ground-dwelling squirrel.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Hostetler

    Full Text Available Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990-2008 study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λ<1 for 9 out of 18 years. The stochastic population growth rate λ(s was 0.92, suggesting a declining population; however, the 95% CI on λ(s included 1.0 (0.52-1.60. Stochastic elasticity analysis showed that survival of adult females, followed by survival of juvenile females and litter size, were potentially the most influential vital rates; analysis of life table response experiments revealed that the same three life history variables made the largest contributions to year-to year changes in λ. Population viability analysis revealed that, when the influences of density dependence and immigration were not considered, the population had a high (close to 1.0 in 50 years probability of extinction. However, probability of extinction declined to as low as zero when density dependence and immigration were considered. Destabilizing effects of stochastic forces were counteracted by regulating effects of density dependence and rescue effects of immigration, which allowed our study population to bounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration.

  12. Stochastic population dynamics in populations of western terrestrial garter snakes with divergent life histories

    Science.gov (United States)

    Miller, David A.; Clark, W.R.; Arnold, S.J.; Bronikowski, A.M.

    2011-01-01

    Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (??s) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on ?? s. The magnitude of variation in the proportion of gravid females and its effect on ??s was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on ??s was 4- 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of divergent life

  13. Non-Culture-Based Analysis of Bacterial Populations from Patients with Chronic Rhinosinusitis

    OpenAIRE

    Power, Daniel A.; Burton, Jeremy P.; Chilcott, Chris N.; Tagg, John R.; Dawes, Patrick J.

    2005-01-01

    Middle meatus aspirates from patients with chronic rhinosinusitis were analyzed by bacterial culture, denaturing gradient gel electrophoresis (DGGE), and antibiotic sensitivity techniques. DGGE detected a greater bacterial diversity than culture methods. Although resistance to antibiotics was low, there was evidence of changes in the composition of the bacterial microbiota over time, and the presence of noncultured bacteria was demonstrated.

  14. Competitive Lotka-Volterra Population Dynamics with Jumps

    CERN Document Server

    Bao, Jianhai; Yin, Geroge; Yuan, Chenggui

    2011-01-01

    This paper considers competitive Lotka-Volterra population dynamics with jumps. The contributions of this paper are as follows. (a) We show stochastic differential equation (SDE) with jumps associated with the model has a unique global positive solution; (b) We discuss the uniform boundedness of $p$th moment with $p>0$ and reveal the sample Lyapunov exponents; (c) Using a variation-of-constants formula for a class of SDEs with jumps, we provide explicit solution for 1-dimensional competitive Lotka-Volterra population dynamics with jumps, and investigate the sample Lyapunov exponent for each component and the extinction of our $n$-dimensional model.

  15. Estimating spatio-temporal dynamics of size-structured populations

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Thygesen, Uffe Høgsbro; Andersen, Ken Haste; Beyer, Jan E.

    2014-01-01

    simple stock dynamics, to estimate simultaneously how size distributions and spatial distributions develop in time. We demonstrate the method for a cod population sampled by trawl surveys. Particular attention is paid to correlation between size classes within each trawl haul due to clustering of...... individuals with similar size. The model estimates growth, mortality and reproduction, after which any aspect of size-structure, spatio-temporal population dynamics, as well as the sampling process can be probed. This is illustrated by two applications: 1) tracking the spatial movements of a single cohort...

  16. Network evolution induced by the dynamical rules of two populations

    International Nuclear Information System (INIS)

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (Na and Nb) and preferred degree (κa and κba). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees (kbb) and (kab) presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal Na = Nb, the ratio of the restricted degree θ0 = (kab)/(kbb) appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t 1 = κb) the total number of links presents a linear evolution, where the two populations are indistinguishable and where θ0 = 1. Interestingly, in the intermediate time regime (defined for t12∝κa and for which θ0 = 5), the system reaches a transient stationary state, where the number of contacts among introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ0 = 3

  17. Population dynamics in the capitalist world-economy

    OpenAIRE

    Daniela Danna

    2014-01-01

    World-systems analysis has given scant attention to population dynamics. Overlooked are large-scale macrohistorical population trends and their microhistorical foundation on procreative decisions-decisions which are taken by a historically changing subject of procreation: local elders or other authorities, head(s) of the household, couples, and women. The discipline of demography is also not as helpful as it could be, given its basis in modernization theory, which fails to recognize intention...

  18. An individual-based model of zebrafish population dynamics accounting for energy dynamics.

    Directory of Open Access Journals (Sweden)

    Rémy Beaudouin

    Full Text Available Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model was coupled to an individual based model of zebrafish population dynamics (IBM model. Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding, it can already serve to predict the impact of compounds at the population level.

  19. Development of polyvinyl chloride biofilms for succession of selected marine bacterial populations.

    Science.gov (United States)

    Balasubramanian, V; Palanichamy, S; Subramanian, G; Rajaram, R

    2012-01-01

    Present investigation was made to bring out the pattern of biofilm formation by heterotrophic bacteria on nontoxic material, polyvinyl chloride (PVC) sheet fitted wooden rack that was immersed in seawater and the study was conducted in Tuticorin coast. Samplings were made over a period of 7 days with the following time period intervals: 30 min, 1, 2, 4, 24, 48, 72, 96, 120 and 144 hr. Bacterial enumeration was made by spread plate method on nutrient agar medium and characterization of bacterial isolates up to generic level was done. Gram-negative bacteria like Pseudomonas sp., Enterobacter sp., Aeromonas sp., Cytophaga sp. and Flavobacterium sp. were found to be the pioneer in colonizing the surface within 30 min and seven genera were represented in the biofilm. Among them two genera were found belonging to Gram-positive groups which included Micrococcus and Bacillus sp. The early stage biofilm i.e. up to 24th hr was wholly constituted by Gram-negative groups. However, the population density of Pseudomonas sp. was found to be higher (315 CFU) when compared to other Gram-negative forms. Occurrence of Gram-positive group was noted only at 48th hr old biofilm (28 to 150 CFU). The period between 48 and 96th hr was the transition where both the Gram-negative and Gram-positive groups co- existed. After 96th hr, the biofilm was found constituted only by Gram-positive groups. The isolates of early stage biofilm were found to produce allelopathic substance like bacteriocin. PMID:23033644

  20. Dynamic noise, chaos and parameter estimation in population biology

    OpenAIRE

    Stollenwerk, N.; Aguiar, M; Ballesteros, S.; Boto, J.; Kooi, B. W.; Mateus, L.

    2012-01-01

    We revisit the parameter estimation framework for population biological dynamical systems, and apply it to calibrate various models in epidemiology with empirical time series, namely influenza and dengue fever. When it comes to more complex models such as multi-strain dynamics to describe the virus–host interaction in dengue fever, even the most recently developed parameter estimation techniques, such as maximum likelihood iterated filtering, reach their computational limits. However, the fir...

  1. Emergence of Competitive Dominant Ammonia-Oxidizing Bacterial Populations in a Full-Scale Industrial Wastewater Treatment Plant

    OpenAIRE

    Layton, Alice C.; Dionisi, Hebe; Kuo, H.-W.; Robinson, Kevin G.; Garrett, Victoria M.; Meyers, Arthur; Sayler, Gary S.

    2005-01-01

    Ammonia-oxidizing bacterial populations in an industrial wastewater treatment plant were investigated with amoA and 16S rRNA gene real-time PCR assays. Nitrosomonas nitrosa initially dominated, but over time RI-27-type ammonia oxidizers, also within the Nitrosomonas communis lineage, increased from below detection to codominance. This shift occurred even though nitrification remained constant.

  2. Early life dynamics of the human gut virome and bacterial microbiome in infants.

    Science.gov (United States)

    Lim, Efrem S; Zhou, Yanjiao; Zhao, Guoyan; Bauer, Irma K; Droit, Lindsay; Ndao, I Malick; Warner, Barbara B; Tarr, Phillip I; Wang, David; Holtz, Lori R

    2015-10-01

    The early years of life are important for immune development and influence health in adulthood. Although it has been established that the gut bacterial microbiome is rapidly acquired after birth, less is known about the viral microbiome (or 'virome'), consisting of bacteriophages and eukaryotic RNA and DNA viruses, during the first years of life. Here, we characterized the gut virome and bacterial microbiome in a longitudinal cohort of healthy infant twins. The virome and bacterial microbiome were more similar between co-twins than between unrelated infants. From birth to 2 years of age, the eukaryotic virome and the bacterial microbiome expanded, but this was accompanied by a contraction of and shift in the bacteriophage virome composition. The bacteriophage-bacteria relationship begins from birth with a high predator-low prey dynamic, consistent with the Lotka-Volterra prey model. Thus, in contrast to the stable microbiome observed in adults, the infant microbiome is highly dynamic and associated with early life changes in the composition of bacteria, viruses and bacteriophages with age. PMID:26366711

  3. Bacterial dynamics during yearlong spontaneous fermentation for production of ngari, a dry fermented fish product of Northeast India.

    Science.gov (United States)

    Devi, Khunjamayum Romapati; Deka, Manab; Jeyaram, Kumaraswamy

    2015-04-16

    Ngari is the most popular traditionally processed non-salted fish product, prepared from sun-dried small cyprinid fish Puntius sophore (Ham.) in Manipur state of Northeast India. The microbial involvement in ngari production remained uncertain due to its low moisture content and yearlong incubation in anaerobically sealed earthen pots without any significant change in total microbial count. The culture-independent PCR-DGGE analysis used during this study confirmed a drastic bacterial community structural change in comparison to its raw material. To understand the bacterial dynamics during this dry fermentation, time series samples collected over a period of nine months through destructive sampling from two indigenous ngari production centres were analysed by using both culture-dependent and culture-independent molecular methods. A total of 210 bacteria isolated from the samples were identified by amplified ribosomal DNA restriction analysis (ARDRA) based grouping and 16S rRNA gene sequence similarity analysis. The dominant bacteria were Staphylococcus cohnii subsp. cohnii (38.0%), Tetragenococcus halophilus subsp. flandriensis (16.8%), a novel phylotype related to Lactobacillus pobuzihii (7.2%), Enterococcus faecium (7.2%), Bacillus indicus (6.3%) and Staphylococcus carnosus (3.8%). Distinct bacterial dynamics with the emergence of T. halophilus at third month (10(6)CFU/g), L. pobuzihii at sixth month (10(6)CFU/g), S. carnosus at three to six months (10(4)CFU/g) and B. indicus at six to nine months (10(5)CFU/g) in both the production centres was observed during ngari fermentation. However, the other two dominant bacteria S. cohnii and E. faecium were isolated throughout the fermentation with the population of 10(6)CFU/g and 10(4)CFU/g respectively. Culture-independent PCR-DGGE analysis further showed the presence of additional species, in which Kocuria halotolerans and Macrococcus caseolyticus disappeared during fermentation while Clostridium irregulare and

  4. Predicting population dynamics with analytical, simulation and supercomputer models

    Energy Technology Data Exchange (ETDEWEB)

    Onstad, D.W.

    1987-07-01

    A set of epizootiological models describing the influence of a microsporidian disease on the population dynamics of an herbivorous insect demonstrate the similarities and differences between the three major approaches now available for ecological modeling. Simulation modeling allows the incorporation of randomness or the timing of discrete events in the temporal dynamics. More complex models incorporating both temporal and spatial dynamics in variable and heterogeneous environments require the use of supercomputers. Under a number of realistic circumstances, the qualitative predictions of the approaches may differ.

  5. Dynamics of Two Populations with Different Birth Rates

    Science.gov (United States)

    Hoffmann, Julia; Pekalski, Andrzej

    We propose a simple model describing the dynamics of a system of two populations — more numerous natives and less numerous immigrants. The immigrants' birth rate is higher than that of the natives. Several modifications of this model taking into account changes of the birth rates due to external factors and/or possibility of contacts between the populations, are also introduced. The model is studied within two approaches — by solving a set of differential equations and through a Monte Carlo simulations. We show that the question of which population will eventually dominate depends on such factors as the probability of producing offsprings of mixed origin, assimilation of the immigrants, the ratio of the birth rates, initial numbers of the populations and the average age of an individual. In all, but two extreme cases, both populations will survive.

  6. Bacterial-biota dynamics of eight bryophyte species from different ecosystems

    OpenAIRE

    Koua, Faisal Hammad Mekky; Kimbara, Kazuhide; Tani, Akio

    2014-01-01

    Despite the importance of bryophyte-associated microorganisms in various ecological aspects including their crucial roles in the soil-enrichment of organic mass and N2 fixation, nonetheless, little is known about the microbial diversity of the bryophyte phyllospheres (epi-/endophytes). To get insights into bacterial community structures and their dynamics on the bryophyte habitats in different ecosystems and their potential biological roles, we utilized the 16S rRNA gene PCR-DGGE and subseque...

  7. A population-level model from the microscopic dynamics in Escherichia coli chemotaxis via Langevin approximation

    International Nuclear Information System (INIS)

    Recent extensive studies of Escherichia coli (E. coli) chemotaxis have achieved a deep understanding of its microscopic control dynamics. As a result, various quantitatively predictive models have been developed to describe the chemotactic behavior of E. coli motion. However, a population-level partial differential equation (PDE) that rationally incorporates such microscopic dynamics is still insufficient. Apart from the traditional Keller–Segel (K–S) equation, many existing population-level models developed from the microscopic dynamics are integro-PDEs. The difficulty comes mainly from cell tumbles which yield a velocity jumping process. Here, we propose a Langevin approximation method that avoids such a difficulty without appreciable loss of precision. The resulting model not only quantitatively reproduces the results of pathway-based single-cell simulators, but also provides new inside information on the mechanism of E. coli chemotaxis. Our study demonstrates a possible alternative in establishing a simple population-level model that allows for the complex microscopic mechanisms in bacterial chemotaxis

  8. Association between Toll-like receptor 9 gene polymorphisms and risk of bacterial meningitis in a Chinese population.

    Science.gov (United States)

    Wang, X H; Shi, H P; Li, F J

    2016-01-01

    We determined whether two common single nucleotide polymorphisms (SNPs) in the Toll-like receptor 9 gene (TLR9) (TLR9+2848 rs352140 and TLR9-1237 rs5743836) influenced susceptibility to bacterial meningitis in a Chinese population. The study comprised 126 patients with bacterial meningitis and 252 control subjects, all of whom were recruited from the Tuberculosis Hospital of Shanxi Province. Genotyping of TLR9+2848 rs352140 and TLR9-1237 rs5743836 was performed by polymerase chain reaction coupled with restriction fragment length polymorphism. Using logistic regression analysis, we found that individuals with the AA genotype were associated with an increased risk of bacterial meningitis compared with those with the GG genotype (OR = 0.43, 95%CI = 0.19-0.95; P = 0.03). In a recessive model, the AA genotype was correlated with an elevated risk of bacterial meningitis compared with the GG+GA genotype (OR = 0.49, 95%CI = 0.22-0.99; P = 0.04). However, no significant differences were observed in the association between the TLR9-1237 rs5743836 polymorphism and the risk of bacterial meningitis in the codominant, dominant, or recessive models. In conclusion, the results of our study suggest an association between the TLR9+2848 polymorphism and a reduced risk of bacterial meningitis in the codominant and recessive models. PMID:27525854

  9. Binary Populations and Stellar Dynamics in Young Clusters

    Science.gov (United States)

    Vanbeveren, D.; Belkus, H.; Van Bever, J.; Mennekens, N.

    2008-06-01

    We first summarize work that has been done on the effects of binaries on theoretical population synthesis of stars and stellar phenomena. Next, we highlight the influence of stellar dynamics in young clusters by discussing a few candidate UFOs (unconventionally formed objects) like intermediate mass black holes, η Car, ζ Pup, γ2 Velorum and WR 140.

  10. Predicting population and community dynamics: the type of aggregation matters

    NARCIS (Netherlands)

    Meyer, K.; Schiffers, T.; Münkemüller, T.; Schädler, M.; Calabrese, J.; Basset, A.; Breulmann, M.; Duquesne, S.; Hidding, B.; Huth, A.; Schöb, C.; Voorde, van de T.F.J.

    2010-01-01

    When investigating complex ecological dynamics at the population or community level, we necessarily need to abstract and aggregate ecological information. The way in which information is aggregated may be crucial for the outcome of the study. In this paper, we suggest that in addition to the traditi

  11. Network evolution induced by the dynamical rules of two populations

    Science.gov (United States)

    Platini, Thierry; Zia, R. K. P.

    2010-10-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (Na and Nb) and preferred degree (κa and \\kappa_b\\ll \\kappa_a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees langkbbrang and langkabrang presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal Na = Nb, the ratio of the restricted degree θ0 = langkabrang/langkbbrang appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ0 = 3.

  12. COMPARISON OF SAMPLING TECHNIQUES USED IN STUDYING LEPIDOPTERA POPULATION DYNAMICS

    Science.gov (United States)

    Four methods (light traps, foliage samples, canvas bands, and gypsy moth egg mass surveys) that are used to study the population dynamics of foliage-feeding Lepidoptera were compared for 10 species, including gypsy moth, Lymantria dispar L. Samples were collected weekly at 12 sit...

  13. Neuronal population dynamic model:An analytic approach

    Institute of Scientific and Technical Information of China (English)

    Wentao Huang; Licheng Jiao; Yuelei Xu; Shiping Ma; Jianhua Jia

    2009-01-01

    rom this,the stationary solution and the firing rate of the stationary states are given.Last,by the Fourier transform,the time dependent solution is also obtained.This method can be used to analyze the various dynamic behaviors of neuronal populations.

  14. Binary populations and stellar dynamics in young clusters

    CERN Document Server

    Vanbeveren, D; Van Bever, J; Mennekens, N

    2008-01-01

    We first summarize work that has been done on the effects of binaries on theoretical population synthesis of stars and stellar phenomena. Next, we highlight the influence of stellar dynamics in young clusters by discussing a few candidate UFOs (unconventionally formed objects) like intermediate mass black holes, Eta Carinae, Zeta Puppis, Gamma Velorum and WR 140.

  15. Population dynamics of light-limited phytoplankton : Microcosm experiments

    NARCIS (Netherlands)

    Huisman, Jef

    1999-01-01

    This paper investigates the extent to which the predictions of an elementary model for light-limited growth are matched by laboratory experiments with light-limited phytoplankton. The model and experiments link the population dynamics of phytoplankton species with changes in the light gradient cause

  16. THE DYNAMICS OF REINTRODUCING, SUPPLEMENTING AND CONTROLLING ENDANGERED PREDATOR POPULATIONS

    OpenAIRE

    Rondeau, Daniel

    1998-01-01

    A dynamic model is developed to analyze the reintroduction of endangered predators. Non-convexities and the conditions under which reintroduction is sub-optimal are studied. Following reintroduction, costly population control should be initiated before marginal animals impose net costs, providing an economic interpretation to changes in the sign of the shadow price.

  17. Dynamic laser speckle to detect motile bacterial response of Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Sendra, H [Laboratorio de Laser. Facultad de Ingenieria. Universidad Nacional de Mar del Plata, Juan B. Justo 4302. (7600) Mar del Plata (Argentina); Murialdo, S [Grupo de Ingenieria BioquImica. Departamento de Quimica. Facultad de Ingenieria. Universidad Nacional de Mar del Plata, Juan B. Justo 4302. (7600) Mar del Plata (Argentina); Passoni, L [Laboratorio de BioingenierIa. Facultad de Ingenieria. Universidad Nacional de Mar del Plata, Juan B. Justo 4302. (7600) Mar del Plata (Argentina)

    2007-11-15

    This proposal deals with the technique for detection of motile response of Pseudomonas aeruginosa using dynamic laser speckle or biospeckle as an alternative method. The study of bacterial displacement plays an essential role in biocatalysts processes and biodegradation. Hence, some biodegrading enzymes are benign catalytic that could be used for the production of industrially useful compounds as well as in wastewater treatments. This work presents an experimental set up and a computational process using frame sequences of dynamic laser speckle as a novel application. The objective was the detection of different levels of motility in bacteria. The encouraging results were achieved through a direct and non invasive observation method of the phenomenon.

  18. Lipid biomarkers and bacterial lipase activities as indicators of organic matter and bacterial dynamics in contrasted regimes at the DYFAMED site, NW Mediterranean

    Science.gov (United States)

    Bourguet, Nicolas; Goutx, Madeleine; Ghiglione, Jean-François; Pujo-Pay, Mireille; Mével, Geneviève; Momzikoff, André; Mousseau, Laure; Guigue, Catherine; Garcia, Nicole; Raimbault, Patrick; Pete, Romain; Oriol, Louise; Lefèvre, Dominique

    2009-08-01

    This study investigated the relationships between dissolved organic matter (DOM) composition and bacterial dynamics on short time scale during spring mesotrophic (March 2003) and summer oligotrophic (June 2003) regimes, in a 0-500 m depth water column with almost no advection, at the DYFAMED site, NW Mediterranean. DOM was characterized by analyzing dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and lipid class biotracers. Bacterial dynamic was assessed through the measurement of in situ bacterial lipase activity, abundance, production and bacterial community structure. We made the assumption that by coupling the ambient concentration of hydrolysable acyl-lipids with the measurement of their in situ bacterial hydrolysis rates (i.e. the free fatty acids release rate) would provide new insights about bacterial response to change in environmental conditions. The seasonal transition from spring to summer was accompanied by a significant accumulation of excess DOC (+5 μM) (ANOVA, plipolysis index and CDOM absorbance (from 0.24±0.17 to 0.39±0.13 and from 0.076±0.039 to 0.144±0.068; ANOVA, p<0.05, n=8, respectively), and the higher contribution of triglycerides, wax esters and phospholipids (from <5% to 12-31%) to the lipid pool reflected the change in the DOM quality. In addition to a strong increase of bacterial lipase activity per cell (51.4±29.4-418.3±290.6 Ag C cell -1 h -1), a significant percentage of ribotypes (39%) was different between spring and summer in the deep chlorophyll maximum (DCM) layer in particular, suggesting a shift in the bacterial community structure due to the different trophic conditions. At both seasons, in the chlorophyll layers, diel variations of DOM and bacterial parameters reflected a better bioavailability and/or DOM utilization by bacteria at night (the ratio of free fatty acids release rate to bacterial carbon demand decreased), most likely related to the zooplankton trophic behaviour. In mesotrophic

  19. Evolutionary dynamics of group interactions on structured populations: A review

    CERN Document Server

    Perc, Matjaz; Szolnoki, Attila; Floría, Luis M; Moreno, Yamir; 10.1098/rsif.2012.0997

    2013-01-01

    Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and nonliving matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proven valuable for studying pattern formation, equilibrium selection, and self-organisation in evolutionary games. Here we review recent advances in the study of evolutionary dynamics of group interactions on structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory...

  20. Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Bottos, Eric M; Woo, Anthony C; Zawar-Reza, Peyman; Pointing, Stephen B; Cary, Stephen C

    2014-01-01

    Bacteria are assumed to disperse widely via aerosolized transport due to their small size and resilience. The question of microbial endemicity in isolated populations is directly related to the level of airborne exogenous inputs, yet this has proven hard to identify. The ice-free terrestrial ecosystem of Antarctica, a geographically and climatically isolated continent, was used to interrogate microbial bio-aerosols in relation to the surrounding ecology and climate. High-throughput sequencing of bacterial ribosomal RNA (rRNA) genes was combined with analyses of climate patterns during an austral summer. In general terms, the aerosols were dominated by Firmicutes, whereas surrounding soils supported Actinobacteria-dominated communities. The most abundant taxa were also common to aerosols from other continents, suggesting that a distinct bio-aerosol community is widely dispersed. No evidence for significant marine input to bioaerosols was found at this maritime valley site, instead local influence was largely from nearby volcanic sources. Back trajectory analysis revealed transport of incoming regional air masses across the Antarctic Plateau, and this is envisaged as a strong selective force. It is postulated that local soil microbial dispersal occurs largely via stochastic mobilization of mineral soil particulates. PMID:24121801

  1. The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle

    OpenAIRE

    Eric Pinloche; Neil McEwan; Jean-Philippe Marden; Corinne Bayourthe; Eric Auclair; C Jamie Newbold

    2013-01-01

    It has been suggested that the ability of live yeast to improve milk yield and weight gain in cattle is because the yeast stimulates bacterial activity within the rumen. However it remains unclear if this is a general stimulation of all species or a specific stimulation of certain species. Here we characterised the change in the bacterial population within the rumen of cattle fed supplemental live yeast. Three cannulated lactating cows received a daily ration (24 kg/d) of corn silage (61% of ...

  2. Diversity Waves in Collapse-Driven Population Dynamics.

    Directory of Open Access Journals (Sweden)

    Sergei Maslov

    2015-09-01

    Full Text Available Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe reduction in size of the population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g. by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is characterized by cyclic ''diversity waves'' triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances have bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak--species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.

  3. Diversity Waves in Collapse-Driven Population Dynamics.

    Science.gov (United States)

    Maslov, Sergei; Sneppen, Kim

    2015-09-01

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe reduction in size of the population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g. by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is characterized by cyclic ''diversity waves'' triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances have bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak--species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies. PMID:26367172

  4. An age structured model for obesity prevalence dynamics in populations

    Directory of Open Access Journals (Sweden)

    Gilberto González Parra

    2010-08-01

    Full Text Available Objective. Modeling the correlation of the development of obesity in a population with age and time and predict the dynamics of the correlation of the development of obesity in a population with age and time under different scenarios in Valencia (Spain. Materials and methods. An age structured mathematical model is used to describe the future dynamics of obesity prevalence for different ages in human population with excess weight. Simulation of the model with parameters estimated using the Health Survey of the Region of Valencia 2000 (4.319 interviews and Health Survey of the Region of Valencia 2005 (4.012 interviews. The model considers only overweight and obese populations since these subpopulations are the most relevant on obesity health concern. Results. The model allows predicting and studying the prevalence of obesity for each age. Results showed an increasing trend of obesity in the following years in well accordance with the trend observed in several countries. Conclusions. Based on the numerical simulations it is possible to conclude that the age structured mathematical model is suitable to forecast the obesity epidemic in each age group in different countries. Additionally, this type of models may be applied to study other characteristics of other populations such animal populations.

  5. The population dynamics of an endemic collectible cactus

    Science.gov (United States)

    Mandujano, María C.; Bravo, Yolotzin; Verhulst, Johannes; Carrillo-Angeles, Israel; Golubov, Jordan

    2015-02-01

    Astrophytum is one of most collected genera in the cactus family. Around the world several species are maintained in collections and yearly, several plants are taken from their natural habitats. Populations of Astorphytum capricorne are found in the northern Chihuahuan desert, Mexico, and as many endemic cactus species, it has a highly restricted habitat. We conducted a demographic study from 2008 to 2010 of the northern populations found at Cuatro Ciénegas, Mexico. We applied matrix population models, included simulations, life table response experiments and descriptions of the population dynamics to evaluate the current status of the species, and detect key life table stages and demographic processes. Population growth rate decreased in both years and only 4% individual mortality can be attributed to looting, and a massive effort is needed to increase seedling recruitment and reduce adult mortality. The fate of individuals differed between years even having the same annual rainfall mainly in accentuated stasis, retrogression and high mortality in all size classes, which coupled with low seed production, no recruitment and collection of plants are the causes contributing to population decline, and hence, increase the risk in which A. capricorne populations are found. Reintroduction of seedlings and lowering adult mortality are urgently needed to revert the alarming demographic condition of A. capricorne populations.

  6. Impact of Spontaneous Prophage Induction on the Fitness of Bacterial Populations and Host-Microbe Interactions

    OpenAIRE

    Nanda, Arun M.; Thormann, Kai; Frunzke, Julia

    2014-01-01

    Bacteriophages and genetic elements, such as prophage-like elements, pathogenicity islands, and phage morons, make up a considerable amount of bacterial genomes. Their transfer and subsequent activity within the host's genetic circuitry have had a significant impact on bacterial evolution. In this review, we consider what underlying mechanisms might cause the spontaneous activity of lysogenic phages in single bacterial cells and how the spontaneous induction of prophages can lead to competiti...

  7. Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste.

    Science.gov (United States)

    Ibekwe, A M; Ma, J; Murinda, Shelton; Reddy, G B

    2016-02-15

    Constructed wetlands are generally used for the removal of waste from contaminated water. In the swine production system, wastes are traditionally flushed into an anaerobic lagoon which is then sprayed on agricultural fields. However, continuous spraying of lagoon wastewater on fields can lead to high N and P accumulations in soil or lead to runoff which may contaminate surface or ground water with pathogens and nutrients. In this study, continuous marsh constructed wetland was used for the removal of contaminants from swine waste. Using pyrosequencing, we assessed bacterial composition within the wetland using principal coordinate analysis (PCoA) which showed that bacterial composition from manure influent and lagoon water were significantly different (P=0.001) from the storage pond to the final effluent. Canonical correspondence analysis (CCA) showed that different bacterial populations were significantly impacted by ammonium--NH4 (P=0.035), phosphate--PO4(3-) (P=0.010), chemical oxygen demand--COD (P=0.0165), total solids--TS (P=0.030), and dissolved solids--DS (P=0.030) removal, with 54% of the removal rate explained by NH4+PO4(3-) according to a partial CCA. Our results showed that different bacterial groups were responsible for the composition of different wetland nutrients and decomposition process. This may be the major reason why most wetlands are very efficient in waste decomposition. PMID:26657250

  8. Paths and patterns: the biology and physics of swimming bacterial populations

    Science.gov (United States)

    Kessler, J. O.; Strittmatter, R. P.; Swartz, D. L.; Wiseley, D. A.; Wojciechowski, M. F.

    1995-01-01

    The velocity distribution of swimming micro-organisms depends on directional cues supplied by the environment. Directional swimming within a bounded space results in the accumulation of organisms near one or more surfaces. Gravity, gradients of chemical concentration and illumination affect the motile behaviour of individual swimmers. Concentrated populations of organisms scatter and absorb light or consume molecules, such as oxygen. When supply is one-sided, consumption creates gradients; the presence of the population alters the intensity and the symmetry of the environmental cues. Patterns of cues interact dynamically with patterns of the consumer population. In suspensions, spatial variations in the concentration of organisms are equivalent to variations of mean mass density of the fluid. When organisms accumulate in one region whilst moving away from another region, the force of gravity causes convection that translocates both organisms and dissolved substances. The geometry of the resulting concentration-convection patterns has features that are remarkably reproducible. Of interest for biology are (1) the long-range organisation achieved by organisms that do not communicate, and (2) that the entire system, consisting of fluid, cells, directional supply of consumables, boundaries and gravity, generates a dynamic that improves the organisms' habitat by enhancing transport and mixing. Velocity distributions of the bacterium Bacillus subtilis have been measured within the milieu of the spatially and temporally varying oxygen concentration which they themselves create. These distributions of swimming speed and direction are the fundamental ingredients required for a quantitative mathematical treatment of the patterns. The quantitative measurement of swimming behaviour also contributes to our understanding of aerotaxis of individual cells.

  9. Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature

    KAUST Repository

    Bargiela, Rafael

    2015-06-29

    Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills.

  10. Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar.

    Science.gov (United States)

    Li, Sha; Li, Pan; Liu, Xiong; Luo, Lixin; Lin, Weifeng

    2016-05-01

    Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites. PMID:26754813

  11. Integrating population dynamics into mapping human exposure to seismic hazard

    Directory of Open Access Journals (Sweden)

    S. Freire

    2012-11-01

    Full Text Available Disaster risk is not fully characterized without taking into account vulnerability and population exposure. Assessment of earthquake risk in urban areas would benefit from considering the variation of population distribution at more detailed spatial and temporal scales, and from a more explicit integration of this improved demographic data with existing seismic hazard maps. In the present work, "intelligent" dasymetric mapping is used to model population dynamics at high spatial resolution in order to benefit the analysis of spatio-temporal exposure to earthquake hazard in a metropolitan area. These night- and daytime-specific population densities are then classified and combined with seismic intensity levels to derive new spatially-explicit four-class-composite maps of human exposure. The presented approach enables a more thorough assessment of population exposure to earthquake hazard. Results show that there are significantly more people potentially at risk in the daytime period, demonstrating the shifting nature of population exposure in the daily cycle and the need to move beyond conventional residence-based demographic data sources to improve risk analyses. The proposed fine-scale maps of human exposure to seismic intensity are mainly aimed at benefiting visualization and communication of earthquake risk, but can be valuable in all phases of the disaster management process where knowledge of population densities is relevant for decision-making.

  12. Life history correlates of fecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus.

    Science.gov (United States)

    Benskin, Clare McW H; Rhodes, Glenn; Pickup, Roger W; Mainwaring, Mark C; Wilson, Kenneth; Hartley, Ian R

    2015-02-01

    Very little is known about the normal gastrointestinal flora of wild birds, or how it might affect or reflect the host's life-history traits. The aim of this study was to survey the species richness of bacteria in the feces of a wild population of blue tits Cyanistes caeruleus and to explore the relationships between bacterial species richness and various life-history traits, such as age, sex, and reproductive success. Using PCR-TGGE, 55 operational taxonomic units (OTUs) were identified in blue tit feces. DNA sequencing revealed that the 16S rRNA gene was amplified from a diverse range of bacteria, including those that shared closest homology with Bacillus licheniformis, Campylobacter lari, Pseudomonas spp., and Salmonella spp. For adults, there was a significant negative relationship between bacterial species richness and the likelihood of being detected alive the following breeding season; bacterial richness was consistent across years but declined through the breeding season; and breeding pairs had significantly more similar bacterial richness than expected by chance alone. Reduced adult survival was correlated with the presence of an OTU most closely resembling C. lari; enhanced adult survival was associated with an OTU most similar to Arthrobacter spp. For nestlings, there was no significant change in bacterial species richness between the first and second week after hatching, and nestlings sharing the same nest had significantly more similar bacterial richness. Collectively, these results provide compelling evidence that bacterial species richness was associated with several aspects of the life history of their hosts. PMID:25750710

  13. Efecto de la adición de materia orgánica sobre la dinámica poblacional bacteriana del suelo en cultivos de papa y maíz Effect of addition of organic matter on bacterial population dynamics of soil in potato and corn crops

    Directory of Open Access Journals (Sweden)

    David García Ventocilla

    2012-02-01

    Full Text Available Se determinó el efecto de la fertilización orgánica sobre las poblaciones bacterianas del suelo en cultivos de papa y maíz durante la campaña agrícola 2008-2009 en terrenos de cuatro localidades del Valle del Mantaro: INIA Santa Ana (Huancayo, en la EEA El Mantaro (Jauja, Vista Alegre y Huayao (ambos en Chupaca. En estos lugares se instalaron parcelas experimentales de papa (Solanum tuberosum L. Var. Canchan y maíz (Zea maíz L. Var. Cusco mejorado bajo abonamiento orgánico (vacuno, ovino, cuy, fertilización química y sin fertilización alguna (testigo. Para dicho efecto se empleó las técnicas de la Electroforesis en Gel de Gradiente Desnaturalizante (DGGE con amplificación de la región 968 – 1401 del rDNA 16S. Los resultados obtenidos muestran que la variabilidad de las poblaciones bacterianas en los suelos está afectado directamente por el tipo de cultivo mas no por el tipo de fertilización ya que el efecto de este último resulta variable para cada zona experimental y cultivo encontrándose solo en la zona experimental de Chupaca - Maíz una segregación de los tratamientos con fertilización orgánica de los tratamientos químicos. También se ha encontrado que la variación de las comunidades microbianas no sufre variaciones significativas en los suelos con cultivos de maíz obteniéndose coeficientes de similaridad para todos los tratamientos por encima del 80% mientras que para los tratamientos en los cultivos de papa dicho coeficiente fue de tan solo del 60%.The effect of organic fertilization on soil bacterial populations in potato and corn crops during the crop season 2008-2009 at four sites in the Mantaro Valley locations: INIA Santa Ana (Huancayo, the EEA El Mantaro (Jauja, Vista Alegre and Huayao (both in Chupaca. In these places were set up experimental plots of potato (Solanum tuberosum L. var. Canchan and corn (Zea maize L. Var. Cusco enhanced under organic manure (cattle, sheep, guinea pig, chemical fertilizer

  14. Bacterial enteropathogens associated with diarrhea in a rural population of Haiti

    Directory of Open Access Journals (Sweden)

    Jackson JC

    2011-09-01

    Full Text Available John C Jackson, Anthony L Farone, Mary B Farone Biology Department, Middle Tennessee State University, Murfreesboro, Tennessee, USA Purpose: Diarrheal disease is one of the leading causes of morbidity in developing countries. To further understand the epidemiology of diarrheal disease among a rural population surrounding Robillard, Haiti, fecal swabs from patients with diarrhea were screened for the presence of enteropathogenic bacteria. Patients and methods: Fecal swabs were collected from 34 patients with signs and symptoms of diarrhea and stored in BBLTM Cary-Blair transport medium (Becton, Dickinson and Company, Sparks, MD until transit to the USA. Swab material was inoculated on to different enrichment and selective agars for incubation. Fermenting and nonfermenting bacteria that grew on the enteric selection media were identified by the BBLTM CrystalTM Enteric/Nonferementing Identification system (Becton, Dickinson and Company. Organisms identified as Escherichia coli were further screened for the presence of virulence factors by polymerase chain reaction (PCR. Results: Of 34 patients, no Campylobacter, Shigella, Salmonella, or Vibrio spp. were isolated from swabs transported to the USA for culture. Of 73 E. coli isolates cultured from the swabs, one enteropathogenic strain of E. coli was identified by multiplex PCR. Escherichia fergusonii and Cronobacter sakazakii, both potential gastrointestinal pathogens, were also isolated from patient stools. Conclusion: This study was undertaken to determine if bacterial enteropathogens could be detected in the stools of patients suffering from diarrhea or dysentery and, in the absence of sufficient facilities, rectal swabs could be transported to the USA for culture. Although several genera of overt enteropathogens were not detected, one enteropathogenic E. coli and other pathogenic enterobacteriaceae were successfully cultured and identified. Keywords: Escherichia, Cronobacter, diarrheagenic, stool

  15. Effect of temperature on the population dynamics of Aedes aegypti

    Science.gov (United States)

    Yusoff, Nuraini; Tokachil, Mohd Najir

    2015-10-01

    Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.

  16. Critical mass of bacterial populations and critical temperature of self-gravitating Brownian particles in two dimensions

    CERN Document Server

    Chavanis, Pierre-Henri

    2007-01-01

    We show that the critical mass M_c=8\\pi of bacterial populations in two dimensions in the chemotactic problem is the counterpart of the critical temperature T_c=GMm/4k_B of self-gravitating Brownian particles in two-dimensional gravity. We obtain these critical values by using the Virial theorem or by considering stationary solutions of the Keller-Segel model and Smoluchowski-Poisson system. We also consider the case of one dimensional systems and develop the connection with the Burgers equation. Finally, we discuss the evolution of the system as a function of M or T in bounded and unbounded domains in dimensions d=1, 2 and 3 and show the specificities of each dimension. This paper aims to point out the numerous analogies between bacterial populations, self-gravitating Brownian particles and, occasionally, two-dimensional vortices.

  17. Quantum quench dynamics and population inversion in bilayer graphene

    OpenAIRE

    Dóra, Balázs; Castro, Eduardo V.; Moessner, Roderich

    2010-01-01

    The gap in bilayer graphene (BLG) can directly be controlled by a perpendicular electric field. By tuning the field through zero at a finite rate in neutral BLG, excited states are produced. Due to screening, the resulting dynamics is determined by coupled non-linear Landau-Zener models. The generated defect density agrees with Kibble-Zurek theory in the presence of subleading logarithmic corrections. After the quench, population inversion occurs for wavevectors close to the Dirac point. This...

  18. On a New Mechanism of Pattern Formation in Population Dynamics

    OpenAIRE

    Génieys, Stéphane; Volpert, Vitaly; Auger, Pierre

    2005-01-01

    We study a reaction-diffusion equation with an integral term describing nonlocal consumption of resources. We show that a homogeneous equilibrium can lose its stability resulting in appearance of stationary spatial structures. It is a new mechanism of pattern formation in population dynamics that can explain emergence of biological species due to intra-specific competition and random mutations.Travelling waves connecting an unstable homogeneous equilibrium and a periodic in space stationary s...

  19. Product Innovation and Population Dynamics in the German Insurance Market

    OpenAIRE

    Menhart, Michael; Pyka, Andreas; Ebersberger, Bernd; Hanusch, Horst

    2003-01-01

    Empirical research in organizational ecology has mainly focused on analyzing founding and mortality rates using life history data of the organizations. We try to extend this approach in our study in a number of ways. In contrast to most empirical studies in organizational ecology, we chose a population of service organizations, in particular the German insurance companies, the development dynamics of which are rather obvious in the innovative activities of existing organizations than in found...

  20. Central-marginal population dynamics in species invasions

    OpenAIRE

    Qinfeng eGuo

    2014-01-01

    The species’ range limits and associated central-marginal (C-M; i.e., from species range center to margin) population dynamics continue to draw increasing attention because of their importance for current emerging issues such as biotic invasions and epidemic diseases under global change. Previous studies have mainly focused on species borders and C-M process in natural settings for native species. More recently, growing efforts are devoted to examine the C-M patterns and process for invasiv...

  1. Development of paradigms for the dynamics of structured populations

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This is a technical progress report on the dynamics of predator-prey systems in a patchy environment. A new phenomenon that might contribute to outbreaks in systems of discrete patches has been determined using a discrete time model with both spatial and age structure. A model for a single species in a patchy environment with migration, local population growth and disasters with in patches has been formulated and a brief description is included.

  2. Learning to Estimate Dynamical State with Probabilistic Population Codes.

    Science.gov (United States)

    Makin, Joseph G; Dichter, Benjamin K; Sabes, Philip N

    2015-11-01

    Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH)-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states. PMID:26540152

  3. STOCHASTIC WEALTH DYNAMICS AND RISK MANAGEMENT AMONG A POOR POPULATION

    OpenAIRE

    Lybbert, Travis J.; Barrett, Christopher B.; Desta, Solomon; Coppock, D. Layne

    2002-01-01

    The literature on economic growth and development has focused considerable attention on questions of risk management and the possibility of multiple equilibria associated with poverty traps. We use herd history data collected among pastoralists in southern Ethiopia to study stochastic wealth dynamics among a very poor population. These data yield several novel findings. Although covariate rainfall shocks plainly matter, household-specific factors, including own herd size, account for most obs...

  4. Network Evolution Induced by the Dynamical Rules of Two Populations

    CERN Document Server

    Platini, T

    2010-01-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely; extrovert ($a$) and introvert ($b$). In our model, each group is characterized by its size ($N_a$ and $N_b$) and preferred degree ($\\kappa_a$ and $\\kappa_b\\ll\\kappa_a$). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees $\\moyenne{k_{bb}}$ and $\\moyenne{k_{ab}}$ presents three time regimes and a non monotonic behavior well captured by our theory. Surprisingly, when the population size are equal $N_a=N_b$, the ratio of the restricted degree $\\theta_0=\\moyenne{k_{ab}}/\\moyenne{k_{bb}}$ appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by $t

  5. On the population dynamics of the malaria vector

    International Nuclear Information System (INIS)

    A deterministic differential equation model for the population dynamics of the human malaria vector is derived and studied. Conditions for the existence and stability of a non-zero steady state vector population density are derived. These reveal that a threshold parameter, the vectorial basic reproduction number, exist and the vector can establish itself in the community if and only if this parameter exceeds unity. When a non-zero steady state population density exists, it can be stable but it can also be driven to instability via a Hopf Bifurcation to periodic solutions, as a parameter is varied in parameter space. By considering a special case, an asymptotic perturbation analysis is used to derive the amplitude of the oscillating solutions for the full non-linear system. The present modelling exercise and results show that it is possible to study the population dynamics of disease vectors, and hence oscillatory behaviour as it is often observed in most indirectly transmitted infectious diseases of humans, without recourse to external seasonal forcing. (author)

  6. Connection between dynamically derived IMF normalisation and stellar population parameters

    CERN Document Server

    McDermid, Richard M; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2014-01-01

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the Atlas3D project. We study trends between our dynamically-derived IMF normalisation and absorption line strengths, and interpret these via single stellar population- (SSP-) equivalent ages, abundance ratios (measured as [alpha/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalisation of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of normalisation at a given population parameter. As a result, we find weak IMF-[alpha/Fe] and IMF-age correlations, and no significant IMF-[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalisation via low-mass star demographics inferred through stellar spectra...

  7. Border Collision Bifurcations in a Generalized Model of Population Dynamics

    Directory of Open Access Journals (Sweden)

    Lilia M. Ladino

    2016-01-01

    Full Text Available We analyze the dynamics of a generalized discrete time population model of a two-stage species with recruitment and capture. This generalization, which is inspired by other approaches and real data that one can find in literature, consists in considering no restriction for the value of the two key parameters appearing in the model, that is, the natural death rate and the mortality rate due to fishing activity. In the more general case the feasibility of the system has been preserved by posing opportune formulas for the piecewise map defining the model. The resulting two-dimensional nonlinear map is not smooth, though continuous, as its definition changes as any border is crossed in the phase plane. Hence, techniques from the mathematical theory of piecewise smooth dynamical systems must be applied to show that, due to the existence of borders, abrupt changes in the dynamic behavior of population sizes and multistability emerge. The main novelty of the present contribution with respect to the previous ones is that, while using real data, richer dynamics are produced, such as fluctuations and multistability. Such new evidences are of great interest in biology since new strategies to preserve the survival of the species can be suggested.

  8. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network

    KAUST Repository

    El-Chakhtoura, Joline

    2015-05-01

    Understanding the biological stability of drinking water distribution systems is imperative in the framework of process control and risk management. The objective of this research was to examine the dynamics of the bacterial community during drinking water distribution at high temporal resolution. Water samples (156 in total) were collected over short time-scales (minutes/hours/days) from the outlet of a treatment plant and a location in its corresponding distribution network. The drinking water is treated by biofiltration and disinfectant residuals are absent during distribution. The community was analyzed by 16S rRNA gene pyrosequencing and flow cytometry as well as conventional, culture-based methods. Despite a random dramatic event (detected with pyrosequencing and flow cytometry but not with plate counts), the bacterial community profile at the two locations did not vary significantly over time. A diverse core microbiome was shared between the two locations (58-65% of the taxa and 86-91% of the sequences) and found to be dependent on the treatment strategy. The bacterial community structure changed during distribution, with greater richness detected in the network and phyla such as Acidobacteria and Gemmatimonadetes becoming abundant. The rare taxa displayed the highest dynamicity, causing the major change during water distribution. This change did not have hygienic implications and is contingent on the sensitivity of the applied methods. The concept of biological stability therefore needs to be revised. Biostability is generally desired in drinking water guidelines but may be difficult to achieve in large-scale complex distribution systems that are inherently dynamic.

  9. IMF shape constraints from stellar populations and dynamics from CALIFA

    CERN Document Server

    Lyubenova, M; van de Ven, G; Falcón-Barroso, J; Galbany, L; Gallazzi, A; García-Benito, R; Delgado, R González; Husemann, B; La Barbera, F; Marino, R A; Mast, D; Mendez-Abreu, J; Peletier, R F P; Sánchez-Blázquez, P; Sánchez, S F; Trager, S C; Bosch, R C E van den; Vazdekis, A; Walcher, C J; Zhu, L; Zibetti, S; Ziegler, B; Bland-Hawthorn, J

    2016-01-01

    In this letter we describe how we use stellar dynamics information to constrain the shape of the stellar IMF in a sample of 27 early-type galaxies from the CALIFA survey. We obtain dynamical and stellar mass-to-light ratios, $\\Upsilon_\\mathrm{dyn}$ and $\\Upsilon_{\\ast}$, over a homogenous aperture of 0.5~$R_{e}$. We use the constraint $\\Upsilon_\\mathrm{dyn} \\ge \\Upsilon_{\\ast}$ to test two IMF shapes within the framework of the extended MILES stellar population models. We rule out a single power law IMF shape for 75% of the galaxies in our sample. Conversely, we find that a double power law IMF shape with a varying high-mass end slope is compatible (within 1$\\sigma$) with 95% of the galaxies. We also show that dynamical and stellar IMF mismatch factors give consistent results for the systematic variation of the IMF in these galaxies.

  10. Effect of manure and NPK to increase soil bacterial population of Azotobacter and Azospirillus in chili (Capsicum annum cultivation

    Directory of Open Access Journals (Sweden)

    SUPRIYADI

    2009-07-01

    Full Text Available Mujiyati, Supriyadi. 2009. Effect of manure and NPK to increase soil bacterial population of Azotobacter and Azospirillum in chili (Capsicum annum cultivation. Nusantara Bioscience 1: 59-64. The objectives of this research were to find out the increase number of two bacterials populations, Azotobacter and Azospirillum, due to the use of manure fertilizer. The exsperiment was conducted using group randomly designed with two treatments. The plant populations were treated (i whithout fertilizer as the control, (ii with manure fertilizer, and (iii with NPK fertilizer. Data was experimentally collected by planting chili in several plots treated by manure, with three replications. The field experiment was conducted in Gathak Village, Karangnongko Sub-district, Klaten District, Central Java. The data collected consist of the total population of Azotobacter and Azospirillum, nitrogen content in soil and the chili yield. The primary data of research were analyzed using ANOVA test and followed by LSD test, with the degree of significance by 95% .The results showed that the manure fertilizer can increase the population of bacteria as many as 0.02% (Azotobacter and 0.46% (Azospirillum when they were compared to the control one. So that it can increase the soil fertility when they were used in long time. Therefore increasing the nutrient availability in the soil was occurred. Application of manure fertilizer could increase the total nitrogen content in the soil and it is very useful for the fertilizing of plants.

  11. Dynamics of different bacterial communities are capable of generating sustainable electricity from microbial fuel cells with organic waste.

    Science.gov (United States)

    Yamamoto, Shuji; Suzuki, Kei; Araki, Yoko; Mochihara, Hiroki; Hosokawa, Tetsuya; Kubota, Hiroko; Chiba, Yusuke; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki

    2014-01-01

    The relationship between the bacterial communities in anolyte and anode biofilms and the electrochemical properties of microbial fuel cells (MFCs) was investigated when a complex organic waste-decomposing solution was continuously supplied to MFCs as an electron donor. The current density increased gradually and was maintained at approximately 100 to 150 mA m(-2). Polarization curve analyses revealed that the maximum power density was 7.4 W m(-3) with an internal resistance of 110 Ω. Bacterial community structures in the organic waste-decomposing solution and MFCs differed from each other. Clonal analyses targeting 16S rRNA genes indicated that bacterial communities in the biofilms on MFCs developed to specific communities dominated by novel Geobacter. Multidimensional scaling analyses based on DGGE profiles revealed that bacterial communities in the organic waste-decomposing solution fluctuated and had no dynamic equilibrium. Bacterial communities on the anolyte in MFCs had a dynamic equilibrium with fluctuations, while those of the biofilm converged to the Geobacter-dominated structure. These bacterial community dynamics of MFCs differed from those of control-MFCs under open circuit conditions. These results suggested that bacterial communities in the anolyte and biofilm have a gentle symbiotic system through electron flow, which resulted in the advance of current density from complex organic waste. PMID:24789988

  12. Risk factors for bacterial vaginosis in pregnancy: a population-based study on Danish women

    DEFF Research Database (Denmark)

    Thorsen, Poul; Vogel, Ida; Molsted, Kirsten;

    2006-01-01

    .5, homogenous discharge, clue cells, and positive amine test). Data were collected from three questionnaires completed during the second and third trimesters and correlated with the diagnosis of bacterial vaginosis. Crude and adjusted relative risks (reproductive, medical, behavioral, sexual, and...

  13. Bacterial populations on brewery filling hall surfaces as revealed by next-generation sequencing.

    Science.gov (United States)

    Priha, Outi; Raulio, Mari; Maukonen, Johanna; Vehviläinen, Anna-Kaisa; Storgårds, Erna

    2016-01-01

    Due to the presence of moisture and nutrients, brewery filling line surfaces are susceptible to unwanted microbial attachment. Knowledge of the attaching microbes will aid in designing hygienic control of the process. In this study the bacterial diversity present on brewery filling line surfaces was revealed by next generation sequencing. The two filling lines studied maintained their characteristic bacterial community throughout three sampling times (13-163 days). On the glass bottle line, γ-proteobacteria dominated (35-82% of all OTUs), whereas on the canning line α-, β- and γ-proteobacteria and actinobacteria were most common. The most frequently detected genera were Acinetobacter, Propinobacterium and Pseudomonas. The halophilic genus Halomonas was commonly detected, which might be due to its tolerance to alkaline foam cleaners. This study has revealed a detailed overall picture of the bacterial groups present on filling line surfaces. Further effort should be given to determine the efficacy of washing procedures on different bacterial groups. PMID:27064426

  14. DEGRADATION OF PROPANIL BY BACTERIAL ISOLATES AND MIXED POPULATIONS FROM A PRISTINE LAKE

    Science.gov (United States)

    The microbial transformation rates of propanil, a commonly used herbicide, were investigated using water from a pristine lake in northeast Georgia. Microbial degradation rates were measured using natural water microflora amended with five bacterial species (Aerobacter aerogenes, ...

  15. Spatial structure and chaos in insect population dynamics

    Science.gov (United States)

    Hassell, Michael P.; Comins, Hugh N.; Mayt, Robert M.

    1991-09-01

    MOST environments are spatially subdivided, or patchy, and there has been much interest in the relationship between the dynamics of populations at the local and regional (metapopulation) scales1. Here we study mathematical models for host-parasitoid interactions, where in each generation specified fractions (µN and µp, respectively) of the host and parasitoid subpopulations in each patch move to adjacent patches; in most previous work, the movement is not localized but is to any other patch2. These simple and biologically sensible models with limited diffusive dispersal exhibit a remarkable range of dynamic behaviour: the density of the host and parasitoid subpopulations in a two-dimensional array of patches may exhibit complex patterns of spiral waves or spatially chaotic variation, they may show static 'crystal lattice' patterns, or they may become extinct. This range of behaviour is obtained with the local dynamics being deterministically unstable, with a constant host reproductive rate and no density dependence in the movement patterns. The dynamics depend on the host reproductive rate, and on the values of the parameters µN and µp. The results are relatively insensitive to the details of the interactions; we get essentially the same results from the mathematically-explicit Nicholon-Bailey model of host-parasitoid interactions, and from a very general 'cellular automaton' model in which only qualitative rules are specified. We conclude that local movement in a patchy environment can help otherwise unstable host and parasitoid populations to persist together, but that the deterministically generated spatial patterns in population density can be exceedingly complex (and sometimes indistinguishable from random environmental fluctuations).

  16. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    Science.gov (United States)

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J.P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William H.; Fields, Matthew W.

    2016-01-01

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (−67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42−. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situbacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  17. Population Dynamics of the Giant Clam, Tridacna maxima, at Rose Atoll

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — There is a paucity of knowledge on the population dynamics of the giant clams of the family Tridacnidae. Such information on population dynamics is necessary for...

  18. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets

    CERN Document Server

    Das, Siddhartha

    2013-01-01

    It has been recently reported that in presence of low Reynolds number (Re<<1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this letter, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such "viscous liquid" state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand an external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions.

  19. Structure and dynamics of a polysaccharide matrix: aqueous solutions of bacterial levan.

    Science.gov (United States)

    Benigar, Elizabeta; Dogsa, Iztok; Stopar, David; Jamnik, Andrej; Kralj Cigić, Irena; Tomšič, Matija

    2014-04-15

    The polysaccharide levan is a homopolymer of fructose and appears in nature as an important structural component of some bacterial biofilms. This paper reports the structural and dynamic properties of aqueous solutions of levan of various origin obtained from dynamic rheological, small-angle X-ray scattering, static and dynamic light scattering, as well as density and sound velocity measurements, determination of polymer branching after per-O-methylation, and microscopy. Besides samples of commercially available levan from Zymomonas mobilis and Erwinia herbicola, we also isolated, purified, and studied a levan sample from the biofilm of Bacillus subtilis. The results of dynamic rheological and light scattering measurements revealed very interesting viscoelastic properties of levan solutions even at very low polymer concentrations. The findings were complemented by small-angle X-ray scattering data that revealed some important differences in the structure of the aqueous levan solutions at the molecular level. Besides presenting detailed dynamic and structural results on the polysaccharide systems of various levans, one of the essential goals of this work was to point out the level of structural information that may be obtained for such polymer systems by combining basic physicochemical, rheological, and various light scattering techniques. PMID:24654746

  20. Large-scale genomic analysis suggests a neutral punctuated dynamics of transposable elements in bacterial genomes.

    Science.gov (United States)

    Iranzo, Jaime; Gómez, Manuel J; López de Saro, Francisco J; Manrubia, Susanna

    2014-06-01

    Insertion sequences (IS) are the simplest and most abundant form of transposable DNA found in bacterial genomes. When present in multiple copies, it is thought that they can promote genomic plasticity and genetic exchange, thus being a major force of evolutionary change. The main processes that determine IS content in genomes are, though, a matter of debate. In this work, we take advantage of the large amount of genomic data currently available and study the abundance distributions of 33 IS families in 1811 bacterial chromosomes. This allows us to test simple models of IS dynamics and estimate their key parameters by means of a maximum likelihood approach. We evaluate the roles played by duplication, lateral gene transfer, deletion and purifying selection. We find that the observed IS abundances are compatible with a neutral scenario where IS proliferation is controlled by deletions instead of purifying selection. Even if there may be some cases driven by selection, neutral behavior dominates over large evolutionary scales. According to this view, IS and hosts tend to coexist in a dynamic equilibrium state for most of the time. Our approach also allows for a detection of recent IS expansions, and supports the hypothesis that rapid expansions constitute transient events-punctuations-during which the state of coexistence of IS and host becomes perturbated. PMID:24967627

  1. Large-scale genomic analysis suggests a neutral punctuated dynamics of transposable elements in bacterial genomes.

    Directory of Open Access Journals (Sweden)

    Jaime Iranzo

    2014-06-01

    Full Text Available Insertion sequences (IS are the simplest and most abundant form of transposable DNA found in bacterial genomes. When present in multiple copies, it is thought that they can promote genomic plasticity and genetic exchange, thus being a major force of evolutionary change. The main processes that determine IS content in genomes are, though, a matter of debate. In this work, we take advantage of the large amount of genomic data currently available and study the abundance distributions of 33 IS families in 1811 bacterial chromosomes. This allows us to test simple models of IS dynamics and estimate their key parameters by means of a maximum likelihood approach. We evaluate the roles played by duplication, lateral gene transfer, deletion and purifying selection. We find that the observed IS abundances are compatible with a neutral scenario where IS proliferation is controlled by deletions instead of purifying selection. Even if there may be some cases driven by selection, neutral behavior dominates over large evolutionary scales. According to this view, IS and hosts tend to coexist in a dynamic equilibrium state for most of the time. Our approach also allows for a detection of recent IS expansions, and supports the hypothesis that rapid expansions constitute transient events-punctuations-during which the state of coexistence of IS and host becomes perturbated.

  2. DMPD: Structural and functional analyses of bacterial lipopolysaccharides. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12106784 Structural and functional analyses of bacterial lipopolysaccharides. Carof...html) (.csml) Show Structural and functional analyses of bacterial lipopolysaccharides. PubmedID 12106784 Ti...tle Structural and functional analyses of bacterial lipopolysaccharides. Authors

  3. Study on lipid droplet dynamics in live cells and fluidity changes in model bacterial membranes using optical microscopy techniques

    OpenAIRE

    Wong, Christine Shiang Yee

    2014-01-01

    In this thesis optical microscopy techniques are used to consider aspects of viral and bacterial infections. In part 1, the physical effects of cytomegalovirus on lipid droplet dynamics in live cells are studied; in part 2, the effects of an antimicrobial peptide on the fluidity of model bacterial membranes are studied. The optical microscopy techniques used to study the effects of murine-cytomegalovirus (mCMV) on lipid droplets in live NIH/3T3 fibroblast cells in real-time are...

  4. Oral bacterial community dynamics in paediatric patients with malignancies in relation to chemotherapy-related oral mucositis: a prospective study

    OpenAIRE

    Ye, Y; Carlsson, G; Agholme, M Barr; Wilson, J A L; Roos, A.; Henriques-Normark, B.; Engstrand, L; Modéer, T.; Pütsep, K; D. Raoult

    2013-01-01

    The role of oral bacteria in the development of chemotherapy-related oral mucositis has not been fully elucidated. This study aimed to investigate oral bacterial community diversity and dynamics in paediatric patients with malignancies in relation to the occurrence of oral mucositis. Patients with malignancies (n = 37) and reference individuals without known systemic disorders (n = 38) were recruited. For patients, oral bacterial samples were taken from mucosal surfaces both at the time of ma...

  5. Evaluating seasonal dynamics of bacterial communities in marine fish aquaculture: a preliminary study before applying phage therapy

    OpenAIRE

    Pereira, C; Salvador, S.; Arrojado, C.; Silva, Y.; A.L. Santos; Cunha, A.; Gomes, N.; Almeida, A.

    2011-01-01

    The increasing problem of antibiotic resistance in common pathogenic bacteria and the concern about the spreading of antibiotics in the environment bring the need to find new methods to control fish pathogens. Phage therapy represents a potential alternative to antibiotics, but its use in aquaculture requires a detailed understanding of bacterial communities, namely of fish pathogenic bacteria. Therefore, in this study the seasonal dynamics of the overall bacterial communities, microbiologica...

  6. Population Dynamics in the Capitalist World-Economy

    Directory of Open Access Journals (Sweden)

    Daniela Danna

    2015-08-01

    Full Text Available World-systems analysis has given scant attention to population dynamics. Overlooked are large-scale macrohistorical population trends and their microhistorical foundation on procreative decisions-decisions which are taken by a historically changing subject of procreation: local elders or other authorities, head(s of the household, couples, and women. The discipline of demography is also not as helpful as it could be, given its basis in modernization theory, which fails to recognize intentionality in reproduction in pre-capitalist societies. It assumes a model of "demographic transition" from a state of "natural fertility" to a state of conscious family planning, while also treating mortality as independent of fertility Marxism recognized the importance of population as a source of labor for profit and capital accumulation. With its tools Sydney Coontz developed a demand for labor theory explaining in particular the decrease in the birth rate in England and the United States at the turn of the century This theory was f urther developed by anthropologists of the "mode of product ion and population pat terns " who, with other authors, offer useful theories and insights to advance world-historical research on population. This article explores connections between population dy namics and world-systems analysis. I explore six key questions at different levels of analysis, including: 1 Are there world-systems ' imperatives concerning human reproduction?; 2 Do human reproduction imperatives differ across world-systems.'?; 3 How do the (eventual systems requirements get transmitted to households and individuals'?; 4 Why do people have children.'?; 5 Who is the subject of procreation decisions'?; and 6 How is the number of offspring chosen? Finally, I offer guidelines for applying the six questions to the capitalist world-economy.

  7. Spatial and temporal dynamics of infected populations: the Mexican epidemic

    CERN Document Server

    Rodriguez-Meza, Mario A

    2012-01-01

    Recently the A/H1N1-2009 virus pandemic appeared in Mexico and in other nations. We present a study of this pandemic in the Mexican case using the SIR model to describe epidemics. This model is one of the simplest models but it has been a successful description of some epidemics of closed populations. We consider the data for the Mexican case and use the SIR model to make some predictions. Then, we generalize the SIR model in order to describe the spatial dynamics of the disease. We make a study of the spatial and temporal spread of the infected population with model parameters that are consistent with temporal SIR model parameters obtained by fitting to the Mexican case.

  8. Mosquito population dynamics from cellular automata-based simulation

    Science.gov (United States)

    Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning

    2016-02-01

    In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.

  9. Dynamic population gratings in rare-earth-doped optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, Serguei [Optics Department, CICESE, km.107 carr. Tijuana-Ensenada, Ensenada, 22860, BC (Mexico)], E-mail: steps@cicese.mx

    2008-11-21

    Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.

  10. Spatio-Temporal Population Density and Spatial Dynamic Spectrum Allocation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A realistic population density distribution scenario in conjunction with the spatial dynamic spectrum allocation (DSA) is taken into account to mitigate the spectrum wastage in terms of extra guard bands. For the insertion of the extra guard bands, an efficient strategy based on self-assessment is applied to each victim cell individually and independently. Consequently, it is no more required to spread the extra guard band over the whole DSA region. Simulation results show an improvement of 3% -4% in percentage of satisfied users for Universal Mobile Telecommunications System ( UMTS ) network and 4% -5% for Digital Video Broadcasting Terrestrial (DVB-T) network.

  11. Border Collision Bifurcations in a Generalized Model of Population Dynamics

    OpenAIRE

    Lilia M. Ladino; Cristiana Mammana; Elisabetta Michetti; Jose C. Valverde

    2016-01-01

    We analyze the dynamics of a generalized discrete time population model of a two-stage species with recruitment and capture. This generalization, which is inspired by other approaches and real data that one can find in literature, consists in considering no restriction for the value of the two key parameters appearing in the model, that is, the natural death rate and the mortality rate due to fishing activity. In the more general case the feasibility of the system has been preserved by posing...

  12. Do farming practices influence population dynamics of rodents?

    DEFF Research Database (Denmark)

    Massawe, A W; Rwamugira, W; Leirs, Herwig;

    2007-01-01

    A capture-mark-recapture study was conducted in crop fields in Morogoro, Tanzania, to investigate how the population dynamics of multimammate field rats, Mastomys natalensis, was influenced by the commonly practised land preparation methods and cropping systems. Two land preparation methods (trac...... practices. In maize fields in Tanzania, the crop is most susceptible to damage by M. natalensis in the first 2 weeks after planting, and therefore, lower densities of rodents will result into lower crop damage in tractor ploughed fields....

  13. Modeling bacterial chemotaxis inside a cell

    OpenAIRE

    Ouannes, Nesrine; Djedi, Noureddine; Luga, Hervé; Duthen, Yves

    2014-01-01

    This paper describes a bacterial system that reproduces a population of bacteria that behave by simulating the internal reactions of each bacterial cell. The chemotaxis network of a cell is modulated by a hybrid approach that uses an algebraic model for the receptor clusters activity and an ordinary differential equation for the adaptation dynamics. The experiments are defined in order to simulate bacterial growth in an environment where nutrients are regularly added to it. The results show a...

  14. Population dynamics of minimally cognitive individuals. Part I: Introducing knowledge into the dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schmieder, R.W.

    1995-07-01

    The author presents a new approach for modeling the dynamics of collections of objects with internal structure. Based on the fact that the behavior of an individual in a population is modified by its knowledge of other individuals, a procedure for accounting for knowledge in a population of interacting objects is presented. It is assumed that each object has partial (or complete) knowledge of some (or all) other objects in the population. The dynamical equations for the objects are then modified to include the effects of this pairwise knowledge. This procedure has the effect of projecting out what the population will do from the much larger space of what it could do, i.e., filtering or smoothing the dynamics by replacing the complex detailed physical model with an effective model that produces the behavior of interest. The procedure therefore provides a minimalist approach for obtaining emergent collective behavior. The use of knowledge as a dynamical quantity, and its relationship to statistical mechanics, thermodynamics, information theory, and cognition microstructure are discussed.

  15. An individual-based model of Zebrafish population dynamics accounting for energy dynamics

    DEFF Research Database (Denmark)

    Beaudouin, Remy; Goussen, Benoit; Piccini, Benjamin;

    2015-01-01

    coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the...

  16. Population dynamics of two antilisterial cheese surface consortia revealed by temporal temperature gradient gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Hasler Madlen

    2010-03-01

    Full Text Available Abstract Background Surface contamination of smear cheese by Listeria spp. is of major concern for the industry. Complex smear ecosystems have been shown to harbor antilisterial potential but the microorganisms and mechanisms involved in the inhibition mostly remain unclear, and are likely related to complex interactions than to production of single antimicrobial compounds. Bacterial biodiversity and population dynamics of complex smear ecosystems exhibiting antilisterial properties in situ were investigated by Temporal temperature gradient gel electrophoresis (TTGE, a culture independent technique, for two microbial consortia isolated from commercial Raclette type cheeses inoculated with defined commercial ripening cultures (F or produced with an old-young smearing process (M. Results TTGE revealed nine bacterial species common to both F and M consortia, but consortium F exhibited a higher diversity than consortium M, with thirteen and ten species, respectively. Population dynamics were studied after application of the consortia on fresh-produced Raclette cheeses. TTGE analyses revealed a similar sequential development of the nine species common to both consortia. Beside common cheese surface bacteria (Staphylococcus equorum, Corynebacterium spp., Brevibacterium linens, Microbacterium gubbeenense, Agrococcus casei, the two consortia contained marine lactic acid bacteria (Alkalibacterium kapii, Marinilactibacillus psychrotolerans that developed early in ripening (day 14 to 20, shortly after the growth of staphylococci (day 7. A decrease of Listeria counts was observed on cheese surface inoculated at day 7 with 0.1-1 × 102 CFU cm-2, when cheeses were smeared with consortium F or M. Listeria counts went below the detection limit of the method between day 14 and 28 and no subsequent regrowth was detected over 60 to 80 ripening days. In contrast, Listeria grew to high counts (105 CFU cm-2 on cheeses smeared with a defined surface culture

  17. Population dynamics and spatial distribution of microbial species in multispecies biofilms under the action of direct electric current

    Institute of Scientific and Technical Information of China (English)

    CAO Hongbin; LI Xingang; WU Jinchuan; ZHONG Fangli; ZHANG Yi

    2003-01-01

    The metabolism, population dynamics and spatial distribution of nitrifying bacteria and heterotrophs in biofilms under the action of direct electric current were investigated by using the micro-slicing technique. The nitrification rate of nitrifying bacteria was severely inhibited by a current over 10 Am-2 at lower C/N ratios. Compared to heterotrophs, the nitrifying bacteria in the surface biofilms were severely inhibited, resulting in a significant decrease in bacterial density. An increase in current density narrowed the less current-sensitive inner biofilm region, and in addition the density of NO2-oxidizers decreased more significantly than that of NH4-oxidizers in the surface biofilms probably due to electrochemical reactions at the anode. However, the effect of current on both the population dynamics and the spatial distribution of the microbial species was less significant at larger C/N ratios.

  18. Identification and dynamic modeling of biomarkers for bacterial uptake and effect of sulfonamide antimicrobials

    International Nuclear Information System (INIS)

    The effects of sulfathiazole (STA) on Escherichia coli with glucose as a growth substrate was investigated to elucidate the effect-based reaction of sulfonamides in bacteria and to identify biomarkers for bacterial uptake and effect. The predominant metabolite was identified as pterine-sulfathiazole by LC-high resolution mass spectrometry. The formation of pterine-sulfathiazole per cell was constant and independent of the extracellular STA concentrations, as they exceeded the modeled half-saturation concentration KMS of 0.011 μmol L−1. The concentration of the dihydrofolic acid precursor para-aminobenzoic acid (pABA) increased with growth and with concentrations of the competitor STA. This increase was counteracted for higher STA concentrations by growth inhibition as verified by model simulation of pABA dynamics. The EC value for the inhibition of pABA increase was 6.9 ± 0.7 μmol L−1 STA, which is similar to that calculated from optical density dynamics indicating that pABA is a direct biomarker for the SA effect. - Highlights: ► Elucidation of the effect-based reaction of sulfonamides in bacteria. ► Identification of a biomarker for uptake and effect-based reaction of sulfonamides. ► Investigation of a biomarker for the bacterial growth inhibition by sulfonamides. ► Quantitative mechanistic modeling of biomarker dynamics using enzyme kinetics. ► Mechanistic quantitative linking of sulfonamide concentrations and effects. - Identification of specific biomarkers for the uptake and effect-based reaction of sulfonamides in bacteria and resulting growth inhibition.

  19. Evaluation and characterization of bacterial metabolic dynamics with a novel profiling technique, real-time metabolotyping.

    Directory of Open Access Journals (Sweden)

    Shinji Fukuda

    Full Text Available BACKGROUND: Environmental processes in ecosystems are dynamically altered by several metabolic responses in microorganisms, including intracellular sensing and pumping, battle for survival, and supply of or competition for nutrients. Notably, intestinal bacteria maintain homeostatic balance in mammals via multiple dynamic biochemical reactions to produce several metabolites from undigested food, and those metabolites exert various effects on mammalian cells in a time-dependent manner. We have established a method for the analysis of bacterial metabolic dynamics in real time and used it in combination with statistical NMR procedures. METHODOLOGY/PRINCIPAL FINDINGS: We developed a novel method called real-time metabolotyping (RT-MT, which performs sequential (1H-NMR profiling and two-dimensional (2D (1H, (13C-HSQC (heteronuclear single quantum coherence profiling during bacterial growth in an NMR tube. The profiles were evaluated with such statistical methods as Z-score analysis, principal components analysis, and time series of statistical TOtal Correlation SpectroScopY (TOCSY. In addition, using 2D (1H, (13C-HSQC with the stable isotope labeling technique, we observed the metabolic kinetics of specific biochemical reactions based on time-dependent 2D kinetic profiles. Using these methods, we clarified the pathway for linolenic acid hydrogenation by a gastrointestinal bacterium, Butyrivibrio fibrisolvens. We identified trans11, cis13 conjugated linoleic acid as the intermediate of linolenic acid hydrogenation by B. fibrisolvens, based on the results of (13C-labeling RT-MT experiments. In addition, we showed that the biohydrogenation of polyunsaturated fatty acids serves as a defense mechanism against their toxic effects. CONCLUSIONS: RT-MT is useful for the characterization of beneficial bacterium that shows potential for use as probiotic by producing bioactive compounds.

  20. Population Dynamics and Ecology of Arcobacter in Sewage

    Directory of Open Access Journals (Sweden)

    Jenny C Fisher

    2014-11-01

    Full Text Available Arcobacter species are highly abundant in sewage where they often comprise approximately 5-11% of the bacterial community. Oligotyping of sequences amplified from the V4V5 region of the 16S rRNA gene revealed Arcobacter populations from different cities were similar and dominated by one to three members, with extremely high microdiversity in the minor members. Overall, nine subgroups within the Arcobacter genus accounted for >80% of the total Arcobacter sequences in all samples analyzed. The distribution of oligotypes varied by both sample site and temperature, with samples from the same site generally being more similar to each other than other sites. Seven oligotypes matched with 100% identity to characterized Arcobacter species, but the remaining 19 abundant oligotypes appear to be unknown species. Sequences representing the two most abundant oligotypes matched exactly to the type strains for A. cryaerophilus group 1B (CCUG 17802 and group 1A (CCUG17801, respectively. Oligotype 1 showed generally lower relative abundance in colder samples and higher relative abundance in warmer samples; the converse was true for Oligotype 2. Ten other oligotypes had significant positive or negative correlations between temperature and proportion in samples as well. The oligotype that corresponded to A. butzleri, the Arcobacter species most commonly isolated by culturing in sewage studies, was only the eleventh most abundant oligotype. This work suggests that Arcobacter populations occupy unique niches in sewer infrastructure and are modulated by temperature. Furthermore, current culturing methods used for identification of Arcobacter fail to identify some abundant members of the community and may underestimate the presence of species with affinities for growth at lower temperatures. Understanding the ecological factors that affect the survival and growth of Arcobacter spp. in sewer infrastructure may better inform the risks associated with these emerging

  1. Isolation, Characterization and Application of Bacterial Population From Agricultural Soil at Sohag Province, Egypt

    Directory of Open Access Journals (Sweden)

    Bahig, A. E.

    2008-01-01

    Full Text Available Forty soil samples of agriculture soil were collected from two different sites in Sohag province, Egypt, during hot and cold seasons. Twenty samples were from soil irrigated with canal water (site A and twenty samples were from soil irrigated with wastewater (site B. This study aimed to compare the incidence of plasmids in bacteria isolated from soil and to investigate the occurrence of metal and antibiotic resistance bacteria, and consequently to select the potential application of these bacteria in bioremediation. The total bacterial count (CFU/gm in site (B was higher than that in site (A. Moreover, the CFU values in summer were higher than those values in winter at both sites. A total of 771 bacterial isolates were characterized as Bacillus, Micrococcus, Staphylococcus, Pseudomonas, Eschershia, Shigella, Xanthomonas, Acetobacter, Citrobacter, Enterobacter, Moraxella and Methylococcus. Minimum inhibitory concentrations (MICs of Pb+2, Cu+2, Zn+2, Hg+2, Co+2, Cd+2, Cr+3, Te+2, As+2 and Ni+2 for plasmid-possessed bacteria were determined and the highest MICs were 1200 µg/mL for lead, 800 µg/mL for both Cobalt and Arsenate, 1200 µg/mL for Nickel, 1000 µg/ml for Copper and less than 600 µg/mL for other metals. Bacterial isolates from both sites A and B showed multiple heavy metal resistance. A total of 337 bacterial isolates contained plasmids and the incidence of plasmids was approximately 25-50% higher in bacteria isolated from site (B than that from site (A. These isolates were resistance to different antibiotics. Approximately, 61% of the bacterial isolates were able to assimilate insecticide, carbaryl, as a sole source of carbon and energy. However, the Citrobacter AA101 showed the best growth on carbaryl.

  2. Daily dynamics of bacterial numbers, CO2 emissions from soil and relationships between their wavelike fluctuations and succession of the microbial community

    Science.gov (United States)

    Semenov, A. M.; Bubnov, I. A.; Semenov, V. M.; Semenova, E. V.; Zelenev, V. V.; Semenova, N. A.

    2013-08-01

    The daily dynamics of the number of copiotrophic and oligotrophic bacteria (in colony-forming units) and CO2 emissions from cultivated soils after short- and long-term disturbances were studied for 25-27 days in a microfield experiment. The relationship of the wavelike fluctuations of the bacterial number and CO2 emission with the succession of the soil microbial community was determined by the polymerase chain reaction method—denaturing gradient gel electrophoresis (PCR-DGGE). Short-term disturbances involved the application of organic or mineral fertilizers, pesticides, and plant residues to the soils of different plots. The long-term effect was a result of using biological and intensive farming systems for three years. The short-term disturbances resulted in increased peaks of the bacterial number, the significance of which was confirmed by harmonics analysis. The daily dynamics of the structure of the soil microbial community, which was studied for 27 days by the DGGE method, also had an oscillatory pattern. Statistical processing of the data (principal components analysis, harmonics and cross-correlation analyses) has revealed significant fluctuations in the structure of microbial communities coinciding with those of the bacterial populations. The structure of the microbial community changed within each peak of the dynamics of the bacterial number (but not from peak to peak), pointing to the cyclical character of the short-term succession. The long-term effects resulted in a less intense response of the microbiota—a lower rate of CO2 emission from the soil cultivated according to the organic farming system.

  3. Characterization of methanotrophic bacterial populations in natural and agricultural aerobic soils of the European Russia

    Science.gov (United States)

    Kravchenko, Irina; Sukhacheva, Marina; Kizilova, Anna

    2014-05-01

    Atmospheric methane contributes to about 20% of the total radiative forcing by long-lived greenhouse gases, and microbial methane oxidation in upland soils is the only biological sink of methane. Microbial methane oxidation in aerated upland soils is estimated as 15 - 45 Tg yr-1 or 3-9% of the annual sink. Therefore there is need of extensive research to characterize methanotrophic activity in various ecosystems for possible application to reduce atmospheric methane fluxes and to minimize global climate change. The vast majority of known aerobic methanotrophs belongs to the Proteobacteria and placed in the families Methylococcaceae in the Gammaproteobacteria, and Methylocystaceae and Beijerinckiaceae in the Alphaproteobacteria. Known exceptions include the phylum Verrucomicrobia and uncultured methanotrophs such as Candidatus 'Methylomirabilis oxyfera' affiliated with the 'NC10' phylum. Plenty of studies of aerobic methane oxidation and key players of the process have been performed on various types of soils, and it was found that Methylocystis spp and uncultivated methanotrophs are abundant in upland soils. Two of the uncultured groups are upland soil cluster alphaproteobacteria (USCa) and gammaproteobacteria (USCg), as revealed by cultivation-independent surveys of pmoA diversity. Russia is extremely rich in soil types due to its vast territories, and most of these soils have never been investigated from the aspect of methanotrophy. This study addresses methane oxidation activity and diversity of aerobic methanotrophic bacteria in eight types of natural aerobic soils, four of which also had been under agricultural use. Methane fluxes have been measured by in situ static chamber method and methane oxidation rates in soil samples - by radioisotope tracer (14CH4) technique. Changes in methanotroph diversity and abundance were assessed by cloning and Sanger sequencing, and quantitative real-time PCR of pmoA genes. Methanotrophic population of unmanaged soils turned

  4. The model of fungal population dynamics affected by nystatin

    Science.gov (United States)

    Voychuk, Sergei I.; Gromozova, Elena N.; Sadovskiy, Mikhail G.

    Fungal diseases are acute problems of the up-to-day medicine. Significant increase of resistance of microorganisms to the medically used antibiotics and a lack of new effective drugs follows in a growth of dosage of existing chemicals to solve the problem. Quite often such approach results in side effects on humans. Detailed study of fungi-antibiotic dynamics can identify new mechanisms and bring new ideas to overcome the microbial resistance with a lower dosage of antibiotics. In this study, the dynamics of the microbial population under antibiotic treatment was investigated. The effects of nystatin on the population of Saccharomyces cerevisiae yeasts were used as a model system. Nystatin effects were investigated both in liquid and solid media by viability tests. Dependence of nystatin action on osmotic gradient was evaluated in NaCl solutions. Influences of glucose and yeast extract were additionally analyzed. A "stepwise" pattern of the cell death caused by nystatin was the most intriguing. This pattern manifested in periodical changes of the stages of cell death against stages of resistance to the antibiotic. The mathematical model was proposed to describe cell-antibiotic interactions and nystatin viability effects in the liquid medium. The model implies that antibiotic ability to cause a cells death is significantly affected by the intracellular compounds, which came out of cells after their osmotic barriers were damaged

  5. Artificial nighttime light changes aphid-parasitoid population dynamics.

    Science.gov (United States)

    Sanders, Dirk; Kehoe, Rachel; Tiley, Katie; Bennie, Jonathan; Cruse, Dave; Davies, Thomas W; Frank van Veen, F J; Gaston, Kevin J

    2015-01-01

    Artificial light at night (ALAN) is recognized as a widespread and increasingly important anthropogenic environmental pressure on wild species and their interactions. Understanding of how these impacts translate into changes in population dynamics of communities with multiple trophic levels is, however, severely lacking. In an outdoor mesocosm experiment we tested the effect of ALAN on the population dynamics of a plant-aphid-parasitoid community with one plant species, three aphid species and their specialist parasitoids. The light treatment reduced the abundance of two aphid species by 20% over five generations, most likely as a consequence of bottom-up effects, with reductions in bean plant biomass being observed. For the aphid Megoura viciae this effect was reversed under autumn conditions with the light treatment promoting continuous reproduction through asexuals. All three parasitoid species were negatively affected by the light treatment, through reduced host numbers and we discuss induced possible behavioural changes. These results suggest that, in addition to direct impacts on species behaviour, the impacts of ALAN can cascade through food webs with potentially far reaching effects on the wider ecosystem. PMID:26472251

  6. Representation of dynamical stimuli in populations of threshold neurons.

    Directory of Open Access Journals (Sweden)

    Tatjana Tchumatchenko

    2011-10-01

    Full Text Available Many sensory or cognitive events are associated with dynamic current modulations in cortical neurons. This raises an urgent demand for tractable model approaches addressing the merits and limits of potential encoding strategies. Yet, current theoretical approaches addressing the response to mean- and variance-encoded stimuli rarely provide complete response functions for both modes of encoding in the presence of correlated noise. Here, we investigate the neuronal population response to dynamical modifications of the mean or variance of the synaptic bombardment using an alternative threshold model framework. In the variance and mean channel, we provide explicit expressions for the linear and non-linear frequency response functions in the presence of correlated noise and use them to derive population rate response to step-like stimuli. For mean-encoded signals, we find that the complete response function depends only on the temporal width of the input correlation function, but not on other functional specifics. Furthermore, we show that both mean- and variance-encoded signals can relay high-frequency inputs, and in both schemes step-like changes can be detected instantaneously. Finally, we obtain the pairwise spike correlation function and the spike triggered average from the linear mean-evoked response function. These results provide a maximally tractable limiting case that complements and extends previous results obtained in the integrate and fire framework.

  7. Effect of dietary probiotic, prebiotic and synbiotic supplementation on performance, immune responses, intestinal morphology and bacterial populations in broilers.

    Science.gov (United States)

    Salehimanesh, A; Mohammadi, M; Roostaei-Ali Mehr, M

    2016-08-01

    This study was conducted to investigate the effects of probiotic (Primalac), prebiotic (TechnoMos) and synbiotic (Primalac + TechnoMos) supplementation on performance, immune responses, intestinal morphology and bacterial populations of ileum in broilers. A total of 240 one-day-old broiler chicks were randomly divided into four treatment groups which included 60 birds. Control group did not receive any treatment. The chicks in the second, third and fourth groups were fed probiotic (0.9 g/kg), prebiotic (0.9 g/kg) and probiotic (0.9 g/kg) plus probiotic (0.9 g/kg; synbiotic), respectively, at entire period. Daily feed intake, daily weight gain and feed conversion ratio were evaluated. The birds were immunized by sheep red blood cell (SRBC) on days 12 and 29 of age and serum antibody titres were measured on days 28, 35 and 42. Newcastle vaccines administered on days 9, 18 and 27 to chicks and blood samples were collected on day 42. Intestinal morphometric assessment and enumeration of intestinal bacterial populations were performed on day 42. The results indicated that consumption of probiotic, prebiotic and synbiotic had no significant effect on daily feed intake, daily body weight gain, feed conversion ratio, carcass traits, intestinal morphology and bacterial populations of ileum (p > 0.05). Consumption of prebiotic increased total and IgM anti-SRBC titres on days 28 and 42 and antibody titre against Newcastle virus disease on day 42 (p < 0.05). Synbiotic increased only total anti-SRBC on day 28 (p < 0.05). It is concluded that consumption of prebiotic increased humoral immunity in broilers. Therefore, supplementation of diet with prebiotic for improvement of humoral immune responses is superior to synbiotic supplementation. PMID:26847817

  8. Phylogenetic and metagenomic analyses of substrate-dependent bacterial temporal dynamics in microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Husen Zhang

    Full Text Available Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate.

  9. The dynamics of the population flows in metropolitan areas

    Directory of Open Access Journals (Sweden)

    2011-06-01

    Full Text Available The article presents an analysis of the dynamics of population flows in the corridors of the metropolitan area, based on the example of Poznan. The aim of these studies was to determine the mobile preferences of the population as well as the possibilities for improving the efficiency of the city transport, mainly in aspects related to the road congestion and its reducing by the better use of the existing railway infrastructure as well as other instruments of the transport policy. The results obtained in multi-methods analysis showed, that such solution is likely to be a successful one as an alternative to the road transport and different strategies and solutions, designed in accordance with articulated preferences of the population, may be more effective than large-scale initiatives issued by a superior. The "difficult" heritage of the poorly used or unused railway infrastructure, occurring in many urban areas, can be often successfully adapted to be a solution for the transportation needs of the inhabitants.

  10. Femtosecond dynamics of electronic populations in silver nano-particles

    International Nuclear Information System (INIS)

    This work deals with the dynamic of relaxation of hot electrons in silver nano-particles in a transparency matrix. Using laser impulses of a few hundred femtosecond, out equilibrium electronic populations are created and their relaxation is studied by the energy transfer to the crystalline network. The size and the geometry of these nano-particles lead to great optical non-linearities and electric confinement effects. This confinement leads then to a collective mode, named surface plasmon. Thanks to its structure, the silver owns a surface plasmon resonance far from the interband transitions, which allows the study of this collective mode. Differential measures, in degenerated pump-probe configuration and on silver nano-particles, show a slowing of the dynamic at the surface plasmon resonance. In a non degenerated pump-probe configuration, the differential transmission spectra show an asymmetrical first derivative behavior of the absorption ray. The author shows also that the relaxation dynamics depends of the nano-particles size and of the host matrix. (A.L.B.)

  11. Quantum dynamics and entanglement in coherent transport of atomic population

    International Nuclear Information System (INIS)

    In this work we look at the quantum dynamics of the process known as either transport without transit, or coherent transfer of atomic population, of a Bose–Einstein condensate from one well of a lattice potential to another, non-adjacent well, without macroscopic occupation of the well between the two. This process has previously been analysed and in this work we extend those analyses by considering the effects of quantum statistics on the dynamics and entanglement properties of the condensate modes in the two relevant wells. In order to do this, we go beyond the mean-field analysis of the Gross–Pitaevskii type approach and utilize the phase-space stochastic methods so well known in quantum optics. In particular, we use the exact positive-P representation where it is suitable, and the approximate truncated Wigner representation otherwise. We find strong agreement between the results of these two methods, with the mean-field dynamics not depending on the initial quantum states of the trapped condensate. We find that the entanglement properties do depend strongly on the initial quantum states, with quantitatively different results found for coherent and Fock states. Comparison of the two methods gives us confidence that the truncated Wigner representation delivers accurate results for this system and is thus a useful method as the collisional nonlinearity increases and the positive-P results fail to converge. (paper)

  12. Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control

    Directory of Open Access Journals (Sweden)

    Andrea Meitz

    2016-03-01

    Full Text Available The Bacterial Ghost (BG platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8–10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology.

  13. Molecular characterization of bacterial populations of different soils Caracterização molecular de populações bacterianas de diferentes solos

    Directory of Open Access Journals (Sweden)

    Rodrigo Matheus Pereira

    2006-12-01

    Full Text Available Until recently, few studies were carried out in Brazil about diversity of bacterial soil communities. Aiming to characterize the bacterial population in the soil through 16S rRNA analysis, two types of soil have been analyzed: one of them characterized by intensive use where tomato, beans and corn were cultivated (CS; the other analyzed soil was under forest (FS, unchanged by man; both located in Guaíra, São Paulo State, Brazil. Using specific primers, 16S rRNA genes from metagenomic DNA in both soils were amplified by PCR, amplicons were cloned and 139 clones from two libraries were partially sequenced. The use of 16S rRNA analysis allowed identification of several bacterial populations in the soil belonging to the following phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria Verrucomicrobia in addition to the others that were not classified, beyond Archaea domain. Differences between FS and CS libraries were observed in size phyla. A larger number of phyla and, consequently, a greater bacterial diversity were found in the under-forest soil. These data were confirmed by the analyses of genetic diversity that have been carried out. The characterization of bacterial communities of soil has made its contribution by providing facts for further studies on the dynamics of bacterial populations in different soil conditions in Brazil.Até o momento poucos estudos foram realizados no Brasil a respeito da diversidade de comunidades bacterianas no solo. Com o objetivo de caracterizar as populações bacterianas presentes no solo através da análise do gene 16S rRNA, foram analisados dois solos: um caracterizado pelo uso intensivo, principalmente para a produção de tomate, feijão e milho (CS; e outro sob floresta (FS, não modificado pelo homem, ambos do município de Guaíra, no estado de São Paulo, Brasil. Usando oligonucleotídeos específicos, de genes 16S rRNA do DNA metagenomico de ambos os solos foram amplificados

  14. Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature

    Science.gov (United States)

    Bargiela, Rafael; Mapelli, Francesca; Rojo, David; Chouaia, Bessem; Tornés, Jesús; Borin, Sara; Richter, Michael; Del Pozo, Mercedes V.; Cappello, Simone; Gertler, Christoph; Genovese, María; Denaro, Renata; Martínez-Martínez, Mónica; Fodelianakis, Stilianos; Amer, Ranya A.; Bigazzi, David; Han, Xifang; Chen, Jianwei; Chernikova, Tatyana N.; Golyshina, Olga V.; Mahjoubi, Mouna; Jaouanil, Atef; Benzha, Fatima; Magagnini, Mirko; Hussein, Emad; Al-Horani, Fuad; Cherif, Ameur; Blaghen, Mohamed; Abdel-Fattah, Yasser R.; Kalogerakis, Nicolas; Barbas, Coral; Malkawi, Hanan I.; Golyshin, Peter N.; Yakimov, Michail M.; Daffonchio, Daniele; Ferrer, Manuel

    2015-01-01

    Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills. PMID:26119183

  15. Comparison of Diversities and Compositions of Bacterial Populations Inhabiting Natural Forest Soils

    OpenAIRE

    Hackl, Evelyn; Zechmeister-Boltenstern, Sophie; Bodrossy, Levente; Sessitsch, Angela

    2004-01-01

    The diversity and composition of soil bacterial communities were compared among six Austrian natural forests, including oak-hornbeam, spruce-fir-beech, and Austrian pine forests, using terminal restriction fragment length polymorphism (T-RFLP, or TRF) analysis and sequence analysis of 16S rRNA genes. The forests studied differ greatly in soil chemical characteristics, microbial biomass, and nutrient turnover rates. The aim of this study was to relate these differences to the composition of th...

  16. Haemophilus influenzae Type b Carriage and Novel Bacterial Population Structure among Children in Urban Kathmandu, Nepal▿

    OpenAIRE

    Williams, E. J.; Lewis, J.; John, T.; Hoe, J. C.; Yu, L.; Dongol, S.; Kelly, D. F.; Griffiths, D. T.; Shah, A; Limbu, B.; Pradhan, R.; Mawas, F.; Shrestha, S.; Thorson, S.; Werno, A. M.

    2011-01-01

    Haemophilus influenzae type b (Hib) is a major cause of invasive bacterial infection in children that can be prevented by a vaccine, but there is still uncertainty about its relative importance in Asia. This study investigated the age-specific prevalence of Hib carriage and its molecular epidemiology in carriage and disease in Nepal. Oropharyngeal swabs were collected from children in Kathmandu, Nepal, from 3 different settings: a hospital outpatient department (OPD), schools, and children's ...

  17. Housefly Larva Vermicomposting Efficiently Attenuates Antibiotic Resistance Genes in Swine Manure, with Concomitant Bacterial Population Changes

    OpenAIRE

    Wang, Hang; Li, Hongyi; Gilbert, Jack A.; Li, Haibo; Wu, Longhua; Liu, Meng; Wang, Liling; Zhou, Qiansheng; Yuan, Junxiang; Zhang, Zhijian

    2015-01-01

    Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days o...

  18. Large interdomain rearrangement triggered by suppression of micro- to millisecond dynamics in bacterial Enzyme I

    Science.gov (United States)

    Venditti, Vincenzo; Tugarinov, Vitali; Schwieters, Charles D.; Grishaev, Alexander; Clore, G. Marius

    2015-01-01

    Enzyme I (EI), the first component of the bacterial phosphotransfer signal transduction system, undergoes one of the largest substrate-induced interdomain rearrangements documented to date. Here we characterize the perturbations generated by two small molecules, the natural substrate phosphoenolpyruvate and the inhibitor α-ketoglutarate, on the structure and dynamics of EI using NMR, small-angle X-ray scattering and biochemical techniques. The results indicate unambiguously that the open-to-closed conformational switch of EI is triggered by complete suppression of micro- to millisecond dynamics within the C-terminal domain of EI. Indeed, we show that a ligand-induced transition from a dynamic to a more rigid conformational state of the C-terminal domain stabilizes the interface between the N- and C-terminal domains observed in the structure of the closed state, thereby promoting the resulting conformational switch and autophosphorylation of EI. The mechanisms described here may be common to several other multidomain proteins and allosteric systems.

  19. ANTIMICROBIAL RESISTANCE OF BACTERIAL AGENTS OF THE UPPER RESPIRATORY TRACT IN SOUTH INDIAN POPULATION

    Directory of Open Access Journals (Sweden)

    K. Kousalya

    2010-06-01

    Full Text Available The study was aimed at determining bacterial agents of the upper respiratory tract and the susceptibility patterns of isolates to antibiotics. The throat swab samples from 250 patients suspected of upper respiratory tract infection (URTI were obtained from the General Medicine outpatient department of a Rural Health Centre of Rajah Muthiah Medical College and Hospital (RMMC and H, Annamalai University, Chidambaram, Tamilnadu, India and inoculated in the culture medium. The bacterial infection was confirmed only in 228 patients. The organisms isolated on medium were identified by their cultural, morphological and biochemical characteristics. Staphylococcus aureus was identified as the most prevalent bacterial isolate (45.61% followed by β hemolytic streptococci (22.81%. Thirty four strains (14.91% were identified as Klebsiella penumoniae, 19 (8.33% as Pseudomonas aeruginosa and the rest belonged to α hemolytic streptococci, Escherichia coli and Haemophilus influenzae. All Staphylococcus spp. were resistant to penicillin, ampicillin and co-trimoxazole. All the isolates were resistant to at least one antibiotic. The overall resistance rates were generally low for gentamicin, cefixime and ceftazidime respectively.

  20. Modelling food and population dynamics in honey bee colonies.

    Directory of Open Access Journals (Sweden)

    David S Khoury

    Full Text Available Honey bees (Apis mellifera are increasingly in demand as pollinators for various key agricultural food crops, but globally honey bee populations are in decline, and honey bee colony failure rates have increased. This scenario highlights a need to understand the conditions in which colonies flourish and in which colonies fail. To aid this investigation we present a compartment model of bee population dynamics to explore how food availability and bee death rates interact to determine colony growth and development. Our model uses simple differential equations to represent the transitions of eggs laid by the queen to brood, then hive bees and finally forager bees, and the process of social inhibition that regulates the rate at which hive bees begin to forage. We assume that food availability can influence both the number of brood successfully reared to adulthood and the rate at which bees transition from hive duties to foraging. The model predicts complex interactions between food availability and forager death rates in shaping colony fate. Low death rates and high food availability results in stable bee populations at equilibrium (with population size strongly determined by forager death rate but consistently increasing food reserves. At higher death rates food stores in a colony settle at a finite equilibrium reflecting the balance of food collection and food use. When forager death rates exceed a critical threshold the colony fails but residual food remains. Our model presents a simple mathematical framework for exploring the interactions of food and forager mortality on colony fate, and provides the mathematical basis for more involved simulation models of hive performance.

  1. Improved Statistical Analysis of Low Abundance Phenomena in Bimodal Bacterial Populations

    OpenAIRE

    Friedrich Reinhard; Jan Roelof van der Meer

    2013-01-01

    Accurate detection of subpopulation size determinations in bimodal populations remains problematic yet it represents a powerful way by which cellular heterogeneity under different environmental conditions can be compared. So far, most studies have relied on qualitative descriptions of population distribution patterns, on population-independent descriptors, or on arbitrary placement of thresholds distinguishing biological ON from OFF states. We found that all these methods fall short of accura...

  2. Bacterial Genetic Signatures of Human Social Phenomena among M. tuberculosis from an Aboriginal Canadian Population

    OpenAIRE

    Pepperell, Caitlin; Hoeppner, Vernon H.; Lipatov, Mikhail; Wobeser, Wendy; Schoolnik, Gary K.; Feldman, Marcus W.

    2009-01-01

    Despite a widespread global distribution and highly variable disease phenotype, there is little DNA sequence diversity among isolates of Mycobacterium tuberculosis. In addition, many regional population genetic surveys have revealed a stereotypical structure in which a single clone, lineage, or clade makes up the majority of the population. It is often assumed that dominant clones are highly adapted, that is, the overall structure of M. tuberculosis populations is the result of positive selec...

  3. Impact of climate change on fish population dynamics in the baltic sea: a dynamical downscaling investigation

    DEFF Research Database (Denmark)

    Mackenzie, Brian R; Meier, H E Markus; Lindegren, Martin;

    2012-01-01

    Understanding how climate change, exploitation and eutrophication will affect populations and ecosystems of the Baltic Sea can be facilitated with models which realistically combine these forcings into common frameworks. Here, we evaluate sensitivity of fish recruitment and population dynamics to...... the temperature have influenced recruitment for at least 50 years. The three Baltic Sea models estimate relatively similar developments (increases) in biomass and fishery yield during twenty-first century climate change (ca. 28 % range among models). However, this uncertainty is exceeded by the one...

  4. Sampling bacterial biodiversity from a highly contaminated stream flowing through a densely populated urban area in Karachi

    International Nuclear Information System (INIS)

    Few studies have attempted to understand the complexity of microbial populations in Pakistan where infectious diseases are prevalent. This study was undertaken to assess bacterial biodiversity in Nehr-e-Khayyam a heavily polluted stream connected to the Arabian Gulf, which runs through a densely populated urban area in Karachi, Pakistan. Methods: Employing a universal pair of oligonucleotides capable of amplifying species-specific segments of 16S rRNA gene from all Eubacteria, we generated a library of PCR products using total DNA purified from the collected sample, cloned the amplifers into pGEM-T-Easy and sequenced each recombinant clone. The obtained DNA sequences were subjected to bio-informatic analyses. Results: A total of 71 recombinant clones were obtained from the amplified 16S rDNA products and sequenced. Bioinformatics analyses revealed that 54 (out of 71) were unique sequences from which 42 shared >97% and 12 shared <97% homology to their database counterparts. One sequence originated from the plastid DNA of eukaryote Pyramimonas disomata. From the remaining 53 sequences, 45 were Proteo-bacteria and 8 Fermicute in origin. Among 71 sequences, Alpha-, Beta- and Gamma-proteobacteria species constituted 86% of Proteo-bacteria identified in the sample while only 13% were Fermicutes. Conclusions: The microbial niche in Nehr-e-Khayyam is occupied predominantly by heterotrophic Proteo-bacterial and Firmicute strains, some of which are known human pathogens. (author)

  5. Dynamical criticality in the collective activity of a neural population

    Science.gov (United States)

    Mora, Thierry

    The past decade has seen a wealth of physiological data suggesting that neural networks may behave like critical branching processes. Concurrently, the collective activity of neurons has been studied using explicit mappings to classic statistical mechanics models such as disordered Ising models, allowing for the study of their thermodynamics, but these efforts have ignored the dynamical nature of neural activity. I will show how to reconcile these two approaches by learning effective statistical mechanics models of the full history of the collective activity of a neuron population directly from physiological data, treating time as an additional dimension. Applying this technique to multi-electrode recordings from retinal ganglion cells, and studying the thermodynamics of the inferred model, reveals a peak in specific heat reminiscent of a second-order phase transition.

  6. Richards-like two species population dynamics model.

    Science.gov (United States)

    Ribeiro, Fabiano; Cabella, Brenno Caetano Troca; Martinez, Alexandre Souto

    2014-12-01

    The two-species population dynamics model is the simplest paradigm of inter- and intra-species interaction. Here, we present a generalized Lotka-Volterra model with intraspecific competition, which retrieves as particular cases, some well-known models. The generalization parameter is related to the species habitat dimensionality and their interaction range. Contrary to standard models, the species coupling parameters are general, not restricted to non-negative values. Therefore, they may represent different ecological regimes, which are derived from the asymptotic solution stability analysis and are represented in a phase diagram. In this diagram, we have identified a forbidden region in the mutualism regime, and a survival/extinction transition with dependence on initial conditions for the competition regime. Also, we shed light on two types of predation and competition: weak, if there are species coexistence, or strong, if at least one species is extinguished. PMID:25112794

  7. Linking animal population dynamics to alterations in foraging behaviour

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Sibly, Richard; Tougaard, Jakob;

    that are increasingly exposed to noise from ships, wind turbines, etc. In the present study we investigate how the dynamics of the harbor porpoise population (Phocoena phocoena) in the inner Danish waters is influenced by disturbances using an agent- based simulation model. In the model animal movement, and hence...... the animals’ ability to forage efficiently and to sustain their energy intake, is influenced by noise emitted from wind turbines and ships. The energy levels in turn affect their survival. The fine-scale movements of the simulated animals was governed by a spatial memory, which allowed the model to produce...... was not jeopardized even when disturbances were simulated to have a relatively large and persistent effect on the behavior of individual animals. Porpoises were simulated to move away from noisy objects, preventing them from returning to the known food patches in that area. This resulted in decreasing energy reserves...

  8. Mean-field games with logistic population dynamics

    KAUST Repository

    Gomes, Diogo A.

    2013-12-01

    In its standard form, a mean-field game can be defined by coupled system of equations, a Hamilton-Jacobi equation for the value function of agents and a Fokker-Planck equation for the density of agents. Traditionally, the latter equation is adjoint to the linearization of the former. Since the Fokker-Planck equation models a population dynamic, we introduce natural features such as seeding and birth, and nonlinear death rates. In this paper we analyze a stationary meanfield game in one dimension, illustrating various techniques to obtain regularity of solutions in this class of systems. In particular we consider a logistic-type model for birth and death of the agents which is natural in problems where crowding affects the death rate of the agents. The introduction of these new terms requires a number of new ideas to obtain wellposedness. In a forthcoming publication we will address higher dimensional models. ©2013 IEEE.

  9. Evolution in an Afternoon: Rapid Natural Selection and Adaptation of Bacterial Populations

    Science.gov (United States)

    Delpech, Roger

    2009-01-01

    This paper describes a simple, rapid and low-cost technique for growing bacteria (or other microbes) in an environmental gradient, in order to determine the tolerance of the microbial population to varying concentrations of sodium chloride ions, and suggests how the evolutionary response of a microbial population to the selection pressure of the…

  10. Differential stress resistance and metabolic traits underlie coexistence in a sympatrically evolved bacterial population

    NARCIS (Netherlands)

    Puentes Tellez, Pilar; van Elsas, Jan Dirk

    2015-01-01

    Following intermittent batch growth in Luria-Bertani (LB) broth for about 1000 generations, differentially evolved forms were found in a population of Escherichia coli cells. Studies on this population revealed the emergence of key polymorphisms, as evidenced by analysis of both whole genome sequenc

  11. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc{sub 1} complex

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Daniel R.; Matyushov, Dmitry V., E-mail: dmitrym@asu.edu [Department of Physics and Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287 (United States)

    2015-04-28

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc{sub 1} bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ∼0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  12. Shedding light on microbial predator-prey population dynamics using a quantitative bioluminescence assay.

    Science.gov (United States)

    Im, Hansol; Kim, Dasol; Ghim, Cheol-Min; Mitchell, Robert J

    2014-01-01

    This study assessed the dynamics of predation by Bdellovibrio bacteriovorus HD 100. Predation tests with two different bioluminescent strains of Escherichia coli, one expressing a heat-labile bacterial luciferase and the other a heat-stable form, showed near identical losses from both, indicating that protein expression and stability are not responsible for the "shutting-off" of the prey bioluminescence (BL). Furthermore, it was found that the loss in the prey BL was not proportional with the predator-to-prey ratio (PPR), with significantly greater losses seen as this value was increased. This suggests that other factors also play a role in lowering the prey BL. The loss in BL, however, was very consistent within nine independent experiments to the point that we were able to reliably estimate the predator numbers within only 1 h when present at a PPR of 6 or higher, Using a fluorescent prey, we found that premature lysis of the prey occurs at a significant level and was more prominent as the PPR ratio increased. Based upon the supernatant fluorescent signal, even a relatively low PPR of 10-20 led to approximately 5% of the prey population being prematurely lysed within 1 h, while a PPR of 90 led to nearly 15% lysis. Consequently, we developed a modified Lotka-Volterra predator-prey model that accounted for this lysis and is able to reliably estimate the prey and bdelloplast populations for a wide range of PPRs. PMID:24272279

  13. Improved statistical analysis of low abundance phenomena in bimodal bacterial populations.

    Directory of Open Access Journals (Sweden)

    Friedrich Reinhard

    Full Text Available Accurate detection of subpopulation size determinations in bimodal populations remains problematic yet it represents a powerful way by which cellular heterogeneity under different environmental conditions can be compared. So far, most studies have relied on qualitative descriptions of population distribution patterns, on population-independent descriptors, or on arbitrary placement of thresholds distinguishing biological ON from OFF states. We found that all these methods fall short of accurately describing small population sizes in bimodal populations. Here we propose a simple, statistics-based method for the analysis of small subpopulation sizes for use in the free software environment R and test this method on real as well as simulated data. Four so-called population splitting methods were designed with different algorithms that can estimate subpopulation sizes from bimodal populations. All four methods proved more precise than previously used methods when analyzing subpopulation sizes of transfer competent cells arising in populations of the bacterium Pseudomonas knackmussii B13. The methods' resolving powers were further explored by bootstrapping and simulations. Two of the methods were not severely limited by the proportions of subpopulations they could estimate correctly, but the two others only allowed accurate subpopulation quantification when this amounted to less than 25% of the total population. In contrast, only one method was still sufficiently accurate with subpopulations smaller than 1% of the total population. This study proposes a number of rational approximations to quantifying small subpopulations and offers an easy-to-use protocol for their implementation in the open source statistical software environment R.

  14. Improved statistical analysis of low abundance phenomena in bimodal bacterial populations.

    Science.gov (United States)

    Reinhard, Friedrich; van der Meer, Jan Roelof

    2013-01-01

    Accurate detection of subpopulation size determinations in bimodal populations remains problematic yet it represents a powerful way by which cellular heterogeneity under different environmental conditions can be compared. So far, most studies have relied on qualitative descriptions of population distribution patterns, on population-independent descriptors, or on arbitrary placement of thresholds distinguishing biological ON from OFF states. We found that all these methods fall short of accurately describing small population sizes in bimodal populations. Here we propose a simple, statistics-based method for the analysis of small subpopulation sizes for use in the free software environment R and test this method on real as well as simulated data. Four so-called population splitting methods were designed with different algorithms that can estimate subpopulation sizes from bimodal populations. All four methods proved more precise than previously used methods when analyzing subpopulation sizes of transfer competent cells arising in populations of the bacterium Pseudomonas knackmussii B13. The methods' resolving powers were further explored by bootstrapping and simulations. Two of the methods were not severely limited by the proportions of subpopulations they could estimate correctly, but the two others only allowed accurate subpopulation quantification when this amounted to less than 25% of the total population. In contrast, only one method was still sufficiently accurate with subpopulations smaller than 1% of the total population. This study proposes a number of rational approximations to quantifying small subpopulations and offers an easy-to-use protocol for their implementation in the open source statistical software environment R. PMID:24205184

  15. Far from random: dynamical groupings among the NEO population

    CERN Document Server

    Marcos, C de la Fuente

    2016-01-01

    Among the near-Earth object (NEO) population there are comets and active asteroids which are sources of fragments that initially move together; in addition, some NEOs follow orbits temporarily trapped in a web of secular resonances. These facts contribute to increasing the risk of meteoroid strikes on Earth, making its proper quantification difficult. The identification and subsequent study of groups of small NEOs that appear to move in similar trajectories are necessary steps in improving our understanding of the impact risk associated with meteoroids. Here, we present results of a search for statistically significant dynamical groupings among the NEO population. Our Monte Carlo-based methodology recovers well-documented groupings like the Taurid Complex or the one resulting from the split comet 73P/Schwassmann-Wachmann 3, and new ones that may have been the source of past impacts. Among the most conspicuous are the Mjolnir and Ptah groups, perhaps the source of recent impact events like Almahata Sitta and C...

  16. Far from random: dynamical groupings among the NEO population

    Science.gov (United States)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2016-03-01

    Among the near-Earth object (NEO) population, there are comets and active asteroids which are sources of fragments that initially move together; in addition, some NEOs follow orbits temporarily trapped in a web of secular resonances. These facts contribute to increasing the risk of meteoroid strikes on Earth, making its proper quantification difficult. The identification and subsequent study of groups of small NEOs that appear to move in similar trajectories are necessary steps in improving our understanding of the impact risk associated with meteoroids. Here, we present results of a search for statistically significant dynamical groupings among the NEO population. Our Monte Carlo-based methodology recovers well-documented groupings like the Taurid Complex or the one resulting from the split comet 73P/Schwassmann-Wachmann 3, and new ones that may have been the source of past impacts. Among the most conspicuous are the Mjolnir and Ptah groups, perhaps the source of recent impact events like Almahata Sitta and Chelyabinsk, respectively. Meteoroid 2014 AA, that hit the Earth on 2014 January 2, could have its origin in a marginally significant grouping associated with Bennu. We find that most of the substructure present within the orbital domain of the NEOs is of resonant nature, probably induced by secular resonances and the Kozai mechanism that confine these objects into specific paths with well-defined perihelia.

  17. Population dynamics in a metastable neon magneto-optical trap

    Science.gov (United States)

    Glover, R. D.; Calvert, J. E.; Sang, R. T.

    2013-02-01

    We observe the population dynamics within a metastable neon magneto-optical trap (MOT) through the measurement of the average squared Clebsch-Gordan coefficient C2 over a range of laser detunings. The magnitude of C2 is dependent on the internal quantum state of an atom interacting with the light field and is found to show a strong dependence on the applied laser detuning. Previously it has been reported [Townsend , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.52.1423 52, 1423 (1995)] that trapped atoms in a MOT are pumped towards the states that interact most strongly with the local field and therefore the measured value of C2 is larger than the average over all possible transitions. For the 3P2-to-3D3 cooling transition in metastable neon the average C2 value is equal to 0.46; however, we have measured 0.29±0.03populations are measured via fluorescence in a MOT.

  18. Replication, Communication, and the Population Dynamics of Scientific Discovery.

    Directory of Open Access Journals (Sweden)

    Richard McElreath

    Full Text Available Many published research results are false (Ioannidis, 2005, and controversy continues over the roles of replication and publication policy in improving the reliability of research. Addressing these problems is frustrated by the lack of a formal framework that jointly represents hypothesis formation, replication, publication bias, and variation in research quality. We develop a mathematical model of scientific discovery that combines all of these elements. This model provides both a dynamic model of research as well as a formal framework for reasoning about the normative structure of science. We show that replication may serve as a ratchet that gradually separates true hypotheses from false, but the same factors that make initial findings unreliable also make replications unreliable. The most important factors in improving the reliability of research are the rate of false positives and the base rate of true hypotheses, and we offer suggestions for addressing each. Our results also bring clarity to verbal debates about the communication of research. Surprisingly, publication bias is not always an obstacle, but instead may have positive impacts-suppression of negative novel findings is often beneficial. We also find that communication of negative replications may aid true discovery even when attempts to replicate have diminished power. The model speaks constructively to ongoing debates about the design and conduct of science, focusing analysis and discussion on precise, internally consistent models, as well as highlighting the importance of population dynamics.

  19. Modelling multi-pulse population dynamics from ultrafast spectroscopy.

    Directory of Open Access Journals (Sweden)

    Luuk J G W van Wilderen

    Full Text Available Current advanced laser, optics and electronics technology allows sensitive recording of molecular dynamics, from single resonance to multi-colour and multi-pulse experiments. Extracting the occurring (bio- physical relevant pathways via global analysis of experimental data requires a systematic investigation of connectivity schemes. Here we present a Matlab-based toolbox for this purpose. The toolbox has a graphical user interface which facilitates the application of different reaction models to the data to generate the coupled differential equations. Any time-dependent dataset can be analysed to extract time-independent correlations of the observables by using gradient or direct search methods. Specific capabilities (i.e. chirp and instrument response function for the analysis of ultrafast pump-probe spectroscopic data are included. The inclusion of an extra pulse that interacts with a transient phase can help to disentangle complex interdependent pathways. The modelling of pathways is therefore extended by new theory (which is included in the toolbox that describes the finite bleach (orientation effect of single and multiple intense polarised femtosecond pulses on an ensemble of randomly oriented particles in the presence of population decay. For instance, the generally assumed flat-top multimode beam profile is adapted to a more realistic Gaussian shape, exposing the need for several corrections for accurate anisotropy measurements. In addition, the (selective excitation (photoselection and anisotropy of populations that interact with single or multiple intense polarised laser pulses is demonstrated as function of power density and beam profile. Using example values of real world experiments it is calculated to what extent this effectively orients the ensemble of particles. Finally, the implementation includes the interaction with multiple pulses in addition to depth averaging in optically dense samples. In summary, we show that mathematical

  20. Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacterial populations.

    Science.gov (United States)

    Kim, Bohwa; Praveenkumar, Ramasamy; Lee, Jiye; Nam, Bora; Kim, Dong-Myung; Lee, Kyubock; Lee, Young-Chul; Oh, You-Kwan

    2016-11-01

    Improving lipid productivity and preventing overgrowth of contaminating bacteria are critical issues relevant to the commercialization of the mixotrophic microalgae cultivation process. In this paper, we report the use of magnesium aminoclay (MgAC) nanoparticles for enhanced lipid production from oleaginous Chlorella sp. KR-1 with simultaneous control of KR-1-associated bacterial growth in mixotrophic cultures with glucose as the model substrate. Addition of 0.01-0.1g/L MgAC promoted microalgal biomass production better than the MgAC-less control, via differential biocidal effects on microalgal and bacterial cells (the latter being more sensitive to MgAC's bio-toxicity than the former). The inhibition effect of MgAC on co-existing bacteria was, as based on density-gradient-gel-electrophoresis (DGGE) analysis, largely dosage-dependent and species-specific. MgAC also, by inducing an oxidative stress environment, increased both the cell size and lipid content of KR-1, resulting in a considerable, ∼25% improvement of mixotrophic algal lipid productivity (to ∼410mgFAME/L/d) compared with the untreated control. PMID:27543952

  1. Population structure of the bacterial pathogen Xylella fastidiosa among street trees in Washington D.C.

    Science.gov (United States)

    Harris, Jordan Lee; Balci, Yilmaz

    2015-01-01

    Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship. PMID:25815838

  2. Characterization of culturable bacterial populations associating with Pinus sylvestris--Suillus bovinus mycorrhizospheres.

    Science.gov (United States)

    Timonen, Sari; Hurek, Thomas

    2006-08-01

    Bacterial isolations were carried out on Pinus sylvestris--Suillus bovinus mycorrhizospheres obtained directly from boreal pine forest. When samples were taken during dry weather, the numbers of bacterial colony-forming units were significantly higher in uncolonized short roots and external mycelia than in mycorrhizal roots and soil outside the mycorrhizosphere. In contrast, the colony-forming unit counts were similar in all hypogeous samples after rainy weather. Culturable bacteria were absent from most Suillus bovinus sporocarps. The bacteria isolated from all types of mycorr hizo sphere samples, i.e. short roots, mycorrhizal roots, and external mycelia, consisted primarily of Burkholderia spp., whereas most isolates from soil outside the mycorrhizosphere were identified as Paenibacillus spp. This study shows that mycorrhizal external mycelia can expand the habitat favourable for common rhizosphere bacteria into the soil far from the immediate rhizosphere. Some of these bacteria may help the trees with nitrogen acquisition, since potentially diazotrophic bacteria harbouring nitrogenase reductase (nifH) genes were isolated from mycorrhizal root tips. PMID:16917536

  3. Coral population dynamics across consecutive mass mortality events.

    Science.gov (United States)

    Riegl, Bernhard; Purkis, Sam

    2015-11-01

    Annual coral mortality events due to increased atmospheric heat may occur regularly from the middle of the century and are considered apocalyptic for coral reefs. In the Arabian/Persian Gulf, this situation has already occurred and population dynamics of four widespread corals (Acropora downingi, Porites harrisoni, Dipsastrea pallida, Cyphastrea micropthalma) were examined across the first-ever occurrence of four back-to-back mass mortality events (2009-2012). Mortality was driven by diseases in 2009, bleaching and subsequent diseases in 2010/2011/2012. 2009 reduced P. harrisoni cover and size, the other events increasingly reduced overall cover (2009: -10%; 2010: -20%; 2011: -20%; 2012: -15%) and affected all examined species. Regeneration was only observed after the first disturbance. P. harrisoni and A. downingi severely declined from 2010 due to bleaching and subsequent white syndromes, while D. pallida and P. daedalea declined from 2011 due to bleaching and black-band disease. C. microphthalma cover was not affected. In all species, most large corals were lost while fission due to partial tissue mortality bolstered small size classes. This general shrinkage led to a decrease of coral cover and a dramatic reduction of fecundity. Transition matrices for disturbed and undisturbed conditions were evaluated as Life Table Response Experiment and showed that C. microphthalma changed the least in size-class dynamics and fecundity, suggesting they were 'winners'. In an ordered 'degradation cascade', impacts decreased from the most common to the least common species, leading to step-wise removal of previously dominant species. A potentially permanent shift from high- to low-coral cover with different coral community and size structure can be expected due to the demographic dynamics resultant from the disturbances. Similarities to degradation of other Caribbean and Pacific reefs are discussed. As comparable environmental conditions and mortality patterns must be

  4. Molecular dynamics simulations of the bacterial ABC transporter SAV1866 in the closed form.

    Science.gov (United States)

    St-Pierre, Jean-François; Bunker, Alex; Róg, Tomasz; Karttunen, Mikko; Mousseau, Normand

    2012-03-01

    The ATP binding cassette (ABC) transporter family of proteins contains members involved in ATP-mediated import or export of ligands at the cell membrane. For the case of exporters, the translocation mechanism involves a large-scale conformational change that involves a clothespin-like motion from an inward-facing open state, able to bind ligands and adenosine triphosphate (ATP), to an outward-facing closed state. Our work focuses on SAV1866, a bacterial member of the ABC transporter family for which the structure is known for the closed state. To evaluate the ability of this protein to undergo conformational changes at physiological temperature, we first performed conventional molecular dynamics (MD) on the cocrystallized adenosine diphosphate (ADP)-bound structure and on a nucleotide-free structure. With this assessment of SAV1866's stability, conformational changes were induced by steered molecular dynamics (SMD), in which the nucleotide binding domains (NBD) were pushed apart, simulating the ATP hydrolysis energy expenditure. We found that the transmembrane domain is not easily perturbed by large-scale motions of the NBDs. PMID:22339391

  5. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets

    Science.gov (United States)

    Das, Siddhartha; Kumar, Aloke

    2014-11-01

    It has been recently reported that in presence of low Reynolds number (Re bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this work, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such ``viscous liquid'' state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions. Overall our manuscript provides a biophysical basis for understanding the evolution of biofilm streamers in creeping flows.

  6. Distribution and dynamics of OXPHOS complexes in the bacterial cytoplasmic membrane.

    Science.gov (United States)

    Magalon, Axel; Alberge, François

    2016-03-01

    Oxidative phosphorylation (OXPHOS) is an essential process for most living organisms mostly sustained by protein complexes embedded in the cell membrane. In order to thrive, cells need to quickly respond to changes in the metabolic demand or in their environment. An overview of the strategies that can be employed by bacterial cells to adjust the OXPHOS outcome is provided. Regulation at the level of gene expression can only provide a means to adjust the OXPHOS outcome to long-term trends in the environment. In addition, the actual view is that bioenergetic membranes are highly compartmentalized structures. This review discusses what is known about the spatial organization of OXPHOS complexes and the timescales at which they occur. As exemplified with the commensal gut bacterium Escherichia coli, three levels of spatial organization are at play: supercomplexes, membrane microdomains and polar assemblies. This review provides a particular focus on whether dynamic spatial organization can fine-tune the OXPHOS through the definition of specialized functional membrane microdomains. Putative mechanisms responsible for spatio-temporal regulation of the OXPHOS complexes are discussed. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. PMID:26545610

  7. DMPD: Targeting bacterial endotoxin: two sides of a coin. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17405910 Targeting bacterial endotoxin: two sides of a coin. Bosshart H, Heinzelman...n M. Ann N Y Acad Sci. 2007 Jan;1096:1-17. (.png) (.svg) (.html) (.csml) Show Targeting bacterial endotoxin: two... sides of a coin. PubmedID 17405910 Title Targeting bacterial endotoxin: two sides of a coin. Authors Bo

  8. DMPD: The actions of bacterial DNA on murine macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10534106 The actions of bacterial DNA on murine macrophages. Sester DP, Stacey KJ, ...Sweet MJ, Beasley SJ, Cronau SL, Hume DA. J Leukoc Biol. 1999 Oct;66(4):542-8. (.png) (.svg) (.html) (.csml) Show The... actions of bacterial DNA on murine macrophages. PubmedID 10534106 Title The actions of bacterial D

  9. DMPD: Role of Nods in bacterial infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17379560 Role of Nods in bacterial infection. Bourhis LL, Werts C. Microbes Infect.... 2007 Apr;9(5):629-36. Epub 2007 Jan 27. (.png) (.svg) (.html) (.csml) Show Role of Nods in bacterial infection.... PubmedID 17379560 Title Role of Nods in bacterial infection. Authors Bourhis LL, Werts C. Publication M

  10. Light Suppresses Bacterial Population through the Accumulation of Hydrogen Peroxide in Tobacco Leaves Infected with Pseudomonas syringae pv. tabaci.

    Science.gov (United States)

    Cheng, Dan-Dan; Liu, Mei-Jun; Sun, Xing-Bin; Zhao, Min; Chow, Wah S; Sun, Guang-Yu; Zhang, Zi-Shan; Hu, Yan-Bo

    2016-01-01

    Pseudomonas syringae pv. tabaci (Pst) is a hemibiotrophic bacterial pathogen responsible for tobacco wildfire disease. Although considerable research has been conducted on the tobacco plant's tolerance to Pst, the role of light in the responses of the photosystems to Pst infection is poorly understood. This study aimed to elucidate the underlying mechanisms of the reduced photosystem damage in tobacco leaves due to Pst infection under light conditions. Compared to dark conditions, Pst infection under light conditions resulted in less chlorophyll degradation and a smaller decline in photosynthetic function. Although the maximal quantum yield of photosystem II (PSII) and the activity of the photosystem I (PSI) complex decreased as Pst infection progressed, damage to PSI and PSII after infection was reduced under light conditions compared to dark conditions. Pst was 17-fold more abundant in tobacco leaves under dark compared to light conditions at 3 days post inoculation (dpi). Additionally, H2O2 accumulated to a high level in tobacco leaves after Pst infection under light conditions; although to a lesser extent, H2O2 accumulation was also significant under dark conditions. Pretreatment with H2O2 alleviated chlorotic lesions and decreased Pst abundance in tobacco leaves at 3 dpi under dark conditions. MV pretreatment had the same effects under light conditions, whereas 3-(3,4-dichlorophenyl)-1,1-dimethylurea pretreatment aggravated chlorotic lesions and increased the Pst population. These results indicate that chlorotic symptoms and the size of the bacterial population are each negatively correlated with H2O2 accumulation. In other words, light appears to suppress the Pst population in tobacco leaves through the accumulation of H2O2 during infection. PMID:27148334

  11. Dynamics of Populations of Planetary Systems (IAU C197)

    Science.gov (United States)

    Knezevic, Zoran; Milani, Andrea

    2005-05-01

    population of asteroids in the 2:1 mean motion resonance with Jupiter revised Miroslav Broz, D. Vokrouhlicky, F. Roig, D. Nesvorny, W. F. Bottke and A. Morbidelli; 22. On the reliability of computation of maximum Lyapunov Characteristic Exponents for asteroids Zoran Knezevic and Slobodan Ninkovic; 23. Nekhoroshev stability estimates for different models of the Trojan asteroids Christos Efthymiopoulos; 24. The role of the resonant 'stickiness' in the dynamical evolution of Jupiter family comets A. Alvarez-Canda and F. Roig; 25. Regimes of stability and scaling relations for the removal time in the asteroid belt: a simple kinetic model and numerical tests Mihailo Cubrovic; 26. Virtual asteroids and virtual impactors Andrea Milani; 27. Asteroid population models Alessandro Morbidelli; 28. Linking Very Large Telescope asteroid observations M. Granvik, K. Muinonen, J. Virtanen, M. Delbó, L. Saba, G. De Sanctis, R. Morbidelli, A. Cellino and E. Tedesco; 29. Collision orbits and phase transition for 2004 AS1 at discovery Jenni Virtanen, K. Muinonen, M. Granvik and T. Laakso; 30. The size of collision solutions in orbital elements space G. B. Valsecchi, A. Rossi, A. Milani and S. R. Chesley; 31. Very short arc orbit determination: the case of asteroid 2004 FU162 Steven R. Chesley; 32. Nonlinear impact monitoring: 2-dimensional sampling Giacomo Tommei; 33. Searching for gravity assisted trajectories to accessible near-Earth asteroids Stefan Berinde; 34. KLENOT - Near Earth and other unusual objects observations Michal Kocer, Jana Tichá and M. Tichy; 35. Transport of comets to the Inner Solar System Hans Rickman; 36. Nongravitational Accelerations on Comets Steven R. Chesley and Donald K. Yeomans; 37. Interaction of planetesimals with the giant planets and the shaping of the trans-Neptunian belt Harold F. Levison and Alessandro Morbidelli; 38. Transport of comets to the outer p

  12. Soil Bacteria Population Dynamics Following Stimulation for Ureolytic Microbial-Induced CaCO3 Precipitation.

    Science.gov (United States)

    Gat, Daniella; Ronen, Zeev; Tsesarsky, Michael

    2016-01-19

    Microbial-induced CaCO3 precipitation (MICP) via urea-hydrolysis (ureolysis) is an emerging soil improvement technique for various civil engineering and environmental applications. In-situ application of MICP in soils is performed either by augmenting the site with ureolytic bacteria or by stimulating indigenous ureolytic bacteria. Both of these approaches may lead to changes in the indigenous bacterial population composition and to the accumulation of large quantities of ammonium. In this batch study, effective ureolysis was stimulated in coastal sand from a semiarid environment, with low initial ureolytic bacteria abundance. Two different carbon sources were used: yeast-extract and molasses. No ureolysis was observed in their absence. Ureolysis was achieved using both carbon sources, with a higher rate in the yeast-extract enrichment resulting from increased bacterial growth. The changes to the indigenous bacterial population following biostimulation of ureolysis were significant: Bacilli class abundancy increased from 5% in the native sand up to 99% in the yeast-extract treatment. The sand was also enriched with ammonium-chloride, where ammonia-oxidation was observed after 27 days, but was not reflected in the bacterial population composition. These results suggest that biostimulation of ureolytic bacteria can be applied even in a semiarid and nutrient-poor environment using a simple carbon source, that is, molasses. The significant changes to bacterial population composition following ureolysis stimulation could result in a decrease in trophic activity and diversity in the treated site, thus they require further attention. PMID:26689904

  13. Diversity and dynamics of dominant and rare bacterial taxa in replicate sequencing batch reactors operated under different solids retention time

    KAUST Repository

    Bagchi, Samik

    2014-10-19

    In this study, 16S rRNA gene pyrosequencing was applied in order to provide a better insight on the diversity and dynamics of total, dominant, and rare bacterial taxa in replicate lab-scale sequencing batch reactors (SBRs) operated at different solids retention time (SRT). Rank-abundance curves showed few dominant operational taxonomic units (OTUs) and a long tail of rare OTUs in all reactors. Results revealed that there was no detectable effect of SRT (2 vs. 10 days) on Shannon diversity index and OTU richness of both dominant and rare taxa. Nonmetric multidimensional scaling analysis showed that the total, dominant, and rare bacterial taxa were highly dynamic during the entire period of stable reactor performance. Also, the rare taxa were more dynamic than the dominant taxa despite expected low invasion rates because of the use of sterile synthetic media.

  14. Identification and characterization of metabolic properties of bacterial populations recovered from arsenic contaminated ground water of North East India (Assam).

    Science.gov (United States)

    Ghosh, Soma; Sar, Pinaki

    2013-12-01

    Diversity of culturable bacterial populations within the Arsenic (As) contaminated groundwater of North Eastern state (Assam) of India is studied. From nine As contaminated samples 89 bacterial strains are isolated. 16S rRNA gene sequence analysis reveals predominance of Brevundimonas (35%) and Acidovorax (23%) along with Acinetobacter (10%), Pseudomonas (9%) and relatively less abundant (<5%) Undibacterium, Herbaspirillum, Rhodococcus, Staphylococcus, Bosea, Bacillus, Ralstonia, Caulobacter and Rhizobiales members. High As(III) resistance (MTC 10-50 mM) is observed for the isolates obtained from As(III) enrichment, particularly for 3 isolates of genus Brevundimonas (MTC 50 mM). In contrast, high resistance to As(V) (MTC as high as 550 mM) is present as a ubiquitous property, irrespective of isolates' enrichment condition. Bacterial genera affiliated to other groups showed relatively lower degree of As resistance [MTCs of 15-20 mM As(III) and 250-350 mM As(V)]. As(V) reductase activity is detected in strains with high As(V) as well as As(III) resistance. A strong correlation could be established among isolates capable of reductase activity and siderophore production as well as As(III) tolerance. A large number of isolates (nearly 50%) is capable of anaerobic respiration using alternate inorganic electron acceptors [As(V), Se(VI), Fe(III), [NO(3)(2), SO(4)(2), S(2)O(3)(2). Ability to utilize different carbon sources ranging from C2-C6 compounds along with some complex sugars is also observed. Particularly, a number of strains is found to possess ability to grow chemolithotrophically using As(III) as the electron donor. The study reports for the first time the identity and metabolic abilities of bacteria in As contaminated ground water of North East India, useful to elucidate the microbial role in influencing mobilization of As in the region. PMID:24210546

  15. The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle.

    Directory of Open Access Journals (Sweden)

    Eric Pinloche

    Full Text Available It has been suggested that the ability of live yeast to improve milk yield and weight gain in cattle is because the yeast stimulates bacterial activity within the rumen. However it remains unclear if this is a general stimulation of all species or a specific stimulation of certain species. Here we characterised the change in the bacterial population within the rumen of cattle fed supplemental live yeast. Three cannulated lactating cows received a daily ration (24 kg/d of corn silage (61% of DM, concentrates (30% of DM, dehydrated alfalfa (9% of DM and a minerals and vitamins mix (1% of DM. The effect of yeast (BIOSAF SC 47, Lesaffre Feed Additives, France; 0.5 or 5 g/d was compared to a control (no additive in a 3 × 3 Latin square design. The variation in the rumen bacterial community between treatments was assessed using Serial Analysis of V1 Ribosomal Sequence Tag (SARST-V1 and 454 pyrosequencing based on analysis of the 16S rRNA gene. Compared to the control diet supplementation of probiotic yeast maintained a healthy fermentation in the rumen of lactating cattle (higher VFA concentration [high yeast dose only], higher rumen pH, and lower Eh and lactate. These improvements were accompanied with a shift in the main fibrolytic group (Fibrobacter and Ruminococcus and lactate utilising bacteria (Megasphaera and Selenomonas. In addition we have shown that the analysis of short V1 region of 16s rRNA gene (50-60 bp could give as much phylogenetic information as a longer read (454 pyrosequencing of 250 bp. This study also highlights the difficulty of drawing conclusions on composition and diversity of complex microbiota because of the variation caused by the use of different methods (sequencing technology and/or analysis.

  16. Fluctuations of population dynamics model parameters: View on the problem of climate change

    OpenAIRE

    L.V. Nedorezov

    2012-01-01

    In current publication the statistical method of analysis of population time series in considered. This method is based on analysis of dynamics of non-linear ecological model parameter estimations in time, and devoted to investigation of influence of change of weather conditions on population dynamics (on the other words, it is devoted to analysis of climate change from the standpoint of separated population dynamics). Estimations of model parameters were obtained for parts (which contains 12...

  17. Dynamics of Betula ermanni population in subalpine vegetation in Changbai Mountain, Northeast China

    Institute of Scientific and Technical Information of China (English)

    Zou Chunjing; Han Shijie; Wang Xiaochun

    1999-01-01

    Betula ermanni population was divided into three groups: the upper population (2 000~2 200 m), the middle population (1 700~2000 m), and the down population (1 400~1 700 m) in Changbai Mountain. The dynamics of Betula ermanni populations in subalpine vegetation are studied and the population life table,fecundity schedule, survival curves, age structure, and fecundity curves were established. The results showed that the middle population is obviously the transition from the upper population to the down population.

  18. Population dynamics and monitoring applied to decision-making

    Directory of Open Access Journals (Sweden)

    Conroy, M. J.

    2004-06-01

    influence diagrams to capture the stochastic, temporal processes of managing cheetah population in Kenya. The model predicts likely anagement decisions made by various actors within these countries, (e.g., the President, the Environmental Protection Agency, and rural residents and the resulting probability of cheetah extinction following these decisions. By approaching the problem in both its political and ecological contexts one avoids consideration of decisions that, while beneficial from a purely conservation point of view, are unlikely to be implemented because of conflicting political objectives. Haas’s analysis demonstrates both the promise and challenges of this type of modeling, and he offers suggestions for overcoming inherent technical difficulties such as model calibration. The second paper, by Simon Hoyle and Mark Maunder (Hoyle & Maunder, 2004, uses a Bayesian approach to model population dynamics and the effects of commercial fishing bycatch for the eastern Pacific Ocean spotted dolphin (Stenella attenuata. Their paper provides a good example of why Bayesian analysis is particularly suited to many management problems. Namely, because it allows the integration of disparate pieces of monitoring data in the simultaneous estimation of population parameters; allows forincorporation of expert judgment and data from other systems and species; and provides for explicit consideration of uncertainty in decision–making. Alternative management scenarios can then be explored via forward simulations. In the third paper, Chris Fonnesbeck and Mike Conroy (Fonnesbeck & Conroy, 2004 present an integrated approach for estimating parameters and predicting abundance of American black duck (Anas rubripes populations. They also employ a ayesian approach and overcome some of the computational challenges by using Markov chain–Monte Carlo methods. Ring–recovery and harvest data are used to estimate fall age ratios under alternative reproductive models. These in turn are used to

  19. The key role of nutrition in controlling human population dynamics.

    Science.gov (United States)

    Duncan, C J; Scott, S

    2004-12-01

    The early hominids and their successors, the nomadic hunter-gatherers, were evolutionarily adapted to an omnivorous diet. Their food was well balanced nutritionally and they acquired adequate supplies with relatively little expenditure of energy. The complete change to a fixed agricultural lifestyle (the Neolithic revolution) took place only some 12 000 years ago and was the most momentous event in human history. Being tied to the land that they worked led eventually to the city states and the great civilisations of history, which brought with them wars and epidemics of infectious diseases. Much more serious were the insidious effects of the new cereal-based diet which persisted until the twentieth century. Not only was it labour intensive, but also for the bulk of the population it was often deficient in vitamins, minerals and energy, particularly at certain times of the year. Time-series analysis reveals a regular short wavelength oscillation in the grain supply that persisted for at least 350 years and dominated the population dynamics of pre-industrial England. In addition to reducing fertility, it acted primarily via its effects on the nutrition of the pregnant woman. Malnutrition during one of the critical trimesters of pregnancy could have far-reaching effects not only on the health of the fetus and neonate but also on the illnesses of later, adult life. These consequences were insidiously and inevitably carried forward to the subsequent generations. Girls who were born with a low birth weight produced daughters and granddaughters of low birth weight, irrespective of their nutrition during childhood. These intergenerational, knock-on effects established a vicious circle from which there was little chance of escape. PMID:19079924

  20. Effects of gamma-irradiation before and after cooking on bacterial population and sensory quality of Dakgalbi

    International Nuclear Information System (INIS)

    The purpose of this study was to compare the effect of gamma irradiation on the total bacterial population and the sensory quality of Dakgalbi irradiated before and after cooking. Fresh chicken meat was cut into small pieces and used to prepare Dakgalbi. For the preparation of Dakgalbi cooked with gamma-irradiated chicken meat and sauce (IBC), raw chicken meat and Dakgalbi sauce were irradiated and then stir-fried. For the preparation of Dakgalbi irradiated after cooking with raw chicken meat and sauce (IAC), raw chicken meat and Dakgalbi sauce were first cooked and subsequently irradiated. Under the accelerated storage condition of 35 °C for 7 days, bacteria in IBC were below the detection limit (1 log CFU/g) on day 1 but were detected on day 2 and gradually increased hereafter. In IAC, on the other hand, bacteria were not detected at all. Evaluation of sensory quality also decreased on both samples. However, IAC showed a better trend. Our results indicate that IAC protocol was a more effective method for reducing bacterial growth in Dakgalbi. - Highlights: ► We compared the microbial safety and sensory property of Dakgalbi irradiated before and after cooking. ► Dakgalbi irradiated after cooking can be more effective processing method on microbial safety. ► Sensory property decreased on both Dakgalbis by irradiation-induced off-flavor. ► Dakgalbi irradiated after cooking showed a better tendency on the sensory evaluation.

  1. A spatial ecosystem and populations dynamics model (SEAPODYM) Modeling of tuna and tuna-like populations

    Science.gov (United States)

    Lehodey, Patrick; Senina, Inna; Murtugudde, Raghu

    2008-09-01

    An enhanced version of the spatial ecosystem and population dynamics model SEAPODYM is presented to describe spatial dynamics of tuna and tuna-like species in the Pacific Ocean at monthly resolution over 1° grid-boxes. The simulations are driven by a bio-physical environment predicted from a coupled ocean physical-biogeochemical model. This new version of SEAPODYM includes expanded definitions of habitat indices, movements, and natural mortality based on empirical evidences. A thermal habitat of tuna species is derived from an individual heat budget model. The feeding habitat is computed according to the accessibility of tuna predator cohorts to different vertically migrating and non-migrating micronekton (mid-trophic) functional groups. The spawning habitat is based on temperature and the coincidence of spawning fish with presence or absence of predators and food for larvae. The successful larval recruitment is linked to spawning stock biomass. Larvae drift with currents, while immature and adult tuna can move of their own volition, in addition to being advected by currents. A food requirement index is computed to adjust locally the natural mortality of cohorts based on food demand and accessibility to available forage components. Together these mechanisms induce bottom-up and top-down effects, and intra- (i.e. between cohorts) and inter-species interactions. The model is now fully operational for running multi-species, multi-fisheries simulations, and the structure of the model allows a validation from multiple data sources. An application with two tuna species showing different biological characteristics, skipjack ( Katsuwonus pelamis) and bigeye ( Thunnus obesus), is presented to illustrate the capacity of the model to capture many important features of spatial dynamics of these two different tuna species in the Pacific Ocean. The actual validation is presented in a companion paper describing the approach to have a rigorous mathematical parameter optimization

  2. BACTERIAL POPULATION SHIFTS IN THE RUMEN OF LACTATING DAIRY COWS WITHIN AND ACROSS FEEDING CYCLES

    Science.gov (United States)

    While species composition of the ruminal microflora is thought to change during the feeding cycle due to variations in feed intake and ruminal environmental conditions, no studies have systematically characterized these purported population shifts. We used PCR amplification and automated ribosomal ...

  3. Bacterial populations within copper mine tailings: long-term effects of amendment with Class A biosolids

    Science.gov (United States)

    This study evaluates the effect of surface application of dried Class A biosolids on microbial populations within copper mine tailings. Methods and Results: Mine tailing sites were established at ASARCO Mission Mine close to Sahuarita, Arizona. Site 1 (Dec. 1998) was amended with 248 tons ha-1 of C...

  4. Measuring the Rate of Conjugal Plasmid Transfer and Phage Infection in a Bacterial Population Using Quantitative PCR

    Science.gov (United States)

    Wan, Zhenmao; Goddard, Noel

    2012-02-01

    Horizontal gene transfer between species is an important mechanism for bacterial genome evolution. In Escherichia coli, conjugation is the transfer from a donor(F^+) to a recipient(F^-) cell through cell-to-cell contact. We demonstrate a novel qPCR method for quantifying the transfer kinetics of the F plasmid in a population by enumerating the relative abundance of genetic loci unique to the plasmid and the chromosome. This approach allows us to query the plasmid transfer rate without the need for selective culturing with unprecedented single locus resolution. It also allows us to investigate the inhibition of conjugation in the presence of filamentous bacteriophages M13. Experimental data is then compared with numerical simulation using a mass action, resource limited model.

  5. A new method for determining the metabolic activity of specific bacterial populations in soil using tritiated leucine and immunomagnetic separation

    DEFF Research Database (Denmark)

    Sengeløv, Gitte; Sørensen, Søren Johannes; Frette, Lone;

    2000-01-01

    time with immunomagnetic beads was not critical for optimal target cell recovery, but samples needed to be washed at least 5¿times during the immunomagnetic separation to reduce unspecific binding of the indigenous soil bacteria to the magnetic beads. Soil absorption of the polyclonal antibody further......A new assay, using immunomagnetic separation and uptake of tritiated leucine ([3H]-Leu), was developed for measuring the in situ metabolic activity of specific bacterial populations in soil. Such assays are needed to assess the role individual species play in diverse microbial soil communities. The...... method was optimized using Pseudomonas putida KT2440¿:¿:Tc+/TOL::gfp inoculated into soil microcosms. Inoculated soil samples were incubated with [3H]-Leu followed by an immunomagnetic separation to recover the target bacteria. Radiolabel incorporated by the target bacteria was then measured. Incubation...

  6. Spatiotemporal dynamics of insect pest population under viral infection.

    Science.gov (United States)

    Ghosh, Suma; Bhattacharyya, Samit

    2013-07-01

    The interrelationship between pathogen infection and host mobility is of great importance for successful spread of disease in spatial pest population. As spread of infection depends on horizontal transmission of pathogen, there are numerous factors like susceptibility, latent period, host movement that influence overall effectiveness of the control policy. Initiation of new infection cycle depends on density of infected inoculum in the site. So, spatial movement of infected hosts during the course of infection influence the dynamics. Also, infected individuals are more vulnerable to predators and hence production of virus particles in the site depends on predation to some extent. We derive a four dimensional delayed reaction-diffusion model in one spatial dimension and compute the minimum travelling speed of transmission of infection. We show that the minimum speed is sensitive to several parameters of the system. For example, the minimum speed decreases only with increase in delay in lysis process, but otherwise it increases with increase in force of infection, diffusivity of infectives or per capita virus production. A concluding discussion with numerical simulation is presented in the end. PMID:23562890

  7. Lesser Scaup population dynamics: what can belearned from available data?

    OpenAIRE

    Koons, David N.; Rotella, J. J.; Willey, D. W.; Taper, M.; Clark, R.G.; Slattery, S.; Brook, R. W.; Corcoran, R. M.; Lovvorn, J.R

    2006-01-01

    Populations of Lesser Scaup (Aythya affinis) have declined markedly in North America since the early 1980s. When considering alternatives for achieving population recovery, it would be useful to understand how the rate of population growth is functionally related to the underlying vital rates and which vital rates affect population growth rate the most if changed (which need not be those that influenced historical population declines). To establish a more quantitative basis for learning about...

  8. Housefly Larva Vermicomposting Efficiently Attenuates Antibiotic Resistance Genes in Swine Manure, with Concomitant Bacterial Population Changes.

    Science.gov (United States)

    Wang, Hang; Li, Hongyi; Gilbert, Jack A; Li, Haibo; Wu, Longhua; Liu, Meng; Wang, Liling; Zhou, Qiansheng; Yuan, Junxiang; Zhang, Zhijian

    2015-11-01

    Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P vermicomposting, accompanied by a 100 times increase in the relative abundance of Flavobacteriaceae spp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the family Ruminococcaceae, class Bacilli, or phylum Proteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems. PMID:26296728

  9. Finite-size effects on bacterial population expansion under controlled fow conditions

    CERN Document Server

    Tesser, Francesca; Clercx, Herman J H; Brunsveld, Luc; Toschi, Federico

    2016-01-01

    The expansion of biological species in natural environments is usually described as the combined effect of individual spatial dispersal and growth. In the case of aquatic ecosystems flow transport can also be extremely relevant as an extra, advection induced, dispersal factor. There is a lack of reproducible experimental studies on biological fronts of living organisms in controlled streaming habitats. It is thus not clear if, and to which extent, the current theoretical and experimental knowledge on advective-reactive-diffusive fronts for chemical reactions can also apply to the expansion of biological populations. We designed and assembled a dedicated microfluidic device to control and quantify the expansion of populations of $E.coli$ bacteria under both co-flowing and counter-flowing conditions, measuring the front speed at varying intensity of the imposed flow. At variance with respect to the case of autocatalytic reactions, we measure that almost irrespective of the counter-flow velocity, the front speed...

  10. EVOLUTIONARY DYNAMIC MODEL OF POPULATION WITH NICHE CONSTRUCTION AND ITS APPLICATION RESEARCH

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the theories and approaches in biomechanics, the mechanism and pattern of niche construction were discussed systematically. Through establishing the spatial pattern of niche and its measuring-fitness formula, and the dynamic system models of single- and two-population with niche construction, including corresponding theoretical analysis and numerical simulation on their evolutionary dynamics of population and the mechanism of competitive coexistence, the co-evolutionary relationship between organisms and their environments was revealed. The results indicate that population dynamics is governed by positive feedback between primary ecological factors and resource content.Niche construction generates an evolutionary effect in system by influencing the fitness of population. A threshold effect exists in single population dynamic system. In dynamic system of two competitive populations, niche construction can lead to alternative competitive consequences, which may be a potential mechanism to explain the competitive coexistence of species.

  11. Rigid multibody simulation of a helix-like structure: the dynamics of bacterial adhesion pili.

    Science.gov (United States)

    Zakrisson, Johan; Wiklund, Krister; Servin, Martin; Axner, Ove; Lacoursière, Claude; Andersson, Magnus

    2015-07-01

    We present a coarse-grained rigid multibody model of a subunit assembled helix-like polymer, e.g., adhesion pili expressed by bacteria, that is capable of describing the polymer's force-extension response. With building blocks representing individual subunits, the model appropriately describes the complex behavior of pili expressed by the gram-negative uropathogenic Escherichia coli bacteria under the action of an external force. Numerical simulations show that the dynamics of the model, which include the effects of both unwinding and rewinding, are in good quantitative agreement with the characteristic force-extension response as observed experimentally for type 1 and P pili. By tuning the model, it is also possible to reproduce the force-extension response in the presence of anti-shaft antibodies, which dramatically changes the mechanical properties. Thus, the model and results in this work give enhanced understanding of how a pilus unwinds under the action of external forces and provide a new perspective of the complex bacterial adhesion processes. PMID:25851543

  12. Divergent evolution peaks under intermediate population bottlenecks during bacterial experimental evolution.

    Science.gov (United States)

    Vogwill, Tom; Phillips, Robyn L; Gifford, Danna R; MacLean, R Craig

    2016-07-27

    There is growing evidence that parallel molecular evolution is common, but its causes remain poorly understood. Demographic parameters such as population bottlenecks are predicted to be major determinants of parallelism. Here, we test the hypothesis that bottleneck intensity shapes parallel evolution by elucidating the genomic basis of adaptation to antibiotic-supplemented media in hundreds of populations of the bacterium Pseudomonas fluorescens Pf0-1. As expected, bottlenecking decreased the rate of phenotypic and molecular adaptation. Surprisingly, bottlenecking had no impact on the likelihood of parallel adaptive molecular evolution at a genome-wide scale. However, bottlenecking had a profound impact on the genes involved in antibiotic resistance. Specifically, under either intense or weak bottlenecking, resistance predominantly evolved by strongly beneficial mutations which provide high levels of antibiotic resistance. In contrast with intermediate bottlenecking regimes, resistance evolved by a greater diversity of genetic mechanisms, significantly reducing the observed levels of parallel genetic evolution. Our results demonstrate that population bottlenecking can be a major predictor of parallel evolution, but precisely how may be more complex than many simple theoretical predictions. PMID:27466449

  13. Entrainment and Control of Bacterial Populations: An in Silico Study over a Spatially Extended Agent Based Model.

    Science.gov (United States)

    Mina, Petros; Tsaneva-Atanasova, Krasimira; Bernardo, Mario di

    2016-07-15

    We extend a spatially explicit agent based model (ABM) developed previously to investigate entrainment and control of the emergent behavior of a population of synchronized oscillating cells in a microfluidic chamber. Unlike most of the work in models of control of cellular systems which focus on temporal changes, we model individual cells with spatial dependencies which may contribute to certain behavioral responses. We use the model to investigate the response of both open loop and closed loop strategies, such as proportional control (P-control), proportional-integral control (PI-control) and proportional-integral-derivative control (PID-control), to heterogeinities and growth in the cell population, variations of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical systems, open loop control can only entrain the cell population in a subset of forcing periods, with a wide variety of dynamical behaviors obtained outside these regions of entrainment. Closed-loop control is shown instead to guarantee entrainment in a much wider region of control parameter space although presenting limitations when the population size increases over a certain threshold. In silico tracking experiments are also performed to validate the ability of classical control approaches to achieve other reference behaviors such as a desired constant output or a linearly varying one. All simulations are carried out in BSim, an advanced agent-based simulator of microbial population which is here extended ad hoc to include the effects of control strategies acting onto the population. PMID:27110835

  14. Specialized peptidoglycan hydrolases sculpt the intra-bacterial niche of predatory Bdellovibrio and increase population fitness.

    Directory of Open Access Journals (Sweden)

    Thomas R Lerner

    2012-02-01

    Full Text Available Bdellovibrio are predatory bacteria that have evolved to invade virtually all gram-negative bacteria, including many prominent pathogens. Upon invasion, prey bacteria become rounded up into an osmotically stable niche for the Bdellovibrio, preventing further superinfection and allowing Bdellovibrio to replicate inside without competition, killing the prey bacterium and degrading its contents. Historically, prey rounding was hypothesized to be associated with peptidoglycan (PG metabolism; we found two Bdellovibrio genes, bd0816 and bd3459, expressed at prey entry and encoding proteins with limited homologies to conventional dacB/PBP4 DD-endo/carboxypeptidases (responsible for peptidoglycan maintenance during growth and division. We tested possible links between Bd0816/3459 activity and predation. Bd3459, but not an active site serine mutant protein, bound β-lactam, exhibited DD-endo/carboxypeptidase activity against purified peptidoglycan and, importantly, rounded up E. coli cells upon periplasmic expression. A ΔBd0816 ΔBd3459 double mutant invaded prey more slowly than the wild type (with negligible prey cell rounding and double invasions of single prey by more than one Bdellovibrio became more frequent. We solved the crystal structure of Bd3459 to 1.45 Å and this revealed predation-associated domain differences to conventional PBP4 housekeeping enzymes (loss of the regulatory domain III, alteration of domain II and a more exposed active site. The Bd3459 active site (and by similarity the Bd0816 active site can thus accommodate and remodel the various bacterial PGs that Bdellovibrio may encounter across its diverse prey range, compared to the more closed active site that "regular" PBP4s have for self cell wall maintenance. Therefore, during evolution, Bdellovibrio peptidoglycan endopeptidases have adapted into secreted predation-specific proteins, preventing wasteful double invasion, and allowing activity upon the diverse prey peptidoglycan

  15. Functional diversity and dynamics of bacterial communities in a membrane bioreactor for the treatment of metal-working fluid wastewater.

    Science.gov (United States)

    Grijalbo, Lucía; Garbisu, Carlos; Martín, Iker; Etxebarria, Javier; Gutierrez-Mañero, F Javier; Lucas Garcia, Jose Antonio

    2015-12-01

    An extensive microbiological study has been carried out in a membrane bioreactor fed with activated sludge and metal-working fluids. Functional diversity and dynamics of bacterial communities were studied with different approaches. Functional diversity of culturable bacterial communities was studied with different Biolog™ plates. Structure and dynamics of bacterial communities were studied in culturable and in non-culturable fractions using a 16S rRNA analysis. Among the culturable bacteria, Alphaproteobacteria and Gammaproteobacteria were the predominant classes. However, changes in microbial community structure were detected over time. Culture-independent analysis showed that Betaproteobacteria was the most frequently detected class in the membrane bioreactor (MBR) community with Zoogloea and Acidovorax as dominant genera. Also, among non-culturable bacteria, a process of succession was observed. Longitudinal structural shifts observed were more marked for non-culturable than for culturable bacteria, pointing towards an important role in the MBR performance. Microbial community metabolic abilities assessed with Biolog™ Gram negative, Gram positive and anaerobic plates also showed differences over time for Shannon's diversity index, kinetics of average well colour development, and the intensely used substrates by bacterial community in each plate. PMID:26608762

  16. Metagenomics reveals pervasive bacterial populations and reduced community diversity across the Alaska tundra ecosystem

    Directory of Open Access Journals (Sweden)

    Eric Robert Johnston

    2016-04-01

    Full Text Available How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 grams are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth by sequencing, and the recovery of twenty-seven high-quality, almost complete (>80% completeness population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity. Collectively

  17. Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem

    Science.gov (United States)

    Johnston, Eric R.; Rodriguez-R, Luis M.; Luo, Chengwei; Yuan, Mengting M.; Wu, Liyou; He, Zhili; Schuur, Edward A. G.; Luo, Yiqi; Tiedje, James M.; Zhou, Jizhong; Konstantinidis, Konstantinos T.

    2016-01-01

    How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1–2 g) are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth) by sequencing, and the recovery of 27 high-quality, almost complete (>80% completeness) population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100–530 km apart) tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity). Collectively, our results revealed

  18. Dominance of a clonal green sulfur bacterial population in a stratified lake

    DEFF Research Database (Denmark)

    Gregersen, Lea H; Habicht, Kirsten S; Peduzzi, Sandro;

    2009-01-01

    For many years, the chemocline of the meromictic Lake Cadagno, Switzerland, was dominated by purple sulfur bacteria. However, following a major community shift in recent years, green sulfur bacteria (GSB) have come to dominate. We investigated this community by performing microbial diversity...... population peaked in the chemocline (c. 8 x 10(6) GSB cells mL(-1)) and constituted about 50% of all cells in the anoxic zones of the water column. At least 99.5% of these GSB cells had SSU rRNA, fmoA, and csmCA sequences essentially identical to that of the previously isolated and genome-sequenced GSB...

  19. A Population Biology Perspective on the Stepwise Infection Process of the Bacterial Pathogen Pasteuria ramosa in Daphnia.

    Science.gov (United States)

    Ebert, Dieter; Duneau, David; Hall, Matthew D; Luijckx, Pepijn; Andras, Jason P; Du Pasquier, Louis; Ben-Ami, Frida

    2016-01-01

    The infection process of many diseases can be divided into series of steps, each one required to successfully complete the parasite's life and transmission cycle. This approach often reveals that the complex phenomenon of infection is composed of a series of more simple mechanisms. Here we demonstrate that a population biology approach, which takes into consideration the natural genetic and environmental variation at each step, can greatly aid our understanding of the evolutionary processes shaping disease traits. We focus in this review on the biology of the bacterial parasite Pasteuria ramosa and its aquatic crustacean host Daphnia, a model system for the evolutionary ecology of infectious disease. Our analysis reveals tremendous differences in the degree to which the environment, host genetics, parasite genetics and their interactions contribute to the expression of disease traits at each of seven different steps. This allows us to predict which steps may respond most readily to selection and which steps are evolutionarily constrained by an absence of variation. We show that the ability of Pasteuria to attach to the host's cuticle (attachment step) stands out as being strongly influenced by the interaction of host and parasite genotypes, but not by environmental factors, making it the prime candidate for coevolutionary interactions. Furthermore, the stepwise approach helps us understanding the evolution of resistance, virulence and host ranges. The population biological approach introduced here is a versatile tool that can be easily transferred to other systems of infectious disease. PMID:27015951

  20. DYNAMICS OF NEMATODE POPULATIONS IN CACAO GROWN UNDER TRADIONALLY SYSTEM OF MANAGEMENT IN PERUVIAN AMAZON

    Science.gov (United States)

    Nature of crops and management systems greatly influences population dynamics of parasitic and nonparasitic nematodes in soil. An experiment was undertaken at Tropical Crop Research institute (ICT), Tarapoto, Peru to assess the population dynamics of nematodes in a Cocoa (Theobroma cacao L.)-Banana ...

  1. Geographic coupling of juvenile and adult habitat shapes spatial population dynamics of a coral reef fish

    NARCIS (Netherlands)

    Huijbers, C.M.; Nagelekerken, I.; Debrot, A.O.; Jongejans, E.

    2013-01-01

    Marine spatial population dynamics are often addressed with a focus on larval dispersal, without taking into account movement behavior of individuals in later life stages. Processes occurring during demersal life stages may also drive spatial population dynamics if habitat quality is perceived diffe

  2. DMPD: Cellular reprogramming by gram-positive bacterial components: a review. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16885502 Cellular reprogramming by gram-positive bacterial components: a review. Bu...(.csml) Show Cellular reprogramming by gram-positive bacterial components: a review. PubmedID 16885502 Title Cellular reprogramming...ckley JM, Wang JH, Redmond HP. J Leukoc Biol. 2006 Oct;80(4):731-41. Epub 2006 Aug 2. (.png) (.svg) (.html)

  3. Phenotypic resistance and the dynamics of bacterial escape from phage control

    DEFF Research Database (Denmark)

    Bull, James J.; Vegge, Christina Skovgaard; Schmerer, Matthew;

    2014-01-01

    The canonical view of phage - bacterial interactions in dense, liquid cultures is that the phage will eliminate most of the sensitive cells; genetic resistance will then ascend to restore high bacterial densities. Yet there are various mechanisms by which bacteria may remain sensitive to phages...

  4. Dandruff Is Associated with Disequilibrium in the Proportion of the Major Bacterial and Fungal Populations Colonizing the Scalp

    OpenAIRE

    Cécile Clavaud; Roland Jourdain; Avner Bar-Hen; Magali Tichit; Christiane Bouchier; Florence Pouradier; Charles El Rawadi; Jacques Guillot; Florence Ménard-Szczebara; Lionel Breton; Jean-Paul Latgé; Isabelle Mouyna

    2013-01-01

    The bacterial and fungal communities associated with dandruff were investigated using culture-independent methodologies in the French subjects. The major bacterial and fungal species inhabiting the scalp subject's were identified by cloning and sequencing of the conserved ribosomal unit regions (16S for bacterial and 28S-ITS for fungal) and were further quantified by quantitative PCR. The two main bacterial species found on the scalp surface were Propionibacterium acnes and Staphylococcus epi...

  5. Characterization of the sulfate-reducing bacterial population in sediments of acid mining lakes

    International Nuclear Information System (INIS)

    With respect to remediation of acid mine drainage (AMD), concomitant alteration of redox conditions, formation of metal sulfides and alkalinity generation are of special interest. The majority of lakes formed in the Lusatian lignite mining district bear waters of low pH and high ionic strength. For several of these acid mining lakes, sulfate-reducing activities have been demonstrated. The aim of our study was to find out which bacteria are responsible for these activities, whether these SRB exhibit special traits to thrive under extreme conditions, and whether the population differed from those inhabiting freshwater and marine environments. For this purpose we estimated the most probable number (MPN) of culturable SRB in surface sediments of three mining lakes (ML) and obtained isolates from the same sites. The strains were characterised physiologically and phylogenetically. (orig.)

  6. Critical mass of bacterial populations in a generalized Keller Segel model. Analogy with the Chandrasekhar limiting mass of white dwarf stars

    Science.gov (United States)

    Chavanis, Pierre-Henri; Sire, Clément

    2008-03-01

    We point out a remarkable analogy between the limiting mass of relativistic white dwarf stars (Chandrasekhar’s limit) and the critical mass of bacterial populations in a generalized Keller Segel model of chemotaxis [P.H. Chavanis, C. Sire, Phys. Rev. E 69 (2004) 016116]. This model is based on generalized stochastic processes leading to the Tsallis statistics. The equilibrium states correspond to polytropic configurations similar to gaseous polytropes in astrophysics. For the critical index n3=d/(d-2) (where d≥2 is the dimension of space), the theory of polytropes leads to a unique value of the mass M that we interpret as a limiting mass. In d=3, we find M=202.8956… and in d=2, we recover the well-known result M=8π (in suitable units). For MM, the system collapses and forms a Dirac peak containing a mass M surrounded by a halo. This paper exposes the model and shows, by simple considerations, the origin of the critical mass. A detailed description of the critical dynamics of the generalized Keller Segel model will be given in a forthcoming paper.

  7. Comparison of lysogeny (prophage induction) in heterotrophic bacterial and Synechococcus populations in the Gulf of Mexico and Mississippi River plume.

    Science.gov (United States)

    Long, Amy; McDaniel, Lauren D; Mobberley, Jennifer; Paul, John H

    2008-02-01

    Lysogeny has been documented as a fundamental process occurring in natural marine communities of heterotrophic and autotrophic bacteria. Prophage induction has been observed to be prevalent during conditions of low host abundance, but factors controlling the process are poorly understood. A research cruise was undertaken to the Gulf of Mexico during July 2005 to explore environmental factors associated with lysogeny. Ambient physical and microbial parameters were measured and prophage induction experiments were performed in contrasting oligotrophic Gulf and eutrophic Mississippi plume areas. Three of 11 prophage induction experiments in heterotrophic bacteria (27%) demonstrated significant induction in response to Mitomycin C. In contrast, there was significant Synechococcus cyanophage induction in seven of nine experiments (77.8%). A strong negative correlation was observed between lysogeny and log-transformed activity measurements for both heterotrophic and autotrophic populations (r=-0.876, P=0.002 and r=-0.815, P=0.025, respectively), indicating that bacterioplankton with low host growth favor lysogeny. Multivariate statistical analyses indicated that ambient level of viral abundance and productivity were inversely related to heterotrophic prophage induction and both factors combined were most predictive of lysogeny (rho=0.899, P=0.001). For Synechococcus, low ambient cyanophage abundance was most predictive of lysogeny (rho=0.862, P=0.005). Abundance and productivity of heterotrophic bacteria was strongly inversely correlated with salinity, while Synechococcus was not. This indicated that heterotrophic bacterial populations were well adapted to the river plume environments, thus providing a possible explanation for differences in prevalence of lysogeny observed between the two populations. PMID:18049460

  8. Characterization of bacterial populations in Danish raw milk cheeses made with different starter cultures by denaturating gradient gel electrophoresis and pyrosequencing

    DEFF Research Database (Denmark)

    Masoud, Wafa Mahmoud Hasan; Takamiya, Monica K Wik; Vogensen, Finn Kvist;

    2011-01-01

    ripening. Other bacteria like Corynebacterium, Halomonas, Pediococcus, Micrococcus and Staphylococcus, which were encountered in some cheese samples at low percentages compared with the total bacterial populations, were only detected by pyrosequencing. 16S rRNA gene pyrosequencing is an efficient method...

  9. Interactions Between QTL SAP6 and SU91 on Resistance to Common Bacterial Blight in Red Kidney Bean and Pinto Bean Populations

    Science.gov (United States)

    Resistance to common bacterial blight in common bean is a complex trait that is quantitatively inherited. We examined the interaction between two independent QTL, SAP6 and SU91, which condition resistance to CBB.The QTL were studied in a pinto bean F2 population a cross between Othello (sap6 sap6 //...

  10. Using a common commensal bacterium in endangered Takahe as a model to explore pathogen dynamics in isolated wildlife populations.

    Science.gov (United States)

    Grange, Zoe L; Gartrell, Brett D; Biggs, Patrick J; Nelson, Nicola J; Marshall, Jonathan C; Howe, Laryssa; Balm, Matthew G M; French, Nigel P

    2015-10-01

    Predicting and preventing outbreaks of infectious disease in endangered wildlife is problematic without an understanding of the biotic and abiotic factors that influence pathogen transmission and the genetic variation of microorganisms within and between these highly modified host communities. We used a common commensal bacterium, Campylobacter spp., in endangered Takahe (Porphyrio hochstetteri) populations to develop a model with which to study pathogen dynamics in isolated wildlife populations connected through ongoing translocations. Takahe are endemic to New Zealand, where their total population is approximately 230 individuals. Takahe were translocated from a single remnant wild population to multiple offshore and mainland reserves. Several fragmented subpopulations are maintained and connected through regular translocations. We tested 118 Takahe from 8 locations for fecal Campylobacter spp. via culture and DNA extraction and used PCR for species assignment. Factors relating to population connectivity and host life history were explored using multivariate analytical methods to determine associations between host variables and bacterial prevalence. The apparent prevalence of Campylobacter spp. in Takahe was 99%, one of the highest reported in avian populations. Variation in prevalence was evident among Campylobacter species identified. C. sp. nova 1 (90%) colonized the majority of Takahe tested. Prevalence of C. jejuni (38%) and C. coli (24%) was different between Takahe subpopulations, and this difference was associated with factors related to population management, captivity, rearing environment, and the presence of agricultural practices in the location in which birds were sampled. Modeling results of Campylobacter spp. in Takahe metapopulations suggest that anthropogenic management of endangered species within altered environments may have unforeseen effects on microbial exposure, carriage, and disease risk. Translocation of wildlife between locations could

  11. Population dynamics and distribution of northern Norwegian killer whales in relation to wintering herring

    OpenAIRE

    Kuningas, Sanna

    2014-01-01

    The northern Norwegian killer whale (Orcinus orca) is an important predator but little is known about its population dynamics, particular in response to changes in its main prey, the highly dynamic Norwegian spring spawning (NSS) herring (Clupea harengus). The main aims of this thesis were to estimate killer whale population parameters, to explore the future viability of the population, and to explore the response of this predator to changes in distribution and abundance of its main prey over...

  12. A new ODE tumor growth modeling based on tumor population dynamics

    International Nuclear Information System (INIS)

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan

  13. A new ODE tumor growth modeling based on tumor population dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Oroji, Amin; Omar, Mohd bin [Institute of Mathematical Sciences, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia amin.oroji@siswa.um.edu.my, mohd@um.edu.my (Malaysia); Yarahmadian, Shantia [Mathematics Department Mississippi State University, USA Syarahmadian@math.msstate.edu (United States)

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  14. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, Budhendra L [ORNL; Bright, Eddie A [ORNL; Rose, Amy N [ORNL; Liu, Cheng [ORNL; Urban, Marie L [ORNL; Stewart, Robert N [ORNL

    2014-01-01

    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  15. Responses of heterotrophic bacterial populations to pH changes in coal ash effluent

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, R.K. (Univ. of Texas, Houston); Cherry, D.S.; Singleton, F.L.

    1978-08-01

    Total culturable heterotrophic bacteria in a coal ash basin and drainage system were monitored over a period of two years. In the first year heavy (bottom) ash was sluiced to the basin resulting in a pH of 6.5. During the second year fly ash was precipitated and added to the sluice lowering the basin pH to 4.6. Sulfate concentrations during 1975 ranged from 16 to 73 ppM (mean 33) and in 1976 from 44 to 88 ppM (mean 72). Mean annual basin temperatures were 28.8 and 26.0/sup 0/C, respectively. Approximately 1500 m in the receiving swamp below the basin, mean pH and temperature were 6.8 and 22.2/sup 0/C for the first year, and 5.4 and 22.1/sup 0/C for the second. Total culturable bacteria and diversity (colony types) were reduced at all sampling stations by 44 and 30%, respectively, whereas the percentage of the population comprised of chromagenic bacteria increased by 51% at the lower pH. Data indicated the pH had a greater effect than did water temperature when temperature was within the range of 15 to 25/sup 0/C. The predominant genera within the system in the first year were Bacillus, Sarcina, Achromobacter, Flavobacterium, and Pseudomonas. In the second year, at the lower pH, predominant genera were Pseudomonas, Flavobacterium, Chromobacterium, Bacillus, and Brevibacterium.

  16. Short and Long Range Population Dynamics of the Monarch

    OpenAIRE

    Messan, Komi; Smith, Kyle; Tsosie, Shawn; Zhu, Shuchen; Suslov, Sergei

    2011-01-01

    The monarch butterfly annually migrates from central Mexico to southern Canada. During recent decades, its population has been reduced due to human interaction with their habitat. We examine the effect of herbicide usage on the monarch butterfly's population by creating a system of linear and non-linear ordinary differential equations that describe the interaction between the monarch's population and its environment at various stages of migration: spring migration, summer loitering, and fall ...

  17. Intraspecific Competition and Population Dynamics of Aedes aegypti

    Science.gov (United States)

    Paixão, C. A.; Charret, I. C.; Lima, R. R.

    2012-04-01

    We report computational simulations for the evolution of the population of the dengue vector, Aedes aegypti mosquitoes. The results suggest that controlling the mosquito population, on the basis of intraspecific competition at the larval stage, can be an efficient mechanism for controlling the spread of the epidemic. The results also show the presence of a kind of genetic evolution in vector population, which results mainly in increasing the average lifespan of individuals in adulthood.

  18. Stress and the microbiome: linking glucocorticoids to bacterial community dynamics in wild red squirrels.

    Science.gov (United States)

    Stothart, Mason R; Bobbie, Colleen B; Schulte-Hostedde, Albrecht I; Boonstra, Rudy; Palme, Rupert; Mykytczuk, Nadia C S; Newman, Amy E M

    2016-01-01

    Bacterial diversity within animals is emerging as an essential component of health, but it is unknown how stress may influence the microbiome. We quantify a proximate link between the oral microbiome and hypothalamic-pituitary-adrenal (HPA) axis activity using faecal glucocorticoid metabolites (FGM) in wild red squirrels (Tamiasciurus hudsonicus). Not only was bacterial diversity lower at higher levels of FGM, but also between capture periods a change in bacterial relative abundance was related to an increase in FGM. These linkages between the HPA axis and microbiome communities represent a powerful capacity for stress to have multi-dimensional effects on health. PMID:26740566

  19. Identity and functional analysis of bacterial populations involved in reductive acetogenesis

    International Nuclear Information System (INIS)

    as metagenomic (fosmid) libraries. Results from the 16S rDNA analyses identified several bacteria of interest in the methanogen inhibited cultures (Actinomyces ruminicola, Desulfovibrio desulfuricans, Ruminobacillus xylanolyticum, Succiniclasticum ruminis Treponema bryantii, Ruminococcus productus and Enerococcus avium). FTHFS sequence analysis from fermentations and cattle rumen samples supplemented with bromochloromethane (BCM) show clustering of sequences with the known homoacetogens. Putative CODH and ACS sequences were also generated from DNA obtained from a mixed enrichment culture of homoacetogens, from the rumen of cattle. An extensive set of primers has been developed from the numerous phylogenetic and functional gene databases. These primers and probes are being used in targeting key enzymatic steps in hydrogen sequestering pathways for use in probing the metagenomic fosmid libraries and monitoring populations of hydrogen-utilising microorganisms in the rumen. (author)

  20. Acidic Conditions in the NHE2-/- Mouse Intestine Result in an Altered Mucosa-Associated Bacterial Population with Changes in Mucus Oligosaccharides

    Directory of Open Access Journals (Sweden)

    Melinda A. Engevik

    2013-12-01

    Full Text Available Background: The mechanisms bacteria use to proliferate and alter the normal bacterial composition remain unknown. The ability to link changes in the intestinal micro-environment, such as ion composition and pH, to bacterial proliferation is clinically advantageous for diseases that involve an altered gut microbiota, such as Inflammatory Bowel Disease, obesity and diabetes. In human and mouse intestine, the apical Na+/H+ exchangers NHE2 and NHE3 affect luminal Na+, water, and pH. Loss of NHE2 results in acidic luminal pH. Since acid resistance systems in gram-positive bacteria are well documented, we hypothesize that gram-positive bacteria would increase in representation in the acidic NHE2-/- intestine. Methods: Intestinal ion composition was measured by fame photometry and chloridometry and pH measured electrochemically. DNA extracted from intestinal flushes or from mucosal scrapings was analyzed by qRT-PCR to examine luminal and mucosa-associated bacterial populations. Epithelial mucus oligosaccharide patterns were examined by histology with FIT-C labeled lectins. Results: Although total luminal and mucosa-associated bacteria were unchanged in NHE2-/- intestine, gram-positive bacterial phyla were increased in the mucosa-associated bacterial population in a region-specific manner. The genera Clostridium and Lactobacillus were increased in the cecum and colon which corresponded to changes in NHE2-/- mucus oligosaccharide composition of mannose, N-acetyglucosamine, N-acetygalactosamine and galactose. Conclusions: Together these data indicate that changes in ion transport induce region-specific bacterial changes, which alter host mucus oligosaccharide patterns. These host-bacterial interactions provide a possible mechanism of niche-development and shed insight on how certain groups proliferate in changing environments and maintain their proliferation by altering the host.

  1. Phenotypic Resistance and the Dynamics of Bacterial Escape from Phage Control

    OpenAIRE

    Bull, James J; Vegge, Christina Skovgaard; Schmerer, Matthew; Chaudhry, Waqas Nasir; Levin, Bruce R.

    2014-01-01

    The canonical view of phage - bacterial interactions in dense, liquid cultures is that the phage will eliminate most of the sensitive cells; genetic resistance will then ascend to restore high bacterial densities. Yet there are various mechanisms by which bacteria may remain sensitive to phages but still attain high densities in their presence – because bacteria enter a transient state of reduced adsorption. Importantly, these mechanisms may be cryptic and inapparent prior to the addition of ...

  2. Structure and Dynamics of Anaerobic Bacterial Aggregates in a Gas-Lift Reactor

    OpenAIRE

    Beeftink, H.H.; Staugaard, P

    1986-01-01

    Anaerobic mixed-culture aggregates, which converted glucose to acetic, propionic, butyric, and valeric acids, were formed under controlled conditions of substrate feed (carbon limitation) and hydraulic regimen. The continuous-flow system used (anaerobic gas-lift reactor) was designed to retain bacterial aggregates in a well-mixed reactor. Carrier availability (i.e., liquid-suspended sand grains) proved necessary for bacterial aggregate formation from individual cells during reactor start-up. ...

  3. Spatial and temporal dynamics of fucoid populations (Ascophyllum nodosum and Fucus serratus: a comparison between central and range edge populations.

    Directory of Open Access Journals (Sweden)

    Rita M Araújo

    Full Text Available Persistence of populations at range edges relies on local population dynamics and fitness, in the case of geographically isolated populations of species with low dispersal potential. Focusing on spatial variations in demography helps to predict the long-term capability for persistence of populations across the geographical range of species' distribution. The demography of two ecological and phylogenetically close macroalgal species with different life history characteristics was investigated by using stochastic, stage-based matrix models. Populations of Ascophyllum nodosum and Fucus serratus were sampled for up to 4 years at central locations in France and at their southern range limits in Portugal. The stochastic population growth rate (λ(s of A. nodosum was lower and more variable in central than in southern sites whilst for F. serratus this trend was reversed with λ(s much lower and more variable in southern than in central populations. Individuals were larger in central than in southern populations for both species, which was reflected in the lower transition probabilities of individuals to larger size classes and higher probability of shrinkage in the southern populations. In both central and southern populations elasticity analysis (proportional sensitivity of population growth rate showed that fertility elements had a small contribution to λ(s that was more sensitive to changes in matrix transitions corresponding to survival. The highest elasticities were found for loop transitions in A. nodosum and for growth to larger size classes in F. serratus. Sensitivity analysis showed high selective pressure on individual growth for both species at both locations. The results of this study highlight the deterministic role of species-specific life-history traits in population demography across the geographical range of species. Additionally, this study demonstrates that individuals' life-transitions differ in vulnerability to environmental

  4. Temporal dynamics of sediment bacterial communities in monospecific stands of Juncus maritimus and Spartina maritima.

    Science.gov (United States)

    Cleary, D F R; Polónia, A R M; Sousa, A I; Lillebø, A I; Queiroga, H; Gomes, N C M

    2016-09-01

    In the present study, we used 16S rRNA barcoded pyrosequencing to investigate to what extent monospecific stands of different salt marsh plant species (Juncus maritimus and Spartina maritima), sampling site and temporal variation affect sediment bacterial communities. We also used a bioinformatics tool, PICRUSt, to predict metagenome gene functional content. Our results showed that bacterial community composition from monospecific stands of both plant species varied temporally, but both host plant species maintained compositionally distinct communities of bacteria. Juncus sediment was characterised by higher abundances of Alphaproteobacteria, Myxococcales, Rhodospirillales, NB1-j and Ignavibacteriales, while Spartina sediment was characterised by higher abundances of Anaerolineae, Synechococcophycidae, Desulfobacterales, SHA-20 and Rhodobacterales. The differences in composition and higher taxon abundance between the sediment bacterial communities of stands of both plant species may be expected to affect overall metabolic diversity. In line with this expectation, there were also differences in the predicted enrichment of selected metabolic pathways. In particular, bacterial communities of Juncus sediment were predicted to be enriched for pathways related to the degradation of various (xenobiotic) compounds. Bacterial communities of Spartina sediment in turn were predicted to be enriched for pathways related to the biosynthesis of various bioactive compounds. Our study highlights the differences in composition and predicted functions of sediment-associated bacterial communities from two different salt marsh plant species. Loss of salt marsh habitat may thus be expected to both adversely affect microbial diversity and ecosystem functioning and have consequences for environmental processes such as nutrient cycling and pollutant remediation. PMID:27061465

  5. An evolutionary maximum principle for density-dependent population dynamics in a fluctuating environment

    OpenAIRE

    Lande, Russell; Engen, Steinar; Sæther, Bernt-Erik

    2009-01-01

    The evolution of population dynamics in a stochastic environment is analysed under a general form of density-dependence with genetic variation in r and K, the intrinsic rate of increase and carrying capacity in the average environment, and in σe2, the environmental variance of population growth rate. The continuous-time model assumes a large population size and a stationary distribution of environments with no autocorrelation. For a given population density, N, and genotype frequency, p, the ...

  6. From individual behavior to metapopulation dynamics: unifying the patchy population and classic metapopulation models.

    OpenAIRE

    Ovaskainen, Otso; Hanski, Ilkka

    2004-01-01

    Spatially structured populations in patchy habitats show much variation in migration rate, from patchy populations in which individuals move repeatedly among habitat patches to classic metapopulations with infrequent migration among discrete populations. To establish a common framework for population dynamics in patchy habitats, we describe an individual-based model (IBM) involving a diffusion approximation of correlated random walk of individual movements. As an example, we apply the model t...

  7. Population dynamics of a natural red deer population over 200 years detected via substantial changes of genetic variation.

    Science.gov (United States)

    Hoffmann, Gunther Sebastian; Johannesen, Jes; Griebeler, Eva Maria

    2016-05-01

    Most large mammals have constantly been exposed to anthropogenic influence over decades or even centuries. Because of their long generation times and lack of sampling material, inferences of past population genetic dynamics, including anthropogenic impacts, have only relied on the analysis of the structure of extant populations. Here, we investigate for the first time the change in the genetic constitution of a natural red deer population over two centuries, using up to 200-year-old antlers (30 generations) stored in trophy collections. To the best of our knowledge, this is the oldest DNA source ever used for microsatellite population genetic analyses. We demonstrate that government policy and hunting laws may have strong impacts on populations that can lead to unexpectedly rapid changes in the genetic constitution of a large mammal population. A high ancestral individual polymorphism seen in an outbreeding population (1813-1861) was strongly reduced in descendants (1923-1940) during the mid-19th and early 20th century by genetic bottlenecks. Today (2011), individual polymorphism and variance among individuals is increasing in a constant-sized (managed) population. Differentiation was high among periods (F ST > ***); consequently, assignment tests assigned individuals to their own period with >85% probability. In contrast to the high variance observed at nuclear microsatellite loci, mtDNA (D-loop) was monomorphic through time, suggesting that male immigration dominates the genetic evolution in this population. PMID:27096075

  8. Population dynamics and angler exploitation of the unique muskellunge population in Shoepack Lake, Voyageurs National Park, Minnesota

    Science.gov (United States)

    Frohnauer, N.K.; Pierce, C.L.; Kallemeyn, L.W.

    2007-01-01

    A unique population of muskellunge Esox masquinongy inhabits Shoepack Lake in Voyageurs National Park, Minnesota. Little is known about its status, dynamics, and angler exploitation, and there is concern for the long-term viability of this population. We used intensive sampling and mark-recapture methods to quantify abundance, survival, growth, condition, age at maturity and fecundity and angler surveys to quantify angler pressure, catch rates, and exploitation. During our study, heavy rain washed out a dam constructed by beavers Castor canadensis which regulates the water level at the lake outlet, resulting in a nearly 50% reduction in surface area. We estimated a population size of 1,120 adult fish at the beginning of the study. No immediate reduction in population size was detected in response to the loss of lake area, although there was a gradual, but significant, decline in population size over the 2-year study. Adults grew less than 50 mm per year, and relative weight (W r) averaged roughly 80. Anglers were successful in catching, on average, two fish during a full day of angling, but harvest was negligible. Shoepack Lake muskellunge exhibit much slower growth rates and lower condition, but much higher densities and angler catch per unit effort (CPUE), than other muskellunge populations. The unique nature, limited distribution, and location of this population in a national park require special consideration for management. The results of this study provide the basis for assessing the long-term viability of the Shoepack Lake muskellunge population through simulations of long-term population dynamics and genetically effective population size. ?? Copyright by the American Fisheries Society 2007.

  9. A mechanistic analysis of density dependence in algal population dynamics

    Directory of Open Access Journals (Sweden)

    Adrian eBorlestean

    2015-04-01

    Full Text Available Population density regulation is a fundamental principle in ecology, but the specific process underlying functional expression of density dependence remains to be fully elucidated. One view contends that patterns of density dependence are largely fixed across a species irrespective of environmental conditions, whereas another is that the strength and expression of density dependence are fundamentally variable depending on the nature of exogenous or endogenous constraints acting on the population. We conducted a study investigating the expression of density dependence in Chlamydomonas spp. grown under a gradient from low to high nutrient density. We predicted that the relationship between per capita growth rate (pgr and population density would vary from concave up to concave down as nutrient density became less limiting and populations experienced weaker density regulation. Contrary to prediction, we found that the relationship between pgr and density became increasingly concave-up as nutrient levels increased. We also found that variation in pgr increased, and pgr levels reached higher maxima in nutrient-limited environments. Most likely, these results are attributable to population growth suppression in environments with high intraspecific competition due to limited nutrient resources. Our results suggest that density regulation is strongly variable depending on exogenous and endogenous processes acting on the population, implying that expression of density dependence depends extensively on local conditions. Additional experimental work should reveal the mechanisms influencing how the expression of density dependence varies across populations through space and time.

  10. Molecular characterization of bacterial populations of different soils Caracterização molecular de populações bacterianas de diferentes solos

    OpenAIRE

    Rodrigo Matheus Pereira; Érico Leandro da Silveira; Denilson César Scaquitto; Eliamar Aparecida Nascimbém Pedrinho; Silvana Pompéia Val-Moraes; Ester Wickert; Lúcia Maria Carareto-Alves; Eliana Gertrudes de Macedo Lemos

    2006-01-01

    Until recently, few studies were carried out in Brazil about diversity of bacterial soil communities. Aiming to characterize the bacterial population in the soil through 16S rRNA analysis, two types of soil have been analyzed: one of them characterized by intensive use where tomato, beans and corn were cultivated (CS); the other analyzed soil was under forest (FS), unchanged by man; both located in Guaíra, São Paulo State, Brazil. Using specific primers, 16S rRNA genes from metagenomic DNA in...

  11. Dynamic of population-dynamics in a medically important snail species Lymnaea (Radix Luteola (Lamarck

    Directory of Open Access Journals (Sweden)

    T. K. Misra

    1993-09-01

    Full Text Available The life-cycle parameters of the snail Lymnaea (Radix luteola and the factors influencing the same have been studied under laboratory conditions. Ins each month, from July 1990 to June 1991, a batch of 100 zero-day old individual were considered for studies. The snails of April batch survived for 19.42 days while those in December batch survived for 87.45 days. The May batch individual though survived for 65.67 days gained maximum shell size (15.84 mm in length and body weight (419.87 mg. All individuals of April batch died prior to attainment of sexual maturity. In the remaining 11 batches the snails became sexually mature between 32 and 53 days. At this stage, they were with varying shell lengths, 9.3 mm to 13,11 mm in respect to batches. The reproduction period varied from 1-67 days. An individual laid, on an average, 0,25 (March batch to 443.67 (May batch eggs in its life-span. A batch of such snails would leave 24312, 22520, 720268, 80408, 76067, 418165, 214, 9202, 0, 0, 2459386 and 127894 individuals at the end of 352nd day. Since the environmental conditions were almost similar the 'dynamic' of population dynamics seems to be involved with the 'strain' of the snail individuals of the batches concerned.

  12. POPULATION DYNAMICS OF FUNGA, NEMATODE, BACTERIA AND ALGAL POPULATION IN A SOIL OF MAZON REGION OF PERU

    Science.gov (United States)

    Soil microbes are mainly responsible for litter decomposition and nutrient cycling in the forest ecosystems. Population dynamics of soil microbes (fungus, bacteria, nematodes, algae) under secondary forest in tropical region is not well understood. An experiment was implemented at Tropical Crop Rese...

  13. Extinction dynamics of a discrete population in an oasis

    Science.gov (United States)

    Berti, Stefano; Cencini, Massimo; Vergni, Davide; Vulpiani, Angelo

    2015-07-01

    Understanding the conditions ensuring the persistence of a population is an issue of primary importance in population biology. The first theoretical approach to the problem dates back to the 1950s with the Kierstead, Slobodkin, and Skellam (KiSS) model, namely a continuous reaction-diffusion equation for a population growing on a patch of finite size L surrounded by a deadly environment with infinite mortality, i.e., an oasis in a desert. The main outcome of the model is that only patches above a critical size allow for population persistence. Here we introduce an individual-based analog of the KiSS model to investigate the effects of discreteness and demographic stochasticity. In particular, we study the average time to extinction both above and below the critical patch size of the continuous model and investigate the quasistationary distribution of the number of individuals for patch sizes above the critical threshold.

  14. Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica

    Energy Technology Data Exchange (ETDEWEB)

    Crone, E.E.

    1995-11-08

    The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{sub t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.

  15. Population Dynamics, Economic Growth and Energy Consumption in Kenya

    OpenAIRE

    Michieka, Nyakundi; Fletcher, Jerald J.

    2013-01-01

    Kenya is a small open economy that depends on energy for growth. Since independence in 1963, it has experienced tremendous urban and rural population growth, placing an increasing strain on energy resources and economic development. Therefore, in this paper the relationship between urban and rural populations, economic development, and energy use is studied. The empirical analysis uses a vector autoregression framework. The Granger Causality test results suggest unidirectional causality runni...

  16. Dynamics and role of sphingomonas/mycobacterium populations during bio-remediation of weathered PAH-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Bastiaens, L.; Ryngaert, A.; Leys, N.; Van Houtven, D.; Gemoets, J. [Flemish Institute for Technological Research-Vito, Mol (Belgium); Goethals, L. [ENVISAN, Aalst, (Belgium); Springael, D. [Catholic University of Leuven-KUL, Leuven (Belgium)

    2005-07-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are major soil pollutants in many industrialized countries. During the last decades, a diversity of PAH-degrading micro-organisms has been isolated, suggesting possibilities for bio-remediation. However, biodegradation of PAHs in contaminated soils is not always successful. The low bio-availability of the PAHs is the major problem, especially in weathered soils. In these soils a tightly sorbed PAH-fraction is present which is in general hardly accessible for microorganisms. In order to bio-remedy PAHs also in weathered soils, stimulation of bacteria which have special strategies to access sorbed organics may be a solution. Sphingomonas and Mycobacterium strains may represent such bacteria as (I) they are often isolated as PAH degraders, (II) they are ubiquitously present in PAH-contaminated soils, and (III) they display features which might promote bioavailability. Lab- and pilot-scale experiments were set up in order (A) to study the dynamics of indigenous Sphingomonas and Mycobacterium populations during bio-remediation, and (B) to evaluate their role in the biodegradation of the less bio-available PAH-fraction during treatment of an historic PAH polluted soil. The soil was treated under natural soil moisture conditions and slurry conditions. The experimental set-ups ranged from 2 g lab-scale test to pilot experiments in 1 ton bio-piles and dry solid reactors (50 kg 70% dry matter soil). Different additives were evaluated for stimulation of the Sphingomonas and Mycobacterium population as a strategy to improve bio-remediation of PAHs. The evolution of this microbial population was followed using culture-independent general and genus-specific PCR-based detection methods targeting the 16S rRNA genes of the eu-bacterial community, Mycobacterium or the Sphingomonas populations, respectively. During the different bio-remediation experiments that were conducted, the Mycobacterium population remained very stable, only minor

  17. Dynamics and role of sphingomonas/mycobacterium populations during bio-remediation of weathered PAH-contaminated soils

    International Nuclear Information System (INIS)

    Polycyclic Aromatic Hydrocarbons (PAHs) are major soil pollutants in many industrialized countries. During the last decades, a diversity of PAH-degrading micro-organisms has been isolated, suggesting possibilities for bio-remediation. However, biodegradation of PAHs in contaminated soils is not always successful. The low bio-availability of the PAHs is the major problem, especially in weathered soils. In these soils a tightly sorbed PAH-fraction is present which is in general hardly accessible for microorganisms. In order to bio-remedy PAHs also in weathered soils, stimulation of bacteria which have special strategies to access sorbed organics may be a solution. Sphingomonas and Mycobacterium strains may represent such bacteria as (I) they are often isolated as PAH degraders, (II) they are ubiquitously present in PAH-contaminated soils, and (III) they display features which might promote bioavailability. Lab- and pilot-scale experiments were set up in order (A) to study the dynamics of indigenous Sphingomonas and Mycobacterium populations during bio-remediation, and (B) to evaluate their role in the biodegradation of the less bio-available PAH-fraction during treatment of an historic PAH polluted soil. The soil was treated under natural soil moisture conditions and slurry conditions. The experimental set-ups ranged from 2 g lab-scale test to pilot experiments in 1 ton bio-piles and dry solid reactors (50 kg 70% dry matter soil). Different additives were evaluated for stimulation of the Sphingomonas and Mycobacterium population as a strategy to improve bio-remediation of PAHs. The evolution of this microbial population was followed using culture-independent general and genus-specific PCR-based detection methods targeting the 16S rRNA genes of the eu-bacterial community, Mycobacterium or the Sphingomonas populations, respectively. During the different bio-remediation experiments that were conducted, the Mycobacterium population remained very stable, only minor

  18. Modelling population dynamics model formulation, fitting and assessment using state-space methods

    CERN Document Server

    Newman, K B; Morgan, B J T; King, R; Borchers, D L; Cole, D J; Besbeas, P; Gimenez, O; Thomas, L

    2014-01-01

    This book gives a unifying framework for estimating the abundance of open populations: populations subject to births, deaths and movement, given imperfect measurements or samples of the populations.  The focus is primarily on populations of vertebrates for which dynamics are typically modelled within the framework of an annual cycle, and for which stochastic variability in the demographic processes is usually modest. Discrete-time models are developed in which animals can be assigned to discrete states such as age class, gender, maturity,  population (within a metapopulation), or species (for multi-species models). The book goes well beyond estimation of abundance, allowing inference on underlying population processes such as birth or recruitment, survival and movement. This requires the formulation and fitting of population dynamics models.  The resulting fitted models yield both estimates of abundance and estimates of parameters characterizing the underlying processes.  

  19. Dynamics of bacterial communities in soils of rainforest fragments under restoration processes

    Science.gov (United States)

    Vasconcellos, Rafael; Zucchi, Tiago; Taketani, Rodrigo; Andreote, Fernando; Cardoso, Elke

    2014-05-01

    The Brazilian Atlantic Forest ("Mata Atlântica") has been largely studied due to its valuable and unique biodiversity. Unfortunately, this priceless ecosystem has been widely deforested and only 10% of its original area still remains. Many projects have been successfully implemented to restore its fauna and flora but there is a lack of information on how the soil bacterial communities respond to this process. Thus, our aim was to evaluate the influence of soil attributes and seasonality on soil bacterial communities of rainforest fragments under restoration processes. Soil samples from a native site and two ongoing restoration fragments with different ages of implementation (10 and 20 years) were collected and assayed by using culture-independent approaches. Our findings demonstrate that seasonality barely altered the bacterial distribution whereas soil chemical attributes and plant diversity highly influenced the bacterial community structure during the restoration process. Moreover, the strict relationship observed for two bacterial groups, Solibacteriaceae and Verrucomicrobia, one with the youngest (10 years) and the other with the oldest (native) site suggests their use as bioindicators of soil quality and soil recovery of forest fragments under restoration.

  20. Effective population size and evolutionary dynamics in outbred laboratory populations of Drosophila

    Indian Academy of Sciences (India)

    Laurence D. Mueller; Amitabh Joshi; Marta Santos; Michael R. Rose

    2013-12-01

    Census population size, sex-ratio and female reproductive success were monitored in 10 laboratory populations of Drosophila melanogaster selected for different ages of reproduction. With this demographic information, we estimated eigenvalue, variance and probability of allele loss effective population sizes. We conclude that estimates of effective size based on genefrequency change at a few loci are biased downwards. We analysed the relative roles of selection and genetic drift in maintaining genetic variation in laboratory populations of Drosophila. We suggest that rare, favourable genetic variants in our laboratory populations have a high chance of being lost if their fitness effect is weak, e.g. 1% or less. However, if the fitness effect of this variation is 10% or greater, these rare variants are likely to increase to high frequency. The demographic information developed in this study suggests that some of our laboratory populations harbour more genetic variation than expected. One explanation for this finding is that part of the genetic variation in these outbred laboratory Drosophila populations may be maintained by some form of balancing selection. We suggest that, unlike bacteria, medium-term adaptation of laboratory populations of fruit flies is not primarily driven by new mutations, but rather by changes in the frequency of preexisting alleles.

  1. Few microorganisms associated with bacterial vaginosis may constitute the pathologic core: a population-based microbiologic study among 3596 pregnant women

    DEFF Research Database (Denmark)

    Thorsen, P; Jensen, I P; Jeune, B; Ebbesen, N; Arpi, M; Bremmelgaard, A; Møller, B R

    1998-01-01

    OBJECTIVE: To evaluate the association between various microorganisms isolated from the genital tract in pregnant women with bacterial vaginosis. STUDY DESIGN: A cross-sectional population-based study among pregnant women addressed at their first antenatal visit before 24 full gestational weeks......) between the microorganisms isolated from the lower genital tract in pregnant women with and without clinical diagnosis of bacterial vaginosis. RESULTS: Three thousand five hundred ninety-six (3596) pregnant women were asked to participate. Of the 3596 pregnant women 3174 (88.4%) agreed to participate...... before 24 full gestational weeks. After controlling for the presence of other microorganisms, strong associations between Gardnerella vaginalis, anaerobic bacteria, Mycoplasma hominis, and present bacterial vaginosis were found. Similarly Lactobacillus spp. were found to be associated with the absence of...

  2. Cell Wall Nonlinear Elasticity and Growth Dynamics: How Do Bacterial Cells Regulate Pressure and Growth?

    Science.gov (United States)

    Deng, Yi

    In my thesis, I study intact and bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. I find strong evidence of power--law stress--stiffening in the E. coli cell wall, with an exponent of 1.22±0.12, such that the wall is significantly stiffer in intact cells (E = 23±8 MPa and 49±20 MPa in the axial and circumferential directions) than in unpressurized sacculi. These measurements also indicate that the turgor pressure in living cells E. coli is 29±3 kPa. The nonlinearity in cell elasticity serves as a plausible mechanism to balance the mechanical protection and tension measurement sensitivity of the cell envelope. I also study the growth dynamics of the Bacillus subtilis cell wall to help understand the mechanism of the spatiotemporal order of inserting new cell wall material. High density fluorescent markers are used to label the entire cell surface to capture the morphological changes of the cell surface at sub-cellular to diffraction-limited spatial resolution and sub-minute temporal resolution. This approach reveals that rod-shaped chaining B. subtilis cells grow and twist in a highly heterogeneous fashion both spatially and temporally. Regions of high growth and twisting activity have a typical length scale of 5 μm, and last for 10-40 minutes. Motivated by the quantification of the cell wall growth dynamics, two microscopy and image analysis techniques are developed and applied to broader applications beyond resolving bacterial growth. To resolve densely distributed quantum dots, we present a fast and efficient image analysis algorithm, namely Spatial Covariance Reconstruction (SCORE) microscopy that takes into account the blinking statistics of the fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging, which is at least an order of magnitude faster than single-particle localization based methods

  3. A dynamic urban air pollution population exposure assessment study using model and population density data derived by mobile phone traffic

    Science.gov (United States)

    Gariazzo, Claudio; Pelliccioni, Armando; Bolignano, Andrea

    2016-04-01

    A dynamic city-wide air pollution exposure assessment study has been carried out for the urban population of Rome, Italy, by using time resolved population distribution maps, derived by mobile phone traffic data, and modelled air pollutants (NO2, O3 and PM2.5) concentrations obtained by an integrated air dispersion modelling system. More than a million of persons were tracked during two months (March and April 2015) for their position within the city and its surroundings areas, with a time resolution of 15 min and mapped over an irregular grid system with a minimum resolution of 0.26 × 0.34 Km2. In addition, demographics information (as gender and age ranges) were available in a separated dataset not connected with the total population one. Such BigData were matched in time and space with air pollution model results and then used to produce hourly and daily resolved cumulative population exposures during the studied period. A significant mobility of population was identified with higher population densities in downtown areas during daytime increasing of up to 1000 people/Km2 with respect to nigh-time one, likely produced by commuters, tourists and working age population. Strong variability (up to ±50% for NO2) of population exposures were detected as an effect of both mobility and time/spatial changing in pollutants concentrations. A comparison with the correspondent stationary approach based on National Census data, allows detecting the inability of latter in estimating the actual variability of population exposure. Significant underestimations of the amount of population exposed to daily PM2.5 WHO guideline was identified for the Census approach. Very small differences (up to a few μg/m3) on exposure were detected for gender and age ranges population classes.

  4. Study on the Effect of Different Urea Fertilizer Rates and Plant Populations on the Severity of Bacterial Blight (BB of Rice

    Directory of Open Access Journals (Sweden)

    Si Si Myint

    2007-10-01

    Full Text Available To study the effect of different urea fertilizer rates and plant populations on disease severity of bacterial blight of rice and yield lasses related to disease, the experiments including three plant populations (110000, 150000, 190000 and five urea fertilizer rates (0,56 lb, 112 lb, 168 lb and 224 lb per acre were conducted at Central Agriculture Research Institute farm in 1999 and 2000 rainy seasons. Manawthukha was used as a test variety that is susceptible to bacterial blight of rice. The disease severity could be increased by the application of urea. Although urea 112 lb per acre gave moderate disease severity than without urea, its yield is highest. The higher disease severity also showed the related effect of plant population of 150000 and above. However the combination of urea 224 lb per acre with the population of 190000 and 150000 gave the highest severity of bacterial blight disease and the minimum grain yield. The application of urea 224 lbs per acre can cause yield reduction ranging from 18.67 percent to 27.57 percent over the application of urea 112 lb per acre.

  5. Multiple populations in globular clusters: constraints from kinematics and dynamics

    CERN Document Server

    Hénault-Brunet, Vincent

    2015-01-01

    We discuss constraints on the formation of multiple populations in globular clusters (GCs) imposed by their present-day kinematics (velocity dispersion and anisotropy) and spatial distribution. We argue that the observational evidence collected so far in the outer parts of clusters is generally consistent with an enriched population forming more centrally concentrated compared to the primordial population, in agreement with all the scenarios proposed to date (in some cases by design), but not sufficient to favour a particular scenario. We highlight that the differential rotation of subpopulations is a signature that may provide crucial new constraints and allow us to distinguish between various scenarios. Finally, we discuss the spatial distribution of subpopulations in the central regions of GCs and speculate that mass segregation between subpopulations may be due to a difference in their binary fraction.

  6. Monitoring of population dynamics of Corynebacterium glutamicum by multiparameter flow cytometry

    OpenAIRE

    Neumeyer, Andrea; Hübschmann, Thomas; Müller, Susann; Frunzke, Julia

    2013-01-01

    Summary Phenotypic variation of microbial populations is a well-known phenomenon and may have significant impact on the success of industrial bioprocesses. Flow cytometry (FC) and the large repertoire of fluorescent dyes bring the high-throughput analysis of multiple parameters in single bacterial cells into reach. In this study, we evaluated a set of different fluorescent dyes for suitability in FC single cell analysis of the biotechnological platform organism Corynebacterium glutamicum. Alr...

  7. The population dynamical implications of male-biased parasitism in different mating systems.

    Directory of Open Access Journals (Sweden)

    Martin R Miller

    Full Text Available Although there is growing evidence that males tend to suffer higher levels of parasitism than females, the implications of this for the population dynamics of the host population are not yet understood. Here we build on an established 'two-sex' model and investigate how increased susceptibility to infection in males affects the dynamics, under different mating systems. We investigate the effect of pathogenic disease at different case mortalities, under both monogamous and polygynous mating systems. If the case mortality is low, then male-biased parasitism appears similar to unbiased parasitism in terms of its effect on the population dynamics. At higher case mortalities, we identified significant differences between male-biased and unbiased parasitism. A host population may therefore be differentially affected by male-biased and unbiased parasitism. The dynamical outcome is likely to depend on a complex interaction between the host's mating system and demography, and the parasite virulence.

  8. Dynamic complexities in a single-species discrete population model with stage structure and birth pulses

    Energy Technology Data Exchange (ETDEWEB)

    Gao Shujing E-mail: gaosjmath@tom.com; Chen Lansun

    2005-01-01

    Natural population, whose population numbers are small and generations are non-overlapping, can be modelled by difference equations that describe how the population evolve in discrete time-steps. This paper investigates a recent study on the dynamics complexities in a single-species discrete population model with stage structure and birth pulses. Using the stroboscopic map, we obtain an exact cycle of system, and obtain the threshold conditions for its stability. Above this, there is a characteristic sequence of bifurcations, leading to chaotic dynamics, which implies that this the dynamical behaviors of the single-species discrete model with birth pulses are very complex, including (a) non-unique dynamics, meaning that several attractors and chaos coexist; (b) small-amplitude annual oscillations; (c) large-amplitude multi-annual cycles; (d) chaos. Some interesting results are obtained and they showed that pulsing provides a natural period or cyclicity that allows for a period-doubling route to chaos.

  9. Dynamic complexities in a single-species discrete population model with stage structure and birth pulses

    International Nuclear Information System (INIS)

    Natural population, whose population numbers are small and generations are non-overlapping, can be modelled by difference equations that describe how the population evolve in discrete time-steps. This paper investigates a recent study on the dynamics complexities in a single-species discrete population model with stage structure and birth pulses. Using the stroboscopic map, we obtain an exact cycle of system, and obtain the threshold conditions for its stability. Above this, there is a characteristic sequence of bifurcations, leading to chaotic dynamics, which implies that this the dynamical behaviors of the single-species discrete model with birth pulses are very complex, including (a) non-unique dynamics, meaning that several attractors and chaos coexist; (b) small-amplitude annual oscillations; (c) large-amplitude multi-annual cycles; (d) chaos. Some interesting results are obtained and they showed that pulsing provides a natural period or cyclicity that allows for a period-doubling route to chaos

  10. Effect of Nonhost Cultivars on Heterodera schachtii Population Dynamics

    OpenAIRE

    Griffin, G. D.

    1980-01-01

    Broadcast plantings of nonhost cultivars (alfalfa, barley, bean, onion, potato, and wheat) in soil in redwood boxes (4.2 × 30 × 14 cm) infested with Heterodera schachtii reduced the initial nematode populations (P = 0.05). The reduction was greater with sugarbeets, a host, than with all other cropping treatments except onion, bean, and fallow (P = 0.05). After 80 days, when the root growth of all treatments had completely penetrated the soil, the nematode population was lower under onion than...

  11. How Predation and Landscape Fragmentation Affect Vole Population Dynamics

    DEFF Research Database (Denmark)

    Dalkvist, Trine; Sibly, Richard M.; Topping, Chris J.

    2011-01-01

    population cycles. Because these factors covary along the gradient it is difficult to distinguish their effects experimentally in the field. The distinction is here attempted using realistic agent-based modelling. Methodology/Principal Findings: By using a spatially explicit computer simulation model based...... on behavioural and ecological data from the field vole (Microtus agrestis), we generated a number of repeated time series of vole densities whose mean population size and amplitude were measured. Subsequently, these time series were subjected to statistical autoregressive modelling, to investigate the effects...

  12. How predation and landscape fragmentation affect vole population dynamics

    DEFF Research Database (Denmark)

    Dalkvist, Trine; Sibly, Richard; Topping, Christopher John

    2011-01-01

    population cycles. Because these factors covary along the gradient it is difficult to distinguish their effects experimentally in the field. The distinction is here attempted using realistic agent-based modelling. Methodology/principal findings: By using a spatially explicit computer simulation model based...... on behavioural and ecological data from the field vole (Microtus agrestis), we generated a number of repeated time series of vole densities whose mean population size and amplitude were measured. Subsequently, these time series were subjected to statistical autoregressive modelling, to investigate the effects...

  13. The dynamics of discrete populations and series of events

    CERN Document Server

    Hopcraft, Keith Iain; Ridley, Kevin D

    2014-01-01

    IntroductionReferencesStatistical PreliminariesIntroductionProbability DistributionsMoment-Generating FunctionsDiscrete ProcessesSeries of EventsSummaryFurther ReadingMarkovian Population ProcessesIntroductionBirths and DeathsImmigration and the Poisson ProcessThe Effect of MeasurementCorrelation of CountsSummaryFurther ReadingThe Birth-Death-Immigration ProcessIntroductionRate Equations for the ProcessEquation for the Generating FunctionGeneral Time-Dependent SolutionFluctuation Characteristics of a Birth-Death-Immigration PopulationSampling and Measurement ProcessesCorrelation of CountsSumma

  14. Demographic characteristics of circumpolar caribou populations: ecotypes, ecological constraints, releases, and population dynamics

    Directory of Open Access Journals (Sweden)

    F.F. Mallory

    1998-03-01

    Full Text Available Data on the status of caribou {Rangifer tarandus herds throughout the circumpolar region during the last 20 years were obtained from the literature and personal communication with researchers. Information was analysed in relation to ecotype (insular, montane, barren-ground, and woodland/forest, population status (increasing, stable, decreasing, herd size, human impact, and temporal change in number. The data support the conclusions (1 that each ecotype is exposed to different ecological constraints and releases, which influence the demographic characteristics of their populations, (2 that subspecific (genotypic classification does not explain the demographic characteristics of caribou populations, (3 that insular and montane ecotype populations are relatively stable, (4 that barren-ground ecotype herds are currently experiencing synchronous population growth throughout the circumpolar region and may undergo population cycles, (5 that in North America, the woodland caribou subspecies (genotype forms the largest barren-ground ecotype herd in the world and is not endangered nor at risk, (6 that populations of woodland/forest ecotypes are declining and threatened throughout the circumpolar region, possibly due to the interaction of human disturbance and predation, and (7 that no relationship exists between herd size and risk of being classified as threatened by researchers.

  15. Modeling complex spatial dynamics of two-population interaction in urbanization process

    CERN Document Server

    Chen, Yanguang

    2013-01-01

    This paper is mainly devoted to lay an empirical foundation for further research on complex spatial dynamics of two-population interaction. Based on the US population census data, a rural and urban population interaction model is developed. Subsequently a logistic equation on percentage urban is derived from the urbanization model so that spatial interaction can be connected mathematically with logistic growth. The numerical experiment by using the discretized urban-rural population interaction model of urbanization shows a period-doubling bifurcation and chaotic behavior, which is identical in patterns to those from the simple mathematical models of logistic growth in ecology. This suggests that the complicated dynamics of logistic growth may come from some kind of the nonlinear interaction. The results from this study help to understand urbanization, urban-rural population interaction, chaotic dynamics, and spatial complexity of geographical systems.

  16. Plasmodium vivax Population Structure and Transmission Dynamics in Sabah Malaysia

    OpenAIRE

    Abdullah, Noor Rain; Barber, Bridget E.; William, Timothy; Norahmad, Nor Azrina; Satsu, Umi Rubiah; Muniandy, Prem Kumar; Ismail, Zakiah; Grigg, Matthew J; Jelip, Jenarun; Piera, Kim; von Seidlein, Lorenz; Yeo, Tsin W.; Anstey, Nicholas M.; Price, Ric N.; Auburn, Sarah

    2013-01-01

    Despite significant progress in the control of malaria in Malaysia, the complex transmission dynamics of P. vivax continue to challenge national efforts to achieve elimination. To assess the impact of ongoing interventions on P. vivax transmission dynamics in Sabah, we genotyped 9 short tandem repeat markers in a total of 97 isolates (8 recurrences) from across Sabah, with a focus on two districts, Kota Marudu (KM, n = 24) and Kota Kinabalu (KK, n = 21), over a 2 year period. STRUCTURE analys...

  17. Commelina diffusa Population Dynamics in Banana and Ruderal Habitats under Mechanical and Herbicide Management Regimes

    OpenAIRE

    Wendy-Ann P. Isaac; Richard A. I. Brathwaite; Ayub Khan

    2012-01-01

    Commelina diffusa is a colonising species of banana orchard habitats in St. Vincent in the Windward Islands of the Caribbean. In the present study, the population dynamics of C. diffusa were investigated in response to mechanical weed management with either a rotary string trimmer or glufosinate in ruderal and banana habitats. The study focused on density and size distribution of the weed over time and their response to two weed management strategies. The population dynamics of C. diffusa dif...

  18. Application of Moran-Ricker model for analysis of Bupalus piniarius L. population dynamics

    OpenAIRE

    L.V. Nedorezov

    2012-01-01

    Statistical method of analysis of population time series in considered in current publication. This method is based on analysis of dynamics of non-linear ecological model parameter estimations in time, and devoted to investigation of influence of changing of weather conditions on population dynamics. Estimations of model parameters were obtained for all parts (which contains 12 measured values each) of initial sample. For the approximation of sub-samples the well-known Moran - Ricker model (M...

  19. About a dynamic model of interaction of insect population with food plant

    OpenAIRE

    L.V. Nedorezov

    2011-01-01

    In present paper there is the consideration of mathematical model of food plant (resource) - consumer (insect population) - pathogen system dynamics which is constructed as a system of ordinary differential equations. The dynamic regimes of model are analyzed and, in particular, with the help of numerical methods it is shown that trigger regimes (regimes with two stable attractors) can be realized in model under very simple assumptions about ecological and intra-population processes functioni...

  20. Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations

    OpenAIRE

    Revilla, Eloy; Wiegand, Thorsten

    2008-01-01

    The dynamics of spatially structured populations is characterized by within- and between-patch processes. The available theory describes the latter with simple distance-dependent functions that depend on landscape properties such as interpatch distance or patch size. Despite its potential role, we lack a good mechanistic understanding of how the movement of individuals between patches affects the dynamics of these populations. We used the theoretical framework provided by movement ecology to ...

  1. Dynamics of weed populations: spatial patter formation and implications for control.

    OpenAIRE

    Wallinga, J.

    1998-01-01

    Modelling studies were carried out to analyse spatio-temporal dynamics of annual weed populations and to identify the key factors that determine the long-term herbicide use of weed control programmes. Three different weed control programmes were studied.In the first weed control programme, herbicides are applied to the whole field only if the weed density exceeds a threshold value, otherwise there is no control at all. The dynamics of a weed population subjected to such a 'threshold control p...

  2. Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer

    Science.gov (United States)

    Horstkotte, Tim; Kaarlejärvi, Elina; Sévêque, Anthony; Stammler, Florian; Olofsson, Johan; Forbes, Bruce C.; Moen, Jon

    2016-01-01

    Temperature is increasing in Arctic and sub-Arctic regions at a higher rate than anywhere else in the world. The frequency and nature of precipitation events are also predicted to change in the future. These changes in climate are expected, together with increasing human pressures, to have significant impacts on Arctic and sub-Arctic species and ecosystems. Due to the key role that reindeer play in those ecosystems, it is essential to understand how climate will affect the region’s most important species. Our study assesses the role of climate on the dynamics of fourteen Eurasian reindeer (Rangifer tarandus) populations, using for the first time data on reindeer abundance collected over a 70-year period, including both wild and semi-domesticated reindeer, and covering more than half of the species’ total range. We analyzed trends in population dynamics, investigated synchrony among population growth rates, and assessed the effects of climate on population growth rates. Trends in the population dynamics were remarkably heterogeneous. Synchrony was apparent only among some populations and was not correlated with distance among population ranges. Proxies of climate variability mostly failed to explain population growth rates and synchrony. For both wild and semi-domesticated populations, local weather, biotic pressures, loss of habitat and human disturbances appear to have been more important drivers of reindeer population dynamics than climate. In semi-domesticated populations, management strategies may have masked the effects of climate. Conservation efforts should aim to mitigate human disturbances, which could exacerbate the potentially negative effects of climate change on reindeer populations in the future. Special protection and support should be granted to those semi-domesticated populations that suffered the most because of the collapse of the Soviet Union, in order to protect the livelihood of indigenous peoples that depend on the species, and the multi

  3. Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer.

    Science.gov (United States)

    Uboni, Alessia; Horstkotte, Tim; Kaarlejärvi, Elina; Sévêque, Anthony; Stammler, Florian; Olofsson, Johan; Forbes, Bruce C; Moen, Jon

    2016-01-01

    Temperature is increasing in Arctic and sub-Arctic regions at a higher rate than anywhere else in the world. The frequency and nature of precipitation events are also predicted to change in the future. These changes in climate are expected, together with increasing human pressures, to have significant impacts on Arctic and sub-Arctic species and ecosystems. Due to the key role that reindeer play in those ecosystems, it is essential to understand how climate will affect the region's most important species. Our study assesses the role of climate on the dynamics of fourteen Eurasian reindeer (Rangifer tarandus) populations, using for the first time data on reindeer abundance collected over a 70-year period, including both wild and semi-domesticated reindeer, and covering more than half of the species' total range. We analyzed trends in population dynamics, investigated synchrony among population growth rates, and assessed the effects of climate on population growth rates. Trends in the population dynamics were remarkably heterogeneous. Synchrony was apparent only among some populations and was not correlated with distance among population ranges. Proxies of climate variability mostly failed to explain population growth rates and synchrony. For both wild and semi-domesticated populations, local weather, biotic pressures, loss of habitat and human disturbances appear to have been more important drivers of reindeer population dynamics than climate. In semi-domesticated populations, management strategies may have masked the effects of climate. Conservation efforts should aim to mitigate human disturbances, which could exacerbate the potentially negative effects of climate change on reindeer populations in the future. Special protection and support should be granted to those semi-domesticated populations that suffered the most because of the collapse of the Soviet Union, in order to protect the livelihood of indigenous peoples that depend on the species, and the multi

  4. A stage-based model of manatee population dynamics

    Science.gov (United States)

    Runge, M.C.; Langtimm, C.A.; Kendall, W.L.

    2004-01-01

    A stage-structured population model for the Florida manatee (Trichechus manatus latirostris) was developed that explicitly incorporates uncertainty in parameter estimates. The growth rates calculated with this model reflect the status of the regional populations over the most recent 10-yr period. The Northwest and Upper St. Johns River regions have growth rates (8) of 1.037 (95% interval, 1.016?1.056) and 1.062 (1.037?1.081), respectively. The Southwest region has a growth rate of 0.989 (0.946?1.024), suggesting this population has been declining at about 1.1% per year. The estimated growth rate in the Atlantic region is 1.010 (0.988?1.029), but there is some uncertainty about whether adult survival rates have been constant over the last 10 yr; using the mean survival rates from the most recent 5-yr period, the estimated growth rate in this region is 0.970 (0.938?0.998). Elasticity analysis indicates that the most effective management actions should seek to increase adult survival rates. Decomposition of the uncertainty in the growth rates indicates that uncertainty about population status can best be reduced through increased monitoring of adult survival rate.

  5. Reconstructing local population dynamics in noisy metapopulations--the role of random catastrophes and Allee effects.

    Science.gov (United States)

    Hart, Edmund M; Avilés, Leticia

    2014-01-01

    Reconstructing the dynamics of populations is complicated by the different types of stochasticity experienced by populations, in particular if some forms of stochasticity introduce bias in parameter estimation in addition to error. Identification of systematic biases is critical when determining whether the intrinsic dynamics of populations are stable or unstable and whether or not populations exhibit an Allee effect, i.e., a minimum size below which deterministic extinction should follow. Using a simulation model that allows for Allee effects and a range of intrinsic dynamics, we investigated how three types of stochasticity--demographic, environmental, and random catastrophes--affect our ability to reconstruct the intrinsic dynamics of populations. Demographic stochasticity aside, which is only problematic in small populations, we find that environmental stochasticity--positive and negative environmental fluctuations--caused increased error in parameter estimation, but bias was rarely problematic, except at the highest levels of noise. Random catastrophes, events causing large-scale mortality and likely to be more common than usually recognized, caused immediate bias in parameter estimates, in particular when Allee effects were large. In the latter case, population stability was predicted when endogenous dynamics were actually unstable and the minimum viable population size was overestimated in populations with small or non-existent Allee effects. Catastrophes also generally increased extinction risk, in particular when endogenous Allee effects were large. We propose a method for identifying data points likely resulting from catastrophic events when such events have not been recorded. Using social spider colonies (Anelosimus spp.) as models for populations, we show that after known or suspected catastrophes are accounted for, reconstructed growth parameters are consistent with intrinsic dynamical instability and substantial Allee effects. Our results are

  6. Reconstructing local population dynamics in noisy metapopulations--the role of random catastrophes and Allee effects.

    Directory of Open Access Journals (Sweden)

    Edmund M Hart

    Full Text Available Reconstructing the dynamics of populations is complicated by the different types of stochasticity experienced by populations, in particular if some forms of stochasticity introduce bias in parameter estimation in addition to error. Identification of systematic biases is critical when determining whether the intrinsic dynamics of populations are stable or unstable and whether or not populations exhibit an Allee effect, i.e., a minimum size below which deterministic extinction should follow. Using a simulation model that allows for Allee effects and a range of intrinsic dynamics, we investigated how three types of stochasticity--demographic, environmental, and random catastrophes--affect our ability to reconstruct the intrinsic dynamics of populations. Demographic stochasticity aside, which is only problematic in small populations, we find that environmental stochasticity--positive and negative environmental fluctuations--caused increased error in parameter estimation, but bias was rarely problematic, except at the highest levels of noise. Random catastrophes, events causing large-scale mortality and likely to be more common than usually recognized, caused immediate bias in parameter estimates, in particular when Allee effects were large. In the latter case, population stability was predicted when endogenous dynamics were actually unstable and the minimum viable population size was overestimated in populations with small or non-existent Allee effects. Catastrophes also generally increased extinction risk, in particular when endogenous Allee effects were large. We propose a method for identifying data points likely resulting from catastrophic events when such events have not been recorded. Using social spider colonies (Anelosimus spp. as models for populations, we show that after known or suspected catastrophes are accounted for, reconstructed growth parameters are consistent with intrinsic dynamical instability and substantial Allee effects. Our

  7. Breeding site heterogeneity reduces variability in frog recruitment and population dynamics

    Science.gov (United States)

    McCaffery, Rebecca M.; Eby, Lisa A.; Maxell, Bryce A.; Corn, Paul Stephen

    2013-01-01

    Environmental stochasticity can have profound effects on the dynamics and viability of wild populations, and habitat heterogeneity provides one mechanism by which populations may be buffered against the negative effects of environmental fluctuations. Heterogeneity in breeding pond hydroperiod across the landscape may allow amphibian populations to persist despite variable interannual precipitation. We examined recruitment dynamics over 10 yr in a high-elevation Columbia spotted frog (Rana luteiventris) population that breeds in ponds with a variety of hydroperiods. We combined these data with matrix population models to quantify the consequences of heterogeneity in pond hydroperiod on net recruitment (i.e. number of metamorphs produced) and population growth rates. We compared our heterogeneous system to hypothetical homogeneous environments with only ephemeral ponds, only semi-permanent ponds, and only permanent ponds. We also examined the effects of breeding pond habitat loss on population growth rates. Most eggs were laid in permanent ponds each year, but survival to metamorphosis was highest in the semi-permanent ponds. Recruitment success varied by both year and pond type. Net recruitment and stochastic population growth rate were highest under a scenario with homogeneous semi-permanent ponds, but variability in recruitment was lowest in the scenario with the observed heterogeneity in hydroperiods. Loss of pond habitat decreased population growth rate, with greater decreases associated with loss of permanent and semi-permanent habitat. The presence of a diversity of pond hydroperiods on the landscape will influence population dynamics, including reducing variability in recruitment in an uncertain climatic future.

  8. Dynamical population synthesis: Constructing the stellar single and binary contents of galactic field populations

    OpenAIRE

    Marks, Michael; Kroupa, Pavel

    2011-01-01

    [abridged] The galactic field's late-type stellar single and binary population is calculated on the supposition that all stars form as binaries in embedded star clusters. A recently developed tool (Marks, Kroupa & Oh) is used to evolve the binary star distributions in star clusters for a few Myr so that a particular mixture of single and binary stars is achieved. On cluster dissolution the population enters the galactic field with these characteristics. The different contributions of single s...

  9. Population dynamics of bowfin in a south Georgia reservoir: latitudinal comparisons of population structure, growth, and mortality

    Science.gov (United States)

    Porter, Nicholas J.; Bonvechio, Timothy F.; McCormick, Joshua L.; Quist, Michael

    2014-01-01

    The objectives of this study were to evaluate the population dynamics of bowfin (Amia calva) in Lake Lindsay Grace, Georgia, and to compare those dynamics to other bowfin populations. Relative abundance of bowfin sampled in 2010 in Lake Lindsay Grace was low and variable (mean±SD; 2.7±4.7 fish per hour of electrofishing). Total length (TL) of bowfin collected in Lake Lindsay Grace varied from 233–683 mm. Age of bowfin in Lake Lindsay Grace varied from 0–5 yr. Total annual mortality (A) was estimated at 68%. Both sexes appeared to be fully mature by age 2 with gonadosomatic index values above 8 for females and close to 1 for males. The majority of females were older, longer, and heavier than males. Bowfin in Lake Lindsay Grace had fast growth up to age 4 and higher total annual mortality than the other populations examined in this study. A chi-square test indicated that size structure of bowfin from Lake Lindsay Grace was different than those of a Louisiana population and two bowfin populations from the upper Mississippi River. To further assess bowfin size structure, we proposed standard length (i.e., TL) categories: stock (200 mm, 8 inches), quality (350 mm, 14 inches), preferred (460 mm, 18 inches), memorable (560 mm, 22, inches), and trophy (710 mm, 28 inches). Because our knowledge of bowfin ecology is limited, additional understanding of bowfin population dynamics provides important insight that can be used in management of bowfin across their distribution.

  10. Ideal free distributions when resources undergo population dynamics

    Czech Academy of Sciences Publication Activity Database

    Křivan, Vlastimil

    2003-01-01

    Roč. 64, - (2003), s. 25-38. ISSN 0040-5809 R&D Projects: GA ČR GA201/03/0091; GA MŠk LA 101 Institutional research plan: CEZ:AV0Z5007907 Keywords : Predator-prey dynamics * ideal free distribution * optimal foraging Subject RIV: EH - Ecology, Behaviour Impact factor: 2.261, year: 2003

  11. Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut.

    Science.gov (United States)

    Audisio, M C; Sabaté, D C; Benítez-Ahrendts, M R

    2015-01-01

    Lactobacillus johnsonii CRL1647, isolated from the intestinal tract of a worker-bee in Salta, Argentina, was delivered to Apis mellifera L. honey bee colonies according to two different administration schedules: 1×10(5) cfu/ml every 15 days (2011) or monthly (2012). The effect of each treatment on the bee-colony performance was monitored by measuring honey production, and the prevalence of varroasis and nosemosis. Worker bees from each assay were randomly captured 3 days after administration and assayed for the following intestinal culturable and defined bacterial populations: total aerobic microorganisms, Bacillus spp. spores, Lactobacillus spp., Enterococcus spp. and enterobacteria. Interestingly, both treatments generated a similar increase in honey production in treated colonies compared to controls: 36.8% (every 15 days) and 36.3% (monthly). Nosema index always exhibited a reduction when lactobacilli were administered; in turn, Varroa incidence was lower when the lactobacilli were administered once a month. Moreover, the administration of L. johnsonii CRL1647 every 15 days produced an increase in the total number of aerobic microorganisms and in bacteria belonging to the genera Lactobacillus and Enterococcus; at the same time, a decrease was observed in the number of total spores at the end of the treatment. The number of enterobacteria was constant and remained below that of control hives at the end of the assay. On the other hand, the delivery of lactobacilli once a month only showed an increase in the number of bacteria belonging to the genus Lactobacillus; meanwhile, viable counts of the remaining microorganisms assayed were reduced. Even though it seems that both treatments were similar, those bee colonies that received L. johnsonii CRL1647 every 15 days became so strong that they swarmed. PMID:25809216

  12. Relating MEC population dynamics to anode performance from DGGE and electrical data.

    Science.gov (United States)

    Croese, Elsemiek; Keesman, Karel J; Widjaja-Greefkes, Aura H C A; Geelhoed, Jeanine S; Plugge, Caroline M; Sleutels, Tom H J A; Stams, Alfons J M; Euverink, Gert-Jan W

    2013-09-01

    The microbial electrolysis cell (MEC) is a promising system for H2 production, but little is known about the active microbial population in MEC systems. Therefore, the microbial community of five different MEC graphite felt anodes was analyzed using denaturing gradient gel electrophoresis (DGGE) profiling. The results showed that the bacterial population was very diverse and there were substantial differences between microorganisms in anolyte and anode samples. The archaeal population in the anolyte and at the anodes, and between the different MEC anodes, was very similar. SEM and FISH imaging showed that Archaea were mainly present in the spaces between the electrode fibers and Bacteria were present at the fiber surface, which suggested that Bacteria were the main microorganisms involved in MEC electrochemical activity. Redundancy analysis (RDA) and QR factorization-based estimation (QRE) were used to link the composition of the bacterial community to electrochemical performance of the MEC. The operational mode of the MECs and their consequent effects on current density and anode resistance on the populations were significant. The results showed that the community composition was most strongly correlated with current density. The DGGE band mostly correlated with current represented a Clostridium sticklandii strain, suggesting that this species had a major role in current from acetate generation at the MEC anodes. The combination of RDA and QRE seemed especially promising for obtaining an insight into the part of the microbial population actively involved in electrode interaction in the MEC. PMID:23830069

  13. Combined Analysis of Variation in Core, Accessory and Regulatory Genome Regions Provides a Super-Resolution View into the Evolution of Bacterial Populations.

    Science.gov (United States)

    McNally, Alan; Oren, Yaara; Kelly, Darren; Pascoe, Ben; Dunn, Steven; Sreecharan, Tristan; Vehkala, Minna; Välimäki, Niko; Prentice, Michael B; Ashour, Amgad; Avram, Oren; Pupko, Tal; Dobrindt, Ulrich; Literak, Ivan; Guenther, Sebastian; Schaufler, Katharina; Wieler, Lothar H; Zhiyong, Zong; Sheppard, Samuel K; McInerney, James O; Corander, Jukka

    2016-09-01

    The use of whole-genome phylogenetic analysis has revolutionized our understanding of the evolution and spread of many important bacterial pathogens due to the high resolution view it provides. However, the majority of such analyses do not consider the potential role of accessory genes when inferring evolutionary trajectories. Moreover, the recently discovered importance of the switching of gene regulatory elements suggests that an exhaustive analysis, combining information from core and accessory genes with regulatory elements could provide unparalleled detail of the evolution of a bacterial population. Here we demonstrate this principle by applying it to a worldwide multi-host sample of the important pathogenic E. coli lineage ST131. Our approach reveals the existence of multiple circulating subtypes of the major drug-resistant clade of ST131 and provides the first ever population level evidence of core genome substitutions in gene regulatory regions associated with the acquisition and maintenance of different accessory genome elements. PMID:27618184

  14. A life-history perspective on the demographic drivers of structured population dynamics in changing environments.

    Science.gov (United States)

    Koons, David N; Iles, David T; Schaub, Michael; Caswell, Hal

    2016-09-01

    Current understanding of life-history evolution and how demographic parameters contribute to population dynamics across species is largely based on assumptions of either constant environments or stationary environmental variation. Meanwhile, species are faced with non-stationary environmental conditions (changing mean, variance, or both) created by climate and landscape change. To close the gap between contemporary reality and demographic theory, we develop a set of transient life table response experiments (LTREs) for decomposing realised population growth rates into contributions from specific vital rates and components of population structure. Using transient LTREs in a theoretical framework, we reveal that established concepts in population biology will require revision because of reliance on approaches that do not address the influence of unstable population structure on population growth and mean fitness. Going forward, transient LTREs will enhance understanding of demography and improve the explanatory power of models used to understand ecological and evolutionary dynamics. PMID:27401966

  15. Comparison of PCR-DGGE and selective plating methods for monitoring the dynamics of a mixed culture population in synthetic brewery wastewater.

    Science.gov (United States)

    Tam, Kawai; Yang, Ching-Hong; Matsumoto, Mark R; Crowley, David E; Sheppard, John D

    2005-01-01

    Enrichment of an activated sludge inoculum in synthetic brewery wastewater, which included glucose, maltose, and ethanol, was conducted in batch experiments to identify the dominant microbes present, to determine methodologies capable of monitoring the mixed culture population dynamics, and to determine the consortium's substrate degradation behavior. These results and methodologies were subsequently used in the determination of the population dynamics of suspended and attached microorganisms in a sequencing batch system in the second part of this research work. The three-membered microbial community comprised two bacterial and one fungal species that were identified as Acinetobacter sp., Enterobacter sp., and Candida sp. PCR-DGGE and plating on selective media were used to track the population dynamics of the consortium during the degradation of different substrates in synthetic wastewater containing glucose, maltose, and ethanol. Enterobacter sp. could degrade glucose and maltose but not ethanol, whereas Acinetobacter and Candida could degrade all three carbon sources. In buffered batch mixed culture experiments, Enterobacter was the predominant bacterium until the sugar concentrations decreased to levels that enabled Acinetobacter and Candida to degrade ethanol. PCR-DGGE was effective for detecting the dominant species, but culture-based methods were more accurate for monitoring the population dynamics of these microorganisms during growth in the wastewater medium. PMID:15932247

  16. Dynamics of Microbial Populations during Fermentation of Wines from the Utiel-Requena Region of Spain

    OpenAIRE

    Pardo, Isabel; García, María José; Zúñiga, Manuel; Uruburu, Federico

    1989-01-01

    The dynamics of fungi, yeasts, and lactic acid bacteria during fermentation of four musts were studied. Fungi disappeared quickly in the fermenting must. The lactic acid bacteria population diminished during alcoholic fermentation, then they increased and performed malolactic fermentation. Yeasts grew quickly, reaching maximum populations at different times depending on the vinification treatment.

  17. Population dynamics under increasing environmental variability: implications of climate change for ecological network design criteria

    NARCIS (Netherlands)

    Verboom, J.; Schippers, P.; Cormont, A.; Sterk, M.; Vos, C.C.; Opdam, P.F.M.

    2010-01-01

    There is growing evidence that climate change causes an increase in variation in conditions for plant and animal populations. This increase in variation, e.g. amplified inter-annual variability in temperature and rainfall has population dynamical consequences because it raises the variation in vital

  18. Combining a weed traits database with a population dynamics model predicts shifts in weed communities

    DEFF Research Database (Denmark)

    Storkey, Jonathan; Holst, Niels; Bøjer, Ole Mission; Bigongiali, Frederica; Bocci, Gionata; Colbach, Nathali; Dorner, Zita; Riemens, Marleen; Satorato, Ivan; Sønderskov, Mette; Verschwele, Arnd

    2015-01-01

    , populated and analysed, initially using data for 19 common European weeds, to begin to consolidate trait data in a single repository. The initial choice of traits was driven by the requirements of empirical models of weed population dynamics to identify correlations between traits and model parameters...

  19. Modelling of population dynamics of red king crab using Bayesian approach

    Directory of Open Access Journals (Sweden)

    Bakanev Sergey ...

    2012-10-01

    Modeling population dynamics based on the Bayesian approach enables to successfully resolve the above issues. The integration of the data from various studies into a unified model based on Bayesian parameter estimation method provides a much more detailed description of the processes occurring in the population.

  20. Effects of climate change and variability on population dynamics in a long-lived shorebird

    NARCIS (Netherlands)

    van de Pol, Martijn; Vindenes, Yngvild; Saether, Bernt-Erik; Engen, Steinar; Ens, Bruno J.; Oosterbeek, Kees; Tinbergen, Joost M.

    2010-01-01

    Climate change affects both the mean and variability of climatic variables, but their relative impact on the dynamics of populations is still largely unexplored. Based on a long-term study of the demography of a declining Eurasian Oystercatcher (Haematopus ostralegus) population, we quantify the eff

  1. Population dynamics in the high Arctic: Climate variations in time and space

    DEFF Research Database (Denmark)

    Hendrichsen, Ditte Katrine

    Climatic factors profoundly influence the population dynamics, species interactions and demography of Arctic species. Analyses of the spatio-temporal dynamics within and across species are therefore necessary to understand and predict the responses of Arctic ecosystems to climatic variability, an...

  2. The dynamics of endemic malaria in populations of varying size

    International Nuclear Information System (INIS)

    A mathematical model for endemic malaria involving variable human and mosquito populations is analysed. A threshold parameter R0 exists and the disease can persist if and only if R0 exceeds 1. R0 is seen to be a generalisation of the basic reproduction ratio associated with the Ross-Macdonald model for malaria transmission. The disease free equilibrium always exist and is globally stable when R0 is below 1. A perturbation analysis is used to approximate the endemic equilibrium in the important case where the disease related death rate is nonzero. A diffusion approximation is used to approximate the quasi-stationary distribution of the associated stochastic model. Numerical simulations show that when R0 is distinctly greater than 1, the endemic deterministic equilibrium is globally stable. Furthermore, in quasi-stationarity, the stochastic process undergoes oscillations about a mean population whose size can be approximated by the stable endemic deterministic equilibrium. (author)

  3. Two-Population Dynamics in a Growing Network Model

    CERN Document Server

    Ivanova, Kristinka

    2011-01-01

    We introduce a growing network evolution model with nodal attributes. The model describes the interactions between potentially violent V and non-violent N agents who have different affinities in establishing connections within their own population versus between the populations. The model is able to generate all stable triads observed in real social systems. In the framework of rate equations theory, we employ the mean-field approximation to derive analytical expressions of the degree distribution and the local clustering coefficient for each type of nodes. Analytical derivations agree well with numerical simulation results. The assortativity of the potentially violent network qualitatively resembles the connectivity pattern in terrorist networks that was recently reported. The assortativity of the network driven by aggression shows clearly different behavior than the assortativity of the networks with connections of non-aggressive nature in agreement with recent empirical results of an online social system.

  4. A DYNAMICAL SIGNATURE OF MULTIPLE STELLAR POPULATIONS IN 47 TUCANAE

    Energy Technology Data Exchange (ETDEWEB)

    Richer, Harvey B.; Heyl, Jeremy [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Anderson, Jay; Kalirai, Jason S. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Shara, Michael M. [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Dotter, Aaron [Research School of Astronomy and Astrophysics, Australian National University, Weston, ACT 2611 (Australia); Fahlman, Gregory G. [National Research Council, Herzberg Institute of Astrophysics, Victoria, BC V9E 2E7 (Canada); Rich, R. Michael, E-mail: richer@astro.ubc.ca, E-mail: heyl@phas.ubc.ca, E-mail: jayander@stsci.edu, E-mail: jkalarai@stsci.edu, E-mail: mshara@amnh.org, E-mail: aaron.dotter@gmail.com, E-mail: greg.fahlman@nrc-cnrc.gc.ca, E-mail: rmr@astro.ucla.edu [Division of Astronomy and Astrophysics, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2013-07-01

    Based on the width of its main sequence, and an actual observed split when viewed through particular filters, it is widely accepted that 47 Tucanae contains multiple stellar populations. In this contribution, we divide the main sequence of 47 Tuc into four color groups, which presumably represent stars of various chemical compositions. The kinematic properties of each of these groups are explored via proper motions, and a strong signal emerges of differing proper-motion anisotropies with differing main-sequence color; the bluest main-sequence stars exhibit the largest proper-motion anisotropy which becomes undetectable for the reddest stars. In addition, the bluest stars are also the most centrally concentrated. A similar analysis for Small Magellanic Cloud stars, which are located in the background of 47 Tuc on our frames, yields none of the anisotropy exhibited by the 47 Tuc stars. We discuss implications of these results for possible formation scenarios of the various populations.

  5. Dynamics of two feline retroviruses (FIV and FeLV) within one population of cats.

    OpenAIRE

    Courchamp, F; Suppo, C; Fromont, E; Bouloux, C

    1997-01-01

    We present a deterministic model of the dynamics of two microparasites simultaneously infecting a single host population. Both microparasites are feline retroviruses, namely Feline Immunodeficiency Virus (FIV) and Feline Leukaemia Virus (FeLV). The host is the domestic cat Felis catus. The model has been tested with data generated by a long-term study of several natural cat populations. Stability analysis and simulations show that, once introduced in a population, FIV spreads and is maintaine...

  6. Population dynamics and spatial distribution of Griffon Vultures (Gyps fulvus) Portugal

    OpenAIRE

    Beest, van, I.; Bremer, van den, L.; Boer; Heitkonig, I.M.A.; Monteiro, A.E.

    2008-01-01

    The global decrease of vulture populations has been attributed to several factors, such as food availability, poisoning, human disturbance, or habitat suitability. We studied the effect of factors that vary both spatially and temporally on the nest site distribution of the Griffon Vulture Gyps fulvus in northeast Portugal, and influence the population dynamics of these cliff-dwelling birds. Several demographic parameters were studied in the field, and the age structure of the population was d...

  7. On weed competition and population dynamics. Considerations for crop rotations and organic farming

    OpenAIRE

    Mertens, S.K.

    2002-01-01

    Key words: organic farming, weeds, weed management, weed ecology, weed diversity, matrix population model, elasticity analysis, neighbourhood model, survey, crop row spacing, mechanical hoe, harrow, Polygonum convolvulus , Polygonum persicaria , Stellaria mediaExperiments, monitoring studies and modelling of weed population dynamics were carried out to investigate potential methods for reducing weed populations in farming systems where herbicides are not applied (organic farming). Six years o...

  8. Population Dynamics of Soil Pseudomonads in the Rhizosphere of Potato (Solanum tuberosum L.)

    OpenAIRE

    Loper, Joyce E.; Haack, Caryn; Schroth, Milton N.

    1985-01-01

    Rhizosphere population dynamics of seven Pseudomonas fluorescens and Pseudomonas putida strains isolated from rhizospheres of various agricultural plants were studied on potato (Solanum tuberosum L.) in field soil under controlled environmental conditions. Rhizosphere populations of two strains (B10 and B4) were quantitatively related to initial seed piece inoculum levels when plants were grown at −0.3 bar matric potential. At a given inoculum level, rhizosphere populations of strain B4 were ...

  9. Population dynamics of Pseudevadne tergestina (Branchiopoda: Onychopoda) in Guanabara Bay, Brazil

    OpenAIRE

    Andrea Marazzo; Jean Louis Valentin

    2004-01-01

    Populations of Pseudevadne tergestina were studied in Guanabara Bay, southeastern Brazil, to assess temporal variations in density and population dynamics. Data on temperature, salinity and zooplankton samples were taken from the superficial water of a fixed station, every 3 - 4 days, from February 2 through August 1, 2000. The highest abundance of this species was observed in March, when densities varied widely, from 20 to 600 ind. m-3. Population parameters were calculated, such as birth ra...

  10. Modelling the effects of climate change on weed population dynamics

    OpenAIRE

    García de León Hernández, David

    2014-01-01

    As the human population continues to increase –it will have surpassed 9 billion people by 2050- food supply must rise in order to sustain people. Climate change represents a threat in the provision of sufficient, secure and nutritious nourishment for everyone. Possible consequences of climate change include a reduction in global agro-ecosystem production, with Spain as one of the most affected countries in Europe. Accordingly, little is known about the possible effects on weed ...

  11. The role of competition and clustering in population dynamics

    OpenAIRE

    Brännström, Å; Sumpter, D. J. T.

    2005-01-01

    A simple argument based on the distribution of individuals amongst discrete resource sites is used to show how the form of single species population models depends on the type of competition between, and the spatial clustering of, the individuals. For scramble competition between individuals, we confirm earlier demonstrations that the Ricker model is a direct consequence of a uniform random distribution of individuals across resources. By introducing spatial clustering of individuals accordin...

  12. Formation dynamics and distribution function of cities population

    OpenAIRE

    Gadjiev, B. R.; Korolev, M. A.; Progulova, T. B.

    2008-01-01

    From the data analysis we defined distribution function against the population on the level of various structure units, namely regions, federal districts and the country on the whole. We have studied peculiarities of the distribution function deformation due to the structure units' enlargement. Using the master equation in the continuous approximation, we obtain the Fokker-Plank equation for the distribution function with symmetric transition rates. In addition, we offer a model where transit...

  13. Spatial and temporal dynamics of the genetic organization of small mammal populations

    International Nuclear Information System (INIS)

    A functional population is a group of organisms and their offspring that contributes to a common gene pool within a certain area and time period. It is also the unit of evolution and should be viewed both in quantitative and qualitative terms. Selection, drift, dispersal, and mutation can alter the composition of populations. Spatial heterogeneity in allele frequencies argues for a conceptual model that has a series of relatively small populations semi-isolated from one another. Because of the relatively high levels of genetic variability characteristic of most mammalian species, significant amounts of gene flow between these spatially subdivided populations must occur when longer time periods are considered. Fluctuations in the genetic structure of populations seem to be important in altering the fitness of the individuals within the populations. The interaction of populations through gene flow is important in changing the levels of intrapopulational genetic variability. Populations can be characterized as existing on a continuum from relatively stable to unstable numbers and by other associated changes in their characteristics. Temporal changes in allele frequency occur in a variety of mammals. Conceptually, a species can be viewed as a series of dynamic populations that vary in numbers and quality in both a spatial and temporal context even over short distances and time periods. Short term changes in the quality of individuals in a population can be important in altering the short term dynamics of a population

  14. A hyperparasite affects the population dynamics of a wild plant pathogen

    OpenAIRE

    Tollenaere, C.; Pernechele, B; Mäkinen, H S; Parratt, S R; Németh, M Z; Kovács, G.M.; Kiss, L.; Tack, A. J. M.; Laine, A-L

    2014-01-01

    Assessing the impact of natural enemies of plant and animal pathogens on their host's population dynamics is needed to determine the role of hyperparasites in affecting disease dynamics, and their potential for use in efficient control strategies of pathogens. Here, we focus on the long-term study describing metapopulation dynamics of an obligate pathogen, the powdery mildew (Podosphaera plantaginis) naturally infecting its wild host plant (Plantago lanceolata) in the fragmented landscape of ...

  15. Chimera states in population dynamics: networks with fragmented and hierarchical connectivities

    OpenAIRE

    Hizanidis, Johanne; Panagakou, Evangelia; Omelchenko, Iryna; Schoell, Eckehard; Hoevel, Philipp; Provata, Astero

    2015-01-01

    We study numerically the development of chimera states in networks of nonlocally coupled oscillators whose limit cycles emerge from a Hopf bifurcation. This dynamical system is inspired from population dynamics and consists of three interacting species in cyclic reactions. The complexity of the dynamics arises from the presence of a limit cycle and four fixed points. When the bifurcation parameter increases away from the Hopf bifurcation the trajectory approaches the heteroclinic invariant ma...

  16. Potential impact of harvesting on the population dynamics of two epiphytic bromeliads

    Science.gov (United States)

    Toledo-Aceves, Tarin; Hernández-Apolinar, Mariana; Valverde, Teresa

    2014-08-01

    Large numbers of epiphytes are extracted from cloud forests for ornamental use and illegal trade in Latin America. We examined the potential effects of different harvesting regimes on the population dynamics of the epiphytic bromeliads Tillandsia multicaulis and Tillandsia punctulata. The population dynamics of these species were studied over a 2-year period in a tropical montane cloud forest in Veracruz, Mexico. Prospective and retrospective analyses were used to identify which demographic processes and life-cycle stages make the largest relative contribution to variation in population growth rate (λ). The effect of simulated harvesting levels on population growth rates was analysed for both species. λ of both populations was highly influenced by survival (stasis), to a lesser extent by growth, and only slightly by fecundity. Vegetative growth played a central role in the population dynamics of these organisms. The λ value of the studied populations did not differ significantly from unity: T. multicaulis λ (95% confidence interval) = 0.982 (0.897-1.060) and T. punctulata λ = 0.967 (0.815-1.051), suggesting population stability. However, numerical simulation of different levels of extraction showed that λ would drop substantially even under very low (2%) harvesting levels. Matrix analysis revealed that T. multicaulis and T. punctulata populations are likely to decline and therefore commercial harvesting would be unsustainable. Based on these findings, management recommendations are outlined.

  17. [The population of Latin America: population dynamics from 1990 to 2050].

    Science.gov (United States)

    Chackiel, J

    1992-01-01

    Past population projections have proven deficient in predicting demographic changes and their intensity. Projections did not envision a decline of nearly 40% in Latin American fertility in two decades. The projections in this work are cautious and based primarily on past trends and the expected continuation of a process leading eventually to replacement level fertility. The economic crisis of the 1980s has generated pessimism regarding the continuation of fertility declines based on economic progress. For the projection, the Latin American countries were classified into four stages of demographic transition. Most Latin American countries, including the three most populated, were considered to be in the third stage, characterized by fertility and mortality in full transition. A table of demographic indicators contains projections for the years 2010, 2025, and 2050 for all of Latin America and for Bolivia, Guatemala, Mexico, Brazil, and Argentina, which are considered to represent the four stages of transition. Latin America as a whole in 1990 had a population of 430,182,000, with a total fertility rate of 3.1, life expectancy at birth of 69 years, and natural increase rate of 2.1%. 36% of the population was under 15 years old. In 2010, 2025, and 2050, respectively, the population is projected to increase to 587 million, 686 million, and 785 million; the total fertility rate to decline to 2.3, 2.1, and 2.1; life expectancy at birth to increase to 72 years, 74 years, and 74 years, and the natural increase rate to decline to 1.2, 0.8, and 0.3%. The proportion of the population under 15 will decline to 28% in 2010, 24% in 2025, and 21% in 2050. PMID:12158077

  18. Effects of wind farms on harbour porpoise behaviour and population dynamics

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Tougaard, Jakob; Teilmann, Jonas;

    We developed an individual-based simulation model in order to study the cumulative impacts of wind farms and ship traffic on the long-term survival and population dynamics of the harbour porpoise (Phocoena phocoena) in Kattegat and the Belt Seas. The model is based on knowl- edge of the porpoises...... at distances >1 km. Our simulations suggest that operating wind farms and wind farms under construction do not affect the size or dynamics of the harbour porpoise population in Kattegat. Ship traffic may, in contrast, cause the population size to decrease....

  19. Estimation of statistical binding properties of ligand population during in vitro selection based on population dynamics theory.

    Science.gov (United States)

    Aita, Takuyo; Nishigaki, Koichi; Husimi, Yuzuru

    2014-01-01

    During in vitro selection process, it is very valuable to monitor the binding properties of the ligand population in real time, particularly the population average of the association constant in the population. If this monitoring can be realized, the selection process can be controlled in a rational way. In this paper, we present a simple method to estimate the binding properties of the ligand population during in vitro selection. The framework of the method is as follows. First, the number of all the collected ligand molecules, which are eluted after incubation and washing, is measured. Ideally, this number corresponds to the number of all the ligand molecules bound with the target-receptor or other materials in a test tube. This measurement is performed through several successive rounds of selection. Second, the measured numbers of molecules are subjected to a theoretical analysis, based on the mathematical theory of population dynamics in the selection process. Then, we can estimate the probability density of the binding free energy in the ligand population. The validity of our method was confirmed by several computer simulations based on a physicochemical model. PMID:24239675

  20. Fluorescence imaging for bacterial cell biology: from localization to dynamics, from ensembles to single molecules.

    Science.gov (United States)

    Yao, Zhizhong; Carballido-López, Rut

    2014-01-01

    Fluorescent proteins and developments in superresolution (nanoscopy) and single-molecule techniques bring high sensitivity, speed, and one order of magnitude gain in spatial resolution to live-cell imaging. These technologies have only recently been applied to prokaryotic cell biology, revealing the exquisite subcellular organization of bacterial cells. Here, we review the parallel evolution of fluorescence microscopy methods and their application to bacteria, mainly drawing examples from visualizing actin-like MreB proteins in the model bacterium Bacillus subtilis. We describe the basic principles of nanoscopy and conventional techniques and their advantages and limitations to help microbiologists choose the most suitable technique for their biological question. Looking ahead, multidimensional live-cell nanoscopy combined with computational image analysis tools, systems biology approaches, and mathematical modeling will provide movie-like, mechanistic, and quantitative description of molecular events in bacterial cells. PMID:25002084