WorldWideScience

Sample records for bacterial pathogen detection

  1. Detection of foodborne bacterial pathogens from individual filth flies.

    Science.gov (United States)

    Pava-Ripoll, Monica; Pearson, Rachel E G; Miller, Amy K; Ziobro, George C

    2015-02-13

    There is unanimous consensus that insects are important vectors of foodborne pathogens. However, linking insects as vectors of the pathogen causing a particular foodborne illness outbreak has been challenging. This is because insects are not being aseptically collected as part of an environmental sampling program during foodborne outbreak investigations and because there is not a standardized method to detect foodborne bacteria from individual insects. To take a step towards solving this problem, we adapted a protocol from a commercially available PCR-based system that detects foodborne pathogens from food and environmental samples, to detect foodborne pathogens from individual flies.Using this standardized protocol, we surveyed 100 wild-caught flies for the presence of Cronobacter spp., Salmonella enterica, and Listeria monocytogenes and demonstrated that it was possible to detect and further isolate these pathogens from the body surface and the alimentary canal of a single fly. Twenty-two percent of the alimentary canals and 8% of the body surfaces from collected wild flies were positive for at least one of the three foodborne pathogens. The prevalence of Cronobacter spp. on either body part of the flies was statistically higher (19%) than the prevalence of S. enterica (7%) and L.monocytogenes (4%). No false positives were observed when detecting S. enterica and L. monocytogenes using this PCR-based system because pure bacterial cultures were obtained from all PCR-positive results. However, pure Cronobacter colonies were not obtained from about 50% of PCR-positive samples, suggesting that the PCR-based detection system for this pathogen cross-reacts with other Enterobacteriaceae present among the highly complex microbiota carried by wild flies. The standardized protocol presented here will allow laboratories to detect bacterial foodborne pathogens from aseptically collected insects, thereby giving public health officials another line of evidence to find out how

  2. Investigation of magnetic microdiscs for bacterial pathogen detection

    Science.gov (United States)

    Castillo-Torres, Keisha Y.; Garraud, Nicolas; Arnold, David P.; McLamore, Eric S.

    2016-05-01

    Despite strict regulations to control the presence of human pathogens in our food supply, recent foodborne outbreaks have heightened public concern about food safety and created urgency to improve methods for pathogen detection. Herein we explore a potentially portable, low-cost system that uses magnetic microdiscs for the detection of bacterial pathogens in liquid samples. The system operates by optically measuring the rotational dynamics of suspended magnetic microdiscs functionalized with pathogen-binding aptamers. The soft ferromagnetic (Ni80Fe20) microdiscs exhibit a closed magnetic spin arrangement (i.e. spin vortex) with zero magnetic stray field, leading to no disc agglomeration when in free suspension. With very high surface area for functionalization and volumes 10,000x larger than commonly used superparamagnetic nanoparticles, these 1.5-μm-diameter microdiscs are well suited for tagging, trapping, actuating, or interrogating bacterial targets. This work reports a wafer-level microfabrication process for fabrication of 600 million magnetic microdiscs per substrate and measurement of their rotational dynamics response. Additionally, the biofunctionalization of the microdiscs with DNA aptamers, subsequent binding to E. coli bacteria, and their magnetic manipulation is reported.

  3. Fluorescence spectroscopy for rapid detection and classification of bacterial pathogens.

    Science.gov (United States)

    Sohn, Miryeong; Himmelsbach, David S; Barton, Franklin E; Fedorka-Cray, Paula J

    2009-11-01

    This study deals with the rapid detection and differentiation of Escherichia coli, Salmonella, and Campylobacter, which are the most commonly identified commensal and pathogenic bacteria in foods, using fluorescence spectroscopy and multivariate analysis. Each bacterial sample cultured under controlled conditions was diluted in physiologic saline for analysis. Fluorescence spectra were collected over a range of 200-700 nm with 0.5 nm intervals on the PerkinElmer Fluorescence Spectrometer. The synchronous scan technique was employed to find the optimum excitation (lambda(ex)) and emission (lambda(em)) wavelengths for individual bacteria with the wavelength interval (Deltalambda) being varied from 10 to 200 nm. The synchronous spectra and two-dimensional plots showed two maximum lambda(ex) values at 225 nm and 280 nm and one maximum lambda(em) at 335-345 nm (lambda(em) = lambda(ex) + Deltalambda), which correspond to the lambda(ex) = 225 nm, Deltalambda = 110-120 nm, and lambda(ex) = 280 nm, Deltalambda = 60-65 nm. For all three bacterial genera, the same synchronous scan results were obtained. The emission spectra from the three bacteria groups were very similar, creating difficulty in classification. However, the application of principal component analysis (PCA) to the fluorescence spectra resulted in successful classification of the bacteria by their genus as well as determining their concentration. The detection limit was approximately 10(3)-10(4) cells/mL for each bacterial sample. These results demonstrated that fluorescence spectroscopy, when coupled with PCA processing, has the potential to detect and to classify bacterial pathogens in liquids. The methodology is rapid (>10 min), inexpensive, and requires minimal sample preparation compared to standard analytical methods for bacterial detection.

  4. Bacteriophage functional genomics and its role in bacterial pathogen detection.

    Science.gov (United States)

    Klumpp, Jochen; Fouts, Derrick E; Sozhamannan, Shanmuga

    2013-07-01

    Emerging and reemerging bacterial infectious diseases are a major public health concern worldwide. The role of bacteriophages in the emergence of novel bacterial pathogens by horizontal gene transfer was highlighted by the May 2011 Escherichia coli O104:H4 outbreaks that originated in Germany and spread to other European countries. This outbreak also highlighted the pivotal role played by recent advances in functional genomics in rapidly deciphering the virulence mechanism elicited by this novel pathogen and developing rapid diagnostics and therapeutics. However, despite a steady increase in the number of phage sequences in the public databases, boosted by the next-generation sequencing technologies, few functional genomics studies of bacteriophages have been conducted. Our definition of 'functional genomics' encompasses a range of aspects: phage genome sequencing, annotation and ascribing functions to phage genes, prophage identification in bacterial sequences, elucidating the events in various stages of phage life cycle using genomic, transcriptomic and proteomic approaches, defining the mechanisms of host takeover including specific bacterial-phage protein interactions and identifying virulence and other adaptive features encoded by phages and finally, using prophage genomic information for bacterial detection/diagnostics. Given the breadth and depth of this definition and the fact that some of these aspects (especially phage-encoded virulence/adaptive features) have been treated extensively in other reviews, we restrict our focus only on certain aspects. These include phage genome sequencing and annotation, identification of prophages in bacterial sequences and genetic characterization of phages, functional genomics of the infection process and finally, bacterial identification using genomic information.

  5. Molecular Detection of Common Bacterial Pathogens Causing Meningitis

    Directory of Open Access Journals (Sweden)

    H Sadighian

    2009-03-01

    Full Text Available "nBackground: The clinical diagnosis of meningitis is crucial, particularly in children. The early diagnosis and empiric an­tibi­otic treatments have led to a reduction in morbidity and mortality rates. PCR and the enzymatic digestion of 16SrDNA frag­ment which is produced by universal primers led up fast and sensitive determination. The purpose of this study was to investi­gate a rapid method for detection of common bacterial pathogens causing meningitis."nMethods: According to the gene encoding 16SrDNA found in all bacteria, a pair of primers was designed. Then the univer­sal PCR was performed for bacterial agents of meningitis (Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influ­enzae, etc. by employing broad- range DNA extraction method. The ob­tained uni­versal PCR products were digested with restriction enzymes (HaeIII, AluI and MnlI to identify bacterial species. "nResults: By the enzymatic digestion of the universal products of each standard strain of the above bacteria, specific patterns were achieved. These specific patterns may be used for comparison in CSF examination. The analytical sensitivity of the as­say was approximately 1.5´102 CFU/ml of CSF even in samples with high amount of proteins. Conclusion: The universal PCR coupled with enzymatic digestion can be used to detect and identify bacterial pathogens in clini­cal specimens rapidly and accurately. Molecular diagnostic of bacterial meningitis, though expensive and labor-inten­sive, but is valuable and critical in patient management.

  6. Rapid pathogen detection with bacterial-assembled magnetic mesoporous silica.

    Science.gov (United States)

    Lee, Soo Youn; Lee, Jiho; Lee, Hye Sun; Chang, Jeong Ho

    2014-03-15

    We report rapid and accurate pathogen detection by coupling with high efficiency magnetic separation of pathogen by Ni(2+)-heterogeneous magnetic mesoporous silica (Ni-HMMS) and real time-polymerase chain reaction (RT-PCR) technique. Ni-HMMS was developed with a significant incorporation of Fe particles within the silica mesopores by programmed thermal hydrogen reaction and functionalized with Ni(2+) ion on the surface by the wet impregnation process. High abundant Ni(2+) ions on the Ni-HMMS surface were able to assemble with cell wall component protein NikA (nickel-binding membrane protein), which contains several pathogenic bacteria including Escherichia coli O157:H7. NikA protein expression experiment showed the outstanding separation rate of the nikA gene-overexpressed E. coli (pSY-Nik) when comparing with wild-type E. coli (44.5 ± 13%) or not over-expressed E. coli (pSY-Nik) (53.2 ± 2.7%). Moreover, Ni-HMMS showed lower obstacle effect by large reaction volume (10 mL) than spherical core/shell-type silica magnetic nanoparticles functionalized with Ni(2+) (ca. 40 nm-diameters). Finally, the Ni-HMMS was successfully assessed to separate pathogenic E. coli O157:H7 and applied to direct and rapid RT-PCR to quantitative detection at ultralow concentration (1 Log10 cfu mL(-1)) in the real samples (milk and Staphylococcus aureus culture broth) without bacterial amplification and DNA extraction step.

  7. Bacterial contamination of platelet concentrates: pathogen detection and inactivation methods

    Directory of Open Access Journals (Sweden)

    Dana Védy

    2009-04-01

    Full Text Available Whereas the reduction of transfusion related viral transmission has been a priority during the last decade, bacterial infection transmitted by transfusion still remains associated to a high morbidity and mortality, and constitutes the most frequent infectious risk of transfusion. This problem especially concerns platelet concentrates because of their favorable bacterial growth conditions. This review gives an overview of platelet transfusion-related bacterial contamination as well as on the different strategies to reduce this problem by using either bacterial detection or inactivation methods.

  8. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens

    Science.gov (United States)

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  9. Molecular detection of bacterial pathogens using microparticle enhanced double-stranded DNA probes.

    Science.gov (United States)

    Riahi, Reza; Mach, Kathleen E; Mohan, Ruchika; Liao, Joseph C; Wong, Pak Kin

    2011-08-15

    Rapid, specific, and sensitive detection of bacterial pathogens is essential toward clinical management of infectious diseases. Traditional approaches for pathogen detection, however, often require time-intensive bacterial culture and amplification procedures. Herein, a microparticle enhanced double-stranded DNA probe is demonstrated for rapid species-specific detection of bacterial 16S rRNA. In this molecular assay, the binding of the target sequence to the fluorophore conjugated probe thermodynamically displaces the quencher probe and allows the fluorophore to fluoresce. By incorporation of streptavidin-coated microparticles to localize the biotinylated probes, the sensitivity of the assay can be improved by 3 orders of magnitude. The limit of detection of the assay is as few as eight bacteria without target amplification and is highly specific against other common pathogens. Its applicability toward clinical diagnostics is demonstrated by directly identifying bacterial pathogens in urine samples from patients with urinary tract infections.

  10. Bacteriophages for detection and control of bacterial pathogens in food and food-processing environment.

    Science.gov (United States)

    Brovko, Lubov Y; Anany, Hany; Griffiths, Mansel W

    2012-01-01

    This chapter presents recent advances in bacteriophage research and their application in the area of food safety. Section 1 describes general facts on phage biology that are relevant to their application for control and detection of bacterial pathogens in food and environmental samples. Section 2 summarizes the recently acquired data on application of bacteriophages to control growth of bacterial pathogens and spoilage organisms in food and food-processing environment. Section 3 deals with application of bacteriophages for detection and identification of bacterial pathogens. Advantages of bacteriophage-based methods are presented and their shortcomings are discussed. The chapter is intended for food scientist and food product developers, and people in food inspection and health agencies with the ultimate goal to attract their attention to the new developing technology that has a tremendous potential in providing means for producing wholesome and safe food.

  11. Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems

    Directory of Open Access Journals (Sweden)

    Carl A. Batt

    2009-05-01

    Full Text Available The advent of nucleic acid-based pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques, driving the development of portable, integrated biosensors. The miniaturization and automation of integrated detection systems presents a significant advantage for rapid, portable field-based testing. In this review, we highlight current developments and directions in nucleic acid-based micro total analysis systems for the detection of bacterial pathogens. Recent progress in the miniaturization of microfluidic processing steps for cell capture, DNA extraction and purification, polymerase chain reaction, and product detection are detailed. Discussions include strategies and challenges for implementation of an integrated portable platform.

  12. Detection of Bacterial Wilt Pathogen and Isolation of Its Bacteriophage from Banana in Lumajang Area, Indonesia

    Directory of Open Access Journals (Sweden)

    Hardian Susilo Addy

    2016-01-01

    Full Text Available Bacterial wilt disease on banana is an important disease in Lumajang District and causes severe yield loss. Utilizing bacteriophage as natural enemy of pathogenic bacteria has been widely known as one of the control strategies. This research was aimed at determining the causing agent of bacterial wilt on banana isolated from Lumajang area, to obtain wide-host range bacteriophages against bacterial wilt pathogen and to know the basic characteristic of bacteriophages, particularly its nucleic acid type. Causative agent of bacterial wilt was isolated from symptomatic banana trees from seven districts in Lumajang area on determinative CPG plates followed by rapid detection by PCR technique using specific pair-primer. Bacteriophages were also isolated from soil of infected banana crop in Sukodono District. Morphological observation showed that all bacterial isolates have similar characteristic as common bacterial wilt pathogen, Ralstonia solanacearum. In addition, detection of FliC region in all isolates confirmed that all isolates were R. solanacearum according to the presence of 400 bp of FliC DNA fragment. Moreover, two bacteriophages were obtained from this experiment (ϕRSSKD1 and ϕRSSKD2, which were able to infect all nine R. solanacearum isolates. Nucleic acid analysis showed that the nucleic acid of bacteriophages was DNA (deoxyribonucleic acid.

  13. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations.

    Science.gov (United States)

    Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases.

  14. Rapid Methods for the Detection of Foodborne Bacterial Pathogens: Principles, Applications, Advantages and Limitations

    Directory of Open Access Journals (Sweden)

    Law eJodi Woan-Fei

    2015-01-01

    Full Text Available The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR, multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA, loop-mediated isothermal amplification (LAMP and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases.

  15. Molecular versus conventional culture for detection of respiratory bacterial pathogens in poultry.

    Science.gov (United States)

    Ammar, A M; Abd El-Aziz, N K; Abd El Wanis, S; Bakry, N R

    2016-02-29

    Acute respiratory tract infections are leading causes of morbidity in poultry farms allover the world. Six pathogens; Escherichia coli, Mycoplasma gallisepticum, Staphylococcus aureus, Pasteurella multocida, Mannheimia haemolytica and Pseudomonas aeruginosa were involved in respiratory infections in poultry. Herein, conventional identification procedures and polymerase chain reaction (PCR) were applied for detection of the most common respiratory bacterial pathogens in clinical specimens of poultry obtained from 53 Egyptian farms with various respiratory problems and the results were compared statistically. The analyzed data demonstrated a significantly higher rate of detection of the most recovered microorganisms (Ppoultry farms were E. coli and Ps. aeruginosa (54.71% each), followed by M. haemolylica (35.85%) and M. gallisepticum (20.75%). In conclusion, PCR assay offered an effective alternative to traditional typing methods for the identification and simultaneous detection of the most clinically relevant respiratory pathogens in poultry.

  16. Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens.

    Science.gov (United States)

    Alcaine, S D; Tilton, L; Serrano, M A C; Wang, M; Vachet, R W; Nugen, S R

    2015-10-01

    Bacteriophages represent rapid, readily targeted, and easily produced molecular probes for the detection of bacterial pathogens. Molecular biology techniques have allowed researchers to make significant advances in the bioengineering of bacteriophage to further improve speed and sensitivity of detection. Despite their host specificity, bacteriophages have not been meaningfully leveraged in multiplex detection of bacterial pathogens. We propose a proof-of-principal phage-based scheme to enable multiplex detection. Our scheme involves bioengineering bacteriophage to carry a gene for a specific protease, which is expressed during infection of the target cell. Upon lysis, the protease is released to cleave a reporter peptide, and the signal detected. Here we demonstrate the successful (i) modification of T7 bacteriophage to carry tobacco etch virus (TEV) protease; (ii) expression of TEV protease by Escherichia coli following infection by our modified T7, an average of 2000 units of protease per phage are produced during infection; and (iii) proof-of-principle detection of E. coli in 3 h after a primary enrichment via TEV protease activity using a fluorescent peptide and using a designed target peptide for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS) analysis. This proof-of-principle can be translated to other phage-protease-peptide combinations to enable multiplex bacterial detection and readily adopted on multiple platforms, like MALDI-TOF MS or fluorescent readers, commonly found in labs.

  17. Detection of Pathogenic Biofilms with Bacterial Amyloid Targeting Fluorescent Probe, CDy11

    DEFF Research Database (Denmark)

    Jun-Young, Kim; Srikanta, Sahu; Yin-Hoe, Yau

    2016-01-01

    Bacterial biofilms are responsible for a wide range of persistent infections. In the clinic, diagnosis of biofilm-associated infections relies heavily on culturing methods, which fail to detect nonculturable bacteria. Identification of novel fluorescent probes for biofilm imaging will greatly...... facilitate diagnosis of pathogenic bacterial infection. Herein, we report a novel fluorescent probe, CDy11 (compound of designation yellow 11), which targets amyloid in the Pseudomonas aeruginosa biofilm matrix through a diversity oriented fluorescent library approach (DOFLA). CDy11 was further demonstrated...... for in vivo imaging of P. aeruginosa in implant and corneal infection mice models....

  18. Fluorescence in situ hybridization for the tissue detection of bacterial pathogens associated with porcine infections

    DEFF Research Database (Denmark)

    Jensen, Henrik Elvang; Jensen, Louise Kruse; Barington, Kristiane

    2015-01-01

    sequences within intact cells. FISH allows direct histological localization of the bacteria in the tissue and thereby a correlation between the infection and the histopathological changes present. This chapter presents protocols for FISH identification of bacterial pathogens in fixed deparaffinized tissue......Fluorescence in situ hybridization (FISH) is an efficient technique for the identification of specific bacteria in tissue of both experimental and spontaneous infections. The method detects specific sequences of nucleic acids by hybridization of fluorescently labeled probes to complementary target...

  19. Bacterial and viral pathogens detected in sea turtles stranded along the coast of Tuscany, Italy.

    Science.gov (United States)

    Fichi, G; Cardeti, G; Cersini, A; Mancusi, C; Guarducci, M; Di Guardo, G; Terracciano, G

    2016-03-15

    During 2014, six loggerhead turtles, Caretta caretta and one green turtle, Chelonia mydas, found stranded on the Tuscany coast of Italy, were examined for the presence of specific bacterial and viral agents, along with their role as carriers of fish and human pathogens. Thirteen different species of bacteria, 10 Gram negative and 3 Gram positive, were identified. Among them, two strains of Vibrio parahaemolyticus and one strain of Lactococcus garviae were recovered and confirmed by specific PCR protocols. No trh and tdh genes were detected in V. parahaemolyticus. The first isolation of L. garviae and the first detection of Betanodavirus in sea turtles indicate the possibility for sea turtles to act as carriers of fish pathogens. Furthermore, the isolation of two strains of V. parahaemolyticus highlights the possible role of these animals in human pathogens' diffusion.

  20. Atypical sensors for direct and rapid neuronal detection of bacterial pathogens.

    Science.gov (United States)

    Lim, Ji Yeon; Choi, Seung-In; Choi, Geunyeol; Hwang, Sun Wook

    2016-03-09

    Bacterial infection can threaten the normal biological functions of a host, often leading to a disease. Hosts have developed complex immune systems to cope with the danger. Preceding the elimination of pathogens, selective recognition of the non-self invaders is necessary. At the forefront of the body's defenses are the innate immune cells, which are equipped with particular sensor molecules that can detect common exterior patterns of invading pathogens and their secreting toxins as well as with phagocytic machinery. Inflammatory mediators and cytokines released from these innate immune cells and infected tissues can boost the inflammatory cascade and further recruit adaptive immune cells to maximize the elimination and resolution. The nervous system also seems to interact with this process, mostly known to be affected by the inflammatory mediators through the binding of neuronal receptors, consequently activating neural circuits that tune the local and systemic inflammatory states. Recent research has suggested new contact points: direct interactions of sensory neurons with pathogens. Latest findings demonstrated that the sensory neurons not only share pattern recognition mechanisms with innate immune cells, but also utilize endogenous and exogenous electrogenic components for bacterial pathogen detection, by which the electrical firing prompts faster information flow than what could be achieved when the immune system is solely involved. As a result, rapid pain generation and active accommodation of the immune status occur. Here we introduced the sensory neuron-specific detector molecules for directly responding to bacterial pathogens and their signaling mechanisms. We also discussed extended issues that need to be explored in the future.

  1. Novel aptamer-linked nanoconjugate approach for detection of waterborne bacterial pathogens: an update

    Science.gov (United States)

    Singh, Gulshan; Manohar, Murli; Adegoke, Anthony Ayodeji; Stenström, Thor Axel; Shanker, Rishi

    2017-01-01

    The lack of microbiologically safe water in underdeveloped nations is the prime cause of infectious disease outbreaks. The need for the specific identification and detection of microorganisms encourages the development of advanced, rapid, sensitive and highly specific methods for the monitoring of pathogens and management of potential risk to human health. The rapid molecular assays based on detection of specific molecular signatures offer advantages over conventional methods in terms of specificity and sensitivity but require complex instrumentation and skilled personnel. Nanotechnology is an emerging area and provides a robust approach for the identification of pathogenic microorganism utilizing the peculiar properties of nanomaterials, i.e. small size (1-100 nm) and large surface area. This emerging technology promises to fulfill the urgent need of a novel strategy to enhance the bacterial identification and quantitation in the environment. In this context, the peculiar properties of gold nanoparticles, their plasmonic shifts, and changes in magnetic properties have been utilized for the simple and cost-effective detection of bacterial nucleic acids, antigens and toxins with quite improved sensitivity. One of the promising leads to develop an advance detection method might be the coupling of nucleic acid aptamers (capable of interacting specifically with bacteria, protozoa, and viruses) with nanomaterials. Such aptamer-nano conjugate can be used for the specific recognition of infectious agents in different environmental matrices. This review summarizes the application of nanotechnology in the area of pathogen detection and discusses the prospects of coupling nucleic acid aptamers with nanoparticles for the specific detection of targeted pathogens.

  2. A Comparison between Transcriptome Sequencing and 16S Metagenomics for Detection of Bacterial Pathogens in Wildlife.

    Directory of Open Access Journals (Sweden)

    Maria Razzauti

    Full Text Available Rodents are major reservoirs of pathogens responsible for numerous zoonotic diseases in humans and livestock. Assessing their microbial diversity at both the individual and population level is crucial for monitoring endemic infections and revealing microbial association patterns within reservoirs. Recently, NGS approaches have been employed to characterize microbial communities of different ecosystems. Yet, their relative efficacy has not been assessed. Here, we compared two NGS approaches, RNA-Sequencing (RNA-Seq and 16S-metagenomics, assessing their ability to survey neglected zoonotic bacteria in rodent populations.We first extracted nucleic acids from the spleens of 190 voles collected in France. RNA extracts were pooled, randomly retro-transcribed, then RNA-Seq was performed using HiSeq. Assembled bacterial sequences were assigned to the closest taxon registered in GenBank. DNA extracts were analyzed via a 16S-metagenomics approach using two sequencers: the 454 GS-FLX and the MiSeq. The V4 region of the gene coding for 16S rRNA was amplified for each sample using barcoded universal primers. Amplicons were multiplexed and processed on the distinct sequencers. The resulting datasets were de-multiplexed, and each read was processed through a pipeline to be taxonomically classified using the Ribosomal Database Project. Altogether, 45 pathogenic bacterial genera were detected. The bacteria identified by RNA-Seq were comparable to those detected by 16S-metagenomics approach processed with MiSeq (16S-MiSeq. In contrast, 21 of these pathogens went unnoticed when the 16S-metagenomics approach was processed via 454-pyrosequencing (16S-454. In addition, the 16S-metagenomics approaches revealed a high level of coinfection in bank voles.We concluded that RNA-Seq and 16S-MiSeq are equally sensitive in detecting bacteria. Although only the 16S-MiSeq method enabled identification of bacteria in each individual reservoir, with subsequent derivation of

  3. Detection of a pathogen shift among the pectolytic bacterial pathogens of potato in Washington State

    Science.gov (United States)

    Bacterial tuber soft rot, aerial stem rot and blackleg are significant diseases of potatoes in Washington State. These diseases are caused by Pectobacterium carotovorum subsp. carotovorum, Pectobacterium atrosepticum, and Dickeya chrysanthemi, all characterized by the ability to produce pectolytic ...

  4. Comparison of individual and pooled sampling methods for detecting bacterial pathogens of fish

    Science.gov (United States)

    Mumford, Sonia; Patterson, Chris; Evered, J.; Brunson, Ray; Levine, J.; Winton, J.

    2005-01-01

    Examination of finfish populations for viral and bacterial pathogens is an important component of fish disease control programs worldwide. Two methods are commonly used for collecting tissue samples for bacteriological culture, the currently accepted standards for detection of bacterial fish pathogens. The method specified in the Office International des Epizooties Manual of Diagnostic Tests for Aquatic Animals permits combining renal and splenic tissues from as many as 5 fish into pooled samples. The American Fisheries Society (AFS) Blue Book/US Fish and Wildlife Service (USFWS) Inspection Manual specifies the use of a bacteriological loop for collecting samples from the kidney of individual fish. An alternative would be to more fully utilize the pooled samples taken for virology. If implemented, this approach would provide substantial savings in labor and materials. To compare the relative performance of the AFS/USFWS method and this alternative approach, cultures of Yersinia ruckeri were used to establish low-level infections in groups of rainbow trout (Oncorhynchus mykiss) that were sampled by both methods. Yersinia ruckeri was cultured from 22 of 37 groups by at least 1 method. The loop method yielded 18 positive groups, with 1 group positive in the loop samples but negative in the pooled samples. The pooled samples produced 21 positive groups, with 4 groups positive in the pooled samples but negative in the loop samples. There was statistically significant agreement (Spearman coefficient 0.80, P < 0.001) in the relative ability of the 2 sampling methods to permit detection of low-level bacterial infections of rainbow trout.

  5. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kingsley, Mark T.

    2001-03-13

    The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysis of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, and analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: 1) to assess the potential terrorist threat to U.S. agricultural crops, 2) to determine whether suitable assays exist to monitor that threat, and 3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.

  6. Modular microfluidic system fabricated in thermoplastics for the strain-specific detection of bacterial pathogens.

    Science.gov (United States)

    Chen, Yi-Wen; Wang, Hong; Hupert, Mateusz; Witek, Makgorzata; Dharmasiri, Udara; Pingle, Maneesh R; Barany, Francis; Soper, Steven A

    2012-09-21

    The recent outbreaks of a lethal E. coli strain in Germany have aroused renewed interest in developing rapid, specific and accurate systems for detecting and characterizing bacterial pathogens in suspected contaminated food and/or water supplies. To address this need, we have designed, fabricated and tested an integrated modular-based microfluidic system and the accompanying assay for the strain-specific identification of bacterial pathogens. The system can carry out the entire molecular processing pipeline in a single disposable fluidic cartridge and detect single nucleotide variations in selected genes to allow for the identification of the bacterial species, even its strain with high specificity. The unique aspect of this fluidic cartridge is its modular format with task-specific modules interconnected to a fluidic motherboard to permit the selection of the target material. In addition, to minimize the amount of finishing steps for assembling the fluidic cartridge, many of the functional components were produced during the polymer molding step used to create the fluidic network. The operation of the cartridge was provided by electronic, mechanical, optical and hydraulic controls located off-chip and packaged into a small footprint instrument (1 ft(3)). The fluidic cartridge was capable of performing cell enrichment, cell lysis, solid-phase extraction (SPE) of genomic DNA, continuous flow (CF) PCR, CF ligase detection reaction (LDR) and universal DNA array readout. The cartridge was comprised of modules situated on a fluidic motherboard; the motherboard was made from polycarbonate, PC, and used for cell lysis, SPE, CF PCR and CF LDR. The modules were task-specific units and performed universal zip-code array readout or affinity enrichment of the target cells with both made from poly(methylmethacrylate), PMMA. Two genes, uidA and sipB/C, were used to discriminate between E. coli and Salmonella, and evaluated as a model system. Results showed that the fluidic

  7. Target-specific capture enhances sensitivity of electrochemical detection of bacterial pathogens.

    Science.gov (United States)

    Patel, Mayank; Gonzalez, Rodrigo; Halford, Colin; Lewinski, Michael A; Landaw, Elliot M; Churchill, Bernard M; Haake, David A

    2011-12-01

    We report the concentration and purification of bacterial 16S rRNA by the use of a biotinylated DNA target-specific capture (TSC) probe. For both cultivated bacterial and urine specimens from urinary tract infection patients, TSC resulted in a 5- to 8-fold improvement in the sensitivity of bacterial detection in a 16S rRNA electrochemical sensor assay.

  8. Rapid detection and identification of bacterial pathogens by using an ATP bioluminescence immunoassay.

    Science.gov (United States)

    Hunter, Dawn M; Lim, Daniel V

    2010-04-01

    Rapid identification of viable bacterial contaminants in food products is important because of their potential to cause disease. This study examined a method for microbial detection by using a combined ATP bioluminescence immunoassay. Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium were selected as target organisms because of their implication in foodborne illness. Various matrices containing the target cells were examined, including ground beef homogenate, apple juice, milk, and phosphate-buffered saline. Specific antibodies were immobilized on the surface of 96-well plates, and then the sample matrices containing target cells in the wells were incubated. Sample matrix (no cells) was used to establish background. The plates were washed, and the wells were incubated with BacTiter-Glo reagent in Mueller-Hinton II broth. Bioluminescent output was measured with the GloMax 96 luminometer. Signal-to-noise ratios were calculated, resulting in a limit of detection of 10(4) CFU/ml for both E. coli O157:H7 and Salmonella Typhimurium. The limit of detection for both species was not affected by the presence of nontarget cells. The various sample matrices did not affect signal-to-noise ratios when E. coli O157:H7 was the target. A weak matrix effect was observed when Salmonella Typhimurium was the target. A strong linear correlation was observed between the number of cells and luminescent output over 4 orders of magnitude for both species. This method provides a means of simultaneously detecting and identifying viable pathogens in complex matrices, and could have wider application in food microbiology.

  9. One-day workflow scheme for bacterial pathogen detection and antimicrobial resistance testing from blood cultures.

    Science.gov (United States)

    Hansen, Wendy L J; Beuving, Judith; Verbon, Annelies; Wolffs, Petra F G

    2012-07-09

    Bloodstream infections are associated with high mortality rates because of the probable manifestation of sepsis, severe sepsis and septic shock(1). Therefore, rapid administration of adequate antibiotic therapy is of foremost importance in the treatment of bloodstream infections. The critical element in this process is timing, heavily dependent on the results of bacterial identification and antibiotic susceptibility testing. Both of these parameters are routinely obtained by culture-based testing, which is time-consuming and takes on average 24-48 hours(2, 4). The aim of the study was to develop DNA-based assays for rapid identification of bloodstream infections, as well as rapid antimicrobial susceptibility testing. The first assay is a eubacterial 16S rDNA-based real-time PCR assay complemented with species- or genus-specific probes(5). Using these probes, Gram-negative bacteria including Pseudomonas spp., Pseudomonas aeruginosa and Escherichia coli as well as Gram-positive bacteria including Staphylococcus spp., Staphylococcus aureus, Enterococcus spp., Streptococcus spp., and Streptococcus pneumoniae could be distinguished. Using this multiprobe assay, a first identification of the causative micro-organism was given after 2 h. Secondly, we developed a semi-molecular assay for antibiotic susceptibility testing of S. aureus, Enterococcus spp. and (facultative) aerobe Gram-negative rods(6). This assay was based on a study in which PCR was used to measure the growth of bacteria(7). Bacteria harvested directly from blood cultures are incubated for 6 h with a selection of antibiotics, and following a Sybr Green-based real-time PCR assay determines inhibition of growth. The combination of these two methods could direct the choice of a suitable antibiotic therapy on the same day (Figure 1). In conclusion, molecular analysis of both identification and antibiotic susceptibility offers a faster alternative for pathogen detection and could improve the diagnosis of

  10. Microbial Diagnostic Microarrays for the Detection and Typing of Food- and Water-Borne (Bacterial) Pathogens.

    Science.gov (United States)

    Kostić, Tanja; Sessitsch, Angela

    2011-10-14

    Reliable and sensitive pathogen detection in clinical and environmental (including food and water) samples is of greatest importance for public health. Standard microbiological methods have several limitations and improved alternatives are needed. Most important requirements for reliable analysis include: (i) specificity; (ii) sensitivity; (iii) multiplexing potential; (iv) robustness; (v) speed; (vi) automation potential; and (vii) low cost. Microarray technology can, through its very nature, fulfill many of these requirements directly and the remaining challenges have been tackled. In this review, we attempt to compare performance characteristics of the microbial diagnostic microarrays developed for the detection and typing of food and water pathogens, and discuss limitations, points still to be addressed and issues specific for the analysis of food, water and environmental samples.

  11. Microbial Diagnostic Microarrays for the Detection and Typing of Food- and Water-Borne (Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Tanja Kostić

    2011-10-01

    Full Text Available Reliable and sensitive pathogen detection in clinical and environmental (including food and water samples is of greatest importance for public health. Standard microbiological methods have several limitations and improved alternatives are needed. Most important requirements for reliable analysis include: (i specificity; (ii sensitivity; (iii multiplexing potential; (iv robustness; (v speed; (vi automation potential; and (vii low cost. Microarray technology can, through its very nature, fulfill many of these requirements directly and the remaining challenges have been tackled. In this review, we attempt to compare performance characteristics of the microbial diagnostic microarrays developed for the detection and typing of food and water pathogens, and discuss limitations, points still to be addressed and issues specific for the analysis of food, water and environmental samples.

  12. Molecular detection of bacterial and parasitic pathogens in hard ticks from Portugal.

    Science.gov (United States)

    Maia, Carla; Ferreira, Andreia; Nunes, Mónica; Vieira, Maria Luísa; Campino, Lenea; Cardoso, Luís

    2014-06-01

    Ticks are important vector arthropods of human and animal pathogens. As information about agents of disease circulating in vectors in Portugal is limited, the aim of the present study was to detect bacteria and parasites with veterinary and zoonotic importance in ticks collected from dogs, cats, and field vegetation. A total of 925 ticks, comprising 888 (96.0%) adults, 8 (0.9%) nymphs, and 29 (3.1%) larvae, were collected in 4 geographic areas (districts) of Portugal. Among those, 620 (67.0%) were removed from naturally infested dogs, 42 (4.5%) from cats, and 263 (28.4%) were questing ticks obtained from field vegetation. Rhipicephalus sanguineus was the predominant tick species, and the only one collected from dogs and vegetation, while all Ixodes ricinus specimens (n=6) were recovered from cats. Rickettsia massiliae and Rickettsia conorii were identified in 35 ticks collected from cats and dogs and in 3 ticks collected from dogs. Among ticks collected from cats or dogs, 4 Rh. sanguineus specimens were detected with Hepatozoon felis, 3 with Anaplasma platys, 2 with Hepatozoon canis, one with Anaplasma phagocytophilum, one with Babesia vogeli, one with Borrelia burgdorferi sensu lato and one with Cercopithifilaria spp. Rickettsia helvetica was detected in one I. ricinus tick collected from a cat. To the best of our knowledge, this was the first time that Cercopithifilaria spp., Ba. vogeli, H. canis, and H. felis have been detected in ticks from Portugal. The wide range of tick-borne pathogens identified, some of zoonotic concern, suggests a risk for the emergence of tick-borne diseases in domestic animals and humans in Portugal. Further studies on these and other tick-borne agents should be performed to better understand their epidemiological and clinical importance, and to support the implementation of effective control measures.

  13. Real-Time PCR Methods for Detection of Foodborne Bacterial Pathogens in Meat and Meat Products

    Science.gov (United States)

    Hernández, Marta; Hansen, Flemming; Cook, Nigel; Rodríguez-Lázaro, David

    As a consequence of the potential hazards posed by the presence of microbial pathogens, microbiological quality control programmes are being increasingly applied throughout the meat production chain in order to minimize the risk of infection for the consumer. Classical microbiological methods to detect the presence of microorganisms, involving enrichment and isolation of presumptive colonies of bacteria on solid media, and final confirmation by biochemical and/or serological identification, although remaining the approach of choice in routine analytical laboratories, can be laborious and time consuming. The adoption of molecular techniques in microbial diagnostics has become a promising alternative approach, as they possess inherent advantages such as shorter time to results, excellent detection limits, specificity and potential for automation. Several molecular detection techniques have been devised in the last two decades, such as nucleic acid sequence-based amplification (NASBA) (Cook, 2003; Rodriguez-Lazaro, Hernandez, D’Agostino, & Cook, 2006) and loop-mediated isothermal amplification (Notomi et al., 2000), but the one which has undergone the most extensive development as a practical food analytical tool is the polymerase chain reaction (PCR) (Hoorfar & Cook, 2003; Malorny, Tassios, et al., 2003).

  14. A Two-Tube Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Viral and Bacterial Pathogens of Infectious Diarrhea

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2014-01-01

    Full Text Available Diarrhea caused by viral and bacterial infections is a major health problem in developing countries. The purpose of this study is to develop a two-tube multiplex PCR assay using automatic electrophoresis for simultaneous detection of 13 diarrhea-causative viruses or bacteria, with an intended application in provincial Centers for Diseases Control and Prevention, China. The assay was designed to detect rotavirus A, norovirus genogroups GI and GII, human astrovirus, enteric adenoviruses, and human bocavirus (tube 1, and Salmonella, Vibrio parahaemolyticus, diarrheagenic Escherichia coli, Campylobacter jejuni, Shigella, Yersinia, and Vibrio cholera (tube 2. The analytical specificity was examined with positive controls for each pathogen. The analytical sensitivity was evaluated by performing the assay on serial tenfold dilutions of in vitro transcribed RNA, recombinant plasmids, or bacterial culture. A total of 122 stool samples were tested by this two-tube assay and the results were compared with those obtained from reference methods. The two-tube assay achieved a sensitivity of 20–200 copies for a single virus and 102-103 CFU/mL for bacteria. The clinical performance demonstrated that the two-tube assay had comparable sensitivity and specificity to those of reference methods. In conclusion, the two-tube assay is a rapid, cost-effective, sensitive, specific, and high throughput method for the simultaneous detection of enteric bacteria and virus.

  15. Specific detection of common pathogens of acute bacterial meningitis using an internally controlled tetraplex-PCR assay.

    Science.gov (United States)

    Farahani, Hamidreza; Ghaznavi-Rad, Ehsanollah; Mondanizadeh, Mahdieh; MirabSamiee, Siamak; Khansarinejad, Behzad

    2016-08-01

    Accurate and timely diagnosis of acute bacterial meningitis is critical for antimicrobial treatment of patients. Although PCR-based methods have been widely used for the diagnosis of acute meningitis caused by bacterial pathogens, the main disadvantage of these methods is their high cost. This disadvantage has hampered the widespread use of molecular assays in many developing countries. The application of multiplex assays and "in-house" protocols are two main approaches that can reduce the overall cost of a molecular test. In the present study, an internally controlled tetraplex-PCR was developed and validated for the specific detection of Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae in cerebrospinal fluid (CSF) samples. The analysis of a panel of other human pathogens showed no cross-reactivity in the assay. The analytical sensitivity of the in-house assay was 792.3 copies/ml, when all three bacteria were presentin the specimens. This value was calculated as 444.5, 283.7, 127.8 copies/ml when only S. pneumoniae, N. meningitidis and H. influenzae, respectively, were present. To demonstrate the diagnostic performance of the assay, a total of 150 archival CSF samples were tested and compared with a commercial multiplex real-time PCR kit. A diagnostic sensitivity of 92.8% and a specificity of 95.1% were determined for the present tetraplex-PCR assay. The results indicate that the established method is sensitive, specific and cost-effective, and can be used particularly in situations where the high cost of commercial kits prevents the use of molecular methods for the diagnosis of bacterial meningitis.

  16. Universal Probe Library based real-time PCR for rapid detection of bacterial pathogens from positive blood culture bottles.

    Science.gov (United States)

    Zhu, Lingxiang; Shen, Ding-Xia; Zhou, Qiming; Liu, Chao-Jun; Li, Zexia; Fang, Xiangdong; Li, Quan-Zhen

    2014-03-01

    A set of real-time PCR based assays using the locked nucleic acid probes from Roche Universal ProbeLibrary were developed for rapid detection of eight bacterial species from positive blood culture bottles. Four duplex real-time PCR reactions targeting to one Gram-positive bacterium and one Gram-negative bacterium were optimized for species identification according to Gram stain results. We also included mecA-specific primers and probes in the assays to indicate the presence of methicillin resistance in the bacterial species. The analytical sensitivity was in the range of 1-10 CFU per PCR reaction mixture. The specificity and cross reactivity of the assay was validated by 28 ATCC reference strains and 77 negative blood culture specimens. No cross-reactivity was observed in these samples thus demonstrating 100 % specificity. 72 previously characterized clinical isolates were tested by the real-time PCR assay and validated the accuracy and feasibility of the real-time PCR assay. Furthermore, 55 positive blood culture samples were tested using real-time PCR and 50 (90.9 %) of them were identified as the same species as judged by biochemical analysis. In total, real-time PCR showed 98.2 % consistent to that of traditional methods. Real-time PCR can be used as a supplement for early detection of the frequently-occurred pathogens from the positive blood cultures.

  17. Detection of respiratory viral and bacterial pathogens causing pediatric community-acquired pneumonia in Beijing using real-time PCR

    Institute of Scientific and Technical Information of China (English)

    Tie-Gang Zhang; Ai-Hua Li; Min Lyu; Meng Chen; Fang Huang; Jiang Wu

    2015-01-01

    Objective: The aim of this study was to determine the etiology and prevalence of pediatric CAP in Beijing using a real-time polymerase chain reaction (PCR) technique. Methods: Between February 15, 2011 and January 18, 2012, 371 pediatric patients with CAP were enrolled at Beijing Children's Hospital. Sixteen respiratory viruses and two bacteria were detected from tracheal aspirate specimens using commercially available multiplex real-time reverse transcription PCR (RT-PCR) kits. Results: A single viral pathogen was detected in 35.3%of enrolled patients, multiple viruses in 11.6%, and virus/bacteria co-infection in 17.8%. In contrast, only 6.5%of patients had a single bacterial pathogen and 2.2%were infected with multiple bacteria. The etiological agent was unknown for 26.7% of patients. The most common viruses were respiratory syncytial virus (RSV) (43.9%), rhinovirus (14.8%), parainfluenza virus (9.4%), and adenovirus (8.6%). In patients under three years of age, RSV (44.6%), rhinovirus (12.8%), and Streptococcus pneumoniae (9.9%) were the most frequent pathogens. In children aged 3e7 years, S. pneumoniae (38.9%), RSV (30.6%), Haemophilus influenzae (19.4%), and adenovirus (19.4%) were most prevalent. Finally in children over seven years, RSV (47.3%), S. pneumoniae (41.9%), and rhinovirus (21.5%) infections were most frequent. Conclusions: Viral pathogens, specifically RSV, were responsible for the majority of CAP in pediatric patients. However, both S. pneumoniae and H. influenzae contributed as major causes of disease. Commercially available multiplexing real-time PCR allowed for rapid detection of the etiological agent. Copyright © 2015, Chinese Medical Association Production. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  18. Antigenic Variation in Bacterial Pathogens.

    Science.gov (United States)

    Palmer, Guy H; Bankhead, Troy; Seifert, H Steven

    2016-02-01

    Antigenic variation is a strategy used by a broad diversity of microbial pathogens to persist within the mammalian host. Whereas viruses make use of a minimal proofreading capacity combined with large amounts of progeny to use random mutation for variant generation, antigenically variant bacteria have evolved mechanisms which use a stable genome, which aids in protecting the fitness of the progeny. Here, three well-characterized and highly antigenically variant bacterial pathogens are discussed: Anaplasma, Borrelia, and Neisseria. These three pathogens display a variety of mechanisms used to create the structural and antigenic variation needed for immune escape and long-term persistence. Intrahost antigenic variation is the focus; however, the role of these immune escape mechanisms at the population level is also presented.

  19. Fluorescence In Situ Hybridization for the Tissue Detection of Bacterial Pathogens Associated with Porcine Infections

    DEFF Research Database (Denmark)

    Elvang Jensen, Henrik; Jensen, Louise Kruse; Barington, Kristiane;

    2015-01-01

    Fluorescence in situ hybridization (FISH) is an efficient technique for the identification of specific bacteria in tissue of both experimental and spontaneous infections. The method detects specific sequences of nucleic acids by hybridization of fluorescently labeled probes to complementary targe...

  20. Cultivation and qPCR Detection of Pathogenic and Antibiotic-Resistant Bacterial Establishment in Naive Broiler Houses.

    Science.gov (United States)

    Brooks, J P; McLaughlin, M R; Adeli, A; Miles, D M

    2016-05-01

    Conventional commercial broiler production involves the rearing of more than 20,000 broilers in a single confined space for approximately 6.5 wk. This environment is known for harboring pathogens and antibiotic-resistant bacteria, but studies have focused on previously established houses with mature litter microbial populations. In the current study, a set of three naive houses were followed from inception through 11 broiler flocks and monitored for ambient climatic conditions, bacterial pathogens, and antibiotic resistance. Within the first 3 wk of the first flock cycle, 100% of litter samples were positive for and , whereas was cultivation negative but PCR positive. Antibiotic resistance genes were ubiquitously distributed throughout the litter within the first flock, approaching 10 to 10 genomic units g. Preflock litter levels were approximately 10 CFU g for heterotrophic plate count bacteria, whereas midflock levels were >10 colony forming units (CFU) g; other indicators demonstrated similar increases. The influence of intrahouse sample location was minor. In all likelihood, given that preflock levels were negative for pathogens and antibiotic resistance genes and 4 to 5 Log lower than flock levels for indicators, incoming birds most likely provided the colonizing microbiome, although other sources were not ruled out. Most bacterial groups experienced a cyclical pattern of litter contamination seen in other studies, whereas microbial stabilization required approximately four flocks. This study represents a first-of-its-kind view into the time required for bacterial pathogens and antibiotic resistance to colonize and establish in naive broiler houses.

  1. Loop-mediated isothermal amplification of specific endoglucanase gene sequence for detection of the bacterial wilt pathogen Ralstonia solanacearum.

    Directory of Open Access Journals (Sweden)

    Rok Lenarčič

    Full Text Available The increased globalization of crops production and processing industries also promotes the side-effects of more rapid and efficient spread of plant pathogens. To prevent the associated economic losses, and particularly those related to bacterial diseases where their management relies on removal of the infected material from production, simple, easy-to-perform, rapid and cost-effective tests are needed. Loop-mediated isothermal amplification (LAMP assays that target 16S rRNA, fliC and egl genes were compared and evaluated as on-site applications. The assay with the best performance was that targeted to the egl gene, which shows high analytical specificity for diverse strains of the betaproteobacterium Ralstonia solanacearum, including its non-European and non-race 3 biovar 2 strains. The additional melting curve analysis provides confirmation of the test results. According to our extensive assessment, the egl LAMP assay requires minimum sample preparation (a few minutes of boiling for the identification of pure cultures and ooze from symptomatic material, and it can also be used in a high-throughput format in the laboratory. This provides sensitive and reliable detection of R. solanacearum strains of different phylotypes.

  2. Capsaicin-sensitive vagal afferent neurons contribute to the detection of pathogenic bacterial colonization in the gut

    OpenAIRE

    2013-01-01

    Vagal activation can reduce inflammation and disease activity in various animal models of intestinal inflammation via the cholinergic anti-inflammatory pathway. In the current model of this pathway, activation of descending vagal efferents is dependent on a signal initiated by stimulation of vagal afferents. However, little is known about how vagal afferents are activated, especially in the context of subclinical or clinical pathogenic bacterial infection. To address this question, we first d...

  3. Development of Real-Time PCR Methods for the Detection of Bacterial Meningitis Pathogens without DNA Extraction.

    Directory of Open Access Journals (Sweden)

    Jeni Vuong

    Full Text Available Neisseria meningitidis (Nm, Haemophilus influenzae (Hi, and Streptococcus pneumoniae (Sp are the lead causes of bacterial meningitis. Detection of these pathogens from clinical specimens using traditional real-time PCR (rt-PCR requires DNA extraction to remove the PCR inhibitors prior to testing, which is time consuming and labor intensive. In this study, five species-specific (Nm-sodC and -ctrA, Hi-hpd#1 and -hpd#3 and Sp-lytA and six serogroup-specific rt-PCR tests (A, B, C, W, X, Y targeting Nm capsular genes were evaluated in the two direct rt-PCR methods using PerfeCTa and 5x Omni that do not require DNA extraction. The sensitivity and specify of the two direct rt-PCR methods were compared to TaqMan traditional rt-PCR, the current standard rt-PCR method for the detection of meningitis pathogens. The LLD for all 11 rt-PCR tests ranged from 6,227 to 272,229 CFU/ml for TaqMan, 1,824-135,982 for 5x Omni, and 168-6,836 CFU/ml for PerfeCTa. The diagnostic sensitivity using TaqMan ranged from 89.2%-99.6%, except for NmB-csb, which was 69.7%. For 5x Omni, the sensitivity varied from 67.1% to 99.8%, with three tests below 90%. The sensitivity of these tests using PerfeCTa varied from 89.4% to 99.8%. The specificity ranges of the 11 tests were 98.0-99.9%, 97.5-99.9%, and 92.9-99.9% for TaqMan, 5x Omni, and PerfeCTa, respectively. PerfeCTa direct rt-PCR demonstrated similar or better sensitivity compared to 5x Omni direct rt-PCR or TaqMan traditional rt-PCR. Since the direct rt-PCR method does not require DNA extraction, it reduces the time and cost for processing CSF specimens, increases testing throughput, decreases the risk of cross-contamination, and conserves precious CSF. The direct rt-PCR method will be beneficial to laboratories with high testing volume.

  4. Development of Real-Time PCR Methods for the Detection of Bacterial Meningitis Pathogens without DNA Extraction

    Science.gov (United States)

    Vuong, Jeni; Collard, Jean-Marc; Whaley, Melissa J.; Bassira, Issaka; Seidou, Issaka; Diarra, Seydou; Ouédraogo, Rasmata T.; Kambiré, Dinanibè; Taylor, Thomas H.; Sacchi, Claudio; Mayer, Leonard W.; Wang, Xin

    2016-01-01

    Neisseria meningitidis (Nm), Haemophilus influenzae (Hi), and Streptococcus pneumoniae (Sp) are the lead causes of bacterial meningitis. Detection of these pathogens from clinical specimens using traditional real-time PCR (rt-PCR) requires DNA extraction to remove the PCR inhibitors prior to testing, which is time consuming and labor intensive. In this study, five species-specific (Nm-sodC and -ctrA, Hi-hpd#1 and -hpd#3 and Sp-lytA) and six serogroup-specific rt-PCR tests (A, B, C, W, X, Y) targeting Nm capsular genes were evaluated in the two direct rt-PCR methods using PerfeCTa and 5x Omni that do not require DNA extraction. The sensitivity and specify of the two direct rt-PCR methods were compared to TaqMan traditional rt-PCR, the current standard rt-PCR method for the detection of meningitis pathogens. The LLD for all 11 rt-PCR tests ranged from 6,227 to 272,229 CFU/ml for TaqMan, 1,824–135,982 for 5x Omni, and 168–6,836 CFU/ml for PerfeCTa. The diagnostic sensitivity using TaqMan ranged from 89.2%-99.6%, except for NmB-csb, which was 69.7%. For 5x Omni, the sensitivity varied from 67.1% to 99.8%, with three tests below 90%. The sensitivity of these tests using PerfeCTa varied from 89.4% to 99.8%. The specificity ranges of the 11 tests were 98.0–99.9%, 97.5–99.9%, and 92.9–99.9% for TaqMan, 5x Omni, and PerfeCTa, respectively. PerfeCTa direct rt-PCR demonstrated similar or better sensitivity compared to 5x Omni direct rt-PCR or TaqMan traditional rt-PCR. Since the direct rt-PCR method does not require DNA extraction, it reduces the time and cost for processing CSF specimens, increases testing throughput, decreases the risk of cross-contamination, and conserves precious CSF. The direct rt-PCR method will be beneficial to laboratories with high testing volume. PMID:26829233

  5. Rapid Detection of Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    David Perlin

    2005-08-14

    Pathogen identification is a crucial first defense against bioterrorism. A major emphasis of our national biodefense strategy is to establish fast, accurate and sensitive assays for diagnosis of infectious diseases agents. Such assays will ensure early and appropriate treatment of infected patients. Rapid diagnostics can also support infection control measures, which monitor and limit the spread of infectious diseases agents. Many select agents are highly transmissible in the early stages of disease, and it is critical to identify infected patients and limit the risk to the remainder of the population and to stem potential panic in the general population. Nucleic acid-based molecular approaches for identification overcome many of the deficiencies associated with conventional culture methods by exploiting both large- and small-scale genomic differences between organisms. PCR-based amplification of highly conserved ribosomal RNA (rRNA) genes, intergenic sequences, and specific toxin genes is currently the most reliable approach for bacterial, fungal and many viral pathogenic agents. When combined with fluorescence-based oligonucleotide detection systems, this approach provides real-time, quantitative, high fidelity analysis capable of single nucleotide allelic discrimination (4). These probe systems offer rapid turn around time (<2 h) and are suitable for high throughput, automated multiplex operations that are critical for clinical diagnostic laboratories. In this pilot program, we have used molecular beacon technology invented at the Public health Research Institute to develop a new generation of molecular probes to rapidly detect important agents of infectious diseases. We have also developed protocols to rapidly extract nucleic acids from a variety of clinical specimen including and blood and tissue to for detection in the molecular assays. This work represented a cooperative research development program between the Kramer-Tyagi/Perlin labs on probe development

  6. A Multiplex PCR/LDR Assay for Simultaneous Detection and Identification of the NIAID Category B Bacterial Food and Water-borne Pathogens

    Science.gov (United States)

    Rundell, Mark S.; Pingle, Maneesh; Das, Sanchita; Hussain, Aashiq; Ocheretina, Oksana; Charles, Macarthur; Larone, Davise H.; Spitzer, Eric D.; Golightly, Linnie; Barany, Francis

    2014-01-01

    Enteric pathogens that cause gastroenteritis remain a major global health concern. The goal of this study was to develop a multiplex PCR/LDR assay for the detection of all NIAID category B bacterial food and water-borne pathogens directly from stool specimens. To validate the PCR/LDR assay, clinical isolates of Campylobacter spp., Vibrio spp., Shigella spp., Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and diarrheagenic Escherichia coli were tested. The sensitivity and specificity of the assay was assessed using a large number of seeded culture-negative stool specimens and a smaller set of clinical specimens from Haiti. The overall sensitivity ranged from 91 to 100% (median 100%) depending on the species. For the majority of organisms the sensitivity was 100%. The overall specificity based on initial testing ranged from 98% to 100% depending on the species. After additional testing of discordant samples the lowest specificity was 99.4%. PCR/LDR detected additional category B agents (particularly diarrheagenic E. coli) in 11/40 specimens from Haiti that were culture-positive for V. cholerae and in approximately 1% of routine culture-negative stool specimens from a hospital in New York. This study demonstrated the ability of the PCR/LDR assay to detect a large comprehensive panel of category B enteric bacterial pathogens as well as mixed infections. This type of assay has the potential to provide earlier warnings of possible public health threats and more accurate surveillance of food and water-borne pathogens. PMID:24709368

  7. Multiplex detection and identification of bacterial pathogens causing potato blackleg and soft rot in Europe, using padlock probes

    NARCIS (Netherlands)

    Slawiak, M.; Doorn, van R.; Szemes, M.; Speksnijder, A.G.C.L.; Waleron, M.; Wolf, van der J.M.; Lojkowska, E.; Schoen, C.D.

    2013-01-01

    The objective of this study was to develop a multiplex detection and identification protocol for bacterial soft rot coliforms, namely Pectobacterium wasabiae (Pw), Pectobacterium atrosepticum (Pba) and Dickeya spp., responsible for potato blackleg and tuber soft rot. The procedures were derived from

  8. Rapid detection and identification of viral and bacterial fish pathogens using a DNA array‐based multiplex assay

    DEFF Research Database (Denmark)

    Lievens, B.; Frans, I.; Heusdens, C.

    2011-01-01

    for the simultaneous detection and identification of all cyprinid herpesviruses (CyHV‐1, CyHV‐2 and CyHV‐3) and some of the most important fish pathogenic Flavobacterium species, including F. branchiophilum, F. columnare and F. psychrophilum. For virus identification, the DNA polymerase and helicase genes were...

  9. Research Progress on Rapid Detection of Food-Borne Bacterial Pathogens%食源性致病菌快速检测技术研究进展

    Institute of Scientific and Technical Information of China (English)

    封莉; 黄继超; 刘欣; 黄明; 周光宏

    2012-01-01

    食源性致病菌是引发食源性疾病的主要因素,如何有效地检测出食源性致病菌的存在是食源性疾病预防与控制的关键环节。本文较为系统地介绍了利用免疫学、代谢学、分子生物学和生物传感器等技术手段快速检测食源性致病菌的方法,其中免疫学技术由于快速简便和低操作要求等特点便于目前的普及,而分子生物学方法则是致病菌检测的主要发展方向。%Food-borne diseases are mainly caused by bacterial pathogens present in foods.How to effectively detect food-borne bacterial pathogens is the key to prevent and control food-borne disease.This systematic review describes immunological,metabolomics,molecular biological and biosensor techniques for rapid detection of food-borne bacterial pathogens.Immunological techniques are currently very popular due to rapidity,simplicity and low operating requirements.But molecular biological techniques are the main development direction.

  10. Bacteriophage-Based Pathogen Detection

    Science.gov (United States)

    Ripp, Steven

    Considered the most abundant organism on Earth, at a population approaching 1031, bacteriophage, or phage for short, mediate interactions with myriad bacterial hosts that has for decades been exploited in phage typing schemes for signature identification of clinical, food-borne, and water-borne pathogens. With over 5,000 phage being morphologically characterized and grouped as to susceptible host, there exists an enormous cache of bacterial-specific sensors that has more recently been incorporated into novel bio-recognition assays with heightened sensitivity, specificity, and speed. These assays take many forms, ranging from straightforward visualization of labeled phage as they attach to their specific bacterial hosts to reporter phage that genetically deposit trackable signals within their bacterial hosts to the detection of progeny phage or other uniquely identifiable elements released from infected host cells. A comprehensive review of these and other phage-based detection assays, as directed towards the detection and monitoring of bacterial pathogens, will be provided in this chapter.

  11. Molecular analysis of bacterial communities and detection of potential pathogens in a recirculating aquaculture system for Scophthalmus maximus and Solea senegalensis.

    Directory of Open Access Journals (Sweden)

    Patrícia Martins

    Full Text Available The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS with a shallow raceway system (SRS for turbot (Scophthalmus maximus and sole (Solea senegalensis. Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup, fish production tanks (Pro, sedimentation filter (Sed, biofilter tank (Bio, and protein skimmer (Ozo; also used as an ozone reaction chamber of twin RAS operating in parallel (one for each fish species. Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments, Tenacibaculum discolor in turbot and sole (all compartments, Tenacibaculum soleae in turbot (all compartments and sole (Pro, Sed and Bio, and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo and sole (only Sed RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments.

  12. Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products

    Directory of Open Access Journals (Sweden)

    B. Stephen Inbaraj

    2016-01-01

    Full Text Available Food safety draws considerable attention in the modern pace of the world owing to rapid-changing food recipes and food habits. Foodborne illnesses associated with pathogens, toxins, and other contaminants pose serious threat to human health. Besides, a large amount of money is spent on both analyses and control measures, which causes significant loss to the food industry. Conventional detection methods for bacterial pathogens and toxins are time consuming and laborious, requiring certain sophisticated instruments and trained personnel. In recent years, nanotechnology has emerged as a promising field for solving food safety issues in terms of detecting contaminants, enabling controlled release of preservatives to extend the shelf life of foods, and improving food-packaging strategies. Nanomaterials including metal oxide and metal nanoparticles, carbon nanotubes, and quantum dots are gaining a prominent role in the design of sensors and biosensors for food analysis. In this review, various nanomaterial-based sensors reported in the literature for detection of several foodborne bacterial pathogens and toxins are summarized highlighting their principles, advantages, and limitations in terms of simplicity, sensitivity, and multiplexing capability. In addition, the application through a noncross-linking method without the need for any surface modification is also presented for detection of pork adulteration in meat products.

  13. Capsaicin-sensitive vagal afferent neurons contribute to the detection of pathogenic bacterial colonization in the gut.

    Science.gov (United States)

    Riley, T P; Neal-McKinney, J M; Buelow, D R; Konkel, M E; Simasko, S M

    2013-04-15

    Vagal activation can reduce inflammation and disease activity in various animal models of intestinal inflammation via the cholinergic anti-inflammatory pathway. In the current model of this pathway, activation of descending vagal efferents is dependent on a signal initiated by stimulation of vagal afferents. However, little is known about how vagal afferents are activated, especially in the context of subclinical or clinical pathogenic bacterial infection. To address this question, we first determined if selective lesions of capsaicin-sensitive vagal afferents altered c-Fos expression in the nucleus of the solitary tract (nTS) after mice were inoculated with either Campylobacter jejuni or Salmonella typhimurium. Our results demonstrate that the activation of nTS neurons by intraluminal pathogenic bacteria is dependent on intact, capsaicin sensitive vagal afferents. We next determined if inflammatory mediators could cause the observed increase in c-Fos expression in the nTS by a direct action on vagal afferents. This was tested by the use of single-cell calcium measurements in cultured vagal afferent neurons. We found that tumor necrosis factor alpha (TNFα) and lipopolysaccharide (LPS) directly activate cultured vagal afferent neurons and that almost all TNFα and LPS responsive neurons were sensitive to capsaicin. We conclude that activation of the afferent arm of the parasympathetic neuroimmune reflex by pathogenic bacteria in the gut is dependent on capsaicin sensitive vagal afferent neurons and that the release of inflammatory mediators into intestinal tissue can be directly sensed by these neurons.

  14. Pathogen detection using engineered bacteriophages.

    Science.gov (United States)

    Smartt, Abby E; Xu, Tingting; Jegier, Patricia; Carswell, Jessica J; Blount, Samuel A; Sayler, Gary S; Ripp, Steven

    2012-04-01

    Bacteriophages, or phages, are bacterial viruses that can infect a broad or narrow range of host organisms. Knowing the host range of a phage allows it to be exploited in targeting various pathogens. Applying phages for the identification of microorganisms related to food and waterborne pathogens and pathogens of clinical significance to humans and animals has a long history, and there has to some extent been a recent revival in these applications as phages have become more extensively integrated into novel detection, identification, and monitoring technologies. Biotechnological and genetic engineering strategies applied to phages are responsible for some of these new methods, but even natural unmodified phages are widely applicable when paired with appropriate innovative detector platforms. This review highlights the use of phages as pathogen detector interfaces to provide the reader with an up-to-date inventory of phage-based biodetection strategies.

  15. Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment.

    Science.gov (United States)

    Shannon, K E; Lee, D-Y; Trevors, J T; Beaudette, L A

    2007-08-15

    Bacteria were detected at five stages of municipal wastewater treatment using TaqMan(R) real-time quantitative PCR (qPCR). Thirteen probe and primer sets were tested for diverse pathogens that may be present in wastewater, including Aeromonas hydrophila, Bacillus cereus, Clostridium perfringens, Enterococcus faecalis, Escherichia coli, E. coli O157:H7, Helicobacter pylori, Klebsiella pneumoniae, Legionella pneumophila, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella sp., and Staphylococcus aureus. The sensitivity of the assay was 100 fg of genomic DNA (=22 gene copies), based on a standard curve generated using A. hydrophila purified DNA. Samples from five stages of wastewater treatment were collected, including raw wastewater, primary effluents, mixed liquor, waste activated sludge and final effluents. In duplicate samples, E. coli, K. pneumoniae, C. perfringens and E. faecalis were detected throughout the wastewater process, and their numbers decreased by 3.52-3.98, 4.23-4.33, 3.15-3.39, and 3.24 orders of magnitude respectively, between the raw wastewater and final effluent stage. This qPCR method was effective for the detection of pathogens in wastewater and confirmed that the risk of exposure to pathogens in the wastewater discharge was well within the Environment Canada guidelines.

  16. Development of a visual loop-mediated isothermal amplification method for rapid detection of the bacterial pathogen Pseudomonas putida of the large yellow croaker (Pseudosciaena crocea).

    Science.gov (United States)

    Mao, Zhijuan; Qiu, Yangyu; Zheng, Lei; Chen, Jigang; Yang, Jifang

    2012-06-01

    In recent years, the large yellow croaker (Pseudosciaena crocea), an important marine fish farmed in the coastal areas of Zhejiang province, east China, has become severely endangered as a result of the bacterial pathogen Pseudomonas putida. This paper reports the development of a visual loop-mediated isothermal amplification (LAMP) assay for rapid detection of the pathogen. Four primers, F3, B3, FIP and BIP, were designed on the basis of DNA sequence of the rpoN gene of P. putida. After optimization of the reaction conditions, the detection limit of LAMP assay was 4.8cfu per reaction, 10-fold higher than that of conventional PCR. The assay showed high specificity to discriminate all P. putida isolates from nine other Gram-negative bacteria. The assay also successfully detected the pathogen DNA in the tissues of infected fish. For visual LAMP without cross-contamination, SYBR Green I was embedded in a microcrystalline wax capsule and preset in the reaction tubes; after the reaction the wax was melted at 85°C to release the dye and allow intercalation with the amplicons. The simple, highly sensitive, highly specific and cost-effective characteristics of visual LAMP may encourage its application in the rapid diagnosis of this pathogen.

  17. Identifying Pathogenicity Islands in Bacterial Pathogenomics Using Computational Approaches

    Directory of Open Access Journals (Sweden)

    Dongsheng Che

    2014-01-01

    Full Text Available High-throughput sequencing technologies have made it possible to study bacteria through analyzing their genome sequences. For instance, comparative genome sequence analyses can reveal the phenomenon such as gene loss, gene gain, or gene exchange in a genome. By analyzing pathogenic bacterial genomes, we can discover that pathogenic genomic regions in many pathogenic bacteria are horizontally transferred from other bacteria, and these regions are also known as pathogenicity islands (PAIs. PAIs have some detectable properties, such as having different genomic signatures than the rest of the host genomes, and containing mobility genes so that they can be integrated into the host genome. In this review, we will discuss various pathogenicity island-associated features and current computational approaches for the identification of PAIs. Existing pathogenicity island databases and related computational resources will also be discussed, so that researchers may find it to be useful for the studies of bacterial evolution and pathogenicity mechanisms.

  18. Simultaneous detection of major blackleg and soft rot bacterial pathogens in potato by multiplex polymerase chain reaction.

    Science.gov (United States)

    Potrykus, M; Sledz, W; Golanowska, M; Slawiak, M; Binek, A; Motyka, A; Zoledowska, S; Czajkowski, R; Lojkowska, E

    2014-11-01

    A multiplex polymerase chain reaction (PCR) assay for simultaneous, fast and reliable detection of the main soft rot and blackleg potato pathogens in Europe has been developed. It utilises three pairs of primers and enables detection of three groups of pectinolytic bacteria frequently found in potato, namely: Pectobacterium atrosepticum, Pectobacterium carotovorum subsp. carotovorum together with Pectobacterium wasabiae and Dickeya spp. in a multiplex PCR assay. In studies with axenic cultures of bacteria, the multiplex assay was specific as it gave positive results only with strains of the target species and negative results with 18 non-target species of bacteria that can possibly coexist with pectinolytic bacteria in a potato ecosystem. The developed assay could detect as little as 0.01 ng µL(-1) of Dickeya sp. genomic DNA, and down to 0.1 ng µL(-1) of P. atrosepticum and P. carotovorum subsp. carotovorum genomic DNA in vitro. In the presence of competitor genomic DNA, isolated from Pseudomonas fluorescens cells, the sensitivity of the multiplex PCR decreased tenfold for P. atrosepticum and Dickeya sp., while no change was observed for P. carotovorum subsp. carotovorum and P. wasabiae. In spiked potato haulm and tuber samples, the threshold level for target bacteria was 10(1) cfu mL(-1) plant extract (10(2) cfu g(-1) plant tissue), 10(2) cfu mL(-1) plant extract (10(3) cfu g(-1) plant tissue), 10(3) cfu mL(-1) plant extract (10(4) cfu g(-1) plant tissue), for Dickeya spp., P. atrosepticum and P. carotovorum subsp. carotovorum/P. wasabiae, respectively. Most of all, this assay allowed reliable detection and identification of soft rot and blackleg pathogens in naturally infected symptomatic and asymptomatic potato stem and progeny tuber samples collected from potato fields all over Poland.

  19. Detection of ESKAPE Bacterial Pathogens at the Point of Care Using Isothermal DNA-Based Assays in a Portable Degas-Actuated Microfluidic Diagnostic Assay Platform.

    Science.gov (United States)

    Renner, Lars D; Zan, Jindong; Hu, Linda I; Martinez, Manuel; Resto, Pedro J; Siegel, Adam C; Torres, Clint; Hall, Sara B; Slezak, Tom R; Nguyen, Tuan H; Weibel, Douglas B

    2017-02-15

    An estimated 1.5 billion microbial infections occur globally each year and result in ∼4.6 million deaths. A technology gap associated with commercially available diagnostic tests in remote and underdeveloped regions prevents timely pathogen identification for effective antibiotic chemotherapies for infected patients. The result is a trial-and-error approach that is limited in effectiveness, increases risk for patients while contributing to antimicrobial drug resistance, and reduces the lifetime of antibiotics. This paper addresses this important diagnostic technology gap by describing a low-cost, portable, rapid, and easy-to-use microfluidic cartridge-based system for detecting the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) bacterial pathogens that are most commonly associated with antibiotic resistance. The point-of-care molecular diagnostic system consists of a vacuum-degassed microfluidic cartridge preloaded with lyophilized recombinase polymerase amplification (RPA) assays and a small portable battery-powered electronic incubator/reader. The isothermal RPA assays detect the targeted ESKAPE pathogens with high sensitivity (e.g., a limit of detection of ∼10 nucleic acid molecules) that is comparable to that of current PCR-based assays, and they offer advantages in power consumption, engineering, and robustness, which are three critical elements required for the point-of-care setting.

  20. Use of Bacteriophages to control bacterial pathogens

    Science.gov (United States)

    Lytic bacteriophages can provide a natural method and an effective alternative to antibiotics to reduce bacterial pathogens in animals, foods, and other environments. Bacteriophages (phages) are viruses which infect bacterial cells and eventually kill them through lysis, and represent the most abun...

  1. Proteomics of Foodborne Bacterial Pathogens

    Science.gov (United States)

    Fagerquist, Clifton K.

    This chapter is intended to be a relatively brief overview of proteomic techniques currently in use for the identification and analysis of microorganisms with a special emphasis on foodborne pathogens. The chapter is organized as follows. First, proteomic techniques are introduced and discussed. Second, proteomic applications are presented specifically as they relate to the identification and qualitative/quantitative analysis of foodborne pathogens.

  2. 3D-printed microfluidic magnetic preconcentrator for the detection of bacterial pathogen using an ATP luminometer and antibody-conjugated magnetic nanoparticles.

    Science.gov (United States)

    Park, Chanyong; Lee, Jinyeop; Kim, Yonghee; Kim, Jaewon; Lee, Jinkee; Park, Sungsu

    2017-01-01

    Various types of microfluidic systems have been developed to detect bacterial pathogens. However, most of these require enrichment steps that take at least several hours when detecting bacteria that are present with a low number of cells and, in addition, fabrication requires complicated assembly steps. In this study, we report the development of 3D microfluidic magnetic preconcentrator (3DμFMP) made of plastic via 3D printing without the need for any assembly. 3DμFMP could selectively preconcentrate enterohemorrhagic Escherichia coli O157:H7 in 100mL by a factor of 700 within 1h using antibody-conjugated magnetic nanoparticles (Ab-MNPs). With the combined use of an ATP luminometer, as low as 10 E. coli O157:H7 CFU (colony forming unit)/mL could be detected in blood. These results demonstrate the feasibility of 3DμFMP as a preconcentrator to improve the detection limit of existing bacterial detection systems.

  3. Comparison of the EntericBio multiplex PCR system with routine culture for detection of bacterial enteric pathogens.

    LENUS (Irish Health Repository)

    O'Leary, James

    2009-11-01

    The EntericBio system uses a multiplex PCR assay for the simultaneous detection of Campylobacter spp., Salmonella enterica, Shigella spp., and Escherichia coli O157 from feces. It combines overnight broth enrichment with PCR amplification and detection by hybridization. An evaluation of this system was conducted by comparing the results obtained with the system with those obtained by routine culture, supplemented with alternative PCR detection methods. In a study of 773 samples, routine culture and the EntericBio system yielded 94.6 and 92.4% negative results, respectively. Forty-two samples had positive results by culture, and all of these were positive with the EntericBio system. This system detected an additional 17 positive samples (Campylobacter spp., n = 12; Shigella spp., n = 1; E. coli O157, n = 4), but the results for 5 samples (Campylobacter spp., n = 2; Shigella spp., n = 1; E. coli O157, n = 2) could not be confirmed. The target for Shigella spp. detected by the EntericBio system is the ipaH gene, and the molecular indication of the presence of Shigella spp. was investigated by sequence analysis, which confirmed that the ipaH gene was present in a Klebsiella pneumoniae isolate from the patient. The sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 99.3%, 91.5%, and 100%, respectively. Turnaround times were significantly reduced with the EntericBio system, and a result was available between 24 and 32 h after receipt of the sample in the laboratory. In addition, the amount of laboratory waste was significantly reduced by use of this system. In summary, the EntericBio system proved convenient to use, more sensitive than the conventional culture used in this study, and highly specific; and it generated results significantly faster than routine culture for the pathogens tested.

  4. Bats as reservoir hosts of human bacterial pathogen, Bartonella mayotimonensis.

    Science.gov (United States)

    Veikkolainen, Ville; Vesterinen, Eero J; Lilley, Thomas M; Pulliainen, Arto T

    2014-06-01

    A plethora of pathogenic viruses colonize bats. However, bat bacterial flora and its zoonotic threat remain ill defined. In a study initially conducted as a quantitative metagenomic analysis of the fecal bacterial flora of the Daubenton's bat in Finland, we unexpectedly detected DNA of several hemotrophic and ectoparasite-transmitted bacterial genera, including Bartonella. Bartonella spp. also were either detected or isolated from the peripheral blood of Daubenton's, northern, and whiskered bats and were detected in the ectoparasites of Daubenton's, northern, and Brandt's bats. The blood isolates belong to the Candidatus-status species B. mayotimonensis, a recently identified etiologic agent of endocarditis in humans, and a new Bartonella species (B. naantaliensis sp. nov.). Phylogenetic analysis of bat-colonizing Bartonella spp. throughout the world demonstrates a distinct B. mayotimonensis cluster in the Northern Hemisphere. The findings of this field study highlight bats as potent reservoirs of human bacterial pathogens.

  5. Photoinactivation of major bacterial pathogens in aquaculture

    Directory of Open Access Journals (Sweden)

    Heyong Jin Roh

    2016-08-01

    Full Text Available Abstract Background Significant increases in the bacterial resistance to various antibiotics have been found in fish farms. Non-antibiotic therapies for infectious diseases in aquaculture are needed. In recent years, light-emitting diode technology has been applied to the inactivation of pathogens, especially those affecting humans. The purpose of this study was to assess the effect of blue light (wavelengths 405 and 465 nm on seven major bacterial pathogens that affect fish and shellfish important in aquaculture. Results We successfully demonstrate inactivation activity of a 405/465-nm LED on selected bacterial pathogens. Although some bacteria were not fully inactivated by the 465-nm light, the 405-nm light had a bactericidal effect against all seven pathogens, indicating that blue light can be effective without the addition of a photosensitizer. Photobacterium damselae, Vibrio anguillarum, and Edwardsiella tarda were the most susceptible to the 405-nm light (36.1, 41.2, and 68.4 J cm−2, respectively, produced one log reduction in the bacterial populations, whereas Streptococcus parauberis was the least susceptible (153.8 J cm−2 per one log reduction. In general, optical density (OD values indicated that higher bacterial densities were associated with lower inactivating efficacy, with the exception of P. damselae and Vibrio harveyi. In conclusion, growth of the bacterial fish and shellfish pathogens evaluated in this study was inactivated by exposure to either the 405- or 465-nm light. In addition, inactivation was dependent on exposure time. Conclusions This study presents that blue LED has potentially alternative therapy for treating fish and shellfish bacterial pathogens. It has great advantages in aspect of eco-friendly treating methods differed from antimicrobial methods.

  6. Detection of protozoan and bacterial pathogens of public health importance in faeces of Corvus spp. (large-billed crow).

    Science.gov (United States)

    Lee, H Y; Stephen, A; Sushela, D; Mala, M

    2008-08-01

    Parasites and bacteria are reported in the faeces of birds in the current study. Fresh faecal samples of the large-billed crow (Corvus spp.) were collected from the study site at Bangsar, an urban setting in Kuala Lumpur, Malaysia. These samples were transported to laboratory and analysed for parasites and bacteria. Pre-prepared XLD agar plates were used for culturing the bacteria in the laboratory. Using the API 20ETM Test Strips, 9 different species of bacteria were identified belonging to the family Enterobacteriacea. They were Citrobacter freundii, Enterobacter cloacae, Proteus mirabilis, Klebsiella pneumoniae, Kluyvera ascorbata, Salmonella arizonae, Salmonella typhi, Shigella flexneri and Shigella sonnei. The protozoan parasites detected include Cryptosporidium spp., Cyclospora spp., Blastocystis spp., and Capillaria hepatica and Ascaris lumbricoidus ova. Environmental air samples collected on agar plates using an air sampler in the area only produced fungal colonies. Some of these pathogens found in the crows are of zoonotic importance, especially Cryptosporidium, Blastocystis, Cyclopsora, Salmonella, Shigella and Kluyvera. The finding of Kluyvera spp. in crows in our current study highlights its zoonotic potential in an urban setting.

  7. Molecular Mechanisms of Bacterial Pathogenicity

    Science.gov (United States)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  8. Detection of blaSHV, blaTEM and blaCTX-M antibiotic resistance genes in randomly selected bacterial pathogens from the Steve Biko Academic Hospital.

    Science.gov (United States)

    Ehlers, Marthie M; Veldsman, Chrisna; Makgotlho, Eddy P; Dove, Michael G; Hoosen, Anwar A; Kock, Marleen M

    2009-08-01

    Extended-spectrum beta-lactamases (ESBLs) are considered to be one of the most important antibiotic resistance mechanisms. This study reported the ESBL-producing genes in 53 randomly selected clinical bacterial isolates from the Steve Biko Academic Hospital. The presence of the bla(SHV), bla(TEM) and bla(CTX-M) genes was determined, and the overall prevalence of these genes detected in this study was 87% (46/53) in comparison with the literature; these results were higher when compared with 33% for Escherichia coli in Europe and 0.8% in Denmark for similar pathogens. These research findings indicated that it is crucial to routinely monitor the prevalence of these resistance genes.

  9. Insights from genomics into bacterial pathogen populations.

    Directory of Open Access Journals (Sweden)

    Daniel J Wilson

    2012-09-01

    Full Text Available Bacterial pathogens impose a heavy burden of disease on human populations worldwide. The gravest threats are posed by highly virulent respiratory pathogens, enteric pathogens, and HIV-associated infections. Tuberculosis alone is responsible for the deaths of 1.5 million people annually. Treatment options for bacterial pathogens are being steadily eroded by the evolution and spread of drug resistance. However, population-level whole genome sequencing offers new hope in the fight against pathogenic bacteria. By providing insights into bacterial evolution and disease etiology, these approaches pave the way for novel interventions and therapeutic targets. Sequencing populations of bacteria across the whole genome provides unprecedented resolution to investigate (i within-host evolution, (ii transmission history, and (iii population structure. Moreover, advances in rapid benchtop sequencing herald a new era of real-time genomics in which sequencing and analysis can be deployed within hours in response to rapidly changing public health emergencies. The purpose of this review is to highlight the transformative effect of population genomics on bacteriology, and to consider the prospects for answering abiding questions such as why bacteria cause disease.

  10. Kynetic resazurin assay (KRA) for bacterial quantification of foodborne pathogens

    Science.gov (United States)

    Arenas, Yaxal; Mandel, Arkady; Lilge, Lothar

    2012-03-01

    Fast detection of bacterial concentrations is important for the food industry and for healthcare. Early detection of infections and appropriate treatment is essential since, the delay of treatments for bacterial infections tends to be associated with higher mortality rates. In the food industry and in healthcare, standard procedures require the count of colony-forming units in order to quantify bacterial concentrations, however, this method is time consuming and reports require three days to be completed. An alternative is metabolic-colorimetric assays which provide time efficient in vitro bacterial concentrations. A colorimetric assay based on Resazurin was developed as a time kinetic assay (KRA) suitable for bacterial concentration measurements. An optimization was performed by finding excitation and emission wavelengths for fluorescent acquisition. A comparison of two non-related bacteria, foodborne pathogens Escherichia coli and Listeria monocytogenes, was performed in 96 well plates. A metabolic and clonogenic dependence was established for fluorescent kinetic signals.

  11. Methods to classify bacterial pathogens in cystic fibrosis

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Nielsen, Xiaohui Chen; Johansen, Ulla;

    2011-01-01

    Many bacteria can be detected in CF sputum, pathogenic and commensal. Modified Koch's criteria for identification of established and emerging CF pathogens are therefore described. Methods are described to isolate bacteria and to detect bacterial biofilms in sputum or lung tissue from CF patients...... by means of conventional culturing and staining techniques and by the PNA FISH technique. Additionally, the confocal scanning laser microscopy technique is described for studying biofilms in vitro in a flow cell system. The recA-gene PCR and the RFLP-based identification methods are described...... for identification of isolates from the Burkholderia complex to the species level. DNA typing by PFGE, which can be used for any bacterial pathogen, is described as it is employed for Pseudomonas aeruginosa. A commercially available ELISA method is described for measuring IgG antibodies against P. aeruginosa in CF...

  12. Detection and investigation of foodborne bacterial pathogens in Ningbo%宁波地区食品中致病菌污染物检测与调查

    Institute of Scientific and Technical Information of China (English)

    盛冬萍; 谢益君; 陈米娜; 徐景野

    2013-01-01

    Objective objective To understand the presence,contamination and cross contamination of foodborne bacterial pathogens in Ningbo city,provide basis for foodborne disease control,and trace the source of foodborne disease.Methods Strains were detected directly or after enrichment with biochemistry and API method,and subtyped with serum agglutination method.Antibiotic resistance and relative genes were detected with K-B method and PCR method respectively.Results 2 331 (7 species and 12 types) strains were detected from 6 812 food samples and the detection rate is 34.22% (2 331/6 812).The prevalent pathogens were Vibrio parahaemolyticus,and the detection rate was significantly different from the other types (P < 0.005).Vibrio parahaemolyticus could be classified into 10 sero-groups,and O6 and O5 were proved as the prevalent sero-groups.Most of the pathogens were sensitive to antibiotics.Three strains of Aeromonas were found multi-resistant with aacc resistance gene.Conclusion Various distribution was proved in foodborne bacteria in Ningbo.Contamination of foodborne pathogens was a major factor of foodborne diseases.Vibrio parahaemolyticus was the prevalent pathogenic bacteria.Most of the pathogens were sensitive to antibiotics.Bacteria with aacc resistance gene were found,which should raise concerns to control the spread of the resistant strains through rational administration of antibiotics and resistance surveillance.%目的 了解宁波地区食品中携带或污染的致病菌,为控制食源性疾病提供依据.方法 致病菌检测采用直接分离与增菌分离相结合的方法;细菌鉴定采用生化筛检和API等方法;血清分型采用诊断血清凝集法;药敏试验采用K-B法;采用PCR检测耐药基因.结果 从6 812份食品标本中检出致病菌7类12种,共2 331株,检出率为34.22%,以副溶血性弧菌检出率最高,与其他病原菌检出率比较差异有统计学意义(P<0.005).主要流行株

  13. Emerging bacterial pathogens: the past and beyond.

    Science.gov (United States)

    Vouga, M; Greub, G

    2016-01-01

    Since the 1950s, medical communities have been facing with emerging and reemerging infectious diseases, and emerging pathogens are now considered to be a major microbiologic public health threat. In this review, we focus on bacterial emerging diseases and explore factors involved in their emergence as well as future challenges. We identified 26 major emerging and reemerging infectious diseases of bacterial origin; most of them originated either from an animal and are considered to be zoonoses or from water sources. Major contributing factors in the emergence of these bacterial infections are: (1) development of new diagnostic tools, such as improvements in culture methods, development of molecular techniques and implementation of mass spectrometry in microbiology; (2) increase in human exposure to bacterial pathogens as a result of sociodemographic and environmental changes; and (3) emergence of more virulent bacterial strains and opportunistic infections, especially affecting immunocompromised populations. A precise definition of their implications in human disease is challenging and requires the comprehensive integration of microbiological, clinical and epidemiologic aspects as well as the use of experimental models. It is now urgent to allocate financial resources to gather international data to provide a better understanding of the clinical relevance of these waterborne and zoonotic emerging diseases.

  14. Formaldehyde stress responses in bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Nathan Houqian Chen

    2016-03-01

    Full Text Available Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed.

  15. Clostridium difficile is an autotrophic bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Michael Köpke

    Full Text Available During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile.

  16. Bacterial Toxins as Pathogen Weapons Against Phagocytes.

    Science.gov (United States)

    do Vale, Ana; Cabanes, Didier; Sousa, Sandra

    2016-01-01

    Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favor microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signaling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.

  17. Bacterial toxins as pathogen weapons against phagocytes

    Directory of Open Access Journals (Sweden)

    Ana edo Vale

    2016-02-01

    Full Text Available Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favour microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signalling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.

  18. Russian vaccines against especially dangerous bacterial pathogens

    Science.gov (United States)

    Feodorova, Valentina A; Sayapina, Lidiya V; Corbel, Michael J; Motin, Vladimir L

    2014-01-01

    In response to the epidemiological situation, live attenuated or killed vaccines against anthrax, brucellosis, cholera, glanders, plague and tularemia were developed and used for immunization of at-risk populations in the Former Soviet Union. Certain of these vaccines have been updated and currently they are used on a selective basis, mainly for high risk occupations, in the Russian Federation. Except for anthrax and cholera these vaccines currently are the only licensed products available for protection against the most dangerous bacterial pathogens. Development of improved formulations and new products is ongoing. PMID:26038506

  19. Water Microbiology. Bacterial Pathogens and Water

    Directory of Open Access Journals (Sweden)

    João P. S. Cabral

    2010-10-01

    Full Text Available Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers. Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  20. Water microbiology. Bacterial pathogens and water.

    Science.gov (United States)

    Cabral, João P S

    2010-10-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water-cholera, typhoid fever and bacillary dysentery-is presented, focusing on the biology and ecology of the causal agents and on the diseases' characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  1. Bacterial pathogen phytosensing in transgenic tobacco and Arabidopsis plants.

    Science.gov (United States)

    Liu, Wusheng; Mazarei, Mitra; Rudis, Mary R; Fethe, Michael H; Peng, Yanhui; Millwood, Reginald J; Schoene, Gisele; Burris, Jason N; Stewart, C Neal

    2013-01-01

    Plants are subject to attack by a wide range of phytopathogens. Current pathogen detection methods and technologies are largely constrained to those occurring post-symptomatically. Recent efforts were made to generate plant sentinels (phytosensors) that can be used for sensing and reporting pathogen contamination in crops. Engineered phytosensors indicating the presence of plant pathogens as early-warning sentinels potentially have tremendous utility as wide-area detectors. We previously showed that synthetic promoters containing pathogen and/or defence signalling inducible cis-acting regulatory elements (RE) fused to a fluorescent protein (FP) reporter could detect phytopathogenic bacteria in a transient phytosensing system. Here, we further advanced this phytosensing system by developing stable transgenic tobacco and Arabidopsis plants containing candidate constructs. The inducibility of each synthetic promoter was examined in response to biotic (bacterial pathogens) or chemical (plant signal molecules salicylic acid, ethylene and methyl jasmonate) treatments using stably transgenic plants. The treated plants were visualized using epifluorescence microscopy and quantified using spectrofluorometry for FP synthesis upon induction. Time-course analyses of FP synthesis showed that both transgenic tobacco and Arabidopsis plants were capable to respond in predictable ways to pathogen and chemical treatments. These results provide insights into the potential applications of transgenic plants as phytosensors and the implementation of emerging technologies for monitoring plant disease outbreaks in agricultural fields.

  2. 应用荧光定量PCR检测细菌性脑膜炎病原体DNA的研究%Studies using fluorescence quantitative PCR to detect DNA of pathogens responsible for bacterial meningitis pathogen

    Institute of Scientific and Technical Information of China (English)

    杨红梅; 吕静; 邹文菁; 徐军强; 占建波; 江永忠; 朱兵清

    2012-01-01

    目的 应用荧光定量PCR检测细菌性脑膜炎病原体DNA,并对脑膜炎奈瑟菌进行基因分群. 方法 提取脑膜炎患者脑脊液和血标本中待检菌DNA,采用荧光定量PCR扩增ctrA、bexA、lytA基因,对ctrA扩增阳性标本及部分流脑菌株进行基因分群. 结果 685份脑脊液标本中19份检出脑膜炎奈瑟菌、8份检出肺炎链球菌、2份检出b型流感嗜血杆菌DNA基因片段;2份血清标本脑膜炎奈瑟菌DNA基因检测均为阳性.对ctrA基因扩增阳性标本进行A、B、C、W135、X及Y分群,有18份为C群,3份为B群;部分健康人群携带的流脑菌株有14份为B群,2份为C群,1份为X群. 结论 荧光定量PCR灵敏性高,检测快速,可用于细菌性脑膜炎病原体的检测、鉴别及对脑膜炎奈瑟菌的分群.%Objectives To use real-time fluorescence quantitative PCR to detect the pathogens responsible for bacterial meningitis and to identify the serogroups of Neisseria rneningitidis. Methods Bacterial DNA was extracted from 685 samples of cerebral spinal fluid (CSF) and 2 blood samples. Species-specific genes {ctrA for N. meningitidis, bex A for Haemophilus influenzae , and lytA for Streptococcus pneumoniae} were detected from the extracted DNA with real-time PCR, and ctrA-positive specimens were serogrouped. Results Of the 685 CSF samples, 19 were positive for ctrA,, 8 were positive for lytA, and 2 were positive for hex A. Both of the two blood samples were positive for ctrA. Of the 21 samples positive for ctrA,18 were serogroup C and 3 were serogroup B. Of the 17 N. rneningitidis strains isolated from healthy carriers, 14 were serogroup B, 2 were serogroup C, and lwas serogroup X. Conclusion Real-time PCR was sensitive and rapid. This method can be used to detect pathogens in clinical specimens of bacterial meningitis and identify the serogroup of N. meningitides.

  3. Comparison of PCR,DIA and Pathogenicity Assay for Detection of Xanthomonas axonopodis pv.citri,the Causal Agent of Citrus Bacterial Canker Disease

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-kang; SUN Xian-yun; YIN You-ping; ZHOU Chang-yong; XIA Yu-xian

    2004-01-01

    Polymerase chain reaction (PCR) approach based on newly designed primers, JYF5/JYR5, was applied for specific detection of Xanthomonas axonopodis pv.citri(Xac). The efficiency and reliability of PCR method were compared with dot immunobinding assay (DIA) and classical pathogenicity test techniques for detecting suspensions of pure cells of Xac and soaking sap of citrus tissues. Detection sensitivity of PCR was about 4.5 cells or 1.56 pg target DNA per reaction which was higher than that of DIA (ca. 450 cells per dot).These three techniques (PCR assay, DIA and Pathogenecity test) could always detect Xac from symptomatic citrus samples. Different performances were obtained from citrus materials without symptoms, and the positive detection frequency was PCR, DIA and pathogenicity test.

  4. Bacteriophage based probes for pathogen detection.

    Science.gov (United States)

    Singh, Amit; Arutyunov, Denis; Szymanski, Christine M; Evoy, Stephane

    2012-08-01

    Rapid and specific detection of pathogenic bacteria is important for the proper treatment, containment and prevention of human, animal and plant diseases. Identifying unique biological probes to achieve a high degree of specificity and minimize false positives has therefore garnered much interest in recent years. Bacteriophages are obligate intracellular parasites that subvert bacterial cell resources for their own multiplication and production of disseminative new virions, which repeat the cycle by binding specifically to the host surface receptors and injecting genetic material into the bacterial cells. The precision of host recognition in phages is imparted by the receptor binding proteins (RBPs) that are often located in the tail-spike or tail fiber protein assemblies of the virions. Phage host recognition specificity has been traditionally exploited for bacterial typing using laborious and time consuming bacterial growth assays. At the same time this feature makes phage virions or RBPs an excellent choice for the development of probes capable of selectively capturing bacteria on solid surfaces with subsequent quick and automatic detection of the binding event. This review focuses on the description of pathogen detection approaches based on immobilized phage virions as well as pure recombinant RBPs. Specific advantages of RBP-based molecular probes are also discussed.

  5. Shellfish as reservoirs of bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Harry Hariharan

    2016-04-01

    Full Text Available The objective of this article is to present an overview on bacterial pathogens associated with shellfish in Grenada and other countries including the authors’ experience. Although there have been considerable published work on vibrios, there is a lack of information on Salmonella serovars associated with various shellfish. In Grenada, for instance the blue land crabs collected from their habitats were found to harbor several Salmonella serovars. Also, it is notable that only minimal research has been done on shellfish such as conchs and whelks, which are common in the Caribbean and West Indies. Information on anaerobic bacteria, particularly, non-spore forming bacteria associated with shellfish, in general, is also scanty. This review re-examines this globally important topic based on the recent findings as well as past observations. Strategies for reduction of bacteria in oysters are briefly mentioned because of the fact that oysters are consumed commonly without complete cooking.

  6. Shellifsh as reservoirs of bacterial pathogens

    Institute of Scientific and Technical Information of China (English)

    Harry Hariharan; Victor Amadi

    2016-01-01

    The objective of this article is to present an overview on bacterial pathogens associated with shellfish in Grenada and other countries including the authors’ experience. Although there have been considerable published work on vibrios, there is a lack of information on Salmonellaserovars associated with various shellfish. In Grenada, for instance the blue land crabs collected from their habitats were found to harbor severalSalmonellaserovars. Also, it is notable that only minimal research has been done on shellfish such as conchs and whelks, which are common in the Caribbean and West Indies. Information on anaerobic bacteria, particularly, non-spore forming bacteria associated with shellfish, in general, is also scanty. This review re-examines this globally important topic based on the recent findings as well as past observations. Strategies for reduction of bacteria in oysters are briefly mentioned because of the fact that oysters are consumed commonly without complete cooking.

  7. Evaluation of a loop-mediated isothermal amplification method for rapid detection of channel catfish Ictalurus punctatus important bacterial pathogen Edwardsiella ictaluri.

    Science.gov (United States)

    Channel catfish Ictalurus punctatus infected with Edwardsiella ictaluri results in $40 - 50 million annual losses in profits to catfish producers. Early detection of this pathogen is necessary for disease control and reduction of economic loss. In this communication, the loop-mediated isothermal a...

  8. Genome Assembly and Computational Analysis Pipelines for Bacterial Pathogens

    KAUST Repository

    Rangkuti, Farania Gama Ardhina

    2011-06-01

    Pathogens lie behind the deadliest pandemics in history. To date, AIDS pandemic has resulted in more than 25 million fatal cases, while tuberculosis and malaria annually claim more than 2 million lives. Comparative genomic analyses are needed to gain insights into the molecular mechanisms of pathogens, but the abundance of biological data dictates that such studies cannot be performed without the assistance of computational approaches. This explains the significant need for computational pipelines for genome assembly and analyses. The aim of this research is to develop such pipelines. This work utilizes various bioinformatics approaches to analyze the high-­throughput genomic sequence data that has been obtained from several strains of bacterial pathogens. A pipeline has been compiled for quality control for sequencing and assembly, and several protocols have been developed to detect contaminations. Visualization has been generated of genomic data in various formats, in addition to alignment, homology detection and sequence variant detection. We have also implemented a metaheuristic algorithm that significantly improves bacterial genome assemblies compared to other known methods. Experiments on Mycobacterium tuberculosis H37Rv data showed that our method resulted in improvement of N50 value of up to 9697% while consistently maintaining high accuracy, covering around 98% of the published reference genome. Other improvement efforts were also implemented, consisting of iterative local assemblies and iterative correction of contiguated bases. Our result expedites the genomic analysis of virulent genes up to single base pair resolution. It is also applicable to virtually every pathogenic microorganism, propelling further research in the control of and protection from pathogen-­associated diseases.

  9. The neglected intrinsic resistome of bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Alicia Fajardo

    Full Text Available Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature.

  10. The Neglected Intrinsic Resistome of Bacterial Pathogens

    Science.gov (United States)

    Fajardo, Alicia; Martínez-Martín, Nadia; Mercadillo, María; Galán, Juan C.; Ghysels, Bart; Matthijs, Sandra; Cornelis, Pierre; Wiehlmann, Lutz; Tümmler, Burkhard; Baquero, Fernando; Martínez, José L.

    2008-01-01

    Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature. PMID:18286176

  11. Production of transgenic medaka with increased resistance to bacterial pathogens.

    Science.gov (United States)

    Sarmasik, Aliye; Warr, Gregory; Chen, Thomas T

    2002-06-01

    Cecropins, first identified in silk moth (Hyalophora cecropia), are a group of antimicrobial peptides with bactericidal activity against a broad spectrum of bacteria. In this study we investigated whether (1) this group of antimicrobial peptides could exhibit bactericidal activity toward known fish bacterial pathogens and (2) expression of cecropin transgenes in transgenic medaka (Oryzias latipas) could result in increasing resistance of the transgenic fish to infection by fish bacterial pathogens. Cecropin gene construct containing silk moth preprocecropin B, procecropin B and cecropin B, and porcine cecropin P1 driven by a cytomegalovirus (CMV) promoter were transfected into chinook salmon embryonic cells (CHSE-214) by lipofection, and the resulting permanent transformants were collected. In an "inhibition zone" assay medium isolated from each transformant exhibited strong bactericidal activity toward known fish bacterial pathogens such as Pseudomonas fluorescens, Aeromonas hydrophila, and Vibrio anguillarum. The same cecropin transgene constructs were introduced into newly fertilized medaka eggs by electroporation to produce transgenic fish. About 40% to 60% of the embryos survived from electroporation, and about 5% to 11% of the surviving fish were shown to contain cecropin transgenes by polymerase chain reaction analysis of genomic DNA samples isolated from presumptive transgenic fish. These P1 transgenic fish were used as founder stocks, and following generations of successive breeding, a total of 20 F2 families of transgenic fish were established. Expression of cecropin transgenes was detected in the F2 transgenics by reverse transcriptase polymerase chain reaction analysis. Southern blot analysis of genomic DNA isolated from different F2 fish showed that cecropin transgenes were integrated into the genomes of F2 transgenic fish. To determine whether transgenic fish carrying cecropin transgenes could exhibit resistance to infection by known fish bacterial

  12. Evolution of Bacterial Pathogens within the Human Host

    OpenAIRE

    Bliven, Kimberly A.; Maurelli, Anthony T.

    2016-01-01

    Selective pressures within the human host, including interactions with innate and adaptive immune responses, exposure to medical interventions such as antibiotics, and competition with commensal microbiota all facilitate the evolution of bacterial pathogens. In this chapter, we present examples of pathogen strategies which emerged as a result of selective pressures within the human host niche, and discuss the resulting co-evolutionary ‘arms race’ between these organisms. In bacterial pathogen...

  13. [3] Diseases Caused By Bacterial Pathogens In Inland Water

    OpenAIRE

    若林, 久嗣; 吉田, 照豊; 野村, 哲一; 中井, 敏博; 高野, 倫一

    2016-01-01

    Bacterial diseases cause huge damages in fish farms worldwide, and numerous bacterial pathogens from inland and saline waters have been identified and studied for their characterization, diagnosis, prevention and control. In this chapter, eight important fish diseases viz. 1) streptococcosis (inland water), 2) furunculosis, 3) bacterial gill disease, 4) columnaris disease, 5) bacterial cold-water disease, 6) red spot disease, 7) edwardsiellosis (Edwardsiella ictaluri), and 8) motile aeromonad...

  14. APDS: Autonomous Pathogen Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, R G; Brown, S; Burris, L; Colston, B; Jones, L; Makarewicz, T; Mariella, R; Masquelier, D; McBride, M; Milanovich, F; Masarabadi, S; Venkateswaran, K; Marshall, G; Olson, D; Wolcott, D

    2002-02-14

    An early warning system to counter bioterrorism, the Autonomous Pathogen Detection System (APDS) continuously monitors the environment for the presence of biological pathogens (e.g., anthrax) and once detected, it sounds an alarm much like a smoke detector warns of a fire. Long before September 11, 2001, this system was being developed to protect domestic venues and events including performing arts centers, mass transit systems, major sporting and entertainment events, and other high profile situations in which the public is at risk of becoming a target of bioterrorist attacks. Customizing off-the-shelf components and developing new components, a multidisciplinary team developed APDS, a stand-alone system for rapid, continuous monitoring of multiple airborne biological threat agents in the environment. The completely automated APDS samples the air, prepares fluid samples in-line, and performs two orthogonal tests: immunoassay and nucleic acid detection. When compared to competing technologies, APDS is unprecedented in terms of flexibility and system performance.

  15. Antibiotic Susceptibility and Immunomodulatory Potential of Chosen Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    M. Sujatha

    2010-01-01

    Full Text Available Problem statement: Antibiotic susceptibility is still the best way for bacterial pathogen escape mechanism against immunity. Approach: In the present investigation, bacterial pathogens like Staphylococcus aureus, Escherichia coli, Aeromonas hydrophila, Klebsiella and Pseudomonas aeruginosa were used to screen antibiotic susceptibility and immunomodulatory potential. Results: All the test pathogens were sensitive to all the test antibiotics 11±2 mm except penicillin. The conditions for the preparation of antigens of intact natural composition and conformation from pathogens (whole cell and heat killed, were determined using Swiss albino mice (Balb/C as experimental species. Immunomodulatory potential of test pathogens were screened using animal model. Test pathogen decreases the body weight comparing that of normal mice, some notable changes were also noted in activity, growth, water consumption, feed consumption. Antibody titre level in animal serum decreased upto 50% in whole cell pathogen and heat killed pathogen treated animals. Conclusion: The five pathogens administered animals, decrement in B-lymphocyte was much pronounced in Pseudomonas aeruginosa followed by Escherichia coli, Staphylococcus aureus, Klebsiella sp., Aeromonas hydrophila in the 5 week. Pathogen treated mice showed an IgG suppressive effect. It is found to be suppressive to T cell production, so induction in cell mediated immunity has confirmed pathogenic potential of test pathogens. All these test pathogenic strains were remarkably suppressing immune system of pathogen exposed animals.

  16. Evolution of Bacterial Pathogens Within the Human Host.

    Science.gov (United States)

    Bliven, Kimberly A; Maurelli, Anthony T

    2016-02-01

    Selective pressures within the human host, including interactions with innate and adaptive immune responses, exposure to medical interventions such as antibiotics, and competition with commensal microbiota all facilitate the evolution of bacterial pathogens. In this chapter, we present examples of pathogen strategies that emerged as a result of selective pressures within the human host niche and discuss the resulting coevolutionary "arms race" between these organisms. In bacterial pathogens, many of the genes responsible for these strategies are encoded on mobile pathogenicity islands or plasmids, underscoring the importance of horizontal gene transfer in the emergence of virulent microbial species.

  17. Investigation of septins using infection by bacterial pathogens.

    Science.gov (United States)

    Krokowski, S; Mostowy, S

    2016-01-01

    Investigation of the host cytoskeleton during infection by bacterial pathogens has significantly contributed to our understanding of cell biology and host defense. Work has shown that septins are recruited to the phagocytic cup as collarlike structures and enable bacterial entry into host cells. In the cytosol, septins can entrap actin-polymerizing bacteria in cage-like structures for targeting to autophagy, a highly conserved intracellular degradation process. In this chapter, we describe methods to investigate septin assembly and function during infection by bacterial pathogens. Use of these methods can lead to in-depth understanding of septin biology and suggest therapeutic approaches to combat infectious disease.

  18. Evaluation of the NanoCHIP® Gastrointestinal Panel (GIP) Test for Simultaneous Detection of Parasitic and Bacterial Enteric Pathogens in Fecal Specimens

    Science.gov (United States)

    Ken Dror, Shifra; Pavlotzky, Elsa; Barak, Mira

    2016-01-01

    Infectious gastroenteritis is a global health problem associated with high morbidity and mortality rates. Rapid and accurate diagnosis is crucial to allow appropriate and timely treatment. Current laboratory stool testing has a long turnaround time (TAT) and demands highly qualified personnel and multiple techniques. The need for high throughput and the number of possible enteric pathogens compels the implementation of a molecular approach which uses multiplex technology, without compromising performance requirements. In this work we evaluated the feasibility of the NanoCHIP® Gastrointestinal Panel (GIP) (Savyon Diagnostics, Ashdod, IL), a molecular microarray-based screening test, to be used in the routine workflow of our laboratory, a big outpatient microbiology laboratory. The NanoCHIP® GIP test provides simultaneous detection of nine major enteric bacteria and parasites: Campylobacter spp., Salmonella spp., Shigella spp., Giardia sp., Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Dientamoeba fragilis, and Blastocystis spp. The required high-throughput was obtained by the NanoCHIP® detection system together with the MagNA Pure 96 DNA purification system (Roche Diagnostics Ltd., Switzerland). This combined system has demonstrated a higher sensitivity and detection yield compared to the conventional methods in both, retrospective and prospective samples. The identification of multiple parasites and bacteria in a single test also enabled increased efficiency of detecting mixed infections, as well as reduced hands-on time and work load. In conclusion, the combination of these two automated systems is a proper response to the laboratory needs in terms of improving laboratory workflow, turn-around-time, minimizing human errors and can be efficiently integrated in the routine work of the laboratory. PMID:27447173

  19. The Autonomous Pathogen Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Dzenitis, J M; Makarewicz, A J

    2009-01-13

    We developed, tested, and now operate a civilian biological defense capability that continuously monitors the air for biological threat agents. The Autonomous Pathogen Detection System (APDS) collects, prepares, reads, analyzes, and reports results of multiplexed immunoassays and multiplexed PCR assays using Luminex{copyright} xMAP technology and flow cytometer. The mission we conduct is particularly demanding: continuous monitoring, multiple threat agents, high sensitivity, challenging environments, and ultimately extremely low false positive rates. Here, we introduce the mission requirements and metrics, show the system engineering and analysis framework, and describe the progress to date including early development and current status.

  20. Genomic and Transcriptomic Analyses of Foodborne Bacterial Pathogens

    Science.gov (United States)

    Zhang, Wei; Dudley, Edward G.; Wade, Joseph T.

    DNA microarrays (often interchangeably called DNA chips or DNA arrays) are among the most popular analytical tools for high-throughput comparative genomic and transcriptomic analyses of foodborne bacterial pathogens. A typical DNA microarray contains hundreds to millions of small DNA probes that are chemically attached (or "printed") onto the surface of a microscopic glass slide. Depending on the specific "printing" and probe synthesis technologies for different microarray platforms, such DNA probes can be PCR amplicons or in situ synthesized short oligonucleotides. DNA microarray technologies have revolutionized the way that we investigate the biology of foodborne bacterial pathogens. The major advantage of these technologies is that DNA microarrays allow comparison of subtle genomic or transcriptomic variations between two bacterial samples, such as genomic variations between two different bacterial strains or transcriptomic alterations of same bacterial strain under two different treatments. Some applications of comparative genomic hybridization microarrays and global gene expression microarrays have been covered in previous chapters of this book.

  1. Looking in ticks for human bacterial pathogens.

    Science.gov (United States)

    Mediannikov, O; Fenollar, F

    2014-12-01

    Ticks are considered to be second worldwide to mosquitoes as vectors of human diseases and the most important vectors of disease-causing pathogens in domestic and wild animals. A number of emerging tick-borne pathogens are already discovered; however, the proportion of undiagnosed infectious diseases, especially in tropical regions, may suggest that there are still more pathogens associated with ticks. Moreover, the identification of bacteria associated with ticks may provide new tool for the control of ticks and tick-borne diseases. Described here molecular methods of screening of ticks, extensive use of modern culturomics approach, newly developed artificial media and different cell line cultures may significantly improve our knowledge about the ticks as the agents of human and animal pathology.

  2. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens.

    Science.gov (United States)

    Kersting, Sebastian; Rausch, Valentina; Bier, Frank F; von Nickisch-Rosenegk, Markus

    2014-01-01

    We report on the development of an on-chip RPA (recombinase polymerase amplification) with simultaneous multiplex isothermal amplification and detection on a solid surface. The isothermal RPA was applied to amplify specific target sequences from the pathogens Neisseria gonorrhoeae, Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) using genomic DNA. Additionally, a positive plasmid control was established as an internal control. The four targets were amplified simultaneously in a quadruplex reaction. The amplicon is labeled during on-chip RPA by reverse oligonucleotide primers coupled to a fluorophore. Both amplification and spatially resolved signal generation take place on immobilized forward primers bount to expoxy-silanized glass surfaces in a pump-driven hybridization chamber. The combination of microarray technology and sensitive isothermal nucleic acid amplification at 38 °C allows for a multiparameter analysis on a rather small area. The on-chip RPA was characterized in terms of reaction time, sensitivity and inhibitory conditions. A successful enzymatic reaction is completed in isothermal nucleic acid amplification with RPA and spatially-resolved signal generation on specific immobilized oligonucleotides.

  3. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm.

    Science.gov (United States)

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  4. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.

    Science.gov (United States)

    Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta

    2013-09-01

    Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance.

  5. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.

    Science.gov (United States)

    Pareja, Maria Eugenia Mansilla; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.

  6. Bacterial biofilm formation, pathogenicity, diagnostics and control: An overview

    Directory of Open Access Journals (Sweden)

    Sawhney Rajesh

    2009-07-01

    Full Text Available Bacterial biofilms are complex, mono- or poly-microbialn communities adhering to biotic or abiotic surfaces. This adaptation has been implicated as a survival strategy. The formation of biofilms is mediated by mechanical, biochemical and genetical factors. The biofilms enhance the virulence of the pathogen and have their potential role in various infections, such as dental caries, cystic fibrosis, osteonecrosis, urinary tract infection and eye infections. A number of diagnostic techniques, viz., bright-field microscopy, epifluorescence microscopy, scanning electron microscopy, confocal laser scanning microscopy and amplicon length heterogeneity polymerase chain reaction, have been employed for detection of these communities. Researchers have worked on applications of catheter lock solutions, a fish protein coating, acid shock treatment, susceptibility to bacteriophages, etc., for biofilm control. However, we need to rearrange our strategies to have thorough insight and concentrate on priority basis to develop new accurate, precise and rapid diagnostic protocols for detection and evaluation of biofilm. Above all, the strict compliance to these techniques is required for accurate diagnosis and control.

  7. Bithionol blocks pathogenicity of bacterial toxins, ricin, and Zika virus

    Science.gov (United States)

    Disease pathways form overlapping networks, and hub proteins represent attractive targets for broad-spectrum drugs. Using bacterial toxins as a proof of concept, we describe a new approach of discovering broad-spectrum therapies capable of inhibiting host proteins that mediate multiple pathogenic pa...

  8. Unraveling Plant Responses to Bacterial Pathogens through Proteomics

    Directory of Open Access Journals (Sweden)

    Tamara Zimaro

    2011-01-01

    Full Text Available Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens.

  9. Unraveling plant responses to bacterial pathogens through proteomics

    KAUST Repository

    Zimaro, Tamara

    2011-11-03

    Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens. Copyright 2011 Tamara Zimaro et al.

  10. Comparison of subgingival bacterial sampling with oral lavage for detection and quantification of periodontal pathogens by real-time polymerase chain reaction

    NARCIS (Netherlands)

    Boutaga, Khalil; Savelkoul, Paul H. M.; Winkel, Edwin G.; van Winkelhoff, Arie J.

    2007-01-01

    Background: Saliva has been studied for the presence of subgingival pathogens in periodontitis patients. With the anaerobic culture technique, the discrepancy between salivary recovery and subgingival presence has been significant, which makes this approach not suitable for practical use in the micr

  11. Application of bacteriophages for detection of foodborne pathogens.

    Science.gov (United States)

    Schmelcher, Mathias; Loessner, Martin J

    2014-01-01

    Bacterial contamination of food products presents a challenge for the food industry and poses a high risk for the consumer. Despite increasing awareness and improved hygiene measures, foodborne pathogens remain a threat for public health, and novel methods for detection of these organisms are needed. Bacteriophages represent ideal tools for diagnostic assays because of their high target cell specificity, inherent signal-amplifying properties, easy and inexpensive production, and robustness. Every stage of the phage lytic multiplication cycle, from the initial recognition of the host cell to the final lysis event, may be harnessed in several ways for the purpose of bacterial detection. Besides intact phage particles, phage-derived affinity molecules such as cell wall binding domains and receptor binding proteins can serve for this purpose. This review provides an overview of existing phage-based technologies for detection of foodborne pathogens, and highlights the most recent developments in this field, with particular emphasis on phage-based biosensors.

  12. Erythrophore cell response to food-associated pathogenic bacteria: implications for detection.

    Science.gov (United States)

    Hutchison, Janine R; Dukovcic, Stephanie R; Dierksen, Karen P; Carlyle, Calvin A; Caldwell, Bruce A; Trempy, Janine E

    2008-09-01

    Cell-based biosensors have been proposed for use as function-based detectors of toxic agents. We report the use of Betta splendens chromatophore cells, specifically erythrophore cells, for detection of food-associated pathogenic bacteria. Evaluation of erythrophore cell response, using Bacillus spp., has revealed that this response can distinguish pathogenic Bacillus cereus from a non-pathogenic B. cereus ΔplcR deletion mutant and a non-pathogenic Bacillus subtilis. Erythrophore cells were exposed to Salmonella enteritidis, Clostridium perfringens and Clostridium botulinum. Each bacterial pathogen elicited a response from erythrophore cells that was distinguished from the corresponding bacterial growth medium, and this observed response was unique for each bacterial pathogen. These findings suggest that erythrophore cell response has potential for use as a biosensor in the detection and toxicity assessment for food-associated pathogenic bacteria.

  13. Erythrophore cell response to food‐associated pathogenic bacteria: implications for detection

    Science.gov (United States)

    Hutchison, Janine R.; Dukovcic, Stephanie R.; Dierksen, Karen P.; Carlyle, Calvin A.; Caldwell, Bruce A.; Trempy, Janine E.

    2008-01-01

    Summary Cell‐based biosensors have been proposed for use as function‐based detectors of toxic agents. We report the use of Betta splendens chromatophore cells, specifically erythrophore cells, for detection of food‐associated pathogenic bacteria. Evaluation of erythrophore cell response, using Bacillus spp., has revealed that this response can distinguish pathogenic Bacillus cereus from a non‐pathogenic B. cereus ΔplcR deletion mutant and a non‐pathogenic Bacillus subtilis. Erythrophore cells were exposed to Salmonella enteritidis, Clostridium perfringens and Clostridium botulinum. Each bacterial pathogen elicited a response from erythrophore cells that was distinguished from the corresponding bacterial growth medium, and this observed response was unique for each bacterial pathogen. These findings suggest that erythrophore cell response has potential for use as a biosensor in the detection and toxicity assessment for food‐associated pathogenic bacteria. PMID:21261862

  14. Antibacterial potential of Thevetia peruviana leaf extracts against food associated bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Zebenay Gezahegn

    2015-02-01

    Full Text Available Objective: To isolate and characterize the food associated bacterial strains, and to evaluate the antibacterial activity and minimum inhibitory concentration of various solvents (acetone, chloroform, methanol and petroleum ether leaf extracts of Thevetia peruviana (T. peruviana against their respective isolated and standard bacterial strains and also to investigate the presence of various phytochemical constituents in the leaf extracts of test plant. Methods: The food associated bacterial strains were isolated from students' lunch boxes in Tesfa Tewahido Primary School. The antimicrobial activity and minimum inhibitory concentrations were determined by the disc diffusion and serial dilution methods, respectively and phytochemical constituents were also detected in various solvent leaf extracts of T. peruviana. Results: The result showed that all the tested solvent leaf extracts of T. peruviana exhibited antibacterial activity against the tested standard and isolated bacterial strains with zones of inhibition ranged from 10.0 to 17.0 mm. Amongst the tested food borne bacterial pathogens, Salmonella typhimurium was most sensitive towards petroleum ether leaf extracts of T. peruviana while, methanol leaf extracts was relatively least effective against all the tested standard and isolated bacterial strains. Minimum inhibitory concentration of various solvent leaf extracts of T. peruviana ranged from 16.67 to 50.00 mg/mL for all the tested standard and isolated bacterial strains. The phytochemical constituents screening on the leaf extracts of T. peruviana showed the presence of alkaloids, cardiac glycosides, flavonoids, polyphenols, saponins and tannins. Conclusions: The present study suggests that T. peruviana could be used as prospective aspirants against the common food borne bacterial pathogens and also provide a wide array in the development of drugs against common food borne bacterial pathogens.

  15. Antibacterial potential of Thevetia peruviana leaf extracts against food associated bacterial pathogens

    Institute of Scientific and Technical Information of China (English)

    Zebenay Gezahegn; Mohd Sayeed Akhtar; Delelegn Woyessa; Yinebeb Tariku

    2015-01-01

    Objective:To isolate and characterize the food associated bacterial strains, and to evaluate the antibacterial activity and minimum inhibitory concentration of various solvents (acetone, chloroform, methanol and petroleum ether) leaf extracts of Thevetia peruviana (T. peruviana) against their respective isolated and standard bacterial strains and also to investigate the presence of various phytochemical constituents in the leaf extracts of test plant. Methods:The food associated bacterial strains were isolated from students' lunch boxes in Tesfa Tewahido Primary School. The antimicrobial activity and minimum inhibitory concentrations were determined by the disc diffusion and serial dilution methods, respectively and phytochemical constituents were also detected in various solvent leaf extracts of T. peruviana. Results:The result showed that all the tested solvent leaf extracts of T. peruviana exhibited antibacterial activity against the tested standard and isolated bacterial strains with zones of inhibition ranged from 10.0 to 17.0 mm. Amongst the tested food borne bacterial pathogens, Salmonella typhimurium was most sensitive towards petroleum ether leaf extracts of T. peruviana while, methanol leaf extracts was relatively least effective against all the tested standard and isolated bacterial strains. Minimum inhibitory concentration of various solvent leaf extracts of T. peruviana ranged from 16.67 to 50.00 mg/mL for all the tested standard and isolated bacterial strains. The phytochemical constituents screening on the leaf extracts of T. peruviana showed the presence of alkaloids, cardiac glycosides, flavonoids, polyphenols, saponins and tannins. Conclusions:The present study suggests that T. peruviana could be used as prospective aspirants against the common food borne bacterial pathogens and also provide a wide array in the development of drugs against common food borne bacterial pathogens.

  16. Real Time Detection of Foodborne Pathogens

    Science.gov (United States)

    Velusamy, V.; Arshak, K.; Korostynka, O.; Vaseashta, Ashok; Adley, C.

    Contamination of foods by harmful bacteria by natural events or malicious intent poses a serious threat to public health and safety. This review introduces current technologies in detecting pathogens in food and foodborne illnesses. Causes of foodborne diseases and trends impacting foodborne diseases such as globalization and changes in micro-organisms, human populations, lifestyles, and climates are addressed. In addition, a review of the limitations in detecting pathogens with conventional technologies is presented. Finally, a review of nanostructured and nanomaterials based sensing technologies by pathogen, detection limits, and advantages is described.

  17. Detection of pathogenic gram negative bacteria using infrared thermography

    Science.gov (United States)

    Lahiri, B. B.; Divya, M. P.; Bagavathiappan, S.; Thomas, Sabu; Philip, John

    2012-11-01

    Detection of viable bacteria is of prime importance in all fields of microbiology and biotechnology. Conventional methods of enumerating bacteria are often time consuming and labor-intensive. All living organisms generate heat due to metabolic activities and hence, measurement of heat energy is a viable tool for detection and quantification of bacteria. In this article, we employ a non-contact and real time method - infrared thermography (IRT) for measurement of temperature variations in four clinically significant gram negative pathogenic bacteria, viz. Vibrio cholerae, Vibrio mimicus, Proteus mirabilis and Pseudomonas aeruginosa. We observe that, the energy content, defined as the ratio of heat generated by bacterial metabolic activities to the heat lost from the liquid medium to the surrounding, vary linearly with the bacterial concentration in all the four pathogenic bacteria. The amount of energy content observed in different species is attributed to their metabolisms and morphologies that affect the convection velocity and hence heat transport in the medium.

  18. Temperature dependent bacteriophages of a tropical bacterial pathogen

    Directory of Open Access Journals (Sweden)

    Martha Rebecca Jane Clokie

    2014-11-01

    Full Text Available There is an increasing awareness of the multiple ways that bacteriophages (phages influence bacterial evolution, population dynamics, physiology and pathogenicity. By studying a novel group of phages infecting a soil borne pathogen, we revealed a paradigm shifting observation that the phages switch their lifestyle according to temperature. We sampled soil from an endemic area of the serious tropical pathogen Burkholderia pseudomallei, and established that podoviruses infecting the pathogen are frequently present in soil, and many of them are naturally occurring variants of a common virus type. Experiments on one phage in the related model Burkholderia thailandensis demonstrated that temperature defines the outcome of phage-bacteria interactions. At higher temperatures (37°C, the phage predominantly goes through a lytic cycle, but at lower temperatures (25°C, the phage remains temperate. This is the first report of a naturally occurring phage that follows a lytic or temperate lifestyle according to temperature. These observations fundamentally alter the accepted views on the abundance, population biology and virulence of B. pseudomallei. Furthermore, when taken together with previous studies, our findings suggest that the phenomenon of temperature dependency in phages is widespread. Such phages are likely to have a profound effect on bacterial life, and on our ability to culture and correctly enumerate viable bacteria.

  19. Temperature dependent bacteriophages of a tropical bacterial pathogen

    Science.gov (United States)

    Shan, Jinyu; Korbsrisate, Sunee; Withatanung, Patoo; Adler, Natalie Lazar; Clokie, Martha R. J.; Galyov, Edouard E.

    2014-01-01

    There is an increasing awareness of the multiple ways that bacteriophages (phages) influence bacterial evolution, population dynamics, physiology, and pathogenicity. By studying a novel group of phages infecting a soil borne pathogen, we revealed a paradigm shifting observation that the phages switch their lifestyle according to temperature. We sampled soil from an endemic area of the serious tropical pathogen Burkholderia pseudomallei, and established that podoviruses infecting the pathogen are frequently present in soil, and many of them are naturally occurring variants of a common virus type. Experiments on one phage in the related model B. thailandensis demonstrated that temperature defines the outcome of phage-bacteria interactions. At higher temperatures (37°C), the phage predominantly goes through a lytic cycle, but at lower temperatures (25°C), the phage remains temperate. This is the first report of a naturally occurring phage that follows a lytic or temperate lifestyle according to temperature. These observations fundamentally alter the accepted views on the abundance, population biology and virulence of B. pseudomallei. Furthermore, when taken together with previous studies, our findings suggest that the phenomenon of temperature dependency in phages is widespread. Such phages are likely to have a profound effect on bacterial biology, and on our ability to culture and correctly enumerate viable bacteria. PMID:25452746

  20. Protease-dependent mechanisms of complement evasion by bacterial pathogens.

    Science.gov (United States)

    Potempa, Michal; Potempa, Jan

    2012-09-01

    The human immune system has evolved a variety of mechanisms for the primary task of neutralizing and eliminating microbial intruders. As the first line of defense, the complement system is responsible for rapid recognition and opsonization of bacteria, presentation to phagocytes and bacterial cell killing by direct lysis. All successful human pathogens have mechanisms of circumventing the antibacterial activity of the complement system and escaping this stage of the immune response. One of the ways in which pathogens achieve this is the deployment of proteases. Based on the increasing number of recent publications in this area, it appears that proteolytic inactivation of the antibacterial activities of the complement system is a common strategy of avoiding targeting by this arm of host innate immune defense. In this review, we focus on those bacteria that deploy proteases capable of degrading complement system components into non-functional fragments, thus impairing complement-dependent antibacterial activity and facilitating pathogen survival inside the host.

  1. Digital PCR for detection of citrus pathogens

    Science.gov (United States)

    Citrus trees are often infected with multiple pathogens of economic importance, especially those with insect or mite vectors. Real-time/quantitative PCR (qPCR) has been used for high-throughput detection and relative quantification of pathogens; however, target reference or standards are required. I...

  2. Waterborne Pathogens: Detection Methods and Challenges

    Directory of Open Access Journals (Sweden)

    Flor Yazmín Ramírez-Castillo

    2015-05-01

    Full Text Available Waterborne pathogens and related diseases are a major public health concern worldwide, not only by the morbidity and mortality that they cause, but by the high cost that represents their prevention and treatment. These diseases are directly related to environmental deterioration and pollution. Despite the continued efforts to maintain water safety, waterborne outbreaks are still reported globally. Proper assessment of pathogens on water and water quality monitoring are key factors for decision-making regarding water distribution systems’ infrastructure, the choice of best water treatment and prevention waterborne outbreaks. Powerful, sensitive and reproducible diagnostic tools are developed to monitor pathogen contamination in water and be able to detect not only cultivable pathogens but also to detect the occurrence of viable but non-culturable microorganisms as well as the presence of pathogens on biofilms. Quantitative microbial risk assessment (QMRA is a helpful tool to evaluate the scenarios for pathogen contamination that involve surveillance, detection methods, analysis and decision-making. This review aims to present a research outlook on waterborne outbreaks that have occurred in recent years. This review also focuses in the main molecular techniques for detection of waterborne pathogens and the use of QMRA approach to protect public health.

  3. Molecular detection of foodborne pathogens

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann

    Microbiological Methods (NordVal) in comparative and collaborative trials, and was approved for detection of Campylobacter in chicken neck skin, cloacal swab and boot swab samples. A comparison study on probe chemistries for real-time PCR was performed on locked nucleic acid (LNA), minor groove binder (MGB......Val in comparative and collaborative trials and was approved as an alternative method for detection of Salmonella in chicken neck skin, minced meat and pig carcass swabs. In conclusion, this thesis presents the development and validation of real-time PCR methods for detection of Salmonella and Campylobacter...... for detection and enumeration of Salmonella and Campylobacter are time-consuming and laborious. They lack specificity and do not enable detection of viable but non-culturable (VBNC) bacteria. The focus of the present thesis has been development and validation of PCR-based detection methods for Salmonella...

  4. Bacterial iron-sulfur cluster sensors in mammalian pathogens

    Science.gov (United States)

    Miller, Halie K.; Auerbuch, Victoria

    2015-01-01

    Iron-sulfur clusters act as important cofactors for a number of transcriptional regulators in bacteria, including many mammalian pathogens. The sensitivity of iron-sulfur clusters to iron availability, oxygen tension, and reactive oxygen and nitrogen species enables bacteria to use such regulators to adapt their gene expression profiles rapidly in response to changing environmental conditions. In this review, we discuss how the [4Fe-4S] or [2Fe-2S] cluster-containing regulators FNR, Wbl, aconitase, IscR, NsrR, SoxR, and AirSR contribute to bacterial pathogenesis through control of both metabolism and classical virulence factors. In addition, we briefly review mammalian iron homeostasis as well as oxidative/nitrosative stress to provide context for understanding the function of bacterial iron-sulfur cluster sensors in different niches within the host. PMID:25738802

  5. Perspective: Adhesion Mediated Signal Transduction in Bacterial Pathogens

    Science.gov (United States)

    Moorthy, Sudha; Keklak, Julia; Klein, Eric A.

    2016-01-01

    During the infection process, pathogenic bacteria undergo large-scale transcriptional changes to promote virulence and increase intrahost survival. While much of this reprogramming occurs in response to changes in chemical environment, such as nutrient availability and pH, there is increasing evidence that adhesion to host-tissue can also trigger signal transduction pathways resulting in differential gene expression. Determining the molecular mechanisms of adhesion-mediated signaling requires disentangling the contributions of chemical and mechanical stimuli. Here we highlight recent work demonstrating that surface attachment drives a transcriptional response in bacterial pathogens, including uropathogenic Escherichia coli (E. coli), and discuss the complexity of experimental design when dissecting the specific role of adhesion-mediated signaling during infection. PMID:26901228

  6. Ceftaroline activity tested against contemporary Latin American bacterial pathogens (2011

    Directory of Open Access Journals (Sweden)

    Robert K. Flamm

    2014-04-01

    Full Text Available A total of 2484 target bacterial pathogens were collected (one per patient episode from patients in 16 Latin American medical centers located in seven nations during 2011. Isolate identity was confirmed at a coordinating laboratory and susceptibility testing was performed for ceftaroline and comparator agents according to reference broth microdilution methods. A total of 30.0% of isolates were from respiratory tract, 29.4% from skin and skin structure, 21.4% from blood stream, 7.9% from urinary tract and 11.3% from other sites. Ceftaroline was active againstStaphylococcus aureus (42.8% MRSA with 83.6% of the isolates at 90.0% of the non-ESBL-phenotype. The spectrum of activity of ceftaroline against pathogens from Latin America indicates that it merits further study for its potential use in the Latin American region.

  7. Innovative tools for detection of plant pathogenic viruses and bacteria.

    Science.gov (United States)

    López, María M; Bertolini, Edson; Olmos, Antonio; Caruso, Paola; Gorris, María Teresa; Llop, Pablo; Penyalver, Ramón; Cambra, Mariano

    2003-12-01

    Detection of harmful viruses and bacteria in plant material, vectors or natural reservoirs is essential to ensure safe and sustainable agriculture. The techniques available have evolved significantly in the last few years to achieve rapid and reliable detection of pathogens, extraction of the target from the sample being important for optimising detection. For viruses, sample preparation has been simplified by imprinting or squashing plant material or insect vectors onto membranes. To improve the sensitivity of techniques for bacterial detection, a prior enrichment step in liquid or solid medium is advised. Serological and molecular techniques are currently the most appropriate when high numbers of samples need to be analysed. Specific monoclonal and/or recombinant antibodies are available for many plant pathogens and have contributed to the specificity of serological detection. Molecular detection can be optimised through the automatic purification of nucleic acids from pathogens by columns or robotics. New variants of PCR, such as simple or multiplex nested PCR in a single closed tube, co-operative-PCR and real-time monitoring of amplicons or quantitative PCR, allow high sensitivity in the detection of one or several pathogens in a single assay. The latest development in the analysis of nucleic acids is micro-array technology, but it requires generic DNA/RNA extraction and pre-amplification methods to increase detection sensitivity. The advances in research that will result from the sequencing of many plant pathogen genomes, especially now in the era of proteomics, represent a new source of information for the future development of sensitive and specific detection techniques for these microorganisms.

  8. Molecular detection of foodborne pathogens

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann

    ), Scorpion and TaqMan probes. The LNA probe was shown to be the most sensitive probe chemistry in the real-time PCR assay for detection of Campylobacter, producing the highest amplification efficiency. Choice of probe chemistry was found to impact the sensitivity of PCR assays, and should be considered...

  9. Coexistence of emerging bacterial pathogens in Ixodes ricinus ticks in Serbia*

    Directory of Open Access Journals (Sweden)

    Tomanović S.

    2010-09-01

    Full Text Available The list of tick-borne pathogens is long, varied and includes viruses, bacteria, protozoa and nematodes. As all of these agents can exist in ticks, their co-infections have been previously reported. We studied co-infections of emerging bacterial pathogens (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Francisella tularensis in Ixodes ricinus ticks in Serbia. Using PCR technique, we detected species-specific sequences, rrf-rrl rDNA intergenic spacer for B. burgdorferi s.l., p44/msp2 paralogs for A. phagocytophilum, and the 17 kDa lipoprotein gene, TUL4, for F. tularensis, respectively, in total DNA extracted from the ticks. Common infections with more than one pathogen were detected in 42 (28.8 % of 146 infected I. ricinus ticks. Co-infections with two pathogens were present in 39 (26.7 % of infected ticks. Simultaneous presence of A. phagocytophilum and different genospecies of B. burgdorferi s.l. complex was recorded in 16 ticks, co-infection with different B. burgdorferi s. l. genospecies was found in 15 ticks and eight ticks harbored mixed infections with F. tularensis and B. burgdorferi s.l. genospecies. Less common were triple pathogen species infections, detected in three ticks, one infected with A. phagocytophilum / B. burgdorferi s.s. / B. lusitaniae and two infected with F. tularensis / B. burgdorferi s.s. / B. lusitaniae. No mixed infections of A. phagocytophilum and F. tularensis were detected.

  10. Characterization of bacterial pathogens in rural and urban irrigation water.

    Science.gov (United States)

    Aijuka, Matthew; Charimba, George; Hugo, Celia J; Buys, Elna M

    2015-03-01

    The study aimed to compare the bacteriological quality of an urban and rural irrigation water source. Bacterial counts, characterization, identification and diversity of aerobic bacteria were determined. Escherichia coli isolated from both sites was subjected to antibiotic susceptibility testing, virulence gene (Stx1/Stx2 and eae) determination and (GTG)5 Rep-PCR fingerprinting. Low mean monthly counts for aerobic spore formers, anaerobic spore formers and Staphylococcus aureus were noted although occasional spikes were observed. The most prevalent bacterial species at both sites were Bacillus spp., E. coli and Enterobacter spp. In addition, E. coli and Bacillus spp. were most prevalent in winter and summer respectively. Resistance to at least one antibiotic was 84% (rural) and 83% (urban). Highest resistance at both sites was to cephalothin and ampicillin. Prevalence of E. coli possessing at least one virulence gene (Stx1/Stx2 and eae) was 15% (rural) and 42% (urban). All (rural) and 80% (urban) of E. coli possessing virulence genes showed antibiotic resistance. Complete genetic relatedness (100%) was shown by 47% of rural and 67% of urban E. coli isolates. Results from this study show that surface irrigation water sources regardless of geographical location and surrounding land-use practices can be reservoirs of similar bacterial pathogens.

  11. Fluorescence techniques to detect and to assess viability of plant pathogenic bacteria

    NARCIS (Netherlands)

    Chitarra, L.G.

    2001-01-01

    Plant pathogenic bacteria cause major economic losses in commercial crop production worldwide every year. The current methods used to detect and to assess the viability of bacterial pathogens and to test seed lots or plants for contamination are usually based on plate assays or on serological techni

  12. Hyperspectral imaging using a color camera and its application for pathogen detection

    Science.gov (United States)

    This paper reports the results of a feasibility study for the development of a hyperspectral image recovery (reconstruction) technique using a RGB color camera and regression analysis in order to detect and classify colonies of foodborne pathogens. The target bacterial pathogens were the six represe...

  13. Quorum sensing and bacterial pathogenicity: From molecules to disease

    Directory of Open Access Journals (Sweden)

    Antariksh Deep

    2011-01-01

    Full Text Available Quorum sensing in prokaryotic biology refers to the ability of a bacterium to sense information from other cells in the population when they reach a critical concentration (i.e. a Quorum and communicate with them. The "language" used for this intercellular communication is based on small, self-generated signal molecules called as autoinducers. Quorum sensing is thought to afford pathogenic bacteria a mechanism to minimize host immune responses by delaying the production of tissue-damaging virulence factors until sufficient bacteria have amassed and are prepared to overwhelm host defense mechanisms and establish infection. Quorum sensing systems are studied in a large number of gram-negative bacterial species belonging to α, β, and γ subclasses of proteobacteria. Among the pathogenic bacteria, Pseudomonas aeruginosa is perhaps the best understood in terms of the virulence factors regulated and the role the Quorum sensing plays in pathogenicity. Presently, Quorum sensing is considered as a potential novel target for antimicrobial therapy to control multi/all drug-resistant infections. This paper reviews Quorum sensing in gram positive and gram negative bacteria and its role in biofilm formation.

  14. Bithionol blocks pathogenicity of bacterial toxins, ricin, and Zika virus

    Science.gov (United States)

    Leonardi, William; Zilbermintz, Leeor; Cheng, Luisa W.; Zozaya, Josue; Tran, Sharon H.; Elliott, Jeffrey H.; Polukhina, Kseniya; Manasherob, Robert; Li, Amy; Chi, Xiaoli; Gharaibeh, Dima; Kenny, Tara; Zamani, Rouzbeh; Soloveva, Veronica; Haddow, Andrew D.; Nasar, Farooq; Bavari, Sina; Bassik, Michael C.; Cohen, Stanley N.; Levitin, Anastasia; Martchenko, Mikhail

    2016-01-01

    Diverse pathogenic agents often utilize overlapping host networks, and hub proteins within these networks represent attractive targets for broad-spectrum drugs. Using bacterial toxins, we describe a new approach for discovering broad-spectrum therapies capable of inhibiting host proteins that mediate multiple pathogenic pathways. This approach can be widely used, as it combines genetic-based target identification with cell survival-based and protein function-based multiplex drug screens, and concurrently discovers therapeutic compounds and their protein targets. Using B-lymphoblastoid cells derived from the HapMap Project cohort of persons of African, European, and Asian ancestry we identified host caspases as hub proteins that mediate the lethality of multiple pathogenic agents. We discovered that an approved drug, Bithionol, inhibits host caspases and also reduces the detrimental effects of anthrax lethal toxin, diphtheria toxin, cholera toxin, Pseudomonas aeruginosa exotoxin A, Botulinum neurotoxin, ricin, and Zika virus. Our study reveals the practicality of identifying host proteins that mediate multiple disease pathways and discovering broad-spectrum therapies that target these hub proteins. PMID:27686742

  15. Coinfection of tick cell lines has variable effects on replication of intracellular bacterial and viral pathogens.

    Science.gov (United States)

    Moniuszko, Anna; Rückert, Claudia; Alberdi, M Pilar; Barry, Gerald; Stevenson, Brian; Fazakerley, John K; Kohl, Alain; Bell-Sakyi, Lesley

    2014-06-01

    Ticks transmit various human and animal microbial pathogens and may harbour more than one pathogen simultaneously. Both viruses and bacteria can trigger, and may subsequently suppress, vertebrate host and arthropod vector anti-microbial responses. Microbial coinfection of ticks could lead to an advantage or disadvantage for one or more of the microorganisms. In this preliminary study, cell lines derived from the ticks Ixodes scapularis and Ixodes ricinus were infected sequentially with 2 arthropod-borne pathogens, Borrelia burgdorferi s.s., Ehrlichia ruminantium, or Semliki Forest virus (SFV), and the effect of coinfection on the replication of these pathogens was measured. Prior infection of tick cell cultures with the spirochaete B. burgdorferi enhanced subsequent replication of the rickettsial pathogen E. ruminantium whereas addition of spirochaetes to cells infected with E. ruminantium had no effect on growth of the latter. Both prior and subsequent presence of B. burgdorferi also had a positive effect on SFV replication. Presence of E. ruminantium or SFV had no measurable effect on B. burgdorferi growth. In tick cells infected first with E. ruminantium and then with SFV, virus replication was significantly higher across all time points measured (24, 48, 72h post infection), while presence of the virus had no detectable effect on bacterial growth. When cells were infected first with SFV and then with E. ruminantium, there was no effect on replication of either pathogen. The results of this preliminary study indicate that interplay does occur between different pathogens during infection of tick cells. Further study is needed to determine if this results from direct pathogen-pathogen interaction or from effects on host cell defences, and to determine if these observations also apply in vivo in ticks. If presence of one pathogen in the tick vector results in increased replication of another, this could have implications for disease transmission and incidence.

  16. Advances and Challenges in Viability Detection of Foodborne Pathogens.

    Science.gov (United States)

    Zeng, Dexin; Chen, Zi; Jiang, Yuan; Xue, Feng; Li, Baoguang

    2016-01-01

    Foodborne outbreaks are a serious public health and food safety concern worldwide. There is a great demand for rapid, sensitive, specific, and accurate methods to detect microbial pathogens in foods. Conventional methods based on cultivation of pathogens have been the gold standard protocols; however, they take up to a week to complete. Molecular assays such as polymerase chain reaction (PCR), sequencing, microarray technologies have been widely used in detection of foodborne pathogens. Among molecular assays, PCR technology [conventional and real-time PCR (qPCR)] is most commonly used in the foodborne pathogen detection because of its high sensitivity and specificity. However, a major drawback of PCR is its inability to differentiate the DNA from dead and viable cells, and this is a critical factor for the food industry, regulatory agencies and the consumer. To remedy this shortcoming, researchers have used biological dyes such as ethidium monoazide and propidium monoazide (PMA) to pretreat samples before DNA extraction to intercalate the DNA of dead cells in food samples, and then proceed with regular DNA preparation and qPCR. By combining PMA treatment with qPCR (PMA-qPCR), scientists have applied this technology to detect viable cells of various bacterial pathogens in foods. The incorporation of PMA into PCR-based assays for viability detection of pathogens in foods has increased significantly in the last decade. On the other hand, some downsides with this approach have been noted, particularly to achieve complete suppression of signal of DNA from the dead cells present in some particular food matrix. Nowadays, there is a tendency of more and more researchers adapting this approach for viability detection; and a few commercial kits based on PMA are available in the market. As time goes on, more scientists apply this approach to a broader range of pathogen detections, this viability approach (PMA or other chemicals such as platinum compound) may eventually

  17. Prevalence of bacterial pathogens causing ocular infections in South India

    Directory of Open Access Journals (Sweden)

    Ramesh S

    2010-04-01

    Full Text Available Background / Aims: The eye may be infected from external sources or through intra-ocular invasion of micro-organisms carried by the blood stream. This study was undertaken to isolate and identify the specific bacterial pathogens causing ocular infections and to determine their in-vitro antibacterial susceptibilities to commonly used antibacterial agents. Materials and Methods: A retrospective analysis of all patients with clinically diagnosed bacterial ocular infections such as blepharitis, conjunctivitis, internal and external hordeolum, suppurative scleritis, canaliculitis, keratitis, dacryocystitis, preseptal cellulitis, endophthalmitis and panophthalmitis presenting between January 2005 and December 2005 was performed. Extra-ocular and intra-ocular specimens were collected and were subjected to direct microscopy and culture. Results: A total of 756 patients with bacterial ocular infections were analyzed, of which 462(61% eyes had adnexal bacterial infection, 217(28.7% had corneal infection, 6 (0.8% had scleral involvement and the remaining 71(9.39% eyes had infection of the intra-ocular tissues. The predominant bacterial species isolated was S. aureus (195 of 776; 25% followed by S. pneumoniae (169 of 776; 21.78% and coagulase negative staphylococci (142 of 776; 18.3%. The largest number of gram-positive isolates were susceptible to cefazolin (545 of 624; 87.34%, chloramphenicol (522 of 624; 83.65% and gatifloxacin (511 of 624; 81.89% and gram-negative isolates were to amikacin (127 of 136; 93.38%, gatifloxacin (125 of 136; 91.91% and ofloxacin (119 of 136; 87.5%, while aerobic actinomycetes were to amikacin (100%, gatifloxacin (14 of 16; 87.5%, chloramphenicol (14 of 16; 87.5% and ofloxacin (13 of 16; 81.25%. Conclusions: S. aureus frequently causes infections of eyelids and conjunctiva, S. pneumoniae of lacrimal apparatus and cornea and coagulase negative staphylococci causes intra-ocular infections. Of all routinely used antibacterials

  18. Quantitative multiplex detection of pathogen biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I.; Martinez, Jennifer; Grace, Wynne K.

    2016-02-09

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  19. Quantitative multiplex detection of pathogen biomarkers

    Science.gov (United States)

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K

    2014-10-14

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  20. A Study on Detecting and Identifying Enteric Pathogens With PCR

    Institute of Scientific and Technical Information of China (English)

    JUN-WEN LI; XIU-QUAN SHI; FU-HUAN CHAO; XIN-WEI WANG; JIN-LAI ZHENG; NONG SONG

    2004-01-01

    Objective To develop a rapid and definite diagnostic test of bacterial enteritis caused by pathogenic enterobacteria, the most frequent etiologic agent of infectious enteritis in the world.Methods A set of conventional PCR assays were applied to detect and identify salmonella, shigella,and E. coli O157:H7 directly from pure culture and fecal samples. The general primers of pathogenic enterobacteria were located on the uidA gene, which were found not only in E. coli nuclear acid, but also in Shigella and salmonella genes. Shigella primer was from ipaH gene whose coded invasive plasmid relative antigen existed both in plasmid and in genome. The primers of salmonella were designed from the 16SrRNA sequence. The primer of E. coli O157:H7 was taken from eaeA gene.Five random primers were selected for RAPD. The detection system included common PCR,semi-nested PCR and RAPD. Results This method was more sensitive, specific and efficient and its processing was rapid and simple. For example, the method could be used to specifically detect and identify salmonella, shigella, and E. coli O157:H7, and its sensitivity ranged from 3 to 50 CFU, and its detection time was 4 hours. Conclusion This PCR method, therefore, can serve as a rourine and practical protocol for detecting and identifying pathogenic microorganisms from clinical samples.

  1. Insights into the Emergent Bacterial Pathogen Cronobacter spp., Generated by Multilocus Sequence Typing and Analysis.

    Science.gov (United States)

    Joseph, Susan; Forsythe, Stephen J

    2012-01-01

    Cronobacter spp. (previously known as Enterobacter sakazakii) is a bacterial pathogen affecting all age groups, with particularly severe clinical complications in neonates and infants. One recognized route of infection being the consumption of contaminated infant formula. As a recently recognized bacterial pathogen of considerable importance and regulatory control, appropriate detection, and identification schemes are required. The application of multilocus sequence typing (MLST) and analysis (MLSA) of the seven alleles atpD, fusA, glnS, gltB, gyrB, infB, and ppsA (concatenated length 3036 base pairs) has led to considerable advances in our understanding of the genus. This approach is supported by both the reliability of DNA sequencing over subjective phenotyping and the establishment of a MLST database which has open access and is also curated; http://www.pubMLST.org/cronobacter. MLST has been used to describe the diversity of the newly recognized genus, instrumental in the formal recognition of new Cronobacter species (C. universalis and C. condimenti) and revealed the high clonality of strains and the association of clonal complex 4 with neonatal meningitis cases. Clearly the MLST approach has considerable benefits over the use of non-DNA sequence based methods of analysis for newly emergent bacterial pathogens. The application of MLST and MLSA has dramatically enabled us to better understand this opportunistic bacterium which can cause irreparable damage to a newborn baby's brain, and has contributed to improved control measures to protect neonatal health.

  2. Insights into the emergent bacterial pathogen Cronobacter spp., generated by multilocus sequence typing and analysis

    Directory of Open Access Journals (Sweden)

    Susan eJoseph

    2012-11-01

    Full Text Available Cronobacter spp. (previously known as Enterobacter sakazakii is a bacterial pathogen affecting all age groups, with particularly severe clinical complications in neonates and infants. One recognised route of infection being the consumption of contaminated infant formula. As a recently recognised bacterial pathogen of considerable importance and regulatory control, appropriate detection and identification schemes are required. The application of multilocus sequence typing (MLST and analysis (MLSA of the seven alleles atpD, fusA, glnS, gltB, gyrB, infB and ppsA (concatenated length 3036 base pairs has led to considerable advances in our understanding of the genus. This approach is supported by both the reliability of DNA sequencing over subjective phenotyping and the establishment of a MLST database which has open access and is also curated; http://www.pubMLST.org/cronobacter. MLST has been used to describe the diversity of the newly recognised genus, instrumental in the formal recognition of new Cronobacter species (C. universalis and C. condimenti and revealed the high clonality of strains and the association of clonal complex 4 with neonatal meningitis cases. Clearly the MLST approach has considerable benefits over the use of non-DNA sequence based methods of analysis for newly emergent bacterial pathogens. The application of MLST and MLSA has dramatically enabled us to better understand this opportunistic bacterium which can cause irreparable damage to a newborn baby’s brain, and has contributed to improved control measures to protect neonatal health.

  3. Occurrence of Potentially Pathogenic Bacterial-Endosymbionts in Acanthamoeba Spp.

    Directory of Open Access Journals (Sweden)

    Maryam Niyyati

    2015-06-01

    Full Text Available Acanthamoeba- bacteria interactions enable pathogenic bacteria to tolerate harsh conditions and lead to transmission to the susceptible host. The present study was aimed to address the presence of bacterial endosymbionts of Acanthamoeba isolated from recreational water sources of Tehran, Iran. To the best of our knowledge this is the first study regarding occurrence of bacteria in environmental Acanthamoeba spp. in Iran.A total of 75 samples of recreational water sources were collected. Samples were cultured on non- nutrient agar 1.5% plates. Positive Acanthamoeba spp. were axenically grown. DNA extraction and PCR reaction was performed using JDP1-2 primers. All positive samples of Acanthamoeba were examined for the presence of endosymbionts using staining and molecular methods. The PCR products were then sequenced in order to determine the genotypes of Acanthamoeba and bacteria genera.Out of 75 samples, 16 (21.3% plates were positive for Acanthamoeba according to the morphological criteria. Molecular analysis revealed that Acanthamoeba belonged to T4 and T5 genotypes. Five isolates (35.7% were positive for bacterial endosymbionts using staining method and PCR test. Sequencing of PCR products confirmed the presence of Pseudomonas aeruginosa and Agrobacterium tumefasiens.The presence of Acanthamoeba bearing pathogenic endosymbionts in water sources leads us to public health issues including improved sanitation and decontamination measures in recreational water sources in order to prevent amoebae-related infection. To the best of our knowledge this is the first report regarding the isolation of A. tumefasiens from Acanthamoeba in Iran and worldwide.

  4. Coinfection of tick cell lines has variable effects on replication of intracellular bacterial and viral pathogens

    Science.gov (United States)

    Moniuszko, Anna; Rückert, Claudia; Alberdi, M. Pilar; Barry, Gerald; Stevenson, Brian; Fazakerley, John K.; Kohl, Alain; Bell-Sakyi, Lesley

    2014-01-01

    Ticks transmit various human and animal microbial pathogens and may harbour more than one pathogen simultaneously. Both viruses and bacteria can trigger, and may subsequently suppress, vertebrate host and arthropod vector anti-microbial responses. Microbial coinfection of ticks could lead to an advantage or disadvantage for one or more of the microorganisms. In this preliminary study, cell lines derived from the ticks Ixodes scapularis and Ixodes ricinus were infected sequentially with 2 arthropod-borne pathogens, Borrelia burgdorferi s.s., Ehrlichia ruminantium, or Semliki Forest virus (SFV), and the effect of coinfection on the replication of these pathogens was measured. Prior infection of tick cell cultures with the spirochaete B. burgdorferi enhanced subsequent replication of the rickettsial pathogen E. ruminantium whereas addition of spirochaetes to cells infected with E. ruminantium had no effect on growth of the latter. Both prior and subsequent presence of B. burgdorferi also had a positive effect on SFV replication. Presence of E. ruminantium or SFV had no measurable effect on B. burgdorferi growth. In tick cells infected first with E. ruminantium and then with SFV, virus replication was significantly higher across all time points measured (24, 48, 72 h post infection), while presence of the virus had no detectable effect on bacterial growth. When cells were infected first with SFV and then with E. ruminantium, there was no effect on replication of either pathogen. The results of this preliminary study indicate that interplay does occur between different pathogens during infection of tick cells. Further study is needed to determine if this results from direct pathogen–pathogen interaction or from effects on host cell defences, and to determine if these observations also apply in vivo in ticks. If presence of one pathogen in the tick vector results in increased replication of another, this could have implications for disease transmission and incidence

  5. Removal of pathogenic bacterial biofilms by combinations of oxidizing compounds.

    Science.gov (United States)

    Olmedo, Gabriela María; Grillo-Puertas, Mariana; Cerioni, Luciana; Rapisarda, Viviana Andrea; Volentini, Sabrina Inés

    2015-05-01

    Bacterial biofilms are commonly formed on medical devices and food processing surfaces. The antimicrobials used have limited efficacy against the biofilms; therefore, new strategies to prevent and remove these structures are needed. Here, the effectiveness of brief oxidative treatments, based on the combination of sodium hypochlorite (NaClO) and hydrogen peroxide (H2O2) in the presence of copper sulfate (CuSO4), were evaluated against bacterial laboratory strains and clinical isolates, both in planktonic and biofilm states. Simultaneous application of oxidants synergistically inactivated planktonic cells and prevented biofilm formation of laboratory Escherichia coli, Salmonella enterica serovar Typhimurium, Klebsiella pneumoniae, and Staphylococcus aureus strains, as well as clinical isolates of Salmonella enterica subsp. enterica, Klebsiella oxytoca, and uropathogenic E. coli. In addition, preformed biofilms of E. coli C, Salmonella Typhimurium, K. pneumoniae, and Salmonella enterica exposed to treatments were removed by applying 12 mg/L NaClO, 0.1 mmol/L CuSO4, and 350 mmol/L H2O2 for 5 min. Klebsiella oxytoca and Staphylococcus aureus required a 5-fold increase in NaClO concentration, and the E. coli clinical isolate remained unremovable unless treatments were applied on biofilms formed within 24 h instead of 48 h. The application of treatments that last a few minutes using oxidizing compounds at low concentrations represents an interesting disinfection strategy against pathogens associated with medical and industrial settings.

  6. The bacterial pathogen-ubiquitin interface: lessons learned from Shigella.

    Science.gov (United States)

    Tanner, Kaitlyn; Brzovic, Peter; Rohde, John R

    2015-01-01

    Shigella species are the aetiological agents of shigellosis, a severe diarrhoeal disease that is a significant cause of morbidity and mortality worldwide. Shigellosis causes massive colonic destruction, high fever and bloody diarrhoea. Shigella pathogenesis is tightly linked to the ability of the bacterium to invade and replicate intracellularly within the colonic epithelium. Shigella uses a type 3 secretion system to deliver its effector proteins into the cytosol of infected cells. Among the repertoire of Shigella effectors, many are known to target components of the actin cytoskeleton to promote bacterial entry. An emerging alternate theme for effector function is the targeting of the host ubiquitin system. Ubiquitination is a post-translational modification restricted to eukaryotes and is involved in many essential host processes. By virtue of sheer number of ubiquitin-modulating effector proteins, it is clear that Shigella has invested heavily into subversion of the ubiquitin system. Understanding these host-pathogen interactions will inform us about the strategies used by successful pathogens and may also provide avenues for novel antimicrobial strategies.

  7. Advances in genetic manipulation of obligate intracellular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Paul eBeare

    2011-05-01

    Full Text Available Infections by obligate intracellular bacterial pathogens result in significant morbidity and mortality worldwide. These bacteria include Chlamydia spp., which causes millions of cases of sexually transmitted disease and blinding trachoma annually, and members of the α-proteobacterial genera Anaplasma, Ehrlichia, Orientia and Rickettsia, agents of serious human illnesses including epidemic typhus. Coxiella burnetii, the agent of human Q fever, has also been considered a prototypical obligate intracellular bacterium, but recent host cell-free (axenic growth has rescued it from obligatism. The historic genetic intractability of obligate intracellular bacteria has severely limited molecular dissection of their unique lifestyles and virulence factors involved in pathogenesis. Host cell restricted growth is a significant barrier to genetic transformation that can make simple procedures for free-living bacteria, such as cloning, exceedingly difficult. Low transformation efficiency requiring long term culture in host cells to expand small transformant populations is another obstacle. Despite numerous technical limitations, the last decade has witnessed significant gains in genetic manipulation of obligate intracellular bacteria including allelic exchange. Continued development of genetic tools should soon enable routine mutation and complementation strategies for virulence factor discovery and stimulate renewed interest in these refractory pathogens. In this review, we discuss the technical challenges associated with genetic transformation of obligate intracellular bacteria and highlight advances made with individual genera.

  8. Integrated Detection of Pathogens and Host Biomarkers for Wounds

    Energy Technology Data Exchange (ETDEWEB)

    Jaing, C

    2012-03-19

    The increasing incidence and complications arising from combat wounds has necessitated a reassessment of methods for effective treatment. Infection, excessive inflammation, and incidence of drug-resistant organisms all contribute toward negative outcomes for afflicted individuals. The organisms and host processes involved in wound progression, however, are incompletely understood. We therefore set out, using our unique technical resources, to construct a profile of combat wounds which did or did not successfully resolve. We employed the Lawrence Livermore Microbial Detection Array and identified a number of nosocomial pathogens present in wound samples. Some of these identities corresponded with bacterial isolates previously cultured, while others were not obtained via standard microbiology. Further, we optimized proteomics protocols for the identification of host biomarkers indicative of various stages in wound progression. In combination with our pathogen data, our biomarker discovery efforts will provide a profile corresponding to wound complications, and will assist significantly in treatment of these complex cases.

  9. Application of photostable quantum dots for indirect immunofluorescent detection of specific bacterial serotypes on small marine animals

    Science.gov (United States)

    Decho, Alan W.; Beckman, Erin M.; Chandler, G. Thomas; Kawaguchi, Tomohiro

    2008-06-01

    An indirect immunofluorescence approach was developed using semiconductor quantum dot nanocrystals to label and detect a specific bacterial serotype of the bacterial human pathogen Vibrio parahaemolyticus, attached to small marine animals (i.e. benthic harpacticoid copepods), which are suspected pathogen carriers. This photostable labeling method using nanotechnology will potentially allow specific serotypes of other bacterial pathogens to be detected with high sensitivity in a range of systems, and can be easily applied for sensitive detection to other Vibrio species such as Vibrio cholerae.

  10. Research Status and Prospect ofBurkholderia glumae, the Pathogen Causing Bacterial Panicle Blight

    Institute of Scientific and Technical Information of China (English)

    CUI Zhou-qi; ZHU Bo; XIE Guan-lin; LI Bin; HUANG Shi-wen

    2016-01-01

    Bacterial panicle blight caused by Burkholderia glumae is one of the most severe seed-borne bacterial diseases of rice in the world. Currently, this disease has affected many countries of Asia, Africa, South and North America. It is a typical example of the shifting from minor plant disease to major disease due to the changes of environmental conditions. Some virulent factors of B. glumae have been identified, including toxoflavins and lipases, whose productions are dependent on the TofI/TofR quorum-sensing system, and type III effectors. In spite of its economic significance, neither effective control measure for this disease nor resistant rice variety is currently available. In recent years, genomics, transcriptomics and other molecular methods have provided useful information for better understanding the molecular mechanisms underlyingB. glumaevirulence and the rice defence mechanisms against pathogens. For the prevention of this pathogen, our laboratory has developed a rapid and sensitive multiplex PCR assay for detecting and distinguishingB. glumae from otherBurkholderia species. This improved understanding ofB. glumae will shed new light on bacterial panicle blight disease management.

  11. Putrescine regulating by stress-responsive MAPK cascade contributes to bacterial pathogen defense in Arabidopsis.

    Science.gov (United States)

    Kim, Su-Hyun; Kim, Sun-Hwa; Yoo, Seung-Jin; Min, Kwang-Hyun; Nam, Seung-Hee; Cho, Baik Ho; Yang, Kwang-Yeol

    2013-08-09

    Polyamines in plants are involved in various physiological and developmental processes including abiotic and biotic stress responses. We investigated the expression of ADCs, which are key enzymes in putrescine (Put) biosynthesis, and roles of Put involving defense response in Arabidopsis. The increased expression of ADC1 and ADC2, and the induction of Put were detected in GVG-NtMEK2(DD) transgenic Arabidopsis, whereas, their performance was partially compromised in GVG-NtMEK2(DD)/mpk3 and GVG-NtMEK2(DD)/mpk6 mutant following DEX treatment. The expression of ADC2 was highly induced by Pst DC3000 inoculation, while the transcript levels of ADC1 were slightly up-regulated. Compared to the WT plant, Put content in the adc2 knock-out mutant was reduced after Pst DC3000 inoculation, and showed enhanced susceptibility to pathogen infection. The adc2 mutant exhibited reduced expression of PR-1 after bacterial infection and the growth of the pathogen was about 4-fold more than that in the WT plant. Furthermore, the disease susceptibility of the adc2 mutant was recovered by the addition of exogenous Put. Taken together, these results suggest that Arabidopsis MPK3 and MPK6 play a positive role in the regulation of Put biosynthesis, and that Put contributes to bacterial pathogen defense in Arabidopsis.

  12. Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester

    Directory of Open Access Journals (Sweden)

    Christy E. Manyi-Loh

    2014-07-01

    Full Text Available Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days < Escherichia coli sp. (62 days < Salmonella sp. (133 days from a viable count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure, respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days.

  13. Inactivation of selected bacterial pathogens in dairy cattle manure by mesophilic anaerobic digestion (balloon type digester).

    Science.gov (United States)

    Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

    2014-07-14

    Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%-99% reduced in the order: Campylobacter sp. (18 days) count of 10.1 × 103, 3.6 × 105, 7.4 × 103 to concentrations below the detection limit (DL = 102 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p-value i.e., 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days.

  14. Quantitative analysis of resistance in cotton to three new isolates of the bacterial blight pathogen.

    Science.gov (United States)

    Wallace, T P; El-Zik, K M

    1990-04-01

    Genetic variability for virulence of the bacterial blight pathogen [Xanthomonas campestris pv malvacearum (Smith) Dye] on cotton (Gossypium hirsutum L.) has been shown by the identification of 19 races of the pathogen based on disease reactions of a set of ten host differentials. This study was conducted to determine the inheritance of host resistance to three recently identified isolates of X. campestris pv malvacearum, which are virulent on the entire set of differentials. True leaves of Tamcot CAMD-E, LEBOCAS-3-80, Stoneville 825, and their f1, F2, and backcross progenies were wound-inoculated in the field with separate bacterial suspensions of the virulent HV3, HV7, and Sudan isolates of the pathogen. LEBOCAS-3-80 was replaced with S295, a new immune cultivar, for a greenhouse study in which both cotyledons and true leaves were inoculated. Disease reactions were rated on a scale of 1-10, and genetic models were proposed utilizing generation means analysis. Dominance, when significant, was in the direction of resistance in all but one cross-isolate combination. Digenic interaction components indicated a duplicate type. Narrow-sense heritability for resistance ranged from 0.59 to 0.68; therefore, primarily additive-genetic variability among the selected cutlivars was detected, indicating that breeding for improved resistance to these isolates is a practical goal.

  15. Viral and bacterial pathogens identification in children hospitalised for severe pneumonia and parapneumonic empyema

    Directory of Open Access Journals (Sweden)

    Jean-Noël Telles

    2012-05-01

    Full Text Available Pneumonia is caused by respiratory bacteria and/or viruses. Little is known if co-infections are an aggravating factor in hospitalised children with severe pneumonia. We studied the impact of respiratory pathogens on the severity of pneumonia. Between 2007 and 2009, 52 children hospitalised with a well-documented diagnosis of communityacquired pneumonia (CAP, with or without parapneumonic empyema (PPE, were enrolled in the study. The patients were classified into 2 groups: CAP + PPE (n = 28 and CAP (n = 24. The identification of respiratory viruses and bacteria in nasopharyngeal aspirates and pleural effusion samples were performed using conventional bacterial techniques and molecular assays. Using real-time multiplex PCR and antigen detection, Streptococcus pneumoniae was the main agent identified in 76% of the cases by molecular tests and BinaxNOW® in pleural fluid. A total of 8% of pleural fluid samples remained undiagnosed. In nasopharyngeal aspirates, rhinovirus, parainfluenza viruses, human metapneumovirus, and respiratory syncytial virus were detected in both CAP and CAP + PPE populations; however, the percentage of viral co-detection was significantly higher in nasopharyngeal aspirates from CAP + PPE patients (35% compared with CAP patients (5%. In conclusion, viral co-detection was observed mainly in patients with more severe pneumonia. Molecular biology assays improved the pathogens detection in pneumonia and confirmed the S. pneumoniae detection by BinaxNOW® in pleural effusion samples. Interestingly, the main S. pneumoniae serotypes found in PPE are not the ones targeted by the heptavalent pneumococcal conjugate vaccine.

  16. Bacterial and viral pathogen spectra of acute respiratory infections in under-5 children in hospital settings in Dhaka city

    Science.gov (United States)

    Bhuyan, Golam Sarower; Hossain, Mohammad Amir; Sarker, Suprovath Kumar; Rahat, Asifuzzaman; Islam, Md Tarikul; Haque, Tanjina Noor; Begum, Noorjahan; Qadri, Syeda Kashfi; Muraduzzaman, A. K. M.; Islam, Nafisa Nawal; Islam, Mohammad Sazzadul; Sultana, Nusrat; Jony, Manjur Hossain Khan; Khanam, Farhana; Mowla, Golam; Matin, Abdul; Begum, Firoza; Shirin, Tahmina; Ahmed, Dilruba; Saha, Narayan; Qadri, Firdausi

    2017-01-01

    The study aimed to examine for the first time the spectra of viral and bacterial pathogens along with the antibiotic susceptibility of the isolated bacteria in under-5 children with acute respiratory infections (ARIs) in hospital settings of Dhaka, Bangladesh. Nasal swabs were collected from 200 under-five children hospitalized with clinical signs of ARIs. Nasal swabs from 30 asymptomatic children were also collected. Screening of viral pathogens targeted ten respiratory viruses using RT-qPCR. Bacterial pathogens were identified by bacteriological culture methods and antimicrobial susceptibility of the isolates was determined following CLSI guidelines. About 82.5% (n = 165) of specimens were positive for pathogens. Of 165 infected cases, 3% (n = 6) had only single bacterial pathogens, whereas 43.5% (n = 87) cases had only single viral pathogens. The remaining 36% (n = 72) cases had coinfections. In symptomatic cases, human rhinovirus was detected as the predominant virus (31.5%), followed by RSV (31%), HMPV (13%), HBoV (11%), HPIV-3 (10.5%), and adenovirus (7%). Streptococcus pneumoniae was the most frequently isolated bacterial pathogen (9%), whereas Klebsiella pneumaniae, Streptococcus spp., Enterobacter agglomerans, and Haemophilus influenzae were 5.5%, 5%, 2%, and 1.5%, respectively. Of 15 multidrug-resistant bacteria, a Klebsiella pneumoniae isolate and an Enterobacter agglomerans isolate exhibited resistance against more than 10 different antibiotics. Both ARI incidence and predominant pathogen detection rates were higher during post-monsoon and winter, peaking in September. Pathogen detection rates and coinfection incidence in less than 1-year group were significantly higher (P = 0.0034 and 0.049, respectively) than in 1–5 years age group. Pathogen detection rate (43%) in asymptomatic cases was significantly lower compared to symptomatic group (PStreptococcus pneumonia, and Klebsiella pneumaniae had significant involvement in coinfections with P values of

  17. Detection of pathogens from periodontal lesions

    Directory of Open Access Journals (Sweden)

    Malheiros Veruska de João

    2004-01-01

    Full Text Available OBJECTIVE: To comparatively detect A. actinomycetemcomitans and F. nucleatum from periodontal and healthy sites. METHODS: Subgingival clinical samples from 50 periodontitis adult patients and 50 healthy subjects were analyzed. Both organisms were isolated using a trypticase soy agar-bacitracin-vancomycin (TSBV medium and detected by PCR. Conventional biochemical tests were used for bacteria identification. RESULTS: A. actinomycetemcomitans and F. nucleatum were isolated in 18% and 20% of the patients, respectively, and in 2% and 24% of healthy subjects. Among A. actinomycetemcomitans isolates, biotype II was the most prevalent. Primer pair AA was 100% sensitive in the detection of A. actinomycetemcomitans from both subject groups. Primers ASH and FU were also 100% sensitive to detect this organism in healthy subject samples. Primer pair FN5047 was more sensitive to detect F. nucleatum in patients or in healthy samples than primer 5059S. Primers ASH and 5059S were more specific in the detection of A. actinomycetemcomitans and F. nucleatum, respectively, in patients and in healthy subject samples. CONCLUSIONS: PCR is an effective tool for detecting periodontal pathogens in subgingival samples, providing a faster and safer diagnostic tool of periodontal diseases. The method's sensitivity and specificity is conditioned by the choice of the set of primers used.

  18. Pathogenicity testing of shellfish hatchery bacterial isolates on Pacific oyster Crassostrea gigas larvae.

    Science.gov (United States)

    Estes, Robyn M; Friedman, Carolyn S; Elston, Ralph A; Herwig, Russell P

    2004-03-10

    Bacterial diseases are a major cause of larval mortality in shellfish hatcheries. Even with proper sanitation measures, bacterial pathogens cannot be eliminated in all cases. The pathogenicity of bacteria isolated from Pacific Northwest shellfish hatcheries to Pacific oyster Crassostrea gigas larvae was investigated. We found 3 highly pathogenic strains and 1 mildly pathogenic strain among 33 isolates tested. These strains appear to be members of the genus Vibrio. Although there have been many studies of bivalve bacterial pathogens, a standard method to assess bacterial pathogenicity in bivalve larvae is needed. Thus, we developed 2 methods using either 15 ml conical tubes or tissue culture plates that were employed for rapidly screening bacterial strains for pathogenicity to Pacific oyster larvae. The tissue culture plates worked well for screening both mildly pathogenic strains and LD50 (lethal dose) assays. This method allowed for non-intrusive and non-destructive observation of the oyster larvae with a dissecting microscope. The LD50 for the 3 highly pathogenic strains ranged between 1.6 and 3.6 x 10(4) colony forming units (CFU) ml(-1) after 24 h and between 3.2 x 102 and 1.9 x 10(3) CFU ml(-1) after 48 h.

  19. Factors related to occurrence and distribution of selected bacterial and protozoan pathogens in Pennsylvania streams.

    Science.gov (United States)

    Duris, Joseph W; Reif, Andrew G; Krouse, Donna A; Isaacs, Natasha M

    2013-01-01

    (O157) genes, but no genes were related exclusively to an individual MST marker. The human source pharmaceuticals (HSPs) acetaminophen and caffeine were correlated with Giardia, and the presence of HSPs proved to be more useful than MST markers in distinguishing the occurrence of Giardia. The HSPs caffeine and carbamazepine were correlated with the sum total of pathogen genes detected in a sample, demonstrating the value of using HSPs as an indicator of fecally derived pathogens. Sites influenced by urban land use with less forest were more likely to have greater FIB and Giardia densities and sum of the array of pathogen genes. Sites dominated by shallow carbonate bedrock in the upstream catchment were likely to have greater FIB densities and higher sum totals of pathogen genes but no correlation with Giardia detection. Our study provides a range of specific environmental, chemical, geologic, and land-use variables related to occurrence and distribution of FIB and selected bacterial and protozoan pathogens in Pennsylvania streams. The information presented could be useful for resource managers in understanding bacterial and protozoan pathogen occurrence and their relation to fecal indicator bacteria in similar settings.

  20. Factors related to occurrence and distribution of selected bacterial and protozoan pathogens in Pennsylvania streams

    Science.gov (United States)

    Duris, Joseph W.; Reif, Andrew G.; Donna A. Crouse,; Isaacs, Natasha M.

    2013-01-01

    , stx1, and rfbO157 genes, but no genes were related exclusively to an individual MST marker. The human source pharmaceuticals (HSPs) acetaminophen and caffeine were correlated with Giardia, and the presence of HSPs proved to be more useful than MST markers in distinguishing the occurrence of Giardia. The HSPs caffeine and carbamazepine were correlated with the sum total of pathogen genes detected in a sample, demonstrating the value of using HSPs as an indicator of fecally derived pathogens. Sites influenced by urban land use with less forest were more likely to have greater FIB and Giardia densities and sum of the array of pathogen genes. Sites dominated by shallow carbonate bedrock in the upstream catchment were likely to have greater FIB densities and higher sum totals of pathogen genes but no correlation with Giardia detection. Our study provides a range of specific environmental, chemical, geologic, and land-use variables related to occurrence and distribution of FIB and selected bacterial and protozoan pathogens in Pennsylvania streams. The information presented could be useful for resource managers in understanding bacterial and protozoan pathogen occurrence and their relation to fecal indicator bacteria in similar settings.

  1. The Capricious Nature of Bacterial Pathogens: Phasevarions and Vaccine Development

    Directory of Open Access Journals (Sweden)

    Aimee Tan

    2016-12-01

    Full Text Available Infectious diseases are a leading cause of morbidity and mortality worldwide, and vaccines are one of the most successful and cost-effective tools for disease prevention. One of the key considerations for rational vaccine development is the selection of appropriate antigens. Antigens must induce a protective immune response, and this response should be directed to stably expressed antigens so the target microbe can always be recognized by the immune system. Antigens with variable expression, due to environmental signals or phase variation (i.e., high frequency, random switching of expression, are not ideal vaccine candidates because variable expression could lead to immune evasion. Phase variation is often mediated by the presence of highly mutagenic simple tandem DNA repeats, and genes containing such sequences can be easily identified, and their use discounted as vaccine antigens reconsidered. Recent research has identified phase variably expressed DNA methyltransferases that act as global epigenetic regulators. These phase variable regulons, known as phasevarions, are associated with altered virulence phenotypes and/or expression of vaccine candidates. As such, genes encoding candidate vaccine antigens that have no obvious mechanism of phase variation may be subject to indirect, epigenetic control as part of a phasevarion. Bioinformatic and experimental studies are required to elucidate the distribution and mechanism of action of these DNA methyltransferases, and most importantly, whether they mediate epigenetic regulation of potential and current vaccine candidates. This process is essential to define the stably expressed antigen target profile of bacterial pathogens and thereby facilitate efficient, rational selection of vaccine antigens.

  2. Parasites can enhance infections of fish with bacterial pathogens

    Science.gov (United States)

    In aquaculture systems, fish are commonly infected by multiple pathogens, including parasites. Parasite Ichthyophthirius multifiliis (Ich) and bacterium Edwardsiella ictaluri are two common pathogens of cultured channel catfish. The objectives were to 1) evaluate the susceptibility of Ich parasitize...

  3. The bacterial microbiome of dermacentor andersoni ticks influences pathogen susceptibility

    Science.gov (United States)

    Ticks are of medical and veterinary importance due to their ability to transmit pathogens to humans and animals. The Rocky Mountain wood tick, Dermacentor andersoni, is a vector of a number of pathogens, including Anaplasma marginale, which is the most widespread tick-borne pathogen of livestock. Al...

  4. High temperature and bacteriophages can indirectly select for bacterial pathogenicity in environmental reservoirs.

    Directory of Open Access Journals (Sweden)

    Ville-Petri Friman

    Full Text Available The coincidental evolution hypothesis predicts that traits connected to bacterial pathogenicity could be indirectly selected outside the host as a correlated response to abiotic environmental conditions or different biotic species interactions. To investigate this, an opportunistic bacterial pathogen, Serratia marcescens, was cultured in the absence and presence of the lytic bacteriophage PPV (Podoviridae at 25°C and 37°C for four weeks (N = 5. At the end, we measured changes in bacterial phage-resistance and potential virulence traits, and determined the pathogenicity of all bacterial selection lines in the Parasemia plantaginis insect model in vivo. Selection at 37°C increased bacterial motility and pathogenicity but only in the absence of phages. Exposure to phages increased the phage-resistance of bacteria, and this was costly in terms of decreased maximum population size in the absence of phages. However, this small-magnitude growth cost was not greater with bacteria that had evolved in high temperature regime, and no trade-off was found between phage-resistance and growth rate. As a result, phages constrained the evolution of a temperature-mediated increase in bacterial pathogenicity presumably by preferably infecting the highly motile and virulent bacteria. In more general perspective, our results suggest that the traits connected to bacterial pathogenicity could be indirectly selected as a correlated response by abiotic and biotic factors in environmental reservoirs.

  5. Engineering the stereochemistry of cephalosporin for specific detection of pathogenic carbapenemase-expressing bacteria.

    Science.gov (United States)

    Shi, Haibin; Cheng, Yunfeng; Lee, Kyung Hyun; Luo, Robert F; Banaei, Niaz; Rao, Jianghong

    2014-07-28

    Reported herein is the design of fluorogenic probes specific for carbapenem-resistant Enterobacteriaceae (CRE) and they were designed based on stereochemically modified cephalosporin having a 6,7-trans configuration. Through experiments using recombinant β-lactamase enzymes and live bacterial species, these probes demonstrate the potential for use in the specific detection of carbapenemases, including metallo-β-lactamases in active bacterial pathogens.

  6. Detection of pathogenic organisms in food, water, and body fluids

    Science.gov (United States)

    Wallace, William H.; Henley, Michael V.; Sayler, Gary S.

    2002-06-01

    The construction of specific bioluminescent bacteriophage for detection of pathogenic organism can be developed to overcome interferences in complex matrices such as food, water and body fluids. Detection and identification of bacteria often require several days and frequently weeks by standard methods of isolation, growth and biochemical test. Immunoassay detection often requires the expression of the bacterial toxin, which can lead to non-detection of cells that may express the toxin under conditions different from testing protocols. Immunoassays require production of a specific antibody to the agent for detection and interference by contaminants frequently affects results. PCR based detection may be inhibited by substances in complex matrices. Modified methods of the PCR technique, such as magnetic capture-hybridization PCR (MCH-PCR), appear to improve the technique by removing the DNA products away from the inhibitors. However, the techniques required for PCR-based detection are slow and the procedures require skilled personnel working with labile reagents. Our approach is based on transferring bioluminescence (lux) genes into a selected bacteriophage. Bacteriophages are bacterial viruses that are widespread in nature and often are genus and species specific. This specificity eliminates or reduces false positives in a bacteriophage assay. The phage recognizes a specific receptor molecule on the surface of a susceptible bacterium, attaches and then injects the viral nucleic acid into the cell. The injected viral genome is expressed and then replicated, generating numerous exact copies of the viral genetic material including the lux genes, often resulting in an increase in bioluminescence by several hundred fold.

  7. Antibody conjugated graphene nanocomposites for pathogen detection

    Science.gov (United States)

    Sign, Chandan; Sumana, Gajjala

    2016-04-01

    Graphene oxide (GO), due to its excellent electrochemical properties and large surface area, known to be highly suitable material for biosensing application. Here, we report in situ synthesis of silver nanopaticles (AgNPs) onto the GO sheets for the electrochemical detection of Salmonella typhimurium (S.typhimurium). The GO-AgNPs composites have been deposited onto the indium tin oxide (ITO) coated glass substrate by the electrophoretic deposition technique. Carbodiimide coupling (EDC-NHS) has been used for the immobilization of antibodies of Salmonella typhimurium (anti-S.typhimurium) for detection of S.typhimurium. The electron microscopy and UV-visible studies reveal successful synthesis GO-AgNPs composites while FT-IR studies suggest the proper immobilization of anti-S.typhi. The cyclic voltammetry (CV) has been utilized for detection using anti-S.typhi/GOAgNPs/ITO based immunoelectrode as a function of S.typhimurium concentration. The fabricated immunosensor shows improved sensitivity of 33.04 μACFU-1mLcm-2 in a wide detection range of 101 to 106 CFUmL-1. This immunosensor may be utilized for the detection of other food borne pathogens like aflatoxin and E.coli also.

  8. Distribution of indigenous bacterial pathogens and potential pathogens associated with roof-harvested rainwater.

    Science.gov (United States)

    Dobrowsky, P H; De Kwaadsteniet, M; Cloete, T E; Khan, W

    2014-04-01

    The harvesting of rainwater is gaining acceptance among many governmental authorities in countries such as Australia, Germany, and South Africa, among others. However, conflicting reports on the microbial quality of harvested rainwater have been published. To monitor the presence of potential pathogenic bacteria during high-rainfall periods, rainwater from 29 rainwater tanks was sampled on four occasions (during June and August 2012) in a sustainable housing project in Kleinmond, South Africa. This resulted in the collection of 116 harvested rainwater samples in total throughout the sampling period. The identities of the dominant, indigenous, presumptive pathogenic isolates obtained from the rainwater samples throughout the sampling period were confirmed through universal 16S rRNA PCR, and the results revealed that Pseudomonas (19% of samples) was the dominant genus isolated, followed by Aeromonas (16%), Klebsiella (11%), and Enterobacter (9%). PCR assays employing genus-specific primers also confirmed the presence of Aeromonas spp. (16%), Klebsiella spp. (47%), Legionella spp. (73%), Pseudomonas spp. (13%), Salmonella spp. (6%), Shigella spp. (27%), and Yersinia spp. (28%) in the harvested rainwater samples. In addition, on one sampling occasion, Giardia spp. were detected in 25% of the eight tank water samples analyzed. This study highlights the diverse array of pathogenic bacteria that persist in harvested rainwater during high-rainfall periods. The consumption of untreated harvested rainwater could thus pose a potential significant health threat to consumers, especially children and immunocompromised individuals, and it is recommended that harvested rainwater be treated for safe usage as an alternative water source.

  9. Bacteriophages with Potential for Inactivation of Fish Pathogenic Bacteria: Survival, Host Specificity and Effect on Bacterial Community Structure

    Directory of Open Access Journals (Sweden)

    Yolanda J. Silva

    2011-11-01

    Full Text Available Phage therapy may represent a viable alternative to antibiotics to inactivate fish pathogenic bacteria. Its use, however, requires the awareness of novel kinetics phenomena not applied to conventional drug treatments. The main objective of this work was to isolate bacteriophages with potential to inactivate fish pathogenic bacteria, without major effects on the structure of natural bacterial communities of aquaculture waters. The survival was determined in marine water, through quantification by the soft agar overlay technique. The host specificity was evaluated by cross infection. The ecological impact of phage addition on the structure of the bacterial community was evaluated by DGGE of PCR amplified 16S rRNA gene fragments. The survival period varied between 12 and 91 days, with a higher viability for Aeromonas salmonicida phages. The phages of Vibrio parahaemolyticus and of A. salmonicida infected bacteria of different families with a high efficacy of plating. The specific phages of pathogenic bacteria had no detectable impact on the structure of the bacterial community. In conclusion, V. parahaemolyticus and A. salmonicida phages show good survival time in marine water, have only a moderated impact on the overall bacterial community structure and the desired specificity for host pathogenic bacteria, being potential candidates for therapy of fish infectious diseases in marine aquaculture systems.

  10. Sensitive, Rapid Detection of Bacterial Spores

    Science.gov (United States)

    Kern, Roger G.; Venkateswaran, Kasthuri; Chen, Fei; Pickett, Molly; Matsuyama, Asahi

    2009-01-01

    A method of sensitive detection of bacterial spores within delays of no more than a few hours has been developed to provide an alternative to a prior three-day NASA standard culture-based assay. A capability for relatively rapid detection of bacterial spores would be beneficial for many endeavors, a few examples being agriculture, medicine, public health, defense against biowarfare, water supply, sanitation, hygiene, and the food-packaging and medical-equipment industries. The method involves the use of a commercial rapid microbial detection system (RMDS) that utilizes a combination of membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and analysis of luminescence images detected by a charge-coupled-device camera. This RMDS has been demonstrated to be highly sensitive in enumerating microbes (it can detect as little as one colony-forming unit per sample) and has been found to yield data in excellent correlation with those of culture-based methods. What makes the present method necessary is that the specific RMDS and the original protocols for its use are not designed for discriminating between bacterial spores and other microbes. In this method, a heat-shock procedure is added prior to an incubation procedure that is specified in the original RMDS protocols. In this heat-shock procedure (which was also described in a prior NASA Tech Briefs article on enumerating sporeforming bacteria), a sample is exposed to a temperature of 80 C for 15 minutes. Spores can survive the heat shock, but nonspore- forming bacteria and spore-forming bacteria that are not in spore form cannot survive. Therefore, any colonies that grow during incubation after the heat shock are deemed to have originated as spores.

  11. Distinguishing bacterial pathogens of potato using a genome-wide microarray approach.

    Science.gov (United States)

    Aittamaa, M; Somervuo, P; Pirhonen, M; Mattinen, L; Nissinen, R; Auvinen, P; Valkonen, J P T

    2008-09-01

    A set of 9676 probes was designed for the most harmful bacterial pathogens of potato and tested in a microarray format. Gene-specific probes could be designed for all genes of Pectobacterium atrosepticum, c. 50% of the genes of Streptomyces scabies and c. 30% of the genes of Clavibacter michiganensis ssp. sepedonicus utilizing the whole-genome sequence information available. For Streptomyces turgidiscabies, 226 probes were designed according to the sequences of a pathogenicity island containing important virulence genes. In addition, probes were designed for the virulence-associated nip (necrosis-inducing protein) genes of P. atrosepticum, P. carotovorum and Dickeya dadantii and for the intergenic spacer (IGS) sequences of the 16S-23S rRNA gene region. Ralstonia solanacearum was not included in the study, because it is a quarantine organism and is not presently found in Finland, but a few probes were also designed for this species. The probes contained on average 40 target-specific nucleotides and were synthesized on the array in situ, organized as eight sub-arrays with an identical set of probes which could be used for hybridization with different samples. All bacteria were readily distinguished using a single channel system for signal detection. Nearly all of the c. 1000 probes designed for C. michiganensis ssp. sepedonicus, c. 50% and 40% of the c. 4000 probes designed for the genes of S. scabies and P. atrosepticum, respectively, and over 100 probes for S. turgidiscabies showed significant signals only with the respective species. P. atrosepticum, P. carotovorum and Dickeya strains were all detected with 110 common probes. By contrast, the strains of these species were found to differ in their signal profiles. Probes targeting the IGS region and nip genes could be used to place strains of Dickeya to two groups, which correlated with differences in virulence. Taken together, the approach of using a custom-designed, genome-wide microarray provided a robust means

  12. APDS: The Autonomous Pathogen Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Hindson, B; Makarewicz, A; Setlur, U; Henderer, B; McBride, M; Dzenitis, J

    2004-10-04

    We have developed and tested a fully autonomous pathogen detection system (APDS) capable of continuously monitoring the environment for airborne biological threat agents. The system was developed to provide early warning to civilians in the event of a bioterrorism incident and can be used at high profile events for short-term, intensive monitoring or in major public buildings or transportation nodes for long-term monitoring. The APDS is completely automated, offering continuous aerosol sampling, in-line sample preparation fluidics, multiplexed detection and identification immunoassays, and nucleic-acid based polymerase chain reaction (PCR) amplification and detection. Highly multiplexed antibody-based and duplex nucleic acid-based assays are combined to reduce false positives to a very low level, lower reagent costs, and significantly expand the detection capabilities of this biosensor. This article provides an overview of the current design and operation of the APDS. Certain sub-components of the ADPS are described in detail, including the aerosol collector, the automated sample preparation module that performs multiplexed immunoassays with confirmatory PCR, and the data monitoring and communications system. Data obtained from an APDS that operated continuously for seven days in a major U.S. transportation hub is reported.

  13. Pulmonary bacterial pathogens in cystic fibrosis patients and antibiotic therapy: a tool for the health workers.

    Science.gov (United States)

    Coutinho, Henrique Douglas M; Falcão-Silva, Vivyanne S; Gonçalves, Gregório Fernandes

    2008-11-07

    Cystic fibrosis is the most common and best known genetic disease involving a defect in transepithelial Cl- transport by mutations in the CF gene on chromosome 7, which codes for the cystic fibrosis transmembrane conductance regulator protein (CFTR). The most serious symptoms are observed in the lungs, augmenting the risk of bacterial infection. The objective of this review was to describe the bacterial pathogens colonizing patients with cystic fibrosis. A systematic search was conducted using the international bibliographic databanks SCIELO, HIGHWIRE, PUBMED, SCIRUS and LILACS to provide a useful and practical review for healthcare workers to make them aware of these microorganisms. Today, B. cepacia, P. aeruginosa and S. aureus are the most important infectious agents in cystic fibrosis patients. However, healthcare professionals must pay attention to emerging infectious agents in these patients, because they represent a potentially serious future problem. Therefore, these pathogens should be pointed out as a risk to these patients, and hospitals all over the world must be prepared to detect and combat these bacteria.

  14. From Environment to Man: Genome Evolution and Adaptation of Human Opportunistic Bacterial Pathogens

    OpenAIRE

    Estelle Jumas-Bilak; Hélène Marchandin; Brigitte Lamy; Anne Lotthé; Fabien Aujoulat; Frédéric Roger; Alice Bourdier

    2012-01-01

    Environment is recognized as a huge reservoir for bacterial species and a source of human pathogens. Some environmental bacteria have an extraordinary range of activities that include promotion of plant growth or disease, breakdown of pollutants, production of original biomolecules, but also multidrug resistance and human pathogenicity. The versatility of bacterial life-style involves adaptation to various niches. Adaptation to both open environment and human specific niches is a major challe...

  15. Inhibitory Effect of Lactobacillus reuteri on Some Pathogenic Bacteria Isolated From Women With Bacterial Vaginosis

    Directory of Open Access Journals (Sweden)

    Eslami

    2014-08-01

    Full Text Available Background Considering the high prevalence of bacterial vaginosis and its association with urinary tract infection in women and treatment of gynecologic problems occur when a high recurrence of bacterial vaginosis is often treated with antibiotics. Objectives The purpose of this study was to investigate the inhibitory effect of Lactobacillus reuteri on pathogenic bacteria isolated from women with bacterial vaginosis. Materials and Methods Ninety-six samples were obtained from vaginal discharge of women with bacterial vaginosis by a gynecologist with a Dacron swab and put in sterile tubes containing TSB broth and Thioglycollate broth. Then were immediately sent to the laboratory in cold chain for further assessment. Afterward, culture was transferred on blood agar, EMB, Palcam and differential diagnosis environments. Then cultures were incubated for 24 hours at 37 °C. Lactobacillus reuteri strains were cultured in MRS environment and transferred to laboratory. After purification of pathogenic bacteria, Lactobacillus reuteri inhibitory effect on pathogenic bacteria was evaluated by minimum inhibitory concentration (MIC and antibiogram. Statistical analysis was performed using SPSS software v.16. Results The results of this study demonstrated the inhibitory effect of Lactobacillus reuteri on some pathogenic bacteria that cause bacterial, including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Enterococcus, Listeria monocytogenes and E. coli. Microscopic examination of stained smears of most Lactobacillus and pathogenic bacteria showed reduced. The prevalence of abnormal vaginal discharge, history of drug use, contraceptive methods and douching were 61%, 55%, 42% and 13%, respectively. Significant difference was observed between the use and non-use of IUD in women with bacterial. Conclusions Our findings indicated the inhibitory effect of Lactobacillus reuteri on pathogenic bacteria that

  16. Rapid Detection and Characterization of Emerging Foreign Animal Disease Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Jaing, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-18

    To best safeguard human and animal health requires early detection and characterization of disease events. This must include effective surveillance for emerging infectious diseases. Both deliberate and natural outbreaks have enormous economic and public health impacts, and can present serious threats to national security. In this project, we developed novel next generation detection technologies to protect the agricultural economy and biosecurity. The first technology is a multiplexed assay to simultaneously detection 10 swine viral and bacterial pathogens. The second one is the Lawrence Livermore Microbial Detection Array (LLMDA) which can detect more than 10,000 microbial species including 4219 viruses, 5367 bacteria, 265 fungi, 117 protozoa and 293 archaea. We analyzed a series of swine clinical samples from past disease events to demonstrate the utility of the assays for faster and cheaper detection of emerging and foreign animal disease pathogens, and their utility as s routine diagnosis and surveillance tool. A second goal of the study is to better understand mechanisms of African swine fever virus (ASFV) infection in pigs to aid the development of countermeasures and diagnostics. There is no vaccine available for ASF. ASF outbreak is on the rise on several European countries. Though ASF is not currently in the U.S., a potential outbreak in the U.S. would be detrimental to the swine industry and the US agricultural economy. We pursued a genome-wide approach to characterize the pig immune responses after ASFV infection. We used RNA sequencing and bioinformatics methods to identify genes and pathways that are affected during ASF infection. We have identified a list of most differentially expressed genes that are in the immune response pathways.

  17. THE APPLICATION ON DNA-BASED METHODS IN DETECTION OF PATHOGENIC BACTERIA FOR BACTERIAL FOODBORNE DISEASE%核酸检测技术在细菌性食源疾病检测中的应用探讨

    Institute of Scientific and Technical Information of China (English)

    黄薇; 鞠勇; 孟建彤; 赵翔; 唐晓旻; 王宏; 李佳; 徐冬蕾; 白艳; 罗霞; 梁莹

    2011-01-01

    [目的]初步探讨常规PCR、荧光PCR、PCR产物测序及脉冲场凝胶电泳(PFGE)等核酸检测技术在常见细菌性食源疾病病原菌检测中的应用.[方法]用常规PCR、荧光PCR直接检测经选择性增菌培养的沙门菌和志贺菌,测定PCR扩增产物序列以确定瘸原菌种类,用限制性内切酶Xba Ⅰ和Spe Ⅰ对分离菌株进行PFGE分析.[结果]常规PCR、荧光PCR方法在两份腹泻病人样本中均检出沙门菌,结果与培养法一致.二者未在皮蛋中检出沙门菌,而培养法在市售皮蛋中检出沙门菌.检测时间分别为PCR 16 h、荧光PCR 14 h、PCR产物直接测序19 h,较培养法缩短4 d.来源不同的3株分离菌Xba Ⅰ和Spe Ⅰ酶切图谱完全一致(相似度为100%).[结论]应用常规PCR、荧光PCR可准确、及时检出腹泻病人样本中的沙门菌和志贺菌,有望用于食物中毒的快速检测.但在检测食品和环境样本时需适当延长增菌培养时间.在从农田到餐桌的食品供应链中,PFGE可对疾病暴发进行早期识别并协助对病原菌及其传播途径的溯源,有助于食物中毒的预防.%[Objective]To explore the application of PCR、 real-time PCR, PCR products sequencing and pulsed-field gel electyophoresis (PFGE) in detection of pathogenic bacteria for food-bome disease, [Methods]PCR and real-time PCR technique were applied to detect Salmonella and Shigella from the selective enrichment cultivation, and the sequence analysis were also conducted for the PCR products.Isolated strains were digested by restriction endonucleases Xba I and Spe I, and were analyzed by PFGE.[Results]Two samples from diarrheic patients were Salmonella positive by PCR and real-time PCR detection, which was in accordance with that of the traditional method.PCR and real-time PCR technique failed to detect Salmonella from preserved egg, while traditional method detected Salmonella.The detection time of PCR, real-time PCR and PCR products sequencing were 16

  18. Detection of Multiple Pathogenic Species in Saliva Is Associated with Periodontal Infection in Adults▿

    OpenAIRE

    2008-01-01

    We investigated whether certain bacterial species and their combinations in saliva can be used as markers for periodontitis. In 1,198 subjects, the detection of multiple species, rather than the presence of a certain pathogen, in saliva was associated with periodontitis as determined by the number of teeth with deepened periodontal pockets.

  19. Field application of pathogen detection technologies

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Call, Douglas R.; Bruckner-Lea, Cindy J.; Colburn, Heather A.; Baird, Cheryl L.; Bartholomew, Rachel A.; Ozanich, Richard M.; Jarman, Kristin H.

    2016-06-29

    Over the last 10 years there has been a significant increase in commercial products designed for field-based detection of microbial pathogens. This is due, in part, to the anthrax attacks in the United States in 2001, and the need for first responders to quickly identify the composition of suspected white powders and other potential biothreats. Demand for rapid detection is also driven by the need to ensure safe food, water, and environmental systems. From a technology perspective, rapid identification methods have largely capitalized on PCR and other molecular recognition techniques that can be deployed as robust field instrumentation. Examples of the relevant needs include the ability to: 1) declare a water distribution system free of microbial pathogens after a pipe/main break repair; 2) assess risks of contamination such as when produce production and processing plants are located near concentrated animal feeing operations; 3) evaluate the safety of ready-to-eat products; 4) determine the extent of potential serious disease outbreaks in remote and/or disaster stricken areas where access to clinical laboratories is not an immediate option; and 5) quickly assess credible biological terrorism events. Many of the principles underlying rapid detection methods are derived from methods for environmental microbiology, but there is a dearth of literature describing and evaluating field-based detection systems. Thus, the aims of this chapter are to: 1) summarize the different kinds of commercially available sampling kits and field-based biological detectors; 2) highlight some of the continued challenges of sample preparation to stimulate new research towards minimizing the impact of inhibitors on PCR-based detection systems; 3) describe our general rationale and statistically-based approach for instrument evaluation; 4) provide statistical and spatial guidelines for developing valid sampling plans; and 5) summarize some current needs and emerging technologies. This

  20. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches.

    Science.gov (United States)

    Oster, Ryan J; Wijesinghe, Rasanthi U; Haack, Sheridan K; Fogarty, Lisa R; Tucker, Taaja R; Riley, Stephen C

    2014-12-16

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10 E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management.

  1. Bacterial enteric pathogens and serum interleukin-6 levels in children with acute diarrhea

    Directory of Open Access Journals (Sweden)

    Herlina Herlina

    2016-07-01

    Conclusion Serum IL-6 levels are significantly more elevated in children with acute diarrhea and bacterial enteric pathogens. Therefore, serum IL-6 may be a useful marker for early identification of bacterial gastroenteritis in children aged 1-5 years. [Paediatr Indones. 2016;56:144-8.].

  2. Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Givskov, Michael Christian

    2007-01-01

    -mediated killing or growth inhibition would be to attenuate the bacteria with respect to pathogenicity. The realization that Pseudomonas aeruginosa, and a number of other pathogens, controls much of their virulence arsenal by means of extracellular signal molecules in a process denoted quorum sensing (QS) gave...... is likely to increase the susceptibility of the infecting organism to host defences and its clearance from the host. The use of QS signal blockers to attenuate bacterial pathogenicity, rather than bacterial growth, is therefore highly attractive, particularly with respect to the emergence of multi...

  3. [Influence of human gastrointestinal tract bacterial pathogens on host cell apoptosis].

    Science.gov (United States)

    Wronowska, Weronika; Godlewska, Renata; Jagusztyn-Krynicka, Elzbieta Katarzyna

    2005-01-01

    Several pathogenic bacteria are able to trigger apoptosis in the host cell, but the mechanisms by which it occurs differ, and the resulting pathology can take different courses. Induction and/or blockage of programmed cell death upon infection is a result of complex interaction of bacterial proteins with cellular proteins involved in signal transduction and apoptosis. In this review we focus on pro/anti-apoptotic activities exhibited by two enteric pathogens Salmonella enterica, Yersinia spp. and gastric pathogen Helicobacter pylori. We present current knowledge on how interaction between mammalian and bacterial cell relates to the molecular pathways of apoptosis, and what is the role of apoptosis in pathogenesis.

  4. Detecting Cortex Fragments During Bacterial Spore Germination.

    Science.gov (United States)

    Francis, Michael B; Sorg, Joseph A

    2016-06-25

    The process of endospore germination in Clostridium difficile, and other Clostridia, increasingly is being found to differ from the model spore-forming bacterium, Bacillus subtilis. Germination is triggered by small molecule germinants and occurs without the need for macromolecular synthesis. Though differences exist between the mechanisms of spore germination in species of Bacillus and Clostridium, a common requirement is the hydrolysis of the peptidoglycan-like cortex which allows the spore core to swell and rehydrate. After rehydration, metabolism can begin and this, eventually, leads to outgrowth of a vegetative cell. The detection of hydrolyzed cortex fragments during spore germination can be difficult and the modifications to the previously described assays can be confusing or difficult to reproduce. Thus, based on our recent report using this assay, we detail a step-by-step protocol for the colorimetric detection of cortex fragments during bacterial spore germination.

  5. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    Directory of Open Access Journals (Sweden)

    Derrick E Fouts

    2016-02-01

    Full Text Available Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1 the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2 genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12 autotrophy as a bacterial virulence factor; 3 CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4 finding Leptospira pathogen-specific specialized protein secretion systems; 5 novel virulence-related genes/gene families such as the Virulence Modifying (VM (PF07598 paralogs proteins and pathogen-specific adhesins; 6 discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7 and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately

  6. Autonomous system for pathogen detection and identification

    Energy Technology Data Exchange (ETDEWEB)

    Belgrader, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benett, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergman, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Langlois, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mariella, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Milanovich, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Miles, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Venkateswaran, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Long, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nelson, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1998-09-24

    This purpose of this project is to build a prototype instrument that will, running unattended, detect, identify, and quantify BW agents. In order to accomplish this, we have chosen to start with the world' s leading, proven, assays for pathogens: surface-molecular recognition assays, such as antibody-based assays, implemented on a high-performance, identification (ID)-capable flow cytometer, and the polymerase chain reaction (PCR) for nucleic-acid based assays. With these assays, we must integrate the capability to: l collect samples from aerosols, water, or surfaces; l perform sample preparation prior to the assays; l incubate the prepared samples, if necessary, for a period of time; l transport the prepared, incubated samples to the assays; l perform the assays; l interpret and report the results of the assays. Issues such as reliability, sensitivity and accuracy, quantity of consumables, maintenance schedule, etc. must be addressed satisfactorily to the end user. The highest possible sensitivity and specificity of the assay must be combined with no false alarms. Today, we have assays that can, in under 30 minutes, detect and identify simulants for BW agents at concentrations of a few hundred colony-forming units per ml of solution. If the bio-aerosol sampler of this system collects 1000 Ymin and concentrates the respirable particles into 1 ml of solution with 70% processing efficiency over a period of 5 minutes, then this translates to a detection/ID capability of under 0.1 agent-containing particle/liter of air.

  7. Essential roles for platelets during neutrophil-dependent or lymphocyte-mediated defense against bacterial pathogens.

    Science.gov (United States)

    Wang, Zheng; Zhao, Qi; Zhang, Dongxia; Sun, Chengming; Bao, Cuixia; Yi, Maoli; Xing, Li; Luo, Deyan

    2016-09-01

    Emerging evidence from animal models suggests that platelets may participate in a wide variety of processes including the immune response against infection. More than 200 whole blood samples from patients and healthy controls were run in the System XE-5000 analyzer, and plasma fractions were separated for the following tests by ELISA, Luminex and light scattering. We describe two mechanisms by which platelets may contribute to immune function against various bacterial pathogens based on increased mean platelet volume in gram-positive bacterial infections and increased platelet counts in gram-negative bacterial infections. Gram-negative bacteria activate platelets to recruit neutrophils, which participate in the immune response against infection. During this process, fractalkine, macrophage inflammatory protein-1β, interleukin-17A, tumor necrosis factor-α and platelet-activating factor were higher in patients infected with Escherichia coli; additionally, giant platelets were observed under the microscope. Meanwhile, we found that platelets played a different role in gram-positive bacterial infections. Specifically, they could actively adhere to gram-positive bacteria in circulation and transfer them to immune sites to promote antibacterial lymphocyte expansion. During this process, complement C3 and factor XI were more highly expressed in patients infected with Staphylococcus aureus; additionally, we detected more small platelets under the microscope. Platelets participate in the immune response against both gram-negative and gram-positive bacteria, although the mechanisms differ. These results will help us understand the complex roles of platelets during infections, and direct our use of antibiotics based on clinical platelet data.

  8. Aptamer-Based Technologies in Foodborne Pathogen Detection

    Science.gov (United States)

    Teng, Jun; Yuan, Fang; Ye, Yingwang; Zheng, Lei; Yao, Li; Xue, Feng; Chen, Wei; Li, Baoguang

    2016-01-01

    Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome. PMID:27672383

  9. Aptamer-Based Technologies in Foodborne Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Jun Teng

    2016-09-01

    Full Text Available Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX; and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the first and critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make to accurate assessments on the risk of infections (humans and animals or contaminations (foods and other commodities caused by various pathogens. This article reviews the developments in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development of aptamer-based biosensors including optical biosensors for multiple pathogen detection in multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors, and lateral chromatography test strips, and their applications in the pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening, remain to be overcome.

  10. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen

    KAUST Repository

    Weynberg, Karen D.

    2015-12-08

    Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements.

  11. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen

    Science.gov (United States)

    Weynberg, Karen D.; Voolstra, Christian R.; Neave, Matthew J.; Buerger, Patrick; van Oppen, Madeleine J. H.

    2015-01-01

    Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements. PMID:26644037

  12. Adenosine Monophosphate-Based Detection of Bacterial Spores

    Science.gov (United States)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  13. Structured literature review of responses of cattle to viral and bacterial pathogens causing bovine respiratory disease complex.

    Science.gov (United States)

    Grissett, G P; White, B J; Larson, R L

    2015-01-01

    Bovine respiratory disease (BRD) is an economically important disease of cattle and continues to be an intensely studied topic. However, literature summarizing the time between pathogen exposure and clinical signs, shedding, and seroconversion is minimal. A structured literature review of the published literature was performed to determine cattle responses (time from pathogen exposure to clinical signs, shedding, and seroconversion) in challenge models using common BRD viral and bacterial pathogens. After review a descriptive analysis of published studies using common BRD pathogen challenge studies was performed. Inclusion criteria were single pathogen challenge studies with no treatment or vaccination evaluating outcomes of interest: clinical signs, shedding, and seroconversion. Pathogens of interest included: bovine viral diarrhea virus (BVDV), bovine herpesvirus type 1 (BHV-1), parainfluenza-3 virus, bovine respiratory syncytial virus, Mannheimia haemolytica, Mycoplasma bovis, Pastuerella multocida, and Histophilus somni. Thirty-five studies and 64 trials were included for analysis. The median days to the resolution of clinical signs after BVDV challenge was 15 and shedding was not detected on day 12 postchallenge. Resolution of BHV-1 shedding resolved on day 12 and clinical signs on day 12 postchallenge. Bovine respiratory syncytial virus ceased shedding on day 9 and median time to resolution of clinical signs was on day 12 postchallenge. M. haemolytica resolved clinical signs 8 days postchallenge. This literature review and descriptive analysis can serve as a resource to assist in designing challenge model studies and potentially aid in estimation of duration of clinical disease and shedding after natural pathogen exposure.

  14. Hijacking host cell highways: manipulation of the host actin cytoskeleton by obligate intracellular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Punsiri M Colonne

    2016-09-01

    Full Text Available Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, subversion of cell intrinsic immunity, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions.

  15. Development and application of the active surveillance of pathogens microarray to monitor bacterial gene flux

    Directory of Open Access Journals (Sweden)

    Hinds Jason

    2008-10-01

    Full Text Available Abstract Background Human and animal health is constantly under threat by emerging pathogens that have recently acquired genetic determinants that enhance their survival, transmissibility and virulence. We describe the construction and development of an Active Surveillance of Pathogens (ASP oligonucleotide microarray, designed to 'actively survey' the genome of a given bacterial pathogen for virulence-associated genes. Results The microarray consists of 4958 reporters from 151 bacterial species and include genes for the identification of individual bacterial species as well as mobile genetic elements (transposons, plasmid and phage, virulence genes and antibiotic resistance genes. The ASP microarray was validated with nineteen bacterial pathogens species, including Francisella tularensis, Clostridium difficile, Staphylococcus aureus, Enterococcus faecium and Stenotrophomonas maltophilia. The ASP microarray identified these bacteria, and provided information on potential antibiotic resistance (eg sufamethoxazole resistance and sulfonamide resistance and virulence determinants including genes likely to be acquired by horizontal gene transfer (e.g. an alpha-haemolysin. Conclusion The ASP microarray has potential in the clinic as a diagnostic tool, as a research tool for both known and emerging pathogens, and as an early warning system for pathogenic bacteria that have been recently modified either naturally or deliberately.

  16. A Selective Chromogenic Plate, YECA, for the Detection of Pathogenic Yersinia enterocolitica: Specificity, Sensitivity, and Capacity to Detect Pathogenic Y. enterocolitica from Pig Tonsils

    Directory of Open Access Journals (Sweden)

    M. Denis

    2011-01-01

    Full Text Available A new selective chromogenic plate, YECA, was tested for its specificity, sensitivity, and accuracy to detect pathogenic Y. enterocolitica from pig tonsils. We tested a panel of 26 bacterial strains on YECA and compared it to PCA, CIN, and YeCM media. Detection of pathogenic Y. enterocolitica was carried out on 50 pig tonsils collected in one slaughter house. Enrichment was done in PSB and ITC broths. Streaking on YECA and CIN was done in direct, after 24H incubation of ITC, after 48H incubation of PSB and ITC. All the plates were incubated at 30∘C during 24 hours. Presence of typical colonies on CIN and YECA was checked, and isolates were biotyped. Pathogenic Y. enterocolitica strains showed an important growth on YECA with small and red fuchsia colonies while biotype 1A exhibited very few violet colonies. Enrichment in ITC during 48H gave the best performance for detecting positive samples in pathogenic Y. enterocolitica, and YECA could detect directly pathogenic Y. enterocolitica strains (2, 3, and 4. Use of YECA in combination with ITC generates a time-saver by giving a positive test in 72H.

  17. Internalization of bacterial pathogens in tomatoes and their control by selected chemicals.

    Science.gov (United States)

    Ibarra-Sánchez, L S; Alvarado-Casillas, S; Rodríguez-García, M O; Martínez-Gonzáles, N E; Castillo, A

    2004-07-01

    The effect of different washing or sanitizing agents was compared for preventing or reducing surface and internal contamination of tomatoes by Salmonella Typhimurium and Escherichia coli O157:H7. The tomatoes were inoculated by dipping them in a bacterial suspension containing approximately 6.0 log CFU/ml of each pathogen and then rinsing them with tap water, hypochlorite solution (250 mg/liter), or lactic acid solution (2%, wt/vol). All treatments were applied by dipping or spraying, and solutions were applied at 5, 25, 35, and 55 degrees C. With the exception of the lactic acid dip at 5 degrees C, all treatments reduced both pathogens on the surfaces of the tomatoes by at least 2.9 cycles. No significantly different results were obtained (P > 0.05) with the dipping and spraying techniques. For internalized pathogens, the mean counts for tomatoes treated with water alone or with chlorine ranged from 0.8 to 2.1 log CFU/g. In contrast, after lactic acid spray treatment, all core samples of tomatoes tested negative for Salmonella Typhimurium and, except for one sample with a low but detectable count, all samples tested negative for E. coli O157:H7 with a plate count method. When the absence of pathogens was verified by an enrichment method, Salmonella was not recovered from any samples, whereas two of four samples tested positive for E. coli O157:H7 even though the counts were negative. Few cells of internalized pathogens were able to survive in the center of the tomato during storage at room temperature (25 to 28 degrees C). The average superficial pH of tomatoes treated with tap water, chlorine, or lactic acid was 4.9 to 5.2, 4.1 to 4.3, and 2.5, respectively (P tomatoes treated with different sanitizers. The general practice in the tomato industry is to wash the tomatoes in chlorinated water. However, chlorine is rapidly degraded by organic matter usually present in produce. Therefore, lactic acid sprays may be a more effective alternative for decontaminating

  18. Rapid identification and detection of pathogenic Fungi by padlock probes

    NARCIS (Netherlands)

    Tsui, C.K.M.; Wang, B.; Schoen, C.D.; Hamelin, R.C.

    2013-01-01

    Fungi are important pathogens of human diseases, as well as to agricultural crop and trees. Molecular diagnostics can detect diseases early, and improve identification accuracy and follow-up disease management. The use of padlock probe is effective to facilitate these detections and pathogen identif

  19. Recent Advancements in Nanobioassays and Nanobiosensors for Foodborne Pathogenic Bacteria Detection.

    Science.gov (United States)

    Chen, Jing; Park, Bosoon

    2016-06-01

    Bacterial pathogens are one of the leading causes of food safety incidents and product recalls worldwide. Timely detection and identification of microbial contamination in agricultural and food products is crucial for disease prevention and outbreak investigation. In efforts to improve and/or replace time-consuming and laborious "gold standards" for pathogen detection, numerous alternative rapid methods have been proposed in the past 15 years, with a trend toward incorporating nanotechnology and nanomaterials in food pathogen detection. This article is a review of the use of nanotechnology in various detection and sample preparation techniques and advancements in nanotechnology applications in food matrices. Some practical considerations in nanobioassay design are discussed, and the gaps between research status quo and market demands are identified.

  20. A Comparison of In-House Real-Time LAMP Assays with a Commercial Assay for the Detection of Pathogenic Bacteria

    OpenAIRE

    Deguo Wang; Yongzhen Wang; Fugang Xiao; Weiyun Guo; Yongqing Zhang; Aiping Wang; Yanhong Liu

    2015-01-01

    Molecular detection of bacterial pathogens based on LAMP methods is a faster and simpler approach than conventional culture methods. Although different LAMP-based methods for pathogenic bacterial detection are available, a systematic comparison of these different LAMP assays has not been performed. In this paper, we compared 12 in-house real-time LAMP assays with a commercialized kit (Isothermal Master Mix) for the detection of Listeria monocytogenes, Salmonella spp, Staphylococcus aureus, E...

  1. Bacterial pathogens in rainbow trout, Oncorhynchus mykiss (Walbaum), reared at Danish freshwater farms

    DEFF Research Database (Denmark)

    Dalsgaard, Inger; Madsen, Lone

    2000-01-01

    During a 2-year period, bacterial fish pathogens were monitored on five rainbow trout, Oncorhynchus mykirs (Walbaum), freshwater farms in Denmark. A total of 1206 fish were examined and 361 bacterial isolates were identified phenotypically. Enteric redmouth disease, furunculosis and rainbow trout....... psychrophilum isolates showed resistance to oxolinic acid and oxytetracycline. No antibiotic resistant isolates were found among Y. ruckeri and A. salmonicida.......During a 2-year period, bacterial fish pathogens were monitored on five rainbow trout, Oncorhynchus mykirs (Walbaum), freshwater farms in Denmark. A total of 1206 fish were examined and 361 bacterial isolates were identified phenotypically. Enteric redmouth disease, furunculosis and rainbow trout...... of fry and larger fish. All isolates of F. psychrophilum showed proteolytic activities; however, a few isolates, belonging to serotype Fp(T) did not degrade elastin and were not associated with mortality. Increasing resistance problems to oxytetracycline were demonstrated. More than half of the F...

  2. Investigation of Anti-bacterial Activity against Food-borne Pathogens among Korean Domestic Algae

    Directory of Open Access Journals (Sweden)

    Ki-hyo Jang

    2015-03-01

    Full Text Available The aim of this study is to explore algal species with anti-bacterial activity against six food-borne pathogens. Among 51 marine algae, Laurencia okamurae Yamada and Dictyopteris undulata Holmes was elucidated to have a potent anti-bacterial activity against food-borne pathogens. Laurencia okamurae Yamada showed the clear zone around agar well on B. cereus, S. aureusand L. monocytogenes-spreading agar plate. Dictyopteris undulata Holmes had the anti-bacterial activity against S. chorelaesuis, B. cereus, S. aureus and L. monocytogenes on bacterial spreading agar plates. Antibacterial activity of L. okamurae Yamada and D. undulata Holmes had specifically susceptibility for B. cereus, S. aureus and L. monocytogenes and were superior to streptomycin, the authentic antibiotics. It is anticipated that new food preservatives can be explored and developed on the basis of this study.

  3. Bioinformatics analysis of bacterial pathogens from East African camels

    OpenAIRE

    Zubair, Saima

    2015-01-01

    The camel is the most valuable livestock species in arid and semi-arid regions in the Greater Horn of Africa. Streptococcus agalactiae and Staphylococcus aureus are important pathogens for a wide range of hosts including camels, cattle and humans. Streptococcus agalactiae has been reported to cause infections of the skin, the respiratory tract, the mammary gland and the vaginal tract in camels. Staphylococcus aureus has been isolated from the nasal cavity, wound infections and mastitis from c...

  4. Inhibitory effect of Lactobacillus rhamnosus on pathogenic bacteria isolated from women with bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Gita Eslami

    2014-06-01

    Full Text Available Background: Considering the high prevalence of bacterial vaginosis and its association with urinary tract infection in women and treatment of gynecologic problems occur when a high recurrence of bacterial vaginosis is often treated with antibiotics. The purpose of this study is to investigate the inhibitory effect of Lactobacillus rhamnosus on pathogenic bacteria isolated from women with bacterial vaginosis, respectively.Materials and Methods: 96 samples from women with bacterial vaginosis discharge referred to health centers dependent Shahid Beheshti University in 91-92 were taken by a gynecologist with a dacron swab and put in sterile tubes containing TSB broth and Thioglycollate broth and were immediately sent to the lab location in cold chain for the next stages of investigation. From Thioglycollate and TSB medium was cultured on blood agar and EMB and Palkam and Differential diagnosis environments, and then incubated for 24 h at 37°C. Strains of Lactobacillus rhamnosus were cultured in MRSA environment and were transfered to the lab. After purification of pathogenic bacteria, MIC methods and antibiogram, Lactobacillus rhamnosus inhibitory effect on pathogenic bacteria is checked. Statistical analysis was done by SPSS software v.16.Results: The results of this study show the inhibitory effect of Lactobacillus rhamnosus on some pathogenic bacteria that cause bacterial vaginosis, including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Entrococcus, Listeria monocytogenes and E.Coli. Microscopic examination of stained smears of the large number of Lactobacillus and pathogenic bacteria showed reduced. The prevalence of abnormal vaginal discharge, history of drug use means of preventing pregnancy and douching, respectively, 61%, 55%, 42% and 13% respectively. Significant difference was observed between the use and non-use of IUD in women with bacterial vaginosis infection

  5. Pulmonary bacterial pathogens in cystic fibrosis patients and antibiotic therapy: a tool for the health workers

    OpenAIRE

    Coutinho, Henrique Douglas M.; Falcão-Silva,Vivyanne S.; Gonçalves, Gregório Fernandes

    2008-01-01

    Cystic fibrosis is the most common and best known genetic disease involving a defect in transepithelial Cl- transport by mutations in the CF gene on chromosome 7, which codes for the cystic fibrosis transmembrane conductance regulator protein (CFTR). The most serious symptoms are observed in the lungs, augmenting the risk of bacterial infection. The objective of this review was to describe the bacterial pathogens colonizing patients with cystic fibrosis. A systematic search was conducted usin...

  6. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Matthew D Dyer

    Full Text Available BACKGROUND: Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion. METHODOLOGY: In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity. SIGNIFICANCE: These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.

  7. Meeting current public health needs: optical biosensors for pathogen detection and analysis

    Science.gov (United States)

    Yang, Minghui; Sapsford, Kim E.; Sergeev, Nikolay; Sun, Steven; Rasooly, Avraham

    2009-02-01

    Pathogen detection and analysis is critical for medicine, food safety, agriculture, public health and biosecurity. Many current microbial detection approaches are based on century-old culturing methods which, while reliable, are slow, provide relatively little information about the pathogens and are not adaptable to high throughput operations. Optical biodetection represents a potential alternative. Most ELISA and chromatography systems are based on optical methods that are also used for analysis of molecular interactions, such as DNA hybridization and protein-protein interactions (e.g. microarrays or SPR biosensors). Various optical biosensor platforms have been developed that have many of the characteristics essential for modern pathogen molecular analysis including sensitivity, speed of analysis, multi-channel capability, relative simplicity and low cost. Here we provide several examples of the use of optical biosensor technology for pathogen detection and analysis including high throughput DNA microarray analysis, SPR-based rapid direct detection of bacterial toxins, CCD-based fluorescent activity analysis of microbial toxins and a simple ECL-based CCD detection system. However, while effective for molecular analysis, most of these technologies are not as sensitive as traditional culturing methods for detecting microorganisms. There is a need to combine optical biosensors with traditional methods to speed culture-based detection and to provide more information regarding the pathogens.

  8. Rapid detection of intestinal pathogens in fecal samples by an improved reverse dot blot method

    Institute of Scientific and Technical Information of China (English)

    Jian-Ming Xing; Su Zhang; Ying Du; Dan Bi; Li-Hui Yao

    2009-01-01

    AIM:To develop a new, rapid and accurate reverse dot blot (RDB) method for the detection of intestinal pathogens in fecal samples.METHODS:The 12 intestinal pathogens tested were Salmonella spp., Brucella spp., Escherichia coli O157:H7,Clostridium botulinum, Bacillus cereus,Clostridium perfringens, Vibrio parahaemolyticus,Shigella spp., Yersinia enterocolitica, Vibrio cholerae,Listeria monocytogenes and Staphylococcus aureus.The two universal primers were designed to amplify two variable regions of bacterial 16S and 23S rDNA genes from all of the 12 bacterial species tested. Five hundred and forty fecal samples from the diarrhea patients were detected using the improved RDB assay.RESULTS:The methods could identify the 12 intestinal pathogens specifically, and the detection limit was as low as 103 CFUs. The consistent detection rate of the improved RDB assay compared with the traditional culture method was up to 88.75%.CONCLUSION:The hybridization results indicated that the improved RDB assay developed was a reliable method for the detection of intestinal pathogen in fecal samples.

  9. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    Science.gov (United States)

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors.

  10. Viral and Bacterial Pathogens in Bovine Respiratory Disease in Finland

    Directory of Open Access Journals (Sweden)

    Soveri T

    2004-12-01

    Full Text Available Pathogens causing bovine respiratory tract disease in Finland were investigated. Eighteen cattle herds with bovine respiratory disease were included. Five diseased calves from each farm were chosen for closer examination and tracheobronchial lavage. Blood samples were taken from the calves at the time of the investigation and from 86 calves 3–4 weeks later. In addition, 6–10 blood samples from animals of different ages were collected from each herd, resulting in 169 samples. Serum samples were tested for antibodies to bovine parainfluenza virus-3 (PIV-3, bovine respiratory syncytial virus (BRSV, bovine coronavirus (BCV, bovine adenovirus-3 (BAV-3 and bovine adenovirus-7 (BAV-7. About one third of the samples were also tested for antibodies to bovine virus diarrhoea virus (BVDV with negative results. Bacteria were cultured from lavage fluid and in vitro susceptibility to selected antimicrobials was tested. According to serological findings, PIV-3, BAV-7, BAV-3, BCV and BRSV are common pathogens in Finnish cattle with respiratory problems. A titre rise especially for BAV-7 and BAV-3, the dual growth of Mycoplasma dispar and Pasteurella multocida, were typical findings in diseased calves. Pasteurella sp. strains showed no resistance to tested antimicrobials. Mycoplasma bovis and Mannheimia haemolytica were not found.

  11. Detection of bacterial pathogens in bronchoalveolar lavage fluid by multiplex PCR%多重PCR检测支气管肺泡灌洗液中细菌性病原体的研究

    Institute of Scientific and Technical Information of China (English)

    向彩云; 金海山; 庹照林

    2011-01-01

    Aim To evaluate the accuracy of detection of bronchoalveolar lavage samples from patients with lower respiratory tract infection using multiplex PCR. Methods There 158 child inpatients infected bacteria were selected from 2006 to 2009 and 30 health children needed fiberoptic bronchoscopy were as control. All children received standard fiberoptic bronchoscopy mediated bronchoalveolar lavage within 24h. Multiplex PCR were used for detection of Streptococcus pneumoniae ,Haemophilus influenzae ,Mycoplasma pneumoniae and Chlamydia pneumoniae in bronchoalveolar lavage fluid. The lavage fluid of these patients were also analyzed by bacterial culture. Results The infection rates of Streptococcus pneumoniae ,Haemophilus influenzae ,Mycoplasma pneumoniae ,Chlamydia pneumoniae in patients with lower respiratory tract infections by routine bacteriological diagnosis accounted for 14%, 21%, 3.2%, and 0%;while that of multiplex PCR were accounted for 28% ,47% ,4% and 1%. The sensitivity were 87%,90%, 100% and 0% and the specificity were 81% ,64%, 100% and 99%. Streptococcus pneumoniae infection rate confirmed by bacterial culture was 2.9% ,while compared to 31% by multiple PCR in 104 bronchoscopy patients given antibiotics before examination. The proportion of Streptococcus pneumoniae and Haemophilus influenzae infection identified by multiplex PCR in control group were 17% and 40%. Conclusion Multiplex PCR in combination with bronchoalvcolar lavage fluid could effectively identify Streptococcus pneumoniae,Haemophilus influenzae,Mycoplasma pneumoniae and Chlamydia pneumoniae infection in the patients with lower respiratory tract infections,especially in diagnosis of patients previously treated with antibiotics.%目的 评价呼吸道感染患者肺泡灌洗标本进行多重PCR检测的准确性.方法 选取2006~2009年本院住院的158例儿童为研究对象,同时选用需要接受纤维支气管镜检查的30例同龄非感染

  12. Large scale comparison of innate responses to viral and bacterial pathogens in mouse and macaque.

    Directory of Open Access Journals (Sweden)

    Guy Zinman

    Full Text Available Viral and bacterial infections of the lower respiratory tract are major causes of morbidity and mortality worldwide. Alveolar macrophages line the alveolar spaces and are the first cells of the immune system to respond to invading pathogens. To determine the similarities and differences between the responses of mice and macaques to invading pathogens we profiled alveolar macrophages from these species following infection with two viral (PR8 and Fuj/02 influenza A and two bacterial (Mycobacterium tuberculosis and Francisella tularensis Schu S4 pathogens. Cells were collected at 6 time points following each infection and expression profiles were compared across and between species. Our analyses identified a core set of genes, activated in both species and across all pathogens that were predominantly part of the interferon response pathway. In addition, we identified similarities across species in the way innate immune cells respond to lethal versus non-lethal pathogens. On the other hand we also found several species and pathogen specific response patterns. These results provide new insights into mechanisms by which the innate immune system responds to, and interacts with, invading pathogens.

  13. Recent developments in pathogen detection arrays: implications for fungal plant pathogens and use in practica

    NARCIS (Netherlands)

    Lievens, B.; Thomma, B.P.H.J.

    2005-01-01

    The failure to adequately identify plant pathogens from culture-based morphological techniques has led to the development of culture-independent molecular approaches. Increasingly, diagnostic laboratories are pursuing fast routine methods that provide reliable identification, sensitive detection, an

  14. Rapid methods: the detection of foodborne pathogens

    NARCIS (Netherlands)

    Beumer, R.R.; Hazeleger, W.C.

    2009-01-01

    Although bacteria are the first type of microorganisms that come to mind when discussing microbial food safety, they are by no means the only pathogenic foodborne microorganisms. Mycotoxin producing moulds, human enteric viruses, protozoan parasites and marine biotoxins are also of importance. Howev

  15. Microfluidic system for the identification of bacterial pathogens causing urinary tract infections

    Science.gov (United States)

    Becker, Holger; Hlawatsch, Nadine; Haraldsson, Tommy; van der Wijngaart, Wouter; Lind, Anders; Malhotra-Kumar, Surbi; Turlej-Rogacka, Agata; Goossens, Herman

    2015-03-01

    Urinary tract infections (UTIs) are among the most common bacterial infections and pose a significant healthcare burden. The growing trend in antibiotic resistance makes it mandatory to develop diagnostic kits which allow not only the determination of a pathogen but also the antibiotic resistances. We have developed a microfluidic cartridge which takes a direct urine sample, extracts the DNA, performs an amplification using batch-PCR and flows the sample over a microarray which is printed into a microchannel for fluorescence detection. The cartridge is injection-molded out of COP and contains a set of two-component injection-molded rotary valves to switch between input and to isolate the PCR chamber during thermocycling. The hybridization probes were spotted directly onto a functionalized section of the outlet microchannel. We have been able to successfully perform PCR of E.coli in urine in this chip and perform a fluorescence detection of PCR products. An upgraded design of the cartridge contains the buffers and reagents in blisters stored on the chip.

  16. A bacterial pathogen uses distinct type III secretion systems to alternate between host kingdoms

    Science.gov (United States)

    Plant and animal-pathogenic bacteria utilize phylogenetically distinct type III secretion systems (T3SS) that produce needle-like injectisomes or pili for the delivery of effector proteins into host cells. Pantoea stewartii subsp. stewartii (Pnss), the causative agent of Stewart’s bacterial wilt and...

  17. Analysis of apple (Malus) responses to bacterial pathogens using an oligo microarray

    Science.gov (United States)

    Fire blight is a devastating disease of apple (Malus x domestica) caused by the bacterial pathogen Erwinia amylovora (Ea). When infiltrated into host leaves, Ea induces reactions similar to a hypersensitive response (HR). Type III (T3SS) associated effectors, especially DspA/E, are suspected to ha...

  18. Importance of soil amendments: survival of bacterial pathogens in manure and compost used as organic fertizliers

    Science.gov (United States)

    Biological soil amendments (BSA’s) like manure and compost are frequently used as organic fertilizers to soils to improve its physical and chemical properties. However, BSAs have been known to be a reservoir for enteric bacterial pathogens like enterohemorrhagic E. coli, Salmonella spp, and Listeri...

  19. Antibacterial activity of plant extracts on foodborne bacterial pathogens and food spoilage bacteria

    Science.gov (United States)

    Bacterial foodborne diseases are caused by consumption of foods contaminated with bacteria and/or their toxins. In this study, we evaluated antibacterial properties of twelve different extracts including turmeric, lemon and different kinds of teas against four major pathogenic foodborne bacteria inc...

  20. Complete genome sequence of Japanese erwinia strain ejp617, a bacterial shoot blight pathogen of pear.

    Science.gov (United States)

    Park, Duck Hwan; Thapa, Shree Prasad; Choi, Beom-Soon; Kim, Won-Sik; Hur, Jang Hyun; Cho, Jun Mo; Lim, Jong-Sung; Choi, Ik-Young; Lim, Chun Keun

    2011-01-01

    The Japanese Erwinia strain Ejp617 is a plant pathogen that causes bacterial shoot blight of pear in Japan. Here, we report the complete genome sequence of strain Ejp617 isolated from Nashi pears in Japan to provide further valuable insight among related Erwinia species.

  1. The role and regulation of catalase in respiratory tract opportunistic bacterial pathogens.

    Science.gov (United States)

    Eason, Mia M; Fan, Xin

    2014-09-01

    Respiratory tract bacterial pathogens are the etiologic agents of a variety of illnesses. The ability of these bacteria to cause disease is imparted through survival within the host and avoidance of pathogen clearance by the immune system. Respiratory tract pathogens are continually bombarded by reactive oxygen species (ROS), which may be produced by competing bacteria, normal metabolic function, or host immunological responses. In order to survive and proliferate, bacteria have adapted defense mechanisms to circumvent the effects of ROS. Bacteria employ the use of anti-oxidant enzymes, catalases and catalase-peroxidases, to relieve the effects of the oxidative stressors to which they are continually exposed. The decomposition of ROS has been shown to provide favorable conditions in which respiratory tract opportunistic bacterial pathogens such as Haemophilus influenzae, Mycobacterium tuberculosis, Legionella pneumophila, and Neisseria meningitidis are able to withstand exposure to highly reactive molecules and yet survive. Bacteria possessing mutations in the catalase gene have a decreased survival rate, yet may be able to compensate for the lack of catalatic activity if peroxidatic activity is present. An incomplete knowledge of the mechanisms by which catalase and catalase-peroxidases are regulated still persists, however, in some bacterial species, a regulatory factor known as OxyR has been shown to either up-regulate or down-regulate catalase gene expression. Yet, more research is still needed to increase the knowledge base in relation to this enzyme class. As with this review, we focus on major respiratory tract opportunistic bacterial pathogens in order to elucidate the function and regulation of catalases. The importance of the research could lead to the development of novel treatments against respiratory bacterial infections.

  2. Minimum Inhibitory Concentration Analysis of Nerium oleander against Bacterial Pathogens

    Institute of Scientific and Technical Information of China (English)

    M Abu Hena Mostofa Jamal; Shahedur Rahman; Md Azizul Islam; Md Rezaul Karim; Md Samsul Alam; Md Ziaur Rahman

    2012-01-01

    Objective: In this present study, it is tried to find out the antimicrobial effect and Minimum Inhibitory Concentration (MIC) of Nerium oleander against Bacillus subtilis (IFO 3026), Sarcina lutea (IFO 3232), Escherichia coli (IFO 3007) and Klebsiella Pneumoniae (ATTC 10031). Methods:Powered leaves were prepared and used for extraction with various solvents, viz, the petroleum ether, and chloroform extract of the oleander. All the solvent extracts were evaporated to dryness. Using the disc diffusion method, the bacterial growth were inhibited, Results: Among the solvent extracts tested, petroleum ether extract inhibited the growth of all the tested bacteria having various degrees of inhibition zones. Highest inhibitory activity was observed against E. coli (1.9 cm) and minimum inhibitory concentration was observed 2μg/ml also against E. coli. Both results were observed in case of petroleum ether extract. Petroleum ether extract also showed inhibitory zones of 1.8 cm, 1.4 cm and 1.5cm against B. subtilis, S. lutea and K. pneumoniae. On the other hand chloroform extract was observed to have inhibition zones of 1.2 cm, 1.6 cm, 1.8 cm and 1.5 cm against B. subtilis, S. lutea, E. coli and K. pneumoniae respectively. Conclusions: The study demonstrated that the petroleum ether extract of N. oleander is potentially good source of antibacterial agents. Further evaluation is necessary to identify the specific bioactive compounds, their mode of action and their nontoxic nature in vivo condition.

  3. Advances in rapid detection methods for foodborne pathogens.

    Science.gov (United States)

    Zhao, Xihong; Lin, Chii-Wann; Wang, Jun; Oh, Deog Hwan

    2014-03-28

    Food safety is increasingly becoming an important public health issue, as foodborne diseases present a widespread and growing public health problem in both developed and developing countries. The rapid and precise monitoring and detection of foodborne pathogens are some of the most effective ways to control and prevent human foodborne infections. Traditional microbiological detection and identification methods for foodborne pathogens are well known to be time consuming and laborious as they are increasingly being perceived as insufficient to meet the demands of rapid food testing. Recently, various kinds of rapid detection, identification, and monitoring methods have been developed for foodborne pathogens, including nucleic-acid-based methods, immunological methods, and biosensor-based methods, etc. This article reviews the principles, characteristics, and applications of recent rapid detection methods for foodborne pathogens.

  4. A Bacterial Pathogen Displaying Temperature-Enhanced Virulence of the Microalga Emiliania huxleyi.

    Science.gov (United States)

    Mayers, Teaghan J; Bramucci, Anna R; Yakimovich, Kurt M; Case, Rebecca J

    2016-01-01

    Emiliania huxleyi is a globally abundant microalga that plays a significant role in biogeochemical cycles. Over the next century, sea surface temperatures are predicted to increase drastically, which will likely have significant effects on the survival and ecology of E. huxleyi. In a warming ocean, this microalga may become increasingly vulnerable to pathogens, particularly those with temperature-dependent virulence. Ruegeria is a genus of Rhodobacteraceae whose population size tracks that of E. huxleyi throughout the alga's bloom-bust lifecycle. A representative of this genus, Ruegeria sp. R11, is known to cause bleaching disease in a red macroalga at elevated temperatures. To investigate if the pathogenicity of R11 extends to microalgae, it was co-cultured with several cell types of E. huxleyi near the alga's optimum (18°C), and at an elevated temperature (25°C) known to induce virulence in R11. The algal populations were monitored using flow cytometry and pulse-amplitude modulated fluorometry. Cultures of algae without bacteria remained healthy at 18°C, but lower cell counts in control cultures at 25°C indicated some stress at the elevated temperature. Both the C (coccolith-bearing) and S (scale-bearing swarming) cell types of E. huxleyi experienced a rapid decline resulting in apparent death when co-cultured with R11 at 25°C, but had no effect on N (naked) cell type at either temperature. R11 had no initial negative impact on C and S type E. huxleyi population size or health at 18°C, but caused death in older co-cultures. This differential effect of R11 on its host at 18 and 25°C suggest it is a temperature-enhanced opportunistic pathogen of E. huxleyi. We also detected caspase-like activity in dying C type cells co-cultured with R11, which suggests that programmed cell death plays a role in the death of E. huxleyi triggered by R11 - a mechanism induced by viruses (EhVs) and implicated in E. huxleyi bloom collapse. Given that E. huxleyi has recently been

  5. DNA microarray-based detection of multiple pathogens: Mycoplasma spp. and Chlamydia spp.

    Science.gov (United States)

    Schnee, Christiane; Sachse, Konrad

    2015-01-01

    Rapid detection of slow-growing or non-culturable microorganisms, such as Mycoplasma spp. and Chlamydia spp., is still a challenge to diagnosticians in the veterinary field. In addition, as epidemiological evidence on the frequency of mixed infections involving two and more bacterial species has been emerging, detection methods allowing simultaneous identification of different pathogens are required. In the present chapter, we describe DNA microarray-based procedures for the detection of 83 Mollicutes species (Mycoplasma assay) and 11 Chlamydia spp. (Chlamydia assay). The assays are suitable for use in a routine diagnostic environment, as well as in microbiological research.

  6. Bacterial Genomics Reveal the Complex Epidemiology of an Emerging Pathogen in Arctic and Boreal Ungulates

    Directory of Open Access Journals (Sweden)

    Taya L. Forde

    2016-11-01

    Full Text Available Northern ecosystems are currently experiencing unprecedented ecological change, largely driven by a rapidly changing climate. Pathogen range expansion, and emergence and altered patterns of infectious disease, are increasingly reported in wildlife at high latitudes. Understanding the causes and consequences of shifting pathogen diversity and host-pathogen interactions in these ecosystems is important for wildlife conservation, and for indigenous populations that depend on wildlife. Among the key questions are whether disease events are associated with endemic or recently introduced pathogens, and whether emerging strains are spreading throughout the region. In this study, we used a phylogenomic approach to address these questions of pathogen endemicity and spread for Erysipelothrix rhusiopathiae, an opportunistic multi-host bacterial pathogen associated with recent mortalities in arctic and boreal ungulate populations in North America. We isolated E. rhusiopathiae from carcasses associated with large-scale die-offs of muskoxen in the Canadian Arctic Archipelago, and from contemporaneous mortality events and/or population declines among muskoxen in northwestern Alaska and caribou and moose in western Canada. Bacterial genomic diversity differed markedly among these locations; minimal divergence was present among isolates from muskoxen in the Canadian Arctic, while in caribou and moose populations, strains from highly divergent clades were isolated from the same location, or even from within a single carcass. These results indicate that mortalities among northern ungulates are not associated with a single emerging strain of E. rhusiopathiae, and that alternate hypotheses need to be explored. Our study illustrates the value and limitations of bacterial genomic data for discriminating between ecological hypotheses of disease emergence, and highlights the importance of studying emerging pathogens within the broader context of environmental and host

  7. Large scale multiplex PCR improves pathogen detection by DNA microarrays

    Directory of Open Access Journals (Sweden)

    Krönke Martin

    2009-01-01

    Full Text Available Abstract Background Medium density DNA microchips that carry a collection of probes for a broad spectrum of pathogens, have the potential to be powerful tools for simultaneous species identification, detection of virulence factors and antimicrobial resistance determinants. However, their widespread use in microbiological diagnostics is limited by the problem of low pathogen numbers in clinical specimens revealing relatively low amounts of pathogen DNA. Results To increase the detection power of a fluorescence-based prototype-microarray designed to identify pathogenic microorganisms involved in sepsis, we propose a large scale multiplex PCR (LSplex PCR for amplification of several dozens of gene-segments of 9 pathogenic species. This protocol employs a large set of primer pairs, potentially able to amplify 800 different gene segments that correspond to the capture probes spotted on the microarray. The LSplex protocol is shown to selectively amplify only the gene segments corresponding to the specific pathogen present in the analyte. Application of LSplex increases the microarray detection of target templates by a factor of 100 to 1000. Conclusion Our data provide a proof of principle for the improvement of detection of pathogen DNA by microarray hybridization by using LSplex PCR.

  8. A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages.

    Science.gov (United States)

    Torres-Barceló, Clara; Arias-Sánchez, Flor I; Vasse, Marie; Ramsayer, Johan; Kaltz, Oliver; Hochberg, Michael E

    2014-01-01

    The evolution of antibiotic resistance in bacteria is a global concern and the use of bacteriophages alone or in combined therapies is attracting increasing attention as an alternative. Evolutionary theory predicts that the probability of bacterial resistance to both phages and antibiotics will be lower than to either separately, due for example to fitness costs or to trade-offs between phage resistance mechanisms and bacterial growth. In this study, we assess the population impacts of either individual or combined treatments of a bacteriophage and streptomycin on the nosocomial pathogen Pseudomonas aeruginosa. We show that combining phage and antibiotics substantially increases bacterial control compared to either separately, and that there is a specific time delay in antibiotic introduction independent of antibiotic dose, that minimizes both bacterial density and resistance to either antibiotics or phage. These results have implications for optimal combined therapeutic approaches.

  9. Interspecies communication between pathogens and immune cells via bacterial membrane vesicles

    Directory of Open Access Journals (Sweden)

    Katerina S Jurkoshek

    2016-11-01

    Full Text Available The production of extracellular vesicles is a universal mechanism for intercellular communication that is conserved across kingdoms. Prokaryotes secrete 50–250 nm membrane vesicles (MVs in a manner that is regulated by environmental stress and is thought to promote survival. Since many types of host-derived stress are encountered during infection, this implies an important role for MV secretion in bacterial pathogenesis. Accordingly, MVs produced by gram-positive and gram-negative pathogens contain toxins, virulence factors, and other molecules that promote survival in the host. However, recent studies have also shown that bacterial MVs are enriched for molecules that stimulate innate and adaptive immune responses. As an example, MVs may serve multiple, important roles in regulating the host response to Mycobacterium tuberculosis (Mtb, an intracellular pathogen that infects lung macrophages and resides within modified phagosomes. Previously, we demonstrated that Mtb secretes MVs during infection that may regulate infected and uninfected immune cells. Our present data demonstrates that Mtb MVs inhibit the functions of macrophages and T cells, but promote MHC-II antigen presentation by dendritic cells. We conclude that bacterial MVs serve dual and opposing roles in the activation of and defense against host immune responses to Mtb and other bacterial pathogens. We also propose that MV secretion is a central mechanism for interspecies communication between bacteria and host cells during infection.

  10. Bottlenecks in the transmission of antibiotic resistance from natural ecosystems to human bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Jose L Martinez

    2012-01-01

    Full Text Available It is generally accepted that resistance genes acquired by human pathogens trough horizontal gene transfer have been originated in environmental, non pathogenic bacteria. As the consequence, there exists an increasing concern on the role that natural, non-clinical ecosystems, may play on the evolution of resistance. Recent studies have shown that the variability of determinants that can provide antibiotic resistance upon their expression in a heterologous host is much larger than what is actually found in human pathogens. Along the review, the role that different processes as founder effect, ecological connectivity, fitness costs or second-order selection may have on the establishment of a specific resistance determinant in the population of bacterial pathogens is analysed.

  11. Molecular detection of plant pathogenic bacteria using polymerase chain reaction single-strand conformation polymorphism.

    Science.gov (United States)

    Srinivasa, Chandrashekar; Sharanaiah, Umesha; Shivamallu, Chandan

    2012-03-01

    The application of polymerase chain reaction (PCR) technology to molecular diagnostics holds great promise for the early identification of agriculturally important plant pathogens. Ralstonia solanacearum, Xanthomoans axonopodis pv. vesicatoria, and Xanthomonas oryzae pv. oryzae are phytopathogenic bacteria, which can infect vegetables, cause severe yield loss. PCR-single-strand conformation polymorphism (PCR-SSCP) is a simple and powerful technique for identifying sequence changes in amplified DNA. The technique of PCR-SSCP is being exploited so far, only to detect and diagnose human bacterial pathogens in addition to plant pathogenic fungi. Selective media and serology are the commonly used methods for the detection of plant pathogens in infected plant materials. In this study, we developed PCR-SSCP technique to identify phytopathogenic bacteria. The PCR product was denatured and separated on a non-denaturing polyacrylamide gel. SSCP banding patterns were detected by silver staining of nucleic acids. We tested over 56 isolates of R. solanacearum, 44 isolates of X. axonopodis pv. vesicatoria, and 20 isolates of X. oryzae pv. oryzae. With the use of universal primer 16S rRNA, we could discriminate such species at the genus and species levels. Species-specific patterns were obtained for bacteria R. solanacearum, X. axonopodis pv. vesicatoria, and X. oryzae pv. oryzae. The potential use of PCR-SSCP technique for the detection and diagnosis of phytobacterial pathogens is discussed in the present paper.

  12. Molecular detection of plant pathogenic bacteria using polymerase chain reaction single-strand conformation polymorphism

    Institute of Scientific and Technical Information of China (English)

    Chandrashekar Srinivasa; Umesha Sharanaiah; Chandan Shivamallu

    2012-01-01

    The application of polymerase chain reaction (PCR) technology to molecular diagnostics holds great promise for the early identification of agriculturally important plant pathogens.Ralstonia solanacearum,Xanthomoans axonopodis pv.vesicatoria,and Xanthomonas oryzae pv.oryzae are phytopathogenic bacteria,which can infect vegetables,cause severe yield loss.PCR-single-strand conformation polymorphism (PCR-SSCP) is a simple and powerful technique for identifying sequence changes in amplified DNA.The technique of PCR-SSCP is being exploited so far,only to detect and diagnose human bacterial pathogens in addition to plant pathogenic fungi.Selective media and serology are the commonly used methods for the detection of plant pathogens in infected plant materials.In this study,we developed PCR-SSCP technique to identify phytopathogenic bacteria.The PCR product was denatured and separated on a non-denaturing polyacrylamide gel.SSCP banding patterns were detected by silver staining of nucleic acids.We tested over 56 isolates of R. solanacearum,44 isolates of X. axonopodis pv.vesicatoria,and 20 isolates of X.oryzae pv.oryzae.With the use of universal primer 16S rRNA,we could discriminate such species at the genus and species levels.Speciesspecific patterns were obtained for bacteria R.solanacearum,X.axonopodis pv.vesicatoria,and X.oryzae pv.oryzae.The potential use of PCR-SSCP technique for the detection and diagnosis of phytobacterial pathogens is discussed in the present paper.

  13. In vitro anti- bacterial activity of leaves extracts of Albizia lebbeck Benth against some selected pathogens

    Institute of Scientific and Technical Information of China (English)

    Mohammed Nazneen Bobby; Edward Gnanaraj Wesely; MarimuthuAntonisamy Johnson

    2012-01-01

    Objective: To screen the anti-bacterial activity of Albizia lebbeck (A. lebbeck) Benth leaves extract against the selected bacterial pathogens viz., Bacillus subtilis (MTCC441), Escherichia coli (MTCC443), Klebsiella pneumonia (MTCC 109), Proteus vulgaris (MTCC742), Pseudomonas aeruginosa (MTCC741), Salmonella typhii (MTCC733) and Staphylococus aureus (MTCC96).Methods:The leaves extracts of A. lebbeck was tested against bacteria by the agar disc diffusion method. Results: Results of the present study indicated that different extracts of A. lebbeck showed inhibitory effects against the pathogens. The present study results demonstrated that methanolic extracts of A. lebbeck conferred the widest spectrum activities that inhibited the growth of all studied pathogens with the maximum zone of inhibition. The methanolic extracts ofA. lebbeck illustrated the highest zone of inhibition against the pathogens Bacillus subtilis (16 mm), Escherichia coli (22 mm), Klebsiella pneumonia (11 mm), Proteus vulgaris (18 mm), Pseudomonas aeruginosa (22 mm), Salmonella typhii (23 mm) and Staphylococus aureus (17 mm). The ethyl acetate extracts demonstrated maximum zone of inhibition against Escherichia coli (26 mm), Pseudomonas aeruginosa (22 mm) and Klebsiella pneumonia (16 mm). Conclusions: It is expected that this study would direct to the establishment of some active compounds that could be used to formulate new and more potent anti-bacterial drugs of natural origin.

  14. Development of Quorum-Based Anti-Virulence Therapeutics Targeting Gram-Negative Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Wen Shan Yew

    2013-08-01

    Full Text Available Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria.

  15. Zoonotic vector-borne bacterial pathogens in California mountain lions (Puma concolor), 1987-2010.

    Science.gov (United States)

    Girard, Yvette A; Swift, Pamela; Chomel, Bruno B; Kasten, Rickie W; Fleer, Katryna; Foley, Janet E; Torres, Steven G; Johnson, Christine K

    2012-11-01

    Sera collected from 442 mountain lions in 48 California counties between the years of 1987 and 2010 were tested using immunofluorescence assays and agglutination tests for the presence of antibodies reactive to Yersinia pestis, Francisella tularensis, Bartonella henselae, Borrelia burgdorferi, and Anaplasma phagocytophilum antigens. Data were analyzed for spatial and temporal trends in seropositivity. Seroprevalences for B. burgdorferi (19.9%) and B. henselae (37.1%) were relatively high, with the highest exposure in the Central Coast region for B. henselae. B. henselae DNA amplified in mountain lion samples was genetically similar to human-derived Houston-1 and domestic cat-derived U4 B. henselae strains at the gltA and ftsZ loci. The statewide seroprevalences of Y. pestis (1.4%), F. tularensis (1.4%), and A. phagocytophilum (5.9%), were comparatively low. Sera from Y. pestis- and F. tularensis-seropositive mountain lions were primarily collected in the Eastern and Western Sierra Nevada, and samples reactive to Y. pestis antigen were collected exclusively from adult females. Adult age (≥ 2 years) was a risk factor for B. burgdorferi exposure. Over 70% of tested animals were killed on depredation permits, and therefore were active near areas with livestock and human residential communities. Surveillance of mountain lions for these bacterial vector-borne and zoonotic agents may be informative to public health authorities, and the data are useful for detecting enzootic and peridomestic pathogen transmission patterns, particularly in combination with molecular characterization of the infecting organisms.

  16. Bacterial pathogens recovered from vegetables irrigated by wastewater in Morocco.

    Science.gov (United States)

    Ibenyassine, K; Mhand, R Ait; Karamoko, Y; Anajjar, B; Chouibani, M M; Ennaji, M

    2007-06-01

    The authors obtained 50 vegetable samples from various regions in Morocco and examined them to determine the microbiological quality of these products. Aerobic count, coliform, enterococci, and Staphylococcus aureus were evaluated. This analysis revealed high levels of enterococci, fecal coliforms, and total coliforms. No coagulase-positive Staphylococcus aureus was detected in any of the samples analyzed. Biochemical identification of Enterobacteriaceae showed the presence of Citrobacter freundii (28 percent), Enterobacter cloacae (27 percent), Escherichia coli (16 percent), Enterobacter sakazakii (12 percent), Klebsiella pneumoniae (17 percent), Serratia liquefaciens (11 percent), and Salmonella arizonae (0.7 percent). The results clearly demonstrate that vegetables irrigated with untreated wastewater have a high level of microbiological contamination. Consequently, these vegetables may be a threat for the Moroccan consumer and may be considered a serious risk to Moroccan public health.

  17. PathogenMIPer: a tool for the design of molecular inversion probes to detect multiple pathogens

    Directory of Open Access Journals (Sweden)

    Akhras Michael

    2006-11-01

    Full Text Available Abstract Background Here we describe PathogenMIPer, a software program for designing molecular inversion probe (MIP oligonucleotides for use in pathogen identification and detection. The software designs unique and specific oligonucleotide probes targeting microbial or other genomes. The tool tailors all probe sequence components (including target-specific sequences, barcode sequences, universal primers and restriction sites and combines these components into ready-to-order probes for use in a MIP assay. The system can harness the genetic variability available in an entire genome in designing specific probes for the detection of multiple co-infections in a single tube using a MIP assay. Results PathogenMIPer can accept sequence data in FASTA file format, and other parameter inputs from the user through a graphical user interface. It can design MIPs not only for pathogens, but for any genome for use in parallel genomic analyses. The software was validated experimentally by applying it to the detection of human papilloma virus (HPV as a model system, which is associated with various human malignancies including cervical and skin cancers. Initial tests of laboratory samples using the MIPs developed by the PathogenMIPer to recognize 24 different types of HPVs gave very promising results, detecting even a small viral load of single as well as multiple infections (Akhras et al, personal communication. Conclusion PathogenMIPer is a software for designing molecular inversion probes for detection of multiple target DNAs in a sample using MIP assays. It enables broader use of MIP technology in the detection through genotyping of pathogens that are complex, difficult-to-amplify, or present in multiple subtypes in a sample.

  18. Detection of hepatitis E virus and other livestock-related pathogens in Iowa streams

    Science.gov (United States)

    Givens, Carrie E.; Kolpin, Dana W.; Borchardt, Mark A.; Duris, Joseph; Moorman, Thomas B.; Spencer, Susan K.

    2016-01-01

    Manure application is a source of pathogens to the environment. Through overland runoff and tile drainage, zoonotic pathogens can contaminate surface water and streambed sediment and could affect both wildlife and human health. This study examined the environmental occurrence of gene markers for livestock-related bacterial, protozoan, and viral pathogens and antibiotic resistance in surface waters within the South Fork Iowa River basin before and after periods of swine manure application on agricultural land. Increased concentrations of indicator bacteria after manure application exceeding Iowa's state bacteria water quality standards suggest that swine manure contributes to diminished water quality and may pose a risk to human health. Additionally, the occurrence of HEV and numerous bacterial pathogen genes for Escherichia coli, Enterococcus spp., Salmonella sp., and Staphylococcus aureus in both manure samples and in corresponding surface water following periods of manure application suggests a potential role for swine in the spreading of zoonotic pathogens to the surrounding environment. During this study, several zoonotic pathogens were detected including Shiga-toxin producing E. coli, Campylobacter jejuni, pathogenic enterococci, and S. aureus; all of which can pose mild to serious health risks to swine, humans, and other wildlife. This research provides the foundational understanding required for future assessment of the risk to environmental health from livestock-related zoonotic pathogen exposures in this region. This information could also be important for maintaining swine herd biosecurity and protecting the health of wildlife near swine facilities.

  19. From Environment to Man: Genome Evolution and Adaptation of Human Opportunistic Bacterial Pathogens

    Science.gov (United States)

    Aujoulat, Fabien; Roger, Frédéric; Bourdier, Alice; Lotthé, Anne; Lamy, Brigitte; Marchandin, Hélène; Jumas-Bilak, Estelle

    2012-01-01

    Environment is recognized as a huge reservoir for bacterial species and a source of human pathogens. Some environmental bacteria have an extraordinary range of activities that include promotion of plant growth or disease, breakdown of pollutants, production of original biomolecules, but also multidrug resistance and human pathogenicity. The versatility of bacterial life-style involves adaptation to various niches. Adaptation to both open environment and human specific niches is a major challenge that involves intermediate organisms allowing pre-adaptation to humans. The aim of this review is to analyze genomic features of environmental bacteria in order to explain their adaptation to human beings. The genera Pseudomonas, Aeromonas and Ochrobactrum provide valuable examples of opportunistic behavior associated to particular genomic structure and evolution. Particularly, we performed original genomic comparisons among aeromonads and between the strictly intracellular pathogens Brucella spp. and the mild opportunistic pathogens Ochrobactrum spp. We conclude that the adaptation to human could coincide with a speciation in action revealed by modifications in both genomic and population structures. This adaptation-driven speciation could be a major mechanism for the emergence of true pathogens besides the acquisition of specialized virulence factors. PMID:24704914

  20. Crystal structures of Cif from bacterial pathogens Photorhabdus luminescens and Burkholderia pseudomallei.

    Directory of Open Access Journals (Sweden)

    Allister Crow

    Full Text Available A pre-requisite for bacterial pathogenesis is the successful interaction of a pathogen with a host. One mechanism used by a broad range of Gram negative bacterial pathogens is to deliver effector proteins directly into host cells through a dedicated type III secretion system where they modulate host cell function. The cycle inhibiting factor (Cif family of effector proteins, identified in a growing number of pathogens that harbour functional type III secretion systems and have a wide host range, arrest the eukaryotic cell cycle. Here, the crystal structures of Cifs from the insect pathogen/nematode symbiont Photorhabdus luminescens (a gamma-proteobacterium and human pathogen Burkholderia pseudomallei (a beta-proteobacterium are presented. Both of these proteins adopt an overall fold similar to the papain sub-family of cysteine proteases, as originally identified in the structure of a truncated form of Cif from Enteropathogenic E. coli (EPEC, despite sharing only limited sequence identity. The structure of an N-terminal region, referred to here as the 'tail-domain' (absent in the EPEC Cif structure, suggests a surface likely to be involved in host-cell substrate recognition. The conformation of the Cys-His-Gln catalytic triad is retained, and the essential cysteine is exposed to solvent and addressable by small molecule reagents. These structures and biochemical work contribute to the rapidly expanding literature on Cifs, and direct further studies to better understand the molecular details of the activity of these proteins.

  1. Benfang Lei’s research on heme acquisition in Gram-positive pathogens and bacterial pathogenesis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Benfang Lei’s laboratory conducts research on pathogenesis of human pathogen Group A Streptococcus (GAS)and horse pathogen Streptococcus equi(S.equi). His current research focuses on heme acquisition in Gram-positive pathogens and molecular mechanism of GAS and S.equi pathogenesis.Heme is an important source of essential iron for bacterial pathogens.Benfang Lei and colleagues identified the first cell surface heme-binding protein in Gram-positive pathogens and the heme acquisition system in GAS,demonstrated direct heme transfer from one protein to another,demonstrated an experimental pathway of heme acquisition by the Staphylococcus aureus Isd system,elucidated the activated heme transfer mechanism,and obtained evidence for a chemical mechanism of direct axial ligand displacement during the Shp-to-HtsA heme transfer reaction.These findings have considerably contributed to the progress that has been made over recent years in understanding the heme acquisition process in Grampositive pathogens.Pathogenesis of GAS is mediated by an abundance of extracellular proteins,and pathogenic role and functional mechanism are not known for many of these virulence factors.Lei laboratory identified a secreted protein of GAS as a CovRS-regulated virulence factor that is a protective antigen and is critical for GAS spreading in the skin and systemic dissemination.These studies may lead to development of novel strategies to prevent and treat GAS infections.

  2. 16S rRNA-based detection of oral pathogens in coronary atherosclerotic plaque

    Directory of Open Access Journals (Sweden)

    Mahendra Jaideep

    2010-01-01

    Full Text Available Background: Atherosclerosis develops as a response of the vessel wall to injury. Chronic bacterial infections have been associated with an increased risk for atherosclerosis and coronary artery disease. The ability of oral pathogens to colonize in coronary atheromatous plaque is well known. Aim: The aim of this study was to detect the presence of Treponema denticola, Porphyromonas gingivalis and Campylobacter rectus in the subgingival and atherosclerotic plaques of patients with coronary artery disease. Materials and Methods: Fifty-one patients in the age group of 40-80 years with coronary artery disease were selected for the study. DNA was extracted from the plaque samples. The specific primers for T. denticola, C. rectus and P. gingivalis were used to amplify a part of the 16S rRNA gene by polymerase chain reaction. Statistical Analysis Used: Chi-square analysis, correlation coefficient and prevalence percentage of the microorganisms were carried out for the analysis. Results: Of the 51 patients, T. denticola, C. rectus and P. gingivalis were detected in 49.01%, 21.51% and 45.10% of the atherosclerotic plaque samples. Conclusions: Our study revealed the presence of bacterial DNA of the oral pathogenic microorganisms in coronary atherosclerotic plaques. The presence of the bacterial DNA in the coronary atherosclerotic plaques in significant proportion may suggest the possible relationship between periodontal bacterial infection and genesis of coronary atherosclerosis.

  3. Studies on Calf Diarrhoea in Mozambique: Prevalence of Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Mbazima G

    2004-03-01

    Full Text Available The prevalence of diarrhoea in calves was investigated in 8 dairy farms in Mozambique at 4 occasions during 2 consecutive years. A total of 1241 calves up to 6 months of age were reared in the farms, and 63 (5% of them had signs of diarrhoea. Two farms had an overall higher prevalence (13% and 21% of diarrhoea. Faecal samples were collected from all diarrhoeal calves (n = 63 and from 330 healthy calves and analysed for Salmonella species, Campylobacter jejuni and enterotoxigenic Escherichia coli (ETEC. Salmonella spp. was isolated in only 2% of all calves. Campylobacter was isolated in 11% of all calves, irrespective of health condition, and was more frequent (25% in one of the 2 diarrhoeal farms (p = 0.001. 80% of the isolates were identified as C. jejuni. No ETEC strains were detected among the 55 tested strains from diarrhoeal calves, but 22/55 (40% strains from diarrhoeal calves and 14/88 (16% strains from healthy calves carried the K99 adhesin (p = 0.001. 6,757 E. coli isolates were typed with a biochemical fingerprinting method (the PhenePlate™ giving the same E. coli diversity in healthy and diarrhoeal calves. Thus it was concluded: i the overall prevalence of diarrhoea was low, but 2 farms had a higher prevalence that could be due to an outbreak situation, ii Salmonella did not seem to be associated with diarrhoea, iii Campylobacter jejuni was common at one of the 2 diarrhoeal farms and iv ETEC strains were not found, but K99 antigen was more prevalent in E. coli strains from diarrhoeal calves than from healthy, as well as more prevalent in one diarrhoeal farm.

  4. Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis.

    Science.gov (United States)

    Parkins, Michael D; Floto, R Andres

    2015-05-01

    Chronic suppurative lower airway infection is a hallmark feature of cystic fibrosis (CF). Decades of experience in clinical microbiology have enabled the development of improved technologies and approaches for the cultivation and identification of microorganisms from sputum. It is increasingly apparent that the microbial constituents of the lower airways in CF exist in a dynamic state. Indeed, while changes in prevalence of various pathogens occur through ageing, differences exist in successive cohorts of patients and between clinics, regions and countries. Classical pathogens such as Pseudomonas aeruginosa, Burkholderia cepacia complex and Staphylococcus aureus are increasingly being supplemented with new and emerging organisms rarely observed in other areas of medicine. Moreover, it is now recognized that common oropharyngeal organisms, previously presumed to be benign colonizers may contribute to disease progression. As infection remains the leading cause of morbidity and mortality in CF, an understanding of the epidemiology, risk factors for acquisition and natural history of infection including interactions between colonizing bacteria is required. Unified approaches to the study and determination of pathogen status are similarly needed. Furthermore, experienced and evidence-based treatment data is necessary to optimize outcomes for individuals with CF.

  5. Identification of upper respiratory tract pathogens using electrochemical detection on an oligonucleotide microarray.

    Directory of Open Access Journals (Sweden)

    Michael J Lodes

    Full Text Available Bacterial and viral upper respiratory infections (URI produce highly variable clinical symptoms that cannot be used to identify the etiologic agent. Proper treatment, however, depends on correct identification of the pathogen involved as antibiotics provide little or no benefit with viral infections. Here we describe a rapid and sensitive genotyping assay and microarray for URI identification using standard amplification and hybridization techniques, with electrochemical detection (ECD on a semiconductor-based oligonucleotide microarray. The assay was developed to detect four bacterial pathogens (Bordetella pertussis, Streptococcus pyogenes, Chlamydia pneumoniae and Mycoplasma pneumoniae and 9 viral pathogens (adenovirus 4, coronavirus OC43, 229E and HK, influenza A and B, parainfluenza types 1, 2, and 3 and respiratory syncytial virus. This new platform forms the basis for a fully automated diagnostics system that is very flexible and can be customized to suit different or additional pathogens. Multiple probes on a flexible platform allow one to test probes empirically and then select highly reactive probes for further iterative evaluation. Because ECD uses an enzymatic reaction to create electrical signals that can be read directly from the array, there is no need for image analysis or for expensive and delicate optical scanning equipment. We show assay sensitivity and specificity that are excellent for a multiplexed format.

  6. xMAP Technology: Applications in Detection of Pathogens

    Science.gov (United States)

    Reslova, Nikol; Michna, Veronika; Kasny, Martin; Mikel, Pavel; Kralik, Petr

    2017-01-01

    xMAP technology is applicable for high-throughput, multiplex and simultaneous detection of different analytes within a single complex sample. xMAP multiplex assays are currently available in various nucleic acid and immunoassay formats, enabling simultaneous detection and typing of pathogenic viruses, bacteria, parasites and fungi and also antigen or antibody interception. As an open architecture platform, the xMAP technology is beneficial to end users and therefore it is used in various pharmaceutical, clinical and research laboratories. The main aim of this review is to summarize the latest findings and applications in the field of pathogen detection using microsphere-based multiplex assays. PMID:28179899

  7. Detection of pathogens in food using a SERS-based assay in just a few hours

    Science.gov (United States)

    Shende, Chetan; Sengupta, Atanu; Huang, Hermes; Farquharson, Stuart

    2014-05-01

    In 2011 Escherichia, Listeria, and Salmonella species infected over 1.2 million people in the United States, resulting in over 23,000 hospitalizations and 650 deaths. In January 2013 President Obama signed into law the Food and Drug Administration (FDA) Food Safety Modernization Act (FSMA), which requires constant microbial testing of food processing equipment and food to minimize contamination and distribution of food tainted with pathogens. The challenge to preventing distribution and consumption of contaminated foods lies in the fact that just a few bacterial cells can rapidly multiply to millions, reaching infectious doses within a few days. Unfortunately, current methods used to detect these few cells rely on similar growth steps to multiply the cells to the point of detection, which also takes a few days. Consequently, there is a critical need for an analyzer that can rapidly extract and detect foodborne pathogens at 1000 colony forming units per gram of food in 1-2 hours (not days), and with a specificity that differentiates from indigenous microflora, so that false alarms are eliminated. In an effort to meet this need, we have been developing an assay that extracts such pathogens from food, selectively binds these pathogens, and produces surface-enhanced Raman spectra (SERS) when read by a Raman analyzer. Here we present SERS measurements of these pathogens in actual food samples using this assay.

  8. Daily variations in pathogenic bacterial populations in a monsoon influenced tropical environment.

    Science.gov (United States)

    Khandeparker, Lidita; Anil, Arga Chandrashekar; Naik, Sneha D; Gaonkar, Chetan C

    2015-07-15

    Changing climatic conditions have influenced the monsoon pattern in recent years. Variations in bacterial population in one such tropical environment were observed everyday over two years and point out intra and inter annual changes driven by the intensity of rainfall. Vibrio spp. were abundant during the monsoon and so were faecal coliforms. Vibrio alginolyticus were negatively influenced by nitrate, whereas, silicate and rainfall positively influenced Vibrio parahaemolyticus numbers. It is also known that pathogenic bacteria are associated with the plankton. Changes in the abundance of plankton, which are governed mainly by environmental changes, could be responsible for variation in pathogenic bacterial abundance during monsoon, other than the land runoff due to precipitation and influx of fresh water.

  9. Detection of Foodborne Pathogenic Bacteria using Bacteriophage Tail Spike Proteins

    Science.gov (United States)

    Poshtiban, Somayyeh

    Foodborne infections are worldwide health problem with tremendous social and financial impacts. Efforts are focused on developing accurate and reliable technologies for detection of food contaminations in early stages preferably on-site. This thesis focuses on interfacing engineering and biology by combining phage receptor binding proteins (RBPs) with engineered platforms including microresonator-based biosensors, magnetic particles and polymerase chain reaction (PCR) to develop bacterial detection sensors. We used phage RBPs as target specific bioreceptors to develop an enhanced microresonator array for bacterial detection. These resonator beams are optimized to feature a high natural frequency while offer large surface area for capture of bacteria. Theoretical analysis indicates a high mass sensitivity with a threshold for the detection of a single bacterial cell. We used phage RBPs as target specific bioreceptors, and successfully demonstrated the application of these phage RBB-immobilized arrays for specific detection of C. jejuni cells. We also developed a RBP-derivatized magnetic pre-enrichment method as an upstream sample preparation method to improve sensitivity and specificity of PCR for detection of bacterial cells in various food samples. The combination of RBP-based magnetic separation and real-time PCR allowed the detection of small number of bacteria in artificially contaminated food samples without any need for time consuming pre-enrichment step through culturing. We also looked into integration of the RBP-based magnetic separation with PCR onto a single microfluidic lab-on-a-chip to reduce the overall turnaround time.

  10. Daily variations in pathogenic bacterial populations in a monsoon influenced tropical environment

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Anil, A.C.; Naik, S.D.; Gaonkar, C.C.

    and an assessment of the health of such an ecosystem benefits from high resolution observations. Virulent pathogenic Vibrio species are expected more frequently in tropical marine environments, since the virulence gene expression seems to increase at elevated.... 2012). 4 This method can be complementary to the acquisition of data obtained from 16S rRNA gene sequencing with the added benefit of generating unique biochemical fingerprints for the sub-typing of species. The culturable bacterial abundance...

  11. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment

    OpenAIRE

    Davin-Regli, Anne,; Pagès, Jean-Marie

    2015-01-01

    International audience; Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membra...

  12. Bacterial pathogens activate a common inflammatory pathway through IFNλ regulation of PDCD4.

    Directory of Open Access Journals (Sweden)

    Taylor S Cohen

    Full Text Available The type III interferon (IFNλ receptor IL-28R is abundantly expressed in the respiratory tract and has been shown essential for host defense against some viral pathogens, however no data are available concerning its role in the innate immune response to bacterial pathogens. Staphylococcus aureus and Pseudomonas aeruginosa induced significant production of IFNλ in the lung, and clearance of these bacteria from the lung was significantly increased in IL-28R null mice compared to controls. Improved bacterial clearance correlated with reduced lung pathology and a reduced ratio of pro- vs anti-inflammatory cytokines in the airway. In human epithelial cells IFNλ inhibited miR-21 via STAT3 resulting in upregulation of PDCD4, a protein known to promote inflammatory signaling. In vivo 18 hours following infection with either pathogen, miR-21 was significantly reduced and PDCD4 increased in the lungs of wild type compared to IL-28R null mice. Infection of PDCD4 null mice with USA300 resulted in improved clearance, reduced pathology, and reduced inflammatory cytokine production. These data suggest that during bacterial pneumonia IFNλ promotes inflammation by inhibiting miR-21 regulation of PDCD4.

  13. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens

    Institute of Scientific and Technical Information of China (English)

    Baby Joseph; Berlina Dhas; Vimalin Hena; Justin Raj

    2013-01-01

    Objective:To isolate and identify Bacillus subtilis (B. subtilis) from soil and to characterize and partially purify the bacteriocin. To evaluate the antimicrobial activity against four diabetic foot ulcer bacterial pathogens. Methods:Genotypic identification was done based on Bergey’s manual of systemic bacteriology. Antimicrobial susceptibility test was done by Kirby-Bauer disc diffusion method. Colonies were identified by colony morphology and biochemical characterization and also compared with MTCC 121 strain. Further identification was done by 16S rRNA sequencing. Inhibitory activities of partially purified bacteriocin on all the DFU isolates were done by agar well diffusion method. The strain was identified to produce bacteriocin by stab overlay assay. Bacteriocin was extracted by organic solvent extraction using chloroform, further purified by HPLC and physical, and chemical characterization was performed. Results: The four isolates showed high level of resistance to amoxyclav and sensitivity to ciprofloxacin. HPLC purification revealed that the extracts are bacteriocin. The phylogenetic tree analysis results showed that the isolate was 99%related to B. subtilis BSF01. The results reveled activity to all the four isolates and high level of activity was seen in case of Klebsiella sp. Conclusions:Partially purified bacteriocin was found to have antimicrobial activity against the four diabetic foot ulcer bacterial pathogens, which can thus be applied as a better drug molecule on further studies. The strain B. subtilis are found to be safe for use and these antimicrobial peptides can be used as an antimicrobial in humans to treat DFU bacterial pathogens.

  14. Exposure to viral and bacterial pathogens among Soay sheep (Ovis aries) of the St Kilda archipelago.

    Science.gov (United States)

    Graham, A L; Nussey, D H; Lloyd-Smith, J O; Longbottom, D; Maley, M; Pemberton, J M; Pilkington, J G; Prager, K C; Smith, L; Watt, K A; Wilson, K; McNEILLY, T N; Brülisauer, F

    2016-07-01

    We assessed evidence of exposure to viruses and bacteria in an unmanaged and long-isolated population of Soay sheep (Ovis aries) inhabiting Hirta, in the St Kilda archipelago, 65 km west of Benbecula in the Outer Hebrides of Scotland. The sheep harbour many metazoan and protozoan parasites but their exposure to viral and bacterial pathogens is unknown. We tested for herpes viral DNA in leucocytes and found that 21 of 42 tested sheep were infected with ovine herpesvirus 2 (OHV-2). We also tested 750 plasma samples collected between 1997 and 2010 for evidence of exposure to seven other viral and bacterial agents common in domestic Scottish sheep. We found evidence of exposure to Leptospira spp., with overall seroprevalence of 6·5%. However, serological evidence indicated that the population had not been exposed to border disease, parainfluenza, maedi-visna, or orf viruses, nor to Chlamydia abortus. Some sheep tested positive for antibodies against Mycobacterium avium subsp. paratuberculosis (MAP) but, in the absence of retrospective faecal samples, the presence of this infection could not be confirmed. The roles of importation, the pathogen-host interaction, nematode co-infection and local transmission warrant future investigation, to elucidate the transmission ecology and fitness effects of the few viral and bacterial pathogens on Hirta.

  15. Comparative detection of bacterial adhesion to Caco-2 cells with ELISA, radioactivity and plate count methods.

    Science.gov (United States)

    Le Blay, Gwenaëlle; Fliss, Ismaïl; Lacroix, Christophe

    2004-11-01

    Different methods are used to study bacterial adhesion to intestinal epithelial cells, which is an important step in pathogenic infection as well as in probiotic colonization of the intestinal tract. The aim of this study was to compare the ELISA-based method with more conventional plate count and radiolabeling methods for bacterial adhesion detection. An ELISA-based assay was optimized for the detection of Bifidobacterium longum and Escherichia coli O157:H7, which are low and highly adherent bacteria, respectively. In agreement with previous investigations, a percentage of adhesion below 1% was obtained for B. longum with ELISA. However, high nonspecific background and low positive signals were measured due to the use of polyclonal antibodies and the low adhesion capacity with this strain. In contrast, the ELISA-based method developed for E. coli adhesion detected a high adhesion percentage (15%). For this bacterium the three methods tested gave similar results for the highest bacterial concentrations (6.8 Log CFU added bacteria/well). However, differences among methods increased with the addition of decreased bacterial concentration due to different detection thresholds (5.9, 5.6 and 2.9 Log CFU adherent bacteria/well for radioactivity, ELISA and plate count methods, respectively). The ELISA-based method was shown to be a good predictor for bacterial adhesion compared to the radiolabeling method when good quality specific antibodies were used. This technique is convenient and allows handling of numerous samples.

  16. Waveguide-Based Biosensors for Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Nile Hartman

    2009-07-01

    Full Text Available Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave—the evanescent field—whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, “dirty” biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning’s EPIC® Ô, SRU Biosystems’ BIND™, Zeptosense®, etc. and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing.

  17. Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens.

    Science.gov (United States)

    Vogt, Stefanie L; Peña-Díaz, Jorge; Finlay, B Brett

    2015-08-01

    Gastrointestinal pathogens must overcome many obstacles in order to successfully colonize a host, not the least of which is the presence of the gut microbiota, the trillions of commensal microorganisms inhabiting mammals' digestive tracts, and their products. It is well established that a healthy gut microbiota provides its host with protection from numerous pathogens, including Salmonella species, Clostridium difficile, diarrheagenic Escherichia coli, and Vibrio cholerae. Conversely, pathogenic bacteria have evolved mechanisms to establish an infection and thrive in the face of fierce competition from the microbiota for space and nutrients. Here, we review the evidence that gut microbiota-generated metabolites play a key role in determining the outcome of infection by bacterial pathogens. By consuming and transforming dietary and host-produced metabolites, as well as secreting primary and secondary metabolites of their own, the microbiota define the chemical environment of the gut and often determine specific host responses. Although most gut microbiota-produced metabolites are currently uncharacterized, several well-studied molecules made or modified by the microbiota are known to affect the growth and virulence of pathogens, including short-chain fatty acids, succinate, mucin O-glycans, molecular hydrogen, secondary bile acids, and the AI-2 quorum sensing autoinducer. We also discuss challenges and possible approaches to further study of the chemical interplay between microbiota and gastrointestinal pathogens.

  18. Simultaneous, specific and real-time detection of biothreat and frequently encountered food-borne pathogens

    Science.gov (United States)

    Woubit, Abdela Salah; Yehualaeshet, Teshome; Habtemariam, Tsegaye; Samuel, Temesgen

    2012-01-01

    The bacterial genera Escherichia, Salmonella, Shigella, Vibrio, Yersinia and Francisella include important food safety and biothreat agents causing food-related and other human illnesses worldwide. We aimed to develop rapid methods with the capability to simultaneously and differentially detect all six pathogens in one run. Our initial experiments to use previously reported sets of primers revealed non-specificity of some of the sequences when tested against a broader array of pathogens, or proved not optimal for simultaneous detection parameters. By extensive mining of the whole genome and protein databases of diverse closely and distantly related bacterial species and strains, we have identified unique genome regions, which we utilized to develop a detection platform. Twelve of the specific genomic targets we have identified to design the primers in F. tularensis ssp. tularensis, F. tularensis ssp. novicida, S. dysentriae, S. typhimurium, V. cholera, Y. pestis, and Y. pseudotuberculosis contained either hypothetical or putative proteins, the functions of which have not been clearly defined. Corresponding primer sets were designed from the target regions for use in real-time PCR assays to detect specific biothreat pathogens at species or strain levels. The primer sets were first tested by in-silico PCR against whole genome sequences of different species, sub-species, or strains and then by in vitro PCR against genomic DNA preparations from 23 strains representing six biothreat agents (E.coli O157:H7 strain EDL 933, Shigella dysentriae, Salmonella typhi, Francisella tularensis ssp. tularensis, Vibrio cholera, and Yersinia pestis) and six foodborne pathogens (Salmonella typhimurium, Salmonella saintpaul, Shigella sonnei, Francisella novicida, Vibrio parahemolytica and Yersinia pseudotuberculosis). Each pathogen was specifically identifiable at the genus and species levels. Sensitivity assays performed using purified DNA showed the lowest detection limit of 640 fg

  19. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears.

    Directory of Open Access Journals (Sweden)

    Clarissa Schwab

    Full Text Available BACKGROUND: Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos and relates these to food resources consumed by bears. METHODOLOGY/PRINCIPAL FINDINGS: Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. CONCLUSION: This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens.

  20. Bacterial ‘Cell’ Phones: Do cell phones carry potential pathogens?

    Directory of Open Access Journals (Sweden)

    Kiran Chawla

    2009-05-01

    Full Text Available Cell phones are important companions for professionals especially health care workers (HCWs for better communication in hospital. The present study compared the nature of the growth of potentially pathogenic bacterial flora on cell phones in hospital and community. 75% cell phones from both the categories grew at least one potentially pathogenic organism. Cell phones from HCWs grew significantly more potential pathogens like MRSA (20%, Acinetobacter species (5%, Pseudomonas species (2.5% as compared to the non HCWs. 97.5% HCWs use their cell phone in the hospital, 57.5% never cleaned their cell phone and 20% admitted that they did not wash their hands before or after attending patients, although majority (77.5% knows that cell phones can have harmful colonization and act as vector for nosocomial infections. It is recommended, therefore, that cell phones in the hospital should be regularly decontaminated. Moreover, utmost emphasis needs to be paid to hand washing practices among HCWs.

  1. Pathogenic reaction of some introduced rice cultivars (lines) to seven pathotypes of bacterial blight in Hangzhou

    Institute of Scientific and Technical Information of China (English)

    SHENYing; ZHUPeiliang; YUANXiaoping

    1993-01-01

    Bacterial blight (BB) caused by Xanthomonas oryzae pv.oryzae (Xoo) is a major rice disease in China. 138 introduced cultivars (lines) were tested on pathogenicity with seven pathotypes of BB at CNRRI Experiment Station during Apt-Oct,1991.

  2. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens.

    Science.gov (United States)

    Wittebole, Xavier; De Roock, Sophie; Opal, Steven M

    2014-01-01

    The seemingly inexorable spread of antibiotic resistance genes among microbial pathogens now threatens the long-term viability of our current antimicrobial therapy to treat severe bacterial infections such as sepsis. Antibiotic resistance is reaching a crisis situation in some bacterial pathogens where few therapeutic alternatives remain and pan-resistant strains are becoming more prevalent. Non-antibiotic therapies to treat bacterial infections are now under serious consideration and one possible option is the therapeutic use of specific phage particles that target bacterial pathogens. Bacteriophage therapy has essentially been re-discovered by modern medicine after widespread use of phage therapy in the pre-antibiotic era lost favor, at least in Western countries, after the introduction of antibiotics. We review the current therapeutic rationale and clinical experience with phage therapy as a treatment for invasive bacterial infection as novel alternative to antimicrobial chemotherapy.

  3. Foliar application of the leaf-colonizing yeast Pseudozyma churashimaensis elicits systemic defense of pepper against bacterial and viral pathogens

    Science.gov (United States)

    Lee, Gahyung; Lee, Sang-Heon; Kim, Kyung Mo; Ryu, Choong-Min

    2017-01-01

    Yeast associates with many plant parts including the phyllosphere, where it is subject to harsh environmental conditions. Few studies have reported on biological control of foliar pathogens by yeast. Here, we newly isolated leaf-colonizing yeasts from leaves of field-grown pepper plants in a major pepper production area of South Korea. The yeast was isolated using semi-selective medium supplemented with rifampicin to inhibit bacterial growth and its disease control capacity against Xanthomonas axonopodis infection of pepper plants in the greenhouse was evaluated. Of 838 isolated yeasts, foliar spray of Pseudozyma churashimaensis strain RGJ1 at 108 cfu/mL conferred significant protection against X. axonopodis and unexpectedly against Cucumber mosaic virus, Pepper mottle virus, Pepper mild mottle virus, and Broad bean wilt virus under field conditions. Direct antagonism between strain RGJ1 and X. axonopodis was not detected from co-culture assays, suggesting that disease is suppressed via induced resistance. Additional molecular analysis of the induced resistance marker genes Capsicum annuum Pathogenesis-Related (CaPR) 4 and CaPR5 indicated that strain RGJ1 elicited plant defense priming. To our knowledge, this study is the first report of plant protection against bacterial and viral pathogens mediated by a leaf-colonizing yeast and has potential for effective disease management in the field. PMID:28071648

  4. The adaptive response of bacterial food-borne pathogens in the environment, host and food: Implications for food safety.

    Science.gov (United States)

    Alvarez-Ordóñez, Avelino; Broussolle, Véronique; Colin, Pierre; Nguyen-The, Christophe; Prieto, Miguel

    2015-11-20

    Bacteria are constantly faced to stress situations in their ecological niches, the food and the host gastrointestinal tract. The capacity to detect and respond to surrounding changes is crucial for bacterial pathogens to survive or grow in changing environments. To this purpose, cells have evolved various sophisticated networks designed to protect against stressors or repair damage caused by them. Challenges can occur during production of foods when subjected to processing, and after food ingestion when confronted with host defensive barriers. Some pathogenic bacteria have shown the capacity to develop stable resistance against extreme conditions within a defined genomic context and a limited number of generations. On the other hand, bacteria can also respond to adverse conditions in a transient manner, through the so-called stress tolerance responses. Bacterial stress tolerance responses include both structural and physiological modifications in the cell and are mediated by complex genetic regulatory machinery. Major aspects in the adaptive response are the sensing mechanisms, the characterization of cell defensive systems, such as the operation of regulatory proteins (e.g. RpoS), the induction of homeostatic and repair systems, the synthesis of shock response proteins, and the modifications of cell membranes, particularly in their fatty acid composition and physical properties. This article reviews certain strategies used by food-borne bacteria to respond to particular stresses (acid, cold stress, extreme pressure) in a permanent or transient manner and discusses the implications that such adaptive responses pose for food safety.

  5. Enteric bacterial pathogens in children with diarrhea in Niger: diversity and antimicrobial resistance.

    Directory of Open Access Journals (Sweden)

    Céline Langendorf

    Full Text Available Although rotavirus is the leading cause of severe diarrhea among children in sub-Saharan Africa, better knowledge of circulating enteric pathogenic bacteria and their antimicrobial resistance is crucial for prevention and treatment strategies.As a part of rotavirus gastroenteritis surveillance in Maradi, Niger, we performed stool culture on a sub-population of children under 5 with moderate-to-severe diarrhea between April 2010 and March 2012. Campylobacter, Shigella and Salmonella were sought with conventional culture and biochemical methods. Shigella and Salmonella were serotyped by slide agglutination. Enteropathogenic Escherichia coli (EPEC were screened by slide agglutination with EPEC O-typing antisera and confirmed by detection of virulence genes. Antimicrobial susceptibility was determined by disk diffusion. We enrolled 4020 children, including 230 with bloody diarrhea. At least one pathogenic bacterium was found in 28.0% of children with watery diarrhea and 42.2% with bloody diarrhea. Mixed infections were found in 10.3% of children. EPEC, Salmonella and Campylobacter spp. were similarly frequent in children with watery diarrhea (11.1%, 9.2% and 11.4% respectively and Shigella spp. were the most frequent among children with bloody diarrhea (22.1%. The most frequent Shigella serogroup was S. flexneri (69/122, 56.5%. The most frequent Salmonella serotypes were Typhimurimum (71/355, 20.0%, Enteritidis (56/355, 15.8% and Corvallis (46/355, 13.0%. The majority of putative EPEC isolates was confirmed to be EPEC (90/111, 81.1%. More than half of all Enterobacteriaceae were resistant to amoxicillin and co-trimoxazole. Around 13% (46/360 Salmonella exhibited an extended-spectrum beta-lactamase phenotype.This study provides updated information on enteric bacteria diversity and antibiotic resistance in the Sahel region, where such data are scarce. Whether they are or not the causative agent of diarrhea, bacterial infections and their antibiotic

  6. Multidirectional chemical signalling between Mammalian hosts, resident microbiota, and invasive pathogens: neuroendocrine hormone-induced changes in bacterial gene expression.

    Science.gov (United States)

    Karavolos, Michail H; Khan, C M Anjam

    2014-01-01

    Host-pathogen communication appears to be crucial in establishing the outcome of bacterial infections. There is increasing evidence to suggest that this communication can take place by bacterial pathogens sensing and subsequently responding to host neuroendocrine (NE) stress hormones. Bacterial pathogens have developed mechanisms allowing them to eavesdrop on these communication pathways within their hosts. These pathogens can use intercepted communication signals to adjust their fitness to persist and cause disease in their hosts. Recently, there have been numerous studies highlighting the ability of NE hormones to act as an environmental cue for pathogens, helping to steer their responses during host infection. Host NE hormone sensing can take place indirectly or directly via bacterial adrenergic receptors (BARs). The resulting changes in bacterial gene expression can be of strategic benefit to the pathogen. Furthermore, it is intriguing that not only can bacteria sense NE stress hormones but they are also able to produce key signalling molecules known as autoinducers. The rapid advances in our knowledge of the human microbiome, and its impact on health and disease highlights the potential importance of communication between the microbiota, pathogens and the host. It is indeed likely that the microbiota input significantly in the neuroendocrinological homeostasis of the host by catabolic, anabolic, and signalling processes. The arrival of unwanted guests, such as bacterial pathogens, clearly has a major impact on these delicately balanced interactions. Unravelling the pathways involved in interkingdom communication between invading bacterial pathogens, the resident microbiota, and hosts, may provide novel targets in our continuous search for new antimicrobials to control disease.

  7. A new oligonucleotide microarray for detection of pathogenic and non-pathogenic Legionella spp.

    Science.gov (United States)

    Cao, Boyang; Liu, Xiangqian; Yu, Xiang; Chen, Min; Feng, Lu; Wang, Lei

    2014-01-01

    Legionella pneumophila has been recognized as the major cause of legionellosis since the discovery of the deadly disease. Legionella spp. other than L. pneumophila were later found to be responsible to many non-pneumophila infections. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this report, we have sequenced the 16S-23S rRNA gene internal transcribed spacer (ITS) of 10 Legionella species and subspecies, including L. anisa, L. bozemanii, L. dumoffii, L. fairfieldensis, L. gormanii, L. jordanis, L. maceachernii, L. micdadei, L. pneumophila subspp. fraseri and L. pneumophila subspp. pasculleii, and developed a rapid oligonucleotide microarray detection technique accordingly to identify 12 most common Legionella spp., which consist of 11 pathogenic species of L. anisa, L. bozemanii, L. dumoffii, L. gormanii, L. jordanis, L. longbeachae, L. maceachernii, L. micdadei, and L. pneumophila (including subspp. pneumophila, subspp. fraseri, and subspp. pasculleii) and one non-pathogenic species, L. fairfieldensis. Twenty-nine probes that reproducibly detected multiple Legionella species with high specificity were included in the array. A total of 52 strains, including 30 target pathogens and 22 non-target bacteria, were used to verify the oligonucleotide microarray assay. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven samples of air conditioner-condensed water with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp.

  8. Loop-mediated isothermal amplification (LAMP): A novel rapid detection platform for pathogens.

    Science.gov (United States)

    Li, Yanmei; Fan, Penghui; Zhou, Shishui; Zhang, Li

    2017-03-18

    Foodborne bacterial infections and diseases have been considered to be a major threat for public health in the worldwide. Increased incidence of human diseases caused by foodborne pathogens have been correlated with growing world population and mobility. Loop-mediated isothermal amplification (LAMP) has been regarded as an innovative gene amplification technology and emerged as an alternative to PCR-based methodologies in both clinical laboratory and food safety testing. Nowadays, LAMP has been applied to detection and identification on pathogens from microbial diseases, as it showed significant advantage in high sensitivity, specificity and rapidity. The high sensitivity of LAMP enables detection of the pathogens in sample materials even without time consuming sample preparation. An overview of LAMP mainly containing the development history, reaction principle and its application to four kind of foodborne pathogens detection are presented in this paper. As concluded, with the advantages of rapidity, simplicity, sensitivity, specificity and robustness, LAMP is capable of applications for clinical diagnosis as well as surveillance of infection diseases. Moreover, the main purpose of this paper is to provide theoretical basis for the clinical application of LAMP technology.

  9. Multiple Pathogen Detection Using Biosensors: Advancements and Challenges

    Science.gov (United States)

    Advancements in biosensor research have considerably impacted clinical diagnostics for human health. Efforts in capitalizing on the sensitivity of biosensors for food pathogen detection are evident in the food safety/security research community. For practical application with foods that normally h...

  10. Rapid detection, characterization, and enrumeration of food-borne pathogens

    Science.gov (United States)

    In recent years, there has been much research activity on the development of methodologies that are rapid, accurate, and ultrasensitive for detecting pathogenic microorganisms in food. Rapid methods include immunological systems such as the lateral flow assays and enzyme-linked immunosorbent assays...

  11. Inhibitory Effect of Camptothecin against Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp. avenae RS-2

    Directory of Open Access Journals (Sweden)

    Qiaolin Dong

    2016-07-01

    Full Text Available Camptothecin (CPT has anticancer, antiviral, and antifungal properties. However, there is a dearth of information about antibacterial activity of CPT. Therefore, in this study, we investigated the inhibitory effect of CPT on Acidovorax avenae subsp. avenae strain RS-2, the pathogen of rice bacterial brown stripe, by measuring cell growth, DNA damage, cell membrane integrity, the expression of secretion systems, and topoisomerase-related genes, as well as the secretion of effector protein Hcp. Results indicated that CPT solutions at 0.05, 0.25, and 0.50 mg/mL inhibited the growth of strain RS-2 in vitro, while the inhibitory efficiency increased with an increase in CPT concentration, pH, and incubation time. Furthermore, CPT treatment affected bacterial growth and replication by causing membrane damage, which was evidenced by transmission electron microscopic observation and live/dead cell staining. In addition, quantitative real-time PCR analysis indicated that CPT treatment caused differential expression of eight secretion system-related genes and one topoisomerase-related gene, while the up-regulated expression of hcp could be justified by the increased secretion of Hcp based on the ELISA test. Overall, this study indicated that CPT has the potential to control the bacterial brown stripe pathogen of rice.

  12. Isolation of Biosurfactant–Producing Bacteria with Antimicrobial Activity against Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Siripun Sarin

    2011-01-01

    Full Text Available The aims of this research were to study biosurfactant producing bacteria isolated from soil and to determine their property and efficiency as biosurfactants in order to inhibit bacterial pathogens. The result showed that there were 8 bacterial isolates out of 136 isolates of the total biosurfactant producing bacteria screened that exhibited the diameter of clear zone more than 1.5 cm. in the oil spreading test. The highest potential of emulsifying activity (%EA24 of 54.4 and the maximum additive concentration, (%MAC of 24.2 was obtained from the fermentation broth of the G7 isolate which the G7 isolate was later identified as Pseudomonas fluorescens. Escherichia coli, Staphylococcus aureus and Psuedomonas aeruginosa were the tested bacterial pathogens that were most sensitive to the acid precipitated biosurfactant obtained from P. fluorescens G7 with the lowest minimum inhibitory concentration (MIC of 41.6 mg/ml and minimum bactericidal concentration (MBC of 41.6 mg/ml compared with the acid precipitated bisurfactants of the other isolates used in the antimicrobial activity test. The type of the separated crude biosurfactant produced by P. fluorescens G7 analyzed later by using the rhamose test, TLC and FT-IR techniques was rhamnolipid.

  13. Molecular Epidemiologic Typing Systems of Bacterial Pathogens: Current Issues and Perpectives

    Directory of Open Access Journals (Sweden)

    Marc J Struelens

    1998-09-01

    Full Text Available The epidemiologic typing of bacterial pathogens can be applied to answer a number of different questions: in case of outbreak, what is the extent and mode of transmission of epidemic clone(s ? In case of long-term surveillance, what is the prevalence over time and the geographic spread of epidemic and endemic clones in the population? A number of molecular typing methods can be used to classify bacteria based on genomic diversity into groups of closely-related isolates (presumed to arise from a common ancestor in the same chain of transmission and divergent, epidemiologically-unrelated isolates (arising from independent sources of infection. Ribotyping, IS-RFLP fingerprinting, macrorestriction analysis of chromosomal DNA and PCR-fingerprinting using arbitrary sequence or repeat element primers are useful methods for outbreak investigations and regional surveillance. Library typing systems based on multilocus sequence-based analysis and strain-specific probe hybridization schemes are in development for the international surveillance of major pathogens like Mycobacterium tuberculosis. Accurate epidemiological interpretation of data obtained with molecular typing systems still requires additional research on the evolution rate of polymorphic loci in bacterial pathogens.

  14. An Overview of the Control of Bacterial Pathogens in Cattle Manure

    Directory of Open Access Journals (Sweden)

    Christy E. Manyi-Loh

    2016-08-01

    Full Text Available Cattle manure harbors microbial constituents that make it a potential source of pollution in the environment and infections in humans. Knowledge of, and microbial assessment of, manure is crucial in a bid to prevent public health and environmental hazards through the development of better management practices and policies that should govern manure handling. Physical, chemical and biological methods to reduce pathogen population in manure do exist, but are faced with challenges such as cost, odor pollution, green house gas emission, etc. Consequently, anaerobic digestion of animal manure is currently one of the most widely used treatment method that can help to salvage the above-mentioned adverse effects and in addition, produces biogas that can serve as an alternative/complementary source of energy. However, this method has to be monitored closely as it could be fraught with challenges during operation, caused by the inherent characteristics of the manure. In addition, to further reduce bacterial pathogens to a significant level, anaerobic digestion can be combined with other methods such as thermal, aerobic and physical methods. In this paper, we review the bacterial composition of cattle manure as well as methods engaged in the control of pathogenic microbes present in manure and recommendations that need to be respected and implemented in order to prevent microbial contamination of the environment, animals and humans.

  15. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens.

    Science.gov (United States)

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions.

  16. “Nothing is permanent but change”* -- Antigenic variation in persistent bacterial pathogens

    Science.gov (United States)

    Palmer, Guy H.; Bankhead, Troy; Lukehart, Sheila A.

    2012-01-01

    Summary Pathogens persist in immunocompetent mammalian hosts using various strategies, including evasion of immune effectors by antigenic variation. Among highly antigenically variant bacteria, gene conversion is used to generate novel expressed variants from otherwise silent donor sequences. Recombination using oligonucleotide segments from multiple donors is a combinatorial mechanism that tremendously expands the variant repertoire, allowing thousands of variants to be generated from a relatively small donor pool. Three bacterial pathogens, each encoded by a small genome (Borrelia burgdorferi VlsE diversity is encoded and expressed on a linear plasmid required for persistence and recent experiments have demonstrated that VlsE recombination is necessary for persistence in the immunocompetent host. In contrast, both Treponema pallidum TprK and Anaplasma marginale Msp2 expression sites and donors are chromosomally encoded. Both T. pallidum and A. marginale generate antigenic variants in vivo in individual hosts and studies at the population level reveal marked strain diversity in the variant repertoire that may underlie pathogen strain structure and the capacity for re-infection and heterologous strain superinfection. Here, we review gene conversion in bacterial antigenic variation and discuss the short- and long-term selective pressures that shape the variant repertoire. PMID:19709057

  17. 'Nothing is permanent but change'- antigenic variation in persistent bacterial pathogens.

    Science.gov (United States)

    Palmer, Guy H; Bankhead, Troy; Lukehart, Sheila A

    2009-12-01

    Pathogens persist in immunocompetent mammalian hosts using various strategies, including evasion of immune effectors by antigenic variation. Among highly antigenically variant bacteria, gene conversion is used to generate novel expressed variants from otherwise silent donor sequences. Recombination using oligonucleotide segments from multiple donors is a combinatorial mechanism that tremendously expands the variant repertoire, allowing thousands of variants to be generated from a relatively small donor pool. Three bacterial pathogens, each encoded by a small genome (Borrelia burgdorferi VlsE diversity is encoded and expressed on a linear plasmid required for persistence and recent experiments have demonstrated that VlsE recombination is necessary for persistence in the immunocompetent host. In contrast, both Treponema pallidum TprK and Anaplasma marginale Msp2 expression sites and donors are chromosomally encoded. Both T. pallidum and A. marginale generate antigenic variants in vivo in individual hosts and studies at the population level reveal marked strain diversity in the variant repertoire that may underlie pathogen strain structure and the capacity for re-infection and heterologous strain superinfection. Here, we review gene conversion in bacterial antigenic variation and discuss the short- and long-term selective pressures that shape the variant repertoire.

  18. An Overview of the Control of Bacterial Pathogens in Cattle Manure

    Science.gov (United States)

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Makaka, Golden; Simon, Michael; Okoh, Anthony I.

    2016-01-01

    Cattle manure harbors microbial constituents that make it a potential source of pollution in the environment and infections in humans. Knowledge of, and microbial assessment of, manure is crucial in a bid to prevent public health and environmental hazards through the development of better management practices and policies that should govern manure handling. Physical, chemical and biological methods to reduce pathogen population in manure do exist, but are faced with challenges such as cost, odor pollution, green house gas emission, etc. Consequently, anaerobic digestion of animal manure is currently one of the most widely used treatment method that can help to salvage the above-mentioned adverse effects and in addition, produces biogas that can serve as an alternative/complementary source of energy. However, this method has to be monitored closely as it could be fraught with challenges during operation, caused by the inherent characteristics of the manure. In addition, to further reduce bacterial pathogens to a significant level, anaerobic digestion can be combined with other methods such as thermal, aerobic and physical methods. In this paper, we review the bacterial composition of cattle manure as well as methods engaged in the control of pathogenic microbes present in manure and recommendations that need to be respected and implemented in order to prevent microbial contamination of the environment, animals and humans. PMID:27571092

  19. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Yamilé eLópez Hernández

    2015-02-01

    Full Text Available Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as a valuate tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio, and non-vertebrate insects and nematodes (e.g. Caenorhabditis elegans in the study of diverse infectious agents that affect humans. Here we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favour of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions.

  20. Illuminating the detection chain of bacterial bioreporters

    NARCIS (Netherlands)

    Meer, J.R. van der; Tropel, D.; Jaspers, M.

    2004-01-01

    Engineering bacteria for measuring chemicals of environmental or toxicological concern (bioreporter bacteria) has grown slowly into a mature research area. Despite many potential advantages, current bioreporters do not perform well enough to comply with environmental detection standards. Basically,

  1. Presence of potential bacterial pathogens in a municipal drinking water supply system.

    Science.gov (United States)

    Felföldi, T; Tarnóczai, Tímea; Homonnay, Z G

    2010-09-01

    The quality of drinking water is a major public concern, but the detection of most potential pathogens is not always included in drinking water hygienic monitoring or is only assessed with highly biased cultivation-based methods. In this study, the occurrence of Pseudomonas aeruginosa and Legionella spp. was examined with taxon-specific PCRs in samples taken at ten points of a municipal drinking water supply system in three months. Sequence analysis confirmed the positivity of samples and revealed a diverse community of legionellae. The results showed that chlorination was an important and effective disinfection method against pathogenic bacteria in drinking water, but pathogenic bacteria could reoccur in the system farther away from the chlorination point. No strong correlation was found between the presence of the investigated potentially pathogenic bacteria and the measured abiotic and biotic parameters within the investigated range. It is hypothesized that instead of physicochemical parameters, the main factors influencing the presence of pathogens in the drinking water were rather the composition of the microbial community, the biotic interactions between individual non-pathogenic and pathogenic microorganisms (competition or promotion of growth) and the structure of biofilm grown on the inner surface of the supply system.

  2. Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean

    Directory of Open Access Journals (Sweden)

    Sumit Rishi

    2012-06-01

    Full Text Available Abstract Background Nonhost resistance (NHR provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Three Arabidopsis thaliana PEN (penetration deficient genes, PEN1, 2 and 3 have been shown to provide NHR against the barley pathogen Blumeria graminis f. sp. hordei at the prehaustorial level. Arabidopsis pen1-1 mutant lacking the PEN1 gene is penetrated by the hemibiotrophic oomycete pathogen Phytophthora sojae, the causal organism of the root and stem rot disease in soybean. We investigated if there is any novel nonhost resistance mechanism in Arabidopsis against the soybean pathogen, P. sojae. Results The P.sojaesusceptible (pss 1 mutant was identified by screening a mutant population created in the Arabidopsis pen1-1 mutant that lacks penetration resistance against the non adapted barley biotrophic fungal pathogen, Blumeria graminis f. sp. hordei. Segregation data suggested that PEN1 is not epistatic to PSS1. Responses of pss1 and pen1-1 to P. sojae invasion were distinct and suggest that PSS1 may act at both pre- and post-haustorial levels, while PEN1 acts at the pre-haustorial level against this soybean pathogen. Therefore, PSS1 encodes a new form of nonhost resistance. The pss1 mutant is also infected by the necrotrophic fungal pathogen, Fusarium virguliforme, which causes sudden death syndrome in soybean. Thus, a common NHR mechanism is operative in Arabidopsis against both hemibiotrophic oomycetes and necrotrophic fungal pathogens that are pathogenic to soybean. However, PSS1 does not play any role in immunity against the bacterial pathogen, Pseudomonas syringae pv. glycinea, that causes bacterial blight in soybean. We mapped PSS1 to a region very close to the southern telomere of chromosome 3 that carries no known disease resistance genes. Conclusions The study revealed that Arabidopsis PSS1 is a novel nonhost resistance gene that confers a new form of

  3. Diagnostic clinical and laboratory findings in response to predetermining bacterial pathogen: data from the Meningitis Registry.

    Directory of Open Access Journals (Sweden)

    Maria Karanika

    Full Text Available BACKGROUND: Childhood meningitis continues to be an important cause of mortality in many countries. The search for rapid diagnosis of acute bacterial meningitis has lead to the further exploration of prognostic factors. This study was scheduled in an attempt to analyze various clinical symptoms as well as rapid laboratory results and provide an algorithm for the prediction of specific bacterial aetiology of childhood bacterial meningitis. METHODOLOGY AND PRINCIPAL FINDINGS: During the 32 year period, 2477 cases of probable bacterial meningitis (BM were collected from the Meningitis Registry (MR. Analysis was performed on a total of 1331 confirmed bacterial meningitis cases of patients aged 1 month to 14 years. Data was analysed using EPI INFO (version 3.4.3-CDC-Atlanta and SPSS (version 15.0-Chicago software. Statistically significant (p or = 15000/microL (OR 2.19 with a PPV of 77.8% (95%CI 40.0-97.2. For the diagnosis of Haemophilus influenzae, the most significant group of diagnostic criteria included, absence of haemorrhagic rash (OR 13.61, age > or = 1 year (OR 2.04, absence of headache (OR 3.01, CSF Glu < 40 mg/dL (OR 3.62 and peripheral WBC < 15,000/microL (OR 1.74 with a PPV of 58.5% (95%CI 42.1-73.7. CONCLUSIONS: The use of clinical and laboratory predictors for the assessment of the causative bacterial pathogen rather than just for predicting outcome of mortality seems to be a useful tool in the clinical management and specific treatment of BM. These findings should be further explored and studied.

  4. Fecal indicators and bacterial pathogens in bottled water from Dhaka, Bangladesh.

    Science.gov (United States)

    Ahmed, W; Yusuf, R; Hasan, I; Ashraf, W; Goonetilleke, A; Toze, S; Gardner, T

    2013-01-01

    Forty-six bottled water samples representing 16 brands from Dhaka, Bangladesh were tested for the numbers of total coliforms, fecal indicator bacteria (i.e., thermotolerant Escherichia coli and Enterococcus spp.) and potential bacterial pathogens (i.e., Aeromonas hydrophila, Pseudomonas aeruginosa, Salmonella spp., and Shigella spp.). Among the 16 brands tested, 14 (86%), ten (63%) and seven (44%) were positive for total coliforms, E. coil and Enterococcus spp., respectively. Additionally, a further nine (56%), eight (50%), six (37%), and four (25%) brands were PCR positive for A. hydrophila lip, P. aeruginosa ETA, Salmonella spp. invA, and Shigella spp. ipaH genes, respectively. The numbers of bacterial pathogens in bottled water samples ranged from 28 ± 12 to 600 ± 45 (A. hydrophila lip gene), 180 ± 40 to 900 ± 200 (Salmonella spp. invA gene), 180 ± 40 to 1,300 ± 400 (P. aeruginosa ETA gene) genomic units per L of water. Shigella spp. ipaH gene was not quantifiable. Discrepancies were observed in terms of the occurrence of fecal indicators and bacterial pathogens. No correlations were observed between fecal indicators numbers and presence/absence of A. hydrophila lip (p = 0.245), Salmonella spp. invA (p = 0.433), Shigella spp. ipaH gene (p = 0.078), and P. aeruginosa ETA (p = 0.059) genes. Our results suggest that microbiological quality of bottled waters sold in Dhaka, Bangladesh is highly variable. To protect public health, stringent quality control is recommended for the bottled water industry in Bangladesh.

  5. Fecal indicators and bacterial pathogens in bottled water from Dhaka, Bangladesh

    Directory of Open Access Journals (Sweden)

    W. Ahmed

    2013-01-01

    Full Text Available Forty-six bottled water samples representing 16 brands from Dhaka, Bangladesh were tested for the numbers of total coliforms, fecal indicator bacteria (i.e., thermotolerant Escherichia coli and Enterococcus spp. and potential bacterial pathogens (i.e., Aeromonas hydrophil, Pseudomonas aeruginos, Salmonella spp., and Shigella spp.. Among the 16 brands tested, 14 (86%, ten (63% and seven (44% were positive for total coliforms, E. coil and Enterococcus spp., respectively. Additionally, a further nine (56%, eight (50%, six (37%, and four (25% brands were PCR positive for A. hydrophila lip, P. aeruginosa ETA, Salmonella spp. invA, and Shigella spp. ipaH genes, respectively. The numbers of bacterial pathogens in bottled water samples ranged from 28 ± 12 to 600 ± 45 (A. hydrophila lip gene, 180 ± 40 to 900 ± 200 (Salmonella spp. invA gene, 180 ± 40 to 1,300 ± 400 (P. aeruginosa ETA gene genomic units per L of water. Shigella spp. ipaH gene was not quantifiable. Discrepancies were observed in terms of the occurrence of fecal indicators and bacterial pathogens. No correlations were observed between fecal indicators numbers and presence/absence of A. hydrophila lip (p = 0.245, Salmonella spp. invA (p = 0.433, Shigella spp. ipaH gene (p = 0.078, and P. aeruginosa ETA (p = 0.059 genes. Our results suggest that microbiological quality of bottled waters sold in Dhaka, Bangladesh is highly variable. To protect public health, stringent quality control is recommended for the bottled water industry in Bangladesh.

  6. A Study of Parasitic and Bacterial Pathogens Associated with Diarrhea in HIV-Positive Patients

    Science.gov (United States)

    Kongre, Vaishali; Kumar, Varun; Bharadwaj, Renu

    2016-01-01

    Introduction Diarrhea is a common complication of acquired immune deficiency syndrome (AIDS), occurring in almost 90% of AIDS patients in developing countries like India. The present study was aimed to determine the prevalence and microbiological profile of pathogens associated with diarrhea in human immunodeficiency virus (HIV) positive patients and their relation to CD4 counts. Materials and methods Forty-five successive HIV-positive patients, 27 with diarrhea (study group) and 18 without diarrhea (control group), were included in the three-month study. The HIV infection was confirmed by three different antibody detection tests. The stool samples were collected on two consecutive days and were examined for parasites by microscopy using wet mount and modified Ziehl-Neelsen stain. They were examined for bacteria by Gram stain and conventional Ziehl-Neelsen stain and were inoculated on appropriate culture media. The isolates were identified by standard biochemical tests, followed by antibiotic susceptibility testing using the Kirby-Bauer disc diffusion method. Results  Twenty-four pathogens were detected in diarrheal HIV-positive patients, including 14 parasites (58.33%), seven bacteria (29.17%), and three fungi (12.50%). Isospora sp. was the most common parasite (25.9%) followed by Cryptosporidium sp. (14.8%). Other parasites included Cyclospora sp., Strongyloides stercoralis, and Entamoeba histolytica (3.7% each).​ Escherichia coli (18.5%) was the most common bacterial isolate, of which, 80% were Enterotoxigenic E. coli (ETEC) while 20% were Enteropathogenic E. coli (EPEC). Other isolates included Shigella flexneri and Mycobacterium tuberculosis (3.7% each). The isolates were sensitive to furazolidone (94.11%), chloramphenicol (76.47%), and gentamicin (52.94%). The isolates from diarrheal patients showed resistance to norfloxacin (5.88% vs. 50%, p<0.05) as compared to those from non-diarrheal patients. The diarrheal HIV-positive patients

  7. Antibacterial activity of some Indian ayurvedic preparations against enteric bacterial pathogens

    Directory of Open Access Journals (Sweden)

    D H Tambekar

    2011-01-01

    Full Text Available In Ayurveda, various herbal preparations are clinically used to prevent or cure infectious diseases. Herbal preparations such as Triphala churna, Hareetaki churna, Dashmula churna, Manjistadi churna, Sukhsarak churna, Ajmodadi churna, Shivkshar pachan churna, Mahasudarshan churna, Swadist Virechan churna and Pipramool churna were investigated by preparing their organic solvent extract for antibacterial potential against enteric bacterial pathogens such as Escherichia coli, Staphylococcus aureus, Enterobacter aerogenes, Pseudomonas aeruginosa, Bacillus subtilis, Klebsiella pneumoniae, Salmonella typhi, Staphylococcus epidermidis, Salmonella typhimurium and Proteus vulgaris, respectively. In the present study, Triphala churna, Hareetaki churna, Dashmula churna were potent antibacterial agents against S. epidermidis, P. vulgaris, S. aureus, E. coli, P. aeruginosa and S. typhi. The study supports the use of these herbal preparations not only as dietary supplements but also as agents to prevent or control enteric bacterial infections.

  8. In Vitro Activity of Delafloxacin against Contemporary Bacterial Pathogens from the United States and Europe, 2014

    Science.gov (United States)

    Pfaller, M. A.; Sader, H. S.; Rhomberg, P. R.

    2017-01-01

    ABSTRACT The in vitro activities of delafloxacin and comparator antimicrobial agents against 6,485 bacterial isolates collected from medical centers in Europe and the United States in 2014 were tested. Delafloxacin was the most potent agent tested against methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus, Streptococcus pneumoniae, viridans group streptococci, and beta-hemolytic streptococci and had activity similar to that of ciprofloxacin and levofloxacin against certain members of the Enterobacteriaceae. Overall, the broadest coverage of the tested pathogens (Gram-positive cocci and Gram-negative bacilli) was observed with meropenem and tigecycline in both Europe and the United States. Delafloxacin was shown to be active against organisms that may be encountered in acute bacterial skin and skin structure infections, respiratory infections, and urinary tract infections. PMID:28167542

  9. Molecular-based detection of the gastrointestinal pathogen Campylobacter ureolyticus in unpasteurized milk samples from two cattle farms in Ireland

    Directory of Open Access Journals (Sweden)

    Koziel Monika

    2012-11-01

    Full Text Available Abstract Campylobacter jejuni and coli are collectively regarded as the most prevalent cause of bacterial foodborne illness worldwide. An emerging species, Campylobacter ureolyticus has recently been detected in patients with gastroenteritis, however, the source of this organism has, until now, remained unclear. Herein, we describe the molecular-based detection of this pathogen in bovine faeces (1/20 and unpasteurized milk (6/47 but not in poultry (chicken wings and caeca. This is, to the best of our knowledge, the first report of the presence of this potential gastrointestinal pathogen in an animal source, possibly suggesting a route for its transmission to humans.

  10. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment.

    Science.gov (United States)

    Davin-Regli, Anne; Pagès, Jean-Marie

    2015-01-01

    Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution.

  11. Bioinhibition of diarrhogenic Gram-positive bacterial patho-gens by potential indigenous probiotics

    Institute of Scientific and Technical Information of China (English)

    Adenike A.O.Ogunshe

    2008-01-01

    High level infant mortality rates and onset of drug resistance has led into the possible development of indige-nous probiotics as alternative bacteriotherapy in the control of infantile bacterial diarrhoea.This study was to determine the in vitro inhibitory potential of four probiotic candidates obtained from Nigerian indigenous fer-mented foods and beverages and from faecal specimens of healthy infants on infantile Gram-positive diarrhogen-ic bacterial pathogens.Potential probiotic candidates,AAOOL4,L.reuteri AAOOCH1,L.plantarum AAOO25 NN and L.delbrueckii AAOOT20 were assayed for in vitro bactericidal effects on diarrhogenic bacte-rial test strains-Bacillus cereus 25S,B.cereus 32S,B.licheniformis 26S and B.licheniformis 39S.All the test strains inoculated into an industrial infant weaning food already seeded with the probiotic strains were sig-nificantly inhibited within 96 hours. L. acidophilus AAOOL4, L. reuteri AAOOCH1 , L. plantarum AAOO25 NN and L.delbrueckii AAOOT20 had in vitro bactericidal effects on bacteri isolates implicated in in-fantile diarrhoea,indicating the probiotic potential of the candidates.

  12. Active Transport of Phosphorylated Carbohydrates Promotes Intestinal Colonization and Transmission of a Bacterial Pathogen.

    Directory of Open Access Journals (Sweden)

    Brandon Sit

    2015-08-01

    Full Text Available Efficient acquisition of extracellular nutrients is essential for bacterial pathogenesis, however the identities and mechanisms for transport of many of these substrates remain unclear. Here, we investigate the predicted iron-binding transporter AfuABC and its role in bacterial pathogenesis in vivo. By crystallographic, biophysical and in vivo approaches, we show that AfuABC is in fact a cyclic hexose/heptose-phosphate transporter with high selectivity and specificity for a set of ubiquitous metabolites (glucose-6-phosphate, fructose-6-phosphate and sedoheptulose-7-phosphate. AfuABC is conserved across a wide range of bacterial genera, including the enteric pathogens EHEC O157:H7 and its murine-specific relative Citrobacter rodentium, where it lies adjacent to genes implicated in sugar sensing and acquisition. C. rodentium ΔafuA was significantly impaired in an in vivo murine competitive assay as well as its ability to transmit infection from an afflicted to a naïve murine host. Sugar-phosphates were present in normal and infected intestinal mucus and stool samples, indicating that these metabolites are available within the intestinal lumen for enteric bacteria to import during infection. Our study shows that AfuABC-dependent uptake of sugar-phosphates plays a critical role during enteric bacterial infection and uncovers previously unrecognized roles for these metabolites as important contributors to successful pathogenesis.

  13. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates.

    Science.gov (United States)

    Lamb, Joleah B; van de Water, Jeroen A J M; Bourne, David G; Altier, Craig; Hein, Margaux Y; Fiorenza, Evan A; Abu, Nur; Jompa, Jamaluddin; Harvell, C Drew

    2017-02-17

    Plants are important in urban environments for removing pathogens and improving water quality. Seagrass meadows are the most widespread coastal ecosystem on the planet. Although these plants are known to be associated with natural biocide production, they have not been evaluated for their ability to remove microbiological contamination. Using amplicon sequencing of the 16S ribosomal RNA gene, we found that when seagrass meadows are present, there was a 50% reduction in the relative abundance of potential bacterial pathogens capable of causing disease in humans and marine organisms. Moreover, field surveys of more than 8000 reef-building corals located adjacent to seagrass meadows showed twofold reductions in disease levels compared to corals at paired sites without adjacent seagrass meadows. These results highlight the importance of seagrass ecosystems to the health of humans and other organisms.

  14. The bacterial pangenome as a new tool for analysing pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    L. Rouli

    2015-09-01

    Full Text Available The bacterial pangenome was introduced in 2005 and, in recent years, has been the subject of many studies. Thanks to progress in next-generation sequencing methods, the pangenome can be divided into two parts, the core (common to the studied strains and the accessory genome, offering a large panel of uses. In this review, we have presented the analysis methods, the pangenome composition and its application as a study of lifestyle. We have also shown that the pangenome may be used as a new tool for redefining the pathogenic species. We applied this to the Escherichia coli and Shigella species, which have been a subject of controversy regarding their taxonomic and pathogenic position.

  15. The bacterial pangenome as a new tool for analysing pathogenic bacteria.

    Science.gov (United States)

    Rouli, L; Merhej, V; Fournier, P-E; Raoult, D

    2015-09-01

    The bacterial pangenome was introduced in 2005 and, in recent years, has been the subject of many studies. Thanks to progress in next-generation sequencing methods, the pangenome can be divided into two parts, the core (common to the studied strains) and the accessory genome, offering a large panel of uses. In this review, we have presented the analysis methods, the pangenome composition and its application as a study of lifestyle. We have also shown that the pangenome may be used as a new tool for redefining the pathogenic species. We applied this to the Escherichia coli and Shigella species, which have been a subject of controversy regarding their taxonomic and pathogenic position.

  16. Functional properties of peanut fractions on the growth of probiotics and foodborne bacterial pathogens.

    Science.gov (United States)

    Peng, Mengfei; Bitsko, Elizabeth; Biswas, Debabrata

    2015-03-01

    Various compounds found in peanut (Arachis hypogaea) have been shown to provide multiple benefits to human health and may influence the growth of a broad range of gut bacteria. In this study, we investigated the effects of peanut white kernel and peanut skin on 3 strains of Lactobacillus and 3 major foodborne enteric bacterial pathogens. Significant (P microbes. We also found that within 72 h, PF inhibited growth of enterohemorrhagic Escherichia coli O157:H7 (EHEC), while PSE significantly (P < 0.05) inhibited Listeria monocytogenes but promoted the growth of both EHEC and Salmonella Typhimurium. The cell adhesion and invasion abilities of 3 pathogens to the host cells were also significantly (P < 0.05) reduced by 0.5% PF and 0.5% PSE. These results suggest that peanut white kernel might assist in improving human gut flora as well as reducing EHEC, whereas the beneficial effects of peanut skins require further research and investigation.

  17. Bacteria Murmur: Application of an Acoustic Biosensor for Plant Pathogen Detection.

    Directory of Open Access Journals (Sweden)

    George Papadakis

    Full Text Available A multi-targeting protocol for the detection of three of the most important bacterial phytopathogens, based on their scientific and economic importance, was developed using an acoustic biosensor (the Quartz Crystal Microbalance for DNA detection. Acoustic detection was based on a novel approach where DNA amplicons were monitored and discriminated based on their length rather than mass. Experiments were performed during real time monitoring of analyte binding and in a direct manner, i.e. without the use of labels for enhancing signal transduction. The proposed protocol improves time processing by circumventing gel electrophoresis and can be incorporated as a routine detection method in a diagnostic lab or an automated lab-on-a-chip system for plant pathogen diagnostics.

  18. Bacteria Murmur: Application of an Acoustic Biosensor for Plant Pathogen Detection.

    Science.gov (United States)

    Papadakis, George; Skandalis, Nicholas; Dimopoulou, Anastasia; Glynos, Paraskevas; Gizeli, Electra

    2015-01-01

    A multi-targeting protocol for the detection of three of the most important bacterial phytopathogens, based on their scientific and economic importance, was developed using an acoustic biosensor (the Quartz Crystal Microbalance) for DNA detection. Acoustic detection was based on a novel approach where DNA amplicons were monitored and discriminated based on their length rather than mass. Experiments were performed during real time monitoring of analyte binding and in a direct manner, i.e. without the use of labels for enhancing signal transduction. The proposed protocol improves time processing by circumventing gel electrophoresis and can be incorporated as a routine detection method in a diagnostic lab or an automated lab-on-a-chip system for plant pathogen diagnostics.

  19. Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation.

    Science.gov (United States)

    Cebrián, Guillermo; Mañas, Pilar; Condón, Santiago

    2016-01-01

    In this paper the resistance of bacterial foodborne pathogens to manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could also be

  20. COMPARATIVE RESISTANCE OF BACTERIAL FOODBORNE PATHOGENS TO NON-THERMAL TECHNOLOGIES FOR FOOD PRESERVATION

    Directory of Open Access Journals (Sweden)

    Guillermo eCebrián

    2016-05-01

    Full Text Available In this paper the resistance of bacterial foodborne pathogens to manosonication (MS, pulsed electric fields (PEF, high hydrostatic pressure (HHP and UV-light (UV is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could

  1. 环介导等温扩增技术在检测细菌性肺炎常见致病菌中的应用%Value of loop-mediated isothermal amplification in detection of common pathogens of bacterial pneumonia

    Institute of Scientific and Technical Information of China (English)

    戴然然; 刘嘉琳; 万欢英

    2011-01-01

    Objective To investigate the value of loop-mediated isothermal amplification (LAMP) assay in the etiology diagnosis of bacterial pnuemonia through nucleic acid detection of common pathogens in pneumonia patients by LAMP method. Methods Sputum DNA was extracted from 75 pneumonia patients. DNA was amplified by LAMP. The fluorescence signals of products were detected by real-time PCR. The quantitative results were qualitatively analyzed at different cutoff values, and the data were compared with the results of sputum culture. Results The positive ratio of amplified products with LAMP assay at the cutoff value of 1 × 104 was 68.0% ,and the coincidence rate between LAMP assay and sputum culture was 56.0%. The positive ratio of amplified products with LAMP assay at the cutoff value of 1× 105 was 50.7%, and the coincidence rate between LAMP assay and sputum culture was 58.7%.The positive ratio of amplified products with LAMP assay at the cutoff value of 1 × 106 was 30.7%, and the coincidence rate between LAMP assay and sputum culture was 53.3%. There was no statistical significance on the positive rate between sputum culture and LAMP results at the cutoff value of 1 × 105.The detection rate of parts of bacteria by LAMP assay is higher than that by sputum culture at the cutoff value of 1 × 105 ,especially for the harsh bacteria. Conclusions DNA of common pathogens in sputum of patients with bacterial pneumonia can be easily and quickly amplified by LAMP method to identify pathogenic bacteria types. Compared with sputum culture, the bacterial detection rate is higher by LAMP assay at the cutoff value of 1 × 105. Especially for the harsh bacteria, LAMP method has significant advantages.%目的 应用环介导等温扩增(LAMP)方法对肺炎患者痰液常见致病菌进行核酸检测,研究LAMP方法在细菌性肺炎病原学诊断中的价值.方法 抽提75例肺炎患者痰液细菌DNA,根据肺炎常见8种致病细菌设计引物,应用LAMP技术扩增DNA,实

  2. DNA microarray technique for detecting food-borne pathogens

    Directory of Open Access Journals (Sweden)

    Xing GAO

    2012-08-01

    Full Text Available Objective To study the application of DNA microarray technique for screening and identifying multiple food-borne pathogens. Methods The oligonucleotide probes were designed by Clustal X and Oligo 6.0 at the conserved regions of specific genes of multiple food-borne pathogens, and then were validated by bioinformatic analyses. The 5' end of each probe was modified by amino-group and 10 Poly-T, and the optimized probes were synthesized and spotted on aldehyde-coated slides. The bacteria DNA template incubated with Klenow enzyme was amplified by arbitrarily primed PCR, and PCR products incorporated into Aminoallyl-dUTP were coupled with fluorescent dye. After hybridization of the purified PCR products with DNA microarray, the hybridization image and fluorescence intensity analysis was acquired by ScanArray and GenePix Pro 5.1 software. A series of detection conditions such as arbitrarily primed PCR and microarray hybridization were optimized. The specificity of this approach was evaluated by 16 different bacteria DNA, and the sensitivity and reproducibility were verified by 4 food-borne pathogens DNA. The samples of multiple bacteria DNA and simulated water samples of Shigella dysenteriae were detected. Results Nine different food-borne bacteria were successfully discriminated under the same condition. The sensitivity of genomic DNA was 102 -103pg/ μl, and the coefficient of variation (CV of the reproducibility of assay was less than 15%. The corresponding specific hybridization maps of the multiple bacteria DNA samples were obtained, and the detection limit of simulated water sample of Shigella dysenteriae was 3.54×105cfu/ml. Conclusions The DNA microarray detection system based on arbitrarily primed PCR can be employed for effective detection of multiple food-borne pathogens, and this assay may offer a new method for high-throughput platform for detecting bacteria.

  3. New insight into bacterial zoonotic pathogens posing health hazards to humans

    Directory of Open Access Journals (Sweden)

    Marcin Ciszewski

    2014-12-01

    Full Text Available This article presents the problem of evolutionary changes of zoonotic pathogens responsible for human diseases. Everyone is exposed to the risk of zoonotic infection, particularly employees having direct contact with animals, i.e. veterinarians, breeders, butchers and workers of animal products’ processing industry. The article focuses on pathogens monitored by the European Centre for Disease Prevention and Control (ECDC, which has been collecting statistical data on zoonoses from all European Union countries for 19 years and publishing collected data in annual epidemiological reports. Currently, the most important 11 pathogens responsible for causing human zoonotic diseases are being monitored, of which seven are bacteria: Salmonella spp., Campylobacter spp., Listeria monocytogenes, Mycobacterium bovis, Brucella spp., Coxiella burnetti and Verotoxin- producing E. coli (VTEC / Shiga-like toxin producing E. coli (STEC. As particularly important are considered foodborne pathogens. The article also includes new emerging zoonotic bacteria, which are not currently monitored by ECDC but might pose a serious epidemiological problem in a foreseeable future: Streptococcus iniae, S. suis, S. dysgalactiae and staphylococci: Staphylococcus intermedius, S. pseudintermedius. Those species have just crossed the animal-human interspecies barrier. The exact mechanism of this phenomenon remains unknown, it is connected, however, with genetic variability, capability to survive in changing environment. These abilities derive from DNA rearrangement and horizontal gene transfer between bacterial cells. Substantial increase in the number of scientific publications on this subject, observed over the last few years, illustrates the importance of the problem. Med Pr 2014;65(6:819–829

  4. Molecular evidence for bacterial and protozoan pathogens in hard ticks from Romania.

    Science.gov (United States)

    Ionita, Mariana; Mitrea, Ioan Liviu; Pfister, Kurt; Hamel, Dietmar; Silaghi, Cornelia

    2013-09-01

    The aim of the present study was to provide a preliminary insight into the diversity of tick-borne pathogens circulating at the domestic host-tick interface in Romania. For this, feeding and questing ticks were analyzed by real-time polymerase chain reaction (PCR) for the presence of Anaplasma phagocytophilum, Anaplasma platys, Ehrlichia canis, Borrelia burgdorferi sensu latu, and by PCR and subsequent sequencing for Rickettsia spp., Babesia spp. and Theileria spp. A total of 382 ticks, encompassing 5 species from 4 genera, were collected in April-July 2010 from different areas of Romania; of them, 40 were questing ticks and the remainder was collected from naturally infested cattle, sheep, goats, horses or dogs. Tick species analyzed included Ixodes ricinus, Dermacentor marginatus, Hyalomma marginatum, Rhipicephalus bursa, and Rhipicephalus sanguineus. Four rickettsiae of the spotted fever group of zoonotic concern were identified for the first time in Romania: Rickettsia monacensis and Rickettsia helvetica in I. ricinus, and Rickettsia slovaca and Rickettsia raoultii in D. marginatus. Other zoonotic pathogens such as A. phagocytophilum, Borrelia afzelii, and Babesia microti were found in I. ricinus. Pathogens of veterinary importance were also identified, including Theileria equi in H. marginatum, Babesia occultans in D. marginatus and H. marginatum, Theileria orientalis/sergenti/buffeli-group in I. ricinus and in H. marginatum and E. canis in R. sanguineus. These findings show a wide distribution of very diverse bacterial and protozoan pathogens at the domestic host-tick interface in Romania, with the potential of causing both animal and human diseases.

  5. Low-cost, real-time, continuous flow PCR system for pathogen detection.

    Science.gov (United States)

    Fernández-Carballo, B Leticia; McGuiness, Ian; McBeth, Christine; Kalashnikov, Maxim; Borrós, Salvador; Sharon, Andre; Sauer-Budge, Alexis F

    2016-04-01

    In this paper, we present a portable and low cost point-of-care (POC) PCR system for quantitative detection of pathogens. Our system is based on continuous flow PCR which maintains fixed temperatures zones and pushes the PCR solution between two heated areas allowing for faster heat transfer and as a result, a faster PCR. The PCR system is built around a 46.0 mm × 30.9 mm × 0.4 mm disposable thermoplastic chip. In order to make the single-use chip economically viable, it was manufactured by hot embossing and was designed to be compatible with roll-to-roll embossing for large scale production. The prototype instrumentation surrounding the chip includes two heaters, thermal sensors, and an optical system. The optical system allows for pathogen detection via real time fluorescence measurements. FAM probes were used as fluorescent reporters of the amplicons generated during the PCR. To demonstrate the function of the chip, two infectious bacteria targets were selected: Chlamydia trachomatis and Escherichia coli O157:H7. For both bacteria, the limit of detection of the system was determined, PCR efficiencies were calculated, and different flow velocities were tested. We have demonstrated successful detection for these two bacterial pathogens highlighting the versatility and broad utility of our portable, low-cost, and rapid PCR diagnostic device.

  6. In-situ detection of multiple pathogenic bacteria on food surfaces

    Science.gov (United States)

    Chai, Yating; Horikawa, Shin; Hu, Jiajia; Chen, I.-Hsuan; Hu, Jing; Barbaree, James M.; Chin, Bryan A.

    2015-05-01

    Real-time in-situ detection of pathogenic bacteria on fresh food surfaces was accomplished with phage-based magnetoelastic (ME) biosensors. The ME biosensor is constructed of a small rectangular strip of ME material that is coated with a biomolecular recognition element (phage, antibodies or proteins, etc.) that is specific to the target pathogen. This mass-sensitive ME biosensor is wirelessly actuated into mechanical resonance by an externally applied time-varying magnetic field. When the biosensor binds with target bacteria, the mass of the sensor increases, resulting in a decrease in the sensor's resonant frequency. In order to compensate for nonspecific binding, control biosensors without phage were used in this experiment. In previous research, the biosensors were measured one by one. However, the simultaneous measurement of multiple sensors was accomplished in this research, and promises to greatly shorten the analysis time for bacterial detection. Additionally, the use of multiple biosensors enables the possibility of simultaneous detection of different pathogenic bacteria. This paper presents results of experiments in which multiple phage-based ME biosensors were simultaneously monitored. The E2 phage and JRB7 phage from a landscape phage library served as the bio-recognition element that have the capability of binding specifically with Salmonella typhimurium and B. anthracis spores, respectively. Real-time in-situ detection of Salmonella typhimurium and B. anthracis spores on food surfaces are presented.

  7. Enhanced Disease Susceptibility1 Mediates Pathogen Resistance and Virulence Function of a Bacterial Effector in Soybean.

    Science.gov (United States)

    Wang, Jialin; Shine, M B; Gao, Qing-Ming; Navarre, Duroy; Jiang, Wei; Liu, Chunyan; Chen, Qingshan; Hu, Guohua; Kachroo, Aardra

    2014-05-28

    Enhanced disease susceptibility1 (EDS1) and phytoalexin deficient4 (PAD4) are well-known regulators of both basal and resistance (R) protein-mediated plant defense. We identified two EDS1-like (GmEDS1a/GmEDS1b) proteins and one PAD4-like (GmPAD4) protein that are required for resistance signaling in soybean (Glycine max). Consistent with their significant structural conservation to Arabidopsis (Arabidopsis thaliana) counterparts, constitutive expression of GmEDS1 or GmPAD4 complemented the pathogen resistance defects of Arabidopsis eds1 and pad4 mutants, respectively. Interestingly, however, the GmEDS1 and GmPAD4 did not complement pathogen-inducible salicylic acid accumulation in the eds1/pad4 mutants. Furthermore, the GmEDS1a/GmEDS1b proteins were unable to complement the turnip crinkle virus coat protein-mediated activation of the Arabidopsis R protein Hypersensitive reaction to Turnip crinkle virus (HRT), even though both interacted with HRT. Silencing GmEDS1a/GmEDS1b or GmPAD4 reduced basal and pathogen-inducible salicylic acid accumulation and enhanced soybean susceptibility to virulent pathogens. The GmEDS1a/GmEDS1b and GmPAD4 genes were also required for Resistance to Pseudomonas syringae pv glycinea2 (Rpg2)-mediated resistance to Pseudomonas syringae. Notably, the GmEDS1a/GmEDS1b proteins interacted with the cognate bacterial effector AvrA1 and were required for its virulence function in rpg2 plants. Together, these results show that despite significant structural similarities, conserved defense signaling components from diverse plants can differ in their functionalities. In addition, we demonstrate a role for GmEDS1 in regulating the virulence function of a bacterial effector.

  8. Rapid detection, characterization, and enumeration of foodborne pathogens

    DEFF Research Database (Denmark)

    Hoorfar, Jeffrey

    2011-01-01

    As food safety management further develops, microbiological testing will continue to play an important role in assessing whether Food Safety Objectives are achieved. However, traditional microbiological culture-based methods are limited, particularly in their ability to provide timely data...... into focus with the 1990s outbreak of bovine spongiform encephalopathy that was linked to the human outbreak of Creutzfeldt Jakob's Disease. Serology is still an important tool in preventing foodborne pathogens to enter the human food supply through meat and milk from animals. One of the primary uses...... following a short log-phase enrichment, (iv) detection of foodborne pathogens in air samples, and finally (v) biotracing of pathogens based on mathematical modeling, even in the absence of isolate. Rapid methods are discussed in a broad global health perspective, international food supply...

  9. Detection of Gastrointestinal Pathogens from Stool Samples on Hemoccult Cards by Multiplex PCR

    Directory of Open Access Journals (Sweden)

    Martin Alberer

    2017-01-01

    Full Text Available Purpose. Up to 30% of international travelers are affected by travelers’ diarrhea (TD. Reliable data on the etiology of TD is lacking. Sufficient laboratory capacity at travel destinations is often unavailable and transporting conventional stool samples to the home country is inconvenient. We evaluated the use of Hemoccult cards for stool sampling combined with a multiplex PCR for the detection of model viral, bacterial, and protozoal TD pathogens. Methods. Following the creation of serial dilutions for each model pathogen, last positive dilution steps (LPDs and thereof calculated last positive sample concentrations (LPCs were compared between conventional stool samples and card samples. Furthermore, card samples were tested after a prolonged time interval simulating storage during a travel duration of up to 6 weeks. Results. The LPDs/LPCs were comparable to testing of conventional stool samples. After storage on Hemoccult cards, the recovery rate was 97.6% for C. jejuni, 100% for E. histolytica, 97.6% for norovirus GI, and 100% for GII. Detection of expected pathogens was possible at weekly intervals up to 42 days. Conclusion. Stool samples on Hemoccult cards stored at room temperature can be used in combination with a multiplex PCR as a reliable tool for testing of TD pathogens.

  10. Fluorescence in situ hybridization rapidly detects three different pathogenic bacteria in urinary tract infection samples.

    Science.gov (United States)

    Wu, Qing; Li, Yan; Wang, Ming; Pan, Xiao P; Tang, Yong F

    2010-11-01

    The detection of pathogenic bacteria in urine is an important criterion for diagnosing urinary tract infections (UTIs). By using fluorescence in situ hybridization (FISH) with rRNA-targeted, fluorescently labeled oligonucleotide probes, bacterial pathogens present in urine samples were identified within 3-4 h. In this study, three probes that are specific for Escherichia coli, Enterococcus faecalis and Staphylococcus aureus were designed based on the conserved 16S RNA sequences, whereas probe Eub338 broadly recognizes all bacteria. We collected a total of 1000 urine samples, and 325 of these samples tested positive for a UTI via traditional culturing techniques; additionally, all 325 of these samples tested positive with the Eub338 probe in FISH analysis. FISH analyses with species-specific probes were performed in parallel to the test the ability to differentiate among several pathogenic bacteria. The samples for these experiments included 76 E. coli infected samples, 32 E. faecalis infected samples and 9 S. aureus infected samples. Compared to conventional methods of bacterial identification, the FISH method produced positive results for >90% of the samples tested. FISH has the potential to become an extremely useful diagnostic tool for UTIs because it has a quick turnaround time and high accuracy.

  11. Detection of virulence factors and molecular typing of pathogenic Leptospira from capybara (Hydrochaeris hydrochaeris).

    Science.gov (United States)

    Jorge, Sérgio; Monte, Leonardo G; Coimbra, Marco Antonio; Albano, Ana Paula; Hartwig, Daiane D; Lucas, Caroline; Seixas, Fabiana K; Dellagostin, Odir A; Hartleben, Cláudia P

    2012-10-01

    Leptospirosis is a globally prevalent zoonosis caused by pathogenic Leptospira spp.; several serologic variants have reservoirs in synanthropic rodents. The capybara is the largest living rodent in the world, and it has a wide geographical distribution in Central and South America. This rodent is a significant source of Leptospira since the agent is shed via urine into the environment and is a potential public health threat. In this study, we isolated and identified by molecular techniques a pathogenic Leptospira from capybara in southern Brazil. The isolated strain was characterized by partial rpoB gene sequencing and variable-number tandem-repeats analysis as L. interrogans, serogroup Icterohaemorrhagiae. In addition, to confirm the expression of virulence factors, the bacterial immunoglobulin-like proteins A and B expression was detected by indirect immunofluorescence using leptospiral specific monoclonal antibodies. This report identifies capybaras as an important source of infection and provides insight into the epidemiology of leptospirosis.

  12. Detection and Identification System of Bacteria and Bacterial Endotoxin Based on Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Muhammad Elsayeh

    2016-03-01

    Full Text Available Sepsis is a global health problem that causes risk of death. In the developing world, about 60 to 80 % of death cases are caused by Sepsis. Rapid methods for detecting its causes, represent one of the major factors that may reduce Sepsis risks. Such methods can provide microbial detection and identification which is critical to determine the right treatment for the patient. Microbial and Pyrogen detection is important for quality control system to ensure the absence of pathogens and Pyrogens in the manufacturing of both medical and food products. Raman spectroscopes represent a q uick and accurate identification and detection method, for bacteria and bacterial endotoxin, which this plays an important role in delivering high quality biomedical products using the power of Raman spectroscopy. It is a rapid method for chemical structure detection that can be used in identifying and classifying bacteria and bacterial endotoxin. Such a method acts as a solution for time and cost effective quality control procedures. This work presents an automatic system based on Raman spectroscopy to detect and identify bacteria and bacterial endotoxin. It uses the frequency properties of Raman scattering through the interaction between organic materials and electromagnetic waves. The scattered intensities are measured and wave number converted into frequency, then the cepstral coefficients are extracted for both the detection and identification. The methodology depends on normalization of Fourier transformed cepstral signal to extract their classification features. Experiments’ results proved effective identification and detection of bacteria and bacterial endotoxin even with concentrations as low as 0.0003 Endotoxin unit (EU/ml and 1 Colony Forming Unit (CFU/ml using signal processing based enhancement technique.

  13. Detection of periodontal pathogens in the patients with aortic aneurysm

    Institute of Scientific and Technical Information of China (English)

    Ding Fang; Lyu Yalin; Han Xiao; Zhang Hai; Liu Dongyu; Hei Wei; Liu Yinhua

    2014-01-01

    Background The occurrence and development of aortic aneurysm (AA) are associated with infection.Some researchers have detected the DNA of periodontal pathogens in AA samples in certain populations.However,it has not been done in Chinese population.The objective of this study was to evaluate the prevalence of periodontal pathogens in oral tissue samples and aneurysm samples of AA patients.Methods Eighty-nine subjects with AA and 59 subjects without AA were examined.Periodontal clinical parameters were evaluated.Unstimulated saliva and subgingival plaque somples were collected from all subjects.Twenty-six dissected AA samples were obtained.Evidence of eight periodontal pathogens including Porphyromonas gingivalis (Pg),Actinobacillus actinomycetemcomitans (Aa),Prevotella intermedia (Pi),Tannerella forsythensis (Tf),Treponema denticola (Td),Campylobacter rectus (Cr),Fusobacterium nucleatum (Fn),and Prevotella nigrescens (Pn) was ascertained in all samples by 16S rRNA-based polymerase chain reaction (PCR) assay.Results The periodontal indexes including plaque index (PLI),probing depth (PD),bleeding index (BI),and clinical attachment loss (CAL),of the six Ramfjord index teeth were significantly higher in the AA group than those in the control group (P <0.01).Eight periodontal pathogens in subgingival plaque samples were more frequently detected in the AA group than in control group.The difference in prevalence between the groups was significant for six (out of eight) periodontal pathogens assayed (Pg,Pi,Fn,Pn,Tf,and Td,P <0.01).Additionally,all eight periodontal pathogens were more frequently detected in saliva samples of the AA group than in those of the control group,again with six (out of eight) (Pg,Pi,Fn,Cr,Tf,and Td) displaying significant differences in prevalence between the two groups (P <0.01).Out of 26 aneurysm samples examined,Pg,Pi,Fn,Crand Tfwere detected in 6 (23.1%),2 (7.7%),3 (11.5%),1 (3.8%),2 (7.7%),respectively,and Aa,Pn,and Td were not

  14. Population structure of the bacterial pathogen Xylella fastidiosa among street trees in Washington D.C.

    Directory of Open Access Journals (Sweden)

    Jordan Lee Harris

    Full Text Available Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship.

  15. Antibiotic sensitivity pattern of bacterial pathogens in the intensive care unit of Fatmawati Hospital, Indonesia

    Institute of Scientific and Technical Information of China (English)

    Maksum Radji; Siti Fauziah; Nurgani Aribinuko

    2011-01-01

    Objective: To evaluate the sensitivity pattern of bacterial pathogens in the intensive care unit (ICU) of a tertiary care of Fatmawati Hospital Jakarta Indonesia. Methods: A cross sectional retrospective study of bacterial pathogen was carried out on a total of 722 patients that were admitted to the ICU of Fatmawati Hospital Jakarta Indonesia during January 2009 to March 2010. All bacteria were identified by standard microbiologic methods, and their antibiotic susceptibility testing was performed using disk diffusion method. Results: Specimens were collected from 385 patients who were given antimicrobial treatment, of which 249 (64.68%) were cultured positive and 136 (35.32%) were negative. The most predominant isolate was Pseudomonas aeruginosa (P. aeruginosa) (26.5%) followed by Klebsiella pneumoniae (K. pneumoniae) (15.3%) and Staphylococcus epidermidis (14.9%). P. aeruginosa isolates showed high rate of resistance to cephalexin (95.3%), cefotaxime (64.1%), and ceftriaxone (60.9%). Amikacin was the most effective (84.4%) antibiotic against P. aeruginosa followed by imipenem (81.2%), and meropenem (75.0%). K. pneumoniae showed resistance to cephalexin (86.5%), ceftriaxone (75.7%), ceftazidime (73.0%), cefpirome (73.0%) and cefotaxime (67.9%), respectively. Conclusions: Most bacteria isolated from ICU of Fatmawati Hospital Jakarta Indonesia were resistant to the third generation of cephalosporins, and quinolone antibiotics. Regular surveillance of antibiotic susceptibility patterns is very important for setting orders to guide the clinician in choosing empirical or directed therapy of infected patients.

  16. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy

    2016-01-24

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  17. Comparison of the detection of periodontal pathogens in bacteraemia after tooth brushing by culture and molecular techniques

    Science.gov (United States)

    Figuero, Elena; González, Itziar; O´Connor, Ana; Diz, Pedro; Álvarez, Maximiliano; Herrera, David; Sanz, Mariano

    2016-01-01

    Background The prevalence and amounts of periodontal pathogens detected in bacteraemia samples after tooth brushing-induced by means of four diagnostic technique, three based on culture and one in a molecular-based technique, have been compared in this study. Material and Methods Blood samples were collected from thirty-six subjects with different periodontal status (17 were healthy, 10 with gingivitis and 9 with periodontitis) at baseline and 2 minutes after tooth brushing. Each sample was analyzed by three culture-based methods [direct anaerobic culturing (DAC), hemo-culture (BACTEC), and lysis-centrifugation (LC)] and one molecular-based technique [quantitative polymerase chain reaction (qPCR)]. With culture any bacterial isolate was detected and quantified, while with qPCR only Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were detected and quantified. Descriptive analyses, ANOVA and Chi-squared tests, were performed. Results Neither BACTEC nor qPCR detected any type of bacteria in the blood samples. Only LC (2.7%) and DAC (8.3%) detected bacteraemia, although not in the same patients. Fusobacterium nucleatum was the most frequently detected bacterial species. Conclusions The disparity in the results when the same samples were analyzed with four different microbiological detection methods highlights the need for a proper validation of the methodology to detect periodontal pathogens in bacteraemia samples, mainly when the presence of periodontal pathogens in blood samples after tooth brushing was very seldom. Key words:Bacteraemia, periodontitis, culture, PCR, tooth brushing. PMID:26946197

  18. Food Microbial Pathogen Detection and Analysis Using DNA Microarray Technologies

    OpenAIRE

    Rasooly, Avraham; Herold, Keith E.

    2008-01-01

    Culture-based methods used for microbial detection and identification are simple to use, relatively inexpensive, and sensitive. However, culture-based methods are too time-consuming for high-throughput testing and too tedious for analysis of samples with multiple organisms and provide little clinical information regarding the pathogen (e.g., antibiotic resistance genes, virulence factors, or strain subtype). DNA-based methods, such as polymerase chain reaction (PCR), overcome some these limit...

  19. Detection and enumeration of four foodborne pathogens in raw commingled silo milk in the United States.

    Science.gov (United States)

    Jackson, Emily E; Erten, Edibe S; Maddi, Neeraj; Graham, Thomas E; Larkin, John W; Blodgett, Robert J; Schlesser, Joseph E; Reddy, Ravinder M

    2012-08-01

    A nationwide survey was conducted to obtain qualitative and quantitative data on bacterial contamination of raw commingled silo milk intended for pasteurization. The levels of total aerobic bacteria, total coliforms, Enterobacteriaceae, Escherichia coli, and Staphylococcus aureus were determined using the TEMPO system. The prevalence rates and levels of presumptive Bacillus cereus, E. coli O157:H7, Listeria monocytogenes, and Salmonella spp. were determined in 214 samples. B. cereus was detected in 8.91% of samples, at 3.0 to 93 CFU/ml. E. coli O157:H7 was detected in 3.79 to 9.05% of samples, at bacteria were slightly lower in samples containing no pathogens. No correlation was observed between the levels of organisms detected with the TEMPO system and the presence or levels of any pathogen except E. coli O157:H7. A higher average log-transformed count of total viable bacteria was observed in samples positive for this organism. The high prevalence rates of target pathogens may be attributed to a variety of factors, including detection methods, sample size, and commingling of the milk in the silo. The effects of commingling likely contributed to the high prevalence rates and low levels of target pathogens because of the inclusion of milk from multiple bulk tanks. The high prevalence rates also may be the result of analysis of larger sample volumes using more sensitive detection methods. These quantitative data could be utilized to perform more accurate risk assessments and to better estimate the appropriate level of protection for dairy products and processing technologies.

  20. Assessment of an extraction protocol to detect the major mastitis-causing pathogens in bovine milk.

    Science.gov (United States)

    Cressier, B; Bissonnette, N

    2011-05-01

    Despite all efforts to control its spread, mastitis remains the most costly disease for dairy farmers worldwide. One key component of better control of this disease is identification of the causative bacterial agent during udder infections in cows. Mastitis is complex, however, given the diversity of pathogens that must be identified. Development of a rapid and efficient bacterial species identification tool is thus necessary. This study was conducted to demonstrate the feasibility of bacterial DNA extraction for the automated molecular detection of major mastitis-causing pathogens directly in milk samples to complement traditional microbiological identification. Extraction and detection procedures were designed and optimized to achieve detection in a respectable time frame, at a reasonable cost, and with a high throughput capacity. The following species were identified: Staphylococcus aureus, Escherichia coli, Streptococcus uberis, Streptococcus agalactiae, Streptococcus dysgalactiae, and Klebsiella spp. (including Klebsiella oxytoca and Klebsiella pneumoniae). The detection procedure includes specific genomic DNA amplification by multiplex PCR for each species, separation by capillary electrophoresis, and laser-assisted automated detection. The specificity of the primers was assessed with a panel of bacteria representing mastitis-negative control species. The extraction protocol comprised multiple steps, starting with centrifugation for fat removal, followed by heating in the presence of a cation exchange resin to trap divalent ions. The analytical sensitivity was 100 cfu/mL for milk samples spiked with Staph. aureus, Strep. dysgalactiae, and E. coli, with a tendency for K. pneumoniae. The detection limit was 500 cfu/mL for Strep. uberis and Strep. agalactiae. The overall diagnostic sensitivity (95.4%) and specificity (97.3%) were determined in a double-blind randomized assay by processing 172 clinical milk samples with microbiological characterization as the

  1. Sample preparation and assay refinements for pathogen detection platforms

    Science.gov (United States)

    Lim, Daniel V.; Kearns, Elizabeth A.; Leskinen, Stephaney D.; Magaña, Sonia; Stroot, Joyce M.; Hunter, Dawn M.; Schlemmer, Sarah M.

    2009-02-01

    Food-borne and waterborne microbial pathogens are a potential problem in biowarfare and public health. Such pathogens can affect the health, combat readiness, and effectiveness of the warfighter in a battlefield environment and present potential threats to the civilian population through intentional or natural contamination of food and water. Conventional procedures to detect and identify microbial pathogens in food, water, and other materials can take days to perform and may provide inconclusive information. Research at the University of South Florida's Advanced Biosensors Laboratory (ABL) focuses on development of sample processing procedures and biosensor-based assays for rapid detection of biothreat agents. Rapid processing methods, including use of an automated concentrator of microorganisms in water, have been developed for complex matrix samples including ground beef, apple juice, produce, potable water and recreational water, enabling such samples to be directly tested by biosensor assays for target analytes. Bacillus atrophaeus spores and other bacteria can be concentrated from potable and recreational water at low levels with a dead-end hollow-fiber ultrafiltration concentration system. Target bacteria recovered by these processing procedures can be identified by evanescent wave, fiber optic biosensors or other detection platforms. Fiber optic biosensor assays have been improved to include subsequent PCR analysis and viability determination of captured target bacteria using broth enrichment and/or ATP luminescence.

  2. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2014-01-01

    composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis...... showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor...

  3. A microfluidic-based hybrid SPR/molecular imaging biosensor for the multiplexed detection of foodborne pathogens

    Science.gov (United States)

    Zordan, Michael D.; Grafton, Meggie M. G.; Acharya, Ghanashyam; Reece, Lisa M.; Aronson, Arthur I.; Park, Kinam; Leary, James F.

    2009-02-01

    It is important to screen our food supply for pathogen contaminations. Current methods to screen for bacterial contamination involve using costly reagents such as antibodies or PCR reagents or time-costly growth in cultures. There is need for portable, real-time, multiplex pathogen detection technology that can predict the safety of food where it is produced or distributed. Surface plasmon resonance (SPR) imaging is a sensitive, label-free method that can detect the binding of an analyte to a surface due to changes in refractive index that occur upon binding. It can be used for label-free detection of the presence of potential pathogens. Simultaneous fluorescence molecular imaging on the other side of the biochip can be used to ascertain pathogen status or functional state which may affect its potential danger to humans or animals. We are designing and testing hybrid microfluidic biochips to detect multiple pathogens using a combination of SPRI and fluorescence imaging. The device consists of an array of gold spots, each functionalized with a peptide targeting a specific pathogen. This peptide biosensor array is enclosed by a PDMS microfluidic flow chamber that delivers a magnetically concentrated sample to be tested. An SPR image is taken from the bottom of the biochip. Image analysis is used to quantify the amount of pathogen (both live and dead) bound to each spot. Since PDMS is very transmissive to visible light, an epi-fluorescence image is taken from the top of the biochip. Fluorescence imaging determines the live:dead ratio of each pathogen using an inexpensive SYTO 9(R)-Propidium Iodide assay. The volume of sample that the biochip can analyze is small, so possible pathogens are pre-concentrated using immunomagnetic separation. Functionalized magnetic particles are bound to pathogens present in the sample, and a magnet is used to separate them from the bulk fluid.

  4. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens.

    Science.gov (United States)

    Sulakvelidze, Alexander

    2013-10-01

    Bacteriophages (also called 'phages') are viruses that kill bacteria. They are arguably the oldest (3 billion years old, by some estimates) and most ubiquitous (total number estimated to be 10(30) -10(32) ) known organisms on Earth. Phages play a key role in maintaining microbial balance in every ecosystem where bacteria exist, and they are part of the normal microflora of all fresh, unprocessed foods. Interest in various practical applications of bacteriophages has been gaining momentum recently, with perhaps the most attention focused on using them to improve food safety. That approach, called 'phage biocontrol', typically includes three main types of applications: (i) using phages to treat domesticated livestock in order to reduce their intestinal colonization with, and shedding of, specific bacterial pathogens; (ii) treatments for decontaminating inanimate surfaces in food-processing facilities and other food establishments, so that foods processed on those surfaces are not cross-contaminated with the targeted pathogens; and (iii) post-harvest treatments involving direct applications of phages onto the harvested foods. This mini-review primarily focuses on the last type of intervention, which has been gaining the most momentum recently. Indeed, the results of recent studies dealing with improving food safety, and several recent regulatory approvals of various commercial phage preparations developed for post-harvest food safety applications, strongly support the idea that lytic phages may provide a safe, environmentally-friendly, and effective approach for significantly reducing contamination of various foods with foodborne bacterial pathogens. However, some important technical and nontechnical problems may need to be addressed before phage biocontrol protocols can become an integral part of routine food safety intervention strategies implemented by food industries in the USA.

  5. How a bacterial pathogen swims in the storm stirred up by its coral host

    Science.gov (United States)

    Brumley, Douglas; Garren, Melissa; Fernandez, Vicente; Stocker, Roman

    2014-11-01

    One important cause of the worldwide demise of coral reefs is the infection of corals by pathogenic bacteria. These bacteria are always motile, yet how they land on the coral surface remains unclear. In particular, the recently discovered vortical flows produced by the coral with its epidermal cilia create a hostile hydrodynamic environment for motility and the pursuit of chemical cues. We used high-speed imaging coupled with dual-wavelength epifluorescent microscopy to track individual Vibrio coralliilyticus bacteria - known for causing coral disease - in the immediate vicinity of its host, the coral Pocillopora damicornis. By simultaneously determining the fluid velocity and bacterial trajectories, we quantified the ability of the bacteria to target the coral surface. We show that the cilia-driven flows considerably but not entirely disrupt bacterial navigation towards the coral, as a result of (i) the stirring of the chemical cues guiding the cells and (ii) the shear-induced alignment of bacteria within the flow. By enabling the direct visualization of microbial motility in ciliary flows, this system can not only provide insights into coral disease, but also serve as a model system for bacterial disease in other ciliated environments, including the human respiratory system.

  6. Fluorocycline TP-271 Is Potent against Complicated Community-Acquired Bacterial Pneumonia Pathogens

    Science.gov (United States)

    Fyfe, Corey; O’Brien, William; Hackel, Meredith; Minyard, Mary Beth; Waites, Ken B.; Dubois, Jacques; Murphy, Timothy M.; Slee, Andrew M.; Weiss, William J.; Sutcliffe, Joyce A.

    2017-01-01

    ABSTRACT TP-271 is a novel, fully synthetic fluorocycline antibiotic in clinical development for the treatment of respiratory infections caused by susceptible and multidrug-resistant pathogens. TP-271 was active in MIC assays against key community respiratory Gram-positive and Gram-negative pathogens, including Streptococcus pneumoniae (MIC90 = 0.03 µg/ml), methicillin-sensitive Staphylococcus aureus (MSSA; MIC90 = 0.25 µg/ml), methicillin-resistant S. aureus (MRSA; MIC90 = 0.12 µg/ml), Streptococcus pyogenes (MIC90 = 0.03 µg/ml), Haemophilus influenzae (MIC90 = 0.12 µg/ml), and Moraxella catarrhalis (MIC90 ≤0.016 µg/ml). TP-271 showed activity (MIC90 = 0.12 µg/ml) against community-acquired MRSA expressing Panton-Valentine leukocidin (PVL). MIC90 values against Mycoplasma pneumoniae, Legionella pneumophila, and Chlamydia pneumoniae were 0.004, 1, and 4 µg/ml, respectively. TP-271 was efficacious in neutropenic and immunocompetent animal pneumonia models, generally showing, compared to the burden at the start of dosing, ~2 to 5 log10 CFU reductions against MRSA, S. pneumoniae, and H. influenzae infections when given intravenously (i.v.) and ~1 to 4 log10 CFU reductions when given orally (p.o.). TP-271 was potent against key community-acquired bacterial pneumonia (CABP) pathogens and was minimally affected, or unaffected, by tetracycline-specific resistance mechanisms and fluoroquinolone or macrolide drug resistance phenotypes. IMPORTANCE Rising resistance rates for macrolides, fluoroquinolones, and β-lactams in the most common pathogens associated with community-acquired bacterial pneumonia (CABP) are of concern, especially for cases of moderate to severe infections in vulnerable populations such as the very young and the elderly. New antibiotics that are active against multidrug-resistant Streptococcus pneumoniae and Staphylococcus aureus are needed for use in the empirical treatment of the most severe forms of this disease. TP-271 is a promising

  7. Characterization and Identification of Two Opportunistic Human Bacterial Pathogens in Rice

    Institute of Scientific and Technical Information of China (English)

    LUO Yuan-chan; XIE Guan-lin; ZHANG Li-xin; AN Gilmyong; FANG Yuan; LUO Jin-yan; HAO Xiao-juan; ZHAO Si-feng

    2006-01-01

    Burkholderia cepacia (Bc) and Pseudomonas aeruginosa (Pa) are both biocontrol agents in agriculture and opportunistic human pathogens in hospitals. Effective management and utilization practice is needed to understand their characteristics and distribution in rice. During the last decade, the two opportunistic human pathogens were detected in 631 samples of rice seed and 117 samples of rice plant in plain, highland and mountainous rice growing areas of China. Bc and Pa were primarily differentiated by common bacteriological characteristics and pathogenic tests and then identified into species by Biolog and FAME tests. However,the genotypes of Bc still could not be distinguished. It has been noted that the Bc and Pa mainly existed in rice root with the highest distribution frequency in plain areas ( 6.1% and 16.1%) and lowest in the mountainous areas (1.0% and 7.8%).

  8. CHEMICALLY FABRICATED SILVER NANOPARTICLES ENHANCES THE ACTIVITY OF ANTIBIOTICS AGAINST SELECTED HUMAN BACTERIAL PATHOGENS

    Directory of Open Access Journals (Sweden)

    S. Thangapandiyan and P. Prema*

    2012-05-01

    Full Text Available Due to the outbreak of infectious diseases caused by different pathogenic bacteria and the development of antibiotic resistance, the pharmaceutical companies and the researchers are now searching for new unconventional antibacterial agents. Nanotechnology represents a modern and innovative approach to develop new formulations based on metallic nanoparticles with antimicrobial properties. The potential bioactivity of chemically fabricated silver nanoparticles has been extensively studied. However, the antibacterial activity of silver nanoparticles individually or in combination with different antibiotics has not been demonstrated. In the present investigations, the effect of silver nanoparticles on the antibacterial activity of different antibiotics was evaluated against selected human bacterial pathogens such as Staphylococcus aureus, Streptococcus epidermis, Escherichia coli, Pseudomonas aeruginosa, and Bacillus cereus by disc diffusion method. In the presence of sub - inhibitory concentration of silver nanoparticles (100µL/disc, the antibacterial activities of all antibiotics are increased from 1 mm to 10 mm. The maximum fold increase was noticed for vancomycin against Pseudomonas aeruginosa (66.67%, Escherichia coli (62.50%, and Staphylococcus aureus (46% followed by rifampicin against Bacillus cereus (66.67% and kanamycin against Streptococcus epidermis (25%. These results signify that the silver nanoparticles showed potential antibacterial action of ß-lactams, glycopeptides, aminoglycosides, sulphonamides suggesting a possible utilization of silver nanocompounds in combination therapy against selected pathogens used in the experiment.

  9. A novel bacterial pathogen of Biomphalaria glabrata: a potential weapon for schistosomiasis control?

    Directory of Open Access Journals (Sweden)

    David Duval

    2015-02-01

    Full Text Available Schistosomiasis is the second-most widespread tropical parasitic disease after malaria. Various research strategies and treatment programs for achieving the objective of eradicating schistosomiasis within a decade have been recommended and supported by the World Health Organization. One of these approaches is based on the control of snail vectors in endemic areas. Previous field studies have shown that competitor or predator introduction can reduce snail numbers, but no systematic investigation has ever been conducted to identify snail microbial pathogens and evaluate their molluscicidal effects.In populations of Biomphalaria glabrata snails experiencing high mortalities, white nodules were visible on snail bodies. Infectious agents were isolated from such nodules. Only one type of bacteria, identified as a new species of Paenibacillus named Candidatus Paenibacillus glabratella, was found, and was shown to be closely related to P. alvei through 16S and Rpob DNA analysis. Histopathological examination showed extensive bacterial infiltration leading to overall tissue disorganization. Exposure of healthy snails to Paenibacillus-infected snails caused massive mortality. Moreover, eggs laid by infected snails were also infected, decreasing hatching but without apparent effects on spawning. Embryonic lethality was correlated with the presence of pathogenic bacteria in eggs.This is the first account of a novel Paenibacillus strain, Ca. Paenibacillus glabratella, as a snail microbial pathogen. Since this strain affects both adult and embryonic stages and causes significant mortality, it may hold promise as a biocontrol agent to limit schistosomiasis transmission in the field.

  10. The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection.

    Directory of Open Access Journals (Sweden)

    Leonardo De La Fuente

    Full Text Available Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen.

  11. Transmission of Bacterial Zoonotic Pathogens between Pets and Humans: The Role of Pet Food.

    Science.gov (United States)

    Lambertini, Elisabetta; Buchanan, Robert L; Narrod, Clare; Pradhan, Abani K

    2016-01-01

    Recent Salmonella outbreaks associated with dry pet food and treats raised the level of concern for these products as vehicle of pathogen exposure for both pets and their owners. The need to characterize the microbiological and risk profiles of this class of products is currently not supported by sufficient specific data. This systematic review summarizes existing data on the main variables needed to support an ingredients-to-consumer quantitative risk model to (1) describe the microbial ecology of bacterial pathogens in the dry pet food production chain, (2) estimate pet exposure to pathogens through dry food consumption, and (3) assess human exposure and illness incidence due to contact with pet food and pets in the household. Risk models populated with the data here summarized will provide a tool to quantitatively address the emerging public health concerns associated with pet food and the effectiveness of mitigation measures. Results of such models can provide a basis for improvements in production processes, risk communication to consumers, and regulatory action.

  12. Market Disease Pathogens Detection of Imported Fruits in Shanghai

    Institute of Scientific and Technical Information of China (English)

    MA Teng-fei; YANG Bo; YU Yue; WANG Yi-wen; LIU Yi; XU Zhen; LIU Yan; ZHU Pin-kuan; ZHANG Wei; ZHANG Zai-bao; Toyoda Hideyoshi; XU Ling

    2009-01-01

    A tremendous amount of imported fresh fruits has been delivered to Shanghai markets,increasing the risk of invasion by harmful plant pathogens.Therefore,it is important to establish an effective detection and supervision system to survey the outbreak of the market diseases of the imported fruits during marketing.The samples were regularly surveyed in different markets to examine varieties,prices,localities,selling conditions,and diseases of the imported fruits from 2004 to 2008.The survey showed that 58 species of 30 different fruits were imported to Shanghai from 16 countries with more expensive price.The larger products were bananas,grapes,apples,and oranges.During the investigation,we found that the imported fruits frequently brought about the relatively serious market diseases.On the basis of morphology and the nuclear internal transcribed spacer (ITS) of ribosomal DNA (rDNA) analysis,151 isolates of 15 fungi genera,which shown to be pathogenic afcer the inoculation assay.were finally identified.Among the identified fungi,Alternaria was the most frequent one with the highest detection rate (47.68%),followed by Penicillium (14.57%) and Fusarium (11.92%),respectively.Additionally,Pestalotiopsis microspora (detected in grapes Red-Globe coming from the USA) and Botrytis sp.(detected in black-plums coming from the USA)were first reported in China market.The present study summarized the selling situation of the imported fruits in Shanghai markets and constructed a library of the pathogens detected in the imported fruits during the selling period.The results obtained are useful to offer technical parameters for Chinese quarantine in order to prevent an invasion of the foreign harmful micro-organisms.

  13. Rapid detection, characterization, and enumeration of foodborne pathogens.

    Science.gov (United States)

    Hoorfar, J

    2011-11-01

    As food safety management further develops, microbiological testing will continue to play an important role in assessing whether Food Safety Objectives are achieved. However, traditional microbiological culture-based methods are limited, particularly in their ability to provide timely data. The present review discusses the reasons for the increasing interest in rapid methods, current developments in the field, the research needs, and the future trends. The advent of biotechnology has introduced new technologies that led to the emergence of rapid diagnostic methods and altered food testing practices. Rapid methods are comprised of many different detection technologies, including specialized enzyme substrates, antibodies and DNA, ranging from simple differential plating media to the use of sophisticated instruments. The use of non-invasive sampling techniques for live animals especially came into focus with the 1990s outbreak of bovine spongiform encephalopathy that was linked to the human outbreak of Creutzfeldt Jakob's Disease. Serology is still an important tool in preventing foodborne pathogens to enter the human food supply through meat and milk from animals. One of the primary uses of rapid methods is for fast screening of large number of samples, where most of them are expected to be test-negative, leading to faster product release for sale. This has been the main strength of rapid methods such as real-time Polymerase Chain Reaction (PCR). Enrichment PCR, where a primary culture broth is tested in PCR, is the most common approach in rapid testing. Recent reports show that it is possible both to enrich a sample and enumerate by pathogen-specific real-time PCR, if the enrichment time is short. This can be especially useful in situations where food producers ask for the level of pathogen in a contaminated product. Another key issue is automation, where the key drivers are miniaturization and multiple testing, which mean that not only one instrument is flexible

  14. Pathogenic Triad in Bacterial Meningitis: Pathogen Invasion, NF-κB Activation, and Leukocyte Transmigration that Occur at the Blood-Brain Barrier.

    Science.gov (United States)

    Wang, Shifu; Peng, Liang; Gai, Zhongtao; Zhang, Lehai; Jong, Ambrose; Cao, Hong; Huang, Sheng-He

    2016-01-01

    Bacterial meningitis remains the leading cause of disabilities worldwide. This life-threatening disease has a high mortality rate despite the availability of antibiotics and improved critical care. The interactions between bacterial surface components and host defense systems that initiate bacterial meningitis have been studied in molecular and cellular detail over the past several decades. Bacterial meningitis commonly exhibits triad hallmark features (THFs): pathogen penetration, nuclear factor-kappaB (NF-κB) activation in coordination with type 1 interferon (IFN) signaling and leukocyte transmigration that occur at the blood-brain barrier (BBB), which consists mainly of brain microvascular endothelial cells (BMEC). This review outlines the progression of these early inter-correlated events contributing to the central nervous system (CNS) inflammation and injury during the pathogenesis of bacterial meningitis. A better understanding of these issues is not only imperative to elucidating the pathogenic mechanism of bacterial meningitis, but may also provide the in-depth insight into the development of novel therapeutic interventions against this disease.

  15. Pathogenic triad in bacterial meningitis: pathogen invasion, NF-κB activation and leukocyte transmigration that occur at the Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Sheng-He eHuang

    2016-02-01

    Full Text Available Bacterial meningitis remains the leading cause of disabilities worldwide. This life-threatening disease has a high mortality rate despite the availability of antibiotics and improved critical care. The interactions between bacterial surface components and host defense systems that initiate bacterial meningitis have been studied in molecular and cellular detail over the past several decades. Bacterial meningitis commonly exhibits triad hallmark features (THFs: pathogen penetration, nuclear factor-kappaB (NF-B activation in coordination with type 1 interferon (IFN signaling and leukocyte transmigration that occur at the blood-brain barrier (BBB, which consists mainly of brain microvascular endothelial cells (BMEC. This review outlines the progression of these early inter-correlated events contributing to the central nervous system (CNS inflammation and injury during the pathogenesis of bacterial meningitis. A better understanding of these issues is not only imperative to elucidating the pathogenic mechanism of bacterial meningitis, but may also provide the in-depth insight into the development of novel therapeutic interventions against this disease.

  16. Peptidomimetic Small Molecules Disrupt Type IV Secretion System Activity in Diverse Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Carrie L. Shaffer

    2016-04-01

    Full Text Available Bacteria utilize complex type IV secretion systems (T4SSs to translocate diverse effector proteins or DNA into target cells. Despite the importance of T4SSs in bacterial pathogenesis, the mechanism by which these translocation machineries deliver cargo across the bacterial envelope remains poorly understood, and very few studies have investigated the use of synthetic molecules to disrupt T4SS-mediated transport. Here, we describe two synthetic small molecules (C10 and KSK85 that disrupt T4SS-dependent processes in multiple bacterial pathogens. Helicobacter pylori exploits a pilus appendage associated with the cag T4SS to inject an oncogenic effector protein (CagA and peptidoglycan into gastric epithelial cells. In H. pylori, KSK85 impedes biogenesis of the pilus appendage associated with the cag T4SS, while C10 disrupts cag T4SS activity without perturbing pilus assembly. In addition to the effects in H. pylori, we demonstrate that these compounds disrupt interbacterial DNA transfer by conjugative T4SSs in Escherichia coli and impede vir T4SS-mediated DNA delivery by Agrobacterium tumefaciens in a plant model of infection. Of note, C10 effectively disarmed dissemination of a derepressed IncF plasmid into a recipient bacterial population, thus demonstrating the potential of these compounds in mitigating the spread of antibiotic resistance determinants driven by conjugation. To our knowledge, this study is the first report of synthetic small molecules that impair delivery of both effector protein and DNA cargos by diverse T4SSs.

  17. Actual Pathogen Detection: Sensors and Algorithms - a Review

    Directory of Open Access Journals (Sweden)

    Federico Hahn

    2009-03-01

    Full Text Available Pathogens feed on fruits and vegetables causing great food losses or at least reduction of their shelf life. These pathogens can cause losses of the final product or in the farms were the products are grown, attacking leaves, stems and trees. This review analyses disease detection sensors and algorithms for both the farm and postharvest management of fruit and vegetable quality. Mango, avocado, apple, tomato, potato, citrus and grapes were selected as the fruits and vegetables for study due to their world-wide consumption. Disease warning systems for predicting pathogens and insects on farms during fruit and vegetable production are commonly used for all the crops and are available where meteorological stations are present. It can be seen that these disease risk systems are being slowly replaced by remote sensing monitoring in developed countries. Satellite images have reduced their temporal resolution, but are expensive and must become cheaper for their use world-wide. In the last 30 years, a lot of research has been carried out in non-destructive sensors for food quality. Actually, non-destructive technology has been applied for sorting high quality fruit which is desired by the consumer. The sensors require algorithms to work properly; the most used being discriminant analysis and training neural networks. New algorithms will be required due to the high quantity of data acquired and its processing, and for disease warning strategies for disease detection.

  18. Pathogen-Specific Local Immune Fingerprints Diagnose Bacterial Infection in Peritoneal Dialysis Patients

    OpenAIRE

    Lin, Chan-Yu; Roberts, Gareth W.; Kift-Morgan, Ann; Donovan, Kieron L.; Topley, Nicholas; Eberl, Matthias

    2013-01-01

    Accurate and timely diagnosis of bacterial infection is crucial for effective and targeted treatment, yet routine microbiological identification is inefficient and often delayed to an extent that makes it clinically unhelpful. The immune system is capable of a rapid, sensitive and specific detection of a broad spectrum of microbes, which has been optimized over millions of years of evolution. A patient's early immune response is therefore likely to provide far better insight into the true nat...

  19. SUSCEPTIBILITY AND DETECTION OF EXTENDED SPECTRUM β-LACTAMASE ENZYMES FROM OTITIS MEDIA PATHOGENS

    Directory of Open Access Journals (Sweden)

    Ejikeugwu Chika

    2013-01-01

    Full Text Available Otitis media is the bacterial infection of the middle ear usually accompanied with inflammation, effusions and pain. It can present clinically in two major forms: Acute Otitis Media (AOM and Otitis Media with Effusion (OME and it is one of the leading cause of hospital visits and antibiotic prescriptions amongst children and even adults. Antibiotic resistance is a global public health problem and Extended Spectrum β-Lactamase (ESBL enzymes is one of the new mechanisms of resistance in especially Gram negative bacteria including Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. ESBLs are plasmid-mediated β-lactamase enzymes that hydrolyze extended-spectrum oxyimino 3rd generation cephalosporins and monobactams. Organisms producing ESBLs have remained important nosocomial and community-acquired pathogens over the years. Ear swab specimens of children (aged 0-7 with suspected Otitis media infections and who attended a tertiary hospital in Enugu, Nigeria were cultured on growth media. E. coli, K. pneumoniae and P. aeruginosa were isolated and identified by standard microbiological techniques. Antibiogram was conducted on all isolated ear pathogens by Kirby-Bauer disk diffusion method and ESBL production was evaluated by the Double Disk Synergy Test (DDST method. Imipenem and meropenem were the most active antibiotics against the E. coli, K. pneumoniae and P. aeruginosa ear pathogens. Sulphamethoxazole-trimethoprim was the least active agent against the tested ear pathogens and this was followed by ofloxacin, ciprofloxacin, gentamicin, cefotaxime and ceftazidime. None of the E. coli, K. pneumoniae and P. aeruginosa ear pathogens produced ESBLs by the method used. ESBL production by pathogenic bacteria confers on organisms the ability to be multidrug resistant. Their prompt and accurate detection from clinical specimens, together with reporting them along with hospitals routine antibiogram results is vital as this will help to

  20. Multiplexed paper test strip for quantitative bacterial detection.

    Science.gov (United States)

    Hossain, S M Zakir; Ozimok, Cory; Sicard, Clémence; Aguirre, Sergio D; Ali, M Monsur; Li, Yingfu; Brennan, John D

    2012-06-01

    Rapid, sensitive, on-site detection of bacteria without a need for sophisticated equipment or skilled personnel is extremely important in clinical settings and rapid response scenarios, as well as in resource-limited settings. Here, we report a novel approach for selective and ultra-sensitive multiplexed detection of Escherichia coli (non-pathogenic or pathogenic) using a lab-on-paper test strip (bioactive paper) based on intracellular enzyme (β-galactosidase (B-GAL) or β-glucuronidase (GUS)) activity. The test strip is composed of a paper support (0.5 × 8 cm), onto which either 5-bromo-4-chloro-3-indolyl-β-D: -glucuronide sodium salt (XG), chlorophenol red β-galactopyranoside (CPRG) or both and FeCl(3) were entrapped using sol-gel-derived silica inks in different zones via an ink-jet printing technique. The sample was lysed and assayed via lateral flow through the FeCl(3) zone to the substrate area to initiate rapid enzyme hydrolysis of the substrate, causing a change from colorless-to-blue (XG hydrolyzed by GUS, indication of nonpathogenic E. coli) and/or yellow to red-magenta (CPRG hydrolyzed by B-GAL, indication of total coliforms). Using immunomagnetic nanoparticles for selective preconcentration, the limit of detection was ~5 colony-forming units (cfu) per milliliter for E. coli O157:H7 and ~20 cfu/mL for E. coli BL21, within 30 min without cell culturing. Thus, these paper test strips could be suitable for detection of viable total coliforms and pathogens in bathing water samples. Moreover, inclusion of a culturing step allows detection of less than 1 cfu in 100 mL within 8 h, making the paper tests strips relevant for detection of multiple pathogens and total coliform bacteria in beverage and food samples.

  1. PaPrBaG: A machine learning approach for the detection of novel pathogens from NGS data

    Science.gov (United States)

    Deneke, Carlus; Rentzsch, Robert; Renard, Bernhard Y.

    2017-01-01

    The reliable detection of novel bacterial pathogens from next-generation sequencing data is a key challenge for microbial diagnostics. Current computational tools usually rely on sequence similarity and often fail to detect novel species when closely related genomes are unavailable or missing from the reference database. Here we present the machine learning based approach PaPrBaG (Pathogenicity Prediction for Bacterial Genomes). PaPrBaG overcomes genetic divergence by training on a wide range of species with known pathogenicity phenotype. To that end we compiled a comprehensive list of pathogenic and non-pathogenic bacteria with human host, using various genome metadata in conjunction with a rule-based protocol. A detailed comparative study reveals that PaPrBaG has several advantages over sequence similarity approaches. Most importantly, it always provides a prediction whereas other approaches discard a large number of sequencing reads with low similarity to currently known reference genomes. Furthermore, PaPrBaG remains reliable even at very low genomic coverages. CombiningPaPrBaG with existing approaches further improves prediction results.

  2. PaPrBaG: A machine learning approach for the detection of novel pathogens from NGS data

    Science.gov (United States)

    Deneke, Carlus; Rentzsch, Robert; Renard, Bernhard Y.

    2017-01-01

    The reliable detection of novel bacterial pathogens from next-generation sequencing data is a key challenge for microbial diagnostics. Current computational tools usually rely on sequence similarity and often fail to detect novel species when closely related genomes are unavailable or missing from the reference database. Here we present the machine learning based approach PaPrBaG (Pathogenicity Prediction for Bacterial Genomes). PaPrBaG overcomes genetic divergence by training on a wide range of species with known pathogenicity phenotype. To that end we compiled a comprehensive list of pathogenic and non-pathogenic bacteria with human host, using various genome metadata in conjunction with a rule-based protocol. A detailed comparative study reveals that PaPrBaG has several advantages over sequence similarity approaches. Most importantly, it always provides a prediction whereas other approaches discard a large number of sequencing reads with low similarity to currently known reference genomes. Furthermore, PaPrBaG remains reliable even at very low genomic coverages. CombiningPaPrBaG with existing approaches further improves prediction results. PMID:28051068

  3. Detection of pathogenic mycobacteria based on functionalized quantum dots coupled with immunomagnetic separation.

    Directory of Open Access Journals (Sweden)

    Emmanouil Liandris

    Full Text Available Mycobacteria have always proven difficult to identify due to their low growth rate and fastidious nature. Therefore molecular biology and more recently nanotechnology, have been exploited from early on for the detection of these pathogens. Here we present the first stage of development of an assay incorporating cadmium selenide quantum dots (QDs for the detection of mycobacterial surface antigens. The principle of the assay is the separation of bacterial cells using magnetic beads coupled with genus-specific polyclonal antibodies and monoclonal antibodies for heparin-binding hemagglutinin. These complexes are then tagged with anti-mouse biotinylated antibody and finally streptavidin-conjugated QDs which leads to the detection of a fluorescent signal. For the evaluation of performance, the method under study was applied on Mycobacterium bovis BCG and Mycobacterium tuberculosis (positive controls, as well as E. coli and Salmonella spp. that constituted the negative controls. The direct observation of the latter category of samples did not reveal fluorescence as opposed to the mycobacteria mentioned above. The minimum detection limit of the assay was defined to 10(4 bacteria/ml, which could be further decreased by a 1 log when fluorescence was measured with a spectrofluorometer. The method described here can be easily adjusted for any other protein target of either the pathogen or the host, and once fully developed it will be directly applicable on clinical samples.

  4. In vitro antibacterial activity of venom protein isolated from sea snake Enhydrina schistosa against drug-resistant human pathogenic bacterial strains

    Institute of Scientific and Technical Information of China (English)

    Palani Damotharan; Anguchamy Veeruraj; Muthuvel Arumugam; Thangavel Balasubramanian

    2015-01-01

    Objective:To evaluate the antibacterial activity of sea snake (Enhydrina schistosa) venom protein against drug-resistant human pathogenic bacterial strains. Methods:The venom was collected by milking process from the live specimens of sea snake are using capillary tubes or glass plates. Venom was purified by ion exchange chromatography and it was tested for in-vitro antibacterial activity against 10 drug-resistant human pathogenic bacterial strains using the standard disc diffusion method. Results:The notable antibacterial activity was observed at 150 µg/mL concentration of purified venom and gave its minimum inhibitory concentrations values exhibited between 200-100 µg/mL against all the tested bacterial strains. The maximum zone of inhibition was observed at 16.4 mm against Salmonella boydii and the minimum activity was observed at 7.5 mm against Pseudomonas aeruginosa. After the sodium-dodecyl-sulfate-polyacrylamide gel electrophoresis there were a clear single band was detected in the gel that corresponding to purified venom protein molecular weight of 44 kDa. Conclusions:These results suggested that the sea snake venom might be a feasible source for searching potential antibiotics agents against human pathogenic diseases.

  5. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators

    Science.gov (United States)

    Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  6. A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms

    Science.gov (United States)

    Doss, Janis; Culbertson, Kayla; Hahn, Delilah; Camacho, Joanna; Barekzi, Nazir

    2017-01-01

    Since the discovery of bacteriophage in the early 1900s, there have been numerous attempts to exploit their innate ability to kill bacteria. The purpose of this report is to review current findings and new developments in phage therapy with an emphasis on bacterial diseases of marine organisms, humans, and plants. The body of evidence includes data from studies investigating bacteriophage in marine and land environments as modern antimicrobial agents against harmful bacteria. The goal of this paper is to present an overview of the topic of phage therapy, the use of phage-derived protein therapy, and the hosts that bacteriophage are currently being used against, with an emphasis on the uses of bacteriophage against marine, human, animal and plant pathogens. PMID:28335451

  7. Piscirickettsia salmonis: a Gram-negative intracellular bacterial pathogen of fish.

    Science.gov (United States)

    Fryer, J L; Hedrick, R P

    2003-05-01

    Piscirickettsia salmonis is the first Gram-negative, intracellular bacterial pathogen isolated from fish and is a significant cause of mortality in salmonid fish. Recent reports of P. salmonis or P. salmonis-like organisms from new fish hosts and geographic regions have increased the interest in the bacterium. In this review, the important characteristics of the bacterium including recent taxonomic changes, features of the disease caused by the bacterium including transmission, hosts, reservoirs, diagnostic procedures, and current approaches for prevention and treatment have been discussed. The reader is also directed to other reviews concerning the bacterium and the disease it causes (Fryer & Lannan 1994, 1996; Almendras & Fuentealba 1997; Lannan, Bartholomew & Fryer 1999; House & Fryer 2002; Mauel & Miller 2002).

  8. Using weakly conserved motifs hidden in secretion signals to identify type-III effectors from bacterial pathogen genomes.

    Directory of Open Access Journals (Sweden)

    Xiaobao Dong

    Full Text Available BACKGROUND: As one of the most important virulence factor types in gram-negative pathogenic bacteria, type-III effectors (TTEs play a crucial role in pathogen-host interactions by directly influencing immune signaling pathways within host cells. Based on the hypothesis that type-III secretion signals may be comprised of some weakly conserved sequence motifs, here we used profile-based amino acid pair information to develop an accurate TTE predictor. RESULTS: For a TTE or non-TTE, we first used a hidden Markov model-based sequence searching method (i.e., HHblits to detect its weakly homologous sequences and extracted the profile-based k-spaced amino acid pair composition (HH-CKSAAP from the N-terminal sequences. In the next step, the feature vector HH-CKSAAP was used to train a linear support vector machine model, which we designate as BEAN (Bacterial Effector ANalyzer. We compared our method with four existing TTE predictors through an independent test set, and our method revealed improved performance. Furthermore, we listed the most predictive amino acid pairs according to their weights in the established classification model. Evolutionary analysis shows that predictive amino acid pairs tend to be more conserved. Some predictive amino acid pairs also show significantly different position distributions between TTEs and non-TTEs. These analyses confirmed that some weakly conserved sequence motifs may play important roles in type-III secretion signals. Finally, we also used BEAN to scan one plant pathogen genome and showed that BEAN can be used for genome-wide TTE identification. The webserver and stand-alone version of BEAN are available at http://protein.cau.edu.cn:8080/bean/.

  9. Antibiotic sensitivity pattern of bacterial pathogens in the intensive care unit of Fatmawati Hospital,Indonesia

    Institute of Scientific and Technical Information of China (English)

    Maksum; Radji; Siti; Fauziah; Nurgani; Aribinuko

    2011-01-01

    Objective:To evaluate the sensitivity pattern of bacterial pathogens in the intensive care unit(ICU) of a tertiary care of Falmawati Hospital Jakarta Indonesia.Methods:A cross sectional retrospective study of bacterial pathogen was carried out on a total of 722 patients that were admitted to the ICU of Fatmawati Hospital Jakarta Indonesia during January 2009 to March 2010. All bacteria were identified by standard microbiologic methods,and(heir antibiotic susceptibility testing was performed using disk diffusion method.Results:Specimens were collected from 385 patients who were given antimicrobial treatment,of which 249(64.68%) were cultured positive and 136(35.32%) were negative.The most predominant isolate was Pseudomonas aeruginosa(P.aeruginosa)(26.5%) followed by Klebsiella pneumoniae(K.pneumoniae)(15.3%) and Staphylococcus epidermidis(14.9%).P.aeruginosa isolates showed high rate of resistance to cephalexin(95.3%),cefotaxime(64.1%),and ceftriaxone(60.9%).Amikacin was the most effective(84.4%) antibiotic against P.aeruginosa followed by imipenem(81.2%),and meropenem(75.0%).K.pneumoniae showed resistance to cephalexin(86.5%),ceftriaxone(75.7%),ceftazidime(73.0%),cefpirome(73.0%) and cefotaxime(67.9%),respectively.Conclusions:Most bacteria isolated from ICU of Fatmawati Hospital Jakarta Indonesia were resistant to the third generation of cephalosporins,and quinolone antibiotics.Regular surveillance of antibiotic susceptibility pallerns is very important for setting orders to guide the clinician in choosing empirical or directed therapy of infected patients.

  10. Bacterial Adrenergic Sensors Regulate Virulence of Enteric Pathogens in the Gut

    Directory of Open Access Journals (Sweden)

    Cristiano G. Moreira

    2016-06-01

    Full Text Available Enteric pathogens such as enterohemorrhagic Escherichia coli (EHEC and Citrobacter rodentium, which is largely used as a surrogate EHEC model for murine infections, are exposed to several host neurotransmitters in the gut. An important chemical exchange within the gut involves the neurotransmitters epinephrine and/or norepinephrine, extensively reported to increase virulence gene expression in EHEC, acting through two bacterial adrenergic sensors: QseC and QseE. However, EHEC is unable to establish itself and cause its hallmark lesions, attaching and effacing (AE lesions, on murine enterocytes. To address the role of these neurotransmitters during enteric infection, we employed C. rodentium. Both EHEC and C. rodentium harbor the locus of enterocyte effacement (LEE that is necessary for AE lesion formation. Here we show that expression of the LEE, as well as that of other virulence genes in C. rodentium, is also activated by epinephrine and/or norepinephrine. Both QseC and QseE are required for LEE gene activation in C. rodentium, and the qseC and qseE mutants are attenuated for murine infection. C. rodentium has a decreased ability to colonize dopamine β-hydroxylase knockout (Dbh−/− mice, which do not produce epinephrine and norepinephrine. Both adrenergic sensors are required for C. rodentium to sense these neurotransmitters and activate the LEE genes during infection. These data indicate that epinephrine and norepinephrine are sensed by bacterial adrenergic receptors during enteric infection to promote activation of their virulence repertoire. This is the first report of the role of these neurotransmitters during mammalian gastrointestinal (GI infection by a noninvasive pathogen.

  11. Comparison of Two Suspension Arrays for Simultaneous Detection of Five Biothreat Bacterial in Powder Samples

    Directory of Open Access Journals (Sweden)

    Yu Yang

    2012-01-01

    Full Text Available We have developed novel Bio-Plex assays for simultaneous detection of Bacillus anthracis, Yersinia pestis, Brucella spp., Francisella tularensis, and Burkholderia pseudomallei. Universal primers were used to amplify highly conserved region located within the 16S rRNA amplicon, followed by hybridized to pathogen-specific probes for identification of these five organisms. The other assay is based on multiplex PCR to simultaneously amplify five species-specific pathogen identification-targeted regions unique to individual pathogen. Both of the two arrays are validated to be flexible and sensitive for simultaneous detection of bioterrorism bacteria. However, universal primer PCR-based array could not identify Bacillus anthracis, Yersinia pestis, and Brucella spp. at the species level because of the high conservation of 16S rDNA of the same genus. The two suspension arrays can be utilized to detect Bacillus anthracis sterne spore and Yersinia pestis EV76 from mimic “write powder” samples, they also proved that the suspension array system will be valuable tools for diagnosis of bacterial biothreat agents in environmental samples.

  12. The design of a microfluidic biochip for the rapid, multiplexed detection of foodborne pathogens by surface plasmon resonance imaging

    Science.gov (United States)

    Zordan, Michael D.; Grafton, Meggie M. G.; Park, Kinam; Leary, James F.

    2010-02-01

    The rapid detection of foodborne pathogens is increasingly important due to the rising occurrence of contaminated food supplies. We have previously demonstrated the design of a hybrid optical device that has the capability to perform realtime surface plasmon resonance (SPR) and epi-fluorescence imaging. We now present the design of a microfluidic biochip consisting of a two-dimensional array of functionalized gold spots. The spots on the array have been functionalized with capture peptides that specifically bind E. coli O157:H7 or Salmonella enterica. This array is enclosed by a PDMS microfluidic flow cell. A magnetically pre-concentrated sample is injected into the biochip, and whole pathogens will bind to the capture array. The previously constructed optical device is being used to detect the presence and identity of captured pathogens using SPR imaging. This detection occurs in a label-free manner, and does not require the culture of bacterial samples. Molecular imaging can also be performed using the epi-fluorescence capabilities of the device to determine pathogen state, or to validate the identity of the captured pathogens using fluorescently labeled antibodies. We demonstrate the real-time screening of a sample for the presence of E. coli O157:H7 and Salmonella enterica. Additionally the mechanical properties of the microfluidic flow cell will be assessed. The effect of these properties on pathogen capture will be examined.

  13. Lytic bacteriophages in Veterinary Medicine: a therapeutic option against bacterial pathogens?

    Directory of Open Access Journals (Sweden)

    C Borie

    2014-01-01

    Full Text Available The high prevalence of certain bacterial diseases in animals and their economic impact at the productive and public health levels, have directed attention towards the search for new methods of control and prevention, alternative or complementary, that aim to mitigate their adverse effects. This scenario is further complicated by the permanent and rising presence of pathogenic bacteria that are resistant to many antibiotics, limiting the choice of control strategies. In the continuous search for new therapies, there is a renewed interest on the application of bacteriophages, viruses that kill bacteria, as potential antimicrobial agents. Phage therapy in animal production, pets and experimental models of human infection have been discussed in veterinary medicine for 3 decades, with encouraging results in terms of reducing mortality, the severity of the clinical state and bacterial counts at tissue level. These benefits have been achieved thanks to increased knowledge of the biology of phages, better technology that allows their purification and their inherent advantages in terms of their safety for animals. Currently, phage research continues to open new horizons for both the medical industry and the food industry, considering the use of phages in the stages of "farm to fork", with promising results if used as an intervention in animals since their arrival to the slaughter house.

  14. Hyperglycemia Impairs Neutrophil-Mediated Bacterial Clearance in Mice Infected with the Lyme Disease Pathogen.

    Directory of Open Access Journals (Sweden)

    Ashkan Javid

    Full Text Available Insulin-insufficient type 1 diabetes is associated with attenuated bactericidal function of neutrophils, which are key mediators of innate immune responses to microbes as well as pathological inflammatory processes. Neutrophils are central to immune responses to the Lyme pathogen Borrelia burgdorferi. The effect of hyperglycemia on host susceptibility to and outcomes of B. burgdorferi infection has not been examined. The present study investigated the impact of sustained obesity-independent hyperglycemia in mice on bacterial clearance, inflammatory pathology and neutrophil responses to B. burgdorferi. Hyperglycemia was associated with reduced arthritis incidence but more widespread tissue colonization and reduced clearance of bacterial DNA in multiple tissues including brain, heart, liver, lung and knee joint. B. burgdorferi uptake and killing were impaired in neutrophils isolated from hyperglycemic mice. Thus, attenuated neutrophil function in insulin-insufficient hyperglycemia was associated with reduced B. burgdorferi clearance in target organs. These data suggest that investigating the effects of comorbid conditions such as diabetes on outcomes of B. burgdorferi infections in humans may be warranted.

  15. Pathogenicity of a Very Virulent Strain of Marek's Disease Herpesvirus Cloned as Infectious Bacterial Artificial Chromosomes

    Directory of Open Access Journals (Sweden)

    Lorraine P. Smith

    2011-01-01

    Full Text Available Bacterial artificial chromosome (BAC vectors containing the full-length genomes of several herpesviruses have been used widely as tools to enable functional studies of viral genes. Marek's disease viruses (MDVs are highly oncogenic alphaherpesviruses that induce rapid-onset T-cell lymphomas in chickens. Oncogenic strains of MDV reconstituted from BAC clones have been used to examine the role of viral genes in inducing tumours. Past studies have demonstrated continuous increase in virulence of MDV strains. We have previously reported on the UK isolate C12/130 that showed increased virulence features including lymphoid organ atrophy and enhanced tropism for the central nervous system. Here we report the construction of the BAC clones (pC12/130 of this strain. Chickens were infected with viruses reconstituted from the pC12/130 clones along with the wild-type virus for the comparison of the pathogenic properties. Our studies show that BAC-derived viruses induced disease similar to the wild-type virus, though there were differences in the levels of pathogenicity between individual viruses. Generation of BAC clones that differ in the potential to induce cytolytic disease provide the opportunity to identify the molecular determinants of increased virulence by direct sequence analysis as well as by using reverse genetics approaches on the infectious BAC clones.

  16. A functional gene array for detection of bacterial virulence elements.

    Directory of Open Access Journals (Sweden)

    Crystal Jaing

    Full Text Available Emerging known and unknown pathogens create profound threats to public health. Platforms for rapid detection and characterization of microbial agents are critically needed to prevent and respond to disease outbreaks. Available detection technologies cannot provide broad functional information about known or novel organisms. As a step toward developing such a system, we have produced and tested a series of high-density functional gene arrays to detect elements of virulence and antibiotic resistance mechanisms. Our first generation array targets genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for gene family detection and discrimination. When tested with organisms at varying phylogenetic distances from the four target strains, the array detected orthologs for the majority of targeted gene families present in bacteria belonging to the same taxonomic family. In combination with whole-genome amplification, the array detects femtogram concentrations of purified DNA, either spiked in to an aerosol sample background, or in combinations from one or more of the four target organisms. This is the first report of a high density NimbleGen microarray system targeting microbial antibiotic resistance and virulence mechanisms. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples.

  17. Detection of pathogenic bacteria in skin lesions of patients with chiclero's ulcer: reluctant response to antimonial treatment

    Directory of Open Access Journals (Sweden)

    Isaac-Márquez Angélica Patricia

    2003-01-01

    Full Text Available We investigated the bacterial flora present in skin lesions of patients with chiclero's ulcer from the Yucatan peninsula of Mexico using conventional culture methods (11 patients, and an immunocolorimetric detection of pathogenic Streptococcus pyogenes (15 patients. Prevalence of bacteria isolated by culture methods was 90.9% (10/11. We cultured, from chiclero's ulcers (60%, pathogenic bacterial such as Staphylococcus aureus (20%, S. pyogenes (1.6%, Pseudomonas aeruginosa (1.6%, Morganella morganii (1.6%, and opportunist pathogenic bacteria such as Klebsiella spp. (20.0%, Enterobacter spp. (20%, and Enterococcus spp. (20%. We also cultured coagulase-negative staphylococci in 40% (4/10 of the remaining patients. Micrococcus spp. and coagulase-negative staphylococci constituted the bacterial genuses more frequently isolated in the normal skin of patients with chiclero's ulcer and healthy individuals used as controls. We also undertook another study to find out the presence of S. pyogenes by an immunocolorimetric assay. This study indicated that 60% (9/15 of the ulcerated lesions, but not normal controls, were contaminated with S. pyogenes. Importantly, individuals with purulent secretion and holding concomitant infections with S. pyogenes, S. aureus, P. aeruginosa, M. morganii, and E. durans took longer to heal Leishmania (L. mexicana infections treated with antimonial drugs. Our results suggest the need to eliminate bacterial purulent infections, by antibiotic treatment, before starting antimonial administration to patients with chiclero's ulcer.

  18. Bacterial pathogens and community composition in advanced sewage treatment systems revealed by metagenomics analysis based on high-throughput sequencing.

    Science.gov (United States)

    Lu, Xin; Zhang, Xu-Xiang; Wang, Zhu; Huang, Kailong; Wang, Yuan; Liang, Weigang; Tan, Yunfei; Liu, Bo; Tang, Junying

    2015-01-01

    This study used 454 pyrosequencing, Illumina high-throughput sequencing and metagenomic analysis to investigate bacterial pathogens and their potential virulence in a sewage treatment plant (STP) applying both conventional and advanced treatment processes. Pyrosequencing and Illumina sequencing consistently demonstrated that Arcobacter genus occupied over 43.42% of total abundance of potential pathogens in the STP. At species level, potential pathogens Arcobacter butzleri, Aeromonas hydrophila and Klebsiella pneumonia dominated in raw sewage, which was also confirmed by quantitative real time PCR. Illumina sequencing also revealed prevalence of various types of pathogenicity islands and virulence proteins in the STP. Most of the potential pathogens and virulence factors were eliminated in the STP, and the removal efficiency mainly depended on oxidation ditch. Compared with sand filtration, magnetic resin seemed to have higher removals in most of the potential pathogens and virulence factors. However, presence of the residual A. butzleri in the final effluent still deserves more concerns. The findings indicate that sewage acts as an important source of environmental pathogens, but STPs can effectively control their spread in the environment. Joint use of the high-throughput sequencing technologies is considered a reliable method for deep and comprehensive overview of environmental bacterial virulence.

  19. Bacterial pathogens and community composition in advanced sewage treatment systems revealed by metagenomics analysis based on high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Xin Lu

    Full Text Available This study used 454 pyrosequencing, Illumina high-throughput sequencing and metagenomic analysis to investigate bacterial pathogens and their potential virulence in a sewage treatment plant (STP applying both conventional and advanced treatment processes. Pyrosequencing and Illumina sequencing consistently demonstrated that Arcobacter genus occupied over 43.42% of total abundance of potential pathogens in the STP. At species level, potential pathogens Arcobacter butzleri, Aeromonas hydrophila and Klebsiella pneumonia dominated in raw sewage, which was also confirmed by quantitative real time PCR. Illumina sequencing also revealed prevalence of various types of pathogenicity islands and virulence proteins in the STP. Most of the potential pathogens and virulence factors were eliminated in the STP, and the removal efficiency mainly depended on oxidation ditch. Compared with sand filtration, magnetic resin seemed to have higher removals in most of the potential pathogens and virulence factors. However, presence of the residual A. butzleri in the final effluent still deserves more concerns. The findings indicate that sewage acts as an important source of environmental pathogens, but STPs can effectively control their spread in the environment. Joint use of the high-throughput sequencing technologies is considered a reliable method for deep and comprehensive overview of environmental bacterial virulence.

  20. Humic substances interfere with detection of pathogenic prion protein

    Science.gov (United States)

    Smith, Christen B.; Booth, Clarissa J.; Wadzinski, Tyler J.; Legname, Giuseppe; Chappell, Rick; Johnson, Christopher J.; Pedersen, Joel A.

    2014-01-01

    Studies examining the persistence of prions (the etiological agent of transmissible spongiform encephalopathies) in soil require accurate quantification of pathogenic prion protein (PrPTSE) extracted from or in the presence of soil particles. Here, we demonstrate that natural organic matter (NOM) in soil impacts PrPTSE detection by immunoblotting. Methods commonly used to extract PrPTSE from soils release substantial amounts of NOM, and NOM inhibited PrPTSE immunoblot signal. The degree of immunoblot interference increased with increasing NOM concentration and decreasing NOM polarity. Humic substances affected immunoblot detection of prion protein from both deer and hamsters. We also establish that after interaction with humic acid, PrPTSE remains infectious to hamsters inoculated intracerebrally, and humic acid appeared to slow disease progression. These results provide evidence for interactions between PrPTSE and humic substances that influence both accurate measurement of PrPTSE in soil and disease transmission.

  1. Public health significance of zoonotic bacterial pathogens from bushmeat sold in urban markets of Gabon, Central Africa.

    Science.gov (United States)

    Bachand, Nicholas; Ravel, André; Onanga, Richard; Arsenault, Julie; Gonzalez, Jean-Paul

    2012-07-01

    Wild animal meat represents an important source of protein for many people in central Africa. Also known as bushmeat, this meat commodity is derived from wild animals hunted under uncontrolled conditions, transported to distant markets under rudimentary or no hygienic methods, and often eviscerated >24 hr after death. Considering the plausible role of wildlife as a reservoir for bacterial zoonotic pathogens, bushmeat may be an important public health risk in Central Africa. This cross-sectional survey served to evaluate the presence of Campylobacter, Salmonella, and Shigella in the muscle tissue of 128 wild animal carcasses from several hunted wildlife species (guenons [Cercopithecus spp.], collared mangabeys [Cercocebus torquatus], gray-cheeked mangabeys [Lophocebus albigena], African crested porcupines [Atherurus africanus], duikers [Cephalophus spp.], and red river hogs [Potamocherus porcus]) sold in two markets of Port-Gentil, Gabon, in July and August 2010. Salmonella was detected from one carcass; no Campylobacter or Shigella was detected. If Campylobacter and Shigella were present, the maximum expected prevalence was estimated at 6% and 1%, respectively. In light of such very low apparent muscle contamination levels, bushmeat likely does not represent a health risk per se with respect to Campylobacter, Salmonella, or Shigella. However, because carcass evisceration and skinning can take place within households prior to consumption, consumers should follow strict hygiene and food safety practices to avoid potential health hazards associated with the handling, preparation, or consumption of bushmeat.

  2. A liquid-crystal-based DNA biosensor for pathogen detection

    Science.gov (United States)

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-03-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection.

  3. Molecular approaches to detecting and discriminating among prions, a class of pathogenic molecules(Abstract)

    Science.gov (United States)

    Prions (PrPSc)are the pathogens that cause a set of fatal neurological diseases that include scrapie and chronic wasting disease (CWD). They are composed solely of protein and unlike viral, bacterial, or fungal pathogens, the information necessary to convert the normal cellular prion protein (PrPC) ...

  4. Genetic Modulation of c-di-GMP Turnover Affects Multiple Virulence Traits and Bacterial Virulence in Rice Pathogen Dickeya zeae

    Science.gov (United States)

    Chen, Yufan; Lv, Mingfa; Liao, Lisheng; Gu, Yanfang; Liang, Zhibin; Shi, Zurong; Liu, Shiyin; Zhou, Jianuan; Zhang, Lianhui

    2016-01-01

    The frequent outbreaks of rice foot rot disease caused by Dickeya zeae have become a significant concern in rice planting regions and countries, but the regulatory mechanisms that govern the virulence of this important pathogen remain vague. Given that the second messenger cyclic di-GMP (c-di-GMP) is associated with modulation of various virulence-related traits in various microorganisms, here we set to investigate the role of the genes encoding c-di-GMP metabolism in the regulation of the bacterial physiology and virulence by construction all in-frame deletion mutants targeting the annotated c-di-GMP turnover genes in D. zeae strain EC1. Phenotype analyses identified individual mutants showing altered production of exoenzymes and phytotoxins, biofilm formation and bacterial motilities. The results provide useful clues and a valuable toolkit for further characterization and dissection of the regulatory complex that modulates the pathogenesis and persistence of this important bacterial pathogen. PMID:27855163

  5. Detection of intracellular bacterial communities in human urinary tract infection.

    Directory of Open Access Journals (Sweden)

    David A Rosen

    2007-12-01

    Full Text Available BACKGROUND: Urinary tract infections (UTIs are one of the most common bacterial infections and are predominantly caused by uropathogenic Escherichia coli (UPEC. While UTIs are typically considered extracellular infections, it has been recently demonstrated that UPEC bind to, invade, and replicate within the murine bladder urothelium to form intracellular bacterial communities (IBCs. These IBCs dissociate and bacteria flux out of bladder facet cells, some with filamentous morphology, and ultimately establish quiescent intracellular reservoirs that can seed recurrent infection. This IBC pathogenic cycle has not yet been investigated in humans. In this study we sought to determine whether evidence of an IBC pathway could be found in urine specimens from women with acute UTI. METHODS AND FINDINGS: We collected midstream, clean-catch urine specimens from 80 young healthy women with acute uncomplicated cystitis and 20 asymptomatic women with a history of UTI. Investigators were blinded to culture results and clinical history. Samples were analyzed by light microscopy, immunofluorescence, and electron microscopy for evidence of exfoliated IBCs and filamentous bacteria. Evidence of IBCs was found in 14 of 80 (18% urines from women with UTI. Filamentous bacteria were found in 33 of 80 (41% urines from women with UTI. None of the 20 urines from the asymptomatic comparative group showed evidence of IBCs or filaments. Filamentous bacteria were present in all 14 of the urines with IBCs compared to 19 (29% of 66 samples with no evidence of IBCs (p < 0.001. Of 65 urines from patients with E. coli infections, 14 (22% had evidence of IBCs and 29 (45% had filamentous bacteria, while none of the gram-positive infections had IBCs or filamentous bacteria. CONCLUSIONS: The presence of exfoliated IBCs and filamentous bacteria in the urines of women with acute cystitis suggests that the IBC pathogenic pathway characterized in the murine model may occur in humans. The

  6. Label- and amplification-free electrochemical detection of bacterial ribosomal RNA.

    Science.gov (United States)

    Henihan, Grace; Schulze, Holger; Corrigan, Damion K; Giraud, Gerard; Terry, Jonathan G; Hardie, Alison; Campbell, Colin J; Walton, Anthony J; Crain, Jason; Pethig, Ronald; Templeton, Kate E; Mount, Andrew R; Bachmann, Till T

    2016-07-15

    Current approaches to molecular diagnostics rely heavily on PCR amplification and optical detection methods which have restrictions when applied to point of care (POC) applications. Herein we describe the development of a label-free and amplification-free method of pathogen detection applied to Escherichia coli which overcomes the bottleneck of complex sample preparation and has the potential to be implemented as a rapid, cost effective test suitable for point of care use. Ribosomal RNA is naturally amplified in bacterial cells, which makes it a promising target for sensitive detection without the necessity for prior in vitro amplification. Using fluorescent microarray methods with rRNA targets from a range of pathogens, an optimal probe was selected from a pool of probe candidates identified in silico. The specificity of probes was investigated on DNA microarray using fluorescently labeled 16S rRNA target. The probe yielding highest specificity performance was evaluated in terms of sensitivity and a LOD of 20 pM was achieved on fluorescent glass microarray. This probe was transferred to an EIS end point format and specificity which correlated to microarray data was demonstrated. Excellent sensitivity was facilitated by the use of uncharged PNA probes and large 16S rRNA target and investigations resulted in an LOD of 50 pM. An alternative kinetic EIS assay format was demonstrated with which rRNA could be detected in a species specific manner within 10-40min at room temperature without wash steps.

  7. Pathogen-induced conditioning of the primary xylem vessels - a prerequisite for the formation of bacterial emboli by Pectobacterium atrosepticum.

    Science.gov (United States)

    Gorshkov, V Y; Daminova, A G; Mikshina, P V; Petrova, O E; Ageeva, M V; Salnikov, V V; Gorshkova, T A; Gogolev, Y V

    2016-07-01

    Representatives of Pectobacterium genus are some of the most harmful phytopathogens in the world. In the present study, we have elucidated novel aspects of plant-Pectobacterium atrosepticum interactions. This bacterium was recently demonstrated to form specific 'multicellular' structures - bacterial emboli in the xylem vessels of infected plants. In our work, we showed that the process of formation of these structures includes the pathogen-induced reactions of the plant. The colonisation of the plant by P. atrosepticum is coupled with the release of a pectic polysaccharide, rhamnogalacturonan I, into the vessel lumen from the plant cell wall. This polysaccharide gives rise to a gel that serves as a matrix for bacterial emboli. P. atrosepticum-caused infection involves an increase of reactive oxygen species (ROS) levels in the vessels, creating the conditions for the scission of polysaccharides and modification of plant cell wall composition. Both the release of rhamnogalacturonan I and the increase in ROS precede colonisation of the vessels by bacteria and occur only in the primary xylem vessels, the same as the subsequent formation of bacterial emboli. Since the appearance of rhamnogalacturonan I and increase in ROS levels do not hamper the bacterial cells and form a basis for the assembly of bacterial emboli, these reactions may be regarded as part of the susceptible response of the plant. Bacterial emboli thus represent the products of host-pathogen integration, since the formation of these structures requires the action of both partners.

  8. [Advancement in the research of early detection of bacterial nucleic acid in molecular diagnosis of sepsis].

    Science.gov (United States)

    Liu, Xiao; Ren, Hui; Peng, Dai-zhi

    2013-04-01

    Early diagnosis of sepsis helps make effective clinical decisions and improve the survival rate of patients with severe infection. However, the timely and accurate diagnosis of sepsis is still a great challenge in clinic. In order to settle the very problem, the scientists in the world have made a lot of exploration and research in the field of rapid molecular identification of pathogens. Nowadays, the nucleic acid detection of sepsis is mainly composed of 3 types of methodological strategies, either based on positive blood culture, single colonies, or directly on blood specimens. This paper presents a comprehensive overview of advances in the research of early detection of bacterial nucleic acid as molecular diagnosis of sepsis.

  9. Nodeomics: Pathogen Detection in Vertebrate Lymph Nodes Using Meta-Transcriptomics

    Science.gov (United States)

    Wittekindt, Nicola E.; Padhi, Abinash; Schuster, Stephan C.; Qi, Ji; Zhao, Fangqing; Tomsho, Lynn P.; Kasson, Lindsay R.; Packard, Michael; Cross, Paul C.; Poss, Mary

    2010-01-01

    The ongoing emergence of human infections originating from wildlife highlights the need for better knowledge of the microbial community in wildlife species where traditional diagnostic approaches are limited. Here we evaluate the microbial biota in healthy mule deer (Odocoileus hemionus) by analyses of lymph node meta-transcriptomes. cDNA libraries from five individuals and two pools of samples were prepared from retropharyngeal lymph node RNA enriched for polyadenylated RNA and sequenced using Roche-454 Life Sciences technology. Protein-coding and 16S ribosomal RNA (rRNA) sequences were taxonomically profiled using protein and rRNA specific databases. Representatives of all bacterial phyla were detected in the seven libraries based on protein-coding transcripts indicating that viable microbiota were present in lymph nodes. Residents of skin and rumen, and those ubiquitous in mule deer habitat dominated classifiable bacterial species. Based on detection of both rRNA and protein-coding transcripts, we identified two new proteobacterial species; a Helicobacter closely related to Helicobacter cetorum in the Helicobacter pylori/Helicobacter acinonychis complex and an Acinetobacter related to Acinetobacter schindleri. Among viruses, a novel gamma retrovirus and other members of the Poxviridae and Retroviridae were identified. We additionally evaluated bacterial diversity by amplicon sequencing the hypervariable V6 region of 16S rRNA and demonstrate that overall taxonomic diversity is higher with the meta-transcriptomic approach. These data provide the most complete picture to date of the microbial diversity within a wildlife host. Our research advances the use of meta-transcriptomics to study microbiota in wildlife tissues, which will facilitate detection of novel organisms with pathogenic potential to human and animals.

  10. Detection and characterization of foodborne pathogenic bacteria with hyperspectral microscope imaging

    Science.gov (United States)

    Rapid detection and identification of pathogenic microorganisms naturally occurring during food processing are important in developing intervention and verification strategies. In the poultry industry, contamination of poultry meat with foodborne pathogens (especially, Salmonella and Campylobacter) ...

  11. Selective detection of bacterial layers with terahertz plasmonic antennas.

    Science.gov (United States)

    Berrier, Audrey; Schaafsma, Martijn C; Nonglaton, Guillaume; Bergquist, Jonas; Rivas, Jaime Gómez

    2012-11-01

    Current detection and identification of micro-organisms is based on either rather unspecific rapid microscopy or on more accurate but complex and time-consuming procedures. In a medical context, the determination of the bacteria Gram type is of significant interest. The diagnostic of microbial infection often requires the identification of the microbiological agent responsible for the infection, or at least the identification of its family (Gram type), in a matter of minutes. In this work, we propose to use terahertz frequency range antennas for the enhanced selective detection of bacteria types. Several microorganisms are investigated by terahertz time-domain spectroscopy: a fast, contactless and damage-free investigation method to gain information on the presence and the nature of the microorganisms. We demonstrate that plasmonic antennas enhance the detection sensitivity for bacterial layers and allow the selective recognition of the Gram type of the bacteria.

  12. Selective detection of bacterial layers with terahertz plasmonic antennas

    CERN Document Server

    Berrier, Audrey; Nonglaton, Guillaume; Bergquist, Jonas; Rivas, Jaime Gómez

    2012-01-01

    Current detection and identification of micro-organisms is based on either rather unspecific rapid microscopy or on more accurate complex, time-consuming procedures. In a medical context, the determination of the bacteria Gram type is of significant interest. The diagnostic of microbial infection often requires the identification of the microbiological agent responsible for the infection, or at least the identification of its family (Gram type), in a matter of minutes. In this work, we propose to use terahertz frequency range antennas for the enhanced selective detection of bacteria types. Several microorganisms are investigated by terahertz time-domain spectroscopy: a fast, contactless and damage-free investigation method to gain information on the presence and the nature of the microorganisms. We demonstrate that plasmonic antennas enhance the detection sensitivity for bacterial layers and allow the selective recognition of the Gram type of the bacteria.

  13. Exploration of Simple Analytical Approaches for Rapid Detection of Pathogenic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Salma Rahman

    2005-12-17

    Many of the current methods for pathogenic bacterial detection require long sample-preparation and analysis time, as well as complex instrumentation. This dissertation explores simple analytical approaches (e.g., flow cytometry and diffuse reflectance spectroscopy) that may be applied towards ideal requirements of a microbial detection system, through method and instrumentation development, and by the creation and characterization of immunosensing platforms. This dissertation is organized into six sections. In the general Introduction section a literature review on several of the key aspects of this work is presented. First, different approaches for detection of pathogenic bacteria will be reviewed, with a comparison of the relative strengths and weaknesses of each approach, A general overview regarding diffuse reflectance spectroscopy is then presented. Next, the structure and function of self-assembled monolayers (SAMs) formed from organosulfur molecules at gold and micrometer and sub-micrometer patterning of biomolecules using SAMs will be discussed. This section is followed by four research chapters, presented as separate manuscripts. Chapter 1 describes the efforts and challenges towards the creation of imunosensing platforms that exploit the flexibility and structural stability of SAMs of thiols at gold. 1H, 1H, 2H, 2H-perfluorodecyl-1-thiol SAM (PFDT) and dithio-bis(succinimidyl propionate)-(DSP)-derived SAMs were used to construct the platform. Chapter 2 describes the characterization of the PFDT- and DSP-derived SAMs, and the architectures formed when it is coupled to antibodies as well as target bacteria. These studies used infrared reflection spectroscopy (IRS), X-ray photoelectron spectroscopy (XPS), and electrochemical quartz crystal microbalance (EQCM), Chapter 3 presents a new sensitive, and portable diffuse reflection based technique for the rapid identification and quantification of pathogenic bacteria. Chapter 4 reports research efforts in the

  14. Exploration of Simple Analytical Approaches for Rapid Detection of Pathogenic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Salma [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Many of the current methods for pathogenic bacterial detection require long sample-preparation and analysis time, as well as complex instrumentation. This dissertation explores simple analytical approaches (e.g., flow cytometry and diffuse reflectance spectroscopy) that may be applied towards ideal requirements of a microbial detection system, through method and instrumentation development, and by the creation and characterization of immunosensing platforms. This dissertation is organized into six sections. In the general Introduction section a literature review on several of the key aspects of this work is presented. First, different approaches for detection of pathogenic bacteria will be reviewed, with a comparison of the relative strengths and weaknesses of each approach, A general overview regarding diffuse reflectance spectroscopy is then presented. Next, the structure and function of self-assembled monolayers (SAMs) formed from organosulfur molecules at gold and micrometer and sub-micrometer patterning of biomolecules using SAMs will be discussed. This section is followed by four research chapters, presented as separate manuscripts. Chapter 1 describes the efforts and challenges towards the creation of imunosensing platforms that exploit the flexibility and structural stability of SAMs of thiols at gold. 1H, 1H, 2H, 2H-perfluorodecyl-1-thiol SAM (PFDT) and dithio-bis(succinimidyl propionate)-(DSP)-derived SAMs were used to construct the platform. Chapter 2 describes the characterization of the PFDT- and DSP-derived SAMs, and the architectures formed when it is coupled to antibodies as well as target bacteria. These studies used infrared reflection spectroscopy (IRS), X-ray photoelectron spectroscopy (XPS), and electrochemical quartz crystal microbalance (EQCM), Chapter 3 presents a new sensitive, and portable diffuse reflection based technique for the rapid identification and quantification of pathogenic bacteria. Chapter 4 reports research efforts in the

  15. AOTF hyperspectral microscopic imaging for foodborne pathogenic bacteria detection

    Science.gov (United States)

    Park, Bosoon; Lee, Sangdae; Yoon, Seung-Chul; Sundaram, Jaya; Windham, William R.; Hinton, Arthur, Jr.; Lawrence, Kurt C.

    2011-06-01

    Hyperspectral microscope imaging (HMI) method which provides both spatial and spectral information can be effective for foodborne pathogen detection. The AOTF-based hyperspectral microscope imaging method can be used to characterize spectral properties of biofilm formed by Salmonella enteritidis as well as Escherichia coli. The intensity of spectral imagery and the pattern of spectral distribution varied with system parameters (integration time and gain) of HMI system. The preliminary results demonstrated determination of optimum parameter values of HMI system and the integration time must be no more than 250 ms for quality image acquisition from biofilm formed by S. enteritidis. Among the contiguous spectral imagery between 450 and 800 nm, the intensity of spectral images at 498, 522, 550 and 594 nm were distinctive for biofilm; whereas, the intensity of spectral images at 546 nm was distinctive for E. coli. For more accurate comparison of intensity from spectral images, a calibration protocol, using neutral density filters and multiple exposures, need to be developed to standardize image acquisition. For the identification or classification of unknown food pathogen samples, ground truth regions-of-interest pixels need to be selected for "spectrally pure fingerprints" for the Salmonella and E. coli species.

  16. Prevalence of Gram-negative Pathogens and their antimicrobial susceptibility in bacterial meningitis in pediatric cases

    Directory of Open Access Journals (Sweden)

    Yash Pal Chugh

    2012-07-01

    Full Text Available The present study was conducted to find out the prevalence and spectrum of Gram negative pathogens causing bacterial meningitis and their antimicrobial susceptibility pattern in a tertiary care hospital. The cerebrospinal fluid (CSF (3-5 ml was collected from 638 admitted children clinically suspected of septic meningitis. Bacterial isolates were identified and antimicrobial susceptibility was assessed by the Kirby-Bauer disk diffusion method. Of the 638 samples tested 102 (15.99% were culture positive. Male to female (M:F ratio was 1.62:1. The maximum incidence of 45 (44.12% cases was found in children (1-12 yrs; in institutional deliveries the incidence was 58 (56.86% cases. Further, the incidence of 51 cases was found from May to August. Escherichia coli (E. coli were commonest, seen in 9 (25% cases followed by Acinetobacter spp., Citrobacter spp. and Klebsiella spp. with 6 (16.67% cases each. Enterobacter spp., Neisseria spp. and Pseudomonas aeruginosa were isolated in 3 (8.33% cases each. E. coli, Acinetobacter spp, Citrobacter spp and Klebsiella spp isolates were 100% susceptible to meropenem, piperacillin-tazobactam and cefoperazone-sulbactam and 100% resistant to cotrimoxazole and tetracycline. All strains of Neisseria spp, Enterobacter spp and Pseudomonas spp. were 100% susceptible to meropenem followed by gatifloxacin. These were 100% resistant to tetracycline and cotrimoxazole. Neisseria spp. were also 100% susceptible to pristinamycin. In septic meningitis Gram negative organisms are less common (35.29%. Of the isolates, more common Gram negative isolates included E. coli, Acinetobacter Spp., Citrobacter Spp., and Klebsiella spp. and these isolates were 100% susceptible to meropenem, piperacillin-tazobacatam and cefoperazone-sulbactam. Hence, empirical therapy should be formulated according to antimicrobial susceptibility patterns.

  17. The bioactivity of plant extracts against representative bacterial pathogens of the lower respiratory tract

    Directory of Open Access Journals (Sweden)

    Bocanegra-García Virgilio

    2009-06-01

    Full Text Available Abstract Background Lower respiratory tract infections are a major cause of illness and death. Such infections are common in intensive care units (ICU and their lethality persists despite advances in diagnosis, treatment and prevention. In Mexico, some plants are used in traditional medicine to treat respiratory diseases or ailments such as cough, bronchitis, tuberculosis and other infections. Medical knowledge derived from traditional societies has motivated searches for new bioactive molecules derived from plants that show potent activity against bacterial pathogens. Therefore, the aim of this study was to evaluate the effect of hexanic, chloroformic (CLO, methanolic (MET and aqueous extracts from various plants used in Mexican traditional medicine on various microorganisms associated with respiratory disease. Methods thirty-five extracts prepared from nine plants used in Mexican traditional medicine for the treatment of respiratory infections were evaluated against 15 control bacterial species and clinical isolates. Results Both chloroformic (CLO and methanolic (MET extracts of Larrea tridentata were active against Methicillin-resistant S. aureus, B. subtilis and L. monocytogenes. A MET extract of L. tridentata was also active against S. aureus, S. pneumoniae, S. maltophilia, E. faecalis and H. influenzae and the CLO extract was active against A. baumannii. An Aqueous extract of M. acumitata and a MET extract of N. officinale were active against S. pneumoniae. CLO and MET extracts of L. tridentata were active against clinical isolates of S. aureus, S. pneumoniae and E. faecalis. Conclusion Overall, our results support the potential use of L. tridentata as a source of antibacterial compounds.

  18. Polymerase chain reaction detection of potentially pathogenic free-living amoebae in dental units.

    Science.gov (United States)

    Leduc, Annie; Gravel, Sabrina; Abikhzer, Jérémie; Roy, Stéphane; Barbeau, Jean

    2012-07-01

    Several genera of amoebae can be found in water from dental units and on the inner surface of waterlines. The presence of bacterial biofilms on these surfaces is thought to favor the proliferation of amoebae. Potentially pathogenic Acanthamoeba and Naegleria spp. may be an infection risk for patients through contact with open surgical sites or aerosolization. A polymerase chain reaction of DNA extracted from pelleted samples showed that Acanthamoeba spp. and Naegleria spp. were present in water from dental units, suction lines, and suction filters at the dental clinic of the Université de Montréal. Acanthamoeba spp. were detected in 24.2% of 66 samples and Naegleria spp. in 3.0%. We discuss the infection risk associated with these results.

  19. Screening of Lactobacillus strains of domestic goose origin against bacterial poultry pathogens for use as probiotics.

    Science.gov (United States)

    Dec, Marta; Puchalski, Andrzej; Urban-Chmiel, Renata; Wernicki, Andrzej

    2014-10-01

    Lactobacilli are natural inhabitants of human and animal mucous membranes, including the avian gastrointestinal tract. Recently, increasing attention has been given to their probiotic, health-promoting capacities, among which their antagonistic potential against pathogens plays a key role. A study was conducted to evaluate probiotic properties of Lactobacillus strains isolated from feces or cloacae of domestic geese. Among the 104 examined isolates, previously identified to the species level by whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and analysis of 16S-23S regions of rDNA, dominated Lactobacillus salivarius (35%), followed by Lactobacillus johnsonii (18%) and Lactobacillus ingluviei (11%). All lactobacilli were screened for antimicrobial activity toward Salmonella Enteritidis, Escherichia coli, Clostridium perfringens, Staphylococcus aureus, Pasteurella multocida, and Riemerella anatipestifer using the agar slab method and the well diffusion method. Lactobacillus salivarius and Lactobacillus plantarum exhibited particularly strong antagonism toward all of the indicator strains. In the agar slab method, the highest sensitivity to Lactobacillus was observed in R. anatipestifer and P. multocida, and the lowest in E. coli and S. aureus. The ability to produce H₂O₂was exhibited by 92% of isolates, but there was no correlation between the rate of production of this reactive oxygen species and the antimicrobial activity of Lactobacillus sp. All lactobacilli showed resistance to pH 3.0 and 3.5 and to 2% bile. The data demonstrate that Lactobacillus isolates from geese may have probiotic potential in reducing bacterial infections. The antibacterial activity of the selected lactobacilli is mainly due to lactic acid production by these bacteria. The selected Lactobacillus strains that strongly inhibited the growth of pathogenic bacteria, and were also resistant to low pH and bile salts, can potentially restore the balance

  20. A functional gene array for detection of bacterial virulence elements

    Energy Technology Data Exchange (ETDEWEB)

    Jaing, C

    2007-11-01

    We report our development of the first of a series of microarrays designed to detect pathogens with known mechanisms of virulence and antibiotic resistance. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. To validate our approach, we developed a first generation array targeting genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for microorganism detection and discrimination, measured the required target concentration, and assessed tolerance for mismatches between probe and target sequences. Mismatch tolerance is a priority for this application, due to DNA sequence variability among members of gene families. Arrays were created using the NimbleGen Maskless Array Synthesizer at Lawrence Livermore National Laboratory. Purified genomic DNA from combinations of one or more of the four target organisms, pure cultures of four related organisms, and environmental aerosol samples with spiked-in genomic DNA were hybridized to the arrays. Based on the success of this prototype, we plan to design further arrays in this series, with the goal of detecting all known virulence and antibiotic resistance gene families in a greatly expanded set of organisms.

  1. [Pathogenic potential of Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia, the red bacterial complex associated with periodontitis].

    Science.gov (United States)

    Bodet, C; Chandad, F; Grenier, D

    2007-01-01

    Periodontitis are mixed bacterial infections leading to destruction of tooth-supporting tissues, including periodontal ligament and alveolar bone. Among over 500 bacterial species living in the oral cavity, a bacterial complex named "red complex" and made of Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia has been strongly related to advanced periodontal lesions. While periodontopathogenic bacteria are the primary etiologic factor of periodontitis, tissue destruction essentially results from the host immune response to the bacterial challenge. Members of the red complex are Gram negative anaerobic bacteria expressing numerous virulence factors allowing bacteria to colonize the subgingival sites, to disturb the host defense system, to invade and destroy periodontal tissue as well as to promote the immunodestructive host response. This article reviews current knowledge of the pathogenic mechanisms of bacteria of the red complex leading to tissue and alveolar bone destruction observed during periodontitis.

  2. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  3. Hyperspectral imaging using a color camera and its application for pathogen detection

    Science.gov (United States)

    Yoon, Seung-Chul; Shin, Tae-Sung; Heitschmidt, Gerald W.; Lawrence, Kurt C.; Park, Bosoon; Gamble, Gary

    2015-02-01

    This paper reports the results of a feasibility study for the development of a hyperspectral image recovery (reconstruction) technique using a RGB color camera and regression analysis in order to detect and classify colonies of foodborne pathogens. The target bacterial pathogens were the six representative non-O157 Shiga-toxin producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) grown in Petri dishes of Rainbow agar. The purpose of the feasibility study was to evaluate whether a DSLR camera (Nikon D700) could be used to predict hyperspectral images in the wavelength range from 400 to 1,000 nm and even to predict the types of pathogens using a hyperspectral STEC classification algorithm that was previously developed. Unlike many other studies using color charts with known and noise-free spectra for training reconstruction models, this work used hyperspectral and color images, separately measured by a hyperspectral imaging spectrometer and the DSLR color camera. The color images were calibrated (i.e. normalized) to relative reflectance, subsampled and spatially registered to match with counterpart pixels in hyperspectral images that were also calibrated to relative reflectance. Polynomial multivariate least-squares regression (PMLR) was previously developed with simulated color images. In this study, partial least squares regression (PLSR) was also evaluated as a spectral recovery technique to minimize multicollinearity and overfitting. The two spectral recovery models (PMLR and PLSR) and their parameters were evaluated by cross-validation. The QR decomposition was used to find a numerically more stable solution of the regression equation. The preliminary results showed that PLSR was more effective especially with higher order polynomial regressions than PMLR. The best classification accuracy measured with an independent test set was about 90%. The results suggest the potential of cost-effective color imaging using hyperspectral image

  4.   Bloodstream Bacterial Pathogens and their Antibiotic Resistance Pattern in Dhahira Region, Oman

    Directory of Open Access Journals (Sweden)

    PP Geethanjali

    2011-07-01

    Full Text Available Objectives: To describe the epidemiological, clinical, microbiological characteristics and antimicrobial resistance pattern of Bloodstream infections in Dhahira region, Oman.Methods: Clinical data was collected from all patients with positive blood cultures for two years period. Standard laboratory methods were used for blood culture. Antibiotic sensitivity was tested using Kirby-Bauer disc diffusion method.Results: Of the 360 bacterial pathogens isolated from 348 patients, 57.8�0were gram-positive and 42.2�0were gram-negative. The common isolates were: Streptococcus species 76 (21.1� coagulase-negative Staphylococci 75 (20.8� Escherichia coli 43 (11.9� Staphylococcus aureus 41 (11.4� Overall, mortality was 21.3�0(74/348. Staphylococcus species (Staphylococcus aureus and CoNS were more commonly resistant to Trimethoprim/ Sulphamethoxazole (35.3�20and Penicillin (25.9� Streptococcus species were resistant to Trimethoprim/Sulphamethoxazole (39.1�20and Erythromycin (19.6�Conclusion: Bloodstream infections are important causes of morbidity and mortality in our patients, especially among chronically ill elderly adult males. Prescription of proven resistant antibiotics to suspected bacteremic patients needs attention in Dhahira region.

  5. Susceptibility of conjunctival bacterial pathogens to fluoroquinolones. A comparative study of ciprofloxacin, norfloxacin and ofloxacin

    Directory of Open Access Journals (Sweden)

    Stella Odjimogho

    2003-10-01

    Full Text Available In order to determine the most common bacteria implicated in conjunctivitis, and the effectiveness of the antibiotic Fluoroquinolone for its treatment, a total of 50 subjects (100 eyes, between the ages of 1-30 years with mean age of 16.94 ± 8.06 years with infected eyes, were examined at the Lagos State University Teaching Hospital, Nigeria (LASUTH. Conjunctival swabs were collected and cultured in the laboratory to isolate the pathogens responsible for the infection. Sensitivity and antibiotic suscepticibility tests were carried out with discs impregnated with 0.3% concentration of ophthalmic topical solutions of chibroxin (Norfloxacin, ciloxan (Ciprofloxacin, and ocuflox (Ofloxacin, to ascertain the most sensitive of the three drugs. The results showed that the implicated bacteria in order of decreasing frequency were Staphylococcus aureus (34%, followed by Streptococcus pneumoniae (22%, Pseudomonas aeruginosa (14%, Klebsiella pneumoniae (12%, Hemophilus influenzae (9%, Escherichia coli (9%. All the isolated organisms were highly sensitive to the three drugs. However, a one way analysis of variance (ANOVA showed a significant difference in the sensitivity of the three drugs (p< 0.05. ANOVA Post Hoc located Ciprofloxacin as the source of the significance. In conclusion therefore, Ciprofloxacin is the most sensitive of the three drugs and, hence should be the first choice of the fluoroquinolones for the treatment of bacterial conjunctivitis.

  6. Evaluation of a multiplex PCR for bacterial pathogens applied to bronchoalveolar lavage.

    Science.gov (United States)

    Strålin, K; Korsgaard, J; Olcén, P

    2006-09-01

    The present study assessed the diagnostic usefulness of a multiplex PCR (mPCR) for Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae and Chlamydophila pneumoniae applied to bronchoalveolar lavage (BAL). Fibreoptic bronchoscopy was performed on 156 hospitalised adult patients with lower respiratory tract infection (LRTI) and 36 controls. BAL fluid was analysed with bacterial culture and mPCR. By conventional diagnostic methods, S. pneumoniae, H. influenzae, M. pneumoniae and C. pneumoniae were aetiological agents in 14, 21, 3.2 and 0% of the LRTI patients, respectively. These pathogens were identified by BAL mPCR in 28, 47, 3.2 and 0.6% of cases, respectively, yielding sensitivities of 86% for S. pneumoniae, 88% for H. influenzae, 100% for M. pneumoniae and 0% for C. pneumoniae, and specificities of 81, 64, 100 and 99% for S. pneumoniae, H. influenzae, M. pneumoniae and C. pneumoniae, respectively. Of the 103 patients who had taken antibiotics prior to bronchoscopy, S. pneumoniae was identified by culture in 2.9% and by mPCR in 31%. Among the controls, mPCR identified S. pneumoniae in 11% and H. influenzae in 39%. In lower respiratory tract infection patients, bronchoalveolar lavage multiplex PCR can be useful for identification of Streptococcus pneumoniae, Mycoplasma pneumoniae and Chlamydophila pneumoniae. The method appears to be particularly useful in patients treated with antibiotics.

  7. Antimicrobial potential of Ricinus communis leaf extracts in different solvents against pathogenic bacterial and fungal strains

    Institute of Scientific and Technical Information of China (English)

    Rabia Naz; Asghari Bano

    2012-01-01

    Objective: To investigate the in vitro antimicrobial activities of the leaf extract in different solvents viz., methanol, ethanol and water extracts of the selected plant Ricinus communis. Methods:Agar well diffusion method and agar tube dilution method were carried out to perform the antibacterial and antifungal activity of methanol, ethanol and aqueous extracts. Results:Methanol leaf extracts were found to be more active against Gram positive bacteria (Bacillus subtilis: ATCC 6059 and Staphylococcus aureus: ATCC 6538) as well as Gram negative bacteria (Pseudomonas aeruginosa: ATCC 7221 and Klebsiella pneumoniae) than ethanol and aqueous leaf extracts. Antifungal activity of methanol and aqueous leaf extracts were also carried out against selected fungal strains as Aspergillus fumigatus and Aspergillus flavus. Methanolic as well as aqueous leaf extracts of Ricinus communis were effective in inhibiting the fungal growth. Conclusions: The efficient antibacterial and antifungal activity of Ricinus communis from the present investigation revealed that the methanol leaf extracts of the selected plant have significant potential to inhibit the growth of pathogenic bacterial and fungal strains than ethanol and aqueous leaf extracts.

  8. Detection of Blood Culture Bacterial Contamination using Natural Language Processing

    Science.gov (United States)

    Matheny, Michael E.; FitzHenry, Fern; Speroff, Theodore; Hathaway, Jacob; Murff, Harvey J.; Brown, Steven H.; Fielstein, Elliot M.; Dittus, Robert S.; Elkin, Peter L.

    2009-01-01

    Microbiology results are reported in semi-structured formats and have a high content of useful patient information. We developed and validated a hybrid regular expression and natural language processing solution for processing blood culture microbiology reports. Multi-center Veterans Affairs training and testing data sets were randomly extracted and manually reviewed to determine the culture and sensitivity as well as contamination results. The tool was iteratively developed for both outcomes using a training dataset, and then evaluated on the test dataset to determine antibiotic susceptibility data extraction and contamination detection performance. Our algorithm had a sensitivity of 84.8% and a positive predictive value of 96.0% for mapping the antibiotics and bacteria with appropriate sensitivity findings in the test data. The bacterial contamination detection algorithm had a sensitivity of 83.3% and a positive predictive value of 81.8%. PMID:20351890

  9. Detection of blood culture bacterial contamination using natural language processing.

    Science.gov (United States)

    Matheny, Michael E; Fitzhenry, Fern; Speroff, Theodore; Hathaway, Jacob; Murff, Harvey J; Brown, Steven H; Fielstein, Elliot M; Dittus, Robert S; Elkin, Peter L

    2009-11-14

    Microbiology results are reported in semi-structured formats and have a high content of useful patient information. We developed and validated a hybrid regular expression and natural language processing solution for processing blood culture microbiology reports. Multi-center Veterans Affairs training and testing data sets were randomly extracted and manually reviewed to determine the culture and sensitivity as well as contamination results. The tool was iteratively developed for both outcomes using a training dataset, and then evaluated on the test dataset to determine antibiotic susceptibility data extraction and contamination detection performance. Our algorithm had a sensitivity of 84.8% and a positive predictive value of 96.0% for mapping the antibiotics and bacteria with appropriate sensitivity findings in the test data. The bacterial contamination detection algorithm had a sensitivity of 83.3% and a positive predictive value of 81.8%.

  10. Deciphering the role of coumarin as a novel quorum sensing inhibitor suppressing virulence phenotypes in bacterial pathogens.

    Science.gov (United States)

    Gutiérrez-Barranquero, José A; Reen, F Jerry; McCarthy, Ronan R; O'Gara, Fergal

    2015-04-01

    The rapid unchecked rise in antibiotic resistance over the last few decades has led to an increased focus on the need for alternative therapeutic strategies for the treatment and clinical management of microbial infections. In particular, small molecules that can suppress microbial virulence systems independent of any impact on growth are receiving increased attention. Quorum sensing (QS) is a cell-to-cell signalling communication system that controls the virulence behaviour of a broad spectrum of bacterial pathogens. QS systems have been proposed as an effective target, particularly as they control biofilm formation in pathogens, a key driver of antibiotic ineffectiveness. In this study, we identified coumarin, a natural plant phenolic compound, as a novel QS inhibitor, with potent anti-virulence activity in a broad spectrum of pathogens. Using a range of biosensor systems, coumarin was active against short, medium and long chain N-acyl-homoserine lactones, independent of any effect on growth. To determine if this suppression was linked to anti-virulence activity, key virulence systems were studied in the nosocomial pathogen Pseudomonas aeruginosa. Consistent with suppression of QS, coumarin inhibited biofilm, the production of phenazines and swarming motility in this organism potentially linked to reduced expression of the rhlI and pqsA quorum sensing genes. Furthermore, coumarin significantly inhibited biofilm formation and protease activity in other bacterial pathogens and inhibited bioluminescence in Aliivibrio fischeri. In light of these findings, coumarin would appear to have potential as a novel quorum sensing inhibitor with a broad spectrum of action.

  11. Characterization and molecular methods for detection of a novel spiroplasma pathogenic to Penaeus vannamei.

    Science.gov (United States)

    Nunan, Linda M; Pantoja, Carlos R; Salazar, Marcela; Aranguren, Fernando; Lightner, Donald V

    2004-12-13

    Traditionally, Spiroplasma spp. have only been isolated from the surfaces of flowers and other plant parts, from the guts and hemolymph of various insects, and from vascular plant fluids (phloem sap) and insects that feed on these fluids. In this article, we report the first pathogenic spiroplasma to be discovered in shrimp and the results of its characterization through histological evaluation, in situ hybridization assays, transmission electron microscopy, 16S rRNA sequence homology, and injection infectivity studies. In addition, molecular methods are described that were developed for the detection of this microorganism, which was determined to be the causative disease agent in Colombian farm-raised Penaeus vannamei suffering from high mortalities. Using standard histological methods and in situ hybridization assays, it was confirmed that P. vannamei was infected with this pathogenic spiroplasma. Histological analysis revealed systemic inflammatory reactions in affected organs/tissues. In an attempt to identify the bacteria, frozen infected P. vannamei samples, from the initial epizootic, were used to sequence the 16S rRNA gene and develop molecular detection methods. The 16S rRNA gene was amplified by PCR and then sequenced. The sequence data were analyzed using the GenBank BLAST search and the results revealed a 98% homology with Spiroplasma citri, a pathogen of citrus trees. The 16S rRNA sequence data were evaluated for development of unique PCR primers to the putative spiroplasma. Using PCR primers developed for the spiralin gene of Spiroplasma spp., a digoxigenin-labeled probe was developed and tested. This probe was species-specific, with no positive reactions or cross-reactivity occurring with other bacterial samples tested in this format.

  12. The bacterial pathogen Listeria monocytogenes and the interferon family: type I, type II and type III interferons.

    Science.gov (United States)

    Dussurget, Olivier; Bierne, Hélène; Cossart, Pascale

    2014-01-01

    Interferons (IFNs) are secreted proteins of the cytokine family that regulate innate and adaptive immune responses to infection. Although the importance of IFNs in the antiviral response has long been appreciated, their role in bacterial infections is more complex and is currently a major focus of investigation. This review summarizes our current knowledge of the role of these cytokines in host defense against the bacterial pathogen Listeria monocytogenes and highlights recent discoveries on the molecular mechanisms evolved by this intracellular bacterium to subvert IFN responses.

  13. A model system for pathogen detection using a two-component bacteriophage/bioluminescent signal amplification assay

    Science.gov (United States)

    Bright, Nathan G.; Carroll, Richard J.; Applegate, Bruce M.

    2004-03-01

    Microbial contamination has become a mounting concern the last decade due to an increased emphasis of minimally processed food products specifically produce, and the recognition of foodborne pathogens such as Campylobacter jejuni, Escherichia coli O157:H7, and Listeria monocytogenes. This research investigates a detection approach utilizing bacteriophage pathogen specificity coupled with a bacterial bioluminescent bioreporter utilizing the quorum sensing molecule from Vibrio fischeri, N-(3-oxohexanoyl)-homoserine lactone (3-oxo-C6-HSL). The 3-oxo-C6-HSL molecules diffuse out of the target cell after infection and induce bioluminescence from a population of 3-oxo-C6-HSL bioreporters (ROLux). E. coli phage M13, a well-characterized bacteriophage, offers a model system testing the use of bacteriophage for pathogen detection through cell-to-cell communication via a LuxR/3-oxo-C6-HSL system. Simulated temperate phage assays tested functionality of the ROLux reporter and production of 3-oxo-C6-HSL by various test strains. These assays showed detection limits of 102cfu after 24 hours in a varietry of detection formats. Assays incorporating the bacteriophage M13-luxI with the ROLux reporter and a known population of target cells were subsequently developed and have shown consistent detection limits of 105cfu target organisms. Measurable light response from high concentrations of target cells was almost immediate, suggesting an enrichment step to further improve detection limits and reduce assay time.

  14. Vibrational fingerprinting of bacterial pathogens by surface enhanced Raman scattering (SERS)

    Science.gov (United States)

    Premasiri, W. Ranjith; Moir, D. T.; Ziegler, Lawrence D.

    2005-05-01

    The surface enhanced Raman scattering (SERS) spectra of vegetative whole-cell bacteria were obtained using in-situ grown gold nanoparticle cluster-covered silicon dioxide substrates excited at 785 nm. SERS spectra of Gram-negative bacteria; E. coli and S. typhimurium, and Gram-positive bacteria; B. subtilis, B. cereus, B. thuringeinsis and B. anthracis Sterne, have been observed. Raman enhancement factors of ~104-105 per cell are found for both Gram positive and Gram negative bacteria on this novel SERS substrate. The bacterial SERS spectra are species specific and exhibit greater species differentiation and reduced spectral congestion than their corresponding non-SERS (bulk) Raman spectra. Fluorescence observed in the 785 nm excited bulk Raman emission of Bacillus species is not apparent in the corresponding SERS spectra. The surface enhancement effect allows the observation of Raman spectra at the single cell level excited by low incident laser powers (blood serum, has an observable effect on the bacterial SERS spectra. However, reproducible, species specific SERS vibrational fingerprints are still obtained. The potential of SERS for detection and identification of bacteria with species specificity on these gold nanoparticle coated substrates is demonstrated by these results.

  15. Identification of pathogenic microbial cells and spores by electrochemical detection on a biochip

    Directory of Open Access Journals (Sweden)

    Andresen Heiko

    2004-04-01

    Full Text Available Abstract Background Bacillus cereus constitutes a significant cause of acute food poisoning in humans. Despite the recent development of different detection methods, new effective control measures and better diagnostic tools are required for quick and reliable detection of pathogenic micro-organisms. Thus, the objective of this study was to determine a simple method for rapid identification of enterotoxic Bacillus strains. Here, a special attention is given to an electrochemical biosensor since it meets the requirements of minimal size, lower costs and decreased power consumption. Results A bead-based sandwich hybridization system was employed in conjugation with electric chips for detection of vegetative cells and spores of Bacillus strains based on their toxin-encoding genes. The system consists of a silicon chip based potentiometric cell, and utilizes paramagnetic beads as solid carriers of the DNA probes. The specific signals from 20 amol of bacterial cell or spore DNA were achieved in less than 4 h. The method was also successful when applied directly to unpurified spore and cell extract samples. The assay for the haemolytic enterotoxin genes resulted in reproducible signals from B. cereus and B. thuringiensis while haemolysin-negative B. subtilis strain did not yield any signal. Conclusions The sensitivity, convenience and specificity of the system have shown its potential. In this respect an electrochemical detection on a chip enabling a fast characterization and monitoring of pathogens in food is of interest. This system can offer a contribution in the rapid identification of bacteria based on the presence of specific genes without preceding nucleic acid amplification.

  16. The Water Cycle, a Potential Source of the Bacterial Pathogen Bacillus cereus

    Directory of Open Access Journals (Sweden)

    Julien Brillard

    2015-01-01

    Full Text Available The behaviour of the sporulating soil-dwelling Bacillus cereus sensu lato (B. cereus sl which includes foodborne pathogenic strains has been extensively studied in relation to its various animal hosts. The aim of this environmental study was to investigate the water compartments (rain and soil water, as well as groundwater closely linked to the primary B. cereus sl reservoir, for which available data are limited. B. cereus sl was present, primarily as spores, in all of the tested compartments of an agricultural site, including water from rain to groundwater through soil. During rain events, leachates collected after transfer through the soil eventually reached the groundwater and were loaded with B. cereus sl. In groundwater samples, newly introduced spores of a B. cereus model strain were able to germinate, and vegetative cells arising from this event were detected for up to 50 days. This first B. cereus sl investigation in the various types of interrelated environments suggests that the consideration of the aquatic compartment linked to soil and to climatic events should provide a better understanding of B. cereus sl ecology and thus be relevant for a more accurate risk assessment of food poisoning caused by B. cereus sl pathogenic strains.

  17. Nano-layered magnesium fluoride reservoirs on biomaterial surfaces strengthen polymorphonuclear leukocyte resistance to bacterial pathogens.

    Science.gov (United States)

    Guo, Geyong; Zhou, Huaijuan; Wang, Qiaojie; Wang, Jiaxing; Tan, Jiaqi; Li, Jinhua; Jin, Ping; Shen, Hao

    2017-01-05

    Biomaterial-related bacterial infections cause patient suffering, mortality and extended periods of hospitalization, imposing a substantial burden on medical systems. In this context, understanding of nanomaterials-bacteria-cells interactions is of both fundamental and clinical significance. Herein, nano-MgF2 films were deposited on titanium substrate via magnetron sputtering. Using this platform, the antibacterial behavior and mechanism of the nano-MgF2 films were investigated in vitro and in vivo. It was found that, for S. aureus (CA-MRSA, USA300) and S. epidermidis (RP62A), the nano-MgF2 films possessed excellent anti-biofilm activity, but poor anti-planktonic bacteria activity in vitro. Nevertheless, both the traditional SD rat osteomyelitis model and the novel stably luminescent mouse infection model demonstrated that nano-MgF2 films exerted superior anti-infection effect in vivo, which cannot be completely explained by the antibacterial activity of the nanomaterial itself. Further, using polymorphonuclear leukocytes (PMNs), the critical immune cells of innate immunity, a complementary investigation of MgF2-bacteria-PMNs co-culturing revealed that the nano-MgF2 films improved the antibacterial effect of PMNs through enhancing their phagocytosis and stability. To our knowledge, this is the first time of exploring the antimicrobial mechanism of nano-MgF2 from the perspective of innate immunity both in vitro and in vivo. Based on the research results, a plausible mechanism is put forward for the predominant antibacterial effect of nano-MgF2in vivo, which may originate from the indirect immune enhancement effect of nano-MgF2 films. In summary, this study of surface antibacterial design using MgF2 nanolayer is a meaningful attempt, which can promote the host innate immune response to bacterial pathogens. This may give us a new understanding towards the antibacterial behavior and mechanism of nano-MgF2 films and pave the way towards their clinical applications.

  18. Prevalence of MDR pathogens of bacterial meningitis in Egypt and new synergistic antibiotic combinations

    Science.gov (United States)

    Abdelkader, Mona M.; Aboshanab, Khaled M.; El-Ashry, Marwa A.; Aboulwafa, Mohammad M.

    2017-01-01

    The aim of this study was identifying bacterial pathogens involved in meningitis, studying their antibiotic resistance profiles, investigating the antibiotic resistance genes as well as evaluating the use of various antibiotic combinations. Antibiotic susceptibility tests were evaluated according to CLSI guidelines. Antibiotic combinations were evaluated by calculating the Fractional Inhibitory Concentration (FIC) index. A total of 71 bacterial isolates were recovered from 68 culture positive CSF specimens. Sixty five of these isolates (91.5%) were recovered from single infection specimens, while 6 isolates (8.4%) were recovered from mixed infection specimens. Out of the 71 recovered isolates, 48 (67.6%) were Gram-positive, and 23 (32.4%) were Gram-negative. Thirty one of the Gram positive isolates were S. pneumoniae (64.6%, n = 48). Out of the recovered 71 isolates; 26 (36.6%) were multidrug-resistant (MDR) isolates of which, 18 (69.2%) were Gram-negative and 8 (30.8%) were Gram-positive. All MDR isolates (100%) showed resistance to penicillin and ampicillin, however, they showed lower resistance to meropenem (50%), levofloxacin (50%), amikacin (48%), pipercillin-tazobactam (45.8%). Most common antibiotic resistance genes were investigated including: tem (21.1%), shv (15.8%), ctx-m (15.8%) coding for TEM-, SHV, CTX-M extended-spectrum beta-lactamases (ESBLs), respectively; aac(6')-I b(26.3%) coding for aminoglycoside 6’-N-acetyltransferase type Ib ciprofloxacin resistant variant; and qnrA (5.3%) gene coding for quinolone resistance. The DNA sequences of the respective resistance genes of some selected isolates were PCR amplified, analyzed and submitted to the GenBank database under the accession numbers, KX214665, KX214664, KX214663, KX214662, respectively. The FIC values for ampicillin/sulbactam plus cefepime showed either additive or synergistic effect against ten tested Gram-negative MDR isolates, while doxycycline plus levofloxacin combination revealed

  19. Altering the thermal resistance of foodborne bacterial pathogens with an eggshell membrane waste by-product.

    Science.gov (United States)

    Poland, A L; Sheldon, B W

    2001-04-01

    Eggshells from egg-breaking operations are a significant waste disposal problem. Thus, the development of value-added by-products from this waste would be welcomed by the industry. The ability of extracted eggshell membranes containing, several bacteriolytic enzymes (i.e., lysozyme and beta-N-acetylglucosaminidase) or other membrane components to alter the thermal resistance of gram-positive and gram-negative bacterial pathogens was evaluated. Mid-log phase cells of Salmonella Enteritidis (SE), Salmonella Typhimurium (ST), Escherichia coli O157:H7 (EC), Listeria monocytogenes Scott A (LM), and Staphylococcus aureus (SA) were suspended in 100 ml of 0.1% peptone water (pH 6.9, 10(7-8) CFU/ml) containing either 0 (control) or 10 g of an eggshell membrane extract and incubated at 37 degrees C for 45 min. Following exposure, membrane-free samples (1.5 ml) were heated in a 56 degrees C (LM, SA), 54 degrees C (SE, ST), or 52 degrees C (EC) water bath from 0 to 14 min in sealed glass reaction vials (12 by 32 mm), and the survivors were recovered on brain heart infusion agar. Population reductions ranging from 27.6% (SA) to 99.8% (LM) (ST, 43.8%; SE, 47.5%; EC, 71.8%) were observed for cells treated for 45 min with extracted membrane, as compared to controls. D-value reductions ranging from 0 (LM) to 87.2% (SE) (SA, 36.7%; EC, 83.3%; ST, 86.3%) were observed when membrane-treated cells were subsequently heat inactivated. The effects of exposure pH, time, temperature, and organic load on membrane activity were also evaluated with Salmonella Typhimurium. Exposure pH (5.0 versus 6.9), time (15 versus 45 min), and temperature (4 degrees C versus 37 degrees C) did not significantly reduce the impact of eggshell membranes on D-values. However, the presence of organic matter (0.1% peptone water versus skim milk) significantly reduced the thermal resistance-reducing capacity of the membranes. These preliminary findings provide information on the potential use of extracted eggshell

  20. Clinical outcomes with besifloxacin ophthalmic suspension 0.6% in the treatment of bacterial conjunctivitis due to potentially consequential pathogens

    Directory of Open Access Journals (Sweden)

    Comstock TL

    2014-04-01

    Full Text Available Timothy L Comstock,1 Timothy W Morris,2 Lynne S Gearinger,2 Heleen H DeCory11Medical Affairs, 2Department of Microbiology and Sterilization Sciences, Bausch + Lomb, Rochester, NY, USAPurpose: Besifloxacin is a chlorofluoroquinolone approved for use in the treatment of bacterial conjunctivitis. This study assessed the clinical efficacy of besifloxacin ophthalmic suspension 0.6% against conjunctivitis infections caused by potentially consequential pathogens.Design: Post hoc analysis of clinical outcomes for patients with conjunctival infections due to Pseudomonas aeruginosa, Serratia marcescens, Neisseria spp., methicillin-resistant Staphylococcus aureus (MRSA, and methicillin-resistant Staphylococcus epidermidis (MRSE who were treated with besifloxacin in four multicenter, double-masked, randomized clinical trials.Methods: Minimum inhibitory concentrations (MICs of besifloxacin against potentially consequential pathogens were pooled. Clinical outcome data for patients treated with besifloxacin with baseline infections due to these pathogens were pooled and summarized. Bacterial eradication was defined as the absence of ocular bacterial species present at or above threshold at baseline.Results: A total of 1,317 patients had culture-confirmed bacterial conjunctivitis across the four studies, and 151 infections were due to the aforementioned pathogens (P. aeruginosa n=9; S. marcescens n=10; Neisseria spp. n=16; MRSA n=35; MRSE n=81. Among MRSA and MRSE infections, 48.3% demonstrated concurrent ciprofloxacin resistance (ciprofloxacin-resistant [CipR]-MRSA n=24; CipR-MRSE n=32. The MIC90 (MIC for 90% of isolates for besifloxacin was 1 µg/mL for S. marcescens, 0.25 µg/mL for Neisseria spp., 0.06 µg/mL for both ciprofloxacin-sensitive MRSA and ciprofloxacin-sensitive MRSE, and 4 µg/mL for both CipR-MRSA and CipR-MRSE. Against P. aeruginosa, the MIC range was 1–4 µg/mL. Bacterial eradication rates in patients treated with besifloxacin were 100% by

  1. A descriptive study on prevalence of bacterial pathogens in diabetic ulcer and Interventional component for the prevention of foot ulcers

    Directory of Open Access Journals (Sweden)

    Jerlin Priya, Rajamanickam Rajkumar, Bakthasingh

    2014-11-01

    Full Text Available Diabetes is considered to have reached epidemic proportions worldwide. The most distressing complication of diabetes is foot ulcer and is the major cause of lower limb amputation. Hence, they require a prolonged hospital stay to combat more serious complications like gangrene and lower limb amputation. Early detection and prompt treatment help in alleviating the ulceration. Methods: The present study was conducted among 50 diabetes patients. Study subjects were selected using non probability purposive sampling technique. Pus samples were collected by using sterile swabs in a sterile manner from the ulcerated area. The wounds are washed vigorously with normal saline solution before collection of specimen. The specimens were transported immediately to the laboratory for culture. The clinical specimens were first screened microscopically by Gram’s stain, and then cultured on blood agar (aerobically and an aerobically, MacConkey agar and Robertson cooked meat broth for 48 hours at 37°C in 5-10 percent CO2 and bacteria’s were isolated. Results: The socio demographic profile of the present study reveals that males were predominant among the study population. Type II diabetes was more common, majority of study subjects are suffering from diabetes for more than 5 years and are treated with oral hypoglycemic drugs. The wound size was ≤ 2cms in majority of study subjects. The bacteriological profile of diabetic ulcer reveals that a majority of 23 (46% had growth of Staphylococcus aureus and 19 (38% had growth of klebsiella and a minimum of 6 (12% and 2 (4% had grown of Pseudomonas and Staphylococcus albus. Conclusion: Early detection of these bacterial pathogens helps to minimize the disease progress.

  2. Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis

    Directory of Open Access Journals (Sweden)

    Linde Hans-Jörg

    2009-08-01

    Full Text Available Abstract Background Timely identification of pathogens is crucial to minimize mortality in patients with severe infections. Detection of bacterial and fungal pathogens in blood by nucleic acid amplification promises to yield results faster than blood cultures (BC. We analyzed the clinical impact of a commercially available multiplex PCR system in patients with suspected sepsis. Methods Blood samples from patients with presumed sepsis were cultured with the Bactec 9240™ system (Becton Dickinson, Heidelberg, Germany and aliquots subjected to analysis with the LightCycler® SeptiFast® (SF Test (Roche Diagnostics, Mannheim, Germany at a tertiary care centre. For samples with PCR-detected pathogens, the actual impact on clinical management was determined by chart review. Furthermore a comparison between the time to a positive blood culture result and the SF result, based on a fictive assumption that it was done either on a once or twice daily basis, was made. Results Of 101 blood samples from 77 patients, 63 (62% yielded concordant negative results, 14 (13% concordant positive and 9 (9% were BC positive only. In 14 (13% samples pathogens were detected by SF only, resulting in adjustment of antibiotic therapy in 5 patients (7,7% of patients. In 3 samples a treatment adjustment would have been made earlier resulting in a total of 8 adjustments in all 101 samples (8%. Conclusion The addition of multiplex PCR to conventional blood cultures had a relevant impact on clinical management for a subset of patients with presumed sepsis.

  3. Arabidopsis Clade I TGA Factors Regulate Apoplastic Defences against the Bacterial Pathogen Pseudomonas syringae through Endoplasmic Reticulum-Based Processes

    OpenAIRE

    Lipu Wang; Pierre R Fobert

    2013-01-01

    During the plant immune response, large-scale transcriptional reprogramming is modulated by numerous transcription (co) factors. The Arabidopsis basic leucine zipper transcription factors TGA1 and TGA4, which comprise the clade I TGA factors, have been shown to positively contribute to disease resistance against virulent strains of the bacterial pathogen Pseudomonas syringae . Despite physically interacting with the key immune regulator, NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), f...

  4. Development of a Multiplex PCR Method to Detect Fungal Pathogens for Quarantine on Exported Cacti

    OpenAIRE

    Hyun ji Cho; Seong Won Hong; Hyun-ju Kim; Youn-Sig Kwak

    2016-01-01

    Major diseases in grafted cacti have been reported and Fusarium oxysporum, Bipolaris cactivora, Phytophthora spp. and Collectotrichum spp. are known as causal pathogens. These pathogens can lead to plant death after infection. Therefore, some European countries have quarantined imported cacti that are infected with specific fungal pathogens. Consequently, we developed PCR detection methods to identify four quarantined fungal pathogens and reduce export rejection rates of Korean grafted cacti....

  5. Prophage-mediated dynamics of 'Candidatus Liberibacter asiaticus' populations, the destructive bacterial pathogens of citrus huanglongbing.

    Directory of Open Access Journals (Sweden)

    Lijuan Zhou

    Full Text Available Prophages are highly dynamic components in the bacterial genome and play an important role in intraspecies variations. There are at least two prophages in the chromosomes of Candidatus Liberibacter asiaticus' (Las Floridian isolates. Las is both unculturable and the most prevalent species of Liberibacter pathogens that cause huanglongbing (HLB, a worldwide destructive disease of citrus. In this study, seven new prophage variants resulting from two hyper-variable regions were identified by screening clone libraries of infected citrus, periwinkle and psyllids. Among them, Types A and B share highly conserved sequences and localize within the two prophages, FP1 and FP2, respectively. Although Types B and C were abundant in all three libraries, Type A was much more abundant in the libraries from the Las-infected psyllids than from the Las-infected plants, and Type D was only identified in libraries from the infected host plants but not from the infected psyllids. Sequence analysis of these variants revealed that the variations may result from recombination and rearrangement events. Conventional PCR results using type-specific molecular markers indicated that A, B, C and D are the four most abundant types in Las-infected citrus and periwinkle. However, only three types, A, B and C are abundant in Las-infected psyllids. Typing results for Las-infected citrus field samples indicated that mixed populations of Las bacteria present in Floridian isolates, but only the Type D population was correlated with the blotchy mottle symptom. Extended cloning and sequencing of the Type D region revealed a third prophage/phage in the Las genome, which may derive from the recombination of FP1 and FP2. Dramatic variations in these prophage regions were also found among the global Las isolates. These results are the first to demonstrate the prophage/phage-mediated dynamics of Las populations in plant and insect hosts, and their correlation with insect transmission and

  6. Iron Limitation Triggers Early Egress by the Intracellular Bacterial Pathogen Legionella pneumophila

    Science.gov (United States)

    Zheng, Huaixin; VanRheenen, Susan M.; Ghosh, Soma; Cianciotto, Nicholas P.; Isberg, Ralph R.

    2016-01-01

    Legionella pneumophila is an intracellular bacterial pathogen that replicates in alveolar macrophages, causing a severe form of pneumonia. Intracellular growth of the bacterium depends on its ability to sequester iron from the host cell. In the L. pneumophila strain 130b, one mechanism used to acquire this essential nutrient is the siderophore legiobactin. Iron-bound legiobactin is imported by the transport protein LbtU. Here, we describe the role of LbtP, a paralog of LbtU, in iron acquisition in the L. pneumophila strain Philadelphia-1. Similar to LbtU, LbtP is a siderophore transport protein and is required for robust growth under iron-limiting conditions. Despite their similar functions, however, LbtU and LbtP do not contribute equally to iron acquisition. The Philadelphia-1 strain lacking LbtP is more sensitive to iron deprivation in vitro. Moreover, LbtP is important for L. pneumophila growth within macrophages while LbtU is dispensable. These results demonstrate that LbtP plays a dominant role over LbtU in iron acquisition. In contrast, loss of both LbtP and LbtU does not impair L. pneumophila growth in the amoebal host Acanthamoeba castellanii, demonstrating a host-specific requirement for the activities of these two transporters in iron acquisition. The growth defect of the ΔlbtP mutant in macrophages is not due to alterations in growth kinetics. Instead, the absence of LbtP limits L. pneumophila replication and causes bacteria to prematurely exit the host cell. These results demonstrate the existence of a preprogrammed exit strategy in response to iron limitation that allows L. pneumophila to abandon the host cell when nutrients are exhausted. PMID:27185787

  7. Bacterial pathogens and their antimicrobial susceptibility in Otukpo Benue state of Nigeria

    Institute of Scientific and Technical Information of China (English)

    Okwori EE; Nwadioha SI; Nwokedi EOP; Odimayo M; Jombo GTA

    2011-01-01

    Objective:To isolate bacterial pathogens and test for their antibiotic susceptibility. Methods:A total of 20 000 samples from 9 different clinical sites were processed in the laboratory between 1987 to 2000. The specimens were inoculated on the appropriate media for the isolation of the bacteria. Biochemical and serology tests were carried out on the organisms to confirm the type of bacteria isolated. Antibiotic susceptibility test was also carried out on each of the bacteria isolated. Results:A total of 18 520 bacteria were isolated from the specimens. The specimens were from nine different clinical sites, i.e. wound accounted for 22.84%, urine 31.67%, blood 12.38%, genital 7.70%, sputum 6.81%, stool 6.28%, cerebrospinal fluid 5.98%, aspirates 3.85%and ear/throat swabs were 2.49%. Gram negative bacteria accounted for 76%of isolates. The main species were Pseudomonas 2 238 (12.08%), Escherichia coli (E. coli) 2 073 (11.19%) and Staphylococcus aureus (S. aureus) which accounted for 2 511 (13.56%) of the total isolates. S. aureus showed 70%and 65%resistance to penicillin and ampicillin, respectively. Surprisingly, 40%of the organism was resistant to cloxacillin. E. coli showed 47%and 42%resistance to ampicillin and gentamicin, respectively. 49%of Salmonella typhi was resistant to chloramphenicol while 37%of Neisseria meningitidis was resistant to penicillin. Conclusions: The rate of bacteria isolated from the clinical specimens is high and antibiotic sensitivity pattern of the organisms vary from one antibiotic to the other.

  8. Prophage-mediated dynamics of 'Candidatus Liberibacter asiaticus' populations, the destructive bacterial pathogens of citrus huanglongbing.

    Science.gov (United States)

    Zhou, Lijuan; Powell, Charles A; Li, Wenbin; Irey, Mike; Duan, Yongping

    2013-01-01

    Prophages are highly dynamic components in the bacterial genome and play an important role in intraspecies variations. There are at least two prophages in the chromosomes of Candidatus Liberibacter asiaticus' (Las) Floridian isolates. Las is both unculturable and the most prevalent species of Liberibacter pathogens that cause huanglongbing (HLB), a worldwide destructive disease of citrus. In this study, seven new prophage variants resulting from two hyper-variable regions were identified by screening clone libraries of infected citrus, periwinkle and psyllids. Among them, Types A and B share highly conserved sequences and localize within the two prophages, FP1 and FP2, respectively. Although Types B and C were abundant in all three libraries, Type A was much more abundant in the libraries from the Las-infected psyllids than from the Las-infected plants, and Type D was only identified in libraries from the infected host plants but not from the infected psyllids. Sequence analysis of these variants revealed that the variations may result from recombination and rearrangement events. Conventional PCR results using type-specific molecular markers indicated that A, B, C and D are the four most abundant types in Las-infected citrus and periwinkle. However, only three types, A, B and C are abundant in Las-infected psyllids. Typing results for Las-infected citrus field samples indicated that mixed populations of Las bacteria present in Floridian isolates, but only the Type D population was correlated with the blotchy mottle symptom. Extended cloning and sequencing of the Type D region revealed a third prophage/phage in the Las genome, which may derive from the recombination of FP1 and FP2. Dramatic variations in these prophage regions were also found among the global Las isolates. These results are the first to demonstrate the prophage/phage-mediated dynamics of Las populations in plant and insect hosts, and their correlation with insect transmission and disease development.

  9. In vitro and in vivo bactericidal activity of Vitex negundo leaf extract against diverse multidrug resistant enteric bacterial pathogens

    Institute of Scientific and Technical Information of China (English)

    Muhammad Kamruzzaman; S.M. Nayeemul Bari; Shah M. Faruque

    2013-01-01

    Objective: To investigate in vitro and in vivo antibacterial potentials of Vitex negundo (V. negundo) leaf extracts against diverse enteric pathogens. Methods: Water and methanol extracts of V. negundo leaves were evaluated against enteric bacterial pathogens by using standard disc diffusion, viable bacterial cell count methods, determination of minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC). Results: Methanol extract of V. negundo leaves showed potent antibacterial activity (inhibition zone: 9.9-22.6 mm, MIC:200-3 200 μg/mL, MBC: 200-6 400 μg/mL) against all the pathogenic enteric bacteria (Vibriocholerae , Vibrio parahaemolyticus, Vibrio mimicus, Echerichia coli, Shigella spps., and Aeromonas spps) tested. Methanol extract of V. negundo leaves showed potent bactericidal activity both in vitro laboratory conditions (MBC, 200-400 μg/mL) and in the intestinal environment (Dose, 1-2 mg/mL) of infant mice against pathogenic Vibrio cholerae, the major causative agent of cholera. Furthermore, assays using the mice cholera model showed that V. negundo methanol extract can protect mice from Vibrio cholerae infection and significantly decrease the mortality rate (P<0.0001). Conclusions: For the first time we showed that methanol extract of V. negundo leaves exhibited strong vibriocidal activity both in vitro and in vivo conditions. Therefore, it will be useful to identify and isolate the active compounds of this extract that could be a good alternative of antibiotics to treat cholera.

  10. Antibacterial efficacy of the seed extracts of Melia azedarach against some hospital isolated human pathogenic bacterial strains

    Institute of Scientific and Technical Information of China (English)

    Abdul Viqar Khan; Qamar Uddin Ahmed; M Ramzan Mir; Indu Shukla; Athar Ali Khan

    2011-01-01

    To investigate the antibacterial potential of the polar and non-polar extracts of the seeds of Melia azedarach (M. azedarach) L. (Meliaceae) against eighteen hospital isolated human pathogenic bacterial strains. Methods: Petrol, benzene, ethyl acetate, methanol, and aqueous extracts at five different concentrations (1, 2, 5, 10 and 15 mg/mL) were evaluated. Disk diffusion method was followed to evaluate the antibacterial efficacy. Results: All extracts of the seeds demonstrated significant antibacterial activity against tested pathogens. Among all extracts, ethyl acetate extract revealed the highest inhibition comparatively. The present study also favored the traditional uses reported earlier. Conclusions: Results of this study strongly confirm that the seed extracts of M. azedarach could be effective antibiotics, both in controlling gram-positive and gram-negative human pathogenic infections.

  11. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja;

    2002-01-01

    It was recently reported that DNA vaccination of rainbow trout fingerlings against viral hemorrhagic septicaemia virus (VHSV) induced protection within 8 days after intramuscular injection of plasmid DNA. In order to analyse the specificity of this early immunity, fish were vaccinated with plasmid...... DNA encoding the VHSV or the infectious haematopoietic necrosis virus (IHNV) glycoprotein genes and later challenged with homologous or heterologous pathogens. Challenge experiments revealed that immunity established shortly after vaccination was cross-protective between the two viral pathogens...... whereas no increased survival was found upon challenge with bacterial pathogens. Within two months after vaccination, the cross-protection disappeared while the specific immunity to homologous virus remained high. The early immunity induced by the DNA vaccines thus appeared to involve short-lived non...

  12. Antibiotic resistance among bacterial pathogens in Central Africa: a review of the published literature between 1955 and 2008.

    Science.gov (United States)

    Vlieghe, E; Phoba, M F; Tamfun, J J Muyembe; Jacobs, J

    2009-10-01

    A systematic review of the published literature on bacterial resistance in Central Africa between 1955 and 2008 was performed. Eighty-three publications from seven countries were retrieved, the majority presenting data on enteric and other gram-negative pathogens. Despite methodological limitations in many studies, alarming resistance rates are noted in nearly all pathogens. Of special concern are multidrug resistance in Shigella and Salmonella spp. and the emergence of meticillin-resistant Staphylococcus aureus, high-level penicillin-resistant Streptococcus pneumoniae and extended-spectrum beta-lactamases among gram-negative pathogens. These findings make clear that the Central African region shares the worldwide trend of increasing antimicrobial resistance and is in urgent need of sound surveillance based on competent and affordable microbiology to provide clear data on antimicrobial resistance. These data could enable redaction of local treatment guidelines and fuel national and regional policies to contain antimicrobial resistance.

  13. Bacteriophage Resistance Mechanisms in the Fish Pathogen Flavobacterium psychrophilum: Linking Genomic Mutations to Changes in Bacterial Virulence Factors

    DEFF Research Database (Denmark)

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Dalsgaard, Inger

    2015-01-01

    Flavobacterium psychrophilum is an important fish pathogen in salmonid aquaculture worldwide. Due to increased antibiotic resistance, pathogen control using bacteriophages has been explored as a possible alternative treatment. However, the effective use of bacteriophages in pathogen control...... requires overcoming the selection for phage resistance in the bacterial populations. Here, we analyzed resistance mechanisms in F. psychrophilum after phage exposure using whole-genome sequencing of the ancestral phage-sensitive strain 950106-1/1 and six phage-resistant isolates. The phage......-resistant strains had all obtained unique insertions and/or deletions and point mutations distributed among intergenic and genic regions. Mutations in genes related to cell surface properties, gliding motility, and biosynthesis of lipopolysaccharides and cell wall were found. The observed links between phage...

  14. Quantitative molecular detection of putative periodontal pathogens in clinically healthy and periodontally diseased subjects.

    Directory of Open Access Journals (Sweden)

    André Göhler

    Full Text Available Periodontitis is a multi-microbial oral infection with high prevalence among adults. Putative oral pathogens are commonly found in periodontally diseased individuals. However, these organisms can be also detected in the oral cavity of healthy subjects. This leads to the hypothesis, that alterations in the proportion of these organisms relative to the total amount of oral microorganisms, namely their abundance, rather than their simple presence might be important in the transition from health to disease. Therefore, we developed a quantitative molecular method to determine the abundance of various oral microorganisms and the portion of bacterial and archaeal nucleic acid relative to the total nucleic acid extracted from individual samples. We applied quantitative real-time PCRs targeting single-copy genes of periodontal bacteria and 16S-rRNA genes of Bacteria and Archaea. Testing tongue scrapings of 88 matched pairs of periodontally diseased and healthy subjects revealed a significantly higher abundance of P. gingivalis and a higher total bacterial abundance in diseased subjects. In fully adjusted models the risk of being periodontally diseased was significantly higher in subjects with high P. gingivalis and total bacterial abundance. Interestingly, we found that moderate abundances of A. actinomycetemcomitans were associated with reduced risk for periodontal disease compared to subjects with low abundances, whereas for high abundances, this protective effect leveled off. Moderate archaeal abundances were health associated compared to subjects with low abundances. In conclusion, our methodological approach unraveled associations of the oral flora with periodontal disease, which would have gone undetected if only qualitative data had been determined.

  15. Detecting rare gene transfer events in bacterial populations

    Directory of Open Access Journals (Sweden)

    Kaare Magne Nielsen

    2014-01-01

    Full Text Available Horizontal gene transfer (HGT enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research.

  16. Influence of phenolic compounds of Kangra tea [Camellia sinensis (L O Kuntze] on bacterial pathogens and indigenous bacterial probiotics of Western Himalayas

    Directory of Open Access Journals (Sweden)

    Aditi Sourabh

    2013-09-01

    Full Text Available Phenolic compounds of nutraceutical importance viz., catechins (C, (--epicatechin (EC, (--epigallocatechin (EGC, (--epigallocatechin-3-gallate (EGCG and (--epicatechin-3-gallate (ECG were estimated in fresh green tea shoots of Camellia sinensis (L O Kuntze cultivar. The total polyphenols and total catechins were in the range of 219.90 to 317.81 and 140.83 to 271.39 g/kg, respectively in monthly samples of tea. The values of C, EC, EGC, EGCG and ECG in tea powders as analyzed through high performance liquid chromatography (HPLC were in the range of 1.560 to 3.661, 13.338 to 27.766, 26.515 to 39.597, 62.903 to 102.168 and 18.969 to 39.469 mg/g, respectively. Effect of tea extracts and standard flavanols against five pathogenic bacteria viz., Listeria monocytogenes (MTCC-839, Pseudomonas aeruginosa (MTCC-741, Bacillus cereus (MTCC-1272, Staphylococcus aureus (MTCC-96 and Escherichia coli (MTCC-443, and eleven indigenous potential bacterial probiotics belonging to genera Enterococcus, Bacillus and Lactobacillus spp. obtained from fermented foods of Western Himalayas, was investigated. EGCG, ECG and EGC exhibited antibacterial activity but, C and EC did not show this activity. Tea extracts having high concentrations of EGCG and ECG were more potent in antibacterial action against bacterial pathogens. Tea extracts and standard flavan-3-ols augmented viability of potential probiotics in an order of EGCG > EGC > ECG > EC > C. Tea extracts and standard flavanols had no antibacterial activity against Escherichia coli (MTCC-443 but, in combination with probiotic culture supernatants, this activity was seen. The Kangra tea thus, exerts antibacterial effect on bacterial pathogens through EGCG, ECG and EGC constituents while stimulatory effect on growth of indigenous potential probiotics.

  17. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las, affects host preference behavior of its psyllid (Diaphorina citri Kuwayama vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of

  18. 9 CFR 113.36 - Detection of pathogens by the chicken inoculation test.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Detection of pathogens by the chicken... REQUIREMENTS Standard Procedures § 113.36 Detection of pathogens by the chicken inoculation test. The test for...,000 doses. (b) At least 25 healthy susceptible young chickens, properly identified and obtained...

  19. Characterization of novel sufraces by FTIR spectroscopy and atomic force microscopy for food pathogen detection

    Science.gov (United States)

    Single molecular detection of pathogens and toxins of interest to food safety is within grasp using technology such as Atomic Force Microscopy. Using antibodies or specific aptamers connected to the AFM tip make it possible to detect a pathogen molecule on a surface. However, it also becomes necess...

  20. The bovine paranasal sinuses: Bacterial flora, epithelial expression of nitric oxide and potential role in the in-herd persistence of respiratory disease pathogens

    Science.gov (United States)

    O’Neill, Rónan G.; Lee, Alison M.; McElroy, Máire C.; More, Simon J.; Monagle, Aisling; Earley, Bernadette; Cassidy, Joseph P.

    2017-01-01

    The bovine paranasal sinuses are a group of complex cavernous air-filled spaces, lined by respiratory epithelium, the exact function of which is unclear. While lesions affecting these sinuses are occasionally reported in cattle, their microbial flora has not been defined. Furthermore, given that the various bacterial and viral pathogens causing bovine respiratory disease (BRD) persist within herds, we speculated that the paranasal sinuses may serve as a refuge for such infectious agents. The paranasal sinuses of clinically normal cattle (n = 99) and of cattle submitted for post-mortem examination (PME: n = 34) were examined by microbial culture, PCR and serology to include bacterial and viral pathogens typically associated with BRD: Mycoplasma bovis, Histophilus somni, Mannheimia haemolytica and Pasteurella multocida, bovine respiratory syncytial virus (BRSV) and bovine parainfluenza-3 virus (BPIV-3). Overall, the paranasal sinuses were either predominantly sterile or did not contain detectable microbes (83.5%: 94.9% of clinically normal and 50.0% of cattle submitted for PME). Bacteria, including BRD causing pathogens, were identified in relatively small numbers of cattle (<10%). While serology indicated widespread exposure of both clinically normal and cattle submitted for PME to BPIV-3 and BRSV (seroprevalences of 91.6% and 84.7%, respectively), PCR identified BPIV-3 in only one animal. To further explore these findings we investigated the potential role of the antimicrobial molecule nitric oxide (NO) within paranasal sinus epithelium using immunohistochemistry. Expression of the enzyme responsible for NO synthesis, inducible nitric oxide synthase (iNOS), was detected to varying degrees in 76.5% of a sub-sample of animals suggesting production of this compound plays a similar protective role in the bovine sinus as it does in humans. PMID:28282443

  1. Finding immune gene expression differences induced by marine bacterial pathogens in the Deep-sea hydrothermal vent mussel Bathymodiolus azoricus

    Science.gov (United States)

    Martins, E.; Queiroz, A.; Serrão Santos, R.; Bettencourt, R.

    2013-11-01

    The deep-sea hydrothermal vent mussel Bathymodiolus azoricus lives in a natural environment characterised by extreme conditions of hydrostatic pressure, temperature, pH, high concentrations of heavy metals, methane and hydrogen sulphide. The deep-sea vent biological systems represent thus the opportunity to study and provide new insights into the basic physiological principles that govern the defense mechanisms in vent animals and to understand how they cope with microbial infections. Hence, the importance of understanding this animal's innate defense mechanisms, by examining its differential immune gene expressions toward different pathogenic agents. In the present study, B. azoricus mussels were infected with single suspensions of marine bacterial pathogens, consisting of Vibrio splendidus, Vibrio alginolyticus, or Vibrio anguillarum, and a pool of these Vibrio bacteria. Flavobacterium suspensions were also used as a non-pathogenic bacterium. Gene expression analyses were carried out using gill samples from infected animals by means of quantitative-Polymerase Chain Reaction aimed at targeting several immune genes. We also performed SDS-PAGE protein analyses from the same gill tissues. We concluded that there are different levels of immune gene expression between the 12 h to 24 h exposure times to various bacterial suspensions. Our results from qPCR demonstrated a general pattern of gene expression, decreasing from 12 h over 24 h post-infection. Among the bacteria tested, Flavobacterium is the bacterium inducing the highest gene expression level in 12 h post-infections animals. The 24 h infected animals revealed, however, greater gene expression levels, using V. splendidus as the infectious agent. The SDS-PAGE analysis also pointed at protein profile differences between 12 h and 24 h, particularly evident for proteins of 18-20 KDa molecular mass, where most dissimilarity was found. Multivariate analyses demonstrated that immune genes, as well as experimental

  2. Sepsis biomarkers and pathogen detection methods: State of the art

    Directory of Open Access Journals (Sweden)

    Schmitz Roland P.H.

    2014-01-01

    Full Text Available Evidence-based blood culture testing is of utmost importance for ICU patients with suspected sepsis or organ infection. Knowledge of the etiologic agent (bacteria or fungi and their susceptibility against antimicrobials enables the clinician to initiate an appropriate antimicrobial therapy and guides diagnostic procedures. This has been shown to reduce mortality, ICU-stay and antibiotic overuse. Whereas microbiological laboratory practice has been highly standardized, short­falls in the preanalytic procedures in the ICU (indication, timing, volume, numbers, collection of blood cultures have a significant effect on the diagnostic yield. Due to system-related drawbacks of molecular diagnostics, i.e. PCR-based pathogen detection, which are arguable sensitivities, the failing of the 'fast time-to-result argument', no solution to establish a comprising antibiogram, still ongoing discussions on the coverage of the tar­get panel, high overall costs, and the lacking of resilient data on clinical utility, non-culture-based NATs do currently not represent an alternative to blood culture testing. Inflammatory markers are recognized to play an increasingly important role in the diagnosis and monitoring of sepsis. This is partly due to low specificity of clinical symptoms and conventional inflammatory signs for the diagnosis of sepsis but also to a lack of correlation with the severity of the inflammatory response. Elevated serum PCT levels indicate systemic inflammation reliably. PCT is the only sepsis marker that is helpful in the differentiation between infectious and non-infectious causes of organ dysfunction and shock and might support antibiotic therapy.

  3. Surface enhanced Raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens.

    Science.gov (United States)

    Sundaram, Jaya; Park, Bosoon; Kwon, Yongkuk; Lawrence, Kurt C

    2013-10-01

    A biopolymer encapsulated with silver nanoparticles was prepared using silver nitrate, polyvinyl alcohol (PVA) solution, and trisodium citrate. It was deposited on a mica sheet to use as SERS substrate. Fresh cultures of Salmonella Typhimurium, Escherichia coli, Staphylococcus aureus and Listeria innocua were washed from chicken rinse and suspended in 10 ml of sterile deionized water. Approximately 5 μl of the bacterial suspensions was placed on the substrate individually and exposed to 785 nm HeNe laser excitation. SERS spectral data were recorded over the Raman shift between 400 and 1800 cm(-1) from 15 different spots on the substrate for each sample; and three replicates were done on each bacteria type. Principal component analysis (PCA) model was developed to classify foodborne bacteria types. PC1 identified 96% of the variation among the given bacteria specimen, and PC2 identified 3%, resulted in a total of 99% classification accuracy. Soft Independent Modeling of Class Analogies (SIMCA) of validation set gave an overall correct classification of 97%. Comparison of the SERS spectra of different types of gram-negative and gram-positive bacteria indicated that all of them have similar cell walls and cell membrane structures. Conversely, major differences were noted around the nucleic acid and amino acid structure information between 1200 cm(-1) and 1700 cm(-1) and at the finger print region between 400 cm(-1) and 700 cm(-1). Silver biopolymer nanoparticle substrate could be a promising SERS tool for pathogen detection. Also this study indicates that SERS technology could be used for reliable and rapid detection and classification of food borne pathogens.

  4. Anti-biotic Effect of Slightly Acidic Electrolyzed Water on Plant Bacterial / Fungal Pathogen

    OpenAIRE

    津野, 和宣; 中村, 悌一

    2012-01-01

    The anti-biotic effect of slightly acidic electrolyzed water on plant pathogen was determined. The spores of 4 kinds of fungal pathogen and 17 kinds of plant pathogenic bacteria were applied at different concentration.###Slightly acidic electrolyzed water showed strong growth inhibition in germination of fungi spores tested. In addition, by the treatment with slightly acidic electrolyzed water for 30 sec., all kinds of bacteria tested were inhibited to grow on the medium.###The anti-biotic ef...

  5. Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines☆

    Science.gov (United States)

    Alberdi, M. Pilar; Dalby, Matthew J.; Rodriguez-Andres, Julio; Fazakerley, John K.; Kohl, Alain; Bell-Sakyi, Lesley

    2012-01-01

    As well as being vectors of many viral, bacterial, and protozoan pathogens of medical and veterinary importance, ticks harbour a variety of microorganisms which are not known to be pathogenic for vertebrate hosts. Continuous cell lines established from ixodid and argasid ticks could be infected with such endosymbiotic bacteria and endogenous viruses, but to date very few cell lines have been examined for their presence. DNA and RNA extracted from over 50 tick cell lines deposited in the Roslin Wellcome Trust Tick Cell Biobank (http://tickcells.roslin.ac.uk) were screened for presence of bacteria and RNA viruses, respectively. Sequencing of PCR products amplified using pan-16S rRNA primers revealed the presence of DNA sequences from bacterial endosymbionts in several cell lines derived from Amblyomma and Dermacentor spp. ticks. Identification to species level was attempted using Rickettsia- and Francisella-specific primers. Pan-Nairovirus primers amplified PCR products of uncertain specificity in cell lines derived from Rhipicephalus, Hyalomma, Ixodes, Carios, and Ornithodoros spp. ticks. Further characterisation attempted with primers specific for Crimean-Congo haemorrhagic fever virus segments confirmed the absence of this arbovirus in the cells. A set of pan-Flavivirus primers did not detect endogenous viruses in any of the cell lines. Transmission electron microscopy revealed the presence of endogenous reovirus-like viruses in many of the cell lines; only 4 of these lines gave positive results with primers specific for the tick Orbivirus St Croix River virus, indicating that there may be additional, as yet undescribed ‘tick-only’ viruses inhabiting tick cell lines. PMID:22743047

  6. Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines.

    Science.gov (United States)

    Alberdi, M Pilar; Dalby, Matthew J; Rodriguez-Andres, Julio; Fazakerley, John K; Kohl, Alain; Bell-Sakyi, Lesley

    2012-06-01

    As well as being vectors of many viral, bacterial, and protozoan pathogens of medical and veterinary importance, ticks harbour a variety of microorganisms which are not known to be pathogenic for vertebrate hosts. Continuous cell lines established from ixodid and argasid ticks could be infected with such endosymbiotic bacteria and endogenous viruses, but to date very few cell lines have been examined for their presence. DNA and RNA extracted from over 50 tick cell lines deposited in the Roslin Wellcome Trust Tick Cell Biobank (http://tickcells.roslin.ac.uk) were screened for presence of bacteria and RNA viruses, respectively. Sequencing of PCR products amplified using pan-16S rRNA primers revealed the presence of DNA sequences from bacterial endosymbionts in several cell lines derived from Amblyomma and Dermacentor spp. ticks. Identification to species level was attempted using Rickettsia- and Francisella-specific primers. Pan-Nairovirus primers amplified PCR products of uncertain specificity in cell lines derived from Rhipicephalus, Hyalomma, Ixodes, Carios, and Ornithodoros spp. ticks. Further characterisation attempted with primers specific for Crimean-Congo haemorrhagic fever virus segments confirmed the absence of this arbovirus in the cells. A set of pan-Flavivirus primers did not detect endogenous viruses in any of the cell lines. Transmission electron microscopy revealed the presence of endogenous reovirus-like viruses in many of the cell lines; only 4 of these lines gave positive results with primers specific for the tick Orbivirus St Croix River virus, indicating that there may be additional, as yet undescribed 'tick-only' viruses inhabiting tick cell lines.

  7. A Comparison of In-House Real-Time LAMP Assays with a Commercial Assay for the Detection of Pathogenic Bacteria.

    Science.gov (United States)

    Wang, Deguo; Wang, Yongzhen; Xiao, Fugang; Guo, Weiyun; Zhang, Yongqing; Wang, Aiping; Liu, Yanhong

    2015-05-25

    Molecular detection of bacterial pathogens based on LAMP methods is a faster and simpler approach than conventional culture methods. Although different LAMP-based methods for pathogenic bacterial detection are available, a systematic comparison of these different LAMP assays has not been performed. In this paper, we compared 12 in-house real-time LAMP assays with a commercialized kit (Isothermal Master Mix) for the detection of Listeria monocytogenes, Salmonella spp, Staphylococcus aureus, Escherichia coli O157, E. coli O26, E. coli O45, E. coli O103, E. coli O111, E. coli O121, E. coli O145 and Streptococcus agalactiae. False-positive results were observed in all 12 in-house real-time LAMP assays, while all the negative controls of Isothermal Master Mix remained negative after amplification. The detection limit of Isothermal Master Mix for Listeria monocytogenes, Salmonella spp, Staphylococcus aureus, Escherichia coli O157, E. coli O26, E. coli O45, E. coli O103, E. coli O111, E. coli O121 and Streptococcus agalactiae was 1 pg, whereas the sensitivity of the commercialized kit for E. coli O145 was 100 pg. In conclusion, the 12 in-house real-time LAMP assays were impractical to use, while the commercialized kit Isothermal Master Mix was useful for the detection of most bacterial pathogens.

  8. Molecular detection of multiple emerging pathogens in sputa from cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Fadi Bittar

    Full Text Available BACKGROUND: There is strong evidence that culture-based methods detect only a small proportion of bacteria present in the respiratory tracts of cystic fibrosis (CF patients. METHODOLOGY/PRINCIPAL FINDINGS: Standard microbiological culture and phenotypic identification of bacteria in sputa from CF patients have been compared to molecular methods by the use of 16S rDNA amplification, cloning and sequencing. Twenty-five sputa from CF patients were cultured that yield 33 isolates (13 species known to be pathogens during CF. For molecular cloning, 760 clones were sequenced (7.2+/-3.9 species/sputum, and 53 different bacterial species were identified including 16 species of anaerobes (30%. Discrepancies between culture and molecular data were numerous and demonstrate that accurate identification remains challenging. New or emerging bacteria not or rarely reported in CF patients were detected including Dolosigranulum pigrum, Dialister pneumosintes, and Inquilinus limosus. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the complex microbial community in sputa from CF patients, especially anaerobic bacteria that are probably an underestimated cause of CF lung pathology. Metagenomic analysis is urgently needed to better understand those complex communities in CF pulmonary infections.

  9. Detection of Foodborne Pathogens and Mycotoxins in Eggs and Chicken Feeds from Farms to Retail Markets

    Science.gov (United States)

    Lee, Minhwa; Seo, Dong Joo; Jeon, Su Been; Ok, Hyun Ee; Jung, Hyelee; Choi, Changsun; Chun, Hyang Sook

    2016-01-01

    Contamination by foodborne pathogens and mycotoxins was examined in 475 eggs and 20 feed samples collected from three egg layer farms, three egg-processing units, and five retail markets in Korea. Microbial contamination with Salmonella species, Escherichia coli, and Arcobacter species was examined by bacterial culture and multiplex polymerase chain reaction (PCR). The contamination levels of aflatoxins, ochratoxins, and zearalenone in eggs and chicken feeds were simultaneously analyzed with high-performance liquid chromatography coupled with fluorescence detection after the post-derivatization. While E. coli was isolated from 9.1% of eggs, Salmonella species were not isolated. Arcobacter species were detected in 0.8% of eggs collected from egg layers by PCR only. While aflatoxins, ochratoxins, and zearalenone were found in 100%, 100%, and 85% of chicken feeds, their contamination levels were below the maximum acceptable levels (1.86, 2.24, and 147.53 μg/kg, respectively). However, no eggs were contaminated with aflatoxins, ochratoxins, or zearalenone. Therefore, the risk of contamination by mycotoxins and microbes in eggs and chicken feeds is considered negligible and unlikely to pose a threat to human health. PMID:27621686

  10. ``Black Holes" and Bacterial Pathogenicity: A Large Genomic Deletion that Enhances the Virulence of Shigella spp. and Enteroinvasive Escherichia coli

    Science.gov (United States)

    Maurelli, Anthony T.; Fernandez, Reinaldo E.; Bloch, Craig A.; Rode, Christopher K.; Fasano, Alessio

    1998-03-01

    Plasmids, bacteriophages, and pathogenicity islands are genomic additions that contribute to the evolution of bacterial pathogens. For example, Shigella spp., the causative agents of bacillary dysentery, differ from the closely related commensal Escherichia coli in the presence of a plasmid in Shigella that encodes virulence functions. However, pathogenic bacteria also may lack properties that are characteristic of nonpathogens. Lysine decarboxylate (LDC) activity is present in ≈ 90% of E. coli strains but is uniformly absent in Shigella strains. When the gene for LDC, cadA, was introduced into Shigella flexneri 2a, virulence became attenuated, and enterotoxin activity was inhibited greatly. The enterotoxin inhibitor was identified as cadaverine, a product of the reaction catalyzed by LDC. Comparison of the S. flexneri 2a and laboratory E. coli K-12 genomes in the region of cadA revealed a large deletion in Shigella. Representative strains of Shigella spp. and enteroinvasive E. coli displayed similar deletions of cadA. Our results suggest that, as Shigella spp. evolved from E. coli to become pathogens, they not only acquired virulence genes on a plasmid but also shed genes via deletions. The formation of these ``black holes,'' deletions of genes that are detrimental to a pathogenic lifestyle, provides an evolutionary pathway that enables a pathogen to enhance virulence. Furthermore, the demonstration that cadaverine can inhibit enterotoxin activity may lead to more general models about toxin activity or entry into cells and suggests an avenue for antitoxin therapy. Thus, understanding the role of black holes in pathogen evolution may yield clues to new treatments of infectious diseases.

  11. Detection and identification of bacterial DNA in serum from patients with acute pancreatitis

    Science.gov (United States)

    de Madaria, E; Martínez, J; Lozano, B; Sempere, L; Benlloch, S; Such, J; Uceda, F; Francés, R; Pérez-Mateo, M

    2005-01-01

    Background and aims: Bacterial infections are common complications in patients with acute pancreatitis, and translocation of bacteria from the intestinal lumen is probably the first step in the pathogenesis of these infections. As blood cultures in afebrile patients are usually negative, more sensitive methods to investigate this hypothesis in patients are needed. Our group has recently developed a method to detect the presence of bacterial DNA in biological fluids, and we aimed to detect bacterial DNA in patients with acute pancreatitis, as molecular evidences of bacterial translocation. Methods: Samples of blood were obtained on three consecutive days within the first six days after admission. Bacterial DNA was detected using a polymerase chain reaction based method, and an automated DNA nucleotide sequencing process allowed identification of bacteria species. Results: Thirty one consecutively admitted patients with acute pancreatitis were studied. Bacterial DNA was detected in six patients (19.3%), and the sequencing process allowed identification of Citrobacter freundii and Pseudomonas aeruginosa. In two patients the same bacteria detected at admission was detected 24 hours later (above 99.9% homology of nucleotide sequence). Basic clinical and biochemical characteristics were similar among patients with or without the presence of bacterial DNA. Conclusion: Detection of gram negative bacteria derived bacterial DNA in our series supports the contention that bacterial translocation is a systemic process in approximately 20% of patients with acute pancreatitis that does not seem to be related to the severity of the episode or immediate development of infection. PMID:16099797

  12. Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution.

    Science.gov (United States)

    Price, Christopher T D; Richards, Ashley M; Von Dwingelo, Juanita E; Samara, Hala A; Abu Kwaik, Yousef

    2014-02-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, invades and proliferates within a diverse range of free-living amoeba in the environment, but upon transmission to humans, the bacteria hijack alveolar macrophages. Intracellular proliferation of L. pneumophila in two evolutionarily distant hosts is facilitated by bacterial exploitation of conserved host processes that are targeted by bacterial protein effectors injected into the host cell. A key aspect of microbe-host interaction is microbial extraction of nutrients from the host, but understanding of this is still limited. AnkB functions as a nutritional virulence factor and promotes host proteasomal degradation of polyubiquitinated proteins generating gratuitous levels of limiting host cellular amino acids. Legionella pneumophila is auxotrophic for several amino acids including cysteine, which is a metabolically preferred source of carbon and energy during intracellular proliferation, but is limiting in both amoebae and humans. We propose that synchronization of bacterial amino acids auxotrophy with the host is a driving force in pathogenic evolution and nutritional adaptation of L. pneumophila and other intracellular bacteria to life within the host cell. Understanding microbial strategies of nutrient generation and acquisition in the host will provide novel antimicrobial strategies to disrupt pathogen access to essential sources of carbon and energy.

  13. Antibacterial activity of carbapenems against clinical isolates of respiratory bacterial pathogens in the northeastern region of Japan in 2007.

    Science.gov (United States)

    Gomi, Kazunori; Fujimura, Shigeru; Fuse, Katsuhiro; Takane, Hidenari; Nakano, Yoshihisa; Kariya, Yasuko; Kikuchi, Toshiaki; Kurokawa, Iku; Tokue, Yutaka; Watanabe, Akira

    2011-04-01

    As the increasing prevalence of resistant strains of respiratory bacterial pathogens has recently been reported, continuous monitoring of the susceptibility of clinical isolates to antibacterial agents is important. We performed a surveillance study focusing on the susceptibility of major respiratory bacterial pathogens in the northeastern region of Japan to carbapenems and control drugs. A total of 168 bacterial strains isolated from patients with respiratory tract infections in 2007 were collected and the minimum inhibitory concentration (MIC) determined. MIC data were subjected to pharmacokinetic/pharmacodynamic analysis with Monte Carlo simulation to calculate the probability of achieving the target of time above MIC with each carbapenem. All Moraxella catarrhalis, Streptococcus pneumoniae, and methicillin-sensitive Staphylococcus aureus isolates were susceptible to carbapenems. Despite the increasing prevalence of β-lactamase-nonproducing ampicillin-resistant strains, all Haemophilus influenzae isolates were susceptible to meropenem. For Pseudomonas aeruginosa, the susceptibility rates for meropenem and biapenem were 76.7%, and the highest probability of achieving pharmacodynamic target (40% of the time above MIC) was obtained with meropenem 0.5 g three times daily as a 4-h infusion (89.4%), followed by meropenem 0.5 g four times daily as a 1-h infusion (88.4%). Carbapenems have retained their position as key drugs for severe respiratory tract infections.

  14. Practical benefits of knowing the enemy: Modern molecular tools for diagnosing the etiology of bacterial diseases and understanding the taxonomy and diversity of plant pathogenic bacteria

    Science.gov (United States)

    Knowing the identity of bacterial plant pathogens is essential to strategic and sustainable disease management. However, such identifications are linked to bacterial taxonomy, a complicated and changing discipline that depends on methods and information that often are not used by those who are diagn...

  15. A longitudinal study of lung bacterial pathogens in patients with primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    C. Alanin, M.; G. Nielsen, K.; von Buchwald, C.

    2015-01-01

    In patients with primary ciliary dyskinesia (PCD), impaired mucociliary clearance leads to an accumulation of secretions in the airways and susceptibility to repeated bacterial infections. The primary aim of this study was to investigate the bacterial flora in non-chronic and chronic infections i...

  16. Custom database development and biomarker discovery methods for MALDI-TOF mass spectrometry-based identification of high-consequence bacterial pathogens.

    Science.gov (United States)

    Tracz, Dobryan M; Tyler, Andrea D; Cunningham, Ian; Antonation, Kym S; Corbett, Cindi R

    2017-03-01

    A high-quality custom database of MALDI-TOF mass spectral profiles was developed with the goal of improving clinical diagnostic identification of high-consequence bacterial pathogens. A biomarker discovery method is presented for identifying and evaluating MALDI-TOF MS spectra to potentially differentiate biothreat bacteria from less-pathogenic near-neighbour species.

  17. Bacterial Pathogens in Ixodid Ticks from a Piedmont County in North Carolina: Prevalence of Rickettsial Organisms

    Science.gov (United States)

    2010-01-01

    scapularis-Pathogen prevalence-Rickettsia-Rickettsia amblyommii. Introduction TICK-BORNE ILLNESSES (TBis) are zoonoses involving pathogens...white- tailed deer, and emergence of Amblyomma americanum- associated zoonoses in the United States. CTMI 2007; 315: 289-324. Papin, JF, Vahrson, W

  18. Effects of pathogenic bacterial challenge after acute sublethal ammonia-N exposure on heat shock protein 70 expression in Botia reevesae.

    Science.gov (United States)

    Qin, Chuanjie; Zhao, Daxian; Gong, Quan; Qi, Zemin; Zou, Yuanchao; Yue, Xingjian; Xie, Biwen

    2013-09-01

    The objective of this study was to investigate the effects of pathogenic bacterial challenge after acute sublethal ammonia-N exposure on heat shock protein 70 expression in Botia reevesae. After ammonia-N exposure at a constant concentration of 7.21 ± 0.10 mg L(-1) for 96 h, B. reevesae was challenged with Aeromonas hydrophila. Quantitative PCR analysis showed predominant and significant expression of HSP70 in liver, gill, skin, spleen and kidney (P ammonia-N exposure and A. hydrophila challenge. Furthermore, following A. hydrophila challenge after ammonia-N exposure, HSP70 mRNA expression was significantly upregulated in kidney and gill tissues, although its expression levels were significantly lower than those detected following A. hydrophila challenge or ammonia-N exposure individually. These results indicate that B. reevesae HSP70 is involved in resistance to pathogenic bacteria. It is hypothesized that ammonia-N results in the downregulation of HSP70 mRNA in immune organs after an A. hydrophila challenge, thus lowering their resistance to pathogenic stress.

  19. Molecular inversion probe: a new tool for highly specific detection of plant pathogens.

    Directory of Open Access Journals (Sweden)

    Han Yih Lau

    Full Text Available Highly specific detection methods, capable of reliably identifying plant pathogens are crucial in plant disease management strategies to reduce losses in agriculture by preventing the spread of diseases. We describe a novel molecular inversion probe (MIP assay that can be potentially developed into a robust multiplex platform to detect and identify plant pathogens. A MIP has been designed for the plant pathogenic fungus Fusarium oxysporum f.sp. conglutinans and the proof of concept for the efficiency of this technology is provided. We demonstrate that this methodology can detect as little as 2.5 ng of pathogen DNA and is highly specific, being able to accurately differentiate Fusarium oxysporum f.sp. conglutinans from other fungal pathogens such as Botrytis cinerea and even pathogens of the same species such as Fusarium oxysporum f.sp. lycopersici. The MIP assay was able to detect the presence of the pathogen in infected Arabidopsis thaliana plants as soon as the tissues contained minimal amounts of pathogen. MIP methods are intrinsically highly multiplexable and future development of specific MIPs could lead to the establishment of a diagnostic method that could potentially screen infected plants for hundreds of pathogens in a single assay.

  20. Phage-based surface plasmon resonance strategies for the detection of pathogens

    Science.gov (United States)

    Tawil, Nancy

    We start by reviewing the basic principles and recent advances in biosensing technologies using optical, electrochemical and acoustic platforms for phage-based diagnostics. Although much notable work has been done, a low cost, specific, sensitive optical method for detecting low concentrations of pathogens, in a few minutes, has not been established. We conclude from the limited body of work on the subject that improving immobilization strategies and finding more suitable phage recognition elements would allow for a more sensitive approach. Our aim was to better describe the attachment process of MRSA specific phages on gold surfaces, and the subsequent biodetection of their bacterial hosts by surface plasmon resonance (SPR). With the knowledge that the adsorption characteristics of thiol-containing molecules are necessary for applications involving the attachment of recognition elements to a functionalized surface, we start by providing comparative details on the kinetics of self-assembly of L-cysteine and 11-mercaptoundecanoic acid (MUA) monolayers on gold using SPR[1]. Our purpose, in carrying out these measurements was to establish each molecule's validity and applicability as a linker element for use in biosensing. We find that monolayer formation, for both L-cysteine and MUA, is described by the Langmuir isotherm at low concentrations only. For L-cysteine, both the amine and thiol groups contribute to the initial attachment of the molecule, followed by the replacement of the amine-gold complexes initially formed with more stable thiol-gold complexes. The reorganization of L-cysteine creates more space on the gold surface, and the zwitterionic form of the molecule permits the physisorption of a second layer through electrostatic interactions. On the other hand, MUA deposits randomly onto the surface of gold as a SAM and slowly reorganizes into a denser, vertical state. Surface plasmon resonance was then used for the real-time monitoring of the attachment of

  1. Mass spectrometry-based bacterial proteomics: focus on dermatological associated microbial pathogens

    Directory of Open Access Journals (Sweden)

    Youcef eSoufi

    2016-02-01

    Full Text Available The composition of human skin acts as a natural habitat for various bacterial species that function in a commensal and symbiotic fashion. In a healthy individual, bacterial flora serves to protect the host. Under certain conditions such as minor trauma, impaired host immunity, or environmental factors, the risk of developing skin infections is increased. Although a large majority of bacterial associated skin infections are common, a portion can potentially manifest into clinically significant morbidity. For example, Gram positive species that typically reside on the skin such as Staphylococcus and Streptococcus can cause numerous epidermal (impetigo, ecthyma and dermal (cellulitis, necrotizing fasciitis, erysipelas skin infections. Moreover, the increasing incidence of bacterial antibiotic resistance represents a serious challenge to modern medicine and threatens the health care system. Therefore, it is critical to develop tools and strategies that can allow us to better elucidate the nature and mechanism of bacterial virulence. To this end, mass spectrometry (MS-based proteomics has been revolutionizing biomedical research, and has positively impacted the microbiology field. Advances in MS technologies have paved the way for numerous bacterial proteomes and their respective post translational modifications (PTMs to be accurately identified and quantified in a high throughput and robust fashion. This technological platform offers critical information with regards to signal transduction, adherence, and microbial-host interactions associated with bacterial pathogenesis. This mini-review serves to highlight the current progress proteomics has contributed towards the understanding of bacteria that are associated with skin related diseases, infections, and antibiotic resistance.

  2. Engineered nanoconstructs for the multiplexed and sensitive detection of high-risk pathogens

    Science.gov (United States)

    Seo, Youngmin; Kim, Ji-Eun; Jeong, Yoon; Lee, Kwan Hong; Hwang, Jangsun; Hong, Jongwook; Park, Hansoo; Choi, Jonghoon

    2016-01-01

    Many countries categorize the causative agents of severe infectious diseases as high-risk pathogens. Given their extreme infectivity and potential to be used as biological weapons, a rapid and sensitive method for detection of high-risk pathogens (e.g., Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Vaccinia virus) is highly desirable. Here, we report the construction of a novel detection platform comprising two units: (1) magnetic beads separately conjugated with multiple capturing antibodies against four different high-risk pathogens for simple and rapid isolation, and (2) genetically engineered apoferritin nanoparticles conjugated with multiple quantum dots and detection antibodies against four different high-risk pathogens for signal amplification. For each high-risk pathogen, we demonstrated at least 10-fold increase in sensitivity compared to traditional lateral flow devices that utilize enzyme-based detection methods. Multiplexed detection of high-risk pathogens in a sample was also successful by using the nanoconstructs harboring the dye molecules with fluorescence at different wavelengths. We ultimately envision the use of this novel nanoprobe detection platform in future applications that require highly sensitive on-site detection of high-risk pathogens.

  3. Segmented continuous-flow multiplex polymerase chain reaction microfluidics for high-throughput and rapid foodborne pathogen detection.

    Science.gov (United States)

    Shu, Bowen; Zhang, Chunsun; Xing, Da

    2014-05-15

    High-throughput and rapid identification of multiple foodborne bacterial pathogens is vital in global public health and food industry. To fulfill this need, we propose a segmented continuous-flow multiplex polymerase chain reaction (SCF-MPCR) on a spiral-channel microfluidic device. The device consists of a disposable polytetrafluoroethylene (PTFE) capillary microchannel coiled on three isothermal blocks. Within the channel, n segmented flow regimes are sequentially generated, and m-plex PCR is individually performed in each regime when each mixture is driven to pass three temperature zones, thus providing a rapid analysis throughput of m×n. To characterize the performance of the microfluidic device, continuous-flow multiplex PCR in a single segmented flow has been evaluated by investigating the effect of key reaction parameters, including annealing temperatures, flow rates, polymerase concentration and amount of input DNA. With the optimized parameters, the genomic DNAs from Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7 and Staphylococcus aureus could be amplified simultaneously in 19min, and the limit of detection was low, down to 10(2) copiesμL(-1). As proof of principle, the spiral-channel SCF-MPCR was applied to sequentially amplify four different bacterial pathogens from banana, milk, and sausage, displaying a throughput of 4×3 with no detectable cross-contamination.

  4. Isolation and Characterization of Gut Bacterial Proteases Involved in Inducing Pathogenicity of Bacillus thuringiensis Toxin in Cotton Bollworm, Helicoverpa armigera

    Science.gov (United States)

    Regode, Visweshwar; Kuruba, Sreeramulu; Mohammad, Akbar S.; Sharma, Hari C.

    2016-01-01

    Bacillus thuringiensis toxin proteins are deployed in transgenic plants for pest management. The present studies were aimed at characterization of gut bacterial proteases involved in activation of inactive Cry1Ac protoxin (pro-Cry1Ac) to active toxin in Helicoverpa armigera. Bacterial strains were isolated from H. armigera midgut and screened for their proteolytic activation toward pro-Cry1Ac. Among 12 gut bacterial isolates seven isolates showed proteolytic activity, and proteases from three isolates (IVS1, IVS2, and IVS3) were found to be involved in the proteolytic conversion of pro-Cry1Ac into active toxin. The proteases from IVS1, IVS2, and IVS3 isolates were purified to 11.90-, 15.50-, and 17.20-fold, respectively. The optimum pH and temperature for gut bacterial protease activity was 8.0 and 40°C. Maximum inhibition of total proteolytic activity was exerted by phenylmethane sulfonyl fluoride followed by EDTA. Fluorescence zymography revealed that proteases from IVS1, IVS2, and IVS3 were chymotrypsin-like and showing protease band at ~15, 65, and 15 kDa, respectively. Active Cry1Ac formed from processing pro-Cry1Ac by gut bacterial proteases exhibited toxicity toward H. armigera. The gut bacterial isolates IVS1, IVS2, and IVS3 showed homology with B. thuringiensis (CP003763.1), Vibrio fischeri (CP000020.2), and Escherichia coli (CP011342.1), respectively. Proteases produced by midgut bacteria are involved in proteolytic processing of B. thuringiensis protoxin and play a major role in inducing pathogenicity of B. thuringiensis toxins in H. armigera. PMID:27766093

  5. Isolation and characterization of gut bacterial proteases involved in inducing pathogenicity of Bacillus thuringiensis toxin in cotton bollworm, Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Visweshwar Regode

    2016-10-01

    Full Text Available Bacillus thuringiensis (Bt toxin proteins are deployed in transgenic plants for pest management. The present studies were aimed at characterization of gut bacterial proteases involved in activation of inactive Cry1Ac protoxin (pro-Cry1Ac to active toxin in Helicoverpa armigera. Bacterial strains were isolated from H. armigera midgut and screened for their proteolytic activation towards pro-Cry1Ac. Among twelve gut bacterial isolates seven isolates showed proteolytic activity, and proteases from three isolates (IVS1, IVS2 and IVS3 were found to be involved in the proteolytic conversion of pro-Cry1Ac into active toxin. The proteases from IVS1, IVS2 and IVS3 isolates were purified to 11.90-, 15.50- and 17.20-fold, respectively. The optimum pH and temperature for gut bacterial protease activity was 8.0 and 40 oC. Maximum inhibition of total proteolytic activity was exerted by PMSF followed by EDTA. Fluorescence zymography revealed that proteases from IVS1, IVS2, and IVS3 were chymotrypsin-like and showing protease band at ~15, 65 and 15 kDa, respectively. Active Cry1Ac formed from processing pro-Cry1Ac by gut bacterial proteases exhibited toxicity towards H. armigera. The gut bacterial isolates IVS1, IVS2 and IVS3 showed homology with Bacillus thuringiensis (CP003763.1, Vibrio fischeri (CP000020.2 and Escherichia coli (CP011342.1, respectively. Proteases produced by midgut bacteria are involved in proteolytic processing of Bt protoxin and play a major role in inducing pathogenicity of Bt toxins in H. armigera.

  6. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.

    Directory of Open Access Journals (Sweden)

    Reuben B Vercoe

    2013-04-01

    Full Text Available In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs and their associated (Cas proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2 involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.

  7. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    Directory of Open Access Journals (Sweden)

    Philipp Engel

    2011-02-01

    Full Text Available Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS, and thereby translocated Bartonella effector proteins (Beps, evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial

  8. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    Science.gov (United States)

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C; Dehio, Christoph

    2011-02-10

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens

  9. Predicting the presence of bacterial pathogens in the airways of primary care patients with acute cough

    Science.gov (United States)

    Teepe, Jolien; Broekhuizen, Berna D.L.; Loens, Katherine; Lammens, Christine; Ieven, Margareta; Goossens, Herman; Little, Paul; Butler, Chris C.; Coenen, Samuel; Godycki-Cwirko, Maciek; Verheij, Theo J.M.

    2017-01-01

    BACKGROUND: Bacterial testing of all patients who present with acute cough is not feasible in primary care. Furthermore, the extent to which easily obtainable clinical information predicts bacterial infection is unknown. We evaluated the diagnostic value of clinical examination and testing for C-reactive protein and procalcitonin for bacterial lower respiratory tract infection. METHODS: Through a European diagnostic study, we recruited 3104 adults with acute cough (≤ 28 days) in primary care settings. All of the patients underwent clinical examination, measurement of C-reactive protein and procalcitonin in blood, and chest radiography. Bacterial infection was determined by conventional culture, polymerase chain reaction and serology, and positive results were defined by the presence of Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae, Bordetella pertussis or Legionella pneumophila. Using multivariable regression analysis, we examined the association of diagnostic variables with the presence of bacterial infection. RESULTS: Overall, 539 patients (17%) had bacterial lower respiratory tract infection, and 38 (1%) had bacterial pneumonia. The only item with diagnostic value for lower respiratory tract infection was discoloured sputum (area under the receiver operating characteristic [ROC] curve 0.56, 95% confidence interval [CI] 0.54–0.59). Adding C-reactive protein above 30 mg/L increased the area under the ROC curve to 0.62 (95% CI 0.59–0.65). For bacterial pneumonia, comorbidity, fever and crackles on auscultation had diagnostic value (area under ROC curve 0.68, 95% CI 0.58–0.77). Adding C-reactive protein above 30 mg/L increased the area under the ROC curve to 0.79 (95% CI 0.71–0.87). Procalcitonin did not add diagnostic information for any bacterial lower respiratory tract infection, including bacterial pneumonia. INTERPRETATION: In adults presenting with acute lower respiratory tract infection, signs, symptoms and C

  10. Detection of Intestinal Pathogens in River, Shore, and Drinking Water in Lima, Peru

    Science.gov (United States)

    Grothen, David C.; Zach, Sydney J.; Davis, Paul H.

    2017-01-01

    Water quality management is an ongoing struggle for many locations worldwide. Current testing of water supplies can be time-consuming, expensive, and lack sensitivity. This study describes an alternative, easy-to-use, and inexpensive method to water sampling and testing at remote locations. This method was employed to detect a number of intestinal pathogens in various locations of Lima, Peru. A total of 34 PCR primer pairs were tested for specificity and high-yield amplification for 12 different pathogens using known DNA templates. Select primers for each pathogen were then tested for minimum detection limits of DNA. Water samples were collected from 22 locations. PCR was used to detect the presence of a pathogen, virulence factors, or differentiate between pathogenic species. In 22 water samples, cholera toxin gene was detected in 4.5% of samples, C. perfringens DNA was detected in 50% of samples, E. histolytica DNA was detected in 54.5% of samples, Giardia intestinalis DNA was detected in 4.5% of samples, Leptospira spp. DNA was detected in 29% of samples, and T. gondii DNA was detected in 31.8% of samples. DNA from three pathogens, C. perfringens, E. histolytica, and T. gondii, were found in residential samples, which accounted for 10 out of 22 samples. PMID:28138344

  11. Nanoparticle targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens

    Science.gov (United States)

    Lu, Hoang D.; Yang, Shirley S.; Wilson, Brian K.; McManus, Simon A.; Chen, Christopher V. H.-H.; Prud'homme, Robert K.

    2017-02-01

    Antimicrobial resistance is a healthcare problem of increasing significance, and there is increasing interest in developing new tools to address bacterial infections. Bacteria-targeting nanoparticles hold promise to improve drug efficacy, compliance, and safety. In addition, nanoparticles can also be used for novel applications, such as bacterial imaging or bioseperations. We here present the use of a scalable block-copolymer-directed self-assembly process, Flash NanoPrecipitation, to form zinc(II)-bis(dipicolylamine) modified nanoparticles that bind to both Gram-positive and Gram-negative bacteria with specificity. Particles have tunable surface ligand densities that change particle avidity and binding efficacy. A variety of materials can be encapsulated into the core of the particles, such as optical dyes or iron oxide colloids, to produce imageable and magnetically active bacterial targeting constructs. As a proof-of-concept, these particles are used to bind and separate bacteria from solution in a magnetic column. Magnetic manipulation and separation would translate to a platform for pathogen identification or removal. These magnetic and targeted nanoparticles enable new methods to address bacterial infections.

  12. Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens.

    Science.gov (United States)

    Damo, Steven M; Kehl-Fie, Thomas E; Sugitani, Norie; Holt, Marilyn E; Rathi, Subodh; Murphy, Wesley J; Zhang, Yaofang; Betz, Christine; Hench, Laura; Fritz, Günter; Skaar, Eric P; Chazin, Walter J

    2013-03-05

    The S100A8/S100A9 heterodimer calprotectin (CP) functions in the host response to pathogens through a mechanism termed "nutritional immunity." CP binds Mn(2+) and Zn(2+) with high affinity and starves bacteria of these essential nutrients. Combining biophysical, structural, and microbiological analysis, we identified the molecular basis of Mn(2+) sequestration. The asymmetry of the CP heterodimer creates a single Mn(2+)-binding site from six histidine residues, which distinguishes CP from all other Mn(2+)-binding proteins. Analysis of CP mutants with altered metal-binding properties revealed that, despite both Mn(2+) and Zn(2+) being essential metals, maximal growth inhibition of multiple bacterial pathogens requires Mn(2+) sequestration. These data establish the importance of Mn(2+) sequestration in defense against infection, explain the broad-spectrum antimicrobial activity of CP relative to other S100 proteins, and clarify the impact of metal depletion on the innate immune response to infection.

  13. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002–2004

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Mevius, Dik J; Schroeter, Andreas

    2008-01-01

    Background: The project "Antibiotic resistance in bacteria of animal origin - II" (ARBAO-II) was funded by the European Union (FAIR5-QLK2-2002-01146) for the period 2003 - 2005, with the aim to establish a continuous monitoring of antimicrobial susceptibility among veterinary laboratories...... in European countries based on validated and harmonised methodologies. Available summary data of the susceptibility testing of the bacterial pathogens from the different laboratories were collected. Method: Antimicrobial susceptibility data for several bovine pathogens were obtained over a three year period...... from 13 European countries. For Staphylococcus aureus from bovine mastitis major differences were apparent in the occurrence of resistance between countries and between the different antimicrobial agents tested. The highest frequency of resistance was observed for penicillin. For Mannheimia haemolytica...

  14. Characterization of ISR region and development of a PCR assay for rapid detection of the fish pathogen Tenacibaculum soleae.

    Science.gov (United States)

    López, Jose R; Hamman-Khalifa, Abdel M; Navas, José I; de la Herran, Roberto

    2011-11-01

    The aims of this work were to characterize the 16S-23S internal spacer region of the fish pathogen Tenacibaculum soleae and to develop a PCR assay for its identification and detection. All T. soleae strains tested displayed a single internal spacer region class, containing tRNA(I) (le) and tRNA(A) (la) genes; nevertheless, a considerable intraspecific heterogeneity was observed. However, this region proved to be useful for differentiation of T. soleae from related and non-related species. Species-specific primers were designed targeting the 16S rRNA gene and the internal spacer region region, yielding a 1555-bp fragment. Detection limit was of 1 pg DNA per reaction (< 30 bacterial cells) when using pure cultures. The detection level in the presence of DNA from fish or other bacteria was lower; however, 10 pg were detected at a target/background ratio of 1 : 10(5) . The PCR assay proved to be more sensitive than agar cultivation for the detection of T. soleae from naturally diseased fish, offering a useful tool for diagnosis and for understanding the epidemiology of this pathogen.

  15. Using Bacterial Surrogates to Assess Pathogen Transport in the Subsurface: Laboratory and Field Indications of Co-Transport Considerations

    Science.gov (United States)

    Emelko, M.; Stimson, J. R.; McLellan, N. L.; Mesquita, M.

    2009-12-01

    Prediction of the transport and fate of colloids and nanoparticles in porous media environments remains challenging because factors such as experimental scale, subsurface heterogeneity, and variable flow paths and fluxes have made it difficult to relate laboratory outcomes to field performance. Moreover, field studies have been plagued with inadequate consideration of ground water flow, reliance on unproven “surrogate” parameters, non-detects at the extraction well, and limited sampling. Riverbank filtration (RBF) is an example of an application for which some predictive capacity regarding colloid transport is desirable. RBF is a relatively low-cost, natural water treatment technology in which surface water contaminants are removed or degraded as the infiltrating water flows from a surface source to abstraction wells. RBF has been used for water treatment for at least 200 years and its potential to provide a significant barrier to microorganisms has been demonstrated. Assignment of microbial treatment credits for RBF remains a regulatory challenge because strategies for demonstrating effective subsurface filtration of organisms are not standardized. The potential passage of Giardia lamblia and Cryptosporidium parvum through RBF systems is of particular regulatory concern because these pathogens are known to be resistant to conventional disinfection processes. The transport or relatively small, pathogenic viruses through RBF systems is also a common concern. To comply with the U.S. Long Term 2 Enhanced Surface Water Treatment Rule, utilities with sufficiently high levels of Cryptosporidium oocysts in their source water must amend existing treatment by choosing from a ‘‘toolbox’’ of technologies, including RBF. Aerobic bacterial spores have been evaluated and proposed by some as surrogates for evaluating drinking water treatment plant performance; they also have been proposed as potential surrogates for Cryptosporidium removal during subsurface filtration

  16. Pseudomonas fluorescens filamentous hemagglutinin, an iron-regulated protein, is an important virulence factor that modulates bacterial pathogenicity

    Directory of Open Access Journals (Sweden)

    Yuan-yuan Sun

    2016-08-01

    Full Text Available Pseudomonas fluorescens is a common bacterial pathogen to a wide range of aquaculture animals including various species of fish. In this study, we employed proteomic analysis and identified filamentous hemagglutinin (FHA as an iron-responsive protein secreted by TSS, a pathogenic P. fluorescens isolate. In vitro study showed that compared to the wild type, the fha mutant TSSfha (i exhibited a largely similar vegetative growth profile but significantly retarded in the ability of biofilm growth and producing extracellular matrix, (ii displayed no apparent flagella and motility, (iii was defective in the attachment to host cells and unable to form self-aggregation, (iv displayed markedly reduced capacity of hemagglutination and surviving in host serum. In vivo infection analysis revealed that TSSfha was significantly attenuated in the ability of dissemination in fish tissues and inducing host mortality, and that antibody blocking of the natural FHA produced by the wild type TSS impaired the infectivity of the pathogen. Furthermore, when introduced into turbot as a subunit vaccine, recombinant FHA elicited a significant protection against lethal TSS challenge. Taken together, these results indicate for the first time that P. fluorescens FHA is a key virulence factor essential to multiple biological processes associated with pathogenicity.

  17. Label-Free 3D Ag Nanoflower-Based Electrochemical Immunosensor for the Detection of Escherichia coli O157:H7 Pathogens

    Science.gov (United States)

    Huang, He; Liu, Minghuan; Wang, Xiangsheng; Zhang, Wenjie; Yang, Da-Peng; Cui, Lianhua; Wang, Xiansong

    2016-11-01

    It is highly desirable to develop a rapid and simple method to detect pathogens. Combining nanomaterials with electrochemical techniques is an efficient way for pathogen detection. Herein, a novel 3D Ag nanoflower was prepared via a biomineralization method by using bovine serum albumin (BSA) as a template. It was adopted as a sensing interface to construct an electrochemical bacteria immunosensor for the rapid detection of foodborne pathogens Escherichia coli ( E. coli) O157:H7. Bacterial antibody was immobilized onto the surface of Ag nanoflowers through covalent conjugation. Electrochemical impedance spectroscopy (EIS) was used to detect and validate the resistance changes, where [Fe(CN)6]3-/4- acted as the redox probe. A linear relation between R et and E. coli concentration was obtained in the E. coli concentration range of 3.0 × 102-3.0 × 108 cfu mL-1. The as-prepared biosensor gave rise to an obvious response to E. coli but had no distinct response to Cronobacter sakazakii, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus albus, Lactobacillus easei, and Shigella flexneri, revealing a high selectivity for the detection of the pathogens down to 100 cfu mL-1 in a short time. We believe that this BSA-conjugated 3D Ag nanoflowers could be used as a powerful interface material with good conductivity and biocompatibility for improving pathogen detection and treatment in the field of medicine, environment, and food safety.

  18. High-throughput biosensors for multiplexed foodborne pathogen detection

    Science.gov (United States)

    Incidental contamination of foods by harmful bacteria (such as E. coli and Salmonella) and the toxins that they produce is a serious threat to public health and the economy in the United States. The presence of such bacteri and toxins in foods must be rapidly determined at various stages of food pr...

  19. Strategies for the detection of food pathogens and contaminants

    DEFF Research Database (Denmark)

    Hearty, Stephen; Leonard, Paul; Sheehan, Alfredo Darmanin;

    that molecular contaminants such as microbial toxins and drug/pesticide residues translate well onto Biacore-based assay formats. However, larger and more complex entities such as spores and whole bacterial cells represent an altogether more difficult challenge. Here, we present an overview of our experiences...

  20. [Development of single base extension-tags microarray for the detection of food-borne pathogens].

    Science.gov (United States)

    Lu, Changyong; Shi, Chunlei; Zhang, Chunxiu; Chen, Jing; Shi, Xianming

    2009-04-01

    We developed single base extension-tags (SBE-tags) microarray to detect eight common food-borne pathogens, including Staphylococcus aureus, Vibrio parahaemolyticus, Listeria monocytogenes, Salmonella, Enterobacter sakazaki, Shigella, Escherichia coli O157:H7 and Campylobacter jejuni. With specific PCR primers identified and integrated for eight food-borne pathogens, target sequences were amplified and purified as template DNA of single base extension-tags reaction. The products were hybridized to microarrays and scanned for fluorescence intensity. The experiment showed a specific and simultaneous detection of eight food-borne pathogens. The system limits is 0.1 pg for a genomic DNA and 5x10(2) CFU/mL for Salmonella typhimurium cultures. The single base extension-tags assay can be used to detect food-borne pathogens rapidly and accurately with a high sensitivity, and provide an efficient way for diagnosis and control of disease caused by food-borne pathogens.

  1. Identification of bacterial pathogens in ascitic fluids from patients with suspected spontaneous bacterial peritonitis by use of broad-range PCR (16S PCR) coupled with high-resolution melt analysis.

    Science.gov (United States)

    Hardick, Justin; Won, Helen; Jeng, Kevin; Hsieh, Yu-Hsiang; Gaydos, Charlotte A; Rothman, Richard E; Yang, Samuel

    2012-07-01

    Spontaneous bacterial peritonitis (SBP) can be a severe complication occurring in patients with cirrhosis and ascites, with associated mortality often as high as 40%. Traditional diagnostics for SBP rely on culture techniques for proper diagnosis, although recent reports suggest that the presence of bacterial DNA in peritoneal fluid in patients with cirrhosis and ascites is an indicator of SBP. A previously published broad-range PCR (16S PCR) coupled with high-resolution melt analysis (HRMA) was compared with standard culture techniques for diagnosis of SBP in 106 peritoneal fluid samples from patients with suspected SBP. The sensitivity and specificity for 16S PCR for detecting eubacterial DNA compared with those of standard culture techniques were 100% (17/17) and 91.5% (85/89), respectively. Overall, HRMA concordance with species identification was 70.6% (12/17), although the 5 samples that were discordant at the species level were SBP resulting from a polymicrobial infection, and species-level identification for polymicrobial infections is outside the capability of HRMA. Both the broad-range 16S PCR and HRMA analysis provide useful diagnostic adjunctive assays for clinicians in detecting and identifying pathogens responsible for SBP.

  2. Bottlenecks in the Transferability of Antibiotic Resistance from Natural Ecosystems to Human Bacterial Pathogens

    OpenAIRE

    Martínez, José L.

    2012-01-01

    It is generally accepted that resistance