WorldWideScience

Sample records for bacterial lipopolysaccharide lps

  1. Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages

    OpenAIRE

    1989-01-01

    Lipopolysaccharide binding protein (LBP) is an acute-phase reactant that binds bacterial LPS. We show that LBP binds to the surface of live Salmonella and to LPS coated erythrocytes (ELPS), and strongly enhances the attachment of these particles to macrophages. LBP bridges LPS- coated particles to macrophages (MO) by first binding to the LPS, then binding to MO. Pretreatment of ELPS with LBP enabled binding to MO, but pretreatment of MO had no effect. Moreover, MO did not recognize erythrocyt...

  2. Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice

    Directory of Open Access Journals (Sweden)

    Sonti Ramesh V

    2004-10-01

    Full Text Available Abstract Background In animal pathogenic bacteria, horizontal gene transfer events (HGT have been frequently observed in genomic regions that encode functions involved in biosynthesis of the outer membrane located lipopolysaccharide (LPS. As a result, different strains of the same pathogen can have substantially different lps biosynthetic gene clusters. Since LPS is highly antigenic, the variation at lps loci is attributed to be of advantage in evading the host immune system. Although LPS has been suggested as a potentiator of plant defense responses, interstrain variation at lps biosynthetic gene clusters has not been reported for any plant pathogenic bacterium. Results We report here the complete sequence of a 12.2 kb virulence locus of Xanthomonas oryzae pv. oryzae (Xoo encoding six genes whose products are homologous to functions involved in LPS biosynthesis and transport. All six open reading frames (ORFs have atypical G+C content and altered codon usage, which are the hallmarks of genomic islands that are acquired by horizontal gene transfer. The lps locus is flanked by highly conserved genes, metB and etfA, respectively encoding cystathionine gamma lyase and electron transport flavoprotein. Interestingly, two different sets of lps genes are present at this locus in the plant pathogens, Xanthomonas campestris pv. campestris (Xcc and Xanthomonas axonopodis pv. citri (Xac. The genomic island is present in a number of Xoo strains from India and other Asian countries but is not present in two strains, one from India (BXO8 and another from Nepal (Nepal624 as well as the closely related rice pathogen, Xanthomonas oryzae pv. oryzicola (Xoor. TAIL-PCR analysis indicates that sequences related to Xac are present at the lps locus in both BXO8 and Nepal624. The Xoor strain has a hybrid lps gene cluster, with sequences at the metB and etfA ends, being most closely related to sequences from Xac and the tomato pathogen, Pseudomonas syringae pv. tomato

  3. Detection of an Actinobacillus pleuropneumoniae serotype 2 lipopolysaccharide (LPS) variant

    DEFF Research Database (Denmark)

    Stenbaek, E.I.; HovindHaugen, K.

    1996-01-01

    Until now 12 serotypes of Actinobacillus pleuropneumoniae have been recognized. The specificity of the serotypes reside in the carbohydrate composition of the capsular polysaccharides and lipopolysaccharides (LPS). The LPS of A. pleuropneumoniae serotype 2 is a smooth type LPS with O-chains of li......Until now 12 serotypes of Actinobacillus pleuropneumoniae have been recognized. The specificity of the serotypes reside in the carbohydrate composition of the capsular polysaccharides and lipopolysaccharides (LPS). The LPS of A. pleuropneumoniae serotype 2 is a smooth type LPS with O......-chains of linear repeating pentasaccharide units with an O-acetyl group linked to a glucose unit. A monoclonal antibody (MAb 102-G02) directed against A. pleuropneumoniae serotype 2 was characterized in enzyme linked immunosorbent assay (ELISA) and in sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS...

  4. Bacterial Lipopolysaccharide Promotes Destabilization of Lung Surfactant-Like Films

    OpenAIRE

    Cañadas, Olga; Keough, Kevin M.W.; Casals, Cristina

    2011-01-01

    The airspaces are lined with a dipalmitoylphosphatidylcholine (DPPC)-rich film called pulmonary surfactant, which is named for its ability to maintain normal respiratory mechanics by reducing surface tension at the air-liquid interface. Inhaled airborne particles containing bacterial lipopolysaccharide (LPS) may incorporate into the surfactant monolayer. In this study, we evaluated the effect of smooth LPS (S-LPS), containing the entire core oligosaccharide region and the O-antigen, on the bi...

  5. Catalytic properties of lipopolysaccharide (LPS) binding protein. Transfer of LPS to soluble CD14.

    Science.gov (United States)

    Yu, B; Wright, S D

    1996-02-23

    Lipopolysaccharide (LPS) binding protein (LBP) is a lipid transfer protein that catalyzes transfer of LPS monomers from micelles to a binding site on soluble CD14 (sCD14) and transfer of LPS from LPS.sCD14 complexes to HDL particles. To characterize the first of these two reactions, LPS covalently derivatized with the fluorophore, boron dipyrromethene difluoride (BODIPY), was used to monitor LBP-catalyzed movement of LPS in real time. The fluorescence efficiency of micelles of BODIPY-LPS was low but was strongly increased upon dissolution in detergent or upon binding to sCD14. Spontaneous binding of BODIPY-LPS to sCD14 was very slow but was accelerated by substoichiometric concentration of LBP, and the rate of binding was measured under a variety of conditions. LBP-catalyzed transfer was first order with respect to both sCD14 and LPS concentration, and the apparent Km values were 1 approximately 2 microg/ml for sCD14 and 100 ng/ml for LPS. The maximum turnover number for LBP was approximately 150 molecules of LPS min-1 LBP-1. LBP alone caused a small but measurable increase in the fluorescence of BODIPY-LPS, suggesting that it bound LPS aggregates but did not readily remove LPS monomers. The subsequent addition of sCD14 caused a large fluorescence increase, suggesting transfer of BODIPY-LPS to sCD14. These and other observations suggest that LPS is transferred by an ordered ternary complex reaction mechanism in which LBP transfers LPS monomer from LPS aggregates to sCD14 without dissociating from the LPS aggregate. PMID:8626747

  6. DMPD: Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, thereceptor for LPS/LBP complexes: a short review. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1373512 Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, thereceptor for LPS/LBP complex....html) (.csml) Show Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, thereceptor for LPS/LBP complex...ride (LPS)-binding protein (LBP) and CD14, thereceptor for LPS/LBP complexes: a short review. Authors Schuma

  7. Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides

    DEFF Research Database (Denmark)

    Newman, Mari-Anne; Dow, J. Maxwell; Molinaro, Antonio;

    2007-01-01

    Bacterial lipopolysaccharides (LPSs) have multiple roles in plant-microbe interactions. LPS contributes to the low permeability of the outer membrane, which acts as a barrier to protect bacteria from plant-derived antimicrobial substances. Conversely, perception of LPS by plant cells can lead to ...

  8. Transcriptional profiling of the effect of lipopolysaccharide (LPS) pretreatment in blood from probiotics-treated dairy cows.

    Science.gov (United States)

    Adjei-Fremah, Sarah; Ekwemalor, Kingsley; Asiamah, Emmanuel; Ismail, Hamid; Worku, Mulumebet

    2016-12-01

    Probiotic supplements are beneficial for animal health and rumen function; and lipopolysaccharides (LPS) from gram negative bacteria have been associated with inflammatory diseases. In this study the transcriptional profile in whole blood collected from probiotics-treated cows was investigated in response to stimulation with lipopolysaccharides (LPS) in vitro. Microarray experiment was performed between LPS-treated and control samples using the Agilent one-color bovine v2 bovine (v2) 4x44K array slides. Global gene expression analysis identified 13,658 differentially expressed genes (fold change cutoff ≥ 2, P probiotics may stimulate the innate immune response of animal against parasitic and bacterial infections. We have provided a detailed description of the experimental design, microarray experiment and normalization and analysis of data which have been deposited into NCBI Gene Expression Omnibus (GEO): GSE75240. PMID:27656413

  9. Bacterial lipopolysaccharide promotes destabilization of lung surfactant-like films.

    Science.gov (United States)

    Cañadas, Olga; Keough, Kevin M W; Casals, Cristina

    2011-01-01

    The airspaces are lined with a dipalmitoylphosphatidylcholine (DPPC)-rich film called pulmonary surfactant, which is named for its ability to maintain normal respiratory mechanics by reducing surface tension at the air-liquid interface. Inhaled airborne particles containing bacterial lipopolysaccharide (LPS) may incorporate into the surfactant monolayer. In this study, we evaluated the effect of smooth LPS (S-LPS), containing the entire core oligosaccharide region and the O-antigen, on the biophysical properties of lung surfactant-like films composed of either DPPC or DPPC/palmitoyloleoylphosphatidylglycerol (POPG)/palmitic acid (PA) (28:9:5.6, w/w/w). Our results show that low amounts of S-LPS fluidized DPPC monolayers, as demonstrated by fluorescence microscopy and changes in the compressibility modulus. This promoted early collapse and prevented the attainment of high surface pressures. These destabilizing effects could not be relieved by repeated compression-expansion cycles. Similar effects were observed with surfactant-like films composed of DPPC/POPG/PA. On the other hand, the interaction of SP-A, a surfactant membrane-associated alveolar protein that also binds to LPS, with surfactant-like films containing S-LPS increased monolayer destabilization due to the extraction of lipid molecules from the monolayer, leading to the dissolution of monolayer material in the aqueous subphase. This suggests that SP-A may act as an LPS scavenger. PMID:21190662

  10. A broadband capacitive sensing method for label-free bacterial LPS detection.

    Science.gov (United States)

    Rydosz, Artur; Brzozowska, Ewa; Górska, Sabina; Wincza, Krzysztof; Gamian, Andrzej; Gruszczynski, Slawomir

    2016-01-15

    In this paper, the authors present a new type of highly sensitive label-free microwave sensor in a form of interdigital capacitor coated with T4 bacteriophage gp37 adhesin. The adhesin binds Escherichia coli B (E. coli B) by precise recognizing its bacterial host lipopolysaccharide (LPS). The C-terminal part of the adhesin consists of the receptor-binding amino acid residues which are involved in a specific interaction with two terminal glucose residues of the bacterial LPS. The change of the sensors' capacitance and conductance as a subject to LPS presence is an indicator of the detection. The measurements in the frequency range of 0-3GHz utilizing vector network analyzer have been carried out at different concentrations to verify experimentally the proposed method. The measured capacitance change between the reference and the biofunctionalized sensor equals 15% in the entire frequency range and the measured conductance change exceeds 19%. The changes of both parameters can be used as good indicators of the LPS detection. The selectivity has been confirmed by the ELISA experiments and tested by sensor measurements with lipopolysaccharide (LPS) from E. coli B, E. coli 056, E. coli 0111, Pseudomonas aeruginosa NBRC 13743 and Hafnia alvei 1185. PMID:26339930

  11. Bacteriophage adhesin-coated long-period gratings for bacterial lipopolysaccharide recognition

    Science.gov (United States)

    Koba, Marcin; Śmietana, Mateusz; Brzozowska, Ewa; Górska, Sabina; Mikulic, Predrag; Bock, Wojtek J.

    2014-05-01

    In this work we report an application of the optical fiber long-period gratings (LPGs) working near the dispersion turning point of higher order cladding modes for bacterial lipopolysaccharide (LPS) recognition. We show that when the LPG is functionalized with the bacteriophage adhesin, it is capable of very specific LPS detection. Thus, we compare label-free binding effect for specific to the adhesin LPS-positive and non-specific LPS-negative. The resonance wavelength shift induced by the LPS-positive reaches 2.9 nm, while for LPS-negative the shift is negligible. The LPG-based sensing structure allows for monitoring of the binding phenomenon in real time and with good accuracy.

  12. Prenatal transportation alters the metabolic response of Brahman bull calves exposed to a lipopolysaccharide (LPS) challenge

    Science.gov (United States)

    This study was designed to determine if prenatal transportation influences the metabolic response to a postnatal lipopolysaccharide (LPS) challenge. Pregnant Brahman cows (n=96) matched by age and parity were separated into transported (TRANS; n=48; transported for 2 hours on gestational day 60, 80,...

  13. Effect of lipopolysaccharide (LPS and peptidoglycan (PGN on human mast cell numbers, cytokine production, and protease composition

    Directory of Open Access Journals (Sweden)

    Wu Yalin

    2008-08-01

    Full Text Available Abstract Background Human mast cell (HuMC maturation occurs in tissues interfacing with the external environment, exposing both mast cell progenitors and mature mast cells, to bacteria and their products. It is unknown, however, whether long- or short-term exposure to bacteria-derived toll-like receptor (TLR ligands, such as lipopolysaccharide (LPS or peptidoglycan (PGN, influences HuMC biology. Results Over 6 wks of culture, LPS had minimal effect on HuMC numbers but increased CD117, tryptase and chymase expression. PGN inhibited HuMC development. For mature mast cells, LPS in the presence of rhSCF (10 ng/ml increased CD117, tryptase, chymase and carboxypeptidase expression, primarily in CD117low HuMC. LPS decreased FcεRI expression and β-hexosaminidase release; but had no effect on LTC4 and PGD2 production. PGN reduced HuMC numbers; and CD117 and tryptase expression. IL-1β and IL-6 (in addition to IL-8 and IL-12 were detected in short-term culture supernatants of LPS treated cells, and reproduced the increases in CD117, tryptase, chymase, and carboxypeptidase expression observed in the presence of LPS. Comparative studies with mouse bone marrow-derived mast cells from wild type, but not TLR4 knockout mice, showed increases in mRNA of mouse mast cell chymases MMCP-1, MMCP-2 and MMCP-4. Conclusion PGN inhibits HuMC growth, while LPS exerts its primary effects on mature HuMC by altering cytokine production and protease composition, particularly at low concentrations of SCF. These data demonstrate the ability of bacterial products to alter HuMC mediator production, granular content, and number which may be particularly relevant at mucosal sites where HuMC are exposed to these products.

  14. Sheep Lung Segmental Delivery Strategy Demonstrates Adenovirus Priming of Local Lung Responses to Bacterial LPS and the Role of Elafin as a Response Modulator

    OpenAIRE

    Brown, Thomas I; Collie, David S; Shaw, Darren J; Rzechorzek, Nina M.; Jean-Michel Sallenave

    2014-01-01

    Viral lung infections increase susceptibility to subsequent bacterial infection. We questioned whether local lung administration of recombinant adenoviral vectors in the sheep would alter the susceptibility of the lung to subsequent challenge with bacterial lipopolysaccharide (LPS). We further questioned whether local lung expression of elafin, a locally produced alarm anti-LPS/anti-bacterial molecule, would modulate the challenge response. We established that adenoviral vector treatment prim...

  15. Gelam Honey Has a Protective Effect against Lipopolysaccharide (LPS)-Induced Organ Failure

    OpenAIRE

    Mustafa Kassim; Marzida Mansor; Nazeh Al-Abd; Kamaruddin Mohd Yusoff

    2012-01-01

    Gelam honey exerts anti-inflammatory and antioxidant activities and is thought to have potent effects in reducing infections and healing wounds. The aim of this study was to investigate the effects of intravenously-injected Gelam honey in protecting organs from lethal doses of lipopolysaccharide (LPS). Six groups of rabbits (N = 6) were used in this study. Two groups acted as controls and received only saline and no LPS injections. For the test groups, 1 mL honey (500 mg/...

  16. DMPD: Structural and functional analyses of bacterial lipopolysaccharides. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12106784 Structural and functional analyses of bacterial lipopolysaccharides. Carof...html) (.csml) Show Structural and functional analyses of bacterial lipopolysaccharides. PubmedID 12106784 Title Structural and functi...onal analyses of bacterial lipopolysaccharides. Authors

  17. Pentosan polysulfate protects brain endothelial cells against bacterial lipopolysaccharide-induced damages.

    Science.gov (United States)

    Veszelka, Szilvia; Pásztói, Mária; Farkas, Attila E; Krizbai, István; Ngo, Thi Khue Dung; Niwa, Masami; Abrahám, Csongor S; Deli, Mária A

    2007-01-01

    Peripheral inflammation can aggravate local brain inflammation and neuronal death. The blood-brain barrier (BBB) is a key player in the event. On a relevant in vitro model of primary rat brain endothelial cells co-cultured with primary rat astroglia cells lipopolysaccharide (LPS)-induced changes in several BBB functions have been investigated. LPS-treatment resulted in a dose- and time-dependent decrease in the integrity of endothelial monolayers: transendothelial electrical resistance dropped, while flux of permeability markers fluorescein and albumin significantly increased. Immunostaining for junctional proteins ZO-1, claudin-5 and beta-catenin was significantly weaker in LPS-treated endothelial cells than in control monolayers. LPS also reduced the intensity and changed the pattern of ZO-1 immunostaining in freshly isolated rat brain microvessels. The activity of P-glycoprotein, an important efflux pump at the BBB, was also inhibited by LPS. At the same time production of reactive oxygen species and nitric oxide was increased in brain endothelial cells treated with LPS. Pentosan polysulfate, a polyanionic polysaccharide could reduce the deleterious effects of LPS on BBB permeability, and P-glycoprotein activity. LPS-stimulated increase in the production of reactive oxygen species and nitric oxide was also decreased by pentosan treatment. The protective effect of pentosan for brain endothelium can be of therapeutical significance in bacterial infections affecting the BBB.

  18. Gelam Honey Has a Protective Effect against Lipopolysaccharide (LPS-Induced Organ Failure

    Directory of Open Access Journals (Sweden)

    Mustafa Kassim

    2012-05-01

    Full Text Available Gelam honey exerts anti-inflammatory and antioxidant activities and is thought to have potent effects in reducing infections and healing wounds. The aim of this study was to investigate the effects of intravenously-injected Gelam honey in protecting organs from lethal doses of lipopolysaccharide (LPS. Six groups of rabbits (N = 6 were used in this study. Two groups acted as controls and received only saline and no LPS injections. For the test groups, 1 mL honey (500 mg/kg in saline was intravenously injected into two groups (treated, while saline (1 mL was injected into the other two groups (untreated; after 1 h, all four test groups were intravenously-injected with LPS (0.5 mg/kg. Eight hours after the LPS injection, blood and organs were collected from three groups (one from each treatment stream and blood parameters were measured and biochemical tests, histopathology, and myeloperoxidase assessment were performed. For survival rate tests, rabbits from the remaining three groups were monitored over a 2-week period. Treatment with honey showed protective effects on organs through the improvement of organ blood parameters, reduced infiltration of neutrophils, and decreased myeloperoxidase activity. Honey-treated rabbits also showed reduced mortality after LPS injection compared with untreated rabbits. Honey may have a therapeutic effect in protecting organs during inflammatory diseases.

  19. Upregulation of prolylcarboxypeptidase (PRCP in lipopolysaccharide (LPS treated endothelium promotes inflammation

    Directory of Open Access Journals (Sweden)

    Kolte Dhaval

    2009-01-01

    Full Text Available Abstract Background Prolylcarboxypeptidase (Prcp gene, along with altered PRCP and kallikrein levels, have been implicated in inflammation pathogenesis. PRCP regulates angiotensin 1–7 (Ang 1–7 – and bradykinin (BK – stimulated nitric oxide production in endothelial cells. The mechanism through which kallikrein expression is altered during infection is not fully understood. Investigations were performed to determine the association between PRCP and kallikrein levels as a function of the upregulation of PRCP expression and the link between PRCP and inflammation risk in lipopolysaccharide (LPS-induced endothelium activation. Methods The Prcp transcript expression in LPS-induced human umbilical vein endothelial cells (HUVEC activation was determined by RT-PCR for mRNA. PRCP-dependent kallikrein pathway was determined either by Enzyme Linked ImmunoSorbent Assay (ELISA or by biochemical assay. Results We report that PRCP is critical to the maintenance of the endothelial cells, and its upregulation contributes to the risk of developing inflammation. Significant elevation in kallikrein was seen on LPS-treated HUVECs. The conversion of PK to kallikrein was blocked by the inhibitor of PRCP, suggesting that PRCP might be a risk factor for inflammation. Conclusion The increased PRCP lead to a sustained production of bradykinin in endothelium following LPS treatment. This amplification may be an additional mechanism whereby PRCP promotes a sustained inflammatory response. A better appreciation of the role of PRCP in endothelium may contribute to a better understanding of inflammatory vascular disorders and to the development of a novel treatment.

  20. Effect of low-intensity electromagnetic radiation on structurization properties of bacterial lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Grigory E. Brill

    2014-09-01

    Full Text Available Purpose — to investigate the effects of low-intensity electromagnetic radiation on the process of dehydration selforganization of bacterial lipopolysaccharide (LPS. Material and Methods — The method of wedge dehydration has been used to study the structure formation of bacterial LPS. Image-phases analysis included their qualitative characteristics, as well as the calculation of quantitative indicators, followed by statistical analysis. Results — Low-intensity ultra high frequency (UHF radiation (1 GHz, 0.1 μW/cm2, 10 min has led to the changes in the suspension system of the LPS-saline reflected in the kinetics of structure formation. Conclusion — 1 GHz corresponds to the natural frequency of oscillation of water clusters and, presumably, the effect of UHF on structure of LPS mediates through the changes in water-salt environment. Under these conditions, properties of water molecules of hydration and possibly the properties of hydrophobic and hydrophilic regions in the molecule of LPS, which can affect the ability of toxin molecules to form aggregates change. Therefore the LPS structure modification may result in the change of its toxic properties.

  1. Minocycline attenuates lipopolysaccharide (LPS-induced neuroinflammation, sickness behavior, and anhedonia

    Directory of Open Access Journals (Sweden)

    Bailey Michael T

    2008-05-01

    Full Text Available Abstract Background Activation of the peripheral innate immune system stimulates the secretion of CNS cytokines that modulate the behavioral symptoms of sickness. Excessive production of cytokines by microglia, however, may cause long-lasting behavioral and cognitive complications. The purpose of this study was to determine if minocycline, an anti-inflammatory agent and purported microglial inhibitor, attenuates lipopolysaccharide (LPS-induced neuroinflammation, sickness behavior, and anhedonia. Methods In the first set of experiments the effect of minocycline pretreatment on LPS-induced microglia activation was assessed in BV-2 microglia cell cultures. In the second study, adult (3–6 m BALB/c mice received an intraperitoneal (i.p. injection of vehicle or minocycline (50 mg/kg for three consecutive days. On the third day, mice were also injected (i.p. with saline or Escherichia coli LPS (0.33 mg/kg and behavior (i.e., sickness and anhedonia and markers of neuroinflammation (i.e., microglia activation and inflammatory cytokines were determined. In the final study, adult and aged BALB/c mice were treated with the same minocycline and LPS injection regimen and markers of neuroinflammation were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results Minocycline blocked LPS-stimulated inflammatory cytokine secretion in the BV-2 microglia-derived cell line and reduced LPS-induced Toll-like-receptor-2 (TLR2 surface expression on brain microglia. Moreover, minocycline facilitated the recovery from sickness behavior (i.e., anorexia, weight loss, and social withdrawal and prevented anhedonia in adult mice challenged with LPS. Furthermore, the minocycline associated recovery from LPS-induced sickness behavior was paralleled by reduced mRNA levels of Interleukin (IL-1β, IL-6, and indoleamine 2

  2. Picrasma quassiodes (D. Don) Benn. attenuates lipopolysaccharide (LPS)-induced acute lung injury.

    Science.gov (United States)

    Lee, Jae-Won; Park, Ji-Won; Shin, Na-Rae; Park, So-Yeon; Kwon, Ok-Kyoung; Park, Hyun Ah; Lim, Yourim; Ryu, Hyung Won; Yuk, Heung Joo; Kim, Jung Hee; Oh, Sei-Ryang; Ahn, Kyung-Seop

    2016-09-01

    Picrasma quassiodes (D.Don) Benn. (PQ) is a medicinal herb belonging to the family Simaroubaceae and is used as a traditional herbal remedy for various diseases. In this study, we evaluated the effects of PQ on airway inflammation using a mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) and LPS-stimulated raw 264.7 cells. ALI was induced in C57BL/6 mice by the intranasal administration of LPS, and PQ was administered orally 3 days prior to exposure to LPS. Treatment with PQ significantly attenuated the infiltration of inflammatory cells in the bronchoalveolar lavage fluid (BALF). PQ also decreased the production of reactive oxygen species (ROS) and pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 in BALF. In addition, PQ inhibited airway inflammation by reducing the expression of inducible nitric oxide synthase (iNOS) and by increasing the expression of heme oxygenase-1 (HO-1) in the lungs. Furthermore, we demonstrated that PQ blocked the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) in the lungs of mice with LPS-induced ALI. In the LPS-stimulated RAW 264.7 cells, PQ inhibited the release of pro-inflammatory cytokines and increased the mRNA expression of monocyte chemoattractant protein-1 (MCP-1). Treatment with PQ decreased the translocation of nuclear factor (NF)-κB to the nucleus, and increased the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and the expression of HO-1. PQ also inhibited the activation of p38 in the LPS-stimulated RAW 264.7 cells. Taken together, our findings demonstrate that PQ exerts anti-inflammatory effects against LPS-induced ALI, and that these effects are associated with the modulation of iNOS, HO-1, NF-κB and MAPK signaling. Therefore, we suggest that PQ has therapeutic potential for use in the treatment of ALI. PMID:27431288

  3. Analysis of Ionomic Profiles of Canine Hairs Exposed to Lipopolysaccharide (LPS)-Induced Stress.

    Science.gov (United States)

    So, Kyoung-Min; Lee, Yoonseok; Bok, Jin Duck; Kim, Eun Bae; Chung, Myung Il

    2016-08-01

    The purpose of this study was to provide a new insight on the response of canines to stress exposure; the ionomic profiles of canine hair (2.8 ± 0.3 years, 15.17 ± 2.1 kg) (n = 10) was determined before and after lipopolysaccharide (LPS) injections. LPS was intramuscularly injected to induce inflammatory stress responses which were confirmed by observing increases in the level of serum cortisol, aldosterone, and inflammatory cytokines such as IL-6, IL-1β, and TNF-α. The hair contents of 17 elements were obtained by applying analytical procedures using the inductively coupled plasma mass spectrometry (ICP-MS). The following elements: sodium(Na) and potassium(K) among macro-elements, iron(Fe) and manganese(Mn) among micro-elements, and aluminum(Al), nickel(Ni), and lead(Pb) for toxic elements, showed significant increased levels with the immunological stress. The degree of increase in toxic elements was remarkable with the stress exposure. A forty-five-fold increase seen in Al accumulation with the stress exposure was noteworthy. Although mercury(Hg) and cadmium(Cd) showed decreased levels with the stress exposure, the degree was negligible compared to the level of increase. Correlation pattern between the elements was changed with the immunological stress. Toxic elements became more correlated with macro- or micro-elements than with toxic elements themselves after the stress exposure. Principal component analysis (PCA) showed that LPS challenge shifted the overall hair mineral profiles to a consistent direction changing Al and K up, even in animals with different hair mineral profiles before LPS treatment. In conclusion, the multivariate data processing and study of element distribution patterns provided new information about the ionomic response of the canine hairs to immunological stress, i.e., the ionomic profiles of canine hairs is strongly affected by the stress induced by LPS injections. PMID:26758868

  4. Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila

    Science.gov (United States)

    Soldano, Alessia; Alpizar, Yeranddy A; Boonen, Brett; Franco, Luis; López-Requena, Alejandro; Liu, Guangda; Mora, Natalia; Yaksi, Emre; Voets, Thomas; Vennekens, Rudi; Hassan, Bassem A; Talavera, Karel

    2016-01-01

    Detecting pathogens and mounting immune responses upon infection is crucial for animal health. However, these responses come at a high metabolic price (McKean and Lazzaro, 2011, Kominsky et al., 2010), and avoiding pathogens before infection may be advantageous. The bacterial endotoxins lipopolysaccharides (LPS) are important immune system infection cues (Abbas et al., 2014), but it remains unknown whether animals possess sensory mechanisms to detect them prior to infection. Here we show that Drosophila melanogaster display strong aversive responses to LPS and that gustatory neurons expressing Gr66a bitter receptors mediate avoidance of LPS in feeding and egg laying assays. We found the expression of the chemosensory cation channel dTRPA1 in these cells to be necessary and sufficient for LPS avoidance. Furthermore, LPS stimulates Drosophila neurons in a TRPA1-dependent manner and activates exogenous dTRPA1 channels in human cells. Our findings demonstrate that flies detect bacterial endotoxins via a gustatory pathway through TRPA1 activation as conserved molecular mechanism. DOI: http://dx.doi.org/10.7554/eLife.13133.001 PMID:27296646

  5. Evidence for a bacterial lipopolysaccharide-recognizing G-protein-coupled receptor in the bacterial engulfment by Entamoeba histolytica.

    Science.gov (United States)

    Brewer, Matthew T; Agbedanu, Prince N; Zamanian, Mostafa; Day, Tim A; Carlson, Steve A

    2013-11-01

    Entamoeba histolytica is the causative agent of amoebic dysentery, a worldwide protozoal disease that results in approximately 100,000 deaths annually. The virulence of E. histolytica may be due to interactions with the host bacterial flora, whereby trophozoites engulf colonic bacteria as a nutrient source. The engulfment process depends on trophozoite recognition of bacterial epitopes that activate phagocytosis pathways. E. histolytica GPCR-1 (EhGPCR-1) was previously recognized as a putative G-protein-coupled receptor (GPCR) used by Entamoeba histolytica during phagocytosis. In the present study, we attempted to characterize EhGPCR-1 by using heterologous GPCR expression in Saccharomyces cerevisiae. We discovered that bacterial lipopolysaccharide (LPS) is an activator of EhGPCR-1 and that LPS stimulates EhGPCR-1 in a concentration-dependent manner. Additionally, we demonstrated that Entamoeba histolytica prefers to engulf bacteria with intact LPS and that this engulfment process is sensitive to suramin, which prevents the interactions of GPCRs and G-proteins. Thus, EhGPCR-1 is an LPS-recognizing GPCR that is a potential drug target for treatment of amoebiasis, especially considering the well-established drug targeting to GPCRs.

  6. Bacterial lipopolysaccharide promotes profibrotic activation of intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts play a critical role in intestinal wound healing. Lipopolysaccharide (LPS) is a cell wall component of commensal gut bacteria. The effects of LPS on intestinal fibroblast activation were characterized. METHODS: Expression of the LPS receptor, toll-like receptor (TLR) 4, was assessed in cultured primary human intestinal fibroblasts using flow cytometry and confocal microscopy. Fibroblasts were treated with LPS and\\/or transforming growth factor (TGF) beta1. Nuclear factor kappaB (NFkappaB) pathway activation was assessed by inhibitory kappaBalpha (IkappaBalpha) degradation and NFkappaB promoter activity. Fibroblast contractility was measured using a fibroblast-populated collagen lattice. Smad-7, a negative regulator of TGF-beta1 signalling, and connective tissue growth factor (CTGF) expression were assessed using reverse transcriptase-polymerase chain reaction and western blot. The NFkappaB pathway was inhibited by IkappaBalpha transfection. RESULTS: TLR-4 was present on the surface of intestinal fibroblasts. LPS treatment of fibroblasts induced IkappaBalpha degradation, enhanced NFkappaB promoter activity and increased collagen contraction. Pretreatment with LPS (before TGF-beta1) significantly increased CTGF production relative to treatment with TGF-beta1 alone. LPS reduced whereas TGF-beta1 increased smad-7 expression. Transfection with an IkappaBalpha plasmid enhanced basal smad-7 expression. CONCLUSION: Intestinal fibroblasts express TLR-4 and respond to LPS by activating NFkappaB and inducing collagen contraction. LPS acts in concert with TGF-beta1 to induce CTGF. LPS reduces the expression of the TGF-beta1 inhibitor, smad-7.

  7. Microarray Analysis of Human Vascular Smooth Muscle Cell Responses to Bacterial Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Joe Minta

    2007-01-01

    Full Text Available Accumulating evidence suggest a causal role of bacterial and viral infections in atherogenesis. Bacterial lipopolysaccharide (LPS has been shown to stimulate resting vascular smooth muscle cells (SMC with the production of inflammatory cytokines and modulation of quiescent cells to the proliferative and synthetic phenotype. To comprehensively identify biologically important genes associated with LPS-induced SMC phenotype modulation, we compared the transcriptomes of quiescent human coronary artery SMC and cells treated with LPS for 4 and 22 h. The SMCs responded robustly to LPS treatment by the differential regulation of several genes involved in chromatin remodeling, transcription regulation, translation, signal transduction, metabolism, host defense, cell proliferation, apoptosis, matrix formation, adhesion and motility and suggest that the induction of clusters of genes involved in cell proliferation, migration and ECM production may be the main force that drives the LPS-induced phenotypic modulation of SMC rather than the differential expression of a single gene or a few genes. An interesting observation was the early and dramatic induction of four tightly clustered interferon-induced genes with tetratricopeptide repeats (IFIT1, 2, 4, 5. siRNA knock-down of IFIT1 in SMC was found to be associated with a remarkable up-regulation of TP53, CDKN1A and FOS, suggesting that IFIT1 may play a role in cell proliferation. Our data provide a comprehensive list of genes involved in LPS biology and underscore the important role of LPS in SMC activation and phenotype modulation which is a pivotal event in the onset of atherogenesis.

  8. Effect of bacterial lipopolysaccharide on gastric emptying of liquids in rats

    Directory of Open Access Journals (Sweden)

    E.F. Collares

    1997-02-01

    Full Text Available The objectives of the present investigation were 1 to study the effect of bacterial lipopolysaccharide (LPS on rat gastric emptying (GE and 2 to investigate a possible involvement of the vagus nerve in the gastric action of LPS. Endotoxin from E. coli (strain 055:B5 was administered sc, ip or iv to male Wistar rats (220-280 g body weight at a maximum dose of 50 µg/kg animal weight. Control animals received an equivalent volume of sterile saline solution. At a given time period after LPS administration, GE was evaluated by measuring gastric retention 10 min after the orogastric infusion of a test meal (2 ml/100 g animal weight, which consisted of 0.9% NaCl plus the marker phenol red (6 mg/dl. One group of animals was subjected to bilateral subdiaphragmatic vagotomy or sham operation 15 days before the test. A significant delay in GE of the test meal was observed 5 h after iv administration of the endotoxin at the dose of 50 µg/kg animal weight. The LPS-induced delay of GE was detected as early as 30 min and up to 8 h after endotoxin administration. The use of different doses of LPS ranging from 5 to 50 µg/kg animal weight showed that the alteration of GE was dose dependent. In addition, vagotomized animals receiving LPS displayed a GE that was not significantly different from that of the sham control group. However, a participation of the vagus nerve in LPS-induced delay in GE could not be clearly demonstrated by these experiments since vagotomy itself induced changes in this gastric parameter. The present study provides a suitable model for identifying the mechanisms underlying the effects of LPS on gastric emptying

  9. Lipopolysaccharide (LPS) inner-core phosphates are required for complete LPS synthesis and transport to the outer membrane in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Delucia, Angela M; Six, David A; Caughlan, Ruth E; Gee, Patricia; Hunt, Ian; Lam, Joseph S; Dean, Charles R

    2011-01-01

    Gram-negative outer membrane (OM) integrity is maintained in part by Mg(2+) cross-links between phosphates on lipid A and on core sugars of adjacent lipopolysaccharide (LPS) molecules. In contrast to other Gram-negative bacteria, waaP, encoding an inner-core kinase, could not be inactivated in Pseudomonas aeruginosa. To examine this further, expression of the kinases WaaP or WapP/WapQ/PA5006 was placed under the control of the arabinose-regulated pBAD promoter. Growth of these strains was arabinose dependent, confirming that core phosphorylation is essential in P. aeruginosa. Transmission electron micrographs of kinase-depleted cells revealed marked invaginations of the inner membrane. SDS-PAGE of total LPS from WaaP-depleted cells showed accumulation of a fast-migrating band. Mass spectrometry (MS) analysis revealed that LPS from these cells exhibits a unique truncated core consisting of two 3-deoxy-d-manno-octulosonic acids (Kdo), two l-glycero-d-manno-heptoses (Hep), and one hexose but completely devoid of phosphates, indicating that phosphorylation by WaaP is necessary for subsequent core phosphorylations. MS analysis of lipid A from WaaP-depleted cells revealed extensive 4-amino-4-deoxy-l-arabinose modification. OM prepared from these cells by Sarkosyl extraction of total membranes or by sucrose density gradient centrifugation lacked truncated LPS. Instead, truncated LPS was detected in the inner membrane fractions, consistent with impaired transport/assembly of this species into the OM. IMPORTANCE Gram-negative bacteria have an outer membrane (OM) comprised of a phospholipid inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The OM protects cells from toxic molecules and is important for survival during infection. The LPS core kinase gene waaP can be deleted in several Gram-negative bacteria but not in Pseudomonas aeruginosa. We used a controlled-expression system to deplete WaaP directly in P. aeruginosa cells, which halted growth. WaaP depletion

  10. Esculetin attenuates lipopolysaccharide (LPS)-induced neuroinflammatory processes and depressive-like behavior in mice.

    Science.gov (United States)

    Zhu, Lingpeng; Nang, Chen; Luo, Fen; Pan, Hong; Zhang, Kai; Liu, Jingyan; Zhou, Rui; Gao, Jin; Chang, Xiayun; He, He; Qiu, Yue; Wang, Jinglei; Long, Hongyan; Liu, Yu; Yan, Tianhua

    2016-09-01

    Esculetin is one of the major bioactive compounds of Cichorium intybus L. The main purpose of the present study was to investigate the effects and possible underlying mechanism of esculetin (Esc) on lipopolysaccharide (LPS)-induced neuroinflammatory processes and depressive-like behavior in mice. Mice were pretreatment with esculetin (Esc, 20, 40mg/kg, intragastric administration) and a positive control drug fluoxetine (Flu, 20mg/kg, intragastric administration) once daily for 7 consecutive days. At the 7th day, LPS (0.83mg/kg) was intraperitoneal injection 30min after drug administration. Higher dose (40mg/kg) of esculetin and fluoxetine significantly decreased immobility time in TST and FST. There was no significant effect on locomotor activity in mice by the drugs. Esculetin significantly reduced LPS-induced elevated levels of pro-inflammatory cytokines including interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in serum and hippocampus. Esculetin attenuated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression by inhibiting nuclear factor-κB (NF-κB) pathway in hippocampus. In addition, neuroprotection of esculetin was attributed to the upregulations of Brain derived neurotrophic factor (BDNF) and phosphorylated tyrosine kinase B (p-TrkB) protein expression in hippocampus. The obtained results demonstrated that esculetin exhibited antidepressant-like effects which might be related to the inhibition of NF-κB pathway and the activation of BDNF/TrkB signaling.

  11. Toll-Like Receptor 2- and 6-Mediated Stimulation by Macrophage-Activating Lipopeptide 2 Induces Lipopolysaccharide (LPS) Cross Tolerance in Mice, Which Results in Protection from Tumor Necrosis Factor Alpha but in Only Partial Protection from Lethal LPS Doses

    OpenAIRE

    Deiters, Ursula; Gumenscheimer, Marina; Galanos, Chris; Mühlradt, Peter F.

    2003-01-01

    Patients or experimental animals previously exposed to lipopolysaccharide (LPS) become tolerant to further LPS challenge. We investigated the potential of the macrophage-activating lipopeptide 2 (MALP-2) to induce in vivo cross tolerance to tumor necrosis factor alpha (TNF-α) and LPS. MALP-2-induced tolerance could be of practical interest, as MALP-2 proved much less pyrogenic in rabbits than LPS. Whereas LPS signals via Toll-like receptor 4 (TLR4), MALP-2 uses TLR2 and TLR6. LPS-mediated cyt...

  12. Hydration, Ionic Valence and Cross-Linking Propensities of Cations Determine the Stability of Lipopolysaccharide (LPS) Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Agrinaldo; Pontes, Frederico J.; Lins, Roberto D.; Soares, Thereza A.

    2013-10-29

    The supra-molecular structure of LPS aggregates governs outer membrane permeability and activation of the host immune response during Gram-negative bacterial infections. Molecular dynamics simulations unveil at atomic resolution 10 the subtle balance between cation hydration and cross-link ability in modulating phase transitions of LPS membranes.

  13. Inflammatory markers following acute fuel oil exposure or bacterial lipopolysaccharide in mallard ducks (Anas platyrhynchos).

    Science.gov (United States)

    Lee, Kelly A; Tell, Lisa A; Mohr, F Charles

    2012-12-01

    Adult mallard ducks (Anas platyrhynchos) were orally dosed with bunker C fuel oil for 5 days, and five different inflammatory markers (haptoglobin, mannan-binding lectin, ceruloplasmin, unsaturated iron-binding capacity, and plasma iron) were measured in blood plasma prior to and 8, 24, 48, and 72 hr following exposure. In order to contrast the response to fuel oil with that of a systemic inflammatory response, an additional five ducks were injected intramuscularly with bacterial lipopolysaccharide (LPS). Oil-treated birds had an inflammatory marker profile that was significantly different from control and LPS-treated birds, showing decreases in mannan-binding lectin-dependent hemolysis and unsaturated iron-binding capacity, but no changes in any of the other inflammatory markers. Birds treated with oil also exhibited increased liver weights, decreased body and splenic weights, and decreased packed cell volume.

  14. Sheep lung segmental delivery strategy demonstrates adenovirus priming of local lung responses to bacterial LPS and the role of elafin as a response modulator.

    Science.gov (United States)

    Brown, Thomas I; Collie, David S; Shaw, Darren J; Rzechorzek, Nina M; Sallenave, Jean-Michel

    2014-01-01

    Viral lung infections increase susceptibility to subsequent bacterial infection. We questioned whether local lung administration of recombinant adenoviral vectors in the sheep would alter the susceptibility of the lung to subsequent challenge with bacterial lipopolysaccharide (LPS). We further questioned whether local lung expression of elafin, a locally produced alarm anti-LPS/anti-bacterial molecule, would modulate the challenge response. We established that adenoviral vector treatment primed the lung for an enhanced response to bacterial LPS. Whereas this local effect appeared to be independent of the transgene used (Ad-o-elafin or Ad-GFP), Ad-o-elafin treated sheep demonstrated a more profound lymphopenia in response to local lung administration of LPS. The local influence of elafin in modulating the response to LPS was restricted to maintaining neutrophil myeloperoxidase activity, and levels of alveolar macrophage and neutrophil phagocytosis at higher levels post-LPS. Adenoviral vector-bacterial synergism exists in the ovine lung and elafin expression modulates such synergism both locally and systemically. PMID:25216250

  15. Sheep lung segmental delivery strategy demonstrates adenovirus priming of local lung responses to bacterial LPS and the role of elafin as a response modulator.

    Directory of Open Access Journals (Sweden)

    Thomas I Brown

    Full Text Available Viral lung infections increase susceptibility to subsequent bacterial infection. We questioned whether local lung administration of recombinant adenoviral vectors in the sheep would alter the susceptibility of the lung to subsequent challenge with bacterial lipopolysaccharide (LPS. We further questioned whether local lung expression of elafin, a locally produced alarm anti-LPS/anti-bacterial molecule, would modulate the challenge response. We established that adenoviral vector treatment primed the lung for an enhanced response to bacterial LPS. Whereas this local effect appeared to be independent of the transgene used (Ad-o-elafin or Ad-GFP, Ad-o-elafin treated sheep demonstrated a more profound lymphopenia in response to local lung administration of LPS. The local influence of elafin in modulating the response to LPS was restricted to maintaining neutrophil myeloperoxidase activity, and levels of alveolar macrophage and neutrophil phagocytosis at higher levels post-LPS. Adenoviral vector-bacterial synergism exists in the ovine lung and elafin expression modulates such synergism both locally and systemically.

  16. Riemerella anatipestifer M949_1360 Gene Functions on the Lipopolysaccharide Biosynthesis and Bacterial Virulence.

    Science.gov (United States)

    Yu, Guijing; Wang, Xiaolan; Dou, Yafeng; Wang, Shaohui; Tian, Mingxing; Qi, Jingjing; Li, Tao; Ding, Chan; Wu, Yantao; Yu, Shengqing

    2016-01-01

    Riemerella anatipestifer causes septicemic and exudative diseases in poultry, resulting in major economic losses to the duck industry. Lipopolysaccharide (LPS), as an important virulence factor in Gram-negative bacteria, can be recognized by the immune system and plays a crucial role in many interactions between bacteria and animal hosts. In this study, we screened out one LPS defective mutant strain RAΔ604 from a random transposon mutant library of R. anatipestifer serotype 1 strain CH3, which did not react with the anti-CH3 LPS monoclonal antibody 1C1 in an indirect enzyme-linked immunosorbent assay. Southern blot analysis confirmed that the genome of RAΔ604 contained a single Tn4351 insert. Then, we found that the M949_1360 gene was inactivated by insertion of the transposon. Using silver staining and western blot analyses, we found that the LPS pattern of RAΔ604 was defective, as compared with that of the wild-type (WT) strain CH3. The mutant strain RAΔ604 showed no significant influence on bacterial growth, while bacterial counting and Live/dead BacLight Bacterial Viability staining revealed that bacterial viability was decreased, as compared with the WT strain CH3. In addition, the abilities of the mutant strain RAΔ604 to adhere and invade Vero cells were significantly decreased. Animal studies revealed that the virulence of the mutant strain RAΔ604 was decreased by more than 200-fold in a duck infection model, as compared with the WT strain CH3. Furthermore, immunization with live bacteria of the mutant strain RAΔ604 protected 87.5% ducks from challenge with R. anatipestifer serotype 1 strain WJ4, indicating that the mutant strain RAΔ604 could be used as a potential vaccine candidate in the future. PMID:27500736

  17. Induction of cystine/glutamate transporter in bacterial lipopolysaccharide induced endotoxemia in mice

    Directory of Open Access Journals (Sweden)

    Bannai Shiro

    2007-09-01

    Full Text Available Abstract Background Cystine/glutamate transporter, system xc-, contributes to the maintenance of intracellular glutathione levels and the redox balance in the extracellular space. The main component of the transporter, xCT, is known to be strongly induced by various stimuli like oxidative stress in mammalian cultured cells. We examined the expression of xCT mRNA in vivo in the experimental endotoxemia. Methods Northern blot analysis and in situ hybridization were used to investigate the expression of xCT mRNA in the tissues of the mice exposed to bacterial lipopolysaccharide (LPS. Results Northern blot analysis revealed that xCT mRNA was constitutively expressed in the brain, thymus, and spleen, and that the expression of xCT mRNA was strongly up-regulated in thymus and spleen by the administration of a sublethal dose of LPS. In addition to brain, thymus, and spleen, xCT mRNA was detected also in the bronchiolar epithelium of the lung by the administration of the lethal dose of LPS. Conclusion xCT is induced in some specific tissues by the administration of LPS. The results suggest that cystine/glutamate transporter plays an important role under the inflammatory conditions.

  18. Structural modifications of bacterial lipopolysaccharide that facilitate Gram-negative bacteria evasion of host innate immunity

    Directory of Open Access Journals (Sweden)

    Motohiro eMatsuura

    2013-05-01

    Full Text Available Bacterial lipopolysaccharide (LPS, a cell wall component characteristic of Gram-negative bacteria, is a representative pathogen-associated molecular pattern that allows mammalian cells to recognize bacterial invasion and trigger innate immune responses. The polysaccharide moiety of LPS primary plays protective roles for bacteria such as prevention from complement attacks or camouflage with common host carbohydrate residues. The lipid moiety, termed lipid A, is recognized by the Toll-like receptor 4 (TLR4/MD-2 complex, which transduces signals for activation of host innate immunity. The basic structure of lipid A is a glucosamine disaccharide substituted by phosphate groups and acyl groups. Lipid A with 6 acyl groups (hexa-acylated form has been indicated to be a strong stimulator of the TLR4/MD-2 complex. This type of lipid A is conserved among a wide variety of Gram-negative bacteria, and those bacteria are easily recognized by host cells for activation of defensive innate immune responses. Modifications of the lipid A structure to less-acylated forms have been observed in some bacterial species, and those forms are poor stimulators of the TLR4/MD-2 complex. Such modifications are thought to facilitate bacterial evasion of host innate immunity, thereby enhancing pathogenicity. This hypothesis is supported by studies of Yersinia pestis LPS, which contains hexa-acylated lipid A when the bacterium grows at 27ºC (the temperature of the vector flea, and shifts to contain less-acylated forms when grown at the human body temperature of 37ºC. This alteration of lipid A forms following transmission of Y. pestis from fleas to humans contributes predominantly to the virulence of this bacterium over other virulence factors. A similar role for less-acylated lipid A forms has been indicated in some other bacterial species, such as Francisella tularensis, Helicobacter pylori, and Porphyromonas gingivalis, and further studies to explore this concept are

  19. Regulation of pulmonary and systemic bacterial lipopolysaccharide responses in transgenic mice expressing human elafin.

    Science.gov (United States)

    Sallenave, J-M; Cunningham, G A; James, R M; McLachlan, G; Haslett, C

    2003-07-01

    The control of lung inflammation is of paramount importance in a variety of acute pathologies, such as pneumonia, the acute respiratory distress syndrome, and sepsis. It is becoming increasingly apparent that local innate immune responses in the lung are negatively influenced by systemic inflammation. This is thought to be due to a local deficit in cytokine responses by alveolar macrophages and neutrophils following systemic bacterial infection and the development of a septic response. Recently, using an adenovirus-based strategy which overexpresses the human elastase inhibitor elafin locally in the lung, we showed that elafin is able to prime lung innate immune responses. In this study, we generated a novel transgenic mouse strain expressing human elafin and studied its response to bacterial lipopolysaccharide (LPS) when the LPS was administered locally in the lungs and systemically. When LPS was delivered to the lungs, we found that mice expressing elafin had lower serum-to-bronchoalveolar lavage ratios of proinflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha), macrophage inflammatory protein 2, and monocyte chemoattractant protein 1, than wild-type mice. There was a concomitant increase in inflammatory cell influx, showing that there was potential priming of innate responses in the lungs. When LPS was given systemically, the mice expressing elafin had reduced levels of serum TNF-alpha compared to the levels in wild-type mice. These results indicate that elafin may have a dual function, promoting up-regulation of local lung innate immunity while simultaneously down-regulating potentially unwanted systemic inflammatory responses in the circulation. PMID:12819058

  20. Acute induction of anomalous and amyloidogenic blood clotting by molecular amplification of highly substoichiometric levels of bacterial lipopolysaccharide

    Science.gov (United States)

    Mbotwe, Sthembile; Bester, Janette; Robinson, Christopher J.; Kell, Douglas B.

    2016-01-01

    It is well known that a variety of inflammatory diseases are accompanied by hypercoagulability, and a number of more-or-less longer-term signalling pathways have been shown to be involved. In recent work, we have suggested a direct and primary role for bacterial lipopolysaccharide (LPS) in this hypercoagulability, but it seems never to have been tested directly. Here, we show that the addition of tiny concentrations (0.2 ng l−1) of bacterial LPS to both whole blood and platelet-poor plasma of normal, healthy donors leads to marked changes in the nature of the fibrin fibres so formed, as observed by ultrastructural and fluorescence microscopy (the latter implying that the fibrin is actually in an amyloid β-sheet-rich form that on stoichiometric grounds must occur autocatalytically). They resemble those seen in a number of inflammatory (and also amyloid) diseases, consistent with an involvement of LPS in their aetiology. These changes are mirrored by changes in their viscoelastic properties as measured by thromboelastography. As the terminal stages of coagulation involve the polymerization of fibrinogen into fibrin fibres, we tested whether LPS would bind to fibrinogen directly. We demonstrated this using isothermal calorimetry. Finally, we show that these changes in fibre structure are mirrored when the experiment is done simply with purified fibrinogen and thrombin (±0.2 ng l−1 LPS). This ratio of concentrations of LPS : fibrinogen in vivo represents a molecular amplification by the LPS of more than 108-fold, a number that is probably unparalleled in biology. The observation of a direct effect of such highly substoichiometric amounts of LPS on both fibrinogen and coagulation can account for the role of very small numbers of dormant bacteria in disease progression in a great many inflammatory conditions, and opens up this process to further mechanistic analysis and possible treatment. PMID:27605168

  1. Acute induction of anomalous and amyloidogenic blood clotting by molecular amplification of highly substoichiometric levels of bacterial lipopolysaccharide.

    Science.gov (United States)

    Pretorius, Etheresia; Mbotwe, Sthembile; Bester, Janette; Robinson, Christopher J; Kell, Douglas B

    2016-09-01

    It is well known that a variety of inflammatory diseases are accompanied by hypercoagulability, and a number of more-or-less longer-term signalling pathways have been shown to be involved. In recent work, we have suggested a direct and primary role for bacterial lipopolysaccharide (LPS) in this hypercoagulability, but it seems never to have been tested directly. Here, we show that the addition of tiny concentrations (0.2 ng l(-1)) of bacterial LPS to both whole blood and platelet-poor plasma of normal, healthy donors leads to marked changes in the nature of the fibrin fibres so formed, as observed by ultrastructural and fluorescence microscopy (the latter implying that the fibrin is actually in an amyloid β-sheet-rich form that on stoichiometric grounds must occur autocatalytically). They resemble those seen in a number of inflammatory (and also amyloid) diseases, consistent with an involvement of LPS in their aetiology. These changes are mirrored by changes in their viscoelastic properties as measured by thromboelastography. As the terminal stages of coagulation involve the polymerization of fibrinogen into fibrin fibres, we tested whether LPS would bind to fibrinogen directly. We demonstrated this using isothermal calorimetry. Finally, we show that these changes in fibre structure are mirrored when the experiment is done simply with purified fibrinogen and thrombin (±0.2 ng l(-1) LPS). This ratio of concentrations of LPS : fibrinogen in vivo represents a molecular amplification by the LPS of more than 10(8)-fold, a number that is probably unparalleled in biology. The observation of a direct effect of such highly substoichiometric amounts of LPS on both fibrinogen and coagulation can account for the role of very small numbers of dormant bacteria in disease progression in a great many inflammatory conditions, and opens up this process to further mechanistic analysis and possible treatment. PMID:27605168

  2. Lipopolysaccharides of bacterial pathogens from the genus Yersinia: a mini-review.

    Science.gov (United States)

    Bruneteau, Maud; Minka, Samuel

    2003-01-01

    This review summarizes the state of knowledge on the composition and structure of the lipopolysaccharides (LPS) from three species of Yersinia known to produce disease in humans: Y. pseudotuberculosis, Y. enterocolitica and Y. pestis. We also mention recent data on the genome sequence of Yersinia pestis and the role of LPS in relation to the virulence of this bacteria.

  3. Procalcitonin neutralizes bacterial LPS and reduces LPS-induced cytokine release in human peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    Matera Giovanni

    2012-05-01

    Full Text Available Abstract Background Procalcitonin (PCT is a polypeptide with several cationic aminoacids in its chemical structure and it is a well known marker of sepsis. It is now emerging that PCT might exhibit some anti-inflammatory effects. The present study, based on the evaluation of the in vitro interaction between PCT and bacterial lipopolisaccharide (LPS, reports new data supporting the interesting and potentially useful anti-inflammatory activity of PCT. Results PCT significantly decreased (p Salmonella typhimurium (rough chemotype and Escherichia coli (smooth chemotype. Subsequently, the in vitro effects of PCT on LPS-induced cytokine release were studied in human peripheral blood mononuclear cells (PBMC. When LPS was pre-incubated for 30 minutes with different concentrations of PCT, the release of interleukin-10 (IL-10 and tumor necrosis factor alpha (TNFα by PBMC decreased in a concentration-dependent manner after 24 hours for IL-10 and 4 hours for TNFα. The release of monocyte chemotactic protein-1 (MCP-1 exhibited a drastic reduction at 4 hours for all the PCT concentrations assessed, whereas such decrease was concentration-dependent after 24 hours. Conclusions This study provides the first evidence of the capability of PCT to directly neutralize bacterial LPS, thus leading to a reduction of its major inflammatory mediators.

  4. Postnatal development of monocyte cytokine responses to bacterial lipopolysaccharide.

    Science.gov (United States)

    Yerkovich, Stephanie T; Wikström, Matthew E; Suriyaarachchi, Devinda; Prescott, Susan L; Upham, John W; Holt, Patrick G

    2007-11-01

    Early childhood is a period of heightened susceptibility to infection due to immaturity of the immune system, and the nature of these developmental deficiencies is only partially understood. In this study, we focused on the ontogeny of the innate immune system by investigating the capacity of mononuclear cells to secrete a wide spectrum of inflammatory cytokines in response to interferon (IFN)-gamma priming and lipopolysaccharide (LPS) stimulation, namely IL-6, IL-10, IL-12, IL-18, IL-23, tumor necrosis factor (TNF)-alpha, and myxovirus resistance protein A, induced by type-I IFN, at several time points between birth (cord blood) and adulthood. Competence to produce all these cytokines followed a similar developmental pattern, with slow postnatal up-regulation from the response observed in cord blood. Unexpectedly, IL-6, IL-10, TNF-alpha, and IFN-gamma showed slow postnatal up-regulation but also elevated cord blood responses equal to or greater than the adult level. This was transient and not observed at 2 mo of age, and was not related to predelivery stress of the newborns. Variations in Toll-like receptor (TLR)4 function may account for these age related differences in cytokine responses, as TLR4 expression on neonatal monocytes post LPS stimulation was elevated and sustained relative to infants and adults. PMID:17805207

  5. The effect of bacterial lipopolysaccharide on gastric emptying in rats suffering from moderate renal insufficiency

    Directory of Open Access Journals (Sweden)

    Rigatto S.Z.P.

    1998-01-01

    Full Text Available The objective of the present study was to evaluate the response of rats suffering from moderate renal insufficiency to bacterial lipopolysaccharide (LPS, or endotoxin. The study involved 48 eight-week-old male SPF Wistar rats (175-220 g divided into two groups of 24 animals each. One group underwent 5/6 nephrectomy while the other was sham-operated. Two weeks after surgery, the animals were further divided into two subgroups of 12 animals each and were fasted for 20 h but with access to water ad libitum. One nephrectomized and one sham-treated subgroup received E. coli LPS (25 µg/kg, iv while the other received a sterile, pyrogen-free saline solution. Gastric retention (GR was determined 10 min after the orogastric infusion of a standard saline test meal labeled with phenol red (6 mg/dl. The gastric emptying of the saline test meal was studied after 2 h. Renal function was evaluated by measuring the plasma levels of urea and creatinine. The levels of urea and creatinine in 5/6 nephrectomized animals were two-fold higher than those observed in the sham-operated rats. Although renal insufficiency did not change gastric emptying (median %GR = 26.6 for the nephrectomized subgroup and 29.3 for the sham subgroup, LPS significantly retarded the gastric emptying of the sham and nephretomized groups (median %GR = 42.0 and 61.0, respectively, and was significantly greater (P<0.01 in the nephrectomized rats. We conclude that gastric emptying in animals suffering from moderate renal insufficiency is more sensitive to the action of LPS than in sham animals

  6. Lipopolysaccharide (LPS-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR.

    Directory of Open Access Journals (Sweden)

    Christy E Trussoni

    Full Text Available Cholangiocytes (biliary epithelial cells actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells, or low passage normal human cholangiocytes (NHC, were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (p<0.05 and proliferation (p<0.01. Additionally, cholangiocytes from LPS-treated mouse livers and human primary sclerosing cholangitis (PSC livers exhibited increased phospho-EGFR (p<0.01. Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes.

  7. Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR).

    Science.gov (United States)

    Trussoni, Christy E; Tabibian, James H; Splinter, Patrick L; O'Hara, Steven P

    2015-01-01

    Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells), or low passage normal human cholangiocytes (NHC), were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE) inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (pphospho-EGFR (p<0.01). Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes.

  8. Cardiorespiratory control and cytokine profile in response to heat stress, hypoxia, and lipopolysaccharide (LPS) exposure during early neonatal period.

    Science.gov (United States)

    McDonald, Fiona B; Chandrasekharan, Kumaran; Wilson, Richard J A; Hasan, Shabih U

    2016-02-01

    Sudden infant death syndrome (SIDS) is one of the most common causes of postneonatal infant mortality in the developed world. An insufficient cardiorespiratory response to multiple environmental stressors (such as prone sleeping positioning, overwrapping, and infection), during a critical period of development in a vulnerable infant, may result in SIDS. However, the effect of multiple risk factors on cardiorespiratory responses has rarely been tested experimentally. Therefore, this study aimed to quantify the independent and possible interactive effects of infection, hyperthermia, and hypoxia on cardiorespiratory control in rats during the neonatal period. We hypothesized that lipopolysaccharide (LPS) administration will negatively impact cardiorespiratory responses to increased ambient temperature and hypoxia in neonatal rats. Sprague-Dawley neonatal rat pups were studied at postnatal day 6-8. Rats were examined at an ambient temperature of 33°C or 38°C. Within each group, rats were allocated to control, saline, or LPS (200 μg/kg) treatments. Cardiorespiratory and thermal responses were recorded and analyzed before, during, and after a hypoxic exposure (10% O2). Serum samples were taken at the end of each experiment to measure cytokine concentrations. LPS significantly increased cytokine concentrations (such as TNFα, IL-1β, MCP-1, and IL-10) compared to control. Our results do not support a three-way interaction between experimental factors on cardiorespiratory control. However, independently, heat stress decreased minute ventilation during normoxia and increased the hypoxic ventilatory response. Furthermore, LPS decreased hypoxia-induced tachycardia. Herein, we provide an extensive serum cytokine profile under various experimental conditions and new evidence that neonatal cardiorespiratory responses are adversely affected by dual interactions of environmental stress factors. PMID:26811056

  9. Effect of Bacterial Lipopolysaccharide Contamination on Gutta Percha- versus Resilon-Induced Human Monocyte Cell Line Toxicity.

    Directory of Open Access Journals (Sweden)

    Jamshid Hadjati

    2015-04-01

    Full Text Available Cytotoxic effects of obturation materials were tested in presence and absence of endotoxin on human monocytes in vitro.Human monocytes from THP-1 cell line were cultured. Three millimeters from the tip of each Resilon and gutta percha points were cut and directly placed at the bottom of the culture wells. Cultured cells were exposed to gutta percha (groups G1 and G2 and Resilon (R1 and R2. Ten μg/ml bacterial lipopolysaccharide (LPS was added to the culture wells in groups G1 and R1. Positive control included the bacterial LPS without the root canal filling material and the negative control contained the cells in culture medium only. Viability of cells was tested in all groups after 24, 48, and 72 hours using the methylthiazolyldiphenyl-tetrazolium bromide (MTT assay for at least 3 times to obtain reproducible results. Optical density values were read and the data were analyzed using three-way ANOVA and post hoc statistical test.The results showed that cells in G2 had the lowest rate of viability at 24 hours, but the lowest rate of viable cells was recorded in G1 at 48 and 72 hours. The effect of LPS treatment was not statistically significant. Resilon groups showed cell viability values higher than those of gutta percha groups, although statistically non-significant (P=0.105. Cell viability values were lower in gutta percha than Resilon groups when LPS-treated and LPS-untreated groups were compared independently at each time point.It could be concluded that none of the tested root canal filling materials had toxic effects on cultured human monocyte cells whether in presence or absence of LPS contamination.

  10. Production of Antibody Raised Against Lipopolysaccharide (LPS of Vibrio Cholerae Non-O1

    Directory of Open Access Journals (Sweden)

    H Shirzad

    2008-07-01

    Full Text Available Background: Cholera, an infectious disease caused by Vibrio cholerae, is primarily transmitted by ingestion of contaminated food or water. In severe cases, cholera may lead to severe dehydration, metabolic acidosis, and ultimately, hypovolemic shock and death. Methods: In this study V.cholerae non-O1 was cultured in suitable media. LPS was extracted from the surface of  bacteria by hot phenol-water method and then purified by high-speed centrifugation. For production of specific antibody against LPS, white newzeland rabbits were first immunized by whole cell bacteria and then immunized with highly purified LPS. The titre of the antiserum was determined by ELISA for each serogroup. Results: Results presented in this study indicate that serum anti-LPS antibodies raised against purified LPS of V.cholerae non-O1 can detect V.cholerae non-O1 .Conclusion: This antibody had low cross reactivity with V.cholerae O1, serotype Inaba or Ogawa. So, this antibody can be used for for detection of V. cholerae non-O1.

  11. Lipopolysaccharide (LPS)-mediated macrophage activation: the role of calcium in the generation of tumoricidal activity

    Energy Technology Data Exchange (ETDEWEB)

    Drysdale, B.E.; Shin, H.S.

    1986-03-01

    As the authors reported, calcium ionophore, A23187, activates macrophages (M theta) for tumor cell killing and the activated M theta produce a soluble cytotoxic factor (M theta-CF) that is similar if not identical to tumor necrosis factor. Based on these observations they have investigated whether calcium is involved in the activation mediated by another potent M theta activator, LPS. The authors have shown that A23187 caused uptake of extracellular /sup 45/Ca/sup + +/ but LPS did not. They have examined the effect of depleting extracellular calcium by using medium containing no added calcium containing 1.0 mM EGTA. In no case did depletion result in decreased M theta-CF production by the M theta activated with LPS. Measurements using the fluorescent, intracellular calcium indicator, Quin 2 have also been performed. While ionomycin, caused a rapid change in the Quin-2 signal, LPS at a concentration even in excess of that required to activate the M theta caused no change in the signal. When high doses of Quin 2 or another intracellular chelator, 8-(diethylaminol-octyl-3,4,5-trimethoxybenzoate, were used to treat M theta, M theta-CF production decreased and cytotoxic activity was impaired. These data indicate that one or more of the processes involved in M theta-CF production does require calcium, but that activation mediated by LPS occurs without the influx of extracellular calcium or redistribution of intracellular calcium.

  12. Protective effects of carnosine alone and together with alpha-tocopherol on lipopolysaccharide (LPS) plus ethanol-induced liver injury.

    Science.gov (United States)

    Kalaz, Esra Betül; Aydın, A Fatih; Doğan-Ekici, Işın; Çoban, Jale; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2016-03-01

    The aim of this study was to investigate the effect of carnosine (CAR) alone and together with vitamin E (Vit E) on alcoholic steatohepatitis (ASH) in rats. ASH was induced by ethanol (3 times; 5 g/kg; 12 h intervals, via gavage), followed by a single dose of lipopolysaccharide (LPS; 10 mg/kg; i.p.). CAR (250 mg/kg; i.p.) and Vit E (200 mg D-α-tocopherol/kg; via gavage) were administered 30 min before and 90 min after the LPS injection. CAR treatment lowered high serum transaminase activities together with hepatic histopathologic improvements in rats with ASH. Reactive oxygen species formation, malondialdehyde levels, myeloperoxidase activities and transforming growth factor β1 (TGF-β1) and collagen 1α1 (COL1A1) expressions were observed to decrease. These improvements were more remarkable in CAR plus Vit E-treated rats. Our results indicate that CAR may be effective in suppressing proinflammatory, prooxidant, and profibrotic factors in the liver of rats with ASH. PMID:26773358

  13. Lack of binding of bacterial lipopolysaccharide to mouse lung macrophages and restoration of binding by gamma interferon

    OpenAIRE

    1985-01-01

    Although peritoneal resident macrophages (PRM) or peritoneal exudate macrophages (PEM) were activated by lipopolysaccharide (LPS) to kill tumor cells in vitro, lung macrophages (LM) obtained by mincing lung tissues or by harvesting bronchial lavage were not activated by LPS under any experimental conditions, i.e., different LPS concentrations, incubation times and cytotoxicity assay methods. The unresponsiveness of LM to LPS was seen in all of the mouse strains tested. Treatment of LM with in...

  14. Enhancement of Methacholine-Evoked Tracheal Contraction Induced by Bacterial Lipopolysaccharides Depends on Epithelium and Tumor Necrosis Factor

    Directory of Open Access Journals (Sweden)

    T. Secher

    2012-01-01

    Full Text Available Inhaled bacterial lipopolysaccharides (LPSs induce an acute tumour necrosis factor-alpha (TNF-α- dependent inflammatory response in the murine airways mediated by Toll-like receptor 4 (TLR4 via the myeloid differentiation MyD88 adaptor protein pathway. However, the contractile response of the bronchial smooth muscle and the role of endogenous TNFα in this process have been elusive. We determined the in vivo respiratory pattern of C57BL/6 mice after intranasal LPS administration with or without the presence of increasing doses of methacholine (MCh. We found that LPS administration altered the basal and MCh-evoked respiratory pattern that peaked at 90 min and decreased thereafter in the next 48 h, reaching basal levels 7 days later. We investigated in controlled ex vivo condition the isometric contraction of isolated tracheal rings in response to MCh cholinergic stimulation. We observed that preincubation of the tracheal rings with LPS for 90 min enhanced the subsequent MCh-induced contractile response (hyperreactivity, which was prevented by prior neutralization of TNFα with a specific antibody. Furthermore, hyperreactivity induced by LPS depended on an intact epithelium, whereas hyperreactivity induced by TNFα was well maintained in the absence of epithelium. Finally, the enhanced contractile response to MCh induced by LPS when compared with control mice was not observed in tracheal rings from TLR4- or TNF- or TNF-receptor-deficient mice. We conclude that bacterial endotoxin-mediated hyperreactivity of isolated tracheal rings to MCh depends upon TLR4 integrity that signals the activation of epithelium, which release endogenous TNFα.

  15. Identification of a new anti-LPS agent, geniposide, from Gardenia jasminoides Ellis, and its ability of direct binding and neutralization of lipopolysaccharide in vitro and in vivo.

    Science.gov (United States)

    Zheng, Xinchuan; Yang, Dong; Liu, Xin; Wang, Ning; Li, Bin; Cao, Hongwei; Lu, Yongling; Wei, Guo; Zhou, Hong; Zheng, Jiang

    2010-10-01

    Lipopolysaccharide (LPS/endotoxin) is a key pathogen recognition molecule for sepsis. Currently, one of the therapeutic approaches for severe sepsis is focusing on the neutralization of LPS, and clinical trials have shown a lot of traditional Chinese herbs possess anti-sepsis function. Herein, to elucidate the bioactive components of traditional Chinese herbs that can neutralize LPS, the lipid A-binding abilities of sixty herbs were tested using affinity biosensor technology. The aqueous extract of Gardenia jasminoides Ellis, traditionally used to treat inflammation in Asian countries for centuries, was further investigated. Subsequently, a monomer, identified as geniposide, was isolated. In vitro, geniposide was found to directly bind LPS and neutralize LPS. It dose-dependently inhibited cytokines release from RAW264.7 cells induced by LPS without affecting the cell viability, and inhibited TNF-α mRNA expression up-regulated by LPS. However, geniposide did not decrease TNF-α release induced by CpG DNA, Poly I:C or IL-1β. Significantly, geniposide dose-dependently down-regulated TLR4 mRNA expression up-regulated by LPS, and suppressed the phosphorylations of p38 MAKP induced by LPS but not by IL-1β. In vivo, geniposide (40mg/kg) could significantly protect mice challenge with lethal heat-killed E. coli, and dose-dependently decreased the level of serum endotoxin which was tightly associated with the cytokine levels in endotoxemia mice. In summary, we successfully isolated geniposide from G. jasminoides Ellis. Geniposide directly bound LPS and neutralized LPS in vitro, and significantly protected sepsis model mice. Therefore, geniposide could be as a useful lead compound for anti-sepsis drug development. PMID:20655404

  16. Chitosan-based Matrix, Used to Determine the Bacterial Lipopolysaccharide in Air

    Directory of Open Access Journals (Sweden)

    Dmitry M. Frolov

    2013-12-01

    Full Text Available The article describes the technology of chitosan-based matrix creation, and results of the study of its affine properties to bacterial lipopolysaccharide in aerosol dispersion. High degree of deacylation of polymer (over 97%, three-dimensional-porous structure, and multilayer packaging in analytical cartridge were the features of this matrix. Specified air volume, containing aerosol concentration of bacterial lipopolysaccharide, was passed through the glass cylinder with analytical container. The share of captured molecules ranged from 1.0% to 1.5%, demonstrating the efficiency of chitosan matrix. It is suitable for the creation of the devices for bacterial lipopolysaccharide detection in the air, based on the obtained matrix.

  17. The AS87_04050 gene is involved in bacterial lipopolysaccharide biosynthesis and pathogenicity of Riemerella anatipestifer.

    Directory of Open Access Journals (Sweden)

    Xiaolan Wang

    Full Text Available Riemerella anatipestifer is reported worldwide as a cause of septicemic and exudative diseases of domestic ducks. In this study, we identified a mutant strain RA2640 by Tn4351 transposon mutagenesis, in which the AS87_04050 gene was inactivated by insertion of the transposon. Southern blot analysis indicated that only one insertion was found in the genome of the mutant strain RA2640. SDS-PAGE followed by silver staining showed that the lipopolysaccharide (LPS pattern of mutant strain RA2640 was different from its wild-type strain Yb2, suggesting the LPS was defected. In addition, the phenotype of the mutant strain RA2640 was changed to rough-type, evident by altered colony morphology, autoaggregation ability and crystal violet staining characteristics. Bacterial LPS is a key factor in virulence as well as in both innate and acquired host responses to infection. The rough-type mutant strain RA2640 showed higher sensitivity to antibiotics, disinfectants and normal duck serum, and higher capability of adherence and invasion to Vero cells, compared to its wild-type strain Yb2. Moreover, the mutant strain RA2640 lost the agglutination ability of its wild-type strain Yb2 to R. anatipestifer serotype 2 positive sera, suggesting that the O-antigen is defected. Animal experiments indicated that the virulence of the mutant strain RA2640 was attenuated by more than 100,000-fold, compared to its wild-type strain Yb2. These results suggested that the AS87_04050 gene in R. anatipestifer is associated with the LPS biosynthesis and bacterial pathogenicity.

  18. Chitosan-based Matrix, Used to Determine the Bacterial Lipopolysaccharide in Air

    OpenAIRE

    Dmitry M. Frolov; Valery G. Zaitsev

    2013-01-01

    The article describes the technology of chitosan-based matrix creation, and results of the study of its affine properties to bacterial lipopolysaccharide in aerosol dispersion. High degree of deacylation of polymer (over 97%), three-dimensional-porous structure, and multilayer packaging in analytical cartridge were the features of this matrix. Specified air volume, containing aerosol concentration of bacterial lipopolysaccharide, was passed through the glass cylinder with analytical container...

  19. Importance of bacterial endotoxin (LPS in endodontics A importância da endotoxina bacteriana (LPS na endodontia atual

    Directory of Open Access Journals (Sweden)

    Mario Roberto Leonardo

    2004-06-01

    Full Text Available New knowledge of the structure and biological activity of endotoxins (LPS has revolutionized concepts concerning their mechanisms of action and forms of inactivation. Since the 1980's, technological advances in microbiological culture and identification have shown that anaerobic microorganisms, especially Gram-negative, predominate in root canals of teeth with pulp necrosis and radiographically visible chronic periapical lesions. Gram-negative bacteria not only have different factors of virulence and generate sub-products that are toxic to apical and periapical tissues, as also contain endotoxin (LPS on their cell wall. This is especially important because endotoxin is released during multiplication or bacterial death, causing a series of biological effects that lead to an inflammatory reaction and resorption of mineralized tissues. Thus, due to the role of endotoxin in the pathogenesis of periapical lesions, we reviewed the literature concerning the biological activity of endotoxin and the relevance of its inactivation during treatment of teeth with pulp necrosis and chronic periapical lesion.O conhecimento mais aprofundado sobre a estrutura e atividade biológica das endotoxinas (LPS revolucionou os conceitos sobre seu mecanismo de ação e formas de inativação. A partir da década de 80, os avanços tecnológicos na cultura e identificação microbiológica demonstraram que, em canais radiculares de dentes portadores de necrose pulpar e lesão periapical crônica, visível radiograficamente, predominam microrganismos anaeróbios, particularmente os gram-negativos. Como se sabe, os microrganismos gram-negativos, além de possuírem diferentes fatores de virulência e gerarem produtos e sub-produtos tóxicos aos tecidos apicais e periapicais, contêm endotoxina em sua parede celular. Esse conhecimento é particularmente importante, uma vez que a endotoxina é liberada durante a multiplicação ou morte bacteriana, exercendo uma série de

  20. Enhanced Expression of Aquaporin-9 in Rat Brain Edema Induced by Bacterial Lipopolysaccharides

    Institute of Scientific and Technical Information of China (English)

    Huaili WANG; Runming JIN; Peichao TIAN; Zhihong ZHUO

    2009-01-01

    To investigate the role of AQP9 in brain edema,the expression of AQP9 in an infectious rat brain edema model induced by the injection of lipopolysaccharide (LPS) was examined.Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that the expressions of AQP9 mRNA and protein at all observed intervals were significantly increased in LPS-treated animals in comparison with the control animals.Time-course analysis showed that the first signs of blood-brain barrier disruption and the increase of brain water content in LPS-treated animals were evident 6 h after LPS injection,with maximum value appearing at 12 h,which coincided with the expression profiles of AQP9 mRNA and protein in LPS-treated animals.The further correlation analysis revealed strong positive correlations among the brain water content,the disruption of the blood-brain barrier and the enhanced expressions of AQP9 mRNA and protein in LPS-treated animals.These results suggested that the regulation of AQP9 expression may play important roles in water movement and in brain metabolic homeostasis associated with the pathophysiology of brain edema induced by LPS injection.

  1. Regulation of adenovirus-mediated elafin transgene expression by bacterial lipopolysaccharide.

    Science.gov (United States)

    Simpson, A J; Cunningham, G A; Porteous, D J; Haslett, C; Sallenave, J M

    2001-07-20

    Lipopolysaccharide (LPS) is a mediator of inflammatory lung injury. Selective augmentation of host defense molecules such as elafin (an elastase inhibitor with antimicrobial activity) at the onset of pulmonary inflammation is an attractive potential therapeutic strategy. The aim of this study was to determine whether elafin expression could be induced by LPS administered after transfection with adenovirus (Ad) encoding human elafin downstream of the murine cytomegalovirus (CMV) promoter (known to be potentially responsive to LPS). In addition, we aimed to determine the effect of local elafin augmentation on neutrophil migration to the lung. LPS significantly up-regulated elafin expression from pulmonary epithelial cells transfected with Ad-elafin in vitro. In murine airways expression of human elafin was achieved using doses low enough (3 x 10(7) plaque forming units) to circumvent overt vector-induced inflammation. LPS significantly up-regulated human elafin secretion in murine airways treated with Ad-elafin [117 ng/ml in bronchoalveolar lavage fluid (BALF) after LPS administration, 5.9 ng/ml after PBS, p < 0.01)]. Over-expression of elafin significantly augmented LPS-mediated neutrophil migration into the airways in vivo (1.30 x 10(6) neutrophils in BALF after Ad-elafin/LPS treatment, 0.54 x 10(6) after Ad-lacZ/LPS (p < 0.05), 0.63 x 10(6) after PBS/LPS (p < 0.05)) and significantly enhanced human neutrophil migration in vitro. These data suggest novel functions for elafin in neutrophil migration, and that judicious selection of promoters may allow single, low-dose adenoviral administration to effect inflammation-specific expression of potentially therapeutic transgenes. PMID:11485631

  2. Lethal effect and apoptotic DNA fragmentation in response of D-GalN-treated mice to bacterial LPS can be suppressed by pre-exposure to minute amount of bacterial LPS: Dual role of TNF receptor 1

    Institute of Scientific and Technical Information of China (English)

    Bing-Rong Zhou; Marina Gumenscheimer; Marina A.Freudenberg; Chris Galanos

    2005-01-01

    AIM: To investigate whether induction of tolerance of mice to lipopolysaccharide (LPS) was able to inhibit apoptotic reaction in terms of characteristic DNA fragmentation and protect mice from lethal effect.METHODS: Experimental groups of mice were pretreated with non-lethal amount of LPS (0.05 μg). Both control and experimental groups simultaneously were challenged with LPS plus D-GalN for 6-7 h. The evaluations of bothDNA fragmentations from the livers and the protection effficacy against lethality to mice through induction of tolerance to LPS were conducted.RESULTS: In the naive mice challenge with LPS plus D-GalNresulted in complete death in 24 h, whereas a characteristic apoptotic DNA fragmentation was exclusively seen in the livers of mice receiving LPS in combination with D-GalN. The mortality in the affected mice was closely correlated to the onset of DNA fragmentation. By contrast, in the mice pre-exposed to LPS, both lethal effect and apoptotic DNA fragmentation were suppressed when challenged with LPS/D-GalN. In addition to LPS, the induction of mouse tolerance to TNF also enabled mice to cross-react against death and apoptotic DNA fragmentation when challenged with TNF and/or LPS in the presence of D-GalN. Moreover,this protection effect by LPS could last up to 24 h. TNFR1 rather than TNFR2 played a dual role in signaling pathway of either induction of tolerance to LPS for the protection of mice from mortality or inducing morbidity leading to the death of mice.CONCLUSION: The mortality of D-GaiN-treated mice in response to LPS was exceedingly correlated to the onset of apoptosis in the liver, which can be effectively suppressed by brief exposure of mice to a minute amount of LPS. The induced tolerance status was mediated not only by LPS but also by TNF. The developed tolerance to either LPS orTNF can be reciprocally cross-reacted between LPS and TNF challenges, whereas the signaling of induction of tolerance and promotion of apoptosis was through TNFR1

  3. Extracts of brown seaweeds can attenuate the bacterial lipopolysaccharide-induced pro-inflammatory response in the porcine colon ex vivo.

    Science.gov (United States)

    Bahar, B; O'Doherty, J V; Hayes, M; Sweeney, T

    2012-12-01

    Bioactive compound-rich brown seaweeds are demonstrated to have numerous health benefits including anti-microbial and immunomodulatory bioactivities in the pig intestine. In this study, the immunomodulating effects of extracts of brown seaweed (Ascophyllum nodosum and Fucus serratus) were evaluated on the porcine colon using a bacterial lipopolysaccharide (LPS) ex vivo model. Approximately 1.5 × 1.5 cm of pig colon (n = 6) was stripped of its overlying muscle layer and incubated in 1 mL Dulbecco's Modified Eagle Medium containing bacterial LPS (10 μg) and seaweed extracts (1 mg). Gene expression of interleukin-8 (IL-8) and interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNFA) were measured using quantitative real time PCR. In contrast to the low level of expression of IL-8, IL-6, and TNFA genes in the colonic tissue at 0 h, LPS treatment increased (P Ascophyllum. Ascophyllum extract reduced (P Ascophyllum and Fucus seaweeds have potential to suppress the pro-inflammatory response induced by the bacterial LPS in the pig colon. PMID:23365280

  4. Relationship between chemical composition and biological function of Pseudomonas aeruginosa lipopolysaccharide: effect on human neutrophil chemotaxis and oxidative burst

    DEFF Research Database (Denmark)

    Kharazmi, A; Fomsgaard, A; Conrad, R S;

    1991-01-01

    There are conflicting data on the effect of bacterial lipopolysaccharides (LPS) on the function of human neutrophils. The present study was designed to examine the relationship between chemical composition and the modulatory effect of LPS on human neutrophil function. LPS was extracted from five...

  5. Polyphenolic extracts from cowpea (Vigna unguiculata) protect colonic myofibroblasts (CCD18Co cells) from lipopolysaccharide (LPS)-induced inflammation--modulation of microRNA 126.

    Science.gov (United States)

    Ojwang, Leonnard O; Banerjee, Nivedita; Noratto, Giuliana D; Angel-Morales, Gabriela; Hachibamba, Twambo; Awika, Joseph M; Mertens-Talcott, Susanne U

    2015-01-01

    Cowpea (Vigna unguiculata) is a drought tolerant crop with several agronomic advantages over other legumes. This study evaluated varieties from four major cowpea phenotypes (black, red, light brown and white) containing different phenolic profiles for their anti-inflammatory property on non-malignant colonic myofibroblasts (CCD18Co) cells challenged with an endotoxin (lipopolysaccharide, LPS). Intracellular reactive oxygen species (ROS) assay on the LPS-stimulated cells revealed antioxidative potential of black and red cowpea varieties. Real-time qRT-PCR analysis in LPS-stimulated cells revealed down-regulation of proinflammatory cytokines (IL-8, TNF-α, VCAM-1), transcription factor NF-κB and modulation of microRNA-126 (specific post-transcriptional regulator of VCAM-1) by cowpea polyphenolics. The ability of cowpea polyphenols to modulate miR-126 signaling and its target gene VCAM-1 were studied in LPS-stimulated endothelial cells transfected with a specific inhibitor of miR-126, and treated with 10 mg GAE/L black cowpea extract where the extract in part reversed the effect of the miR-126 inhibitor. This suggests that cowpea may exert their anti-inflammatory activities at least in part through induction of miR-126 that then down-regulate VCAM-1 mRNA and protein expressions. Overall, Cowpea therefore is promising as an anti-inflammatory dietary component. PMID:25300227

  6. Effect of dietary bovine colostrum on the responses of immune cells to stimulation with bacterial lipopolysaccharide.

    Science.gov (United States)

    Xu, Mei Ling; Kim, Hyoung Jin; Kim, Hong-Jin

    2014-04-01

    Previous studies have revealed that ingestion of bovine colostrum is effective in preventing pathogens from invading through the gastrointestinal tract (GI) and modulating the mucosal immunity of the GI tract, indicating that its effect is principally local. Thus it is unclear if ingestion of bovine colostrum can affect the systemic immune system. In this study, we investigated the effect of taking bovine colostrum (vs phosphate-buffered saline) for 14 days on the behavior of the immune cells of mice. Isolated splenocytes, which are pivotal cells of systemic immunity, were then stimulated with Escherichia coli lipopolysaccharide. Bovine colostrum significantly reduced NK cell and monocyte activities and lymphoproliferaltive responses to LPS stimulation. Thus dietary bovine colostrum renders immune cells less responsive to LPS stimulation. Dietary bovine colostrum thus affects the systemic immune system and may have anti-inflammatory actions. PMID:24234910

  7. Stress hormone release is a key component of the metabolic response to lipopolysaccharide (LPS): studies in hypopituitary and healthy subjects

    DEFF Research Database (Denmark)

    Bach, Ermina; Møller, Andreas Buch; Jørgensen, Jens Otto Lunde;

    2016-01-01

    there was no difference in glucose metabolism between groups and intramyocellular insulin signalling was unaltered in both groups. CONCLUSIONS: LPS increased indices of lipolysis and amino acid/protein fluxes significantly more in CTR compared to HP and decreased adipocyte G0S2 mRNA only in CTR. Thus in humans intact...... but not in HP. LPS increased whole body palmitate fluxes (3-fold) and decreased palmitate specific activity 40-50 % in CTR, but not in HP. G(0)/G(1) Switch Gene 2 (G0S2 - an inhibitor of lipolysis) adipose tissue mRNA was decreased in CTR. LPS increased phenylalanine fluxes significantly more in CTR, whereas...

  8. Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation

    OpenAIRE

    Reisenauer, Chris J.; Bhatt, Dhaval P.; Mitteness, Dane J.; Slanczka, Evan R.; Gienger, Heidi M.; Watt, John A.; Rosenberger, Thad A

    2011-01-01

    Glyceryl triacetate (GTA), a compound effective at increasing circulating and tissue levels of acetate was used to treat rats subjected to a continual 28 day intra-ventricular infusion of bacterial lipopolysaccharide (LPS). This model produces a neuroinflammatory injury characterized by global neuroglial activation and a decrease in choline acetyltransferase immunoreactivity in the basal forebrain. During the LPS infusion, rats were given a daily treatment of either water or GTA at a dose of ...

  9. Bacterial lipoprotein-induced self-tolerance and cross-tolerance to LPS are associated with reduced IRAK-1 expression and MyD88-IRAK complex formation.

    LENUS (Irish Health Repository)

    Li, Chong Hui

    2012-02-03

    Tolerance to bacterial cell-wall components may represent an essential regulatory mechanism during bacterial infection. We have demonstrated previously that the inhibition of nuclear factor (NF)-kappaB and mitogen-activated protein kinase activation was present in bacterial lipoprotein (BLP) self-tolerance and its cross-tolerance to lipopolysaccharide (LPS). In this study, the effect of BLP-induced tolerance on the myeloid differentiation factor 88 (MyD88)-dependent upstream signaling pathway for NF-kappaB activation in vitro was examined further. When compared with nontolerant human monocytic THP-1 cells, BLP-tolerant cells had a significant reduction in tumor necrosis factor alpha (TNF-alpha) production in response to a high-dose BLP (86+\\/-12 vs. 6042+\\/-245 ng\\/ml, P < 0.01) or LPS (341+\\/-36 vs. 7882+\\/-318 ng\\/ml, P < 0.01) stimulation. The expression of Toll-like receptor 2 (TLR2) protein was down-regulated in BLP-tolerant cells, whereas no significant differences in TLR4, MyD88, interleukin-1 receptor-associated kinase 4 (IRAK-4), and TNF receptor-associated factor 6 expression were observed between nontolerant and BLP-tolerant cells, as confirmed by Western blot analysis. The IRAK-1 protein was reduced markedly in BLP-tolerant cells, although IRAK-1 mRNA expression remained unchanged as revealed by real-time reverse transcriptase-polymerase chain reaction analysis. Furthermore, decreased MyD88-IRAK immunocomplex formation, as demonstrated by immunoprecipitation, was observed in BLP-tolerant cells following a second BLP or LPS stimulation. BLP pretreatment also resulted in a marked inhibition in total and phosphorylated inhibitor of kappaB-alpha (IkappaB-alpha) expression, which was not up-regulated by subsequent BLP or LPS stimulation. These results demonstrate that in addition to the down-regulation of TLR2 expression, BLP tolerance is associated with a reduction in IRAK-1 expression, MyD88-IRAK association, and IkappaB-alpha phosphorylation. These

  10. Central nervous action of interleukin-1 mediates activation of limbic structures and behavioural depression in response to peripheral administration of bacterial lipopolysaccharide.

    Science.gov (United States)

    Konsman, J P; Veeneman, J; Combe, C; Poole, S; Luheshi, G N; Dantzer, R

    2008-12-01

    Although receptors for the pro-inflammatory cytokine interleukin-1 have long been known to be expressed in the brain, their role in fever and behavioural depression observed during the acute phase response (APR) to tissue infection remains unclear. This may in part be due to the fact that interleukin-1 in the brain is bioactive only several hours after peripheral administration of bacterial lipopolysaccharide (LPS). To study the role of cerebral interleukin-1 action in temperature and behavioural changes, and activation of brain structures during the APR, interleukin-1 receptor antagonist (IL-1ra; 100 microg) was infused into the lateral brain ventricle 4 h after intraperitoneal (i.p.) LPS injection (250 microg/kg) in rats. I.p. LPS administration induced interleukin-1beta (IL-1beta) production in systemic circulation as well as in brain circumventricular organs and the choroid plexus. Intracerebroventricular (i.c.v.) infusion of IL-1ra 4 h after i.p. LPS injection attenuated the reduction in social interaction, a cardinal sign of behavioural depression during sickness, and c-Fos expression in the amygdala and bed nucleus of the stria terminalis. However, LPS-induced fever, rises in plasma corticosterone, body weight loss and c-Fos expression in the hypothalamus and caudal brainstem were not altered by i.c.v. infusion of IL-1ra. These findings, together with our previous observations showing that i.c.v. infused IL-1ra diffuses throughout perivascular spaces, where macrophages express interleukin-1 receptors, can be interpreted to suggest that circulating or locally produced brain IL-1beta acts on these cells to bring about behavioural depression and activation of limbic structures during the APR after peripheral LPS administration.

  11. Importance of bacterial endotoxin (LPS) in endodontics A importância da endotoxina bacteriana (LPS) na endodontia atual

    OpenAIRE

    Mario Roberto Leonardo; Raquel Assed Bezerra da Silva; Sada Assed; Paulo Nelson-Filho

    2004-01-01

    New knowledge of the structure and biological activity of endotoxins (LPS) has revolutionized concepts concerning their mechanisms of action and forms of inactivation. Since the 1980's, technological advances in microbiological culture and identification have shown that anaerobic microorganisms, especially Gram-negative, predominate in root canals of teeth with pulp necrosis and radiographically visible chronic periapical lesions. Gram-negative bacteria not only have different factors of viru...

  12. Yohimbine Enhances Protection of Berberine against LPS-Induced Mouse Lethality through Multiple Mechanisms

    OpenAIRE

    Hui Li; Yiyang Wang; Haoqing Zhang; Baoyin Jia; Daan Wang; Hongmei Li; Daxiang Lu; Renbin Qi; Yuxia Yan; Huadong Wang

    2012-01-01

    Sepsis remains a major cause of mortality in intensive care units, better therapies are urgently needed. Gram-negative bacterial lipopolysaccharide (LPS) is an important trigger of sepsis. We have demonstrated that berberine (Ber) protects against lethality induced by LPS, which is enhanced by yohimbine (Y) pretreatment, and Ber combined with Y also improves survival in septic mice. However, the precise mechanisms by which Y enhances protection of Ber against LPS - induced lethality remain un...

  13. Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs.

    Directory of Open Access Journals (Sweden)

    Marc A Sze

    Full Text Available Previous reports have shown that the gastrointestinal (GI bacterial microbiota can have profound effects on the lungs, which has been described as the "gut-lung axis". However, whether a "lung-gut" axis exists wherein acute lung inflammation perturbs the gut and blood microbiota is unknown.Adult C57/Bl6 mice were exposed to one dose of LPS or PBS instillation (n=3 for each group directly into lungs. Bacterial microbiota of the bronchoalveolar lavage fluid, blood, and cecum were determined using 454 pyrotag sequencing and quantitative polymerase chain reaction (qPCR at 4 through 168 hours post-instillation. We then investigated the effects of oral neomycin and streptomycin (n=8 on the microbiota at 4 and 24 hours post LPS instillation versus control treatment (n=5 at baseline and 4 hours, n=7 at 24 hours.At 24 hours post LPS instillation, the total bacterial count was significantly increased in the cecum (P<0.05; whereas the total bacterial count in blood was increased at 4, 48, and 72 hours (P<0.05. Antibiotic treatment reduced the total bacteria in blood but not in the cecum. The increase in total bacteria in the blood correlated with Phyllobacteriaceae OTU 40 and was significantly reduced in the blood for both antibiotic groups (P<0.05.LPS instillation in lungs leads to acute changes in the bacterial microbiota in the blood and cecum, which can be modulated with antibiotics.

  14. Bacterial lipopolysaccharide augments febrile-range hyperthermia-induced heat shock protein 70 expression and extracellular release in human THP1 cells.

    Directory of Open Access Journals (Sweden)

    Mohan E Tulapurkar

    Full Text Available Sepsis, a devastating and often lethal complication of severe infection, is characterized by fever and dysregulated inflammation. While infections activate the inflammatory response in part through Toll-like receptors (TLRs, fever can partially activate the heat shock response with generation of heat shock proteins (HSPs. Since extracellular HSPs, especially HSP70 (eHSP70, are proinflammatory TLR agonists, we investigated how exposure to the TLR4 agonist, bacterial lipopolysaccharide (LPS and febrile range hyperthermia (FRH; 39.5°C modify HSP70 expression and extracellular release. Using differentiated THP1 cells, we found that concurrent exposure to FRH and LPS as well as TLR2 and TLR3 agonists synergized to activate expression of inducible HSP72 (HSPA1A mRNA and protein via a p38 MAP kinase-requiring mechanism. Treatment with LPS for 6 h stimulated eHSP70 release; levels of eHSP70 released at 39.5°C were higher than at 37°C roughly paralleling the increase in intracellular HSP72 in the 39.5°C cells. By contrast, 6 h exposure to FRH in the absence of LPS failed to promote eHSP70 release. Release of eHSP70 by LPS-treated THP1 cells was inhibited by glibenclamide, but not brefeldin, indicating that eHSP70 secretion occurred via a non-classical protein secretory mechanism. Analysis of eHSP70 levels in exosomes and exosome-depleted culture supernatants from LPS-treated THP1 cells using ELISA demonstrated similar eHSP70 levels in unfractionated and exosome-depleted culture supernatants, indicating that LPS-stimulated eHSP70 release did not occur via the exosome pathway. Immunoblot analysis of the exosome fraction of culture supernatants from these cells showed constitutive HSC70 (HSPA8 to be the predominant HSP70 family member present in exosomes. In summary, we have shown that LPS stimulates macrophages to secrete inducible HSP72 via a non-classical non-exosomal pathway while synergizing with FRH exposure to increase both intracellular and

  15. [Phytotoxic properties of Ralstonia solanacearum lipopolysaccharides].

    Science.gov (United States)

    Hrytsaĭ, R V; Iakovleva, L M; Varbanets', L D

    2014-01-01

    The study is dedicated to research of phytotoxic properties of Ralstonia solanacearum lipopolysaccharides. This causative agent is one of the most dangerous among potato bacterial diseases. It is revealed that the inhibitory effect of LPS solution on seedlings germination is more noticeable on crops susceptible to brown rot. Maximal total phytotoxic properties have been shown by LPS from strains 35, 52b, TX1 and TS3, which were characterized by relatively low rhamnose content. Relative to the control plants LPS may diminish and some ones--increase the root length, height and weight of seedlings, subject to particular strain. But the stimulation revealed is minor. PMID:25000727

  16. A low-level diode laser therapy reduces the lipopolysaccharide (LPS)-induced periodontal ligament cell inflammation

    Science.gov (United States)

    Huang, T. H.; Chen, C. C.; Liu, S. L.; Lu, Y. C.; Kao, C. T.

    2014-07-01

    The purpose of this study was to investigate the cytologic effects of inflammatory periodontal ligament cells in vitro after low-level laser therapy. Human periodontal ligament cells were cultured, exposed to lipopolysaccharide and subjected to low-level laser treatment of 5 J cm-2 or 10 J cm-2 using a 920 nm diode laser. A periodontal ligament cell attachment was observed under a microscope, and the cell viability was quantified by a mitochondrial colorimetric assay. Lipopolysaccharide-treated periodontal ligament cells were irradiated with the low-level laser, and the expression levels of several inflammatory markers, iNOS, TNF-α and IL-1, and pErk kinase, were analyzed by reverse transcription polymerase chain reaction and western blot. The data were collected and analyzed by one-way analysis of variance; p low-level laser treatment of periodontal ligament cells increased their ability to attach and survive. After irradiation, the expression levels of iNOS, TNF-α and IL-1 in lipopolysaccharide-exposed periodontal ligament cells decreased over time (p low-level diode laser treatment increased the cells’ proliferative ability and decreased the expression of the examined inflammatory mediators.

  17. Role of interleukin-1 in augmenting serum neutralization of bacterial lipopolysaccharide.

    OpenAIRE

    Riveau, G R; Novitsky, T J; Roslansky, P F; Dinarello, C A; Warren, H S

    1987-01-01

    We have previously described an assay to quantify the serum neutralization of bacterial lipopolysaccharide which is based on a spectrophotometric Limulus amoebocyte lysate test (T.J. Novitsky, P.F. Roslansky, G.R. Siber, and H.S. Warren, J. Clin. Microbiol. 21:211-216, 1985). Studies since have shown that serum samples drawn from patients with leukemia and fever, gram-negative or gram-positive bacterial infections, or shock caused by gram-negative bacteria neutralize approximately 10-fold mor...

  18. Small intestinal bacterial overgrowth in nonalcoholic steatohepatitis: association with toll-like receptor 4 expression and plasma levels of interleukin 8.

    LENUS (Irish Health Repository)

    Shanab, Ahmed Abu

    2011-05-01

    Experimental and clinical studies suggest an association between small intestinal bacterial overgrowth (SIBO) and nonalcoholic steatohepatitis (NASH). Liver injury and fibrosis could be related to exposure to bacterial products of intestinal origin and, most notably, endotoxin, including lipopolysaccharide (LPS).

  19. NAC Attenuates LPS-Induced Toxicity in Aspirin-Sensitized Mouse Macrophages via Suppression of Oxidative Stress and Mitochondrial Dysfunction

    OpenAIRE

    Raza, Haider; John, Annie; Shafarin, Jasmin

    2014-01-01

    Bacterial endotoxin lipopolysaccharide (LPS) induces the production of inflammatory cytokines and reactive oxygen species (ROS) under in vivo and in vitro conditions. Acetylsalicylic acid (ASA, aspirin) is a commonly used anti-inflammatory drug. Our aim was to study the effects of N-acetyl cysteine (NAC), an antioxidant precursor of GSH synthesis, on aspirin-sensitized macrophages treated with LPS. We investigated the effects of LPS alone and in conjunction with a sub-toxic concentration of A...

  20. High-fat diet induces periodontitis in mice through lipopolysaccharides (LPS receptor signaling: protective action of estrogens.

    Directory of Open Access Journals (Sweden)

    Vincent Blasco-Baque

    Full Text Available BACKGROUND: A fat-enriched diet favors the development of gram negative bacteria in the intestine which is linked to the occurrence of type 2 diabetes (T2D. Interestingly, some pathogenic gram negative bacteria are commonly associated with the development of periodontitis which, like T2D, is characterized by a chronic low-grade inflammation. Moreover, estrogens have been shown to regulate glucose homeostasis via an LPS receptor dependent immune-modulation. In this study, we evaluated whether diet-induced metabolic disease would favor the development of periodontitis in mice. In addition, the regulatory role of estrogens in this process was assessed. METHODS: Four-week-old C57BL6/J WT and CD14 (part of the TLR-4 machinery for LPS-recognition knock-out female mice were ovariectomised and subcutaneously implanted with pellets releasing either placebo or 17β-estradiol (E2. Mice were then fed with either a normal chow or a high-fat diet for four weeks. The development of diabetes was monitored by an intraperitoneal glucose-tolerance test and plasma insulin concentration while periodontitis was assessed by identification of pathogens, quantification of periodontal soft tissue inflammation and alveolar bone loss. RESULTS: The fat-enriched diet increased the prevalence of periodontal pathogenic microbiota like Fusobacterium nucleatum and Prevotella intermedia, gingival inflammation and alveolar bone loss. E2 treatment prevented this effect and CD14 knock-out mice resisted high-fat diet-induced periodontal defects. CONCLUSIONS/SIGNIFICANCE: Our data show that mice fed with a diabetogenic diet developed defects and microflora of tooth supporting-tissues typically associated with periodontitis. Moreover, our results suggest a causal link between the activation of the LPS pathway on innate immunity by periodontal microbiota and HFD-induced periodontitis, a pathophysiological mechanism that could be targeted by estrogens.

  1. A potential role for macrophages in maintaining lipopolysaccharide-induced subacute airway inflammation in rats

    OpenAIRE

    Liu, Lin; Chen, Lei; WANG, YONGSHENG; Yang, Hua; Chen, Yifang; Xu, Xiaoya; Zhou, Hang; JIANG, FANGPING; LI, TONGLIN; Wang, Junli

    2012-01-01

    Bacterial infection is a key factor in airway inflammation. The present study describes the time-dependent changes in the leukocyte counts and cytokine levels of the bronchoalveolar lavage fluid (BALF) following subacute airway inflammation induced by lipopolysaccharide (LPS), a major component of the outer membranes of Gram-negative bacteria. LPS (200 μg/rat) or saline was intratracheally administered to rats which were sacrificed 2, 4 or 7 days after LPS treatment. Airway inflammation was e...

  2. Comparison of Biological and Immunological Characterization of Lipopolysaccharides From Brucella abortus RB51 and S19

    OpenAIRE

    Kianmehr, Zahra; Kaboudanian Ardestani, Sussan; Soleimanjahi, Hoorieh; Fotouhi, Fatemeh; Alamian, Saeed; Ahmadian, Shahin

    2015-01-01

    Background: Brucella abortus RB51 is a rough stable mutant strain, which has been widely used as a live vaccine for prevention of brucellosis in cattle instead of B. abortus strain S19. B. abortus lipopolysaccharide (LPS) has unique properties in comparison to other bacterial LPS. Objectives: In the current study, two types of LPS, smooth (S-LPS) and rough (R-LPS) were purified from B. abortus S19 and RB51, respectively. The aim of this study was to evaluate biological and immunological prope...

  3. Molecular characterization and immune response to lipopolysaccharide (LPS) of the suppressor of cytokine signaling (SOCS)-1, 2 and 3 genes in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Liu, Cai-Zhi; He, An-Yuan; Chen, Li-Qiao; Limbu, Samwel Mchele; Wang, Ya-Wen; Zhang, Mei-Ling; Du, Zhen-Yu

    2016-03-01

    Suppressor of cytokine signaling (SOCS) proteins are inverse feedback regulators of cytokine and hormone signaling mediated by the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway that are involved in immunity, growth and development of organisms. In the present study, three SOCS genes, SOCS-1, SOCS-2 and SOCS-3, were identified in an economically important fish, Nile tilapia (Oreochromis niloticus) referred to as NtSOCS-1, NtSOCS-2 and NtSOCS-3. Multiple alignments showed that, the three SOCS molecules share highly conserved functional domains, including the SRC homology 2 (SH2) domain, the extended SH2 subdomain (ESS) and the SOCS box with others vertebrate counterparts. Phylogenetic analysis indicated that NtSOCS-1, 2 and 3 belong to the SOCS type II subfamily. Whereas NtSOCS-1 and 3 showed close evolutionary relationship with Perciformes, NtSOCS-2 was more related to Salmoniformes. Tissue specific expression results showed that, NtSOCS-1, 2 and 3 were constitutively expressed in all nine tissues examined. NtSOCS-1 and 3 were highly expressed in immune-related tissues, such as gills, foregut and head kidney. However, NtSOCS-2 was superlatively expressed in liver, brain and heart. In vivo, NtSOCS-1 and 3 mRNA levels were up-regulated after lipopolysaccharide (LPS) challenge while NtSOCS-2 was down-regulated. In vitro, LPS stimulation increased NtSOCS-3 mRNA expression, however it inhibited the transcription of NtSOCS-1 and 2. Collectively, our findings suggest that, the NtSOCS-1 and 3 might play significant role(s) in innate immune response, while NtSOCS-2 may be more involved in metabolic regulation.

  4. Molecular characterization and immune response to lipopolysaccharide (LPS) of the suppressor of cytokine signaling (SOCS)-1, 2 and 3 genes in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Liu, Cai-Zhi; He, An-Yuan; Chen, Li-Qiao; Limbu, Samwel Mchele; Wang, Ya-Wen; Zhang, Mei-Ling; Du, Zhen-Yu

    2016-03-01

    Suppressor of cytokine signaling (SOCS) proteins are inverse feedback regulators of cytokine and hormone signaling mediated by the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway that are involved in immunity, growth and development of organisms. In the present study, three SOCS genes, SOCS-1, SOCS-2 and SOCS-3, were identified in an economically important fish, Nile tilapia (Oreochromis niloticus) referred to as NtSOCS-1, NtSOCS-2 and NtSOCS-3. Multiple alignments showed that, the three SOCS molecules share highly conserved functional domains, including the SRC homology 2 (SH2) domain, the extended SH2 subdomain (ESS) and the SOCS box with others vertebrate counterparts. Phylogenetic analysis indicated that NtSOCS-1, 2 and 3 belong to the SOCS type II subfamily. Whereas NtSOCS-1 and 3 showed close evolutionary relationship with Perciformes, NtSOCS-2 was more related to Salmoniformes. Tissue specific expression results showed that, NtSOCS-1, 2 and 3 were constitutively expressed in all nine tissues examined. NtSOCS-1 and 3 were highly expressed in immune-related tissues, such as gills, foregut and head kidney. However, NtSOCS-2 was superlatively expressed in liver, brain and heart. In vivo, NtSOCS-1 and 3 mRNA levels were up-regulated after lipopolysaccharide (LPS) challenge while NtSOCS-2 was down-regulated. In vitro, LPS stimulation increased NtSOCS-3 mRNA expression, however it inhibited the transcription of NtSOCS-1 and 2. Collectively, our findings suggest that, the NtSOCS-1 and 3 might play significant role(s) in innate immune response, while NtSOCS-2 may be more involved in metabolic regulation. PMID:26820103

  5. Protective Role of Flavonoids and Lipophilic Compounds from Jatropha platyphylla on the Suppression of Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells.

    Science.gov (United States)

    Ambriz-Pérez, Dulce L; Bang, Woo Young; Nair, Vimal; Angulo-Escalante, Miguel A; Cisneros-Zevallos, Luis; Heredia, J Basilio

    2016-03-01

    Seventeen polyphenols (e.g, apigenin, genistein, and luteolin glycosides) and 11 lipophilic compounds (e.g., fatty acids, sterols, and terpenes) were detected by LC-MS/MS-ESI and GC-MS, respectively, in Jatropha platyphylla. Extracts from pulp, kernel, and leaves and fractions were studied to know their effect on some pro-inflammatory mediators. Phenolic and lipophilic extracts showed significant inhibitory effects on ROS and NO production while not affecting mitochondrial activity or superoxide generation rate in lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. In addition, NO production was also diminished by lipophilic leaf fractions F1 and F2 with the latter fraction showing a greater effect and composed mainly of sterols and terpene. Furthermore, total extracts showed nonselective inhibitions against cyclooxygenase COX-1 and COX-2 activities. All together, these results suggest that J. platyphylla extracts have potential in treating inflammatory diseases and their activity is mediated by flavonoids and lipophilic compounds. PMID:26872073

  6. Protective Role of Ternatin Anthocyanins and Quercetin Glycosides from Butterfly Pea (Clitoria ternatea Leguminosae) Blue Flower Petals against Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells.

    Science.gov (United States)

    Nair, Vimal; Bang, Woo Young; Schreckinger, Elisa; Andarwulan, Nuri; Cisneros-Zevallos, Luis

    2015-07-22

    Twelve phenolic metabolites (nine ternatin anthocyanins and three glycosylated quercetins) were identified from the blue flowers of Clitoria ternatea by high-performance liquid chromatography diode array detection and electrospray ionization/mass spectrometry (HPLC-DAD-ESI/MS(n)). Three anthocyanins not reported in this species before show fragmentation pattern of the ternatin class. Extracts were fractionated in fractions containing flavonols (F3) and ternatin anthocyanins (F4). In general, C. ternatea polyphenols showed anti-inflammatory properties in lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells with distinct molecular targets. Flavonols (F3) showed strong inhibition of COX-2 activity and partial ROS suppression. On the other hand, the ternatin anthocyanins (F4) inhibited nuclear NF-κB translocation, iNOS protein expression, and NO production through a non-ROS suppression mechanism. Accordingly, quercetin glycosides and ternatin anthocyanins from the blue flower petals of C. ternatea may be useful in developing drugs or nutraceuticals for protection against chronic inflammatory diseases by suppressing the excessive production of pro-inflammatory mediators from macrophage cells. PMID:26120869

  7. Structure and Bioactivity of a Modified Peptide Derived from the LPS-Binding Domain of an Anti-Lipopolysaccharide Factor (ALF of Shrimp

    Directory of Open Access Journals (Sweden)

    Hui Yang

    2016-05-01

    Full Text Available The lipopolysaccharide binding domain (LBD in anti-lipopolysaccharide factor (ALF is the main functional element of ALF, which exhibits antimicrobial activities. Our previous studies show that the peptide LBDv, synthesized based on the modified sequence of LBD (named LBD2 from FcALF2, exhibited an apparently enhanced antimicrobial activity. To learn the prospect of LBDv application, the characteristics of LBDv were analyzed in the present study. The LBDv peptide showed higher antimicrobial and bactericidal activities compared with LBD2. These activities of the LBDv peptide were stable after heat treatment. LBDv could also exhibit in vivo antimicrobial activity to Vibrio harveyi. The LBDv peptide was found to bind bacteria, quickly cause bacterial agglutination, and kill bacteria by damaging their membrane integrity. Structure analysis showed that both LBDv and LBD2 held the β-sheet structure, and the positive net charge and amphipathicity characteristic were speculated as two important components for their antimicrobial activity. The cytotoxicity of LBDv was evaluated in cultured Spodoptera frugiperda (Sf9 cells and Cherax quadricarinatus hemocytes. More than 80% cells could survive with the LBDv concentration up to 16 μM. Collectively, these findings highlighted the potential antimicrobial mechanism of LBD peptides, and provided important information for the commercial use of LBDv in the future.

  8. Lipopolysaccharide Increases Immune Activation and Alters T Cell Homeostasis in SHIVB'WHU Chronically Infected Chinese Rhesus Macaque

    OpenAIRE

    Gao-Hong Zhang; Run-Dong Wu; Hong-Yi Zheng; Xiao-Liang Zhang; Ming-Xu Zhang; Ren-Rong Tian; Guang-Ming Liu; Wei Pang; Yong-Tang Zheng

    2015-01-01

    Immune activation plays a significant role in the disease progression of HIV. Microbial products, especially bacterial lipopolysaccharide (LPS), contribute to immune activation. Increasing evidence indicates that T lymphocyte homeostasis disruptions are associated with immune activation. However, the mechanism by which LPS affects disruption of immune response is still not fully understood. Chronically SHIVB’WHU-infected Chinese rhesus macaques received 50 μg/kg body weight LPS in this study....

  9. Microfiltration, Nano-filtration and Reverse Osmosis for the Removal of Toxins (LPS Endotoxins) from Wastewater

    OpenAIRE

    Mokhtar, Guizani; Naoyuki, Funamizu

    2012-01-01

    Lipopolysaccharide (LPS) endotoxin, a bacterial byproduct abundantly present in wastewater, is more and more representing a major concern in wastewater treatment sector for the potential health risk it represents. It is, therefore, more urgent than before to protect consumers from contaminating their fresh potable water reserves with LPS endotoxin through aquifer replenishment using reclaimed wastewater or by supplying reclaimed wastewater as potable water. Membrane treatment is an alternativ...

  10. [Isolation and chemical characterization of type R lipopolysaccharides of a hypovirulent strain of Yersinia pestis].

    Science.gov (United States)

    Minka, S; Bruneteau, M

    1998-05-01

    The lipopolysaccharides LPS I and LPS II, isolated from the hypovirulent EV40 strain of Yersinia pestis, are composed only of type R lipopolysaccharides. This type consists of two forms a and b, depending on their solubility pattern in a solvent mixture containing varying proportions of chloroform, methanol, hexane, and hydrochloric acid. LPS I consists of one subtype, RIb, while LPS II consists of two subtypes, RIIa and RIIb. Analysis by gel electrophoresis shows that the mass of these lipopolysaccharide forms are in the vicinity of 2000-3000 Da. The RIb and RIIb subtypes, which are found in the majority of lipopolysaccharide I and II fractions, are composed of ketoses and amines that are similar to those occurring in LPS I and LPS II. In contrast, the two subtypes RIIa and RIIb are different both in terms of the composition of lipid A and the extent of its substitution. Certain fractions of RIIa contain only lipid A and 3-deoxy-D-manno-octulosonic acid (KDO), while other fractions of RIIb possess a lipid A, which is not substituted by arabinose. The whole set of these R-type lipopolysaccharide forms are excellent models for the study of the role of the primary structure of the polysaccharide region, and for the effect of lipid A substitution on the biological activity of bacterial lipopolysaccharides.

  11. Role of berberine in anti-bacterial as a high-affinity LPS antagonist binding to TLR4/MD-2 receptor

    OpenAIRE

    Chu, Ming; Ding, Ran; Chu, Zheng-yun; Zhang, Ming-bo; Liu, Xiao-Yan; Xie, Shao-Hua; Zhai, Yan-jun; Wang, Yue-dan

    2014-01-01

    Background Berberine is an isoquinoline alkaloid mainly extracted from Rhizoma Coptidis and has been shown to possess a potent inhibitory activity against bacterial. However, the role of berberine in anti-bacterial action has not been extensively studied. Methods The animal model was established to investigate the effects of berberine on bacterial and LPS infection. Docking analysis, Molecular dynamics simulations and Real-time RT-PCR analysis was adopted to investigate the molecular mechanis...

  12. WaaA of the Hyperthermophilic Bacterium Aquifex aeolicus Is a Monofunctional 3-Deoxy-d-manno-oct-2-ulosonic Acid Transferase Involved in Lipopolysaccharide Biosynthesis*

    OpenAIRE

    Mamat, Uwe; Schmidt, Helgo; Munoz, Eva; Lindner, Buko; Fukase, Koichi; Hanuszkiewicz, Anna; WU, Jing; Meredith, Timothy C.; Ronald W Woodard; Hilgenfeld, Rolf; Mesters, Jeroen R.; Holst, Otto

    2009-01-01

    The hyperthermophile Aquifex aeolicus belongs to the deepest branch in the bacterial genealogy. Although it has long been recognized that this unique Gram-negative bacterium carries genes for different steps of lipopolysaccharide (LPS) formation, data on the LPS itself or detailed knowledge of the LPS pathway beyond the first committed steps of lipid A and 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) synthesis are still lacking. We now report the functional characterization of the thermostable K...

  13. Lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) blunt the response of Neuropeptide Y/Agouti-related peptide (NPY/AgRP) glucose inhibited (GI) neurons to decreased glucose.

    Science.gov (United States)

    Hao, Lihong; Sheng, Zhenyu; Potian, Joseph; Deak, Adam; Rohowsky-Kochan, Christine; Routh, Vanessa H

    2016-10-01

    A population of Neuropeptide Y (NPY) neurons which co-express Agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus (ARC) are inhibited at physiological levels of brain glucose and activated when glucose levels decline (e.g. glucose-inhibited or GI neurons). Fasting enhances the activation of NPY/AgRP-GI neurons by low glucose. In the present study we tested the hypothesis that lipopolysaccharide (LPS) inhibits the enhanced activation of NPY/AgRP-GI neurons by low glucose following a fast. Mice which express green fluorescent protein (GFP) on their NPY promoter were used to identify NPY/AgRP neurons. Fasting for 24h and LPS injection decreased blood glucose levels. As we have found previously, fasting increased c-fos expression in NPY/AgRP neurons and increased the activation of NPY/AgRP-GI neurons by decreased glucose. As we predicted, LPS blunted these effects of fasting at the 24h time point. Moreover, the inflammatory cytokine tumor necrosis factor alpha (TNFα) blocked the activation of NPY/AgRP-GI neurons by decreased glucose. These data suggest that LPS and TNFα may alter glucose and energy homeostasis, in part, due to changes in the glucose sensitivity of NPY/AgRP neurons. Interestingly, our findings also suggest that NPY/AgRP-GI neurons use a distinct mechanism to sense changes in extracellular glucose as compared to our previous studies of GI neurons in the adjacent ventromedial hypothalamic nucleus.

  14. Brainstem metabotropic glutamate receptors reduce food intake and activate dorsal pontine and medullar structures after peripheral bacterial lipopolysaccharide administration.

    Science.gov (United States)

    Chaskiel, Léa; Paul, Flora; Gerstberger, Rüdiger; Hübschle, Thomas; Konsman, Jan Pieter

    2016-08-01

    During infection-induced inflammation food intake is reduced. Vagal and brainstem pathways are important both in feeding regulation and immune-to-brain communication. Glutamate is released by vagal afferent terminals in the nucleus of the solitary tract and by its neurons projecting to the parabrachial nuclei. We therefore studied the role of brainstem glutamate receptors in spontaneous food intake of healthy animals and during sickness-associated hypophagia after peripheral administration of bacterial lipopolysaccharides or interleukin-1beta. Brainstem group I and II metabotropic, but not ionotropic, glutamate receptor antagonism increased food intake both in saline- and lipopolysaccharide-treated rats. In these animals, expression of the cellular activation marker c-Fos in the lateral parabrachial nuclei and lipopolysaccharide-induced activation of the nucleus of the solitary tract rostral to the area postrema were suppressed. Group I metabotropic glutamate receptors did not colocalize with c-Fos or neurons regulating gastric function in these structures. Group I metabotropic glutamate receptors were, however, found on raphé magnus neurons that were part of the brainstem circuit innervating the stomach and on trigeminal and hypoglossal motor neurons. In conclusion, our findings show that brainstem metabotropic glutamate receptors reduce food intake and activate the lateral parabrachial nuclei as well as the rostral nucleus of the solitary tract after peripheral bacterial lipopolysaccharide administration. They also provide insight into potential group I metabotropic glutamate receptor-dependent brainstem circuits mediating these effects. PMID:27016016

  15. Function of an anti-lipopolysaccharide factor (ALF) isoform isolated from the hemocytes of the giant freshwater prawn Macrobrachium rosenbergii in protecting against bacterial infection.

    Science.gov (United States)

    Liu, Chia-Chen; Chung, Chien-Pang; Lin, Chang-Yi; Sung, Hung-Hung

    2014-02-01

    In this study, a 780-bp full-length cDNA encoding Macrobrachium rosenbergii anti-lipopolysaccharide factor (MrALF) from hemocytes was cloned and identified. The ALF isoform exhibited immune activities, and its concentration in hemolymph was determined. An in vivo expression study showed that the ALF mRNA level of hemocytes could be induced by lipopolysaccharides (LPSs) in an exposure time-dependent manner. Purified recombinant MrALF (rMrALF) expressed in the yeast Pichia pastoris SMD1168 eukaryotic protein expression system demonstrated antibacterial activity against the Gram-negative prawn pathogen Aeromonas hydrophila (minimum inhibitory concentration (MIC)=0.806μM, minimum bactericidal concentration (MBC)=1.606μM) but not the Gram-positive pathogen Lactococcus garvieae exposed to 25.696μM of rALF. However, rMrALF can bind to Gram-negative and -positive bacteria. An in vivo expression study demonstrated that the ALF concentrations in prawn hemocytes and plasma were 0.176μM and 0.168μM, respectively; following LPS treatment for 6h, the corresponding concentrations were 0.133μM in hemocytes and 0.272μM in plasma. Furthermore, the percentage of hemocytes phagocytosing bacteria cells was higher in hemoyctes previously treated with MrALF than those treated with sterile medium. These results suggest that in the innate immune response of M. rosenbergii, the MrALF from hemocytes may play an opsonin during a bacterial invasion.

  16. Lipopolysaccharide increases gastric and circulating NUCB2/nesfatin-1 concentrations in rats

    OpenAIRE

    Stengel, Andreas; Goebel-Stengel, Miriam; Jawien, Janusz; Kobelt, Peter; Taché, Yvette; Lambrecht, Nils W. G.

    2011-01-01

    Bacterial lipopolysaccharide (LPS) is an established animal model to study the innate immune response to Gram-negative bacteria mimicking symptoms of infection including reduction of food intake. LPS decreases acyl ghrelin associated with decreased concentrations of circulating ghrelin-O-acyltransferase (GOAT) likely contributing to the anorexigenic effect. We also recently described the prominent expression of the novel anorexigenic hormone, nucleobindin2 (NUCB2)/nesfatin-1 in gastric X/A-li...

  17. A Complete Lipopolysaccharide Inner Core Oligosaccharide Is Required for Resistance of Burkholderia cenocepacia to Antimicrobial Peptides and Bacterial Survival In Vivo

    OpenAIRE

    Loutet, Slade A.; Flannagan, Ronald S.; Kooi, Cora; Sokol, Pamela A.; Valvano, Miguel A

    2006-01-01

    Burkholderia cenocepacia is an important opportunistic pathogen of patients with cystic fibrosis. This bacterium is inherently resistant to a wide range of antimicrobial agents, including high concentrations of antimicrobial peptides. We hypothesized that the lipopolysaccharide (LPS) of B. cenocepacia is important for both virulence and resistance to antimicrobial peptides. We identified hldA and hldD genes in B. cenocepacia strain K56-2. These two genes encode enzymes involved in the modific...

  18. Modulating the bacterial surface with small RNAs: a new twist on PhoP/Q-mediated lipopolysaccharide modification

    DEFF Research Database (Denmark)

    Overgaard, Martin; Kallipolitis, Birgitte; Valentin-Hansen, Poul

    2009-01-01

    Summary In recent years, small non-coding RNAs have emerged as important regulatory components in bacterial stress responses and in bacterial virulence. Many of these are conserved in related species and act on target mRNAs by sequence complementarity. They are tightly controlled...... of bacterial surface properties by regulating lipopolysaccharide modification. The small RNA is expressed as part of the PhoP/PhoQ two-component system that plays a major role in virulence of pathogenic species. This work expands the list of global regulators known to control small RNA expression...... at the transcription level, and are frequently elements of global regulatory systems. In Escherichia coli and Salmonella, almost one-third of the functional characterized small RNAs participate in control of outer membrane protein production. A subset of these genes is under the control of the sigma...

  19. Quantitative lipopolysaccharide analysis using HPLC/MS/MS and its combination with the limulus amebocyte lysate assay[S

    OpenAIRE

    Pais De Barros, Jean-Paul; Gautier, Thomas; Sali, Wahib; Adrie, Christophe; Choubley, Hélène; Charron, Emilie; Lalande, Caroline; Le Guern, Naig; Deckert, Valérie; Monchi, Mehran; Quenot, Jean-Pierre; Lagrost, Laurent

    2015-01-01

    Quantitation of plasma lipopolysaccharides (LPSs) might be used to document Gram-negative bacterial infection. In the present work, LPS-derived 3-hydroxymyristate was extracted from plasma samples with an organic solvent, separated by reversed phase HPLC, and quantitated by MS/MS. This mass assay was combined with the limulus amebocyte lysate (LAL) bioassay to monitor neutralization of LPS activity in biological samples. The described HPLC/MS/MS method is a reliable, practical, accurate, and ...

  20. The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity

    DEFF Research Database (Denmark)

    Erbs, Gitte; Newman, Mari-Anne

    2012-01-01

    ) from the cell walls of both Gram-positive and Gram-negative bacteria, have been found to act as elicitors of plant innate immunity. These conserved, indispensable, microbe-specific molecules are also referred to as ‘microbe-associated molecular patterns’ (MAMPs). MAMPs are recognized by the plant...... to as ‘innate immunity’. Innate immunity is the first line of defence against invading microorganisms in vertebrates and the only line of defence in invertebrates and plants. Bacterial glycoconjugates, such as lipopolysaccharides (LPSs) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN...

  1. Induction of IL-1 during hemodialysis: Transmembrane passage of intact endotoxins (LPS)

    Energy Technology Data Exchange (ETDEWEB)

    Laude-Sharp, M.; Caroff, M.; Simard, L.; Pusineri, C.; Kazatchkine, M.D.; Haeffner-Cavaillon, N. (INSERM U 28, Hopital Broussais, Paris (France))

    1990-12-01

    Circulating monocytes of patients undergoing chronic hemodialysis are triggered to produce interleukin-1 (IL-1) in vivo. Intradialytic induction of IL-1 is associated with complement activation in patients dialyzed with first-use cellulose membranes. Chronic stimulation of IL-1 production occurs because of an yet unidentified mechanism in patients dialyzed with high permeability membranes. The present study demonstrates that intact bacterial lipopolysaccharide (LPS) molecules may cross cuprophan, AN69 and polysulfone membranes under in vitro conditions simulating in vivo hemodialysis. The experiments used purified LPS from Neisseria meningitidis and LPS from Pseudomonas testosteroni, a bacterial strain grown out from a clinically used dialysate. LPS were purified to homogeneity and radiolabeled. Transmembrane passage of 3H-labeled LPS was observed within the first five minutes of dialysis. A total of 0.1 to 1% of 3H-labeled LPS were recovered in the dialysate compartment after one hour of dialysis. High amounts of LPS, representing 40 to 70% of the amount originally present in the dialysate, were absorbed onto high permeability membranes. Low amounts of LPS were absorbed onto cuprophan membranes. The amount of LPS absorbed decreased with the concentration of LPS in the dialysate. LPS recovered from the blood compartment exhibited the same molecular weight as that used to contaminate the dialysate. Biochemically detectable transmembrane passage of LPS was not associated with that of material detectable using the limulus amebocyte lysate (LAL) assay. An IL-1-inducing activity was, however, detected in the blood compartment upon dialysis with high permeability membranes, as previously found by others with cuprophan membranes.

  2. Biophysical characterization of the interaction of Limulus polyphemus endotoxin neutralizing protein with lipopolysaccharide.

    Science.gov (United States)

    Andrä, Jörg; Garidel, Patrick; Majerle, Andreja; Jerala, Roman; Ridge, Richard; Paus, Erik; Novitsky, Tom; Koch, Michel H J; Brandenburg, Klaus

    2004-05-01

    Endotoxin-neutralizing protein (ENP) of the horseshoe crab is one of the most potent neutralizers of endotoxins [bacterial lipopolysaccharide (LPS)]. Here, we report on the interaction of LPS with recombinant ENP using a variety of physical and biological techniques. In biological assays (Limulus amebocyte lysate and tumour necrosis factor-alpha induction in human mononuclear cells), ENP causes a strong reduction of the immunostimulatory ability of LPS in a dose-dependent manner. Concomitantly, the accessible negative surface charges of LPS and lipid A (zeta potential) are neutralized and even converted into positive values. The gel to liquid crystalline phase transitions of LPS and lipid A shift to higher temperatures indicative of a rigidification of the acyl chains, however, the only slight enhancement of the transition enthalpy indicates that the hydrophobic moiety is not strongly disturbed. The aggregate structure of lipid A is converted from a cubic into a multilamellar phase upon ENP binding, whereas the secondary structure of ENP does not change due to the interaction with LPS. ENP contains a hydrophobic binding site to which the dye 1-anilino-8-sulfonic acid binds at a K(d) of 19 micro m, which is displaced by LPS. Because lipopolysaccharide-binding protein (LBP) is not able to bind to LPS when ENP and LPS are preincubated, tight binding of ENP to LPS can be deduced with a K(d) in the low nonomolar range. Importantly, ENP is able to incorporate by itself into target phospholipid liposomes, and is also able to mediate the intercalation of LPS into the liposomes thus acting as a transport protein in a manner similar to LBP. Thus, LPS-ENP complexes might enter target membranes of immunocompetent cells, but are not able to activate due to the ability of ENP to change LPS aggregates from an active into an inactive form. PMID:15128313

  3. A central role for the mammalian target of rapamycin in LPS-induced anorexia in mice.

    Science.gov (United States)

    Yue, Yunshuang; Wang, Yi; Li, Dan; Song, Zhigang; Jiao, Hongchao; Lin, Hai

    2015-01-01

    Bacterial lipopolysaccharide (LPS), also known as endotoxin, induces profound anorexia. However, the LPS-provoked pro-inflammatory signaling cascades and the neural mechanisms underlying the development of anorexia are not clear. Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. This study aimed to determine whether the mTOR pathway is involved in LPS-induced anorexia. Effects of LPS on hypothalamic gene/protein expression in mice were measured by RT-PCR or western blotting analysis. To determine whether inhibition of mTOR signaling could attenuate LPS-induced anorexia, we administered an i.c.v. injection of rapamycin, an mTOR inhibitor, on LPS-treated male mice. In this study, we showed that LPS stimulates the mTOR signaling pathway through the enhanced phosphorylation of mTOR(Ser2448) and p70S6K(Thr389). We also showed that LPS administration increased the phosphorylation of FOXO1(Ser256), the p65 subunit of nuclear factor kappa B (Panorexia by decreasing the phosphorylation of p70S6K(Thr389), FOXO1(Ser256), and FOXO1/3a(Thr) (24) (/) (32). These results suggest promising approaches for the prevention and treatment of LPS-induced anorexia.

  4. C-reactive protein (CRP, interferon gamma-inducible protein 10 (IP-10, and lipopolysaccharide (LPS are associated with risk of tuberculosis after initiation of antiretroviral therapy in resource-limited settings.

    Directory of Open Access Journals (Sweden)

    Mark W Tenforde

    Full Text Available The association between pre-antiretroviral (ART inflammation and immune activation and risk for incident tuberculosis (TB after ART initiation among adults is uncertain.Nested case-control study (n = 332 within ACTG PEARLS trial of three ART regimens among 1571 HIV-infected, treatment-naïve adults in 9 countries. We compared cases (participants with incident TB diagnosed by 96 weeks to a random sample of controls (participants who did not develop TB, stratified by country and treatment arm.We measured pre-ART C-reactive protein (CRP, EndoCab IgM, ferritin, interferon gamma (IFN-γ, interleukin 6 (IL-6, interferon gamma-inducible protein 10 (IP-10, lipopolysaccharide (LPS, soluble CD14 (sCD14, tumor necrosis factor alpha (TNF-α, and CD4/DR+/38+ and CD8/DR+/38+ T cells. Markers were defined according to established cutoff definitions when available, 75th percentile of measured values when not, and detectable versus undetectable for LPS. Using logistic regression, we measured associations between biomarkers and incident TB, adjusting for age, sex, study site, treatment arm, baseline CD4 and log10 viral load. We assessed the discriminatory value of biomarkers using receiver operating characteristic (ROC analysis.Seventy-seven persons (4.9% developed incident TB during follow-up. Elevated baseline CRP (aOR 3.25, 95% CI: 1.55-6.81 and IP-10 (aOR 1.89, 95% CI: 1.05-3.39, detectable plasma LPS (aOR 2.39, 95% CI: 1.13-5.06, and the established TB risk factors anemia and hypoalbuminemia were independently associated with incident TB. In ROC analysis, CRP, albumin, and LPS improved discrimination only modestly for TB risk when added to baseline routine patient characteristics including CD4 count, body mass index, and prior TB.Incident TB occurs commonly after ART initiation. Although associated with higher post-ART TB risk, baseline CRP, IP-10, and LPS add limited value to routine patient characteristics in discriminating who develops active TB. Besides

  5. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection.

    Science.gov (United States)

    Maldonado, Rita F; Sá-Correia, Isabel; Valvano, Miguel A

    2016-07-01

    The Gram-negative bacterial lipopolysaccharide (LPS) is a major component of the outer membrane that plays a key role in host-pathogen interactions with the innate immune system. During infection, bacteria are exposed to a host environment that is typically dominated by inflammatory cells and soluble factors, including antibiotics, which provide cues about regulation of gene expression. Bacterial adaptive changes including modulation of LPS synthesis and structure are a conserved theme in infections, irrespective of the type or bacteria or the site of infection. In general, these changes result in immune system evasion, persisting inflammation and increased antimicrobial resistance. Here, we review the modifications of LPS structure and biosynthetic pathways that occur upon adaptation of model opportunistic pathogens (Pseudomonas aeruginosa, Burkholderia cepacia complex bacteria, Helicobacter pylori and Salmonella enterica) to chronic infection in respiratory and gastrointestinal sites. We also discuss the molecular mechanisms of these variations and their role in the host-pathogen interaction. PMID:27075488

  6. The roles of prostaglandin E2 and D2 in lipopolysaccharide-mediated changes in sleep

    OpenAIRE

    Oishi, Yo; Yoshida, Kyoko; Scammell, Thomas E.; Urade, Yoshihiro; Lazarus, Michael; Saper, Clifford B.

    2014-01-01

    When living organisms become sick as a result of a bacterial infection, a suite of brain-mediated responses occur, including fever, anorexia and sleepiness. Systemic administration of lipopolysaccharide (LPS), a common constituent of bacterial cell walls, increases body temperature and non-rapid eye movement (NREM) sleep in animals and induces the production of pro-inflammatory prostaglandins (PGs). Prostaglandin E2 (PGE2) is the principal mediator of fever, and both PGE2 and PGD2 regulate sl...

  7. Intrapulmonary Delivery of Ethyl Pyruvate Attenuates Lipopolysaccharide : and Lipoteichoic Acid-Induced Lung Inflammation in Vivo

    OpenAIRE

    van Zoelen, Marieke A.D.; de Vos, Alex F.; Larosa, Gregory J.; Draing, Christian; Aulock, Sonja von; van der Poll, Tom

    2007-01-01

    Ethyl pyruvate (EP) is a stable pyruvate derivative that has been shown to exert anti-inflammatory effects in various models of systemic inflammation including endotoxemia. We here sought to determine the local effects of EP, after intrapulmonary delivery, in models of lung inflammation induced by instillation via the airways of either lipopolysaccharide (LPS, a constituent of the gram-negative bacterial cell wall) or lipoteichoic acid (LTA, a component of the gram-positive bacterial cell wal...

  8. Tolerance of Mice to Lipopolysaccharide is Correlated with Inhibition of Caspase-3-mediated Apoptosis in Mouse Liver Cells

    Institute of Scientific and Technical Information of China (English)

    Jie LUAN; Bingrong ZHOU; Hui DING; Zhongtian QI

    2007-01-01

    Bacterial endotoxin lipopolysaccharide (LPS) often results in multiple organ failure. However,pre-exposure of mice to a sublethal dose of LPS renders the animal tolerant to a lethal dose of LPS. This study was designed to determine whether pre-exposure of a small dose of LPS was able to suppress apoptosis in mice when challenged with LPS in combination with D-galactosamine, and to investigate the expression changes of the apoptosis-associated molecules. The results showed that a characteristic apoptotic DNA fragmentation existed in mouse livers of the LPS-naive group, but not in control groups; and the mice of the LPS-naive group were all dead after 2 d. However, in the LPS-tolerance groups, both the lethal rate and apoptotic DNA fragmentation were suppressed after the mice were challenged with LPS/D-galactosamine,and the protection against the lethality and apoptotic reaction could be maintained for up to 7 d. In this period, significantly lower levels of caspase-3 and its mRNA appeared in LPS-tolerant groups compared to those of the LPS-naive group (P<0.05), and the caspase-3 activities gradually recovered as the observation was prolonged. Our findings suggest that LPS tolerance could suppress apoptosis in mouse liver cells, and the expression and activity of caspase-3 could be down-regulated.

  9. Identification of a novel compound that inhibits iNOS and COX-2 expression in LPS-stimulated macrophages from Schisandra chinensis

    International Nuclear Information System (INIS)

    A novel α-iso-cubebenol, which has anti-inflammatory effects in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, was isolated from the fruits of Schisandra chinensis. α-iso-cubebenol inhibited LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. Consistent with these findings, α-iso-cubebenol also reduced the LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 at the protein and mRNA levels in a concentration-dependent manner. α-iso-cubebenol also inhibited LPS-induced nuclear translocation of the NF-κB p65 subunit. Furthermore, α-iso-cubebenol suppressed the phosphorylation of ERK, JNK, and p38 kinase induced by LPS. Since the novel α-iso-cubebenol blocked the production of several pro-inflammatory mediators induced by LPS in macrophages, the molecule can be useful material for the development of anti-inflammatory agents against bacterial infections or endotoxin.

  10. Comparison of Biological and Immunological Characterization of Lipopolysaccharides From Brucella abortus RB51 and S19

    Science.gov (United States)

    Kianmehr, Zahra; Kaboudanian Ardestani, Sussan; Soleimanjahi, Hoorieh; Fotouhi, Fatemeh; Alamian, Saeed; Ahmadian, Shahin

    2015-01-01

    Background: Brucella abortus RB51 is a rough stable mutant strain, which has been widely used as a live vaccine for prevention of brucellosis in cattle instead of B. abortus strain S19. B. abortus lipopolysaccharide (LPS) has unique properties in comparison to other bacterial LPS. Objectives: In the current study, two types of LPS, smooth (S-LPS) and rough (R-LPS) were purified from B. abortus S19 and RB51, respectively. The aim of this study was to evaluate biological and immunological properties of purified LPS as an immunogenical determinant. Materials and Methods: Primarily, S19 and RB51 LPS were extracted and purified by two different modifications of the phenol water method. The final purity of LPS was determined by chemical analysis (2-keto-3-deoxyoctonate (KDO), glycan, phosphate and protein content) and different staining methods, following sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). C57BL/6 mice were immunized subcutaneously three times at biweekly intervals with the same amount of purified LPSs. The humoral immunity was evaluated by measuring specific IgG levels and also different cytokine levels, such as IFN-γ, TNF-α, IL-4 and IL-10, were determined for assessing T-cell immune response. Results: Biochemical analysis data and SDS-PAGE profile showed that the chemical nature of S19 LPS is different from RB51 LPS. Both S and R-LPS induce an immune response. T-cell immune response induced by both S and R-LPS had almost the same pattern whereas S19 LPS elicited humoral immunity, which was higher than RB51 LPS. Conclusions: Purified LPS can be considered as a safe adjuvant and can be used as a component in prophylactic and therapeutic vaccines targeting infectious disease, cancer and allergies. PMID:26862376

  11. Lipopolysaccharide-Induced Profiles of Cytokine, Chemokine, and Growth Factors Produced by Human Decidual Cells Are Altered by Lactobacillus rhamnosus GR-1 Supernatant

    OpenAIRE

    Li, Wei; Yang, Siwen; Kim, Sung O.; Reid, Gregor; Challis, John R. G.; Bocking, Alan D.

    2014-01-01

    The aim of this study was to assess the effects of bacterial lipopolysaccharide (LPS) and Lactobacillus rhamnosus GR-1 supernatant (GR-1SN) on secretion profiles of cytokines, chemokines, and growth factors from primary cultures of human decidual cells. Lipopolysaccharide significantly increased the output of proinflammatory cytokines (interleukin [IL]-1B, IL-2, IL-6, IL-12p70, IL-15, IL-17A, interferon gamma [IFN-γ], and tumor necrosis factor [TNF]); anti-inflammatory cytokines (IL-1RN, IL-4...

  12. Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (endotoxin) detection.

    Science.gov (United States)

    Lim, Seng Koon; Chen, Peng; Lee, Fook Loy; Moochhala, Shabbir; Liedberg, Bo

    2015-09-15

    Lipopolysaccharide (LPS) is a toxic inflammatory stimulator released from the outer cell membrane of Gram-negative bacteria, known to be directly related to, for example, septic shock, that causes millions of casualties annually. This number could potentially be lowered significantly if specific, sensitive, and more simply applicable LPS biosensors existed. In this work, we present a facile, sensitive and selective LPS sensor, developed by assembling tetramethylrhodamine-labeled LPS-binding peptides on graphene oxide (GO). The fluorescence of the dye-labeled peptide is quenched upon interaction with GO. Specific binding to LPS triggers the release of the peptide-LPS complex from GO, resulting in fluorescence recovery. This fluorescent turn-on sensor offers an estimated limit of detection of 130 pM, which is the lowest ever reported among all synthetic LPS sensors to date. Importantly, this sensor is applicable for detection of LPS in commonly used clinical injectable fluids, and it enables selective detection of LPS from different bacterial strains as well as LPS on the membrane of living E. coli. PMID:26303386

  13. PGRN缺失型腹膜巨噬细胞对细菌脂多糖的体外炎症应答%Inflammatory responses of PGRN-deficient peritoneal macrophage to bacterial lipopolysaccharide in vitro

    Institute of Scientific and Technical Information of China (English)

    刘露; 张雯; 陈翰祥; 郑琳; 卢翌; 王红; 唐伟; 赵蔚明

    2013-01-01

    Objective To investigate the effects of progranulin (PGRN) in the inflammatory responses of peritoneal macrophages (PMs) to bacterial lipopolysaccharide (LPS) in vitro. Methods Peritoneal exudate cells (PECs) were induced and extracted from wild-type (WT) mice and PGRN gene knock-out mice (KO), then the number, morpholo gy and classes of PECs were subsequently evaluated. Surface markers CD11 b and F4/80 of PMs were tested by flow cytometry. PMs derived from WT or KO mice were treated with LPS and WT PMs were treated with PBS, LPS, re-combinant PGRN or LPS plus recombinant PGRN respectively. Supernatants of cultivation were collected after 24-hours incubation and concentrations of TNF-α, IL-1β, IL-12 and production of NO were detected by ELISA or Griess assay respectively. Results There were no significant differences in cell number, classes and expression of surface makers CD11b and F4/80 between WT and KO mice-derived PECs. Higher concentration of TNF-α, IL-1β, IL-12 and more NO production were detected in the supernatants of KO PMs stimulated by LPS compared to those of WT PMs. Additionally,recombinant PGRN dramatically inhibited the production of pro-inflammatory cytokines TNF-α, IL-1β, IL-12 and in flammatory intermediate NO of WT PMs stimulated by LPS. Conclusion PGRN KO PMs display a stronger inflam matory response than WT PMs when treated with LPS. In addition, recombinant PGRN powerfully inhibits LPS stimu lating production of TNF-α, IL-1β, IL-12 and NO of PMs.%目的 观察颗粒蛋白前体(PGRN)对细菌脂多糖(LPS)诱导腹膜巨噬细胞(PM)炎症应答的影响.方法 诱导提取野生型(WT)小鼠及PGRN基因敲除小鼠(KO)腹膜细胞(PEC),观察PEC数目、形态和类型;流式细胞术检测PEC的巨噬细胞表面标志物CD11b、F4/80.LPS分别处理WT或KO小鼠PM,LPS、重组PGRN或LPS加重组PGRN分别处理WT小鼠PM,培养24 h后收集细胞上清,ELISA法检测肿瘤坏死因子α(TNF-α)、白细胞介素1β(IL-1

  14. Biophysical characterization of lipopolysaccharide and lipid A inactivation by lactoferrin.

    Science.gov (United States)

    Brandenburg, K; Jürgens, G; Müller, M; Fukuoka, S; Koch, M H

    2001-08-01

    The interaction of bacterial endotoxins (LPS Re and lipid A, the 'endotoxic principle' of LPS) with the endogenous antibiotic lactoferrin (LF) was investigated using various physical techniques and biological assays. By applying Fourier-transform infrared (FTIR) spectroscopy, we find that LF binds to the phosphate group within the lipid A part and induces a rigidification of the acyl chains of LPS. The secondary structure of the protein - as monitored by the amide I band - is, however, not changed. Concomitant with the IR data, scanning calorimetric data indicate a sharpening of the acyl chain phase transition. From titration calorimetric and zeta potential data, saturation of LF binding to LPS was found to lie at a [LF]:[LPS] ratio of 1:3 to 1:5 M from the former and 1:10 M from the latter technique. X-ray scattering data indicate a change of the lipid A aggregate structure from inverted cubic to multilamellar, and with fluorescence (FRET) spectroscopy, LF is shown to intercalate by itself into phospholipid liposomes and may also block the lipopolysaccharide-binding protein (LBP)-induced intercalation of LPS. The LPS-induced cytokine production of human mononuclear cells exhibits a decrease due to LF binding, whereas the coagulation of amebocyte lysate in the Limulus test exhibited concentration-dependent changes. Based on these results, a model for the mechanisms of endotoxin inactivation by LF is proposed. PMID:11592403

  15. Effects of lipopolysaccharide on the catabolic activity of macrophages

    International Nuclear Information System (INIS)

    The ability of macrophages to degrade and catabolize antigens is of relevance both as a means to process complex antigens prior to presentation to T cells, as well as a way to down regulate immune responses by destroying the antigenicity of polypeptides. With these considerations, the authors have investigated the regulation of macrophage catabolic activity by lipopolysaccharide (LPS). Catabolic activity was quantitated by following the distribution and molecular form of 125-I labelled surface components of heat-killed Listeria monocytogenes (HKLM) subsequent to their uptake by macrophages. They have compared the catabolic activity of macrophages from peritoneal exudates of mice injected i.p. with saline or LPS and have found that LPS-elicited macrophages display a greatly enhanced (3 fold) rate of catabolism. This increase in catabolic activity peaks 3 days after LPS injection and steadily declines thereafter, approaching a baseline level after 3 weeks. The enhancement of catabolic activity is under LPS gene control. LPS-elicited macrophages rapidly destroy the antigenicity of bacterial antigens and function poorly as antigen presenting cells in vitro. These results suggest that LPS elicits a macrophage population specialized for antigen degradation functions with negative regulatory effects on the induction of specific immune responses

  16. A novel human tectonin protein with multivalent beta-propeller folds interacts with ficolin and binds bacterial LPS.

    Directory of Open Access Journals (Sweden)

    Diana Hooi Ping Low

    Full Text Available BACKGROUND: Although the human genome database has been completed a decade ago, approximately 50% of the proteome remains hypothetical as their functions are unknown. The elucidation of the functions of these hypothetical proteins can lead to additional protein pathways and revelation of new cascades. However, many of these inferences are limited to proteins with substantial sequence similarity. Of particular interest here is the Tectonin domain-containing family of proteins. METHODOLOGY/PRINCIPAL FINDINGS: We have identified hTectonin, a hypothetical protein in the human genome database, as a distant ortholog of the limulus galactose binding protein (GBP. Phylogenetic analysis revealed strong evolutionary conservation of hTectonin homologues from parasite to human. By computational analysis, we showed that both the hTectonin and GBP form beta-propeller structures with multiple Tectonin domains, each containing beta-sheets of 4 strands per beta-sheet. hTectonin is present in the human leukocyte cDNA library and immune-related cell lines. It interacts with M-ficolin, a known human complement protein whose ancient homolog, carcinolectin (CL5, is the functional protein partner of GBP during infection. Yeast 2-hybrid assay showed that only the Tectonin domains of hTectonin recognize the fibrinogen-like domain of the M-ficolin. Surface plasmon resonance analysis showed real-time interaction between the Tectonin domains 6 & 11 and bacterial LPS, indicating that despite forming 2 beta-propellers with its different Tectonin domains, the hTectonin molecule could precisely employ domains 6 & 11 to recognise bacteria. CONCLUSIONS/SIGNIFICANCE: By virtue of a recent finding of another Tectonin protein, leukolectin, in the human leukocyte, and our structure-function analysis of the hypothetical hTectonin, we propose that Tectonin domains of proteins could play a vital role in innate immune defense, and that this function has been conserved over several

  17. LPS inmobilization on porous and non-porous supports as an approach for the isolation of anti-LPS host-defense peptides.

    Directory of Open Access Journals (Sweden)

    Carlos eLopez-Abarrategui

    2013-12-01

    Full Text Available Lipopolysaccharides (LPS are the major molecular component of the outer membrane of Gram-negative bacteria. This molecule is recognized as a sign of bacterial infection, responsible for the development of local inflammatory response and, in extreme cases, septic shock. Unfortunately, despite substantial advances in the pathophysiology of sepsis, there is no efficacious therapy against this syndrome yet. As a consequence, septic shock syndrome continues to increase, reaching mortality rates over 50% in some cases. Even though many preclinical studies and clinical trials have been conducted, there is no FDA-approved drug yet that interacts directly against LPS. Cationic host defense peptides could be an alternative solution since they possess both antimicrobial and antiseptic properties. Host defense peptides are small, positively charged peptides which are evolutionarily conserved components of the innate immune response. In fact, binding to diverse chemotypes of LPS and inhibition of LPS-induced pro-inflammatory cytokines from macrophages have been demonstrated for different host defense peptides (HDPs. Curiously, none of them have been isolated by their affinity to LPS. A diversity of supports could be useful for such biological interaction and suitable for isolating host defense peptides that recognize LPS. This approach could expand the rational search for anti-LPS host defense peptides.

  18. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    International Nuclear Information System (INIS)

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4+CD25+Foxp3+ regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation

  19. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan (China); Cao, Hui [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wang, Hongjie [Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL (United States); Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Xiang, Ming, E-mail: xiangming@mails.tjmu.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2015-06-15

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation.

  20. Fluorescent turn-on sensing of bacterial lipopolysaccharide in artificial urine sample with sensitivity down to nanomolar by tetraphenylethylene based aggregation induced emission molecule.

    Science.gov (United States)

    Jiang, Guoyu; Wang, Jianguo; Yang, Yang; Zhang, Guanxin; Liu, Yaling; Lin, He; Zhang, Guilan; Li, Yongdong; Fan, Xiaolin

    2016-11-15

    A tetraphenylethylene based aggregation induced emission (AIE) probe, TPEPyE, bearing a positively charged pyridinium pendant was designed and synthesized. The positively charged TPEPyE can efficiently bind to the negatively charged lipopolysaccharide (LPS) through electrostatic interactions between the two oppositely charged species. As a result, upon the addition of LPS into the PBS solution of TPEPyE, this probe aggregated immediately onto the surface of LPS and resulted over 22-fold of fluorescence enhancement. TPEPyE exhibited good selectivity and high sensitivity toward LPS in PBS buffer solution and the detection limit was calculated to be 370 pM (3.7ng/mL). More notably, TPEPyE also retained good sensitivity and selectivity in artificial urine system (with much higher ionic strength) with the detection limit down to nanomolar. Moreover, this probe can also make a distinction between gram-positive bacteria Staphylococcus aureus (S. aureus) and gram-negative bacteria Escherichia coli (E. coli), making it a promising sensor for clinical monitoring of urinary tract infections. PMID:27155117

  1. Transiently enhanced LPS-induced fever following hyperthermic stress in rabbits

    Science.gov (United States)

    Shibata, Masaaki; Uno, Tadashi; Riedel, Walter; Nishimaki, Michiyo; Watanabe, Kaori

    2005-11-01

    Hyperthermia has been shown to induce an enhanced febrile response to the bacterial-derived endotoxin lipopolysaccharide (LPS). The aim of the present study was to test the hypothesis that the enhanced LPS-induced fever seen in heat stressed (HS) animals is caused by leakage of intestinal bacterial LPS into the circulation. Male rabbits were rendered transiently hyperthermic (a maximum rectal temperature of 43°C) and divided into three groups. They were then allowed to recover in a room at 24°C for 1, 2 or 3 days post-HS. One day after injection with LPS, the post-HS rabbits exhibited significantly higher fevers than the controls, though this was not seen in rabbits at either 2 or 3 days post-HS. The plasma levels of endogenous LPS were significantly increased during the HS as compared to those seen in normothermic rabbits prior to HS. LPS fevers were not induced in these animals. One day post-HS, rabbits that had been pretreated with oral antibiotics exhibited significantly attenuated LPS levels. When challenged with human recombinant interleukin-1β instead of LPS, the 1-day post-HS rabbits did not respond with enhanced fevers. The plasma levels of TNFα increased similarly during LPS-induced fevers in both the control and 1-day post-HS rabbits, while the plasma levels of corticosterone and the osmolality of the 1-day post-HS rabbits showed no significant differences to those seen prior to the HS. These results suggest that the enhanced fever in the 1-day post-HS rabbits is LPS specific, and may be caused by increased leakage of intestinal endotoxin into blood circulation.

  2. Lipopolysaccharide modulates the vector-pathogen interface of the xylem-limited phytopathogen, Xylella fastidiosa, the causal agent of Pierce’s disease of grapevine

    Science.gov (United States)

    Xylella fastidiosa Wells et al. is a gram-negative, insect-transmitted bacterium that causes a lethal disease of grapevine called Pierce’s disease. Lipopolysaccharide (LPS) is the most dominant macromolecule displayed on the cell surface of gram-negative bacteria. Bacterial interactions with the env...

  3. An adenine nucleotide translocase (ANT) gene from Apostichopus japonicus; molecular cloning and expression analysis in response to lipopolysaccharide (LPS) challenge and thermal stress.

    Science.gov (United States)

    Liu, Qiu-Ning; Chai, Xin-Yue; Tu, Jie; Xin, Zhao-Zhe; Li, Chao-Feng; Jiang, Sen-Hao; Zhou, Chun-Lin; Tang, Bo-Ping

    2016-02-01

    The adenine nucleotide translocases (ANTs) play a vital role in energy metabolism via ADP/ATP exchange in eukaryotic cells. Apostichopus japonicus (Echinodermata: Holothuroidea) is an important economic species in China. Here, a cDNA representing an ANT gene of A. japonicus was isolated and characterized from respiratory tree and named AjANT. The full-length AjANT cDNA is 1924 bp, including a 5'-untranslated region (UTR) of 38 bp, 3'-UTR of 980 bp and an open reading frame (ORF) of 906 bp encoding a polypeptide of 301 amino acids. The protein contains three homologous repeat Mito_carr domains (Pfam00153). The deduced AjANT protein sequence has 49-81% in comparison to ANT proteins from other individuals. The predicted tertiary structure of AjANT protein is highly similar to animal ANT proteins. Phylogenetic analysis showed that the AjANT is closely related to Holothuroidea ANT genes. Real-time quantitative reverse transcription-PCR (qPCR) analysis showed that AjANT expression is higher in the respiratory tree than in other examined tissues. After thermal stress or LPS challenge, expression of AjANT was significantly fluctuant compared to the control. These results suggested that changes in the expression of ANT gene might be involved in immune defense and in protecting A. japonicus against thermal stress. PMID:26706223

  4. The Effect of the Aerial Part of Lindera akoensis on Lipopolysaccharides (LPS-Induced Nitric Oxide Production in RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yen-Hsueh Tseng

    2013-04-01

    Full Text Available Four new secondary metabolites, 3α-((E-Dodec-1-enyl-4β-hydroxy-5β-methyldihydrofuran-2-one (1, linderinol (6, 4'-O-methylkaempferol 3-O-α-L-(4''-E-p-coumaroylrhamnoside (11 and kaempferol 3-O-α-L-(4''-Z-p-coumaroylrhamnoside (12 with eleven known compounds—3-epilistenolide D1 (2, 3-epilistenolide D2 (3, (3Z,4α,5β-3-(dodec-11-ynylidene-4-hydroxy-5-methylbutanolide (4, (3E,4β,5β-3-(dodec-11-ynylidene-4-hydroxy-5-methylbutanolide (5, matairesinol (7, syringaresinol (8, (+-pinoresinol (9, salicifoliol (10, 4''-p-coumaroylafzelin (13, catechin (14 and epicatechin (15—were first isolated from the aerial part of Lindera akoensis. Their structures were determined by detailed analysis of 1D- and 2D-NMR spectroscopic data. All of the compounds isolated from Lindera akoensis showed that in vitro anti-inflammatory activity decreases the LPS-stimulated production of nitric oxide (NO in RAW 264.7 cell, with IC50 values of 4.1–413.8 µM.

  5. Anti-inflammatory activity of an orange peel polymethoxylated flavone, 3’,4’,3,5,6,7,8,-heptamethoxyflavone, in the rat carrageenan/paw edema and mouse LPS-challenge assays

    Science.gov (United States)

    The anti-inflammatory properties of 3',4',3,5,6,7,8-heptamethoxyflavone (HMF), a citrus polymethoxylated flavone, were studied in the bacterial lipopolysaccharide (LPS)-challenge/tumor necrosis factor-a (TNFa) response in mice, and in the carrageenan/paw edema assay in rats. In each of these trials,...

  6. Inadequate clearance of translocated bacterial products in HIV-infected humanized mice.

    Directory of Open Access Journals (Sweden)

    Ursula Hofer

    2010-04-01

    Full Text Available Bacterial translocation from the gut and subsequent immune activation are hallmarks of HIV infection and are thought to determine disease progression. Intestinal barrier integrity is impaired early in acute retroviral infection, but levels of plasma lipopolysaccharide (LPS, a marker of bacterial translocation, increase only later. We examined humanized mice infected with HIV to determine if disruption of the intestinal barrier alone is responsible for elevated levels of LPS and if bacterial translocation increases immune activation. Treating uninfected mice with dextran sodium sulfate (DSS induced bacterial translocation, but did not result in elevated plasma LPS levels. DSS-induced translocation provoked LPS elevation only when phagocytic cells were depleted with clodronate liposomes (clodrolip. Macrophages of DSS-treated, HIV-negative mice phagocytosed more LPS ex vivo than those of control mice. In HIV-infected mice, however, LPS phagocytosis was insufficient to clear the translocated LPS. These conditions allowed higher levels of plasma LPS and CD8+ cell activation, which were associated with lower CD4+/CD8+ cell ratios and higher viral loads. LPS levels reflect both intestinal barrier and LPS clearance. Macrophages are essential in controlling systemic bacterial translocation, and this function might be hindered in chronic HIV infection.

  7. [Use of reactions with Limulus amoebocyte lysate (LAL) to determine biological activity of lipopolysaccharides from reference and clinical strains of the Bacteroides fragilis group].

    Science.gov (United States)

    Rokosz, Alicja; Fiejka, Maria; Górska, Paulina; Aleksandrowicz, Janina; Meisel-Mikołajczyk, Felicja; Łuczak, MirosŁaw

    2002-01-01

    The aim of this study was to determine and compare a biological activity of lipopolysaccharides (LPS) from reference and clinical strains of strictly anaerobic bacteria belonging to the Bacteroides fragilis group (BFG) by means of quantitative, photometric BET (LAL) method with Limulus polyphemus amoebocyte lysate and chromogenic substrate S-2423. Lipopolysaccharides of five BFG species were extracted by Westphal and Jann method (1965) from eight reference and two clinical strains of B. fragilis group. Crude LPS preparations were purified according to the procedure described by Gmeiner (1975) with ultracentrifugation and nuclease treatment. Biological activities of bacterial endotoxins were determined by quantitative BET method with chromogenic substrate S-2423 (ENDOCHROME kit, Charles River Endosafe Ltd., USA). Tests were performed according to the producer's recommendations. E. coli O55:B5 LPS was applied to compare its activity in reaction with LAL reagent with activities of LPS preparations from rods of the Bacteroides genus. Among examined bacterial compounds the most active in BET method was E. coli O55:B5 LPS. Activities of lipopolysaccharides from five species of BFG rods in reaction with Limulus amoebocyte lysate were differentiated. Greater ability to activate LAL proenzyme revealed lipopolysaccharides of these species of the Bacteroides genus, which are important from the clinical point of view--B. fragilis and B. thetaiotaomicron.

  8. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation.

    Science.gov (United States)

    McKallip, Robert J; Ban, Hao; Uchakina, Olga N

    2015-01-01

    Exposure to bacterial endotoxins, such as lipopolysaccharide (LPS), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for LPS-induced inflammation. In the current study, we investigated the potential use of the hyaluronic acid (HA) synthesis inhibitor 4-methylumbelliferone (4-MU) on LPS-induced acute lung inflammation. Culturing LPS-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production, and an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from LPS-induced lung injury. Specifically, 4-MU treatment led to a reduction in LPS-induced hyaluronic acid synthase (HAS) messenger RNA (mRNA) levels, reduction in lung permeability, and reduction in proinflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target HA production may be an effective treatment for the inflammatory response following exposure to LPS.

  9. Cellular and molecular basis of TNFa, IL-1ß and LPS mediated signaling in rat dorsal root ganglion

    OpenAIRE

    Li, Yanzhang

    2004-01-01

    The proinflammatory cytokines TNFa and IL-1ß as well as bacterial lipopolysaccharide (LPS) are known to affect primary afferent functions related to pain and neurogenic inflammation. However, it is not completely understood how these molecules signal to primary sensory neurons of the dorsal root ganglion (DRG). In order to clarify this question RT-PCR, Northern blot, Western blot, RT-PCR in combination with laser capture microdiss...

  10. Uninephrectomy in rats on a fixed food intake potentiates both anorexia and circulating cytokine subsets in response to LPS.

    OpenAIRE

    Denis eArsenijevic; Jean-Pierre eMontani

    2015-01-01

    Recent human studies have suggested that mild reduction in kidney function can alter immune response and increase susceptibility to infection. The role of mild reduction in kidney function in altering susceptibility to bacterial lipopolysaccharide (LPS) responses was investigated in uninephrectomized rats compared to Sham-operated controls rats 4 weeks after surgery. Throughout the 4 weeks, all rats were maintained under mild food restriction at 90% of ad libitum intake to ensure the same cal...

  11. Uninephrectomy in Rats on a Fixed Food Intake Potentiates Both Anorexia and Circulating Cytokine Subsets in Response to LPS

    OpenAIRE

    Arsenijevic, Denis; Montani, Jean-Pierre

    2015-01-01

    Recent human studies have suggested that mild reduction in kidney function can alter immune response and increase susceptibility to infection. The role of mild reduction in kidney function in altering susceptibility to bacterial lipopolysaccharide (LPS) responses was investigated in uninephrectomized rats compared to Sham-operated controls rats 4 weeks after surgery. Throughout the 4 weeks, all rats were maintained under mild food restriction at 90% of ad libitum intake to ensure the same cal...

  12. Activation of macrophage nuclear factor-κB and induction of inducible nitric oxide synthase by LPS

    OpenAIRE

    Yan Zhong-Qun; Li Ying-Hua; Brauner Annelie; Tullus Kjell

    2002-01-01

    Abstract Background Chronic lung disease (CLD) of prematurity is a major problem of neonatal care. Bacterial infection and inflammatory response have been thought to play an important role in the development of CLD and steroids have been given, with some benefit, to neonates with this disease. In the present study, we assessed the ability of lipopolysaccharide (LPS) to stimulate rat alveolar macrophages to produce nitric oxide (NO), express inducible nitric oxide synthase (iNOS) and activate ...

  13. Cyclical DNA Methylation and Histone Changes Are Induced by LPS to Activate COX-2 in Human Intestinal Epithelial Cells

    Science.gov (United States)

    Brancaccio, Mariarita; Coretti, Lorena; Florio, Ermanno; Pezone, Antonio; Calabrò, Viola; Falco, Geppino; Keller, Simona; Lembo, Francesca; Avvedimento, Vittorio Enrico; Chiariotti, Lorenzo

    2016-01-01

    Bacterial lipopolysaccharide (LPS) induces release of inflammatory mediators both in immune and epithelial cells. We investigated whether changes of epigenetic marks, including selected histone modification and DNA methylation, may drive or accompany the activation of COX-2 gene in HT-29 human intestinal epithelial cells upon exposure to LPS. Here we describe cyclical histone acetylation (H3), methylation (H3K4, H3K9, H3K27) and DNA methylation changes occurring at COX-2 gene promoter overtime after LPS stimulation. Histone K27 methylation changes are carried out by the H3 demethylase JMJD3 and are essential for COX-2 induction by LPS. The changes of the histone code are associated with cyclical methylation signatures at the promoter and gene body of COX-2 gene. PMID:27253528

  14. Bupleurum Polysaccharides Attenuates Lipopolysaccharide-Induced Inflammation via Modulating Toll-Like Receptor 4 Signaling

    OpenAIRE

    Wu, Jian; Zhang, Yun-Yi; Guo, Li; LI Hong; Chen, Dao-Feng

    2013-01-01

    Background Bupleurum polysaccharides (BPs), isolated from Bupleurum smithii var. parvifolium, possesses immunomodulatory activity, particularly on inflammation. Bacterial endotoxin lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor 4 (TLR4) on host cell membrane. The present study was performed to evaluate whether the therapeutic efficacy of BPs on suppression of LPS’s pathogenecity could be associated with the modulating of TLR4 signaling pathway. Methodolog...

  15. Moesin Functions as a Lipopolysaccharide Receptor on Human Monocytes

    Science.gov (United States)

    Tohme, Ziad N.; Amar, Salomon; Van Dyke, Thomas E.

    1999-01-01

    Bacterial endotoxin (lipopolysaccharide [LPS]), a glycolipid found in the outer membranes of gram-negative bacteria, induces the secretion of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), and IL-6 by monocytes/macrophages. The secretion of these biologically active compounds leads to multiple pathological conditions, such as septic shock. There is substantial evidence that chronic exposure to LPS mediates, at least in part, the tissue destruction associated with gram-negative infection. CD14, a 55-kDa protein, has been identified as an LPS receptor. In conjunction with a serum protein, LPS binding protein (LBP), LPS-CD14 interactions mediate many LPS functions in the inflammatory response. However, CD14 lacks a cytoplasmic domain, or any known signal transduction sequence motif, suggesting the existence of another cell surface domain capable of transducing signals. In this paper, we report a second, CD14-independent LPS binding site, which, based on biological activity, appears to be a functional LPS receptor. Cross-linking experiments were performed to identify LPS binding sites. Two molecules were identified: a 55-kDa protein (CD14) and a second, 78-kDa band. Sequencing of the 78-kDa protein by mass spectroscopic analysis revealed 100% homology with moesin (membrane-organizing extension spike protein). Antibody to CD14 induced partial blocking of the LPS response. However, antimoesin monoclonal antibody completely blocked the LPS-induced TNF-α response in human monocytes, without blocking CD14 binding of LPS. Irrelevant isotype controls had no effect. Additional experiments were performed to evaluate the specificity of the antimoesin blocking. Separate experiments evaluated antimoesin effects on monocyte chemotaxis, IL-1 production in response to IL-1 stimulation, and TNF-α secretion in response to Staphylococcus aureus stimulation. Antimoesin blocked only LPS-mediated events. The data suggest that moesin

  16. NAC attenuates LPS-induced toxicity in aspirin-sensitized mouse macrophages via suppression of oxidative stress and mitochondrial dysfunction.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Bacterial endotoxin lipopolysaccharide (LPS induces the production of inflammatory cytokines and reactive oxygen species (ROS under in vivo and in vitro conditions. Acetylsalicylic acid (ASA, aspirin is a commonly used anti-inflammatory drug. Our aim was to study the effects of N-acetyl cysteine (NAC, an antioxidant precursor of GSH synthesis, on aspirin-sensitized macrophages treated with LPS. We investigated the effects of LPS alone and in conjunction with a sub-toxic concentration of ASA, on metabolic and oxidative stress, apoptosis, and mitochondrial function using J774.2 mouse macrophage cell line. Protection from LPS-induced toxicity by NAC was also studied. LPS alone markedly induced ROS production and oxidative stress in macrophage cells. When ASA was added to LPS-treated macrophages, the increase in oxidative stress was significantly higher than that with LPS alone. Similarly, alteration in glutathione-dependent redox metabolism was also observed in macrophages after treatment with LPS and ASA. The combination of LPS and ASA selectively altered the CYP 3A4, CYP 2E1 and CYP 1A1 catalytic activities. Mitochondrial respiratory complexes and ATP production were also inhibited by LPS-ASA treatment. Furthermore a higher apoptotic cell death was also observed in LPS-ASA treated macrophages. NAC pre-treatment showed protection against oxidative stress induced apoptosis and mitochondrial dysfunction. These effects are presumed, at least in part, to be associated with alterations in NF-κB/Nrf-2 mediated cell signaling. These results suggest that macrophages are more sensitive to LPS when challenged with ASA and that NAC pre-treatment protects the macrophages from these deleterious effects.

  17. Regulation of Pulmonary and Systemic Bacterial Lipopolysaccharide Responses in Transgenic Mice Expressing Human Elafin

    OpenAIRE

    Sallenave, J-M; Cunningham, G A; James, R M; McLachlan, G.; Haslett, C

    2003-01-01

    The control of lung inflammation is of paramount importance in a variety of acute pathologies, such as pneumonia, the acute respiratory distress syndrome, and sepsis. It is becoming increasingly apparent that local innate immune responses in the lung are negatively influenced by systemic inflammation. This is thought to be due to a local deficit in cytokine responses by alveolar macrophages and neutrophils following systemic bacterial infection and the development of a septic response. Recent...

  18. Lipopolysaccharide Inhibits the Channel Activity of the P2X7 Receptor

    Directory of Open Access Journals (Sweden)

    Elias Leiva-Salcedo

    2011-01-01

    Full Text Available The purinergic P2X7 receptor (P2X7R plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance.

  19. Lipopolysaccharide Inhibits the Channel Activity of the P2X7 Receptor

    Science.gov (United States)

    Leiva-Salcedo, Elias; Coddou, Claudio; Rodríguez, Felipe E.; Penna, Antonello; Lopez, Ximena; Neira, Tanya; Fernández, Ricardo; Imarai, Mónica; Rios, Miguel; Escobar, Jorge; Montoya, Margarita; Huidobro-Toro, J. Pablo; Escobar, Alejandro; Acuña-Castillo, Claudio

    2011-01-01

    The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance. PMID:21941410

  20. Bupleurum polysaccharides attenuates lipopolysaccharide-induced inflammation via modulating Toll-like receptor 4 signaling.

    Directory of Open Access Journals (Sweden)

    Jian Wu

    Full Text Available BACKGROUND: Bupleurum polysaccharides (BPs, isolated from Bupleurum smithii var. parvifolium, possesses immunomodulatory activity, particularly on inflammation. Bacterial endotoxin lipopolysaccharide (LPS triggers innate immune responses through Toll-like receptor 4 (TLR4 on host cell membrane. The present study was performed to evaluate whether the therapeutic efficacy of BPs on suppression of LPS's pathogenecity could be associated with the modulating of TLR4 signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS: LPS stimulated expression and activation of factors in the TLR4 signaling system, including TLR4, CD14, IRAK4, TRAF6, NF-κB, and JNK, determined using immunocytochemical and/or Western blot assays. BPs significantly inhibited these effects of LPS. LPS increased pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-12p40, and IFN-β and NO production, evaluated using ELISA and Griess reaction assays, respectively. BPs antagonized these effects of LPS. Interestingly, BPs alone augmented secretion of some pro-inflammatory cytokines of non-LPS stimulated macrophages and enhanced phagocytic activity towards fluorescent E.coli bioparticles. In a rat model of acute lung injury (ALI with pulmonary hemorrhage and inflammation, BPs ameliorated lung injuries and suppressed TLR4 expression. SIGNIFICANCE: The therapeutic properties of BPs in alleviating inflammatory diseases could be attributed to its inhibitory effect on LPS-mediated TLR4 signaling.

  1. The lipopolysaccharide-activated innate immune response network of the horseshoe crab

    Directory of Open Access Journals (Sweden)

    S Kawabata

    2009-06-01

    Full Text Available Primary stimulation of the horseshoe crab innate immune system by bacterial lipopolysaccharide (LPS activates a network of responses to ensure host defense against invading pathogens. Granular hemocytes selectively respond to LPS via a G protein-dependent exocytic pathway that critically depends on the proteolytic activity of the LPS-responsive coagulation factor C. In response to stimulation by LPS, the hemocyte secretes transglutaminase (TGase and several kinds of defense molecules, such as coagulation factors, lectins, antimicrobial peptides, and protein substrates for TGase. LPS-induced hemocyte exocytosis is enhanced by a feedback mechanism in which the antimicrobial peptide tachyplesin serves as an endogenous mediator. The coagulation cascade triggered by LPS or β-1,3-D-glucans results in the formation of coagulin fibrils that are subsequently stabilized by TGase-dependent cross-linking. A cuticle-derived chitin-binding protein additionally forms a TGase-stabilized mesh at sites of injury. Invading pathogens are agglutinated by both hemocyte- and plasma-derived lectins. In addition, the proclotting enzyme and tachyplesin functionally convert hemocyanin to phenoloxidase. In the plasma, coagulation factor C acts an LPS-sensitive complement C3 convertase on the surface of Gram-negative bacteria. In this manner, LPS-induced hemocyte exocytosis leads not only to coagulation but also activates a sophisticated innate immune response network that coordinately effects pathogen recognition, prophenoloxidase activation, pathogen clearance, and TGase-dependent wound healing

  2. Yohimbine enhances protection of berberine against LPS-induced mouse lethality through multiple mechanisms.

    Directory of Open Access Journals (Sweden)

    Hui Li

    Full Text Available Sepsis remains a major cause of mortality in intensive care units, better therapies are urgently needed. Gram-negative bacterial lipopolysaccharide (LPS is an important trigger of sepsis. We have demonstrated that berberine (Ber protects against lethality induced by LPS, which is enhanced by yohimbine (Y pretreatment, and Ber combined with Y also improves survival in septic mice. However, the precise mechanisms by which Y enhances protection of Ber against LPS-induced lethality remain unclear. The present study confirmed that simultaneously administered Y also enhanced protection of Ber against LPS-induced lethality. Ber or/and Y attenuated liver injury, but not renal injury in LPS-challenged mice. Ber or/and Y all inhibited LPS-stimulated IκBα, JNK and ERK phosphorylation, NF-κB activation as well as TNF-α production. Ber also increased IL-10 production in LPS-challenged mice, which was enhanced by Y. Furthermore, Ber or/and Y all suppressed LPS-induced IRF3, TyK2 and STAT1 phosphorylation, as well as IFN-β and IP-10 mRNA expression in spleen of mice at 1 h after LPS challenge. Especially, Y enhanced the inhibitory effect of Ber on LPS-induced IP-10 mRNA expression. In vitro experiments further demonstrated that Y significantly enhanced the inhibitory effect of Ber on TNF-α production in LPS-treated peritoneal macrophages, Ber combined with Y promoted LPS-induced IL-10 production and LPS-stimulated IκBα, JNK, ERK and IRF3 phosphorylation and NF-κB activation were also suppressed by Ber or/and Y pretreatment in peritoneal macrophages. Taken together, these results demonstrate that Y enhances the protection of Ber against LPS-induced lethality in mice via attenuating liver injury, upregulating IL-10 production and suppressing IκBα, JNK, ERK and IRF3 phosphorylation. Ber combined with Y may be an effective immunomodulator agent for the prevention of sepsis.

  3. Impedimetric biosensor based on self-assembled hybrid cystein-gold nanoparticles and CramoLL lectin for bacterial lipopolysaccharide recognition.

    Science.gov (United States)

    Oliveira, Maria D L; Andrade, Cesar A S; Correia, Maria T S; Coelho, Luana C B B; Singh, Pankaj R; Zeng, Xiangqun

    2011-10-01

    We report the development of a new selective and specific electrochemical biosensor for bacterial lipolysaccharide (LPS). An electrode interface was constructed using a l-cysteine-gold nanoparticle (AuNpCys) composite to be immobilized by electrostatic interaction in the network of a poly(vinyl chloride-vinyl acetate maleic acid) (PVM) layer on a gold bare electrode. The impedimetric biosensor is fabricated by self-assembled CramoLL lectin on the PVM-AuNpCys-modified gold electrode through electrostatic interaction. CramoLL is used as the recognition interface. AFM images showed that LPS was specifically recognized on the PVM-AuNpCys-CramoLL system surface. The measurements of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that the electrochemical response of a redox probe system (K(4)[Fe(CN)(6)](4-)/K(3)[Fe(CN)(6)](3-)) were blocked, due to the procedures of modified electrode with PVM-AuNpCys-CramoLL. In the majority of the experiments the lectin retained its activity as observed through its interaction with LPS from Escherichia coli, Serratia marcescens, Salmonella enterica and Klebsiella pneumoniae. The results are expressed in terms of the charge transfer resistance and current peak anodic using the EIS and CV techniques for the development of a biosensor for contamination by endotoxins. A new type of sensor for selective discrimination of LPS types with a high sensitivity has been obtained. PMID:21752390

  4. Soluble CD14 Enhances the Response of Periodontal Ligament Stem Cells to P. gingivalis Lipopolysaccharide

    Science.gov (United States)

    Andrukhov, Oleh; Andrukhova, Olena; Özdemir, Burcu; Haririan, Hady; Müller-Kern, Michael; Moritz, Andreas; Rausch-Fan, Xiaohui

    2016-01-01

    Periodontal ligament stem cells (PDLSCs) are lacking membrane CD14, which is an important component of lipopolysaccharide (LPS) signaling through toll-like receptor (TLR) 4. In the present study we investigated the effect of soluble CD14 on the response of human PDLSCs to LPS of Porphyromonas (P.) gingivalis. Human PDLSCs (hPDLSCs) were stimulated with P. gingivalis LPS in the presence or in the absence of soluble CD14 (sCD14) and the production of interleukin (IL)-6, chemokine C-X-C motif ligand 8 (CXCL8), and chemokine C-C motif ligand 2 (CCL2) was measured. The response to P. gingivalis LPS was compared with that to TLR4 agonist Escherichia coli LPS and TLR2-agonist Pam3CSK4. The response of hPDLSCs to both P. gingivalis LPS and E. coli LPS was significantly enhanced by sCD14. In the absence of sCD14, no significant difference in the hPDLSCs response to two kinds of LPS was observed. These responses were significantly lower compared to that to Pam3CSK4. In the presence of sCD14, the response of hPdLSCs to P. gingivalis LPS was markedly higher than that to E. coli LPS and comparable with that to Pam3CSK4. The response of hPdLSCs to bacterial LPS is strongly augmented by sCD14. Local levels of sCD14 could be an important factor for modulation of the host response against periodontal pathogens. PMID:27504628

  5. Effect of Adlay ( Coix lachryma-jobi L. var. ma-yuen Stapf) Testa and its phenolic components on Cu2+-treated low-density lipoprotein (LDL) oxidation and lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages.

    Science.gov (United States)

    Huang, Din-Wen; Kuo, Yueh-Hsiung; Lin, Fang-Yi; Lin, Yun-Lian; Chiang, Wenchang

    2009-03-25

    The aims of this study were to investigate the effects of adlay testa (AT) on Cu(2+)-treated low-density lipoprotein (LDL) oxidation, 2,2'-diphenyl-1-picrylhydrazyl (DPPH)-scavenging capacity, and lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages and determine its active components. The AT ethanolic extract (ATE) was partitioned into four fractions by various solvents as follows: n-hexane (ATE-Hex), ethyl acetate (ATE-Ea), n-butanol (ATE-Bu), and water (ATE-H(2)O). ATE-Ea and ATE-Bu were further fractionated into ATE-Ea-a-ATE-Ea-h and ATE-Bu-A-ATE-Bu-F, respectively, by column chromatography. Results showed that ATE-Ea, ATE-Bu, ATE-Ea-e, and ATE-Bu-C expressed antiradical, antioxidative, and anti-inflammatory activities with respect to the DPPH-scavenging capacity, LDL protection effect, and nitric oxide (NO) inhibitory activity. Inflammation was further modulated by ATE-Ea, ATE-Bu, ATE-Ea-e, and ATE-Bu-C through downregulating the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) proteins. The following components were found in ATE-Ea-e and ATE-Bu-C after purification and high-performance liquid chromatographic analysis: chlorogenic acid (CGA), vanillic acid (VA), caffeic acid (CA), p-coumaric acid (PCA), ferulic acid (FA), and 2-O-beta-glucopyranosyl-7-methoxy-4((2)H)-benzoxazin-3-one (GMBO). Results showed that CGA, CA, and FA were the major components responsible for the antioxidative and anti-inflammatory activities of ATE-Ea-e and ATE-Bu-C. Subsequently, each gram of ATE-Bu-C had 30.3 mg of CGA, 9.02 mg of CA, and 189 mg of GMBO, while each gram of ATE-Ea-e had 1.31 mg of VA, 3.89 mg of PCA, and 47.6 microg of FA. In conclusion, ATE has antioxidative and anti-inflammatory activities, and its effects are partially related to its phenolic components. Thus, ATE has the potential to be developed as a functional food targeting chronic diseases. PMID:19243096

  6. Simvastatin Reduces Lipopolysaccharides-Accelerated Cerebral Ischemic Injury via Inhibition of Nuclear Factor-kappa B Activity

    OpenAIRE

    Anthony Jalin, Angela M. A.; Lee, Jae-Chul; CHO, GEUM-SIL; Kim, Chunsook; Ju, Chung; Pahk, Kisoo; Song, Hwa Young; Kim, Won-Ki

    2015-01-01

    Preceding infection or inflammation such as bacterial meningitis has been associated with poor outcomes after stroke. Previously, we reported that intracorpus callosum microinjection of lipopolysaccharides (LPS) strongly accelerated the ischemia/reperfusion-evoked brain tissue damage via recruiting inflammatory cells into the ischemic lesion. Simvastatin, 3-hydroxy-3-methylgultaryl (HMG)-CoA reductase inhibitor, has been shown to reduce inflammatory responses in vascular diseases. Thus, we in...

  7. 褪黑素对细菌脂多糖导致的宫内感染脑损伤的保护作用%Protective effect of melatonin on brain injury of intrauterine infection induced by bacterial lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    刘利芬; 钱志红; 史明

    2011-01-01

    Objective: To investigate the effect of melatonin on free radical in brain tissues of fetal rats with intrauterine infection,explore the protective effect of melatonin on brain tissues of fetal rats with intrauterine infection. Methods: The models of cerebral palsy rat induced by intrauterine infection were established by injecting bacterial lipopolysaccharide into pregnant rats, melatonin intervention was carried out; the SD rats on the 19th day after pregnancy were selected as blank control group, intrauterine infection group and melatonin treatment group; the pregnant rats in intrauterine infection group were treated with intraperitoneal injection of bacterial lipopolysaccharide (500 μg/kg), and the pregnant rats in melatonin treatment group were treated with intraperitoneal injection of bacterial lipopolysaccharide (500 μg/kg) and melatonin ( 10 mg/kg); then the rats in each group were divided into 2 - hour group, 6 - hour group and 12 - hour group according to different observing times, 4 pregnant rats in each group; the pregnant rats in each group were executed at corresponding time points, then the brain tissues of fetal rats were obtained; the superoxide dismutase (SOD) activity, glutathione peroxidase (GSH -Px) activity and malondialdehyde (MDA) content in the brain tissues of fetal rats after homogenate were detected; HE staining was used to observe the pathological changes of brain tissues, and the differences among different groups were compared. Results: Compared with blank control group, SOD activity and GSH- Px activity of brain tissues of fetal rats in intrauterine infection group decreased, MDA content increased;with the extension of infection time, the above - mentioned changes became more obvious, there was significant difference; compared with intrauterine infection group, SOD activity and GSH - Px activity of brain tissues of fetal rats in melatonin treatment group increased, MDA content decreased. Conclusion: Brain injury of fetal rats with

  8. Clinico-pathological Responses of Calves Associated with Infection of Pasteurella multocida Type B and the Bacterial Lipopolysaccharide and Outer Membrane Protein Immunogens

    Directory of Open Access Journals (Sweden)

    Faez Firdaus Jesse Abdullah

    2013-10-01

    Full Text Available The current study aims to investigate the Clinico-pathological responses of calves associated with the infections of Pasteurella multocida type B and the bacterial lipopolysaccharide and outer membrane protein immunogens. Alterations in the behavior of animals and pathological lesions observed following innate or experimental infections usually divulge extensive and detrimental changes in the clinical signs, organs and tissues of the animals afflicted with the disease. These alterations are imperative for Veterinary evaluation of herd health. Eight clinically healthy, non-pregnant and non-lactating Brangus cross heifers weighing 150±50 kg were used in the study. The heifers (n = 8 were divided into 4 groups of 2 calves per group. The control calves in group 1 were inoculated intramuscularly with 10 mL of sterile Phosphate Buffered Saline (PBS. Calves in group 2 were inoculated intramuscularly with 10 mL of 1012 colony forming unit (cfu of wild-type P. multocida and calves in group 3 were inoculated intravenously with 10 mL of LPS broth extract. Calves in group 4 were inoculated intramuscularly with 10 mL of OMP broth extract. All animals were observed for 48 h for clinical signs, changes in behavior and mortality pattern, including the time of death. The results divulged significant differences in the Clinico-pathological alterations. Calves inoculated with whole cell P. multocida type B: 2 showed a significant (p<0.05 increased in rectal temperature. The affected calves showed significant severe dullness (p<0.000 and significant rumen hypomotility (p<0.000 was also exhibited. The calves showed signs of hypersalivation at 14 h. There is no significant difference (p = 0.240 in pulmonary oedema in the Calves of group 2 compared to control group 1. Calves of group 4 also showed no significant difference in pulmonary oedema (p = 0.612 compared to control group 1. Calves of group 3 showed significantly moderate pulmonary oedema (p<0.000. All the

  9. Muramyl Dipeptide Enhances Lipopolysaccharide-Induced Osteoclast Formation and Bone Resorption through Increased RANKL Expression in Stromal Cells

    Directory of Open Access Journals (Sweden)

    Masahiko Ishida

    2015-01-01

    Full Text Available Lipopolysaccharide (LPS is bacterial cell wall component capable of inducing osteoclast formation and pathological bone resorption. Muramyl dipeptide (MDP, the minimal essential structural unit responsible for the immunological activity of peptidoglycans, is ubiquitously expressed by bacterium. In this study, we investigated the effect of MDP in LPS-induced osteoclast formation and bone resorption. LPS was administered with or without MDP into the supracalvariae of mice. The number of osteoclasts, the level of mRNA for cathepsin K and tartrate-resistant acid phosphatase (TRAP, the ratio of the bone destruction area, the level of tartrate-resistant acid phosphatase form 5b (TRACP 5b, and C-terminal telopeptides fragments of type I collagen as a marker of bone resorption in mice administrated both LPS and MDP were higher than those in mice administrated LPS or MDP alone. On the other hand, MDP had no effect on osteoclastogenesis in parathyroid hormone administrated mice. MDP enhanced LPS-induced receptor activator of NF-κB ligand (RANKL expression and Toll-like receptor 4 (TLR4 expression in vivo and in stromal cells in vitro. MDP also enhanced LPS-induced mitogen-activated protein kinase (MAPK signaling, including ERK, p38, and JNK, in stromal cells. These results suggest that MDP might play an important role in pathological bone resorption in bacterial infection diseases.

  10. Pleurotus eryngii Ameliorates Lipopolysaccharide-Induced Lung Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Junya Kawai

    2014-01-01

    Full Text Available Pleurotus eryngii (P. eryngii is consumed as a fresh cultivated mushroom worldwide and demonstrated to have multiple beneficial effects. We investigated the anti-inflammatory effect of P. eryngii in mice with acute lung injury (ALI. Intranasal instillation of lipopolysaccharide (LPS (10 μg/site/mouse induced marked lung inflammation (increase in the number of inflammatory cells, protein leakage, and production of nitric oxide in bronchoalveolar lavage fluid as well as histopathological damage in the lung, 6 h after treatment. Mice administered heat-treated P. eryngii (0.3–1 g/kg, p.o. (HTPE 1 h before LPS challenge showed decreased pulmonary inflammation and ameliorated histopathological damage. These results suggest that HTPE has anti-inflammatory effects against ALI. Thus, P. eryngii itself may also have anti-inflammatory effects and could be a beneficial food for the prevention of ALI induced by bacterial infection.

  11. ACTIVATION OF HUMAN BLOOD MONONUCLEARS BY LIPOPOLYSACCHARIDE OF DIFFERENT COMPOSITION

    Directory of Open Access Journals (Sweden)

    S. V. Zubova

    2010-01-01

    Full Text Available Influence of lipopolysaccharide (LPS composition upon activation of human blood mononuclears was investigated, by measuring levels of pro-inflammatory TNFα and IL-6 cytokines released by the cells. It is shown that LPS from Rhodobacter capsulatus PG, in contrast to E. coli LPS, did not activate the target cells for synthesis of the cytokines.

  12. The role of horizontal transfer in the evolution of a highly variable lipopolysaccharide biosynthesis locus in xanthomonads that infect rice, citrus and crucifers

    Directory of Open Access Journals (Sweden)

    Bogdanove Adam J

    2007-12-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS is a pathogen associated molecular pattern (PAMP of animal and plant pathogenic bacteria. Variation at the interstrain level is common in LPS biosynthetic gene clusters of animal pathogenic bacteria. This variation has been proposed to play a role in evading the host immune system. Even though LPS is a modulator of plant defense responses, reports of interstrain variation in LPS gene clusters of plant pathogenic bacteria are rare. Results In this study we report the complete sequence of a variant 19.9 kb LPS locus present in the BXO8 strain of Xanthomonas oryzae pv. oryzae (Xoo, the bacterial blight pathogen of rice. This region is completely different in size, number and organization of genes from the LPS locus present in most other strains of Xoo from India and Asia. Surprisingly, except for one ORF, all the other ORFs at the BXO8 LPS locus are orthologous to the genes present at this locus in a sequenced strain of X. axonopodis pv. citri (Xac; a pathogen of citrus plants. One end of the BXO8 LPS gene cluster, comprised of ten genes, is also present in the related rice pathogen, X. oryzae pv. oryzicola (Xoc. In Xoc, the remainder of the LPS gene cluster, consisting of seven genes, is novel and unrelated to LPS gene clusters of any of the sequenced xanthomonads. We also report substantial interstrain variation suggestive of very recent horizontal gene transfer (HGT at the LPS biosynthetic locus of Xanthomonas campestris pv. campestris (Xcc, the black rot pathogen of crucifers. Conclusion Our analyses indicate that HGT has altered the LPS locus during the evolution of Xanthomonas oryzae pathovars and suggest that the ancestor of all Xanthomonas oryzae pathovars had an Xac type of LPS gene cluster. Our finding of interstrain variation in two major xanthomonad pathogens infecting different hosts suggests that the LPS locus in plant pathogenic bacteria, as in animal pathogens, is under intense

  13. Induction of bacterial lipoprotein tolerance is associated with suppression of toll-like receptor 2 expression.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    Tolerance to bacterial cell wall components including lipopolysaccharide (LPS) may represent an essential regulatory mechanism during bacterial infection. Two members of the Toll-like receptor (TLR) family, TLR2 and TLR4, recognize the specific pattern of bacterial cell wall components. TLR4 has been found to be responsible for LPS tolerance. However, the role of TLR2 in bacterial lipoprotein (BLP) tolerance and LPS tolerance is unclear. Pretreatment of human THP-1 monocytic cells with a synthetic bacterial lipopeptide induced tolerance to a second BLP challenge with diminished tumor necrosis factor-alpha and interleukin-6 production, termed BLP tolerance. Furthermore, BLP-tolerized THP-1 cells no longer responded to LPS stimulation, indicating a cross-tolerance to LPS. Induction of BLP tolerance was CD14-independent, as THP-1 cells that lack membrane-bound CD14 developed tolerance both in serum-free conditions and in the presence of a specific CD14 blocking monoclonal antibody (MEM-18). Pre-exposure of THP-1 cells to BLP suppressed mitogen-activated protein kinase phosphorylation and nuclear factor-kappaB activation in response to subsequent BLP and LPS stimulation, which is comparable with that found in LPS-tolerized cells, indicating that BLP tolerance and LPS tolerance may share similar intracellular pathways. However, BLP strongly enhanced TLR2 expression in non-tolerized THP-1 cells, whereas LPS stimulation had no effect. Furthermore, a specific TLR2 blocking monoclonal antibody (2392) attenuated BLP-induced, but not LPS-induced, tumor necrosis factor-alpha and interleukin-6 production, indicating BLP rather than LPS as a ligand for TLR2 engagement and activation. More importantly, pretreatment of THP-1 cells with BLP strongly inhibited TLR2 activation in response to subsequent BLP stimulation. In contrast, LPS tolerance did not prevent BLP-induced TLR2 overexpression. These results demonstrate that BLP tolerance develops through down-regulation of TLR2

  14. Influence of Brucella abortus lipopolysaccharide as an adjuvant on the immunogenicity of HPV-16 L1VLP vaccine in mice.

    Science.gov (United States)

    Kianmehr, Zahra; Soleimanjahi, Hoorieh; Ardestani, Susan Kaboudanian; Fotouhi, Fatemeh; Abdoli, Asghar

    2015-04-01

    Brucella abortus lipopolysaccharide (LPS) has less toxicity and no pyrogenic properties in comparison with other bacterial LPS. It is a toll-like receptor 4 agonist and has been shown to have the potential use as a vaccine adjuvant. In this study, the immunostimulatory properties of LPS from smooth and rough strains of B. abortus (S19 and RB51) as adjuvants were investigated for the human papillomavirus type 16 (HPV16) L1 virus-like particles (L1VLPs) vaccines. C57BL/6 mice were immunized subcutaneously three times either with HPV-16 L1VLPs alone, or in combination with smooth LPS (S-LPS), rough LPS (R-LPS), aluminum hydroxide or a mixture of them as adjuvant. The humoral immunity was evaluated by measuring the specific and total IgG levels, and also the T-cell immune response of mice was evaluated by measuring different cytokines such as IFN-γ, TNF-α, IL-4, IL-10 and IL-17. Results showed that serum anti-HPV16 L1VLP IgG antibody titers was significantly higher in mice immunized with a combination of VLPs and R-LPS or S-LPS compared with other immunized groups. Co-administration of HPV-16 L1VLPs with R-LPS elicited the highest levels of splenocytes cytokines (IFN-γ, IL-4, IL-17 and TNF-α) and also effectively induced improvement of a Th1-type cytokine response characterized with a high ratio of IFN-γ/IL-10. The data indicate that B. abortus LPS particularly RB51-LPS enhances the immune responses to HPV-16 L1VLPs and suggests its potential as an adjuvant for the development of a potent prophylactic HPV vaccine and other candidate vaccines.

  15. Influence of Brucella abortus lipopolysaccharide as an adjuvant on the immunogenicity of HPV-16 L1VLP vaccine in mice.

    Science.gov (United States)

    Kianmehr, Zahra; Soleimanjahi, Hoorieh; Ardestani, Susan Kaboudanian; Fotouhi, Fatemeh; Abdoli, Asghar

    2015-04-01

    Brucella abortus lipopolysaccharide (LPS) has less toxicity and no pyrogenic properties in comparison with other bacterial LPS. It is a toll-like receptor 4 agonist and has been shown to have the potential use as a vaccine adjuvant. In this study, the immunostimulatory properties of LPS from smooth and rough strains of B. abortus (S19 and RB51) as adjuvants were investigated for the human papillomavirus type 16 (HPV16) L1 virus-like particles (L1VLPs) vaccines. C57BL/6 mice were immunized subcutaneously three times either with HPV-16 L1VLPs alone, or in combination with smooth LPS (S-LPS), rough LPS (R-LPS), aluminum hydroxide or a mixture of them as adjuvant. The humoral immunity was evaluated by measuring the specific and total IgG levels, and also the T-cell immune response of mice was evaluated by measuring different cytokines such as IFN-γ, TNF-α, IL-4, IL-10 and IL-17. Results showed that serum anti-HPV16 L1VLP IgG antibody titers was significantly higher in mice immunized with a combination of VLPs and R-LPS or S-LPS compared with other immunized groups. Co-administration of HPV-16 L1VLPs with R-LPS elicited the highest levels of splenocytes cytokines (IFN-γ, IL-4, IL-17 and TNF-α) and also effectively induced improvement of a Th1-type cytokine response characterized with a high ratio of IFN-γ/IL-10. The data indicate that B. abortus LPS particularly RB51-LPS enhances the immune responses to HPV-16 L1VLPs and suggests its potential as an adjuvant for the development of a potent prophylactic HPV vaccine and other candidate vaccines. PMID:25187406

  16. Molecular Mechanisms Regulating LPS-Induced Inflammation in the Brain

    Science.gov (United States)

    Lykhmus, Olena; Mishra, Nibha; Koval, Lyudmyla; Kalashnyk, Olena; Gergalova, Galyna; Uspenska, Kateryna; Komisarenko, Serghiy; Soreq, Hermona; Skok, Maryna

    2016-01-01

    Neuro-inflammation, one of the pathogenic causes of neurodegenerative diseases, is regulated through the cholinergic anti-inflammatory pathway via the α7 nicotinic acetylcholine receptor (α7 nAChR). We previously showed that either bacterial lipopolysaccharide (LPS) or immunization with the α7(1–208) nAChR fragment decrease α7 nAChRs density in the mouse brain, exacerbating chronic inflammation, beta-amyloid accumulation and episodic memory decline, which mimic the early stages of Alzheimer’s disease (AD). To study the molecular mechanisms underlying the LPS and antibody effects in the brain, we employed an in vivo model of acute LPS-induced inflammation and an in vitro model of cultured glioblastoma U373 cells. Here, we report that LPS challenge decreased the levels of α7 nAChR RNA and protein and of acetylcholinesterase (AChE) RNA and activity in distinct mouse brain regions, sensitized brain mitochondria to the apoptogenic effect of Ca2+ and modified brain microRNA profiles, including the cholinergic-regulatory CholinomiRs-132/212, in favor of anti-inflammatory and pro-apoptotic ones. Adding α7(1–208)-specific antibodies to the LPS challenge prevented elevation of both the anti-inflammatory and pro-apoptotic miRNAs while supporting the resistance of brain mitochondria to Ca2+ and maintaining α7 nAChR/AChE decreases. In U373 cells, α7-specific antibodies and LPS both stimulated interleukin-6 production through the p38/Src-dependent pathway. Our findings demonstrate that acute LPS-induced inflammation induces the cholinergic anti-inflammatory pathway in the brain, that α7 nAChR down-regulation limits this pathway, and that α7-specific antibodies aggravate neuroinflammation by inducing the pro-inflammatory interleukin-6 and dampening anti-inflammatory miRNAs; however, these antibodies may protect brain mitochondria and decrease the levels of pro-apoptotic miRNAs, preventing LPS-induced neurodegeneration. PMID:27013966

  17. MOLECULAR MECHANISMS REGULATING LPS-INDUCED INFLAMMATION IN THE BRAIN

    Directory of Open Access Journals (Sweden)

    Olena eLykhmus

    2016-03-01

    Full Text Available Neuro-inflammation, one of the pathogenic causes of neurodegenerative diseases, is regulated through the cholinergic anti-inflammatory pathway via the 7 nicotinic acetylcholine receptor (7 nAChR. We previously showed that either bacterial lipopolysaccharide (LPS or immunization with the 7(1-208 nAChR fragment decrease 7 nAChRs density in the mouse brain, exacerbating chronic inflammation, beta-amyloid accumulation and episodic memory decline, which mimic the early stages of Alzheimer’s disease. To study the molecular mechanisms underlying the LPS and antibody effects in the brain, we employed an in vivo model of acute LPS-induced inflammation and an in vitro model of cultured glioblastoma U373 cells. Here, we report that LPS challenge decreased the levels of 7 nAChR RNA and protein and of acetylcholinesterase (AChE RNA and activity in distinct mouse brain regions, sensitized brain mitochondria to the apoptogenic effect of Ca2+ and modified brain microRNA profiles, including the cholinergic-regulatory CholinomiRs-132/212, in favor of anti-inflammatory and pro-apoptotic ones. Adding 7(1-208-specific antibodies to the LPS challenge prevented elevation of both the anti-inflammatory and pro-apoptotic miRNAs while supporting the resistance of brain mitochondria to Ca2+ and maintaining 7 nAChR/AChE decreases. In U373 cells, 7-specific antibodies and LPS both stimulated interleukin-6 production through the p38/Src-dependent pathway. Our findings demonstrate that acute LPS-induced inflammation induces the cholinergic anti-inflammatory pathway in the brain, that 7 nAChR down-regulation limits this pathway, and that 7-specific antibodies aggravate neuroinflammation by inducing the pro-inflammatory interleukin-6 and dampening anti-inflammatory miRNAs; however, these antibodies may protect brain mitochondria and decrease the levels of pro-apoptotic miRNAs, preventing LPS-induced neurodegeneration.

  18. Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis.

    Science.gov (United States)

    Nakao, Ryoma; Ramstedt, Madeleine; Wai, Sun Nyunt; Uhlin, Bernt Eric

    2012-01-01

    Lipopolysaccharide (LPS) is the major component of the surface of Gram-negative bacteria and its polysaccharide portion is situated at the outermost region. We investigated the relationship between the polysaccharide portion of LPS and biofilm formation using a series of Escherichia coli mutants defective in genes earlier shown to affect the LPS sugar compositions. Biofilm formation by a deep rough LPS mutant, the hldE strain, was strongly enhanced in comparison with the parental strain and other LPS mutants. The hldE strain also showed a phenotype of increased auto-aggregation and stronger cell surface hydrophobicity compared to the wild-type. Similar results were obtained with another deep rough LPS mutant, the waaC strain whose LPS showed same molecular mass as that of the hldE strain. Confocal laser scanning microscopy (CLSM) analysis and biofilm formation assay using DNase I revealed that biofilm formation by the hldE strain was dependent on extracellular DNA. Furthermore, a loss of flagella and an increase in amount of outer membrane vesicles in case of the hldE strain were also observed by transmission electron microscopy and atomic force microscopy, respectively. In addition, we demonstrated that a mutation in the hldE locus, which alters the LPS structure, caused changes in both expression and properties of several surface bacterial factors involved in biofilm formation and virulence. We suggest that the implication of these results should be considered in the context of biofilm formation on abiotic surfaces, which is frequently associated with nosocominal infections such as the catheter-associated infections.

  19. Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis.

    Directory of Open Access Journals (Sweden)

    Ryoma Nakao

    Full Text Available Lipopolysaccharide (LPS is the major component of the surface of Gram-negative bacteria and its polysaccharide portion is situated at the outermost region. We investigated the relationship between the polysaccharide portion of LPS and biofilm formation using a series of Escherichia coli mutants defective in genes earlier shown to affect the LPS sugar compositions. Biofilm formation by a deep rough LPS mutant, the hldE strain, was strongly enhanced in comparison with the parental strain and other LPS mutants. The hldE strain also showed a phenotype of increased auto-aggregation and stronger cell surface hydrophobicity compared to the wild-type. Similar results were obtained with another deep rough LPS mutant, the waaC strain whose LPS showed same molecular mass as that of the hldE strain. Confocal laser scanning microscopy (CLSM analysis and biofilm formation assay using DNase I revealed that biofilm formation by the hldE strain was dependent on extracellular DNA. Furthermore, a loss of flagella and an increase in amount of outer membrane vesicles in case of the hldE strain were also observed by transmission electron microscopy and atomic force microscopy, respectively. In addition, we demonstrated that a mutation in the hldE locus, which alters the LPS structure, caused changes in both expression and properties of several surface bacterial factors involved in biofilm formation and virulence. We suggest that the implication of these results should be considered in the context of biofilm formation on abiotic surfaces, which is frequently associated with nosocominal infections such as the catheter-associated infections.

  20. Comparison of TNFα to Lipopolysaccharide as an Inflammagen to Characterize the Idiosyncratic Hepatotoxicity Potential of Drugs: Trovafloxacin as an Example

    Directory of Open Access Journals (Sweden)

    Jeffrey F. Waring

    2010-11-01

    Full Text Available Idiosyncratic drug reactions (IDRs are poorly understood, unpredictable, and not detected in preclinical studies. Although the cause of these reactions is likely multi-factorial, one hypothesis is that an underlying inflammatory state lowers the tolerance to a xenobiotic. Previously used in an inflammation IDR model, bacterial lipopolysaccharide (LPS is heterogeneous in nature, making development of standardized testing protocols difficult. Here, the use of rat tumor necrosis factor-α (TNFα to replace LPS as an inflammatory stimulus was investigated. Sprague-Dawley rats were treated with separate preparations of LPS or TNFα, and hepatic transcriptomic effects were compared. TNFα showed enhanced consistency at the transcriptomic level compared to LPS. TNFα and LPS regulated similar biochemical pathways, although LPS was associated with more robust inflammatory signaling than TNFα. Rats were then codosed with TNFα and trovafloxacin (TVX, an IDR-associated drug, and evaluated by liver histopathology, clinical chemistry, and gene expression analysis. TNFα/TVX induced unique gene expression changes that clustered separately from TNFα/levofloxacin, a drug not associated with IDRs. TNFα/TVX cotreatment led to autoinduction of TNFα resulting in potentiation of underlying gene expression stress signals. Comparison of TNFα/TVX and LPS/TVX gene expression profiles revealed similarities in the regulation of biochemical pathways. In conclusion, TNFα could be used in lieu of LPS as an inflammatory stimulus in this model of IDRs.

  1. Quantitative lipopolysaccharide analysis using HPLC/MS/MS and its combination with the limulus amebocyte lysate assay.

    Science.gov (United States)

    Pais de Barros, Jean-Paul; Gautier, Thomas; Sali, Wahib; Adrie, Christophe; Choubley, Hélène; Charron, Emilie; Lalande, Caroline; Le Guern, Naig; Deckert, Valérie; Monchi, Mehran; Quenot, Jean-Pierre; Lagrost, Laurent

    2015-07-01

    Quantitation of plasma lipopolysaccharides (LPSs) might be used to document Gram-negative bacterial infection. In the present work, LPS-derived 3-hydroxymyristate was extracted from plasma samples with an organic solvent, separated by reversed phase HPLC, and quantitated by MS/MS. This mass assay was combined with the limulus amebocyte lysate (LAL) bioassay to monitor neutralization of LPS activity in biological samples. The described HPLC/MS/MS method is a reliable, practical, accurate, and sensitive tool to quantitate LPS. The combination of the LAL and HPLC/MS/MS analyses provided new evidence for the intrinsic capacity of plasma lipoproteins and phospholipid transfer protein to neutralize the activity of LPS. In a subset of patients with systemic inflammatory response syndrome, with documented infection but with a negative plasma LAL test, significant amounts of LPS were measured by the HPLC/MS/MS method. Patients with the highest plasma LPS concentration were more severely ill. HPLC/MS/MS is a relevant method to quantitate endotoxin in a sample, to assess the efficacy of LPS neutralization, and to evaluate the proinflammatory potential of LPS in vivo. PMID:26023073

  2. Modeling the LPS Neutralization Activity of Anti-Endotoxins

    Directory of Open Access Journals (Sweden)

    Virapong Prachayasittikul

    2009-05-01

    Full Text Available Bacterial lipopolysaccharides (LPS, also known as endotoxins, are major structural components of the outer membrane of Gram-negative bacteria that serve as a barrier and protective shield between them and their surrounding environment. LPS is considered to be a major virulence factor as it strongly stimulates the secretion of pro-inflammatory cytokines which mediate the host immune response and culminating in septic shock. Quantitative structure-activity relationship studies of the LPS neutralization activities of anti-endotoxins were performed using charge and quantum chemical descriptors. Artificial neural network implementing the back-propagation algorithm was selected for the multivariate analysis. The predicted activities from leave-one-out cross-validation were well correlated with the experimental values as observed from the correlation coefficient and root mean square error of 0.930 and 0.162, respectively. Similarly, the external testing set also yielded good predictivity with correlation coefficient and root mean square error of 0.983 and 0.130. The model holds great potential for the rational design of novel and robust compounds with enhanced neutralization activity.

  3. Nanostructure formation enhances the activity of LPS-neutralizing peptides.

    NARCIS (Netherlands)

    Mas-Moruno, C.; Cascales, L.; Cruz, L.J.; Mora, P.; Perez-Paya, E.; Albericio, F.

    2008-01-01

    Peptides that interact with lipopolysaccharide (LPS) can provide the basis for the development of new antisepsis agents. In this work, several LPS-neutralizing acyl peptides derived from LALF, BPI, and SAP were prepared, structurally characterized, and biologically evaluated. In all cases, peptides

  4. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins

    Science.gov (United States)

    Meseguer, Victor; Alpizar, Yeranddy A.; Luis, Enoch; Tajada, Sendoa; Denlinger, Bristol; Fajardo, Otto; Manenschijn, Jan-Albert; Fernández-Peña, Carlos; Talavera, Arturo; Kichko, Tatiana; Navia, Belén; Sánchez, Alicia; Señarís, Rosa; Reeh, Peter; Pérez-García, María Teresa; López-López, José Ramón; Voets, Thomas; Belmonte, Carlos; Talavera, Karel; Viana, Félix

    2014-01-01

    Gram-negative bacterial infections are accompanied by inflammation and somatic or visceral pain. These symptoms are generally attributed to sensitization of nociceptors by inflammatory mediators released by immune cells. Nociceptor sensitization during inflammation occurs through activation of the Toll-like receptor 4 (TLR4) signalling pathway by lipopolysaccharide (LPS), a toxic by-product of bacterial lysis. Here we show that LPS exerts fast, membrane delimited, excitatory actions via TRPA1, a transient receptor potential cation channel that is critical for transducing environmental irritant stimuli into nociceptor activity. Moreover, we find that pain and acute vascular reactions, including neurogenic inflammation (CGRP release) caused by LPS are primarily dependent on TRPA1 channel activation in nociceptive sensory neurons, and develop independently of TLR4 activation. The identification of TRPA1 as a molecular determinant of direct LPS effects on nociceptors offers new insights into the pathogenesis of pain and neurovascular responses during bacterial infections and opens novel avenues for their treatment.

  5. Characterization of the physiological substrate for lipopolysaccharide heptosyltransferases I and II.

    Science.gov (United States)

    Gronow, S; Oertelt, C; Ervelä, E; Zamyatina, A; Kosma, P; Skurnik, M; Holst, O

    2001-01-01

    L-Glycero-D-manno-heptopyranose is a characteristic compound of many lipopolysaccharide (LPS) core structures of Gram-negative bacteria. In Escherichia coli two heptosyltransferases, namely WaaC and WaaF, are known to transfer L-glycero-D-manno-heptopyranose to Re-LPS and Rd(2)-LPS, respectively. It had been proposed that both reactions involve ADPL-glycero-D-manno-heptose as a sugar donor; however, the structure of this nucleotide sugar had never been completely elucidated. In the present study, ADPL-glycero-D-manno-heptose was isolated from a heptosyltransferase-deficient E. coli mutant, and its structure was determined by nuclear magnetic resonance spectroscopy and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry as ADPL-glycero-beta-D-manno-heptopyranose. This compound represented the sole constituent of the bacterial extract that was accepted as a sugar donor by heptosyltransferases I and II in vitro.

  6. Nicotine ameliorates schizophrenia-like cognitive deficits induced by maternal LPS exposure: a study in rats

    Directory of Open Access Journals (Sweden)

    Uta Waterhouse

    2016-10-01

    Full Text Available Maternal exposure to infectious agents is a predisposing factor for schizophrenia with associated cognitive deficits in offspring. A high incidence of smoking in these individuals in adulthood might be, at least in part, due to the cognitive-enhancing effects of nicotine. Here, we have used prenatal exposure to maternal lipopolysaccharide (LPS, bacterial endotoxin at different time points as a model for cognitive deficits in schizophrenia to determine whether nicotine reverses any associated impairments. Pregnant rats were treated subcutaneously with LPS (0.5 mg/kg at one of three neurodevelopmental time periods [gestation days (GD 10-11, 15-16, 18-19]. Cognitive assessment in male offspring commenced in early adulthood [postnatal day (PND 60] and included: prepulse inhibition (PPI, latent inhibition (LI and delayed non-matching to sample (DNMTS. Following PND 100, daily nicotine injections (0.6 mg/kg, subcutaneously were administered, and animals were re-tested in the same tasks (PND 110. Only maternal LPS exposure early during fetal neurodevelopment (GD 10-11 resulted in deficits in all tests compared to animals that had been prenatally exposed to saline at the same gestational time point. Repeated nicotine treatment led to global (PPI and selective (LI improvements in performance. Early but not later prenatal LPS exposure induced consistent deficits in cognitive tests with relevance for schizophrenia. Nicotine reversed the LPS-induced deficits in selective attention (LI and induced a global enhancement of sensorimotor gating (PPI.

  7. Genomic instability in liver cells caused by an LPS-induced bystander-like effect.

    Directory of Open Access Journals (Sweden)

    Igor Kovalchuk

    Full Text Available Bacterial infection has been linked to carcinogenesis, however, there is lack of knowledge of molecular mechanisms that associate infection with the development of cancer. We analyzed possible effects of the consumption of heat-killed E. coli O157:H7 cells or its cellular components, DNA, RNA, protein or lipopolysaccharides (LPS on gene expression in naïve liver cells. Four week old mice were provided water supplemented with whole heat-killed bacteria or bacterial components for a two week period. One group of animals was sacrificed immediately, whereas another group was allowed to consume uncontaminated tap water for an additional two weeks, and liver samples were collected, post mortem. Liver cells responded to exposure of whole heat-killed bacteria and LPS with alteration in γH2AX levels and levels of proteins involved in proliferation, DNA methylation (MeCP2, DNMT1, DNMT3A and 3B or DNA repair (APE1 and KU70 as well as with changes in the expression of genes involved in stress response, cell cycle control and bile acid biosynthesis. Other bacterial components analysed in this study did not lead to any significant changes in the tested molecular parameters. This study suggests that lipopolysaccharides are a major component of Gram-negative bacteria that induce molecular changes within naïve cells of the host.

  8. Hyphomonas spp., Shewanella spp., and Other Marine Bacteria Lack Heterogeneous (Ladderlike) Lipopolysaccharides

    OpenAIRE

    Sledjeski, Darren D.; Ronald M Weiner

    1991-01-01

    The lipopolysaccharides (LPS) of 19 marine bacteria were examined for size heterogeneities by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis in conjunction with an LPS-specific silver staining method. Fifteen marine bacteria had an R-type LPS instead of the ladderlike LPS array characteristic of most bacteria. In addition, three marine bacteria also had a single large LPS molecule. Without constraints (e.g., surface masking), R-type LPS, a more hydrophobic molecule, predomina...

  9. Evidence that PGE2 in the dorsal and median raphe nuclei is involved in LPS-induced anorexia in rats.

    Science.gov (United States)

    Kopf, Brigitte S; Langhans, Wolfgang; Geary, Nori; Hrupka, Brian; Asarian, Lori

    2011-09-01

    Anorexia is an element of the acute-phase immune response. Its mechanisms remain poorly understood. Activation of inducible cyclooxygenase-2 (COX-2) in blood-brain-barrier endothelial cells and subsequent release of prostaglandins (e.g., prostaglandin E2, PGE2) may be involved. Therefore, we sought to relate the effects of prostaglandins on the anorexia following gram-negative bacterial lipopolysaccharide treatment (LPS) to neural activity in the dorsal and median raphe nuclei (DRN and MnR) in rats. COX-2 antagonist (NS-398, 10mg/kg; IP) administration prior to LPS (100μg/kg; IP) prevented anorexia and reduced c-Fos expression the DRN, MnR, nucleus tractus solitarii and several related forebrain areas. These data indicate that COX-2-mediated prostaglandin synthesis is necessary for LPS anorexia and much of the initial LPS-induced neural activation. Injection of NS-398 into the DRN and MnR (1ng/site) attenuated LPS-induced anorexia to nearly the same extent as IP NS-398, suggesting that prostaglandin signaling in these areas is necessary for LPS anorexia. Because the DRN and MnR are sources of major serotonergic projections to the forebrain, these data suggest that serotonergic neurons originating in the midbrain raphe play an important role in acute-phase response anorexia.

  10. Sexually dimorphic effects of neonatal immune system activation with lipopolysaccharide on the behavioural response to a homotypic adult immune challenge.

    Science.gov (United States)

    Tenk, Christine M; Kavaliers, Martin; Ossenkopp, Klaus-Peter

    2008-01-01

    Research has shown that acute immune activation during the early postnatal period with the Gram-negative endotoxin, lipopolysaccharide (LPS), alters a variety of physiological and behavioural processes in the adult animal. For example, neonatal LPS exposure affects disease susceptibility later in life, though these effects appear to be modulated by time of exposure, sex, and immune stimulus. The current study examined sex differences in the effect of neonatal LPS treatment on the locomotor activity response to adult LPS administration. Male and female Long-Evans rats were treated systemically with either LPS (50 microg/kg) or saline (0.9%) on postnatal days 3 and 5. Later in adulthood (postnatal day 92), all animals were subjected to an adult LPS challenge and were injected (i.p.) with 200 microg/kg LPS. Two hours after injection, animals were placed in a non-novel open-field and locomotor activity was assessed for 30 min. Body weights were determined both at the time of injection and 24h later to examine LPS-induced weight loss. Adult males treated neonatally with LPS exhibited significantly less horizontal and vertical activity in response to the LPS challenge relative to males treated neonatally with saline. This effect was not observed in females. Thus, the current study provides important evidence of sexual dimorphism in the long-term effects of neonatal LPS exposure on the responses to an adult homotypic immune challenge in rats. These findings have potential clinical significance given that neonatal exposure to pathogens is a fairly common occurrence and Gram-negative bacteria are a common cause of neonatal bacterial infections.

  11. Sero-characterization of lipopolysaccharide from Burkholderia thailandensis

    OpenAIRE

    Qazi, Omar; Prior, Joann L.; Judy, Barbara M; Whitlock, Gregory C.; Kitto, G. Barrie; Torres, Alfredo G.; Estes, D. Mark; Brown, Katherine A

    2008-01-01

    We report the successful purification of lipopolysaccharide (LPS) from Burkholderia thailandesis, a Gram-negative bacterium, closely related to the highly pathogenic organisms Burkholderia pseudomallei and Burkholderia mallei. B. thailandensis LPS is shown to cross-react with rabbit and mouse sera obtained from inoculation with B. pseudomallei or B. mallei, respectively. These data suggest that B. thailandensis LPS shares similar structural features with LPS molecules from highly pathogenic B...

  12. On the role and fate of LPS-dephosphorylating activity in the rat liver

    NARCIS (Netherlands)

    Tuin, A; Huizinga -van der Vlag, Ali; van Loenen - Weemaes, Anne-miek; Meijer, DKF; Poelstra, K

    2006-01-01

    Gut-derived lipopolysaccharide (LPS) plays a role in the pathogenesis of liver diseases like fibrosis. The enzyme alkaline phosphatase (AP) is present in, among others, the intestinal wall and liver and has been previously shown to dephosphorylate LPS. Therefore, we investigated the effect of LPS on

  13. Dual effects of soluble CD14 on LPS priming of neutrophils

    NARCIS (Netherlands)

    Troelstra, A; Giepmans, B N; Van Kessel, K P; Lichenstein, H S; Verhoef, J; Van Strijp, J A

    1997-01-01

    To evaluate the effect of soluble CD14 (sCD14) on human neutrophil response to lipopolysaccharide (LPS), we developed an LPS-priming assay that measures the chemiluminescence response to N-formyl-methionyl-leucyl-phenylalanine stimulation. Priming by 1 ng/mL rough LPS occurred in the presence of eit

  14. Bound to shock: protection from lethal endotoxemic shock by a novel, nontoxic, alkylpolyamine lipopolysaccharide sequestrant.

    Science.gov (United States)

    Sil, Diptesh; Shrestha, Anurupa; Kimbrell, Matthew R; Nguyen, Thuan B; Adisechan, Ashok K; Balakrishna, Rajalakshmi; Abbo, Benjamin G; Malladi, Subbalakshmi; Miller, Kelly A; Short, Shannon; Cromer, Jens R; Arora, Shravan; Datta, Apurba; David, Sunil A

    2007-08-01

    Lipopolysaccharide (LPS), or endotoxin, a structural component of gram-negative bacterial outer membranes, plays a key role in the pathogenesis of septic shock, a syndrome of severe systemic inflammation which leads to multiple-system organ failure. Despite advances in antimicrobial chemotherapy, sepsis continues to be the commonest cause of death in the critically ill patient. This is attributable to the lack of therapeutic options that aim at limiting the exposure to the toxin and the prevention of subsequent downstream inflammatory processes. Polymyxin B (PMB), a peptide antibiotic, is a prototype small molecule that binds and neutralizes LPS toxicity. However, the antibiotic is too toxic for systemic use as an LPS sequestrant. Based on a nuclear magnetic resonance-derived model of polymyxin B-LPS complex, we had earlier identified the pharmacophore necessary for optimal recognition and neutralization of the toxin. Iterative cycles of pharmacophore-based ligand design and evaluation have yielded a synthetically easily accessible N(1),mono-alkyl-mono-homologated spermine derivative, DS-96. We have found that DS-96 binds LPS and neutralizes its toxicity with a potency indistinguishable from that of PMB in a wide range of in vitro assays, affords complete protection in a murine model of LPS-induced lethality, and is apparently nontoxic in vertebrate animal models.

  15. Human monocytes tolerant to LPS retain the ability to phagocytose bacteria and generate reactive oxygen species

    Directory of Open Access Journals (Sweden)

    M.L. Fernandes

    2010-09-01

    Full Text Available Tolerance to lipopolysaccharide (LPS occurs when animals or cells exposed to LPS become hyporesponsive to a subsequent challenge with LPS. This mechanism is believed to be involved in the down-regulation of cellular responses observed in septic patients. The aim of this investigation was to evaluate LPS-induced monocyte tolerance of healthy volunteers using whole blood. The detection of intracellular IL-6, bacterial phagocytosis and reactive oxygen species (ROS was determined by flow cytometry, using anti-IL-6-PE, heat-killed Staphylococcus aureus stained with propidium iodide and 2',7'-dichlorofluorescein diacetate, respectively. Monocytes were gated in whole blood by combining FSC and SSC parameters and CD14-positive staining. The exposure to increasing LPS concentrations resulted in lower intracellular concentration of IL-6 in monocytes after challenge. A similar effect was observed with challenge with MALP-2 (a Toll-like receptor (TLR2/6 agonist and killed Pseudomonas aeruginosa and S. aureus, but not with flagellin (a TLR5 agonist. LPS conditioning with 15 ng/mL resulted in a 40% reduction of IL-6 in monocytes. In contrast, phagocytosis of P. aeruginosa and S. aureus and induced ROS generation were preserved or increased in tolerant cells. The phenomenon of tolerance involves a complex regulation in which the production of IL-6 was diminished, whereas the bacterial phagocytosis and production of ROS was preserved. Decreased production of proinflammatory cytokines and preserved or increased production of ROS may be an adaptation to control the deleterious effects of inflammation while preserving antimicrobial activity.

  16. Effect of Synthetic Matrix Metalloproteinase Inhibitors on Lipopolysaccharide-Induced Blood-Brain Barrier Opening in Rodents: Differences in Response Based on Strains and Solvents

    OpenAIRE

    Rosenberg, Gary A; Estrada, Eduardo Y.; Mobashery, Shahriar

    2006-01-01

    Matrix metalloproteinase inhibitors (MMPIs) reduce blood-brain barrier (BBB) disruption and prevent cell death. Animal models of multiple sclerosis, cerebral ischemia and hemorrhage, and bacterial meningitis respond to treatment with MMPIs. We have used the intracerebral injection of lipopolysaccharide (LPS) in rat, which induces MMP production and results in a delayed opening of the BBB, to screen MMPIs to identify therapeutic agents. We hypothesized that the mouse would respond similarly to...

  17. Development of a Rapid Multiplex PCR Assay To Genotype Pasteurella multocida Strains by Use of the Lipopolysaccharide Outer Core Biosynthesis Locus

    OpenAIRE

    Harper, Marina; John, Marietta; Turni, Conny; Edmunds, Mark; St. Michael, Frank; Adler, Ben; Blackall, P J; Cox, Andrew D.; Boyce, John D.

    2014-01-01

    Pasteurella multocida is a Gram-negative bacterial pathogen that is the causative agent of a wide range of diseases in many animal species, including humans. A widely used method for differentiation of P. multocida strains involves the Heddleston serotyping scheme. This scheme was developed in the early 1970s and classifies P. multocida strains into 16 somatic or lipopolysaccharide (LPS) serovars using an agar gel diffusion precipitin test. However, this gel diffusion assay is problematic, wi...

  18. MOLECULAR DYNAMICS STUDY OF INTERACTIONS OF POLYMYXIN B3 AND ITS ALA-MUTANTS WITH LIPOPOLYSACCHARIDE

    Directory of Open Access Journals (Sweden)

    Lisnyak Yu. V.

    2015-12-01

    Full Text Available Introduction. Emergence of nosocomial bacterial pathogens (especially Gram-negative bacteria with multiple resistance against almost all available antibiotics is a growing medical problem. No novel drugs targeting multidrug-resistant Gram-negative bacteria have been developed in recent years. In this context, there has been greatly renewed interest to cyclic lipodecapeptides polymyxins. Polymyxins exhibit rapid bactericidal activity, they are specific and highly potent against Gramnegative bacteria, but have potential nephrotoxic side effects. So polymyxins are attractive lead compounds to develop analogues with improved microbiological, pharmacological and toxicological properties. A detailed knowledge of the molecular mechanisms of polymyxin interactions with its cell targets is a prerequisite for the purposeful improvement of its therapeutic properties. The primary cell target of a polymyxin is a lipopolysaccharide (LPS in the outer membrane of Gram-negative bacteria. The binding site of polymyxin on LPS has been supposed to be Kdo2-lipid A fragment. Methods. For all molecular modeling and molecular dynamics simulation experiments the YASARA suite of programs was used. Complex of antimicrobial peptide polymyxin В3 (PmB3 with Kdo2-lipid A portion of E. coli lipopolysaccharide was constructed by rigid docking with flexible side chains of the peptide. By alanine scanning of polymyxin В3 bound to LPS followed by simulated annealing minimization of the complexes in explicit water environment, the molecular aspects of PmB3-LPS binding have been studied by 20 ns molecular dynamics simulations at 298 K and pH 7.0. The AMBER03 force field was used with a 1.05 nm force cutoff. To treat long range electrostatic interactions the Particle Mesh Ewald algorithm was used. Results. Ala-mutations of polymyxin’s residues Dab1, Dab3, Dab5, Dab8 and Dab9 in the PmB3-LPS complex caused sustained structural changes resulting in the notable loss in stability of

  19. Lipid lateral organization on giant unilamellar vesicles containing lipopolysaccharides

    DEFF Research Database (Denmark)

    Kubiak, Jakub; Brewer, Jonathan R.; Hansen, Søren;

    2011-01-01

    at physiological salt and pH conditions. Analysis of LPS incorporation into the membrane models (both oligolamellar vesicles and GUVs) shows that the final concentration of LPS is lower than that expected from the initial E. coli lipids/LPS mixture. In particular, our protocol allows incorporation of no more than......We developed a new (to our knowledge) protocol to generate giant unilamellar vesicles (GUVs) composed of mixtures of single lipopolysaccharide (LPS) species and Escherichia coli polar lipid extracts. Four different LPSs that differed in the size of the polar headgroup (i.e., LPS smooth > LPS......-Ra > LPS-Rc > LPS-Rd) were selected to generate GUVs composed of different LPS/E. coli polar lipid mixtures. Our procedure consists of two main steps: 1), generation and purification of oligolamellar liposomes containing LPSs; and 2), electroformation of GUVs using the LPS-containing oligolamellar vesicles...

  20. Monoclonal antibodies specific for Escherichia coli J5 lipopolysaccharide: cross-reaction with other gram-negative bacterial species.

    OpenAIRE

    Mutharia, L M; Crockford, G; Bogard, W C; Hancock, R E

    1984-01-01

    Four monoclonal antibodies against Escherichia coli J5 were studied. Each of these monoclonal antibodies reacted with purified lipopolysaccharides from E. coli J5, the deep rough mutant Salmonella minnesota Re595, Agrobacterium tumefaciens, and Pseudomonas aeruginosa PAO1 as well as with the purified lipid A of P. aeruginosa. Enzyme-linked immunosorbent assays using the outer membranes from a variety of gram-negative bacteria demonstrated that these lipid A-specific monoclonal antibodies inte...

  1. Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of inflammatory mediators induced by lipopolysaccharide binding Toll-like receptor 4.

    Science.gov (United States)

    Foit, Linda; Thaxton, C Shad

    2016-09-01

    Toll-like receptor 4 (TLR4) plays a critical role in the innate immune system. Stimulation of TLR4 occurs upon binding lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls. Due to the potency of the induced inflammatory response, there is a growing interest in agents that can most proximally modulate this LPS/TLR4 interaction to prevent downstream cell signaling events and the production of inflammatory mediators. Building on the natural ability of human high-density lipoprotein (HDL) to bind LPS, we synthesized a suite of HDL-like nanoparticles (HDL-like NP). We identified one HDL-like NP that was particularly effective at decreasing TLR4 signaling caused by addition of purified LPS or Gram-negative bacteria to model human cell lines or primary human peripheral blood cells. The HDL-like NP functioned to inhibit TLR4-dependent inflammatory response to LPS derived from multiple bacterial species. Mechanistically, data show that the NP mainly functions by scavenging and neutralizing the LPS toxin. Taken together, HDL-like NPs constitute a powerful endotoxin scavenger with the potential to significantly reduce LPS-mediated inflammation. PMID:27244690

  2. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina); Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela [Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Medina Allende, Ciudad Universitaria, CP 5000, Córdoba (Argentina); Gutiérrez, Silvina; Torres, Alicia Inés [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina); De Paul, Ana Lucía, E-mail: adepaul@cmefcm.uncor.edu [Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, CP 5000, Córdoba (Argentina)

    2013-11-15

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  3. Long-lasting pro-inflammatory suppression of microglia by LPS-preconditioning is mediated by RelB-dependent epigenetic silencing.

    Science.gov (United States)

    Schaafsma, W; Zhang, X; van Zomeren, K C; Jacobs, S; Georgieva, P B; Wolf, S A; Kettenmann, H; Janova, H; Saiepour, N; Hanisch, U-K; Meerlo, P; van den Elsen, P J; Brouwer, N; Boddeke, H W G M; Eggen, B J L

    2015-08-01

    Microglia, the innate immune cells of the central nervous system (CNS), react to endotoxins like bacterial lipopolysaccharides (LPS) with a pronounced inflammatory response. To avoid excess damage to the CNS, the microglia inflammatory response needs to be tightly regulated. Here we report that a single LPS challenge results in a prolonged blunted pro-inflammatory response to a subsequent LPS stimulation, both in primary microglia cultures (100 ng/ml) and in vivo after intraperitoneal (0.25 and 1mg/kg) or intracerebroventricular (5 μg) LPS administration. Chromatin immunoprecipitation (ChIP) experiments with primary microglia and microglia acutely isolated from mice showed that LPS preconditioning was accompanied by a reduction in active histone modifications AcH3 and H3K4me3 in the promoters of the IL-1β and TNF-α genes. Furthermore, LPS preconditioning resulted in an increase in the amount of repressive histone modification H3K9me2 in the IL-1β promoter. ChIP and knock-down experiments showed that NF-κB subunit RelB was bound to the IL-1β promoter in preconditioned microglia and that RelB is required for the attenuated LPS response. In addition to a suppressed pro-inflammatory response, preconditioned primary microglia displayed enhanced phagocytic activity, increased outward potassium currents and nitric oxide production in response to a second LPS challenge. In vivo, a single i.p. LPS injection resulted in reduced performance in a spatial learning task 4 weeks later, indicating that a single inflammatory episode affected memory formation in these mice. Summarizing, we show that LPS-preconditioned microglia acquire an epigenetically regulated, immune-suppressed phenotype, possibly to prevent excessive damage to the central nervous system in case of recurrent (peripheral) inflammation.

  4. Relating the physical properties of Pseudomonas aeruginosa lipopolysaccharides to virulence by atomic force microscopy.

    Science.gov (United States)

    Ivanov, Ivan E; Kintz, Erica N; Porter, Laura A; Goldberg, Joanna B; Burnham, Nancy A; Camesano, Terri A

    2011-03-01

    Lipopolysaccharides (LPS) are an important class of macromolecules that are components of the outer membrane of Gram-negative bacteria such as Pseudomonas aeruginosa. P. aeruginosa contains two different sugar chains, the homopolymer common antigen (A band) and the heteropolymer O antigen (B band), which impart serospecificity. The characteristics of LPS are generally assessed after isolation rather than in the context of whole bacteria. Here we used atomic force microscopy (AFM) to probe the physical properties of the LPS of P. aeruginosa strain PA103 (serogroup O11) in situ. This strain contains a mixture of long and very long polymers of O antigen, regulated by two different genes. For this analysis, we studied the wild-type strain and four mutants, ΔWzz1 (producing only very long LPS), ΔWzz2 (producing only long LPS), DΔM (with both the wzz1 and wzz2 genes deleted), and Wzy::GM (producing an LPS core oligosaccharide plus one unit of O antigen). Forces of adhesion between the LPS on these strains and the silicon nitride AFM tip were measured, and the Alexander and de Gennes model of steric repulsion between a flat surface and a polymer brush was used to calculate the LPS layer thickness (which we refer to as length), compressibility, and spacing between the individual molecules. LPS chains were longest for the wild-type strain and ΔWzz1, at 170.6 and 212.4 nm, respectively, and these values were not statistically significantly different from one another. Wzy::GM and DΔM have reduced LPS lengths, at 34.6 and 37.7 nm, respectively. Adhesion forces were not correlated with LPS length, but a relationship between adhesion force and bacterial pathogenicity was found in a mouse acute pneumonia model of infection. The adhesion forces with the AFM probe were lower for strains with LPS mutations, suggesting that the wild-type strain is optimized for maximal adhesion. Our research contributes to further understanding of the role of LPS in the adhesion and virulence of

  5. Chemical composition, ultrastructure and some serological properties of lipopolysaccharides from Leptotrichia buccalis.

    Science.gov (United States)

    Birkeland, N K; Hofstad, T

    1982-10-01

    Lipopolysaccharide (LPS) was extracted with aqueous phenol from Leptotrichia buccalis strains L 11, ATCC 14201 and ATCC 19616. Virtually all the LPS was found in the water phase. LPS could also be extracted with phenol/chloroform/petroleum ether, but not with cold trichloroacetic acid. All LPS preparations contained D-glycero-D-manno-heptose, galactose, glucose, glucosamin, n-dodecanoate, 3-hydroxy-n-tetradecanoate and phosphorus. In addition LPS from L11 contained 2-keto-3-deoxyoctonate and an unidentified aldose. LPS from L11 was serologically distinct from LPS of ATCC 14201 and ATCC 19616. LPS from the two latter strains crossreacted.

  6. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Ian James Martins

    2015-12-01

    Full Text Available Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration.

  7. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS.

    Science.gov (United States)

    Sepehr, Reyhaneh; Audi, Said H; Maleki, Sepideh; Staniszewski, Kevin; Eis, Annie L; Konduri, Girija G; Ranji, Mahsa

    2013-07-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure.

  8. The role of lipopolysaccharide injected systemically in the reactivation of collagen-induced arthritis in mice

    Science.gov (United States)

    Yoshino, Shin; Ohsawa, Motoyasu

    2000-01-01

    We investigated the role of bacterial lipopolysaccharide (LPS) in the reactivation of autoimmune disease by using collagen-induced arthritis (CIA) in mice in which autoimmunity to the joint cartilage component type II collagen (CII) was involved.CIA was induced by immunization with CII emulsified with complete Freund's adjuvant at the base of the tail (day 0) followed by a booster injection on day 21. Varying doses of LPS from E. coli were i.p. injected on day 50.Arthritis began to develop on day 25 after immunization with CII and reached a peak on day 35. Thereafter, arthritis subsided gradually but moderate joint inflammation was still observed on day 50. An i.p. injection of LPS on day 50 markedly reactivated arthritis on a dose-related fashion. Histologically, on day 55, there were marked oedema of synovium which had proliferated by the day of LPS injection, new formation of fibrin, and intense infiltration of neutrophils accompanied with a large number of mononuclear cells. The reactivation of CIA by LPS was associated with increases in anti-CII IgG and IgG2a antibodies as well as various cytokines including IL-12, IFN-γ, IL-1β, and TNF-α. LPS from S. enteritidis, S. typhimurium, and K. neumoniae and its component, lipid A from E. coli also reactivated the disease. Polymyxin B sulphate suppressed LPS- or lipid A-induced reactivation of CIA.These results suggest that LPS may play an important role in the reactivation of autoimmune joint inflammatory diseases such as rheumatoid arthritis in humans. PMID:10742285

  9. Lipopolysaccharide triggers nuclear import of Lpcat1 to regulate inducible gene expression in lung epithelia

    Institute of Scientific and Technical Information of China (English)

    Bryon; Ellis; Leah; Kaercher; Courtney; Snavely

    2012-01-01

    AIM:To report that Lpcat1 plays an important role in regulating lipopolysaccharide (LPS) inducible gene tran-scription. METHODS:Gene expression in Murine Lung Epithelial MLE-12 cells with LPS treatment or Haemophilus influenza and Escherichia coli infection was analyzed by employing quantitative Reverse Transcription Polymerase Chain Reaction techniques. Nucleofection was used to deliver Lenti-viral system to express or knock down Lpcat1 in MLE cells. Subcellular protein fractionation and Western blotting were utilized to study Lpcat1 nuclear relocation. RESULTS:Lpcat1 translocates into the nucleus from thecytoplasm in murine lung epithelia (MLE) after LPS treatment. Haemophilus influenza and Escherichia coli , two LPS-containing pathogens that cause pneumonia, triggered Lpcat1 nuclear translocation from the cytoplasm. The LPS inducible gene expression profile was determined by quantitative reverse transcription polymerase chain reaction after silencing Lpcat1 or overexpression of the enzyme in MLE cells. We detected that 17 out of a total 38 screened genes were upregulated, 14 genes were suppressed, and 7 genes remained unchanged in LPS treated cells in comparison to controls. Knockdown of Lpcat1 by shRNA dramatically changed the spectrum of the LPS inducible gene transcription, as 18 genes out of 38 genes were upregulated, of which 20 genes were suppressed or unchanged. Notably, in Lpcat1 overex-pressed cells, 25 genes out of 38 genes were reduced in the setting of LPS treatment.CONCLUSION:These observations suggest that Lpcat1 relocates into the nucleus in response to bacterial infection to differentially regulate gene transcriptional repression.

  10. Differential inhibition of lipopolysaccharide-induced phenomena by anti-tumor necrosis factor alpha antibody.

    OpenAIRE

    Vogel, S N; Havell, E A

    1990-01-01

    Tumor necrosis factor alpha (TNF alpha) has been implicated as a major mediator of lipopolysaccharide (LPS)-induced phenomena. Administration to mice of a polyclonal, monospecific antibody prepared against recombinant murine TNF alpha abolished detection of LPS-induced TNF alpha activity and significantly reduced levels of LPS-induced colony-stimulating factor but failed to reduce the production of LPS-induced interferon, corticosterone, or LPS-induced hypoglycemia.

  11. Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation.

    Science.gov (United States)

    Reisenauer, Chris J; Bhatt, Dhaval P; Mitteness, Dane J; Slanczka, Evan R; Gienger, Heidi M; Watt, John A; Rosenberger, Thad A

    2011-04-01

    Glyceryl triacetate (GTA), a compound effective at increasing circulating and tissue levels of acetate was used to treat rats subjected to a continual 28 day intra-ventricular infusion of bacterial lipopolysaccharide (LPS). This model produces a neuroinflammatory injury characterized by global neuroglial activation and a decrease in choline acetyltransferase immunoreactivity in the basal forebrain. During the LPS infusion, rats were given a daily treatment of either water or GTA at a dose of 6 g/kg by oral gavage. In parallel experiments, free-CoA and acetyl-CoA levels were measured in microwave fixed brains and flash frozen heart, liver, kidney and muscle following a single oral dose of GTA. We found that a single oral dose of GTA significantly increased plasma acetate levels by 15 min and remained elevated for up to 4 h. At 30 min the acetyl-CoA levels in microwave-fixed brain and flash frozen heart and liver were increased at least 2.2-fold. The concentrations of brain acetyl-CoA was significantly increased between 30 and 45 min following treatment and remained elevated for up to 4 h. The concentration of free-CoA in brain was significantly decreased compared to controls at 240 min. Immunohistochemical and morphological analysis demonstrated that a daily treatment with GTA significantly reduced the percentage of reactive glial fibrillary acidic protein-positive astrocytes and activated CD11b-positive microglia by 40-50% in rats subjected to LPS-induced neuroinflammation. Further, in rats subjected to neuroinflammation, GTA significantly increased the number of choline acetyltransferase (ChAT)-positive cells by 40% in the basal forebrain compared to untreated controls. These data suggest that acetate supplementation increases intermediary short chain acetyl-CoA metabolism and that treatment is potentially anti-inflammatory and neuroprotective with regards to attenuating neuroglial activation and increasing ChAT immunoreactivity in this model. PMID:21272004

  12. Synthetic LPS-Binding Polymer Nanoparticles

    Science.gov (United States)

    Jiang, Tian

    Lipopolysaccharide (LPS), one of the principal components of most gram-negative bacteria's outer membrane, is a type of contaminant that can be frequently found in recombinant DNA products. Because of its strong and even lethal biological effects, selective LPS removal from bioproducts solution is of particular importance in the pharmaceutical and health care industries. In this thesis, for the first time, a proof-of-concept study on preparing LPS-binding hydrogel-like NPs through facile one-step free-radical polymerization was presented. With the incorporation of various hydrophobic (TBAm), cationic (APM, GUA) monomers and cross-linkers (BIS, PEG), a small library of NPs was constructed. Their FITC-LPS binding behaviors were investigated and compared with those of commercially available LPS-binding products. Moreover, the LPS binding selectivity of the NPs was also explored by studying the NPs-BSA interactions. The results showed that all NPs obtained generally presented higher FITC-LPS binding capacity in lower ionic strength buffer than higher ionic strength. However, unlike commercial poly-lysine cellulose and polymyxin B agarose beads' nearly linear increase of FITC-LPS binding with particle concentration, NPs exhibited serious aggregation and the binding quickly saturated or even decreased at high particle concentration. Among various types of NPs, higher FITC-LPS binding capacity was observed for those containing more hydrophobic monomers (TBAm). However, surprisingly, more cationic NPs with higher content of APM exhibited decreased FITC-LPS binding in high ionic strength conditions. Additionally, when new cationic monomer and cross-linker, GUA and PEG, were applied to replace APM and BIS, the obtained NPs showed improved FITC-LPS binding capacity at low NP concentration. But compared with APM- and BIS-containing NPs, the FITC-LPS binding capacity of GUA- and PEG-containing NPs saturated earlier. To investigate the NPs' binding to proteins, we tested the NPs

  13. [Dependence of immunosuppressive action of lipopolysaccharide on degree of Salmonella pathogenicity].

    Science.gov (United States)

    Borisova, E V; Bondarenko, V M; Molozhavaia, O S; Borisov, V A

    2001-01-01

    Immunosuppressive activity of Salmonella typhimurium extracellular lipopolysaccharide (LPS) was studied. In this study isogenic S. typhimurium strains with different degree of virulence were used. The attenuation of these strains was linked with mutations on their chromosome (altered synthesis of RNA polymerase or gyrase DNA) or their own virulence plasmid (the insertion of transposon Tn-5). To obtain LPS fraction with different molecular weights, the filtrate of bacterial culture was subjected to gel filtration through a column packed with Sephadex G-200. The immunosuppressive action of LPS fractions was determined on the model of delayed-type hypersensitivity to nonbacterial antigen in experiments on BALB/c mice. The study revealed that transposon-mediated mutation on plasmid, accompanied by the attenuation of salmonellae, led to the loss of immunosuppressive activity of the high-molecular heat-sensitive component of LPS; only the second heat-resistant component with medium molecular weight retained its activity. The presence of two chromosomal attenuating mutations (rifr nalr) was accompanied by the loss of immunosuppressive activity in both components of LPS.

  14. Alcohol metabolites and lipopolysaccharide: Roles in the development and/or progression of alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Courtney S Schaffert; Michael J Duryee; Carlos D Hunter; Bartlett C Hamilton 3rd; Amy L DeVeney; Mary M Huerter; Lynell W Klassen; Geoffrey M Thiele

    2009-01-01

    The onset of alcoholic liver disease (ALD) is initiated by different cell types in the liver and a number of different factors including: products derived from ethanol- induced inflammation, ethanol metabolites, and the indirect reactions from those metabolites. Ethanol oxidation results in the production of metabolites that have been shown to bind and form protein adducts,and to increase inflammatory, fibrotic and cirrhotic responses. Lipopolysaccharide (LPS) has many deleterious effects and plays a significant role in a number of disease processes by increasing inflammatory cytokine release. In ALD, LPS is thought to be derived from a breakdown in the intestinal wall enabling LPS from resident gut bacterial cell walls to leak into the blood stream. The ability of adducts and LPS to independently stimulate the various cells of the liver provides for a two-hit mechanism by which various biological responses are induced and result in liver injury. Therefore,the purpose of this article is to evaluate the effects of a two-hit combination of ethanol metabolites and LPS on the cells of the liver to increase inflammation inflammation and fibrosis, and play a role in the development and/or progression of ALD.

  15. GADD34 suppresses lipopolysaccharide-induced sepsis and tissue injury through the regulation of macrophage activation.

    Science.gov (United States)

    Ito, S; Tanaka, Y; Oshino, R; Okado, S; Hori, M; Isobe, K-I

    2016-01-01

    Growth arrest and DNA damage inducible protein 34 (GADD34) is induced by various cellular stresses, such as DNA damage, endoplasmic reticulum stress, and amino-acid deprivation. Although the major roles of GADD34 are regulating ER stress responses and apoptosis, a recent study suggested that GADD34 is linked to innate immune responses. In this report, we investigated the roles of GADD34 in inflammatory responses against bacterial infection. To explore the effects of GADD34 on systemic inflammation in vivo, we employed a lipopolysaccharide (LPS)-induced murine sepsis model and assessed the lethality, serum cytokine levels, and tissue injury in the presence or absence of GADD34. We found that GADD34 deficiency increased the lethality and serum cytokine levels in LPS-induced sepsis. Moreover, GADD34 deficiency enhanced tissue destruction, cell death, and pro-inflammatory cytokine expression in LPS-induced acute liver injury. Pro-inflammatory cytokine production after LPS stimulation is regulated by the Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway. In vitro experiments revealed that GADD34 suppressed pro-inflammatory cytokine production by macrophages through dephosphorylation of IKKβ. In conclusion, GADD34 attenuates LPS-induced sepsis and acute tissue injury through suppressing macrophage activation. Targeting this anti-inflammatory role of GADD34 may be a promising area for the development of therapeutic agents to regulate inflammatory disorders. PMID:27171261

  16. Characterization of ovine hepatic gene expression profiles in response to Escherichia coli lipopolysaccharide using a bovine cDNA microarray

    Directory of Open Access Journals (Sweden)

    Boermans Herman J

    2006-11-01

    Full Text Available Abstract Background During systemic gram-negative bacterial infections, lipopolysaccharide (LPS ligation to the hepatic Toll-like receptor-4 complex induces the production of hepatic acute phase proteins that are involved in the host response to infection and limit the associated inflammatory process. Identifying the genes that regulate this hepatic response to LPS in ruminants may provide insight into the pathogenesis of bacterial diseases and eventually facilitate breeding of more disease resistant animals. The objective of this research was to profile the expression of ovine hepatic genes in response to Escherichia coli LPS challenge (0, 200, 400 ng/kg using a bovine cDNA microarray and quantitative real-time PCR (qRT-PCR. Results Twelve yearling ewes were challenged iv with E. coli LPS (0, 200, 400 ng/kg and liver biopsies were collected 4–5 hours post-challenge to assess hepatic gene expression profiles by bovine cDNA microarray and qRT-PCR analyses. The expression of CD14, C3, IL12R, NRAMP1, SOD and IGFBP3 genes was down regulated, whereas the expression of ACTHR, IFNαR, CD1, MCP-1 and GH was increased during LPS challenge. With the exception of C3, qRT-PCR analysis of 7 of these genes confirmed the microarray results and demonstrated that GAPDH is not a suitable housekeeping gene in LPS challenged sheep. Conclusion We have identified several potentially important genes by bovine cDNA microarray and qRT-PCR analyses that are differentially expressed during the ovine hepatic response to systemic LPS challenge. Their potential role in regulating the inflammatory response to LPS warrants further investigation.

  17. Simvastatin Reduces Lipopolysaccharides-Accelerated Cerebral Ischemic Injury via Inhibition of Nuclear Factor-kappa B Activity.

    Science.gov (United States)

    Anthony Jalin, Angela M A; Lee, Jae-Chul; Cho, Geum-Sil; Kim, Chunsook; Ju, Chung; Pahk, Kisoo; Song, Hwa Young; Kim, Won-Ki

    2015-11-01

    Preceding infection or inflammation such as bacterial meningitis has been associated with poor outcomes after stroke. Previously, we reported that intracorpus callosum microinjection of lipopolysaccharides (LPS) strongly accelerated the ischemia/reperfusion-evoked brain tissue damage via recruiting inflammatory cells into the ischemic lesion. Simvastatin, 3-hydroxy-3-methylgultaryl (HMG)-CoA reductase inhibitor, has been shown to reduce inflammatory responses in vascular diseases. Thus, we investigated whether simvastatin could reduce the LPS-accelerated ischemic injury. Simvastatin (20 mg/kg) was orally administered to rats prior to cerebral ischemic insults (4 times at 72, 48, 25, and 1-h pre-ischemia). LPS was microinjected into rat corpus callosum 1 day before the ischemic injury. Treatment of simvastatin reduced the LPS-accelerated infarct size by 73%, and decreased the ischemia/reperfusion-induced expressions of pro-inflammatory mediators such as iNOS, COX-2 and IL-1β in LPS-injected rat brains. However, simvastatin did not reduce the infiltration of microglial/macrophageal cells into the LPS-pretreated brain lesion. In vitro migration assay also showed that simvastatin did not inhibit the monocyte chemoattractant protein-1-evoked migration of microglial/macrophageal cells. Instead, simvastatin inhibited the nuclear translocation of NF-κB, a key signaling event in expressions of various proinflammatory mediators, by decreasing the degradation of IκB. The present results indicate that simvastatin may be beneficial particularly to the accelerated cerebral ischemic injury under inflammatory or infectious conditions. PMID:26535078

  18. Effects of Prenatal Lipopolysaccharide Exposure on Reproductive Activities and Serum Concentrations of Pituitary-Gonadal Hormones in Mice Offspring

    Directory of Open Access Journals (Sweden)

    Jalal Solati

    2012-01-01

    Full Text Available Background: Maternal infection during pregnancy is a risk factor for some behavioralproblems with neurodevelopmental origin. This study aimed to evaluate the effects ofexposure of pregnant mice to the bacterial lipopolysaccharide (LPS on sexual behaviourand serum level of pituitary-gonadal hormones of offspring in adulthood.Materials and Methods: In this Expremental study, pregnant NMRI mice (n=7/groupwere treated with intra-peritoneal administration of LPS (1, 5 and 10 μg/kg at day 10of gestation. Induction of the pro-inflammatory cytokines, Tumor necrosis factor-alpha(TNF-α, interleukin-1beta (IL-1β and interleukin-6 (IL-6 were measured in maternalserum 2 hours following the maternal LPS challenge. Behavior in the adult male offspringreproductive activity was investigated using receptive female mice. Concentrationsof testosterone, luteinizing hormone (LH and follicle-stimulating hormone (FSHin adult offspring serum were measured using the enzyme-linked immunosorbent assay(ELISA method (at postnatal day 60, n=10/group.Results: One-way ANOVA showed that LPS administration induces a significant increasein TNF-α, IL-1β and IL-6 levels of maternal serum. Prenatal LPS exposure reduces sexualbehavior and serum concentration of LH and testosterone in adult male offspring.Conclusion: The overall results suggest that prenatal exposure to LPS increases proinflammatorycytokine levels, affects development of neuroendocrine systems and resultsin the inhibition of reproductive behaviors and reactivity of hypothalamic–pituitary-gonadal(HPG axis in adult male offspring.

  19. Identification of a novel compound that inhibits iNOS and COX-2 expression in LPS-stimulated macrophages from Schisandra chinensis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, You Jin [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of); Park, Sun Young [Korea BIO-IT Foundry Center, Pusan National University, Busan 609-735 (Korea, Republic of); Kim, Sun Gun; Park, Da Jung; Kang, Jum Soon [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of); Lee, Sang Joon [Department of Microbiology, Pusan National University, Busan 609-735 (Korea, Republic of); Yoon, Sik [Department of Anatomy, School of Medicine, Pusan National University, Yangsan 626-770 (Korea, Republic of); Medical Research Center for Ischemic Tissue Regeneration, School of Medicine, Pusan National University, Yangsan 626-770 (Korea, Republic of); Kim, Young Hun [Korea BIO-IT Foundry Center, Pusan National University, Busan 609-735 (Korea, Republic of); Bae, Yoe-Sik, E-mail: yoesik@dau.ac.kr [Department of Biochemistry, College of Medicine, Dong-A University, Busan 602-714 (Korea, Republic of); Choi, Young-Whan, E-mail: ywchoi@pusan.ac.kr [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of)

    2010-01-22

    A novel {alpha}-iso-cubebenol, which has anti-inflammatory effects in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, was isolated from the fruits of Schisandra chinensis. {alpha}-iso-cubebenol inhibited LPS-induced nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) production. Consistent with these findings, {alpha}-iso-cubebenol also reduced the LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 at the protein and mRNA levels in a concentration-dependent manner. {alpha}-iso-cubebenol also inhibited LPS-induced nuclear translocation of the NF-{kappa}B p65 subunit. Furthermore, {alpha}-iso-cubebenol suppressed the phosphorylation of ERK, JNK, and p38 kinase induced by LPS. Since the novel {alpha}-iso-cubebenol blocked the production of several pro-inflammatory mediators induced by LPS in macrophages, the molecule can be useful material for the development of anti-inflammatory agents against bacterial infections or endotoxin.

  20. Hepcidin regulation by BMP signaling in macrophages is lipopolysaccharide dependent.

    Directory of Open Access Journals (Sweden)

    Xinggang Wu

    Full Text Available Hepcidin is an antimicrobial peptide, which also negatively regulates iron in circulation by controlling iron absorption from dietary sources and iron release from macrophages. Hepcidin is synthesized mainly in the liver, where hepcidin is regulated by iron loading, inflammation and hypoxia. Recently, we have demonstrated that bone morphogenetic protein (BMP-hemojuvelin (HJV-SMAD signaling is central for hepcidin regulation in hepatocytes. Hepcidin is also expressed by macrophages. Studies have shown that hepcidin expression by macrophages increases following bacterial infection, and that hepcidin decreases iron release from macrophages in an autocrine and/or paracrine manner. Although previous studies have shown that lipopolysaccharide (LPS can induce hepcidin expression in macrophages, whether hepcidin is also regulated by BMPs in macrophages is still unknown. Therefore, we examined the effects of BMP signaling on hepcidin expression in RAW 264.7 and J774 macrophage cell lines, and in primary peritoneal macrophages. We found that BMP4 or BMP6 alone did not have any effect on hepcidin expression in macrophages although they stimulated Smad1/5/8 phosphorylation and Id1 expression. In the presence of LPS, however, BMP4 and BMP6 were able to stimulate hepcidin expression in macrophages, and this stimulation was abolished by the NF-κB inhibitor Ro1069920. These results suggest that hepcidin expression is regulated differently in macrophages than in hepatocytes, and that BMPs regulate hepcidin expression in macrophages in a LPS-NF-κB dependent manner.

  1. Lipopolysaccharide contamination in intradermal DNA vaccination : toxic impurity or adjuvant?

    NARCIS (Netherlands)

    Berg, J.H. van den; Quaak, S.G.L.; Beijnen, J.H.; Hennink, W.E.; Storm, G.; Schumacher, T.N.; Haanen, J.B.A.G.; Nuijen, B.

    2010-01-01

    Purpose: Lipopolysaccharides (LPS) are known both as potential adjuvants for vaccines and as toxic impurity in pharmaceutical preparations. The aim of this study was to assess the role of LPS in intradermal DNA vaccination administered by DNA tattooing. Method: Micewere vaccinated with a model DNA v

  2. Proteomic analysis of macrophage activated with salmonella lipopolysaccharide

    Science.gov (United States)

    Macrophages play pivotal role in immunity. They are activated by many pathogen derived molecules such as lipopolysaccharides (LPS) which trigger the production of various proteins and peptides that drive and resolve inflammation. There are numerous studies on the effect of LPS at the genome level bu...

  3. Circadian Disruption Alters the Effects of Lipopolysaccharide Treatment on Circadian and Ultradian Locomotor Activity and Body Temperature Rhythms of Female Siberian Hamsters.

    Science.gov (United States)

    Prendergast, Brian J; Cable, Erin J; Stevenson, Tyler J; Onishi, Kenneth G; Zucker, Irving; Kay, Leslie M

    2015-12-01

    The effect of circadian rhythm (CR) disruption on immune function depends on the method by which CRs are disrupted. Behavioral and thermoregulatory responses induced by lipopolysaccharide (LPS) treatment were assessed in female Siberian hamsters in which circadian locomotor activity (LMA) rhythms were eliminated by exposure to a disruptive phase-shifting protocol (DPS) that sustains arrhythmicity even when hamsters are housed in a light-dark cycle. This noninvasive treatment avoids genome manipulations and neurological damage associated with other models of CR disruption. Circadian rhythmic (RHYTH) and arrhythmic (ARR) hamsters housed in a 16L:8D photocycle were injected with bacterial LPS near the onset of the light (zeitgeber time 1; ZT1) or dark (ZT16) phase. LPS injections at ZT16 and ZT1 elicited febrile responses in both RHYTH and ARR hamsters, but the effect was attenuated in the arrhythmic females. In ZT16, LPS inhibited LMA in the dark phase immediately after injection but not on subsequent nights in both chronotypes; in contrast, LPS at ZT1 elicited more enduring (~4 day) locomotor hypoactivity in ARR than in RHYTH hamsters. Power and period of dark-phase ultradian rhythms (URs) in LMA and Tb were markedly altered by LPS treatment, as was the power in the circadian waveform. Disrupted circadian rhythms in this model system attenuated responses to LPS in a trait- and ZT-specific manner; changes in UR period and power are novel components of the acute-phase response to infection that may affect energy conservation.

  4. Dose-dependent changes in neuroinflammatory and arachidonic acid cascade markers with synaptic marker loss in rat lipopolysaccharide infusion model of neuroinflammation

    Directory of Open Access Journals (Sweden)

    Kellom Matthew

    2012-05-01

    Full Text Available Abstract Background Neuroinflammation, caused by six days of intracerebroventricular infusion of bacterial lipopolysaccharide (LPS, stimulates rat brain arachidonic acid (AA metabolism. The molecular changes associated with increased AA metabolism are not clear. We examined effects of a six-day infusion of a low-dose (0.5 ng/h and a high-dose (250 ng/h of LPS on neuroinflammatory, AA cascade, and pre- and post-synaptic markers in rat brain. We used artificial cerebrospinal fluid-infused brains as controls. Results Infusion of low- or high-dose LPS increased brain protein levels of TNFα, and iNOS, without significantly changing GFAP. High-dose LPS infusion upregulated brain protein and mRNA levels of AA cascade markers (cytosolic cPLA2-IVA, secretory sPLA2-V, cyclooxygenase-2 and 5-lipoxygenase, and of transcription factor NF-κB p50 DNA binding activity. Both LPS doses increased cPLA2 and p38 mitogen-activated protein kinase levels, while reducing protein levels of the pre-synaptic marker, synaptophysin. Post-synaptic markers drebrin and PSD95 protein levels were decreased with high- but not low-dose LPS. Conclusions Chronic LPS infusion has differential effects, depending on dose, on inflammatory, AA and synaptic markers in rat brain. Neuroinflammation associated with upregulated brain AA metabolism can lead to synaptic dysfunction.

  5. N-acetylcysteine attenuates lipopolysaccharide-induced impairment in lamination of Ctip2-and Tbr1- expressing cortical neurons in the developing rat fetal brain.

    Science.gov (United States)

    Chao, Ming-Wei; Chen, Chie-Pein; Yang, Yu-Hsiu; Chuang, Yu-Chen; Chu, Tzu-Yun; Tseng, Chia-Yi

    2016-01-01

    Oxidative stress and inflammatory insults are the major instigating events of bacterial intrauterine infection that lead to fetal brain injury. The purpose of this study is to investigate the remedial effects of N-acetyl-cysteine (NAC) for inflammation-caused deficits in brain development. We found that lipopolysaccharide (LPS) induced reactive oxygen species (ROS) production by RAW264.7 cells. Macrophage-conditioned medium caused noticeable cortical cell damage, specifically in cortical neurons. LPS at 25 μg/kg caused more than 75% fetal loss in rats. An increase in fetal cortical thickness was noted in the LPS-treated group. In the enlarged fetal cortex, laminar positioning of the early born cortical cells expressing Tbr1 and Ctip2 was disrupted, with a scattered distribution. The effect was similar, but minor, in later born Satb2-expressing cortical cells. NAC protected against LPS-induced neuron toxicity in vitro and counteracted pregnancy loss and alterations in thickness and lamination of the neocortex in vivo. Fetal loss and abnormal fetal brain development were due to LPS-induced ROS production. NAC is an effective protective agent against LPS-induced damage. This finding highlights the key therapeutic impact of NAC in LPS-caused abnormal neuronal laminar distribution during brain development. PMID:27577752

  6. Crystal Structure of a Complex of Surfactant Protein D (SP-D) and Haemophilus influenzae Lipopolysaccharide Reveals Shielding of Core Structures in SP-D-Resistant Strains.

    Science.gov (United States)

    Clark, Howard W; Mackay, Rose-Marie; Deadman, Mary E; Hood, Derek W; Madsen, Jens; Moxon, E Richard; Townsend, J Paul; Reid, Kenneth B M; Ahmed, Abdul; Shaw, Amy J; Greenhough, Trevor J; Shrive, Annette K

    2016-05-01

    The carbohydrate recognition domains (CRDs) of lung collectin surfactant protein D (SP-D) recognize sugar patterns on the surface of lung pathogens and promote phagocytosis. Using Haemophilus influenzae Eagan strains expressing well-characterized lipopolysaccharide (LPS) surface structures of various levels of complexity, we show that bacterial recognition and binding by SP-D is inversely related to LPS chain extent and complexity. The crystal structure of a biologically active recombinant trimeric SP-D CRD complexed with a delipidated Eagan 4A LPS suggests that efficient LPS recognition by SP-D requires multiple binding interactions utilizing the three major ligand-binding determinants in the SP-D binding pocket, with Ca-dependent binding of inner-core heptose accompanied by interaction of anhydro-Kdo (4,7-anhydro-3-deoxy-d-manno-oct-2-ulosonic acid) with Arg343 and Asp325. Combined with enzyme-linked immunosorbent assays (ELISAs) and fluorescence-activated cell sorter (FACS) binding analyses, our results show that extended LPS structures previously thought to be targets for collectins are important in shielding the more vulnerable sites in the LPS core, revealing a mechanism by which pathogens with complex LPS extensions efficiently evade a first-line mucosal innate immune defense. The structure also reveals for the first time the dominant form of anhydro-Kdo.

  7. The Effect of Methotrexate on Expression of IL-17 and IL-18 in Rat Synovial Cell Line RSC-364 Stimulated with Lipopolysaccharide ( LPS )%甲氨蝶呤对脂多糖诱导大鼠滑膜细胞株RSC-364分泌IL-17和IL-18的影响

    Institute of Scientific and Technical Information of China (English)

    蔡安季; 戴勇; 沈化清; 蒋莉; 苏卓娃

    2011-01-01

    Objective To investigate the effect of methotrexate ( MTX ) on expression of IL-17 and IL-18 in the rat synovial cell line RSC-364 stimulated with lipopolysaccharide ( LPS ) and to illuminate the mechanism of MTX in the treatment of rheumatoid arthritis ( RA ). Methods The expression of IL-17 and IL-18 in the rat synvoial cell line RSG-364 stimulated with LPS induced by different doses of MTX were detected by enzyme-linked immunosorbent assays. Results The expression of IL-17 and IL-18 in the rat synvoial cell line RSC-364 stimulated with LPS induced by MTX were obviously suppressed. Conclusion IL-17 and IL-18 in the rat synovial cell line RSC-364 stimulated with LPS were inhibited by MTX, which might be the potential mechanism in the treatment of RA.%目的:观察甲氨蝶呤对脂多糖诱导大鼠滑膜细胞株RSC-364分泌IL-17和IL-18表达的影响,进一步探讨甲氨蝶呤治疗类风湿性关节炎(RA)的作用机理.方法:运用ELISA检测不同浓度的甲氨蝶呤对脂多糖诱导大鼠滑膜细胞株RSC-364细胞上清液中的IL-17和-IL-18的含量.结果:甲氨蝶呤明显抑制脂多糖诱导大鼠滑膜细胞株RSC-364细胞分泌炎性因子IL-17和IL-18的含量.结论:甲氨蝶呤抑制脂多糖诱导大鼠滑膜细胞株RSC-364分泌IL-17和IL-18,这可能是其治疗RA的重要的作用机制之一.

  8. Structural relationship of the lipid A acyl groups to activation of murine Toll-like receptor 4 by lipopolysaccharides from pathogenic strains of Burkholderia mallei, Acinetobacter baumannii and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Kirill V Korneev

    2015-11-01

    Full Text Available Toll-like receptor 4 (TLR4 is required for activation of innate immunity upon recognition of lipopolysaccharide (LPS of Gram-negative bacteria. The ability of TLR4 to respond to a particular LPS species is important since insufficient activation may not prevent bacterial growth while excessive immune reaction may lead to immunopathology associated with sepsis. Here we investigated the biological activity of LPS from Burkholderia mallei that causes glanders, and from the two well-known opportunistic pathogens Acinetobacter baumannii and Pseudomonas aeruginosa (causative agents of nosocomial infections. For each bacterial strain, R-form LPS preparations were purified by hydrophobic chromatography and the chemical structure of lipid A, an LPS structural component, was elucidated by HR-MALDI-TOF mass spectrometry. The biological activity of LPS samples was evaluated by their ability to induce production of proinflammatory cytokines, such as IL-6 and TNF, by bone marrow-derived macrophages (BMDM. Our results demonstrate direct correlation between the biological activity of LPS from these pathogenic bacteria and the extent of their lipid A acylation.

  9. Structural Relationship of the Lipid A Acyl Groups to Activation of Murine Toll-Like Receptor 4 by Lipopolysaccharides from Pathogenic Strains of Burkholderia mallei, Acinetobacter baumannii, and Pseudomonas aeruginosa

    Science.gov (United States)

    Korneev, Kirill V.; Arbatsky, Nikolay P.; Molinaro, Antonio; Palmigiano, Angelo; Shaikhutdinova, Rima Z.; Shneider, Mikhail M.; Pier, Gerald B.; Kondakova, Anna N.; Sviriaeva, Ekaterina N.; Sturiale, Luisa; Garozzo, Domenico; Kruglov, Andrey A.; Nedospasov, Sergei A.; Drutskaya, Marina S.; Knirel, Yuriy A.; Kuprash, Dmitry V.

    2015-01-01

    Toll-like receptor 4 (TLR4) is required for activation of innate immunity upon recognition of lipopolysaccharide (LPS) of Gram-negative bacteria. The ability of TLR4 to respond to a particular LPS species is important since insufficient activation may not prevent bacterial growth while excessive immune reaction may lead to immunopathology associated with sepsis. Here, we investigated the biological activity of LPS from Burkholderia mallei that causes glanders, and from the two well-known opportunistic pathogens Acinetobacter baumannii and Pseudomonas aeruginosa (causative agents of nosocomial infections). For each bacterial strain, R-form LPS preparations were purified by hydrophobic chromatography and the chemical structure of lipid A, an LPS structural component, was elucidated by HR-MALDI-TOF mass spectrometry. The biological activity of LPS samples was evaluated by their ability to induce production of proinflammatory cytokines, such as IL-6 and TNF, by bone marrow-derived macrophages. Our results demonstrate direct correlation between the biological activity of LPS from these pathogenic bacteria and the extent of their lipid A acylation. PMID:26635809

  10. Lipopolysaccharide-induced acute renal failure in conscious rats

    DEFF Research Database (Denmark)

    Jonassen, Thomas E N; Graebe, Martin; Promeneur, Dominique;

    2002-01-01

    In conscious, chronically instrumented rats we examined 1) renal tubular functional changes involved in lipopolysaccharide (LPS)-induced acute renal failure; 2) the effects of LPS on the expression of selected renal tubular water and sodium transporters; and 3) effects of milrinone......, a phosphodiesterase type 3 (PDE3) inhibitor, and Ro-20-1724, a PDE4 inhibitor, on LPS-induced changes in renal function. Intravenous infusion of LPS (4 mg/kg b.wt. over 1 h) caused an immediate decrease in glomerular filtration rate (GFR) and proximal tubular outflow without changes in mean arterial pressure (MAP......-alpha and lactate, inhibited the LPS-induced tachycardia, and exacerbated the acute LPS-induced fall in GFR. Furthermore, Ro-20-1724-treated rats were unable to maintain MAP. We conclude 1) PDE3 or PDE4 inhibition exacerbates LPS-induced renal failure in conscious rats; and 2) LPS treated rats develop an escape...

  11. p-Cresyl sulfate suppresses lipopolysaccharide-induced anti-bacterial immune responses in murine macrophages in vitro.

    Science.gov (United States)

    Shiba, Takahiro; Makino, Ikuyo; Kawakami, Koji; Kato, Ikuo; Kobayashi, Toshihide; Kaneko, Kimiyuki

    2016-03-14

    p-Cresyl sulfate (pCS) is a known uremic toxin that is metabolized from p-cresol produced by intestinal bacteria. Abnormal accumulation of pCS in the blood is a characteristic of chronic kidney disease (CKD). pCS is suggested to cause immune dysfunction and increase the risk of infectious diseases in CKD patients. In this study, we focused on the effects of pCS on macrophage functions related to host defense. We evaluated the effects of pCS on cytokine production, nitric oxide (NO) production, arginase activity, expression of cell-surface molecules, and phagocytosis in the macrophage-like cell line, RAW264.7. pCS significantly decreased interleukin (IL)-12 p40 production and increased IL-10 production. pCS also decreased NO production, but did not influence arginase activity. pCS suppressed lipopolysaccharide-induced CD40 expression on the cell surface, but did not influence phagocytosis. We further assessed whether the effects of pCS observed in the macrophage-like cell line were consistent in primary macrophages. Similar to RAW264.7 cells, pCS decreased IL-12 p40 and p70 production and increased IL-10 production in primary peritoneal macrophages. These data indicate that pCS suppresses certain macrophage functions that contribute to host defense, and may play a role in CKD-related immune dysfunction. PMID:26784855

  12. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    OpenAIRE

    Zhao, Z. G.; L. L. Zhang; C.Y. Niu; J. Zhang

    2014-01-01

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg...

  13. Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development.

    Science.gov (United States)

    Bandara, H M H N; K Cheung, B P; Watt, R M; Jin, L J; Samaranayake, L P

    2013-02-01

    Elucidation of bacterial and fungal interactions in multispecies biofilms will have major impacts on understanding the pathophysiology of infections. The objectives of this study were to (i) evaluate the effect of Pseudomonas aeruginosa lipopolysaccharide (LPS) on Candida albicans hyphal development and transcriptional regulation, (ii) investigate protein expression during biofilm formation, and (iii) propose likely molecular mechanisms for these interactions. The effect of LPS on C. albicans biofilms was assessed by XTT-reduction and growth curve assays, light microscopy, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Changes in candidal hypha-specific genes (HSGs) and transcription factor EFG1 expression were assessed by real-time polymerase chain reaction and two-dimensional gel electrophoresis, respectively. Proteome changes were examined by mass spectrometry. Both metabolic activities and growth rates of LPS-treated C. albicans biofilms were significantly lower (P yeasts in test biofilms compared with the controls. SEM and CLSM further confirmed these data. Significantly upregulated HSGs (at 48 h) and EFG1 (up to 48 h) were noted in the test biofilms (P < 0.05) but cAMP levels remained unaffected. Proteomic analysis showed suppression of candidal septicolysin-like protein, potential reductase-flavodoxin fragment, serine hydroxymethyltransferase, hypothetical proteins Cao19.10301(ATP7), CaO19.4716(GDH1), CaO19.11135(PGK1), CaO19.9877(HNT1) by P. aeruginosa LPS. Our data imply that bacterial LPS inhibit C. albicans biofilm formation and hyphal development. The P. aeruginosa LPS likely target glycolysis-associated mechanisms during candidal filamentation. PMID:23194472

  14. Fetal calf serum heat inactivation and lipopolysaccharide contamination influence the human T lymphoblast proteome and phosphoproteome

    Directory of Open Access Journals (Sweden)

    Rahman Hazir

    2011-11-01

    Full Text Available Abstract Background The effects of fetal calf serum (FCS heat inactivation and bacterial lipopolysaccharide (LPS contamination on cell physiology have been studied, but their effect on the proteome of cultured cells has yet to be described. This study was undertaken to investigate the effects of heat inactivation of FCS and LPS contamination on the human T lymphoblast proteome. Human T lymphoblastic leukaemia (CCRF-CEM cells were grown in FCS, either non-heated, or heat inactivated, having low ( Results A total of four proteins (EIF3M, PRS7, PSB4, and SNAPA were up-regulated when CCRF-CEM cells were grown in media supplemented with heat inactivated FCS (HE as compared to cells grown in media with non-heated FCS (NHE. Six proteins (TCPD, ACTA, NACA, TCTP, ACTB, and ICLN displayed a differential phosphorylation pattern between the NHE and HE groups. Compared to the low concentration LPS group, regular levels of LPS resulted in the up-regulation of three proteins (SYBF, QCR1, and SUCB1. Conclusion The present study provides new information regarding the effect of FCS heat inactivation and change in FCS-LPS concentration on cellular protein expression, and post-translational modification in human T lymphoblasts. Both heat inactivation and LPS contamination of FCS were shown to modulate the expression and phosphorylation of proteins involved in basic cellular functions, such as protein synthesis, cytoskeleton stability, oxidative stress regulation and apoptosis. Hence, the study emphasizes the need to consider both heat inactivation and LPS contamination of FCS as factors that can influence the T lymphoblast proteome.

  15. Polymyxin B antagonizing biological activity of lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    GUO Yi-bin; CHEN Li-ping; CAO Hong-wei; WANG Ning; ZHENG Jiang; XIAO Guang-xia

    2007-01-01

    Objective: To investigate the mechanism of polymyxin B (PMB) antagonizing the biological activity of lipopolysaccharide (LPS). Methods: The affinity of PMB for LPS and lipid A was assayed by biosensor, and the neutralization of PMB for LPS(2 ng/ml) was detected by kinetic turbidimetric limulus test. The releases of TNF-α and IL-6 in murine peritoneal macrophages (PMψ) after exposure to LPS (100 ng/ml) were detected, and the expression levels of TLR4, TNF-α and IL-6 mRNA in PMψ induced by LPS (100 ng/ml) were measured by RT-PCR. Results: PMB had high-affinity to LPS and lipid A with dissociation equilibrium constants of 18.9 nmol/L and 11.1 nmol/L, respectively, and neutralized LPS in a dose-dependent manner. Furthermore, PMB could markedly inhibit the expressions of TLR4, TNF-α and IL-6 mRNA and the release of cycokines in LPS-stimulated murine PMψ.Conclusions: PMB neutralizes LPS and inhibites the expression and release of cycokines in macrophages, in which the affinity of PMB for lipid A plays an important role.

  16. Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-β-1,6-N-acetylglucosamine.

    Science.gov (United States)

    Henry, Rebekah; Vithanage, Nuwan; Harrison, Paul; Seemann, Torsten; Coutts, Scott; Moffatt, Jennifer H; Nation, Roger L; Li, Jian; Harper, Marina; Adler, Ben; Boyce, John D

    2012-01-01

    We recently demonstrated that colistin resistance in Acinetobacter baumannii can result from mutational inactivation of genes essential for lipid A biosynthesis (Moffatt JH, et al., Antimicrob. Agents Chemother. 54:4971-4977). Consequently, strains harboring these mutations are unable to produce the major Gram-negative bacterial surface component, lipopolysaccharide (LPS). To understand how A. baumannii compensates for the lack of LPS, we compared the transcriptional profile of the A. baumannii type strain ATCC 19606 to that of an isogenic, LPS-deficient, lpxA mutant strain. The analysis of the expression profiles indicated that the LPS-deficient strain showed increased expression of many genes involved in cell envelope and membrane biogenesis. In particular, upregulated genes included those involved in the Lol lipoprotein transport system and the Mla-retrograde phospholipid transport system. In addition, genes involved in the synthesis and transport of poly-β-1,6-N-acetylglucosamine (PNAG) also were upregulated, and a corresponding increase in PNAG production was observed. The LPS-deficient strain also exhibited the reduced expression of genes predicted to encode the fimbrial subunit FimA and a type VI secretion system (T6SS). The reduced expression of genes involved in T6SS correlated with the detection of the T6SS-effector protein AssC in culture supernatants of the A. baumannii wild-type strain but not in the LPS-deficient strain. Taken together, these data show that, in response to total LPS loss, A. baumannii alters the expression of critical transport and biosynthesis systems associated with modulating the composition and structure of the bacterial surface. PMID:22024825

  17. Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF): a broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection.

    Science.gov (United States)

    de la Vega, Enrique; O'Leary, Nuala A; Shockey, Jessica E; Robalino, Javier; Payne, Caroline; Browdy, Craig L; Warr, Gregory W; Gross, Paul S

    2008-04-01

    Antimicrobial peptides are an essential component of the innate immune system of most organisms. Expressed sequence tag analysis from various shrimp (Litopenaeus vannamei) tissues revealed transcripts corresponding to two distinct sequences (LvALF1 and LvALF2) with strong sequence similarity to anti-lipopolysaccharide factor (ALF), an antimicrobial peptide originally isolated from the horseshoe crab Limulus polyphemus. Full-length clones contained a 528bp transcript with a predicted open reading frame coding for 120 amino acids in LvALF1, and a 623bp transcript with a predicted open reading frame coding for 93 amino acids in LvALF2. A reverse genetic approach was implemented to study the in vivo role of LvALF1 in protecting shrimp from bacterial, fungal and viral infections. Injection of double-stranded RNA (dsRNA) corresponding to the LvALF1 message resulted in a significant reduction of LvALF1 mRNA transcript abundance as determined by qPCR. Following knockdown, shrimp were challenged with low pathogenic doses of Vibrio penaeicida, Fusarium oxysporum or white spot syndrome virus (WSSV) and the resulting mortality curves were compared with controls. A significant increase of mortality in the LvALF1 knockdown shrimp was observed in the V. penaeicida and F. oxysporum infections when compared to controls, showing that this gene has a role in protecting shrimp from both bacterial and fungal infections. In contrast, LvALF1 dsRNA activated the sequence-independent innate anti-viral immune response giving increased protection from WSSV infection.

  18. Lipopolysaccharide Biosynthesis Genes of Yersinia pseudotuberculosis Promote Resistance to Antimicrobial Chemokines

    Science.gov (United States)

    Erickson, David L.; Lew, Cynthia S.; Kartchner, Brittany; Porter, Nathan T.; McDaniel, S. Wade; Jones, Nathan M.; Mason, Sara; Wu, Erin; Wilson, Eric

    2016-01-01

    Antimicrobial chemokines (AMCs) are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25. Mutants exhibiting increased binding to AMCs were subjected to AMC killing assays, which revealed their increased sensitivity to chemokine-mediated cell death. The majority of the mutants exhibiting increased binding to AMCs contained transposon insertions in genes related to lipopolysaccharide biosynthesis. A particularly strong effect on susceptibility to AMC mediated killing was observed by disruption of the hldD/waaF/waaC operon, necessary for ADP-L-glycero-D-manno-heptose synthesis and a complete lipopolysaccharide core oligosaccharide. Periodate oxidation of surface carbohydrates also enhanced AMC binding, whereas enzymatic removal of surface proteins significantly reduced binding. These results suggest that the structure of Y. pseudotuberculosis LPS greatly affects the antimicrobial activity of AMCs by shielding a protein ligand on the bacterial cell surface. PMID:27275606

  19. Lipopolysaccharide Biosynthesis Genes of Yersinia pseudotuberculosis Promote Resistance to Antimicrobial Chemokines.

    Directory of Open Access Journals (Sweden)

    David L Erickson

    Full Text Available Antimicrobial chemokines (AMCs are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25. Mutants exhibiting increased binding to AMCs were subjected to AMC killing assays, which revealed their increased sensitivity to chemokine-mediated cell death. The majority of the mutants exhibiting increased binding to AMCs contained transposon insertions in genes related to lipopolysaccharide biosynthesis. A particularly strong effect on susceptibility to AMC mediated killing was observed by disruption of the hldD/waaF/waaC operon, necessary for ADP-L-glycero-D-manno-heptose synthesis and a complete lipopolysaccharide core oligosaccharide. Periodate oxidation of surface carbohydrates also enhanced AMC binding, whereas enzymatic removal of surface proteins significantly reduced binding. These results suggest that the structure of Y. pseudotuberculosis LPS greatly affects the antimicrobial activity of AMCs by shielding a protein ligand on the bacterial cell surface.

  20. An LPS based method to stimulate the inflammatory response in growing rabbits

    Directory of Open Access Journals (Sweden)

    C. Knudsen

    2016-03-01

    Full Text Available Reliable indicators are needed to study the relationship between the inflammatory response of the growing rabbit and breeding factors such as feeding practices. A lipopolysaccharide (LPS stimulation of the inflammatory response is a valid model of bacterial infection in laboratory animals, but no data on the growing rabbit has yet been obtained. The aim of our study was to determine an adequate dose of LPS to inject in growing rabbits in order to elicit a measurable inflammatory response in terms of plasmatic TNF-α and rise in rectal temperature. Three trials were carried out in this study: 2 development trials, the first (n=18 testing 3 doses of LPS (2, 10, 50 μg/kg on the plasmatic TNF-α concentration at 90 and 180 min post injection, and the second trial (n=36 testing 4 doses of LPS (50, 75, 100 and 150 μg/kg on the TNF-α concentration 90 min post injection and the rectal temperature. The third trial was designed as an application of the method in a large number of animals (n=32 to study the effect of feed restriction and dietary increase in digestible fibre to starch ratio on the LPS inflammatory challenge response of growing rabbits. In development trials 1 and 2, animals had measurable TNF-α responses for doses higher than 10 μg/kg at 90 min post injection, with an increase in the number of responsive animals along with the dose. High variability was observed in TNF-α concentrations in responsive animals (coefficient of variation from 44 to 94%. Animals demonstrated an increase in rectal temperature for all doses injected in the range of 50-150 μg/kg from 90 min post injection with a peak at 180 min (ΔTr =1.9±0.7°C. Our observations led us to choose a dose of 100 μg/kg of LPS for our following studies, as the responses in terms of temperature and TNF-α were the most satisfactory. The application of our LPS injection protocol to our nutritional study enabled us to validate our protocol (ΔTr =1.1±0.7°C at 180 min and 15

  1. Cinnamaldehyde modulates LPS-induced systemic inflammatory response syndrome through TRPA1-dependent and independent mechanisms.

    Science.gov (United States)

    Mendes, Saulo J F; Sousa, Fernanda I A B; Pereira, Domingos M S; Ferro, Thiago A F; Pereira, Ione C P; Silva, Bruna L R; Pinheiro, Aruanã J M C R; Mouchrek, Adriana Q S; Monteiro-Neto, Valério; Costa, Soraia K P; Nascimento, José L M; Grisotto, Marcos A G; da Costa, Robson; Fernandes, Elizabeth S

    2016-05-01

    Cinnamaldehyde is a natural essential oil suggested to possess anti-bacterial and anti-inflammatory properties; and to activate transient receptor potential ankyrin 1 (TRPA1) channels expressed on neuronal and non-neuronal cells. Here, we investigated the immunomodulatory effects of cinnamaldehyde in an in vivo model of systemic inflammatory response syndrome (SIRS) induced by lipopolysaccharide. Swiss mice received a single oral treatment with cinnamaldehyde 1 h before LPS injection. To investigate whether cinnamaldehyde effects are dependent on TRPA1 activation, animals were treated subcutaneously with the selective TRPA1 antagonist HC-030031 5 min prior to cinnamaldehyde administration. Vehicle-treated mice were used as controls. Cinnamaldehyde ameliorated SIRS severity in LPS-injected animals. Diminished numbers of circulating mononuclear cells and increased numbers of peritoneal mononuclear and polymorphonuclear cell numbers were also observed. Cinnamaldehyde augmented the number of peritoneal Ly6C(high) and Ly6C(low) monocyte/macrophage cells in LPS-injected mice. Reduced levels of nitric oxide, plasma TNFα and plasma and peritoneal IL-10 were also detected. Additionally, IL-1β levels were increased in the same animals. TRPA1 antagonism by HC-030031 reversed the changes in the number of circulating and peritoneal leukocytes in cinnamaldehyde-treated animals, whilst increasing the levels of peritoneal IL-10 and reducing peritoneal IL-1β. Overall, cinnamaldehyde modulates SIRS through TRPA1-dependent and independent mechanisms. PMID:26922677

  2. Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes

    Science.gov (United States)

    Antunes, Luisa CS; Poppleton, Daniel; Klingl, Andreas; Criscuolo, Alexis; Dupuy, Bruno; Brochier-Armanet, Céline; Beloin, Christophe; Gribaldo, Simonetta

    2016-01-01

    One of the major unanswered questions in evolutionary biology is when and how the transition between diderm (two membranes) and monoderm (one membrane) cell envelopes occurred in Bacteria. The Negativicutes and the Halanaerobiales belong to the classically monoderm Firmicutes, but possess outer membranes with lipopolysaccharide (LPS-OM). Here, we show that they form two phylogenetically distinct lineages, each close to different monoderm relatives. In contrast, their core LPS biosynthesis enzymes were inherited vertically, as in the majority of bacterial phyla. Finally, annotation of key OM systems in the Halanaerobiales and the Negativicutes shows a puzzling combination of monoderm and diderm features. Together, these results support the hypothesis that the LPS-OMs of Negativicutes and Halanaerobiales are remnants of an ancient diderm cell envelope that was present in the ancestor of the Firmicutes, and that the monoderm phenotype in this phylum is a derived character that arose multiple times independently through OM loss. DOI: http://dx.doi.org/10.7554/eLife.14589.001 PMID:27580370

  3. Social management of LPS-induced inflammation in Formica polyctena ants.

    Science.gov (United States)

    Aubert, A; Richard, F-J

    2008-08-01

    Invertebrates, and especially insects, constitute valuable and convenient models for the study of the evolutionary roots of immune-related behaviors. With stable conditions in the nest, high population densities, and frequent interactions, social insects such as ants provide an excellent system for examining the spread of pathogens. The evolutionary success of these species raises questions about the behavioral responses of social insects to an infected nestmate. In this experiment, we tested the behavioral changes of the red wood ant Formica polyctena toward an immune-stimulated nestmate. We used bacterial endotoxin (lipopolysaccharides, LPS) to active the innate immune system of individual worker ants without biasing our observation with possible cues or host-manipulation from a living pathogen. We show that LPS-induced immune activation in ants triggers behavioral changes in nestmates. Contrary to what would be expected, we did not find removal strategies (e.g. agonistic behaviors) or avoidance of the pathogenic source, but rather a balance between a limitation of pathogen dissemination (i.e. decreased trophallaxis and locomotion of the LPS-treated ant), and what could constitute the behavioral basis for a "social vaccination" (i.e. increased grooming). This supports the importance of social interactions in resistance to disease in social insects, and perhaps social animals in general. PMID:18331785

  4. Enterobacter agglomerans lipopolysaccharide-induced changes in pulmonary surfactant as a factor in the pathogenesis of byssinosis.

    OpenAIRE

    DeLucca, A J; Brogden, K.A.; Engen, R

    1988-01-01

    Lipopolysaccharide (LPS) from Enterobacter agglomerans and pulmonary surfactant mixtures were centrifuged in discontinuous sucrose gradients to determine whether LPS bound to surfactant and examined in a Langmuir trough with a Wilhelmy balance to determine whether LPS altered the surface activity of surfactant. The LPS was found to bind to the surfactant and altered its surface tension properties. The binding of LPS to surfactant in the lung may change the physiological properties of surfacta...

  5. 细菌脂多糖联合高体积分数氧对未成熟大鼠脑发育的影响%Effects of bacterial lipopolysaccharide and normobaric hyperoxia on immature brain development of neonatal rat

    Institute of Scientific and Technical Information of China (English)

    徐发林; 段佳佳; 王举; 张彦华; 郭佳佳

    2013-01-01

    Objective To investigate the effects of lipopolysaccharide (LPS) and / or normobaric hyperoxia on brain development of neonatal rat and the possible mechanisms.Methods One hundred and twenty postnatal day 2 (P2) SD rats were randomly assigned into 4 groups:air group,LPS group,hyperoxia group,LPS + hyperoxia group.General condition and body weight of the rats in each group were observed and recorded every day.The expression of active Caspase-3 and nuclear factor-κappaB P65 (NF-κB P65) in the brain were detected by immunohistochemistry staining on P7,and the level of IL-6 and 8-iso-PGF2α in the brain homogenate were measured by enzyme-linked immunosorbent assay(ELISA).The expression of myelin basic protein (MBP) in the brain was detected by immunohistochemistry staining on P12.Results The expressions of Caspase-3 and NF-κB P65 had the same trends:the number of positive cells from high to low was in LPS + hyperoxia group,LPS group/hyperoxia group,air group.There were significant differences between the first three groups and air group(all P < 0.05).There were also significant differences between LPS + hyperoxia group and LPS group or hyperoxia group(all P <0.01).MBP in the brain had the completely reverse expression:from high to low order was in air group,hyperoxia group,LPS group,LPS + hyperoxia group.There were significant differences between the last three groups and air group (all P < 0.05).There were also significant differences between LPS + hyperoxia group and LPS group or hyperoxia group(all P <0.01).The level of IL-6 in the brain from high to low order respectively was in LPS + hyperoxia group,LPS group,hyperoxia group,air group;and 8-iso-PGF2α was also in LPS + hyperoxia group,hyperoxia group,LPS group,air group,Significant differences were found among the four groups (all P < 0.05).Conclusions Both postnatal infection and normobaric hyperoxia may induce premature rat brain injury,and increase the number of apoptosis cell and reduce the

  6. VISUALIZATION AND ANALYSIS OF LPS DISTRIBUTION IN BINARY PHOSPHOLIPID BILAYERS

    Science.gov (United States)

    Florencia, Henning María; Susana, Sanchez; Laura, Bakás

    2010-01-01

    Lipopolysaccharide (LPS) is an endotoxin released from the outer membrane of Gram negative bacteria during infections. It have been reported that LPS may play a rol in the outer membrane of bacteria similar to that of cholesterol in eukaryotic plasma membranes. In this article we compare the effect of introducing LPS or cholesterol in liposomes made of dipalmitoylphosphatidylcholine/dioleoylphosphatidylcholine on the solubilization process by Triton X-100. The results show that liposomes containing LPS or Cholesterol are more resistant to solubilization by Triton X-100 than the binary phospholipid mixtures at 4°C. The LPS distribution was analyzed on GUVs of DPPC:DOPC using FITC-LPS. Solid and liquid-crystalline domains were visualized labeling the GUVs with LAURDAN and GP images were acquired using a two-photon microscope. The images show a selective distribution of LPS in gel domains. Our results support the hypothesis that LPS could aggregate and concentrate selectively in biological membranes providing a mechanism to bring together several components of the LPS-sensing machinery. PMID:19324006

  7. Lipopolysaccharides from Commensal and Opportunistic Bacteria: Characterization and Response of the Immune System of the Host Sponge Suberites domuncula

    Directory of Open Access Journals (Sweden)

    Johan Gardères

    2015-08-01

    Full Text Available Marine sponges harbor a rich bacterioflora with which they maintain close relationships. However, the way these animals make the distinction between bacteria which are consumed to meet their metabolic needs and opportunistic and commensal bacteria which are hosted is not elucidated. Among the elements participating in this discrimination, bacterial cell wall components such as lipopolysaccharides (LPS could play a role. In the present study, we investigated the LPS chemical structure of two bacteria associated with the sponge Suberites domuncula: a commensal Endozoicomonas sp. and an opportunistic Pseudoalteromonas sp. Electrophoretic patterns indicated different LPS structures for these bacteria. The immunomodulatory lipid A was isolated after mild acetic acid hydrolysis. The electrospray ionization ion-trap mass spectra revealed monophosphorylated molecules corresponding to tetra- and pentaacylated structures with common structural features between the two strains. Despite peculiar structural characteristics, none of these two LPS influenced the expression of the macrophage-expressed gene S. domuncula unlike the Escherichia coli ones. Further research will have to include a larger number of genes to understand how this animal can distinguish between LPS with resembling structures and discriminate between bacteria associated with it.

  8. Lipopolysaccharides from Commensal and Opportunistic Bacteria: Characterization and Response of the Immune System of the Host Sponge Suberites domuncula.

    Science.gov (United States)

    Gardères, Johan; Bedoux, Gilles; Koutsouveli, Vasiliki; Crequer, Sterenn; Desriac, Florie; Pennec, Gaël Le

    2015-08-07

    Marine sponges harbor a rich bacterioflora with which they maintain close relationships. However, the way these animals make the distinction between bacteria which are consumed to meet their metabolic needs and opportunistic and commensal bacteria which are hosted is not elucidated. Among the elements participating in this discrimination, bacterial cell wall components such as lipopolysaccharides (LPS) could play a role. In the present study, we investigated the LPS chemical structure of two bacteria associated with the sponge Suberites domuncula: a commensal Endozoicomonas sp. and an opportunistic Pseudoalteromonas sp. Electrophoretic patterns indicated different LPS structures for these bacteria. The immunomodulatory lipid A was isolated after mild acetic acid hydrolysis. The electrospray ionization ion-trap mass spectra revealed monophosphorylated molecules corresponding to tetra- and pentaacylated structures with common structural features between the two strains. Despite peculiar structural characteristics, none of these two LPS influenced the expression of the macrophage-expressed gene S. domuncula unlike the Escherichia coli ones. Further research will have to include a larger number of genes to understand how this animal can distinguish between LPS with resembling structures and discriminate between bacteria associated with it.

  9. HIV-1 Tat exacerbates lipopolysaccharide-induced cytokine release via TLR4 signaling in the enteric nervous system

    Science.gov (United States)

    Guedia, Joy; Brun, Paola; Bhave, Sukhada; Fitting, Sylvia; Kang, Minho; Dewey, William L.; Hauser, Kurt F.; Akbarali, Hamid I.

    2016-01-01

    The loss of gut epithelium integrity leads to translocation of microbes and microbial products resulting in immune activation and drives systemic inflammation in acquired immunodeficiency syndrome (AIDS) patients. Although viral loads in HIV patients are significantly reduced in the post-cART era, inflammation and immune activation persist and can lead to morbidity. Here, we determined the interactive effects of the viral protein HIV-1 Tat and lipopolysaccharide (LPS) on enteric neurons and glia. Bacterial translocation was significantly enhanced in Tat-expressing (Tat+) mice. Exposure to HIV-1 Tat in combination with LPS enhanced the expression and release of the pro-inflammatory cytokines IL-6, IL-1β and TNF-α in the ilea of Tat+ mice and by enteric glia. This coincided with enhanced NF-κB activation in enteric glia that was abrogated in glia from TLR4 knockout mice and by knockdown (siRNA) of MyD88 siRNA in wild type glia. The synergistic effects of Tat and LPS resulted in a reduced rate of colonic propulsion in Tat+ mice treated with LPS. These results show that HIV-1 Tat interacts with the TLR4 receptor to enhance the pro-inflammatory effects of LPS leading to gastrointestinal dysmotility and enhanced immune activation. PMID:27491828

  10. LIPOPOLYSACCHARIDE ATTENUATES PHRENIC LONG-TERM FACILITATION FOLLOWING ACUTE INTERMITTENT HYPOXIA

    OpenAIRE

    Vinit, Stéphane; Windelborn, James A; Mitchell, Gordon S.

    2011-01-01

    Lipopolysaccharide (LPS) induces inflammatory responses, including microglial activation in the central nervous system. Since LPS impairs certain forms of hippocampal and spinal neuroplasticity, we hypothesized that LPS would impair phrenic long-term facilitation (pLTF) following acute intermittent hypoxia (AIH) in outbred Sprague-Dawley (SD) and inbred Lewis (L) rats.. Approximately three hours following a single LPS injection (i.p.), the phrenic response during hypoxic episodes is reduced i...

  11. Differential Inflammatory Response to Inhaled Lipopolysaccharide Targeted Either to the Airways or the Alveoli in Man

    OpenAIRE

    Möller, Winfried; Heimbeck, Irene; Hofer, Thomas P J; Khadem Saba, Gülnaz; Neiswirth, Margot; Frankenberger, Marion; Ziegler-Heitbrock, Löms

    2012-01-01

    Endotoxin (Lipopolysaccharide, LPS) is a potent inducer of inflammation and there is various LPS contamination in the environment, being a trigger of lung diseases and exacerbation. The objective of this study was to assess the time course of inflammation and the sensitivities of the airways and alveoli to targeted LPS inhalation in order to understand the role of LPS challenge in airway disease. In healthy volunteers without any bronchial hyperresponsiveness we targeted sequentially 1, 5 and...

  12. Uninephrectomy in Rats on a Fixed Food Intake Potentiates Both Anorexia and Circulating Cytokine Subsets in Response to LPS.

    Science.gov (United States)

    Arsenijevic, Denis; Montani, Jean-Pierre

    2015-01-01

    Recent human studies have suggested that mild reduction in kidney function can alter immune response and increase susceptibility to infection. The role of mild reduction in kidney function in altering susceptibility to bacterial lipopolysaccharide (LPS) responses was investigated in uninephrectomized rats compared to Sham-operated controls rats 4 weeks after surgery. Throughout the 4 weeks, all rats were maintained under mild food restriction at 90% of ad libitum intake to ensure the same caloric intake in both groups. In comparison to Sham, uninephrectomy (UniNX) potentiated LPS-induced anorexia by 2.1-fold. The circulating anorexigenic cytokines granulocyte-macrophage colony stimulating factor, interferon-γ, tumor necrosis factor-α, and complement-derived acylation-stimulating protein were elevated after LPS in UniNX animals compared to Sham animals. Interleukin(IL)1β and IL6 pro-inflammatory cytokines were transiently increased. Anti-inflammatory cytokines IL4 and IL10 did not differ or had a tendency to be lower in UniNX group compared to Sham animals. LPS-induced anorexia was associated with increased anorexigenic neuropeptides mRNA for pro-opiomelanocortin, corticotrophin-releasing factor, and cocaine-amphetamine-regulated transcript in the hypothalamus of both Sham and UniNX groups, but at higher levels in the UniNX group. Melanocortin-4-receptor mRNA was markedly increased in the UniNX group, which may have contributed to the enhanced anorexic response to LPS of the UniNX group. In summary, UniNX potentiates pro-inflammatory cytokine production, anorexia, and selected hypothalamic anorexigenic neuropeptides in response to LPS. PMID:26734008

  13. Anti-inflammatory activity of cinnamon water extract in vivo and in vitro LPS-induced models

    Directory of Open Access Journals (Sweden)

    Hong Joung-Woo

    2012-11-01

    Full Text Available Abstract Background Cinnamon bark is one of the most popular herbal ingredients in traditional oriental medicine and possesses diverse pharmacological activities including anti-bacterial, anti-viral, and anti-cancer properties. The goal of this study is to investigate the in vivo and in vitro inhibitory effect of cinnamon water extract (CWE on lipopolysaccharide (LPS-induced tumor necrosis factor (TNF-α and its underlying intracellular mechanisms. Methods CWE was orally administrated to mice for 6 days prior to intraperitoneal injection of LPS. Serum levels of TNF-α and interleukin (IL-6 were determined 1 hour after LPS stimulation. Peritoneal macrophages from thioglycollate-injected mice were isolated and assayed for viability, cytokine expression and signaling molecules upon LPS stimulation. CWE was further fractioned according to molecular size, and the levels of total polyphenols and biological activities of each fraction were measured. Results The oral administration of CWE to mice significantly decreased the serum levels of TNF-α and IL-6. CWE treatment in vitro decreased the mRNA expression of TNF-α. CWE blocked the LPS-induced degradation of IκBα as well as the activation of JNK, p38 and ERK1/2. Furthermore, size-based fractionation of CWE showed that the observed inhibitory effect of CWE in vitro occurred in the fraction containing the highest level of total polyphenols. Conclusions Treatment with CWE decreased LPS-induced TNF-α in serum. In vitro inhibition of TNF-α gene by CWE may occur via the modulation of IκBα degradation and JNK, p38, and ERK1/2 activation. Our results also indicate that the observed anti-inflammatory action of CWE may originate from the presence of polyphenols.

  14. Uninephrectomy in rats on a fixed food intake potentiates both anorexia and circulating cytokine subsets in response to LPS.

    Directory of Open Access Journals (Sweden)

    Denis eArsenijevic

    2015-12-01

    Full Text Available Recent human studies have suggested that mild reduction in kidney function can alter immune response and increase susceptibility to infection. The role of mild reduction in kidney function in altering susceptibility to bacterial lipopolysaccharide (LPS responses was investigated in uninephrectomized rats compared to Sham-operated controls rats 4 weeks after surgery. Throughout the 4 weeks, all rats were maintained under mild food restriction at 90% of ad libitum intake to ensure the same caloric intake in both groups.In comparison to Sham, uninephrectomy (UniNX potentiated LPS-induced anorexia by 2.1 fold. The circulating anorexigenic cytokines granulocyte macrophage - colony stimulating factor, interferon- tumor necrosis factor- and complement derived acylation stimulating protein were elevated after LPS in UniNX animals compared to Sham animals. Interleukin(IL1 and IL6 pro-inflammatory cytokines were transiently increased. Anti-inflammatory cytokines IL4 and IL10 did not differ or had a tendency to be lower in UniNX group compared to Sham animals. LPS-induced anorexia was associated with increased anorexigenic neuropeptides mRNA for pro-opiomelanocortin, corticotrophin releasing factor and cocaine-amphetamine-regulated transcript in the hypothalamus of both Sham and UniNX groups, but at higher levels in the UniNX group. Melanocortin-4-receptor mRNA was markedly increased in the UniNX group, which may have contributed to the enhanced anorexic response to LPS of the UniNX group. In summary, UniNX potentiates pro-inflammatory cytokine production, anorexia and selected hypothalamic anorexigenic neuropeptides in response to LPS.

  15. Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration.

    Science.gov (United States)

    Pfalzgraff, Anja; Heinbockel, Lena; Su, Qi; Gutsmann, Thomas; Brandenburg, Klaus; Weindl, Günther

    2016-01-01

    The stagnation in the development of new antibiotics and the concomitant high increase of resistant bacteria emphasize the urgent need for new therapeutic options. Antimicrobial peptides are promising agents for the treatment of bacterial infections and recent studies indicate that Pep19-2.5, a synthetic anti-lipopolysaccharide (LPS) peptide (SALP), efficiently neutralises pathogenicity factors of Gram-negative (LPS) and Gram-positive (lipoprotein/-peptide, LP) bacteria and protects against sepsis. Here, we investigated the potential of Pep19-2.5 and the structurally related compound Pep19-4LF for their therapeutic application in bacterial skin infections. SALPs inhibited LP-induced phosphorylation of NF-κB p65 and p38 MAPK and reduced cytokine release and gene expression in primary human keratinocytes and dermal fibroblasts. In LPS-stimulated human monocyte-derived dendritic cells and Langerhans-like cells, the peptides blocked IL-6 secretion, downregulated expression of maturation markers and inhibited dendritic cell migration. Both SALPs showed a low cytotoxicity in all investigated cell types. Furthermore, SALPs markedly promoted cell migration via EGFR transactivation and ERK1/2 phosphorylation and accelerated artificial wound closure in keratinocytes. Peptide-induced keratinocyte migration was mediated by purinergic receptors and metalloproteases. In contrast, SALPs did not affect proliferation of keratinocytes. Conclusively, our data suggest a novel therapeutic target for the treatment of patients with acute and chronic skin infections. PMID:27509895

  16. Structure and Effects of Cyanobacterial Lipopolysaccharides.

    Science.gov (United States)

    Durai, Prasannavenkatesh; Batool, Maria; Choi, Sangdun

    2015-07-01

    Lipopolysaccharide (LPS) is a component of the outer membrane of mainly Gram-negative bacteria and cyanobacteria. The LPS molecules from marine and terrestrial bacteria show structural variations, even among strains within the same species living in the same environment. Cyanobacterial LPS has a unique structure, since it lacks heptose and 3-deoxy-d-manno-octulosonic acid (also known as keto-deoxyoctulosonate (KDO)), which are present in the core region of common Gram-negative LPS. In addition, the cyanobacterial lipid A region lacks phosphates and contains odd-chain hydroxylated fatty acids. While the role of Gram-negative lipid A in the regulation of the innate immune response through Toll-like Receptor (TLR) 4 signaling is well characterized, the role of the structurally different cyanobacterial lipid A in TLR4 signaling is not well understood. The uncontrolled inflammatory response of TLR4 leads to autoimmune diseases such as sepsis, and thus the less virulent marine cyanobacterial LPS molecules can be effective to inhibit TLR4 signaling. This review highlights the structural comparison of LPS molecules from marine cyanobacteria and Gram-negative bacteria. We discuss the potential use of marine cyanobacterial LPS as a TLR4 antagonist, and the effects of cyanobacterial LPS on humans and marine organisms. PMID:26198237

  17. Structure and Effects of Cyanobacterial Lipopolysaccharides

    Directory of Open Access Journals (Sweden)

    Prasannavenkatesh Durai

    2015-07-01

    Full Text Available Lipopolysaccharide (LPS is a component of the outer membrane of mainly Gram-negative bacteria and cyanobacteria. The LPS molecules from marine and terrestrial bacteria show structural variations, even among strains within the same species living in the same environment. Cyanobacterial LPS has a unique structure, since it lacks heptose and 3-deoxy-d-manno-octulosonic acid (also known as keto-deoxyoctulosonate (KDO, which are present in the core region of common Gram-negative LPS. In addition, the cyanobacterial lipid A region lacks phosphates and contains odd-chain hydroxylated fatty acids. While the role of Gram-negative lipid A in the regulation of the innate immune response through Toll-like Receptor (TLR 4 signaling is well characterized, the role of the structurally different cyanobacterial lipid A in TLR4 signaling is not well understood. The uncontrolled inflammatory response of TLR4 leads to autoimmune diseases such as sepsis, and thus the less virulent marine cyanobacterial LPS molecules can be effective to inhibit TLR4 signaling. This review highlights the structural comparison of LPS molecules from marine cyanobacteria and Gram-negative bacteria. We discuss the potential use of marine cyanobacterial LPS as a TLR4 antagonist, and the effects of cyanobacterial LPS on humans and marine organisms.

  18. Concentration Dependent Influence of Lipopolysaccharides on Separation of Hoof Explants and Supernatant Lactic Acid Concentration in an Ex Vivo/In Vitro Laminitis Model.

    Directory of Open Access Journals (Sweden)

    Nicole Reisinger

    Full Text Available Laminitis is one of the most common diseases in horses. It is not only painful for the animal, but also has a significant financial impact on the equine industry. This multifactorial disease affects the connective tissue of the hoof. However, the pathogenesis of laminitis is still not fully understood. Endotoxins, also known as lipopolysaccharides (LPS, and bacterial exotoxins seem to play an important role during the development of laminitis. The aim of our study was to investigate the effect of increasing LPS concentrations (0, 2.5, 5, 10, and 100 μg/mL on cell viability of isolated epidermal and dermal hoof cells as well as on the tissue integrity of hoof explants. Furthermore, glucose, acetic acid, lactic acid, and propionic acid concentrations in explant supernatants were measured to evaluate the energy metabolism in the hoof tissue. LPS did not exhibit cytotoxic effects on epidermal or dermal cells. Force required to separate LPS treated hoof explants decreased in a concentration dependent manner. Specifically, explants incubated with 10 and 100 μg/mL needed significantly less force to separate compared to control explants. Lactic acid concentrations were significantly decreased in explants incubated with 5, 10, or 100 μg/mL LPS, while glucose, acetic acid and propionic acid concentrations were unaffected by LPS treatment. Our study indicates that LPS has no cytotoxic effect on epidermal and dermal cells isolated from hoof tissue, but impairs integrity of hoof explants. In addition, LPS led to an alteration of the lactic acid production in the lamellar tissue. Since our data highlight that LPS can affect the integrity of the equine hoof tissue in vitro, endotoxins should be further explored for their contribution to facilitate the development of laminitis.

  19. Concentration Dependent Influence of Lipopolysaccharides on Separation of Hoof Explants and Supernatant Lactic Acid Concentration in an Ex Vivo/In Vitro Laminitis Model.

    Science.gov (United States)

    Reisinger, Nicole; Schaumberger, Simone; Nagl, Veronika; Hessenberger, Sabine; Schatzmayr, Gerd

    2015-01-01

    Laminitis is one of the most common diseases in horses. It is not only painful for the animal, but also has a significant financial impact on the equine industry. This multifactorial disease affects the connective tissue of the hoof. However, the pathogenesis of laminitis is still not fully understood. Endotoxins, also known as lipopolysaccharides (LPS), and bacterial exotoxins seem to play an important role during the development of laminitis. The aim of our study was to investigate the effect of increasing LPS concentrations (0, 2.5, 5, 10, and 100 μg/mL) on cell viability of isolated epidermal and dermal hoof cells as well as on the tissue integrity of hoof explants. Furthermore, glucose, acetic acid, lactic acid, and propionic acid concentrations in explant supernatants were measured to evaluate the energy metabolism in the hoof tissue. LPS did not exhibit cytotoxic effects on epidermal or dermal cells. Force required to separate LPS treated hoof explants decreased in a concentration dependent manner. Specifically, explants incubated with 10 and 100 μg/mL needed significantly less force to separate compared to control explants. Lactic acid concentrations were significantly decreased in explants incubated with 5, 10, or 100 μg/mL LPS, while glucose, acetic acid and propionic acid concentrations were unaffected by LPS treatment. Our study indicates that LPS has no cytotoxic effect on epidermal and dermal cells isolated from hoof tissue, but impairs integrity of hoof explants. In addition, LPS led to an alteration of the lactic acid production in the lamellar tissue. Since our data highlight that LPS can affect the integrity of the equine hoof tissue in vitro, endotoxins should be further explored for their contribution to facilitate the development of laminitis. PMID:26599864

  20. Serum Levels of Lipopolysaccharide and 1,3-β-D-Glucan Refer to the Severity in Patients with Crohn’s Disease

    Directory of Open Access Journals (Sweden)

    Yanmin Guo

    2015-01-01

    Full Text Available Objectives. Interactions between the host and gut microbial community contribute to the pathogenesis of Crohn’s disease (CD. In this study, we aimed to detect lipopolysaccharide (LPS and 1,3-β-D-glucan (BG in the sera of CD patients and clarify the potential role in the diagnosis and therapeutic approaches. Materials and Methods. Serum samples were collected from 46 patients with active CD (A-CD, 22 CD patients at remission stage (R-CD, and 20 healthy controls, and the levels of LPS, BG, and TNF in sera were determined by ELISA. Moreover, sixteen patients with A-CD received anti-TNF monoclonal antibody therapy (infliximab, IFX at a dose of 5 mg/kg body weight at weeks 0, 2, and 6, and the levels of LPS and BG were also tested at week 12 after the first intravenous infusion. Results. Serum levels of LPS and BG were found to be markedly increased in A-CD patients compared with R-CD patients and healthy controls (P<0.05. They were also observed to be positively correlated with CDAI, ESR, and SES-CD, respectively (P<0.05. Furthermore, the levels of TNF in sera had a significant correlation with LPS and BG, respectively. The concentrations of LPS and BG were demonstrated to be significantly downregulated in the sera of A-CD patients 12 weeks after IFX treatment (P<0.05, suggesting that blockade of TNF could inhibit bacterial endotoxin absorption, partially through improving intestinal mucosal barrier. Conclusions. Serum levels of LPS and BG are significantly increased in A-CD patients and positively correlated with the severity of the disease. Blockade of intestinal mucosal inflammation with IFX could reduce the levels of LPS and BG in sera. Therefore, this study has shed some light on measurement of serum LPS and BG in the diagnosis and treatment of CD patients.

  1. Putting on the brakes: Bacterial impediment of wound healing.

    Science.gov (United States)

    Brothers, Kimberly M; Stella, Nicholas A; Hunt, Kristin M; Romanowski, Eric G; Liu, Xinyu; Klarlund, Jes K; Shanks, Robert M Q

    2015-01-01

    The epithelium provides a crucial barrier to infection, and its integrity requires efficient wound healing. Bacterial cells and secretomes from a subset of tested species of bacteria inhibited human and porcine corneal epithelial cell migration in vitro and ex vivo. Secretomes from 95% of Serratia marcescens, 71% of Pseudomonas aeruginosa, 29% of Staphylococcus aureus strains, and other bacterial species inhibited epithelial cell migration. Migration of human foreskin fibroblasts was also inhibited by S. marcescens secretomes indicating that the effect is not cornea specific. Transposon mutagenesis implicated lipopolysaccharide (LPS) core biosynthetic genes as being required to inhibit corneal epithelial cell migration. LPS depletion of S. marcescens secretomes with polymyxin B agarose rendered secretomes unable to inhibit epithelial cell migration. Purified LPS from S. marcescens, but not from Escherichia coli or S. marcescens strains with mutations in the waaG and waaC genes, inhibited epithelial cell migration in vitro and wound healing ex vivo. Together these data suggest that S. marcescens LPS is sufficient for inhibition of epithelial wound healing. This study presents a novel host-pathogen interaction with implications for infections where bacteria impact wound healing and provides evidence that secreted LPS is a key factor in the inhibitory mechanism.

  2. Effect of methanolic extract of Asparagus racemosus Willd. on lipopolysaccharide induced-oxidative stress in rats.

    Science.gov (United States)

    Ahmad, Mohammad Parwez; Hussain, Arshad; Siddiqui, Hefazat Hussain; Wahab, Shadma; Adak, Manoranjan

    2015-03-01

    Lipopolysaccharide (LPS) induced oxidative stress and impairment of normal physiological function generally categorized by increased anxiety and reduced mobility. Therefore, the present study was to find out the effect Methanolic extract of Asparagus racemosus (MEAR ) in lipopolysaccharide (LPS)-induced oxidative stress in rats . LPS-induced oxidative stress in rats was measured by locomotor activity by photoactometer test, anxiety with elevated plus maze test and also studied the oxidative stress markers, nitric oxide and cytokines. The obtained data shows that LPS markedly exhausted (pAsparagus racemosus Willd. is a functionally newer type of cerebroprotective agent.

  3. Effect of methanolic extract of Asparagus racemosus Willd. on lipopolysaccharide induced-oxidative stress in rats.

    Science.gov (United States)

    Ahmad, Mohammad Parwez; Hussain, Arshad; Siddiqui, Hefazat Hussain; Wahab, Shadma; Adak, Manoranjan

    2015-03-01

    Lipopolysaccharide (LPS) induced oxidative stress and impairment of normal physiological function generally categorized by increased anxiety and reduced mobility. Therefore, the present study was to find out the effect Methanolic extract of Asparagus racemosus (MEAR ) in lipopolysaccharide (LPS)-induced oxidative stress in rats . LPS-induced oxidative stress in rats was measured by locomotor activity by photoactometer test, anxiety with elevated plus maze test and also studied the oxidative stress markers, nitric oxide and cytokines. The obtained data shows that LPS markedly exhausted (pAsparagus racemosus Willd. is a functionally newer type of cerebroprotective agent. PMID:25730806

  4. Fetal lipopolysaccharide exposure modulates diet-dependent gut maturation and sensitivity to necrotising enterocolitis in pre-term pigs

    DEFF Research Database (Denmark)

    Cilieborg, Malene Skovsted; Schmidt, Mette; Skovgaard, Kerstin;

    2011-01-01

    , enzyme activities, intestinal permeability and NEC incidence (18%, P = 0.2 relative to control-F), and numbers of differentially expressed immune genes. In conclusion, prenatal exposure of the fetal gut to Gram-negative bacteria may modulate the immediate postnatal response to an enteral diet......Uterine infections during pregnancy predispose to pre-term birth and postnatal morbidity, but it is unknown how prenatal bacterial exposure affects maturation of the immature gut. We hypothesised that a prenatal exposure to gram-negative lipopolysaccharide (LPS) has immunomodulatory effects......) or formula (F) for 48 h. Gut indices did not differ between pigs injected intramuscularly with saline or LPS, and these groups were therefore pooled into two control groups according to diet (control-F, n 32 and control-C, n 11). Control-F pigs showed reduced villus heights, mucosal structure, gut integrity...

  5. Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4.

    Science.gov (United States)

    Chen, Zhihong; Jalabi, Walid; Shpargel, Karl B; Farabaugh, Kenneth T; Dutta, Ranjan; Yin, Xinghua; Kidd, Grahame J; Bergmann, Cornelia C; Stohlman, Stephen A; Trapp, Bruce D

    2012-08-22

    Intraperitoneal injection of the Gram-negative bacterial endotoxin lipopolysaccharide (LPS) elicits a rapid innate immune response. While this systemic inflammatory response can be destructive, tolerable low doses of LPS render the brain transiently resistant to subsequent injuries. However, the mechanism by which microglia respond to LPS stimulation and participate in subsequent neuroprotection has not been documented. In this study, we first established a novel LPS treatment paradigm where mice were injected intraperitoneally with 1.0 mg/kg LPS for four consecutive days to globally activate CNS microglia. By using a reciprocal bone marrow transplantation procedure between wild-type and Toll-like receptor 4 (TLR4) mutant mice, we demonstrated that the presence of LPS receptor (TLR4) is not required on hematogenous immune cells but is required on cells that are not replaced by bone marrow transplantation, such as vascular endothelia and microglia, to transduce microglial activation and neuroprotection. Furthermore, we showed that activated microglia physically ensheathe cortical projection neurons, which have reduced axosomatic inhibitory synapses from the neuronal perikarya. In line with previous reports that inhibitory synapse reduction protects neurons from degeneration and injury, we show here that neuronal cell death and lesion volumes are significantly reduced in LPS-treated animals following experimental brain injury. Together, our results suggest that activated microglia participate in neuroprotection and that this neuroprotection is likely achieved through reduction of inhibitory axosomatic synapses. The therapeutic significance of these findings rests not only in identifying neuroprotective functions of microglia, but also in establishing the CNS location of TLR4 activation. PMID:22915113

  6. Bioactivity and Immunological Evaluation of LPS from Different Serotypes of Helicobacter Pylori

    Directory of Open Access Journals (Sweden)

    Davoud Esmaeilli

    2013-06-01

    Full Text Available Background and Objectives: Helicobacter pylori is the causative agent of peptic ulcer disease and a co-factor in development of gastric malignancies. LPS are among toxic substances produced by H. pylori exhibiting low endotoxic activity compared to typical bacterial LPS. The aim of this study was to investigate bioactivity of LPS produced by different serotypes of Helicobacter pylori compared to Escherichia coli and Brucella abortus LPS. Materials and Methods: Bacterial LPS was extracted by the hot phenol-water method. Biological activities of LPS were determined via the limulus lysate assay, pyrogenic assay, and blood pressure and PBMC induction test in rabbits.Results: Biological activity of O2 serotype LPS of H. pylori was less than the biological activity of other H. pylori serotypes.Conclusion: Our data supported the hypothesis that the unique bacterial LPS of the O2 serotype must be included in the formulation of a multivalent H. pylori vaccine.

  7. The effect of Porphyromonas gingivalis lipopolysaccharide on pregnancy in the rat

    NARCIS (Netherlands)

    Kunnen, A; van Pampus, M G; Aarnoudse, J G; van der Schans, C P; Abbas, F; Faas, M M

    2014-01-01

    OBJECTIVE: Periodontitis, mostly associated with Porphyromonas gingivalis, has frequently been related to adverse pregnancy outcomes. We therefore investigated whether lipopolysaccharides of P. gingivalis (Pg-LPS) induced pregnancy complications in the rat. METHODS: Experiment 1: pregnant rats (day

  8. Lipopolysaccharide-induced hyperalgesia of intracranial capsaicin sensitive afferents in conscious rats

    NARCIS (Netherlands)

    Kemper, RHA; Spoelstra, MB; Meijler, WJ; Ter Horst, GJ

    1998-01-01

    Migraineous and non-migraineous headache is reported to be at highest intensity after an infection. This study investigated whether activation of the immune system can induce hyperalgesia in intracranial capsaicin sensitive afferents. The effects of intraperitoneal injected lipopolysaccharides (LPS)

  9. Diet-induced bacterial immunogens in the gastrointestinal tract of dairy cows: Impacts on immunity and metabolism

    Directory of Open Access Journals (Sweden)

    Zhou Jun

    2011-08-01

    Full Text Available Abstract Dairy cows are often fed high grain diets to meet the energy demand for high milk production or simply due to a lack of forages at times. As a result, ruminal acidosis, especially subacute ruminal acidosis (SARA, occurs frequently in practical dairy production. When SARA occurs, bacterial endotoxin (or lipopolysaccharide, LPS is released in the rumen and the large intestine in a large amount. Many other bacterial immunogens may also be released in the digestive tract following feeding dairy cows diets containing high proportions of grain. LPS can be translocated into the bloodstream across the epithelium of the digestive tract, especially the lower tract, due to possible alterations of permeability and injuries of the epithelial tissue. As a result, the concentration of blood LPS increases. Immune responses are subsequently caused by circulating LPS, and the systemic effects include increases in concentrations of neutrophils and the acute phase proteins such as serum amyloid-A (SAA, haptoglobin (Hp, LPS binding protein (LBP, and C-reactive protein (CRP in blood. Entry of LPS into blood can also result in metabolic alterations. Blood glucose and nonesterified fatty acid concentrations are enhanced accompanying an increase of blood LPS after increasing the amount of grain in the diet, which adversely affects feed intake of dairy cows. As the proportions of grain in the diet increase, patterns of plasma β-hydoxybutyric acid, cholesterol, and minerals (Ca, Fe, and Zn are also perturbed. The bacterial immunogens can also lead to reduced supply of nutrients for synthesis of milk components and depressed functions of the epithelial cells in the mammary gland. The immune responses and metabolic alterations caused by circulating bacterial immunogens will exert an effect on milk production. It has been demonstrated that increases in concentrations of ruminal LPS and plasma acute phase proteins (CRP, SAA, and LBP are associated with declines in

  10. Single-Cell and Population NF-κB Dynamic Responses Depend on Lipopolysaccharide Preparation

    OpenAIRE

    Miriam V Gutschow; Hughey, Jacob J.; Nicholas A Ruggero; Bryce T Bajar; Valle, Sean D.; Covert, Markus W

    2013-01-01

    Background Lipopolysaccharide (LPS), found in the outer membrane of gram-negative bacteria, elicits a strong response from the transcription factor family Nuclear factor (NF)-κB via Toll-like receptor (TLR) 4. The cellular response to lipopolysaccharide varies depending on the source and preparation of the ligand, however. Our goal was to compare single-cell NF-κB dynamics across multiple sources and concentrations of LPS. Methodology/Principal Findings Using live-cell fluorescence microscopy...

  11. Serotype-dependent expression patterns of stabilized lipopolysaccharide aggregates in Aggregatibacter actinomycetemcomitans strains.

    Science.gov (United States)

    Kikuchi, Haruko; Fujise, Osamu; Miura, Mayumi; Tanaka, Ayako; Hisano, Kyoko; Haraguchi, Akira; Hamachi, Takafumi; Maeda, Katsumasa

    2012-10-01

    Above a critical concentration, amphiphilic lipopolysaccharide (LPS) molecules in an aqueous environment form aggregate structures, probably because of interactions involving hydrophobic bonds. Ionic bonds involving divalent cations stabilize these aggregate structures, making them resistant to breakdown by detergents. The aim of this study was to examine expression patterns of stabilized LPS aggregates in Aggregatibacter actinomycetemcomitans, a microorganism that causes periodontitis. A. actinomycetemcomitans strains of various serotypes and truncated LPS mutants were prepared for this study. Following treatment with a two-phase separation system using the detergent Triton X-114, crude LPS extracts of the study strains were separated into detergent-phase LPS (DP-LPS) and aqueous-phase LPS (AP-LPS). Repeated treatment of the aqueous phase with the two-phase separation system produced only a slight decrease in AP-LPS, suggesting that AP-LPS was resistant to the detergent and thus distinguishable from DP-LPS. The presence of divalent cations increased the yield of AP-LPS. AP-LPS expression patterns were serotype-dependent; serotypes b and f showing early expression, and serotypes a and c late expression. In addition, highly truncated LPS from a waaD (rfaD) mutant were unable to generate AP-LPS, suggesting involvement of the LPS structure in the generation of AP-LPS. The two-phase separation was able to distinguish two types of LPS with different physical states at the supramolecular structure level. Hence, AP-LPS likely represents stabilized LPS aggregates, whereas DP-LPS might be derived from non-stabilized aggregates. Furthermore, time-dependent expression of stabilized LPS aggregates was found to be serotype-dependent in A. actinomycetemcomitans.

  12. Bacterial and fungal markers in tobacco smoke

    Energy Technology Data Exchange (ETDEWEB)

    Szponar, B., E-mail: szponar@iitd.pan.wroc.pl [Lund University, Dept. of Laboratory Medicine, Soelvegatan 23, 223 62 Lund (Sweden); Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw (Poland); Pehrson, C.; Larsson, L. [Lund University, Dept. of Laboratory Medicine, Soelvegatan 23, 223 62 Lund (Sweden)

    2012-11-01

    Previous research has demonstrated that cigarette smoke contains bacterial and fungal components including lipopolysaccharide (LPS) and ergosterol. In the present study we used gas chromatography-mass spectrometry to analyze tobacco as well as mainstream and second hand smoke for 3-hydroxy fatty acids (3-OH FAs) of 10 to 18 carbon chain lengths, used as LPS markers, and ergosterol, used as a marker of fungal biomass. The air concentrations of LPS were 0.0017 nmol/m{sup 3} (N = 5) and 0.0007/m{sup 3} (N = 6) in the smoking vs. non-smoking rooms (p = 0.0559) of the studied private houses, and 0.0231 nmol/m{sup 3} (N = 5) vs. 0.0006 nmol/m{sup 3} (N = 5) (p = 0.0173), respectively, at the worksite. The air concentrations of ergosterol were also significantly higher in rooms with ongoing smoking than in rooms without smoking. A positive correlation was found between LPS and ergosterol in rooms with smoking but not in rooms without smoking. 3-OH C14:0 was the main 3-OH FA, followed by 3-OH C12:0, both in mainstream and second hand smoke and in phenol:water smoke extracts prepared in order to purify the LPS. The Limulus activity of the phenolic phase of tobacco was 3900 endotoxin units (EU)/cigarette; the corresponding amount of the smoke, collected on filters from 8 puffs, was 4 EU/cigarette. Tobacco smoking has been associated with a range of inflammatory airway conditions including COPD, asthma, bronchitis, alveolar hypersensitivity etc. Significant levels of LPS and ergosterol were identified in tobacco smoke and these observations support the hypothesis that microbial components of tobacco smoke contribute to inflammation and airway disease. -- Highlights: Black-Right-Pointing-Pointer Air concentration of bacterial and fungal markers is significantly higher in rooms with ongoing smoking than without smoking. Black-Right-Pointing-Pointer Bacterial LPS correlates with fungal marker in rooms with ongoing smoking but not without smoking. Black-Right-Pointing-Pointer LPS

  13. Interleukin-13 Inhibits Lipopolysaccharide-Induced BPIFA1 Expression in Nasal Epithelial Cells

    Science.gov (United States)

    Chen, Hui-Chen; Hsu, Hui-Ying; Wu, Lii-Tzu; Chiang-Ni, Chuan; Chen, Chih-Jung; Wu, Tsu-Fang; Kao, Min-Chuan; Chen, Yu-An; Peng, Ming-Te; Tsai, Ming-Hsui; Chen, Chuan-Mu; Lai, Chih-Ho

    2015-01-01

    Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) protein is expressed in human nasopharyngeal and respiratory epithelium and has demonstrated antimicrobial activity. SPLUNC1 is now referred to as bactericidal/permeability-increasing fold containing family A, member 1 (BPIFA1). Reduced BPIFA1 expression is associated with bacterial colonization in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). Interleukin 13 (IL-13), predominately secreted by T helper 2 (TH2) cells, has been found to contribute to airway allergies and suppress BPIFA1 expression in nasal epithelial cells. However, the molecular mechanism of IL-13 perturbation of bacterial infection and BPIFA1 expression in host airways remains unclear. In this study, we found that lipopolysaccharide (LPS)-induced BPIFA1 expression in nasal epithelial cells was mediated through the JNK/c-Jun signaling pathway and AP-1 activation. We further demonstrated that IL-13 downregulated the LPS-induced activation of phosphorylated JNK and c-Jun, followed by attenuation of BPIFA1 expression. Moreover, the immunohistochemical analysis showed that IL-13 prominently suppressed BPIFA1 expression in eosinophilic CRSwNP patients with bacterial infection. Taken together, these results suggest that IL-13 plays a critical role in attenuation of bacteria-induced BPIFA1 expression that may result in eosinophilic CRSwNP. PMID:26646664

  14. Protection against Lipopolysaccharide-Induced Death by Fluoroquinolones

    OpenAIRE

    Khan, Anis A.; Slifer, Teri R.; Araujo, Fausto G.; Suzuki, Yasuhiro; Remington, Jack S.

    2000-01-01

    Because fluoroquinolones have an immunomodulatory effect on cytokine production by lipopolysaccharide (LPS)-treated human monocytes, we examined the effect of fluoroquinolones on the survival of mice injected with a lethal dose of LPS. Trovafloxacin (100 mg/kg), ciprofloxacin (250 mg/kg), and tosufloxacin (100 mg/kg) protected 75% (P = 0.0001), 25% (P = 0.002), and 50% (P = 0.002), respectively, of mice against death. The fluoroquinolones significantly reduced serum levels of interleukin-6 an...

  15. Minocycline and sulforaphane inhibited lipopolysaccharide-mediated retinal microglial activation

    OpenAIRE

    Li-ping YANG; Zhu, Xiu-an; Tso, Mark O.M.

    2007-01-01

    Purpose To elucidate the inhibitory effect of minocycline and sulforaphane on lipopolysaccharide (LPS)-induced retinal microglial activation and the mechanisms through which they exerted their inhibitory effects. Methods Primary retinal microglial cultures were exposed to LPS with or without minocycline and sulforaphane. The mRNA expression of monocyte chemotactic protein (MCP)-1, MCP-3, macrophage inflammatory protein (MIP)-1α, MIP-1β, eotaxin, regulated upon activation normal T-cell express...

  16. Activation of macrophage nuclear factor-κB and induction of inducible nitric oxide synthase by LPS

    Science.gov (United States)

    Li, Ying-Hua; Yan, Zhong-Qun; Brauner, Annelie; Tullus, Kjell

    2002-01-01

    Background Chronic lung disease (CLD) of prematurity is a major problem of neonatal care. Bacterial infection and inflammatory response have been thought to play an important role in the development of CLD and steroids have been given, with some benefit, to neonates with this disease. In the present study, we assessed the ability of lipopolysaccharide (LPS) to stimulate rat alveolar macrophages to produce nitric oxide (NO), express inducible nitric oxide synthase (iNOS) and activate nuclear factor-κB (NF-κB) in vitro. In addition, we investigated the impact of dexamethasone and budesonide on these processes. Methods Griess reaction was used to measure the nitrite level. Western blot and a semi-quantitative RT-PCR were performed to detect iNOS expression. Electrophoretic mobility shift assay (EMSA) was performed to analyze the activation of NF-κB. Results We found that LPS stimulated the rat alveolar macrophages to produce NO in a dose (≥10 ng/ml) and time dependent manner (p < 0.05). This effect was further enhanced by IFN-γ (≥10 IU/ml, p < 0.05), but was attenuated by budesonide (10-4–10-10 M) and dexamethasone (10-4–10-6 M) (p < 0.05). The mRNA and protein levels of iNOS were also induced in response to LPS and attenuated by steroids. LPS triggered NF-κB activation, a mechanism responsible for the iNOS expression. Conclusion Our findings imply that Gram-negative bacterial infection and the inflammatory responses are important factors in the development of CLD. The down-regulatory effect of steroids on iNOS expression and NO production might explain the beneficial effect of steroids in neonates with CLD. PMID:12323081

  17. Thalidomide protects mice against LPS-induced shock

    Directory of Open Access Journals (Sweden)

    Moreira A.L.

    1997-01-01

    Full Text Available Thalidomide has been shown to selectively inhibit TNF-a production in vitro by lipopolysaccharide (LPS-stimulated monocytes. TNF-a has been shown to play a pivotal role in the pathophysiology of endotoxic shock. Using a mouse model of LPS-induced shock, we investigated the effects of thalidomide on the production of TNF-a and other cytokines and on animal survival. After injection of 100-350 µg LPS into mice, cytokines including TNF-a, IL-6, IL-10, IL-1ß, GM-CSF and IFN-g were measured in the serum. Administration of 200 mg/kg thalidomide to mice before LPS challenge modified the profile of LPS-induced cytokine secretion. Serum TNF-a levels were reduced by 93%, in a dose-dependent manner, and TNF-a mRNA expression in the spleens of mice was reduced by 70%. Serum IL-6 levels were also inhibited by 50%. Thalidomide induced a two-fold increase in serum IL-10 levels. Thalidomide treatment did not interfere with the production of GM-CSF, IL-1ß or IFN-g. The LD50 of LPS in this model was increased by thalidomide pre-treatment from 150 µg to 300 µg in 72 h. Thus, at otherwise lethal doses of LPS, thalidomide treatment was found to protect animals from death

  18. Lack of Interaction of Fluoroquinolones with Lipopolysaccharides

    OpenAIRE

    Lindner, B.; Wiese, A.; Brandenburg, K; Seydel, U.; Dalhoff, A

    2002-01-01

    Fluoroquinolones are known to chelate with di- and trivalent cations, and it has accordingly been claimed that they perturb the integrity of the outer membrane (OM) of gram-negative bacteria. So far, chelation has not been assessed in biologically relevant test systems. Therefore, we investigated the interaction of ciprofloxacin and moxifloxacin in the absence and presence of Mg2+ with whole bacteria and isolated lipopolysaccharide (LPS) from various rough mutant strains of Salmonella enteric...

  19. The effect of omega- 3 polyunsaturated fatty acids on endothelial tight junction occludin expression in rat aorta during lipopolysaccharide-induced inflammation

    Science.gov (United States)

    Krizak, Jakub; Frimmel, Karel; Bernatova, Iveta; Navarova, Jana; Sotnikova, Ruzena; Okruhlicova, Ludmila

    2016-01-01

    Objective(s): Occludin is essential for proper assembly of tight junctions (TJs) which regulate paracellular endothelial permeability. Omega-3 polyunsaturated fatty acids (Ω-3 PUFA) protect endothelial barrier function against injury. Materials and Methods: We examined anti-inflammatory effect of Ω-3 PUFA intake (30 mg/kg/day for 10 days) on expression and location of occludin in the aorta of adult Wistar rats after a single dose of bacterial lipopolysaccharide (LPS, Escherichia coli, 1 mg/kg). The ultrastructure of TJs after LPS administration was also investigated. We measured plasma levels of C-reactive protein (CRP), Malondialdehyde (MDA) and CD68 expression and determined the total activity of NO synthase (NOS) in the aortic tissue. Results: LPS induced a significant decrease of occludin expression accompanied by structural alterations of TJs. Levels of CRP, MDA, CD68 and NOS activity were elevated after LPS injection compared to controls indicating presence of moderate inflammation. Ω-3 PUFA supplementation did not affect occludin expression in treated inflammatory group. However they reduced CRP and MDA concentration and CD68 expression, but conversely, they increased NOS activity compared to inflammatory group. Conclusion: Our results indicate that a single dose of LPS could have a long-term impact on occludin expression and thus contribute to endothelial barrier dysfunction. 10-day administration of Ω-3 PUFA had partial anti-inflammatory effects on health of rats without any effect on occludin expression. PMID:27114799

  20. Probing roles of lipopolysaccharide, type 1 fimbria, and colanic acid in the attachment of Escherichia coli strains on inert surfaces.

    Science.gov (United States)

    Chao, Yuanqing; Zhang, Tong

    2011-09-20

    The roles of bacterial surface polymers in reversible (phase I) and irreversible (phase II) attachment (i.e., lipopolysaccharides (LPS), type 1 fimbria, and capsular colanic acid (CA)) were investigated in situ by combining fluorescence microscopy and atomic force microscopy. Fluorescence microscopy was used to evaluate the phase I attachment by counting the total number of cells on the substrata, and AFM was applied to image the phase II cells and measure the lateral detachment force to characterize phase II attachment. Also, by comparing the number of cells in phases I and II, the transformation ratio was calculated and used as an index to evaluate the roles of different polymers in the attachment process. Escherichia coli K-12 and its six mutants, which had different surface polymers in terms of LPS structures, CA contents, and type 1 fimbriae, were used as the test strains. Six different materials were applied as substrata, including glass, two metals (aluminum and stainless steel), and three plastics (polyvinyl chloride, polycarbonate, and polyethylene). The results indicated that LPS significantly enhanced phases I and II attachment as well as the transformation ratio from phase I to II. Like LPS, type 1 fimbriae largely increased the phase I attachment and the transformation ratio; however, they did not significantly influence the adhesion strength in phase II. CA had a negative effect on attachment in phases I and II by decreasing the adhered number of cells and the lateral detachment force, respectively, but had no influence on the transformation ratio. PMID:21842859

  1. In Vitro Prevention of Salmonella Lipopolysaccharide-Induced Damages in Epithelial Barrier Function by Various Lactobacillus Strains

    Directory of Open Access Journals (Sweden)

    Chun-Yan Yeung

    2013-01-01

    Full Text Available Background. Lactobacillus shows beneficial anti-inflammatory effects on Salmonella infection. The maintenance of the tight junction (TJ integrity plays an importance role in avoiding bacterial invasion. Whether Lactobacillus could be used to regulate the TJ protein expression and distribution in inflamed intestinal epithelial cells was determined. Methods. Using the transwell coculture model, Salmonella lipopolysaccharide (LPS was apically added to polarized Caco-2 cells cocultured with peripheral blood mononuclear cells in the basolateral compartment. LPS-stimulated Caco-2 cells were incubated with various Lactobacillus strains. TJ integrity was determined by measuring transepithelial electrical resistance across Caco-2 monolayer. Expression and localization of TJ proteins (zonula-occludens- (ZO- 1 were determined by Western blot and immunofluorescence microscopy. Results. Various strains of Lactobacillus were responsible for the different modulations of cell layer integrity. LPS was specifically able to disrupt epithelial barrier and change the location of ZO-1. Our data demonstrate that Lactobacillus could attenuate the barrier disruption of intestinal epithelial cells caused by Salmonella LPS administration. We showed that Lactobacillus strains are associated with the maintenance of the tight junction integrity and appearance. Conclusion. In this study we provide insight that live probiotics could improve epithelial barrier properties and this may explain the potential mechanism behind their beneficial effect in vivo.

  2. Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity.

    Science.gov (United States)

    Yu, Fei; Addison, Owen; Baker, Stephen J; Davenport, Alison J

    2015-09-14

    Titanium and its alloys are routinely used as biomedical implants and are usually considered to be corrosion resistant under physiological conditions. However, during inflammation, chemical modifications of the peri-implant environment including acidification occur. In addition certain biomolecules including lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls and driver of inflammation have been shown to interact strongly with Ti and modify its corrosion resistance. Gram-negative microbes are abundant in biofilms which form on dental implants. The objective was to investigate the influence of LPS on the corrosion properties of relevant biomedical Ti substrates as a function of environmental acidity. Inductively coupled plasma mass spectrometry was used to quantify Ti dissolution following immersion testing in physiological saline for three common biomedical grades of Ti (ASTM Grade 2, Grade 4 and Grade 5). Complementary electrochemical tests including anodic and cathodic polarisation experiments and potentiostatic measurements were also conducted. All three Ti alloys were observed to behave similarly and ion release was sensitive to pH of the immersion solution. However, LPS significantly inhibited Ti release under the most acidic conditions (pH 2), which may develop in localized corrosion sites, but promoted dissolution at pH 4-7, which would be more commonly encountered physiologically. The observed pattern of sensitivity to environmental acidity of the effect of LPS on Ti corrosion has not previously been reported. LPS is found extensively on the surfaces of skin and mucosal penetrating Ti implants and the findings are therefore relevant when considering the chemical stability of Ti implant surfaces in vivo.

  3. Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity

    Institute of Scientific and Technical Information of China (English)

    Fei Yu; Owen Addison; Stephen J Baker; Alison J Davenport

    2015-01-01

    Titanium and its alloys are routinely used as biomedical implants and are usually considered to be corrosion resistant under physiological conditions. However, during inflammation, chemical modifications of the peri-implant environment including acidification occur. In addition certain biomolecules including lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls and driver of inflammation have been shown to interact strongly with Ti and modify its corrosion resistance. Gram-negative microbes are abundant in biofilms which form on dental implants. The objective was to investigate the influence of LPS on the corrosion properties of relevant biomedical Ti substrates as a function of environmental acidity. Inductively coupled plasma mass spectrometry was used to quantify Ti dissolution following immersion testing in physiological saline for three common biomedical grades of Ti (ASTM Grade 2, Grade 4 and Grade 5). Complementary electrochemical tests including anodic and cathodic polarisation experiments and potentiostatic measurements were also conducted. All three Ti alloys were observed to behave similarly and ion release was sensitive to pH of the immersion solution. However, LPS significantly inhibited Ti release under the most acidic conditions (pH 2), which may develop in localized corrosion sites, but promoted dissolution at pH 4–7, which would be more commonly encountered physiologically. The observed pattern of sensitivity to environmental acidity of the effect of LPS on Ti corrosion has not previously been reported. LPS is found extensively on the surfaces of skin and mucosal penetrating Ti implants and the findings are therefore relevant when considering the chemical stability of Ti implant surfaces in vivo.

  4. Preparation of a Lipopolysaccharide from Escherichia coli 01lla, 01llb, k58: h21 bacterial wall, labeled with carbon-14

    International Nuclear Information System (INIS)

    A brief description of the morphological and chemical structure of Li po polysaccharides is given, as well as its occurrence in nature and its mechanisms of action. It is emphasized the usefulness for actual biochemical and biomedical research of the labeled Lipopolysaccharide. The method for the labelling, isolation and purification of 14''C-Lipopolysacchari de is described. (Author) 23 refs

  5. Early effects of lipopolysaccharide-induced inflammation on foetal brain development in rat

    Directory of Open Access Journals (Sweden)

    Cristina A Ghiani

    2011-11-01

    Full Text Available Studies in humans and animal models link maternal infection and imbalanced levels of inflammatory mediators in the foetal brain to the aetiology of neuropsychiatric disorders. In a number of animal models, it was shown that exposure to viral or bacterial agents during a period that corresponds to the second trimester in human gestation triggers brain and behavioural abnormalities in the offspring. However, little is known about the early cellular and molecular events elicited by inflammation in the foetal brain shortly after maternal infection has occurred. In this study, maternal infection was mimicked by two consecutive intraperitoneal injections of 200 μg of LPS (lipopolysaccharide/kg to timed-pregnant rats at GD15 (gestational day 15 and GD16. Increased thickness of the CP (cortical plate and hippocampus together with abnormal distribution of immature neuronal markers and decreased expression of markers for neural progenitors were observed in the LPS-exposed foetal forebrains at GD18. Such effects were accompanied by decreased levels of reelin and the radial glial marker GLAST (glial glutamate transporter, and elevated levels of pro-inflammatory cytokines in maternal serum and foetal forebrains. Foetal inflammation elicited by maternal injections of LPS has discrete detrimental effects on brain development. The early biochemical and morphological changes described in this work begin to explain the sequelae of early events that underlie the neurobehavioural deficits reported in humans and animals exposed to prenatal insults.

  6. EFFECTS OF CHRONIC EXERCISE CONDITIONING ON THERMAL RESPONSES TO LIPOPOLYSACCHARIDE AND TURPENTINE ABSCESS IN FEMALE RATS.

    Science.gov (United States)

    Chronic exercise conditioning has been shown to alter basal thermoregulatory processes as well as the response to inflammatory agents. Two such agents, lipopolysaccharide (LPS) and turpentine (TPT) are inducers of fever in rats. LPS, given intraperitoneally (i.p.), involves a sys...

  7. Effects of minimal lipopolysaccharide-instilled lungs on ventilator-induced lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    LI Ke-zhong; WANG Qiu-jun; SUN Tao; YAO Shang-long

    2007-01-01

    @@ Mechanical ventilation (MV) may aggravate lung injury induced by a variety of injuries, including intratracheal hydrochloric acid instillation,1 intratracheal lipopolysaccharide (LPS) instillation with or without concurrent saline lavage,2 intravenous LPS,3 or intravenous oleic acid.4 However, the mechanism for this detrimental effect of MV is unclear.

  8. Roles of interleukin-1 and tumor necrosis factor in lipopolysaccharide-induced hypoglycemia.

    OpenAIRE

    Vogel, S N; Henricson, B E; Neta, R

    1991-01-01

    In this study, hypoglycemia induced by injection of lipopolysaccharide (LPS) or the recombinant cytokine interleukin-1 alpha or tumor necrosis factor alpha (administered alone or in combination) was compared. LPS-induced hypoglycemia was reversed significantly by recombinant interleukin-1 receptor antagonist.

  9. Toxicity and immunogenicity of Neisseria meningitidis lipopolysaccharide incorporated into liposomes.

    Science.gov (United States)

    Petrov, A B; Semenov, B F; Vartanyan, Y P; Zakirov, M M; Torchilin, V P; Trubetskoy, V S; Koshkina, N V; L'Vov, V L; Verner, I K; Lopyrev, I V

    1992-09-01

    To obtain nontoxic and highly immunogenic lipopolysaccharide (LPS) for immunization, we incorporated Neisseria meningitidis LPS into liposomes. Native LPS and its salts were incorporated by the method of dehydration-rehydration of vesicles or prolonged cosonication. The most complete incorporation of LPS into liposomes and a decrease in toxicity were achieved by the method of dehydration-rehydration of vesicles. Three forms of LPS (H+ form, Mg2+ salt, and triethanolamine salt) showed different solubilities in water, the acidic form of LPS, with the most pronounced hydrophobic properties, being capable of practically complete association with liposomal membranes. An evaluation of the activity of liposomal LPS in vitro (by the Limulus amoebocyte test) and in vivo (by monitoring the pyrogenic reaction in rabbits) revealed a decrease in endotoxin activity of up to 1,000-fold. In addition, the pyrogenic activity of liposomal LPS was comparable to that of a meningococcal polysaccharide vaccine. Liposomes had a pronounced adjuvant effect on the immune response to LPS. Thus, the level of anti-LPS plaque-forming cells in the spleens of mice immunized with liposomal LPS was 1 order of magnitude higher and could be observed for a longer time (until day 21, i.e., the term of observation) than in mice immunized with free LPS. The same regularity was revealed in a study done with an enzyme-linked immunosorbent assay. This study also established that antibodies induced by immunization belonged to the immunoglobulin M and G classes, which are capable of prolonged circulation. Moreover, liposomal LPS induced a pronounced immune response in CBA/N mice (defective in B lymphocytes of the LyB-5+ subpopulation). The latter results indicate that the immunogenic action of liposomal LPS occurs at an early age.

  10. Lipopolysaccharide-bound structure of the antimicrobial peptide cecropin P1 determined by nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Baek, Mi-Hwa; Kamiya, Masakatsu; Kushibiki, Takahiro; Nakazumi, Taichi; Tomisawa, Satoshi; Abe, Chiharu; Kumaki, Yasuhiro; Kikukawa, Takashi; Demura, Makoto; Kawano, Keiichi; Aizawa, Tomoyasu

    2016-04-01

    Antimicrobial peptides (AMPs) are components of the innate immune system and may be potential alternatives to conventional antibiotics because they exhibit broad-spectrum antimicrobial activity. The AMP cecropin P1 (CP1), isolated from nematodes found in the stomachs of pigs, is known to exhibit antimicrobial activity against Gram-negative bacteria. In this study, we investigated the interaction between CP1 and lipopolysaccharide (LPS), which is the main component of the outer membrane of Gram-negative bacteria, using circular dichroism (CD) and nuclear magnetic resonance (NMR). CD results showed that CP1 formed an α-helical structure in a solution containing LPS. For NMR experiments, we expressed (15) N-labeled and (13) C-labeled CP1 in bacterial cells and successfully assigned almost all backbone and side-chain proton resonance peaks of CP1 in water for transferred nuclear Overhauser effect (Tr-NOE) experiments in LPS. We performed (15) N-edited and (13) C-edited Tr-NOE spectroscopy for CP1 bound to LPS. Tr-NOE peaks were observed at the only C-terminal region of CP1 in LPS. The results of structure calculation indicated that the C-terminal region (Lys15-Gly29) formed the well-defined α-helical structure in LPS. Finally, the docking study revealed that Lys15/Lys16 interacted with phosphate at glucosamine I via an electrostatic interaction and that Ile22/Ile26 was in close proximity with the acyl chain of lipid A.

  11. Short communication: Differential loss of bovine mammary epithelial barrier integrity in response to lipopolysaccharide and lipoteichoic acid.

    Science.gov (United States)

    Wellnitz, Olga; Zbinden, Christina; Huang, Xiao; Bruckmaier, Rupert M

    2016-06-01

    In the mammary gland, the blood-milk barrier prevents an uncontrolled intermixture of blood and milk constituents and hence maintains the osmotic gradient to draw water into the mammary secretion. During mastitis, the permeability of the blood-milk barrier is increased, which is reflected by the transfer of blood constituents into milk and vice versa. In this study, we aimed to investigate changes in the barrier function of mammary epithelial cells in vitro as induced by cell wall components of different pathogens. Primary bovine mammary epithelial cells from 3 different cows were grown separately on Transwell (Corning Inc., Corning, NY) inserts. The formation of tight junctions between adjacent epithelial cells was shown by transmission electron microscopy and by immunofluorescence staining of the tight junction protein zona occludens-1. The integrity of the epithelial barrier was assayed by means of transepithelial electrical resistance, as well as by diffusion of the fluorophore Lucifer yellow across the cell layer. The release of lactate dehydrogenase (LDH) was used as an indicator for cytotoxic effects. In response to a 24-h challenge with bacterial endotoxin, barrier integrity was reduced after 3 or 7h, respectively, in response to 0.5mg/mL lipopolysaccharide (LPS) from Escherichia coli or 20mg/mL lipoteichoic acid (LTA) from Staphylococcus aureus. No paracellular leakage was observed in response to 0.2mg/mL LPS or 2mg/mL LTA. Although LPS and LTA affected barrier permeability, most likely by opening the tight junctions, only LPS caused cell damage, reflected by increased LDH concentrations in cell culture medium. These results prove a pathogen-specific loss of blood-milk barrier integrity during mastitis, which is characterized by tight junction opening by both LPS and LTA and by additional epithelial cell destruction through LPS. PMID:27060811

  12. Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Cytotoxicity and inflammation-associated toxic responses have been observed to be induced by bacterial lipopolysaccharides (LPS in vitro and in vivo respectively. Use of nonsteroidal anti-inflammatory drugs (NSAIDs, such as aspirin, has been reported to be beneficial in inflammation-associated diseases like cancer, diabetes and cardiovascular disorders. Their precise molecular mechanisms, however, are not clearly understood. Our previous studies on aspirin treated HepG2 cells strongly suggest cell cycle arrest and induction of apoptosis associated with mitochondrial dysfunction. In the present study, we have further demonstrated that HepG2 cells treated with LPS alone or in combination with aspirin induces subcellular toxic responses which are accompanied by increase in reactive oxygen species (ROS production, oxidative stress, mitochondrial respiratory dysfunction and apoptosis. The LPS/Aspirin induced toxicity was attenuated by pre-treatment of cells with N-acetyl cysteine (NAC. Alterations in oxidative stress and glutathione-dependent redox-homeostasis were more pronounced in mitochondria compared to extra- mitochondrial cellular compartments. Pre-treatment of HepG2 cells with NAC exhibited a selective protection in redox homeostasis and mitochondrial dysfunction. Our results suggest that the altered redox metabolism, oxidative stress and mitochondrial function in HepG2 cells play a critical role in LPS/aspirin-induced cytotoxicity. These results may help in better understanding the pharmacological, toxicological and therapeutic properties of NSAIDs in cancer cells exposed to bacterial endotoxins.

  13. Dynamic evolution of the LPS-detoxifying enzyme intestinal alkaline phosphatase in zebrafish and other vertebrates

    Directory of Open Access Journals (Sweden)

    Ye eYang

    2012-10-01

    Full Text Available Alkaline phosphatases (Alps are well-studied enzymes that remove phosphates from a variety of substrates. Alps function in diverse biological processes, including modulating host-bacterial interactions by dephosphorylating the Gram-negative bacterial cell wall component lipopolysaccharide (LPS. In animals, Alps are encoded by multiple genes characterized by either ubiquitous expression (named Alpls, for their liver expression, or their tissue-specific expression, for example in the intestine (Alpi. We previously characterized a zebrafish alpi gene (renamed here alpi.1 that is regulated by Myd88-dependent innate immune signaling and that is required to prevent a host’s excessive inflammatory reactions to its resident microbiota. Here we report the characterization of two new alp genes in zebrafish, alpi.2 and alp3. To understand their origins, we investigated the phylogenetic history of Alp genes in animals. We find that vertebrate Alp genes are organized in three clades with one of these clades missing from the mammals. We present evidence that these three clades originated during the two vertebrate genome duplications. We show that in zebrafish alpl is ubiquitously expressed, as it is in mammals, whereas the other three alps are specific to the intestine. Our phylogenetic analysis reveals that in contrast to Alpl, which has been stably maintained as a single gene throughout the vertebrates, the Alpis have been lost and duplicated multiple times independently in vertebrate lineages, likely reflecting the rapid and dynamic evolution of vertebrate gut morphologies, driven by changes in bacterial associations and diet.

  14. Time-dependent changes of autophagy and apoptosis in lipopolysaccharide-induced rat acute lung injury

    OpenAIRE

    Li Lin; Lijun Zhang; Liangzhu Yu; Lu Han; Wanli Ji; Hui Shen; Zhenwu Hu

    2016-01-01

    Objective(s): Abnormal lung cell death including autophagy and apoptosis is the central feature in acute lung injury (ALI). To identify the cellular mechanisms and the chronology by which different types of lung cell death are activated during lipopolysaccharide (LPS)-induced ALI, we decided to evaluate autophagy (by LC3-II and autophagosome) and apoptosis (by caspase-3) at different time points after LPS treatment in a rat model of LPS-induced ALI. Materials and Methods: Sprague-Dawley ra...

  15. Local lung responses following endobronchial elastase and lipopolysaccharide instillation in sheep

    OpenAIRE

    Collie, D David S; McLean, Nicola; Sallenave, Jean-Michel; Baker, Alison; Blundell, Richard; Milne, Elspeth; Rhind, Susan; Woodall, Chris

    2006-01-01

    Chronic lipopolysaccharide (LPS) exposure may contribute to the pathogenesis of a number of lung diseases including COPD and emphysema. We sought to develop a large- animal model of emphysema using repeated LPS administration into sheep lung segments. An experimental protocol was designed to facilitate comparisons with elastase-treated and control segments within the same lung of individual sheep. Histopathologic evaluation of segments treated with LPS demonstrated low-grade inflammation char...

  16. Study of Nitric Oxide production by murine peritoneal macrophages induced by Brucella Lipopolysaccharide

    OpenAIRE

    Kavoosi G; Kabodanian Ardestani S; Kariminia A

    2001-01-01

    Brueclla is a gram negative bacteria that causes Brucellosis. Lipopolysaccharide (LPS) ", the pathogenic agent of Brucella is composed of O-chain, core oligosaccharide and lipid A. in addition, the structural and biological properties of different LPS extracted from different strains are not identical. The first defense system against LPS is nonspecific immunity that causes macrophage activation. Activated macrophages produce oxygen and nitrogen radicals that enhance the protection again...

  17. Mechanistic study of macrophage activation by LPS stimulation using fluorescence imaging techinques

    Science.gov (United States)

    Lu, Cuixia; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2012-03-01

    Lipopolysaccharide (LPS), a structural component of the outer membrane of gram negative bacteria, has been suggested that stimulates macrophages secrete a wide variety of inflammatory mediators, such as nitric oxide (NO). However, the cellular mechanisms of NO generation in macrophage by LPS stimulation are not well known. In this study, LPS stimulated NO generation in macrophage was determined by measuring fluorescence changes with a NO specific probe DAF-FM DA. Using the fluorescence resonance energy transfer (FRET) techniques, we found an increase of protein kinase C (PKC) activation was dynamically monitored in macrophages treated with LPS. Nuclear factor kappa B (NF-κB) translocated from the cytoplasm to the nucleus in macrophage was measured by confocal laser scanning microscopy. Moreover, the PKC inhibitor GÖ6983 inhibited LPS-stimulated NF-κB activation and NO production. These results indicated that LPS stimulated NF-κB mediated NO production by activating PKC.

  18. LPS-TLR4 Pathway Mediates Ductular Cell Expansion in Alcoholic Hepatitis

    Science.gov (United States)

    Odena, Gemma; Chen, Jiegen; Lozano, Juan Jose; Altamirano, Jose; Rodrigo-Torres, Daniel; Affo, Silvia; Morales-Ibanez, Oriol; Matsushita, Hiroshi; Zou, Jian; Dumitru, Raluca; Caballeria, Juan; Gines, Pere; Arroyo, Vicente; You, Min; Rautou, Pierre-Emmanuel; Valla, Dominique; Crews, Fulton; Seki, Ekihiro; Sancho-Bru, Pau; Bataller, Ramon

    2016-01-01

    Alcoholic hepatitis (AH) is the most severe form of alcoholic liver disease for which there are no effective therapies. Patients with AH show impaired hepatocyte proliferation, expansion of inefficient ductular cells and high lipopolysaccharide (LPS) levels. It is unknown whether LPS mediates ductular cell expansion. We performed transcriptome studies and identified keratin 23 (KRT23) as a new ductular cell marker. KRT23 expression correlated with mortality and LPS serum levels. LPS-TLR4 pathway role in ductular cell expansion was assessed in human and mouse progenitor cells, liver slices and liver injured TLR4 KO mice. In AH patients, ductular cell expansion correlated with portal hypertension and collagen expression. Functional studies in ductular cells showed that KRT23 regulates collagen expression. These results support a role for LPS-TLR4 pathway in promoting ductular reaction in AH. Maneuvers aimed at decreasing LPS serum levels in AH patients could have beneficial effects by preventing ductular reaction development. PMID:27752144

  19. Toll-like receptor 4 decoy, TOY, attenuates gram-negative bacterial sepsis.

    Directory of Open Access Journals (Sweden)

    Keehoon Jung

    Full Text Available Lipopolysaccharide (LPS, the Gram-negative bacterial outer membrane glycolipid, induces sepsis through its interaction with myeloid differentiation protein-2 (MD-2 and Toll-like receptor 4 (TLR4. To block interaction between LPS/MD-2 complex and TLR4, we designed and generated soluble fusion proteins capable of binding MD-2, dubbed TLR4 decoy receptor (TOY using 'the Hybrid leucine-rich repeats (LRR technique'. TOY contains the MD-2 binding ectodomain of TLR4, the LRR motif of hagfish variable lymphocyte receptor (VLR, and the Fc domain of IgG1 to make it soluble, productive, and functional. TOY exhibited strong binding to MD-2, but not to the extracellular matrix (ECM, resulting in a favorable pharmacokinetic profile in vivo. TOY significantly extended the lifespan, when administered in either preventive or therapeutic manners, in both the LPS- and cecal ligation/puncture-induced sepsis models in mice. TOY markedly attenuated LPS-triggered NF-kappaB activation, secretion of proinflammatory cytokines, and thrombus formation in multiple organs. Taken together, the targeting strategy for sequestration of LPS/MD-2 complex using the decoy receptor TOY is effective in treating LPS- and bacteria-induced sepsis; furthermore, the strategy used in TOY development can be applied to the generation of other novel decoy receptor proteins.

  20. Lipopolysaccharide-Induced Profiles of Cytokine, Chemokine, and Growth Factors Produced by Human Decidual Cells Are Altered by Lactobacillus rhamnosus GR-1 Supernatant.

    Science.gov (United States)

    Li, Wei; Yang, Siwen; Kim, Sung O; Reid, Gregor; Challis, John R G; Bocking, Alan D

    2014-01-15

    The aim of this study was to assess the effects of bacterial lipopolysaccharide (LPS) and Lactobacillus rhamnosus GR-1 supernatant (GR-1SN) on secretion profiles of cytokines, chemokines, and growth factors from primary cultures of human decidual cells. Lipopolysaccharide significantly increased the output of proinflammatory cytokines (interleukin [IL]-1B, IL-2, IL-6, IL-12p70, IL-15, IL-17A, interferon gamma [IFN-γ], and tumor necrosis factor [TNF]); anti-inflammatory cytokines (IL-1RN, IL-4, IL-9, and IL-10); chemokines (IL-8, eotaxin, IFN-inducible protein 10 [IP-10], monocyte chemoattractant protein 1 [MCP-1], macrophage inflammatory protein-1α [MIP-1α], macrophage inflammatory protein-1β [MIP-1β], and regulated on activation normal T cell expressed and secreted [RANTES]); and growth factors (granulocyte colony-stimulating factor [CSF] 3, CSF-2, and vascular endothelial growth factor A [VEGFA]). Lactobacillus rhamnosus GR-1SN alone significantly increased CSF-3, MIP-1α MIP-1β, and RANTES but decreased IL-15 and IP-10 output. The GR-1SN also significantly or partially reduced LPS-induced proinflammatory cytokines TNF, IFN-γ, IL-1β, IL-2 IL-6, IL-12p70, IL-15, IL-17, and IP-10; partially reduced LPS-induced anti-inflammatory cytokines IL-1RN, IL-4 and IL-10, and LPS-induced VEGFA output but did not affect CSF-3, MIP-1α, MIP-1β, MCP-1, IL-8, and IL-9. Our results demonstrate that GR-1SN attenuates the inflammatory responses to LPS by human decidual cells, suggesting its potential role in ameliorating intrauterine infection. PMID:24429676

  1. A natural formulation (imoviral™) increases macrophage resistance to LPS-induced oxidative and inflammatory stress in vitro.

    Science.gov (United States)

    Menghini, L; Leporini, L; Pintore, G; Ferrante, C; Recinella, L; Orlando, G; Vacca, M; Brunetti, L

    2014-01-01

    Imoviral™ is a natural product formulation containing a mixture of uncaria, shiitake and ribes extracts. All ingredients are recognized as antioxidant, anti-inflammatory agent and immunomodulant. In order to evaluate the rational basis of extract mixture as immunomodulatory agent, we tested the effect of Imoviral™ formulation on macrophage response to lipopolysaccharide (LPS)-induced stress. The effect was evaluated as variation of reactive oxygen species (ROS) and prostaglandin E2 (PGE2) production and as cytokine gene expression. The extract did not affect cell viability up to 250 μg/ml. Treatment with extract (10-150 μg/ml) reduced ROS and PGE2 production as well as IL-8 and TNF-α gene expression. A pre-treatment with extract blunted LPS-induced production of ROS and PGE2, markers of oxidative and inflammatory stress, as well as the gene expression of all cytokines tested, indicators, in vitro, of immune response activation. In conclusion, we demonstrated that Imoviral™ formulation could be a useful tool to modulate the immune function, reducing the oxidative and inflammatory markers related to bacterial attack. Experimental data suggest that Imoviral™ extract mixture could also represent a preventive pharmacological strategy to enhance cell resistance to bacterial infections. PMID:25620186

  2. LIPOPOLYSACCHARIDE INDUCES EXPOSURE OF FIBRINOGEN RECEPTORS ON HUMAN PLATELETS

    Institute of Scientific and Technical Information of China (English)

    于希春; 吴其夏

    1995-01-01

    The effect of lipopolysaccharide (LPS) on the exposure of platelet fibrinogen receptors was investigated.The results showed that:1)LPS increased the binding of fibrinogen-gold complexes to platelets and the labels were primarily limited to shape-changed platelets;2)LPS caused a dose-dependent rise in intracellular Ca2+ concentration in platelets;3)LPS induced the activation of platelet protein kinase C(PKC) and the phosphorylation of glycoprotein llla (GP llla) which was inhibited by H-7.All these results suggest that stimulation of platelets with LPS causes a conformational change in glycoprotein llb/Illa (GPllb/llla) through platelet shape change and/or phosphorylation of GPllla via PKC,which serves to expose the fibrinogen binding sites of GPllb/llla on human platelets.

  3. Kinetic analysis of interaction between lipopolysaccharide and biomolecules

    Institute of Scientific and Technical Information of China (English)

    Fan YANG; Xiurong YANG

    2008-01-01

    Lipopolysaccharide (LPS) is a major compo-nent of the outer membrane of all gram-negative bacteria. It interacts with some biomolecules and triggers a toxic reaction. In this paper, we studied the interaction between LPS from Salmonella Minnesota and some biomolecules using a surface plasmon resonance (SPR) biosensor. Biomolecules were immobilized on a CM5 sensor chip using the amino coupling method and LPS was injected over the immobilized surfaces. The affinity constant KA of LPS with serum albumin, hemoglobin, chitosan and lysozyme was 2.36 × 107, 2.03 × 108,7.58×106, 2.82 × 104 L·mol-1, respectively. However, LPS could not interact with ferritin.

  4. DMPD: Lipopolysaccharide sensing an important factor in the innate immune response toGram-negative bacterial infections: benefits and hazards of LPShypersensitivity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available se toGram-negative bacterial infections: benefits and hazards of LPShypersensitivity. Freudenberg MA, Tchapt...portant factor in the innate immune response toGram-negative bacterial infections: benefits and hazards of L...une response toGram-negative bacterial infections: benefits and hazards of LPShyp

  5. 布鲁氏菌脂多糖及其突变株的研究进展%PROGRESS IN BRUCELLA LIPOPOLYSACCHARIDE AND MUTANT

    Institute of Scientific and Technical Information of China (English)

    张敏; 刘宗平; 于圣青

    2013-01-01

    Brucella is a facultative intracellular bacterial pathogen, and its virulence depends on the survival and replication properties in host cells. Lipopolysaccharide (LPS) is the main component of Brucella outer membrane, which consists of lipid A, core oligosaccharide and O-antigen, and whose biosynthesis catalyzed by dozens of enzymes. Brucella LPS plays a crucial role in the infection process and is an important virulence factor. The integrity of LPS determines the phenotype of Brucella. Mutation of Brucella LPS O-antigen results in the phenotype change of smooth to rough and attenuated virulence of the bacteria. So LPS has been a target for attenuating strains for vaccine development. In this review, the structure, the biosynthesis, as well as the progress in rough phenotype mutation of Brucella LPS and the potential use for vaccine candidate were briefly summarized.%  布鲁氏菌是兼性胞内生长的细菌病原体,其致病机理和胞内存活、复制有关。脂多糖(lipopolysaccharide,LPS)是布鲁氏菌外膜的主要成分,由类脂 A、核心寡聚糖和 O 抗原三部分组成,分别由多种与 LPS 合成相关的酶催化合成。布鲁氏菌LPS 在感染中起重要作用,是一种重要的毒力因子。LPS 的完整性决定布氏杆菌表型,对光滑型布鲁氏菌 LPS 合成过程中所需酶的编码基因进行突变可导致产生结构不完整的粗糙型 LPS,使其毒力变弱,经常被用作减毒活菌苗候选株进行研究。本文针对布鲁氏菌 LPS 的结构、生物合成和突变株的研究进展进行简要综述。

  6. Visualization and analysis of lipopolysaccharide distribution in binary phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Maria Florencia [Instituto de Investigaciones Bioquimicas La Plata (INIBIOLP), CCT-La Plata, CONICET, Facultad de Ciencias Medicas, UNLP, Calles 60 y 120, 1900 La Plata (Argentina); Sanchez, Susana [Laboratory for Fluorescence Dynamics, University of California-Irvine, Irvine, CA (United States); Bakas, Laura, E-mail: lbakas@biol.unlp.edu.ar [Instituto de Investigaciones Bioquimicas La Plata (INIBIOLP), CCT-La Plata, CONICET, Facultad de Ciencias Medicas, UNLP, Calles 60 y 120, 1900 La Plata (Argentina); Departamento de Ciencias Biologicas, Facultad de Ciencias Exactas, UNLP, Calles 47 y 115, 1900 La Plata (Argentina)

    2009-05-22

    Lipopolysaccharide (LPS) is an endotoxin released from the outer membrane of Gram-negative bacteria during infections. It have been reported that LPS may play a role in the outer membrane of bacteria similar to that of cholesterol in eukaryotic plasma membranes. In this article we compare the effect of introducing LPS or cholesterol in liposomes made of dipalmitoylphosphatidylcholine/dioleoylphosphatidylcholine on the solubilization process by Triton X-100. The results show that liposomes containing LPS or cholesterol are more resistant to solubilization by Triton X-100 than the binary phospholipid mixtures at 4 {sup o}C. The LPS distribution was analyzed on GUVs of DPPC:DOPC using FITC-LPS. Solid and liquid-crystalline domains were visualized labeling the GUVs with LAURDAN and GP images were acquired using a two-photon microscope. The images show a selective distribution of LPS in gel domains. Our results support the hypothesis that LPS could aggregate and concentrate selectively in biological membranes providing a mechanism to bring together several components of the LPS-sensing machinery.

  7. LPS Catch and Effort Estimation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data collected from the LPS dockside (LPIS) and the LPS telephone (LPTS) surveys are combined to produce estimates of total recreational catch, landings, and...

  8. MOLECULAR MODELING STUDY OF THE CONTRIBUTIONS OF SIDE AMINO ACID RESIDUES OF POLYMYXIN B3 TO ITS BINDING WITH E.COLI OUTER MEMBRANE LIPOPOLYSACCHARIDE

    Directory of Open Access Journals (Sweden)

    Lisnyak Yu. V.

    2014-12-01

    Full Text Available Last decades, antimicrobial peptides (AMPs are the subject of intense investigations aimed to develop effective drugs against extremely resistant nosocomial bacterial pathogens (especially Gram-negative bacteria. In particular, there has been greatly renewed interest to polymyxins, the representatives of AMPs which are specific and highly potent against Gram-negative bacteria, but have potential nephrotoxic side effect. A prerequisite of purposeful enhancement of therapeutic properties of polymyxins is a detailed knowledge of the molecular mechanisms of their interactions with cell targets. Lipopolysaccharide (LPS, the main component of the outer leaflet of outer membrane of gram-negative bacteria, is a primary cell target of polymyxins. The aim of the paper was to study the peculiarities of molecular interactions of polymyxin В3 with lipopolysaccharide of the outer membrane of gram-negative bacterium. Materials and methods The complexes of polymyxin В3 (PmВ3 and its alaninederivatives with E. coli outer membrane lipopolysaccharide were built and studied by molecular modeling methods (minimization, simulated annealing, docking. Atom coordinates of polymyxin В3 and LPS structures were taken from nuclear magnetic resonance and X-ray crystallography experiments, respectively. The AMBER03 force field was used with a 1.05 nm force cutoff. Longrange electrostatic interactions were treated by the Particle Mesh Ewald method. Results and discussion Alanine scanning of PmВ3 molecule has been carried out and the role of its side amino acid residues in the formation of complex with lipopolysaccharide has been investigated. It has been shown that substitutions of polymyxin’s Dab residues in positions 1, 3, 5, 8 and 9 for alanine markedly reduce the binding energy of PmB3-LPS complex, where as the similar substitutions of residues in positions 2, 6, 7 and 10 leave the binding energy virtually unchanged. Structural aspects of antimicrobial action of

  9. Dose dependency and individual variability in selected clinical, haematological and blood biochemical responses after systemic lipopolysaccharide challenge in cattle

    DEFF Research Database (Denmark)

    Jacobsen, Stine; Tølbøll, Trine; Andersen, Pia Haubro Fischer

    2005-01-01

    Previous studies have notede that susceptibility to systemic lipopolysaccharide (LPS) exposure seems to differ between individual cows. However, to date inter-individual variation in the existence or extent has never been backed up by statistical analyses.......Previous studies have notede that susceptibility to systemic lipopolysaccharide (LPS) exposure seems to differ between individual cows. However, to date inter-individual variation in the existence or extent has never been backed up by statistical analyses....

  10. Role of CD14 in a mouse model of acute lung inflammation induced by different lipopolysaccharide chemotypes.

    Directory of Open Access Journals (Sweden)

    Adam A Anas

    Full Text Available BACKGROUND: Recognition of lipopolysaccharide (LPS is required for effective defense against invading gram-negative bacteria. Recently, in vitro studies revealed that CD14 is required for activation of the myeloid differentiation factor (MyD88-dependent Toll-like receptor (TLR4 signaling pathway by smooth (S-LPS, but not by rough (R-LPS. The present study investigated the role of CD14 in induction of lung inflammation in mice by these different LPS chemotypes. METHODOLOGY/RESULTS: Neutrophil accumulation and tumor necrosis factor (TNF release in bronchoalveolar lavage fluid were determined 6 hours after intranasal treatment of wild type (WT and CD14 knock-out (KO mice with different doses S-LPS or R-LPS. The contribution of CD14 to lung inflammation induced by S-LPS or R-LPS depended on the LPS dose. At low doses, S-LPS and R-LPS induced neutrophil influx in a CD14-dependent manner. Low dose S-LPS-induced cytokine release also depended on CD14. Strikingly, neutrophil influx and TNF release induced by high dose S-LPS or R-LPS was diminished in the presence of CD14. Intranasal administration of sCD14 to CD14 KO mice treated with S-LPS partially reversed the inflammatory response to the response observed in WT mice. CONCLUSIONS: In conclusion, CD14 modulates effects of both S-LPS and R-LPS within the lung in a similar way. Except for R-LPS-induced TNF release, S-LPS and R-LPS at low dose induced acute lung inflammation in a CD14-dependent manner, while the inflammatory response triggered by high dose S-LPS or R-LPS was diminished by CD14.

  11. Proteomic profiling of cellular targets of lipopolysaccharide-induced signalling in Nicotiana tabacum BY-2 cells.

    Science.gov (United States)

    Gerber, Isak B; Laukens, Kris; De Vijlder, Thomas; Witters, Erwin; Dubery, Ian A

    2008-11-01

    Plants constantly monitor for pathogen challenge and utilize a diverse array of adaptive defense mechanisms, including differential protein regulation, during pathogen attack. A proteomic analysis of Nicotiana tabacum BY-2 cells was performed in order to investigate the dynamic changes following perception of bacterial lipopolysaccharides. A multiplexed proteome analysis, employing two-dimensional difference-in-gel-electrophoresis with CyDye DIGE fluors, as well as Ruthenium II tris (bathophenanthroline disulfonate) fluorescence staining and Pro-Q Diamond phosphoprotein-specific gel staining, monitored over 1500 proteins and resulted in the identification of 88 differentially regulated proteins and phosphoproteins responsive to LPS(B.cep.)-elicitation. Functional clustering of the proteins both at the level of their abundance and phosphorylation status, revealed 9 proteins involved in transport, ion homeostasis and signal transduction. A large number of responsive proteins were found to be involved in metabolism- and energy-related processes (36), representing various metabolic pathways. Another abundant category corresponded to proteins classified as molecular chaperones and involved in protein destination/targeting (12). Other categories of proteins found to be LPS(B.cep.)-responsive and differentially regulated include cell structure- and cytoskeletal rearrangement proteins (8) and proteins involved in transcription and translation as well as degradation (11). The results indicate that LPS(B.cep.) induces metabolic reprogramming and changes in cellular activities supporting protein synthesis, -folding, vesicle trafficking and secretion; accompanied by changes to the cytoskeleton and proteosome function. Many of the identified proteins are known to be interconnected at various levels through a complex web of activation/deactivation, complex formation, protein-protein interactions, and chaperoning reactions. The presented data offers novel insights and further

  12. Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide.

    Science.gov (United States)

    Barquero-Calvo, Elías; Mora-Cartín, Ricardo; Arce-Gorvel, Vilma; de Diego, Juana L; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Guzmán-Verri, Caterina; Buret, Andre G; Gorvel, Jean-Pierre; Moreno, Edgardo

    2015-05-01

    Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN. PMID:25946018

  13. Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide.

    Directory of Open Access Journals (Sweden)

    Elías Barquero-Calvo

    2015-05-01

    Full Text Available Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs, enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN.

  14. Incomplete LPS Core-Specific Felix01-Like Virus vB_EcoM_VpaE1.

    Science.gov (United States)

    Šimoliūnas, Eugenijus; Vilkaitytė, Monika; Kaliniene, Laura; Zajančkauskaitė, Aurelija; Kaupinis, Algirdas; Staniulis, Juozas; Valius, Mindaugas; Meškys, Rolandas; Truncaitė, Lidija

    2015-11-27

    Bacteriophages represent a valuable source for studying the mechanisms underlying virus-host interactions. A better understanding of the host-specificity of viruses at the molecular level can promote various phage applications, including bacterial diagnostics, antimicrobial therapeutics, and improve methods in molecular biology. In this study, we describe the isolation and characterization of a novel coliphage, vB_EcoM_VpaE1, which has different host specificity than its relatives. Morphology studies, coupled with the results of genomic and proteomic analyses, indicate that vB_EcoM_VpaE1 belongs to the newly proposed genus Felix01likevirus in the family Myoviridae. The genus Felix01likevirus comprises a group of highly similar phages that infect O-antigen-expressing Salmonella and Escherichia coli (E. coli) strains. Phage vB_EcoM_VpaE1 differs from the rest of Felix01-like viruses, since it infects O-antigen-deficient E. coli strains with an incomplete core lipopolysaccharide (LPS). We show that vB_EcoM_VpaE1 can infect mutants of E. coli that contain various truncations in their LPS, and can even recognize LPS that is truncated down to the inner-core oligosaccharide, showing potential for the control of rough E. coli strains, which usually emerge as resistant mutants upon infection by O-Ag-specific phages. Furthermore, VpaE1 can replicate in a wide temperature range from 9 to 49 °C, suggesting that this virus is well adapted to harsh environmental conditions. Since the structural proteins of such phages tend to be rather robust, the receptor-recognizing proteins of VpaE1 are an attractive tool for application in glycan analysis, bacterial diagnostics and antimicrobial therapeutics.

  15. Incomplete LPS Core-Specific Felix01-Like Virus vB_EcoM_VpaE1

    Directory of Open Access Journals (Sweden)

    Eugenijus Šimoliūnas

    2015-11-01

    Full Text Available Bacteriophages represent a valuable source for studying the mechanisms underlying virus-host interactions. A better understanding of the host-specificity of viruses at the molecular level can promote various phage applications, including bacterial diagnostics, antimicrobial therapeutics, and improve methods in molecular biology. In this study, we describe the isolation and characterization of a novel coliphage, vB_EcoM_VpaE1, which has different host specificity than its relatives. Morphology studies, coupled with the results of genomic and proteomic analyses, indicate that vB_EcoM_VpaE1 belongs to the newly proposed genus Felix01likevirus in the family Myoviridae. The genus Felix01likevirus comprises a group of highly similar phages that infect O-antigen-expressing Salmonella and Escherichia coli (E. coli strains. Phage vB_EcoM_VpaE1 differs from the rest of Felix01-like viruses, since it infects O-antigen-deficient E. coli strains with an incomplete core lipopolysaccharide (LPS. We show that vB_EcoM_VpaE1 can infect mutants of E. coli that contain various truncations in their LPS, and can even recognize LPS that is truncated down to the inner-core oligosaccharide, showing potential for the control of rough E. coli strains, which usually emerge as resistant mutants upon infection by O-Ag-specific phages. Furthermore, VpaE1 can replicate in a wide temperature range from 9 to 49 °C, suggesting that this virus is well adapted to harsh environmental conditions. Since the structural proteins of such phages tend to be rather robust, the receptor-recognizing proteins of VpaE1 are an attractive tool for application in glycan analysis, bacterial diagnostics and antimicrobial therapeutics.

  16. Low-Level Laser Therapy Attenuates LPS-Induced Rats Mastitis by Inhibiting Polymorphonuclear Neutrophil Adhesion

    OpenAIRE

    Wang, Yueqiang; HE, Xianjing; HAO, Dandan; Yu, Debin; LIANG, Jianbin; QU, Yanpeng; Sun, Dongbo; Yang, Bin; YANG, Keli; Wu, Rui; WANG, Jianfa

    2014-01-01

    ABSTRACT The aim of this study was to investigate the effects of low-level laser therapy (LLLT) on a rat model of lipopolysaccharide (LPS)-induced mastitis and its underlying molecular mechanisms. The rat model of mastitis was induced by inoculation of LPS through the canals of the mammary gland. The results showed that LPS-induced secretion of IL-1β and IL-8 significantly decreased after LLLT (650 nm, 2.5 mW, 30 mW/cm2). LLLT also inhibited intercellular adhesion molecule-1 (ICAM-1) expressi...

  17. Disruptions in the hypothalamic-pituitary-gonadal axis in rat offspring following prenatal maternal exposure to lipopolysaccharide.

    Science.gov (United States)

    Izvolskaia, Marina S; Tillet, Yves; Sharova, Viktoria S; Voronova, Svetlana N; Zakharova, Lyudmila A

    2016-03-01

    Postnatal treatment with bacterial endotoxin lipopolysaccharide (LPS) changes the activity of the hypothalamic-pituitary-gonadal (HPG) axis and the gonadotropin-releasing hormone (GnRH) surge in rats. Exposure to an immune challenge in the critical periods of development has profound and long-lasting effects on the stress response, immune, metabolic, and reproductive functions. Prenatal LPS treatment delays the migration of GnRH neurons associated with increased cytokine release in maternal and fetal compartments. We investigated the effects of a single maternal exposure to LPS (18 μg/kg, i.p.) on day 12 (embryonic day (E)12) of pregnancy on reproductive parameters in rat offspring. Hypothalamic GnRH content, plasma luteinizing hormone (LH), testosterone, and estradiol concentrations were measured in both male and female offsprings at different stages of postnatal development by RIA and ELISA (n = 10 each per group). Body weight and in females day of vaginal opening (VO) were recorded. In offspring exposed to LPS prenatally, compared with controls, body weight was decreased in both sexes at P5 and P30; in females, VO was delayed; hypothalamic GnRH content was decreased at postnatal days 30-60 (P30-P60) in both sexes; plasma LH concentration was decreased at P14-P60 in females; plasma concentrations of testosterone/estradiol were increased at P14 in females, and plasma estradiol was increased at P14 in males. Hence activation of the maternal immune system by LPS treatment at a prenatal critical period leads to decreased GnRH and LH levels in pre- and postpubertal life and sex steroid imbalance in the prepubertal period, and delayed sexual maturation of female offspring. PMID:26941006

  18. Participation of α2 -adrenoceptors in sodium appetite inhibition during sickness behaviour following administration of lipopolysaccharide.

    Science.gov (United States)

    De Luca, Laurival A; Almeida, Roberto L; David, Richard B; de Paula, Patricia M; Andrade, Carina A F; Menani, José V

    2016-03-15

    Sickness behaviour, a syndrome characterized by a general reduction in animal activity, is part of the active-phase response to fight infection. Lipopolysaccharide (LPS), an effective endotoxin to model sickness behaviour, reduces thirst and sodium excretion, and increases neurohypophysial secretion. Here we review the effects of LPS on thirst and sodium appetite. Altered renal function and hydromineral fluid intake in response to LPS occur in the context of behavioural reorganization, which manifests itself as part of the syndrome. Recent data show that, in addition to its classical effect on thirst, non-septic doses of LPS injected intraperitoneally produce a preferential inhibition of intracellular thirst versus extracellular thirst. Moreover, LPS also reduced hypertonic NaCl intake in sodium-depleted rats that entered a sodium appetite test. Antagonism of α2 -adrenoceptors abolished the effect of LPS on sodium appetite. LPS and cytokine transduction potentially recruit brain noradrenaline and α2 -adrenoceptors to control sodium appetite and sickness behaviour. PMID:26036817

  19. Study of Nitric Oxide production by murine peritoneal macrophages induced by Brucella Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Kavoosi G

    2001-07-01

    Full Text Available Brueclla is a gram negative bacteria that causes Brucellosis. Lipopolysaccharide (LPS ", the pathogenic agent of Brucella is composed of O-chain, core oligosaccharide and lipid A. in addition, the structural and biological properties of different LPS extracted from different strains are not identical. The first defense system against LPS is nonspecific immunity that causes macrophage activation. Activated macrophages produce oxygen and nitrogen radicals that enhance the protection against intracellular pathogens.In this experiment LPS was extracted by hot phenol- water procedure and the effect of various LPSs on nitric oxide prodution by peritoneal mouse macrophages was examined.Our results demonstrated that the effect of LPS on nitric oxide production is concentration-dependent we observed the maximum response in concentration of 10-20 microgram per milliliter. Also our results demonstrate that LPS extracted from vaccine Brucella abortus (S 19 had a highe effect on nitric oxide production than the LPS from other strains

  20. Lipopolysaccharide induced hyper- and hypo-responsiveness in macrophage cell lines

    Institute of Scientific and Technical Information of China (English)

    刘辉; 孙为民; 徐仁宝

    2003-01-01

    Objective: To build a cell model of LPS-induced hyper- and hypo-responsiveness in macrophage cells .Methods: Macrophage cell line RAW264.7 was pre-cultured with or without 10 ng/ml LPS for 18 h, then challenged with lipopolysaccharide(LPS), or MDP, Zymosan, PAF, FMLP, PMA for 24 h.The levels of TNF-α , IL-1, IL-6, IL-10 , NO and O-2 were measured.Results: LPS pretreatment markedly inhibited TNF-α NO and IL-6 production, but increased IL-1, IL-10 and O-2 release to LPS challenge.LPS pretreatment also altered macrophage responsiveness to the other stimuli.Conclusion: LPS can induce hyper- and hypo-responsiveness simultaneously in the macrophage cell lines.Changes in macrophage responsiveness depend on stimuli and effectors which are measured.

  1. Evaluation of the lipopolysaccharide-induced transcription of the human TREM-1 gene in vitamin D3-matured THP-1 macrophage-like cells.

    Science.gov (United States)

    Hosoda, Hiroshi; Tamura, Hiroshi; Nagaoka, Isao

    2015-11-01

    Triggering receptor expressed on myeloid cells-1 (TREM-1) plays a role in inflammation by augmenting inflammatory responses through the production of pro-inflammatory cytokines. TREM-1 is expressed in mature macrophages, and is upregulated by stimulation with bacterial components, such as lipopolysaccharide (LPS). In the present study, the regulatory mechanisms responsible for the transcription of the human TREM-1 gene were examined using a human monocytic cell line (THP-1 cells). Reverse transcription-polymerase chain reaction (RT-PCR) revealed that TREM-1 mRNA was constitutively expressed at a low level in resting cells, and that its expression was upregulated by treatment with vitamin D3 (VitD3), but not by LPS. Importantly, TREM-1 mRNA expression was further upregulated by stimulation of the VitD3‑treated THP-1 cells with LPS. In addition, a luciferase reporter assay revealed that the serum response element (SRE) was involved in VitD3-induced promoter activity, whereas the activator protein-1 (AP-1) sites participated in the VitD3- and LPS-induced promoter activity. Of note, the CCAAT-enhancer-binding protein (C/EBP) site contributed not only to basal, but also to VitD3- and LPS-induced promoter activity. Transfection with transcription factor oligodeoxynucleotide (ODN) decoys indicated that transcription factors of the C/EBP and AP-1 families are likely involved in the basal, as well as in the VitD3- and LPS-induced TREM-1 transcription. Western blot analysis indicated that, of the members of the C/EBP family, C/EBPα was constitutively expressed in resting cells; its expression was enhanced by treatment with VitD3 and was further increased by treatment with VitD3 and LPS. Moreover, the expression of c-Fos and c-Jun (members of the AP-1 family) was augmented by treatment with both VitD3 and LPS. These observations indicate that members of the C/EBP family participate not only in basal, but also in the VitD3- and LPS-induced promoter activity of the human

  2. Btk regulates macrophage polarization in response to lipopolysaccharide.

    Directory of Open Access Journals (Sweden)

    Joan Ní Gabhann

    Full Text Available Bacterial Lipopolysaccharide (LPS is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk (-\\- mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk(-/- macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-κB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-κB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk(-/- macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk(-/- macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk (-/- mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation.

  3. Btk Regulates Macrophage Polarization in Response to Lipopolysaccharide

    Science.gov (United States)

    Ní Gabhann, Joan; Hams, Emily; Smith, Siobhán; Wynne, Claire; Byrne, Jennifer C.; Brennan, Kiva; Spence, Shaun; Kissenpfennig, Adrien; Johnston, James A.; Fallon, Padraic G.; Jefferies, Caroline A.

    2014-01-01

    Bacterial Lipopolysaccharide (LPS) is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk−\\−) mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk−/− macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-κB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-κB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk−/− macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk−/− macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk−/− mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation. PMID:24465735

  4. Computer simulation of uranyl uptake by the rough lipopolysaccharide membrane of Pseudomonas aeruginosa.

    Science.gov (United States)

    Lins, Roberto D; Vorpagel, Erich R; Guglielmi, Matteo; Straatsma, T P

    2008-01-01

    Heavy metal environmental contaminants cannot be destroyed but require containment, preferably in concentrated form, in a solid or immobile form for recycling or final disposal. Microorganisms are able to take up and deposit high levels of contaminant metals, including radioactive metals such as uranium and plutonium, into their cell wall. Consequently, these microbial systems are of great interest as the basis for potential environmental bioremediation technologies. The outer membranes of Gram-negative microbes are highly nonsymmetric and exhibit a significant electrostatic potential gradient across the membrane. This gradient has a significant effect on the uptake and transport of charged and dipolar compounds. However, the effectiveness of microbial systems for environmental remediation will depend strongly on specific properties that determine the uptake of targeted contaminants by a particular cell wall. To aid in the design of microbial remediation technologies, knowledge of the factors that determine the affinity of a particular bacterial outer membrane for the most common ionic species found in contaminated soils and groundwater is of great importance. Using our previously developed model for the lipopolysaccharide (LPS) membrane of Pseudomonas aeruginosa, this work presents the potentials of mean force as the estimate of the free energy profile for uptake of sodium, calcium, chloride, uranyl ions, and a water molecule by the bacterial LPS membrane. A compatible classical parameter set for uranyl has been developed and validated. Results show that the uptake of uranyl is energetically a favorable process relative to the other ions studied. At neutral pH, this nuclide is shown to be retained on the surface of the LPS membrane through chelation with the carboxyl and hydroxyl groups located in the outer core.

  5. Computer simulation of uranyl uptake by the rough lipopolysaccharide membrane of Pseudomonas aeruginosa.

    Science.gov (United States)

    Lins, Roberto D; Vorpagel, Erich R; Guglielmi, Matteo; Straatsma, T P

    2008-01-01

    Heavy metal environmental contaminants cannot be destroyed but require containment, preferably in concentrated form, in a solid or immobile form for recycling or final disposal. Microorganisms are able to take up and deposit high levels of contaminant metals, including radioactive metals such as uranium and plutonium, into their cell wall. Consequently, these microbial systems are of great interest as the basis for potential environmental bioremediation technologies. The outer membranes of Gram-negative microbes are highly nonsymmetric and exhibit a significant electrostatic potential gradient across the membrane. This gradient has a significant effect on the uptake and transport of charged and dipolar compounds. However, the effectiveness of microbial systems for environmental remediation will depend strongly on specific properties that determine the uptake of targeted contaminants by a particular cell wall. To aid in the design of microbial remediation technologies, knowledge of the factors that determine the affinity of a particular bacterial outer membrane for the most common ionic species found in contaminated soils and groundwater is of great importance. Using our previously developed model for the lipopolysaccharide (LPS) membrane of Pseudomonas aeruginosa, this work presents the potentials of mean force as the estimate of the free energy profile for uptake of sodium, calcium, chloride, uranyl ions, and a water molecule by the bacterial LPS membrane. A compatible classical parameter set for uranyl has been developed and validated. Results show that the uptake of uranyl is energetically a favorable process relative to the other ions studied. At neutral pH, this nuclide is shown to be retained on the surface of the LPS membrane through chelation with the carboxyl and hydroxyl groups located in the outer core. PMID:18067253

  6. Efficient subtractive cloning of genes activated by lipopolysaccharide and interferon γ in primary-cultured cortical cells of newborn mice.

    Directory of Open Access Journals (Sweden)

    Osamu Miyauchi

    Full Text Available Innate immune responses play a central role in neuroprotection and neurotoxicity during inflammatory processes that are triggered by pathogen-associated molecular pattern-exhibiting agents such as bacterial lipopolysaccharide (LPS and that are modulated by inflammatory cytokines such as interferon γ (IFNγ. Recent findings describing the unexpected complexity of mammalian genomes and transcriptomes have stimulated further identification of novel transcripts involved in specific physiological and pathological processes, such as the neural innate immune response that alters the expression of many genes. We developed a system for efficient subtractive cloning that employs both sense and antisense cRNA drivers, and coupled it with in-house cDNA microarray analysis. This system enabled effective direct cloning of differentially expressed transcripts, from a small amount (0.5 µg of total RNA. We applied this system to isolation of genes activated by LPS and IFNγ in primary-cultured cortical cells that were derived from newborn mice, to investigate the mechanisms involved in neuroprotection and neurotoxicity in maternal/perinatal infections that cause various brain injuries including periventricular leukomalacia. A number of genes involved in the immune and inflammatory response were identified, showing that neonatal neuronal/glial cells are highly responsive to LPS and IFNγ. Subsequent RNA blot analysis revealed that the identified genes were activated by LPS and IFNγ in a cooperative or distinctive manner, thereby supporting the notion that these bacterial and cellular inflammatory mediators can affect the brain through direct but complicated pathways. We also identified several novel clones of apparently non-coding RNAs that potentially harbor various regulatory functions. Characterization of the presently identified genes will give insights into mechanisms and interventions not only for perinatal infection-induced brain damage, but also for

  7. Bone repair: Effects of physical exercise and LPS systemic exposition.

    Science.gov (United States)

    Nogueira, Jonatas E; Branco, Luiz G S; Issa, João Paulo M

    2016-08-01

    Bone repair can be facilitated by grafting, biochemical and physical stimulation. Conversely, it may be delayed lipopolysaccharide (LPS). Physical exercise exerts beneficial effects on the bone, but its effect on bone repair is not known. We investigated the effect of exercise on the LPS action on bone healing through bone densitometry, quantitative histological analysis for bone formation rate and immunohistochemical markers in sedentary and exercised animals. Rats ran on the treadmill for four weeks. After training the rats were submitted to a surgical procedure (bone defect in the right tibia) and 24h after the surgery LPS was administered at a dose of 100μg/kg i.p., whereas the control rats received a saline injection (1ml/kg, i.p.). Right tibias were obtained for analysis after 10days during which rats were not submitted to physical training. Physical exercise had a positive effect on bone repair, increasing bone mineral density, bone mineral content, bone formation rate, type I collagen and osteocalcin expression. These parameters were not affected by systemic administration of LPS. Our data indicate that physical exercise has an important osteogenic effect, which is maintained during acute systemic inflammation induced by exposure to a single dose of LPS. PMID:27319388

  8. Branched Peptide, B2088, Disrupts the Supramolecular Organization of Lipopolysaccharides and Sensitizes the Gram-negative Bacteria

    Science.gov (United States)

    Lakshminarayanan, Rajamani; Tan, Wei Xiang; Aung, Thet Tun; Goh, Eunice Tze Leng; Muruganantham, Nandhakumar; Li, Jianguo; Chang, Jamie Ya Ting; Dikshit, Neha; Saraswathi, Padmanabhan; Lim, Rayne Rui; Kang, Tse Siang; Balamuralidhar, Vanniarajan; Sukumaran, Bindu; Verma, Chandra S.; Sivaraman, Jayaraman; Chaurasia, Shyam Sunder; Liu, Shouping; Beuerman, Roger W.

    2016-05-01

    Dissecting the complexities of branched peptide-lipopolysaccharides (LPS) interactions provide rationale for the development of non-cytotoxic antibiotic adjuvants. Using various biophysical methods, we show that the branched peptide, B2088, binds to lipid A and disrupts the supramolecular organization of LPS. The disruption of outer membrane in an intact bacterium was demonstrated by fluorescence spectroscopy and checkerboard assays, the latter confirming strong to moderate synergism between B2088 and various classes of antibiotics. The potency of synergistic combinations of B2088 and antibiotics was further established by time-kill kinetics, mammalian cell culture infections model and in vivo model of bacterial keratitis. Importantly, B2088 did not show any cytotoxicity to corneal epithelial cells for at least 96 h continuous exposure or hemolytic activity even at 20 mg/ml. Peptide congeners containing norvaline, phenylalanine and tyrosine (instead of valine in B2088) displayed better synergism compared to other substitutions. We propose that high affinity and subsequent disruption of the supramolecular assembly of LPS by the branched peptides are vital for the development of non-cytotoxic antibiotic adjuvants that can enhance the accessibility of conventional antibiotics to the intracellular targets, decrease the antibiotic consumption and holds promise in averting antibiotic resistance.

  9. Enhancement of endotoxin lethality and generation of anaphylactoid reactions by lipopolysaccharides in muramyl-dipeptide-treated mice.

    OpenAIRE

    Takada, H.; Galanos, C

    1987-01-01

    Intravenous injection of muramyl dipeptide (MDP) and Salmonella lipopolysaccharides (LPS) enhanced lethal toxicity of the LPS in C57BL/6 mice. This was true for S (smooth)- and R (rough)-form LPS and free lipid A. Enhancement of toxicity was maximum when the LPS was administered 4 h after MDP, at which time the lethal doses for 50% of mice of S- and R-form LPS and free lipid A were between 1 and 10 micrograms, compared with more than 100 micrograms in normal animals. This sensitization was ab...

  10. Serum amyloid P component bound to gram-negative bacteria prevents lipopolysaccharide-mediated classical pathway complement activation

    NARCIS (Netherlands)

    de Haas, CJC; van Leeuwen, EMM; van Bommel, T; Verhoef, J; van Kessel, KPM; van Strijp, JAG

    2000-01-01

    Although serum amyloid P component (SAP) is known to bind many ligands, its biological function is not yet clear. Recently, it was demonstrated that SAP binds to lipopolysaccharide (LPS), In the present study, SAP was shown to bind to gram-negative bacteria expressing short types of LPS or lipo-olig

  11. Endothelin receptor-antagonists suppress lipopolysaccharide-induced cytokine release from alveolar macrophages of non-smokers, smokers and COPD subjects.

    Science.gov (United States)

    Gerlach, Kathrin; Köhler-Bachmann, Stefanie; Jungck, David; Körber, Sandra; Yanik, Sarah; Knoop, Heiko; Wehde, Deborah; Rheinländer, Sonja; Walther, Jörg W; Kronsbein, Juliane; Knobloch, Jürgen; Koch, Andrea

    2015-12-01

    Smoking-induced COPD is characterized by chronic airway inflammation, which becomes enhanced by bacterial infections resulting in accelerated disease progression called exacerbation. Alveolar macrophages (AM) release endothelin-1 (ET-1), IL-6, CCL-2 and MMP-9, all of which are linked to COPD pathogenesis and exacerbation. ET-1 signals via ETA- and ETB-receptors (ETAR, ETBR). This is blocked by endothelin receptor antagonists (ERAs), like bosentan, which targets both receptors, ETAR-selective ambrisentan and ETBR-specific BQ788. Therefore, ERAs could have anti-inflammatory potential, which might be useful in COPD and other inflammatory lung diseases. We hypothesized that ERAs suppress cytokine release from AM of smokers and COPD subjects induced by lipopolysaccharide (LPS), the most important immunogen of gram-negative bacteria. AM were isolated from the broncho-alveolar lavage (BAL) of n=29 subjects (11 non-smokers, 10 current smokers without COPD, 8 smokers with COPD), cultivated and stimulated with LPS in the presence or absence of ERAs. Cytokines were measured by ELISA. Endothelin receptor expression was investigated by RT-PCR and western blot. AM expressed ETAR and ETBR mRNA, but only ETBR protein was detected. LPS and ET-1 both induced IL-6, CCL-2 and MMP-9. LPS-induced IL-6 release was increased in COPD versus non-smokers and smokers. Bosentan, ambrisentan and BQ788 all partially reduced all cytokines without differences between cohorts. Specific ETBR inhibition was most effective. LPS induced ET-1, which was exclusively blocked by BQ788. In conclusion, LPS induces ET-1 release in AM, which in turn leads to CCL-2, IL-6 and MMP-9 expression rendering AM sensitive for ERAs. ERAs could have anti-inflammatory potential in smoking-induced COPD.

  12. Neonatal treatment with lipopolysaccharide differentially affects adult anxiety responses in the light-dark test and taste neophobia test in male and female rats.

    Science.gov (United States)

    Tenk, Christine M; Kavaliers, Martin; Ossenkopp, Klaus-Peter

    2013-05-01

    Neonatal administration of the bacterial cell wall component, lipopolysaccharide (LPS) has been shown to alter a variety of behavioural and physiological processes in the adult rat, including altering adult anxiety-like behaviour. Research conducted to date, however, has produced conflicting findings with some results demonstrating increases in adult anxiety-like behaviour while others report decreases or no changes in anxiety-like behaviour. Thus, the current study conducted additional evaluation of the effects of neonatal LPS exposure on adult anxiety-like behaviours by comparing the behavioural outcomes in the more traditional light-dark test, together with the less common hyponeophagia to sucrose solution paradigm. Male and female Long-Evans rats were treated systemically with either LPS (50μg/kg) or saline (0.9%) on postnatal days 3 and 5. Animals were then tested in the light-dark apparatus on postnatal day 90 for 30min. Next, following 5 days of habituation to distilled water delivery in Lickometer drinking boxes, animal were tested for neophagia to a 10% sucrose solution (0.3M) for 30min daily on postnatal days 96 and 97. In the light-dark test, neonatal LPS treatment decreased adult anxiety-like behaviour in females, but not males. In contrast, neonatal exposure to LPS did not influence adult anxiety-like behaviour as measured by hyponeophagia, but altered the licking patterns of drinking displayed towards a novel, palatable sucrose solution in adult males and females, in a manner that may reflect a decrease in situational anxiety. The current study supports the idea that neonatal LPS treatment results in highly specific alterations of adult anxiety-like behaviour, the nature of which seems to depend not only on the measure of anxiety behaviour used, but also possibly, on the degree of anxiety experienced during the behavioural test.

  13. Aggravation of myocardial dysfunction by injurious mechanical ventilation in LPS-induced pneumonia in rats

    NARCIS (Netherlands)

    L. Smeding (Lonneke); J.W. Kuiper; F.B. Plötz (Frans); M.C.J. Kneyber (Martin); A.B.J. Groeneveld (Johan)

    2013-01-01

    textabstractBackground: Mechanical ventilation (MV) may cause ventilator-induced lung injury (VILI) and may thereby contribute to fatal multiple organ failure. We tested the hypothesis that injurious MV of lipopolysaccharide (LPS) pre-injured lungs induces myocardial inflammation and further dysfunc

  14. Aggravation of myocardial dysfunction by injurious mechanical ventilation in LPS-induced pneumonia in rats

    NARCIS (Netherlands)

    Smeding, Lonneke; Kuiper, Jan Willem; Plotz, Frans B.; Kneyber, Martin C. J.; Groeneveld, A. B. Johan

    2013-01-01

    Background: Mechanical ventilation (MV) may cause ventilator-induced lung injury (VILI) and may thereby contribute to fatal multiple organ failure. We tested the hypothesis that injurious MV of lipopolysaccharide (LPS) pre-injured lungs induces myocardial inflammation and further dysfunction ex vivo

  15. The structure of the carbohydrate backbone of the LPS from Shewanella spp. MR-4

    OpenAIRE

    Vinogradov, Evgeny; Kubler-Kielb, Joanna; Korenevsky, Anton

    2008-01-01

    The rough type lipopolysaccharide isolated from Shewanella spp. strain MR-4 was analyzed using NMR, mass spectroscopy and chemical methods. Two structural variants have been found, both contained 8-amino-3,8-dideoxy-d-manno-octulosonic acid and lacked l-glycero-d-manno-heptose. A minor variant of the LPS contained phosphoramide substituent.

  16. A COMPARISON OF DIFFERENT LIPOPOLYSACCHARIDE CHEMOTYPES FROM ESCHERICHIA COLI AND SALMONELLA UPON SYNTHESIS OF TNFα AND IL-6 BY MACROPHAGE-LIKE THP-1 CELLS

    Directory of Open Access Journals (Sweden)

    E. V. Voloshina

    2009-01-01

    Full Text Available Abstract. Present study was performed to investigate the influence of polysaccharide fragment or lipid A upon induction of TNFα and IL-6 cytokines. The study was performed with human THP-1 monocytic leukemia cells that were induced to differentiate into macrophage-like cells using PMA treatment. Bacterial lipopolysaccharides from S. typhimurium (S-chemotype form, S. typhimurium SL1181 (R-chemotype, Re-mutant, E. coli O55:B5 (S-chemotype, and E. coli JM103 (R-chemotype, Re-mutant were used in this study. A decreased molar ratio for lipid A-KDO in S-form of LPS from E. coli is accompanied by diminished TNFα and IL-6 expression. By the contrast, for S-form of LPS from Salmonella, a decrease in lipid A-KDO molar ratio did cause a sufficient enhancement of TNFα expression. A contribution of lipid A structure into biological activity of LPS is more significant for Re-chemotype than for S-chemotype, independently on bacterial species.

  17. Pharmacokinetics of DS-96, an alkylpolyamine lipopolysaccharide sequestrant, in rodents.

    Science.gov (United States)

    Shrestha, Anurupa; Li, Rongti; Sil, Diptesh; Pardeshi, Neha N; Schwarting, Nancy; Schorno, Karl S; Rajewski, Roger A; Datta, Apurba; David, Sunil A

    2008-12-01

    The pharmacokinetics of DS-96, an N-alkylhomospermine analog designed to sequester bacterial lipopolysaccharides, has been determined in rodent species. The elimination half-life in mice and rats are about 400 and 500 min, respectively, with other PK parameters being quite similar in the two rodent species. Interestingly, the mouse intravenous plasma concentration time curves exhibit an apparent absorption phase. While the rat intravenous data did not exhibit a pronounced apparent absorption phase immediately following injection, plasma levels did increase between 10 and 30 min following an expected drop from time 0 to 5 min. The data are consistent with first-pass uptake, possibly by the lung, with back diffusion as a function of time. The observed C(max) values of 1.36 microg/mL in the mouse intraperitoneal model suggest that a plasma concentration of 0.5-1 microg/mL corresponds to complete protection for a 200 ng/animal dose of intraperitoneally administered LPS in the D-galactosamine-primed model of endotoxin-induced lethality.

  18. Ouabain Modulates the Lipid Composition of Hippocampal Plasma Membranes from Rats with LPS-induced Neuroinflammation.

    Science.gov (United States)

    Garcia, Israel José Pereira; Kinoshita, Paula Fernanda; Scavone, Cristoforo; Mignaco, Julio Alberto; Barbosa, Leandro Augusto de Oliveira; Santos, Hérica de Lima

    2015-12-01

    The effects of ouabain (OUA) and lipopolysaccharide (LPS) in vivo on hippocampal membranes (RHM) of Wistar male rats aged 3 months were analyzed. After intraperitoneal (i.p.) injection of OUA only, LPS only, OUA plus LPS, or saline, the content of proteins, phospholipids, cholesterol and gangliosides from RHM was analyzed. The total protein and cholesterol contents of RHM were not significantly affected by OUA or LPS for the experimentally paired groups. In contrast, total phospholipids and gangliosides were strongly modulated by either OUA or LPS treatments. LPS reduced the total phospholipids (roughly 23 %) and increased the total gangliosides (approximately 40 %). OUA alone increased the total phospholipids (around 23 %) and also the total gangliosides (nearly 34 %). OUA pretreatment compensated the LPS-induced changes, preserving the total phospholipids and gangliosides around the same levels of the control. Thus, an acute treatment with OUA not only modulated the composition of hippocampal membranes from 3-month-old rats, but also was apparently able to counteract membrane alterations resulting from LPS-induced neuroinflammation. This study demonstrates for the first time that the OUA capacity modulates the lipid composition of hippocampal plasma membranes from rats with LPS-induced neuroinflammation.

  19. Single-cell-based sensors and synchrotron FTIR spectroscopy: a hybrid system towards bacterial detection.

    Science.gov (United States)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C; Bertozzi, Carolyn; Zhang, Miqin

    2007-09-30

    Microarrays of single macrophage cell-based sensors were developed and demonstrated for potential real-time bacterium detection by synchrotron FTIR microscopy. The cells were patterned on gold electrodes of silicon oxide substrates by a surface engineering technique, in which the gold electrodes were immobilized with fibronectin to mediate cell adhesion and the silicon oxide background was passivated with polyethylene glycol (PEG) to resist protein adsorption and cell adhesion. Cell morphology and IR spectra of single, double, and triple cells on gold electrodes exposed to lipopolysaccharide (LPS) of different concentrations were compared to reveal the detection capability of this cell-based sensing platform. The single-cell-based system was found to generate the most significant and consistent IR spectrum shifts upon exposure to LPS, thus providing the highest detection sensitivity. Changes in cell morphology and IR shifts upon cell exposure to LPS were found to be dependent on the LPS concentration and exposure time, which established a method for the identification of LPS concentration and infected cell population. Possibility of using this single-cell system with conventional IR spectroscopy as well as its limitation was investigated by comparing IR spectra of single-cell arrays with gold electrode surface areas of 25, 100, and 400 microm2 using both synchrotron and conventional FTIR spectromicroscopes. This cell-based platform may potentially provide real-time, label-free, and rapid bacterial detection, and allow for high-throughput statistical analyses, and portability. PMID:17560777

  20. LPS inhibits caspase 3-dependent apoptosis in RAW264.7 macrophages induced by the AMPK activator AICAR

    Energy Technology Data Exchange (ETDEWEB)

    Russe, Otto Quintus, E-mail: quintus@russe.eu; Möser, Christine V., E-mail: chmoeser@hotmail.com; Kynast, Katharina L., E-mail: katharina.kynast@googlemail.com; King, Tanya S., E-mail: tanya.sarah.king@googlemail.com; Olbrich, Katrin, E-mail: Katrin.olbrich@gmx.net; Grösch, Sabine, E-mail: groesch@em.uni-frankfurt.de; Geisslinger, Gerd, E-mail: geisslinger@em.uni-frankfurt.de; Niederberger, Ellen, E-mail: e.niederberger@em.uni-frankfurt.de

    2014-05-09

    Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have a therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells.

  1. Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS.

    Science.gov (United States)

    Del Bufalo, Aurélia; Bernad, José; Dardenne, Christophe; Verda, Denis; Meunier, Jean Roch; Rousset, Françoise; Martinozzi-Teissier, Silvia; Pipy, Bernard

    2011-10-01

    For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1β and TNF-α) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE(2,) TxB(2) and PGD(2)), eugenol and cinnamaldehyde inhibiting also the production of IL-1β and TNF-α. We further demonstrated that there is no unique PGE(2) inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers. PMID:21807015

  2. Passive Protection of Diabetic Rats with Antisera Specific for the Polysaccharide Portion of the Lipopolysaccharide Isolated from Pseudomonas pseudomallei

    OpenAIRE

    Bryan, Larry E.; Wong, Sallene; Woods, Don E; Dance, David AB; Chaowagul, W.

    1994-01-01

    Polyclonal and monoclonal antisera raised to tetanus toxoid-conjugated polysaccharide of lipopolysaccharide (lps) and purified lps of Pseudomonas pseudomallei that reacted with a collection of 41 strains of this bacterium from 23 patients are described. The common antigen recognized by these sera was within the polysaccharide component of the lps of the cells. The sera were specific for P pseudomallei in that none of 37 strains of other bacteria, including 20 Gram-negative and three Gram-posi...

  3. Modulation of macrophage Ia expression by lipopolysaccharide: stem cell requirements, accessory lymphocyte involvement, and IA-inducing factor production.

    OpenAIRE

    Wentworth, P A; Ziegler, H K

    1989-01-01

    The mechanism of induction of murine macrophage Ia expression by lipopolysaccharide (LPS) was studied. Intraperitoneal injection of 1 microgram of LPS resulted in a 3- to 10-fold increase in the number of IA-positive peritoneal macrophages (flow cytometry and immunofluorescence and a 6-to 16-fold increase by radioimmunoassay. The isolated lipid A moiety of LPS was a potent inducer of macrophage Ia expression. Ia induction required a functional myelopoietic system as indicated by the finding t...

  4. Lipopolysaccharide potentiates hyperthermia-induced seizures

    OpenAIRE

    Eun, Baik-Lin; Abraham, Jayne; Mlsna, Lauren; Kim, Min Jung; Koh, Sookyong

    2015-01-01

    Background Prolonged febrile seizures (FS) have both acute and long-lasting effects on the developing brain. Because FS are often associated with peripheral infection, we aimed to develop a preclinical model of FS that simulates fever and immune activation in order to facilitate the implementation of targeted therapy after prolonged FS in young children. Methods The innate immune activator lipopolysaccharide (LPS) was administered to postnatal day 14 rat (200 μg/kg) and mouse (100 μg/kg) pups...

  5. Co-stimulation with LPS or Poly I:C markedly enhances the anti-platelet immune response and severity of fetal and neonatal alloimmune thrombocytopenia.

    Science.gov (United States)

    Li, Conglei; Chen, Pingguo; Vadasz, Brian; Ma, Li; Zhou, Hui; Lang, Sean; Freedman, John; Ni, Heyu

    2013-12-01

    Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a life-threatening bleeding disorder caused by maternal antibodies against fetal/neonatal platelets. FNAIT is also linked with miscarriages, although the incidence and mechanisms of fetal death have not been well studied. IntegrinαIIbβ3 (GPIIbIIIa) and the GPIbα complex are major glycoproteins expressed on platelets and are also major antigens targeted in autoimmune thrombocytopenia (ITP), but reported cases of anti-GPIb-mediated FNAIT are rare. Bacterial and viral infections have been causally linked with the pathogenesis of immune-mediated thrombocytopenia (ITP); however, it is unknown whether these infections contribute to the severity of FNAIT. Here, immune responses against platelet antigens were examined by transfusing wild-type (WT) mouse platelets into β3-/- or GPIbα-/- mice. To mimic bacterial or viral infections, lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (Poly I:C) were injected intraperitoneally following platelet transfusions. The FNAIT model was established by breeding the immunised female mice with WT male mice. We demonstrated for the first time that the platelet GPIbα has lower immunogenicity compared to β3 integrin. Interestingly, co-stimulation with LPS or Poly I:C markedly enhanced the immune response against platelet GPIbα and caused severe pathology of FNAIT (i.e. miscarriages). LPS or Poly I:C also enhanced the immune response against platelet β3 integrin. Our data suggest that bacterial and viral infections facilitate the anti-platelet GPIbα response, which may lead to a severe non-classical FNAIT (i.e. miscarriage but not neonatal bleeding) that has not been adequately reported in humans.

  6. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Sik [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  7. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    International Nuclear Information System (INIS)

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  8. Differential inflammatory response to inhaled lipopolysaccharide targeted either to the airways or the alveoli in man.

    Directory of Open Access Journals (Sweden)

    Winfried Möller

    Full Text Available Endotoxin (Lipopolysaccharide, LPS is a potent inducer of inflammation and there is various LPS contamination in the environment, being a trigger of lung diseases and exacerbation. The objective of this study was to assess the time course of inflammation and the sensitivities of the airways and alveoli to targeted LPS inhalation in order to understand the role of LPS challenge in airway disease.In healthy volunteers without any bronchial hyperresponsiveness we targeted sequentially 1, 5 and 20 µg LPS to the airways and 5 µg LPS to the alveoli using controlled aerosol bolus inhalation. Inflammatory parameters were assessed during a 72 h time period. LPS deposited in the airways induced dose dependent systemic responses with increases of blood neutrophils (peaking at 6 h, Interleukin-6 (peaking at 6 h, body temperature (peaking at 12 h, and CRP (peaking at 24 h. 5 µg LPS targeted to the alveoli caused significantly stronger effects compared to 5 µg airway LPS deposition. Local responses were studied by measuring lung function (FEV(1 and reactive oxygen production, assessed by hydrogen peroxide (H(2O(2 in fractionated exhaled breath condensate (EBC. FEV(1 showed a dose dependent decline, with lowest values at 12 h post LPS challenge. There was a significant 2-fold H(2O(2 induction in airway-EBC at 2 h post LPS inhalation. Alveolar LPS targeting resulted in the induction of very low levels of EBC-H(2O(2.Targeting LPS to the alveoli leads to stronger systemic responses compared to airway LPS targeting. Targeted LPS inhalation may provide a novel model of airway inflammation for studying the role of LPS contamination of air pollution in lung diseases, exacerbation and anti-inflammatory drugs.

  9. Frankincense improves memory retrieval in rats treated with Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Beheshti Siamak

    2016-01-01

    Full Text Available Introduction: Frankincense has been shown to possess anti-inf lammatory activity. In this studythe effect of pretreatment with the hydro-alcoholic extract of frankincense on memory retrievalwas assessed in lipopolysaccharide (LPS treated rats.Methods: Forty-two adult male Wistar rats were distributed into 7 groups of 6 each. One groupreceived LPS (1 mg/kg; i.p pre-test. The control group received saline (1 ml/kg; i.p. 2 groups ofanimals received frankincense (50 mg/kg; P.O or DMSO 5% (1 ml/kg; P.O and 30 minutes laterLPS (1 mg/kg; i.p. Two other groups of animals received frankincense (50 mg/kg; P.O or DMSO5% (1 ml/kg; P.O and 30 minutes later saline (1 ml/kg; i.p. Another group of rats received LPS(1 mg/kg; i.p and 30 minutes later Ibuprofen (100 mg/kg; P.O. In all the experimental groups,memory retrieval was assessed 4 hours following the last injection, using a passive avoidancetask (PAT. Hippocampal TNF-α levels were measured by ELISA as an index of LPS-inducedneuroinf lammation.Results: LPS impaired memory retrieval by decreasing step-through latency (STL, significantly.LPS also increased levels of TNF-α in the hippocampus as compared to the control group.Administration of frankincense (50 mg/kg; P.O before LPS (1 mg/kg; i.p improved memoryretrieval as compared to the control group. Frankincense reduced hippocampal TNF-α level in theLPS treated rats, significantly, compared to the control group.Conclusion: The results indicate that the hydro-alcoholic extract of frankincense has the potentialto improve memory retrieval in LPS treated rats, possibly via an anti-neuroinf lammatory activity.

  10. Montelukast attenuates lipopolysaccharide-induced cardiac injury in rats.

    Science.gov (United States)

    Khodir, A E; Ghoneim, H A; Rahim, M A; Suddek, G M

    2016-04-01

    This study investigates the possible protective effects of montelukast (MNT) against lipopolysaccharide (LPS)-induced cardiac injury, in comparison to dexamethasone (DEX), a standard anti-inflammatory. Male Sprague Dawley rats (160-180 g) were assigned to five groups (n = 8/group): (1) control; (2) LPS (10 mg/kg, intraperitoneal (i.p.)); (3) LPS + MNT (10 mg/kg, per os (p.o.)); (4) LPS + MNT (20 mg/kg, p.o.); and (5) LPS + DEX (1 mg/kg, i.p.). Twenty-four hours after LPS injection, heart/body weight (BW) ratio and percent survival of rats were determined. Serum total protein, creatine kinase muscle/brain (CK-MB), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) activities were measured. Heart samples were taken for histological assessment and for determination of malondialdehyde (MDA) and glutathione (GSH) contents. Cardiac tumor necrosis factor α (TNF-α) expression was evaluated immunohistochemically. LPS significantly increased heart/BW ratio, serum CK-MB, ALP, and LDH activities and decreased percent survival and serum total protein levels. MDA content increased in heart tissues with a concomitant reduction in GSH content. Immunohistochemical staining of heart specimens from LPS-treated rats revealed high expression of TNF-α. MNT significantly reduced percent mortality and suppressed the release of inflammatory and oxidative stress markers when compared with LPS group. Additionally, MNT effectively preserved tissue morphology as evidenced by histological evaluation. MNT (20 mg/kg) was more effective in alleviating LPS-induced heart injury when compared with both MNT (10 mg/kg) and DEX (1 mg/kg), as evidenced by decrease in positive staining by TNF-α immunohistochemically, decrease MDA, and increase GSH content in heart tissue. This study demonstrates that MNT might have cardioprotective effects against the inflammatory process during endotoxemia. This effect can be attributed to its antioxidant and/or anti-inflammatory properties. PMID:26089034

  11. Induction of heme oxygenase-1 attenuates lipopolysaccharide-induced cyclooxygenase-2 expression in mouse brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Yang Chuen-Mao

    2010-11-01

    Full Text Available Abstract Background Prostaglandin E2 (PGE2, an arachidonic acid metabolite converted by cyclooxygenase-2 (COX-2, plays important roles in the regulation of endothelial functions in response to bacterial infection. The enzymatic activity of COX-2 can be down-regulated by heme oxygenase-1 (HO-1 induction. However, the mechanisms underlying HO-1 modulating COX-2 protein expression are not known. Objective The aim of the present study was to investigate whether the up-regulation of HO-1 regulates COX-2 expression induced by lipopolysaccharide (LPS, an endotoxin produced by Gram negative bacteria, in mouse brain endothelial cells (bEnd.3 Methods Cultured bEnd.3 cells were used to investigate LPS-induced COX-2 expression and PGE2 production. Cobalt protoporphyrin IX (CoPP, an HO-1 inducer, infection with a recombinant adenovirus carried with HO-1 gene (Adv-HO-1, or zinc protoporphyrin (ZnPP, an HO-1 inhibitor was used to stimulate HO-1 induction or inhibit HO-1 activity. The expressions of COX-2 and HO-1 were evaluated by western blotting. PGE2 levels were detected by an enzyme-linked immunoassay. Hemoglobin (a chelator of carbon monoxide, CO, one of metabolites of HO-1 and CO-RM2 (a CO releasing molecule were used to investigate the mechanisms of HO-1 regulating COX-2 expression. Results We found that LPS-induced COX-2 expression and PGE2 production were mediated through NF-κB (p65 via activation of Toll-like receptor 4 (TLR4. LPS-induced COX-2 expression was inhibited by HO-1 induction by pretreatment with CoPP or infection with Adv-HO-1. This inhibitory effect of HO-1 was reversed by pretreatment with either ZnPP or hemoglobin. Pretreatment with CO-RM2 also inhibited TLR4/MyD88 complex formation, NF-κB (p65 activation, COX-2 expression, and PGE2 production induced by LPS. Conclusions We show here a novel inhibition of HO-1 on LPS-induced COX-2/PGE2 production in bEnd.3. Our results reinforce the emerging role of cerebral endothelium-derived HO-1

  12. Guillain-Barré syndrome- and Miller Fisher syndrome-associated Campylobacter jejuni lipopolysaccharides induce anti-GM1 and anti-GQ1b Antibodies in rabbits.

    NARCIS (Netherlands)

    M.A. de Klerk; H.P. Endtz (Hubert); B.C. Jacobs (Bart); J.D. Laman (Jon); F.G.A. van der Meché; P.A. van Doorn (Pieter); C.W. Ang (Wim)

    2001-01-01

    textabstractCampylobacter jejuni infections are thought to induce antiganglioside antibodies in patients with Guillain-Barre syndrome (GBS) and Miller Fisher syndrome (MFS) by molecular mimicry between C. jejuni lipopolysaccharides (LPS) and gangliosides. We used purifi

  13. Comparison of lipopolysaccharide structures of Bordetella pertussis clinical isolates from pre- and post-vaccine era.

    Science.gov (United States)

    Albitar-Nehme, Sami; Basheer, Soorej M; Njamkepo, Elisabeth; Brisson, Jean-Robert; Guiso, Nicole; Caroff, Martine

    2013-08-30

    Endotoxins are lipopolysaccharides (LPS), and major constituents of the outer membrane of Gram-negative bacteria. Bordetella pertussis LPS were the only major antigens, of this agent of whooping-cough, that were not yet analyzed on isolates from the pre- and post-vaccination era. We compared here the LPS structures of four clinical isolates with that of the vaccine strain BP 1414. All physico-chemical analyses, including SDS-PAGE, TLC, and different MALDI mass spectrometry approaches were convergent. They helped demonstrating that, on the contrary to some other B. pertussis major antigens, no modification occurred in the dodecasaccharide core structure, as well as in the whole LPS molecules. These results are rendering these major antigens good potential vaccine components. Molecular modeling of this conserved LPS structure also confirmed the conclusions of previous experiments leading to the production of anti-LPS monoclonal antibodies and defining the main epitopes of these major antigens.

  14. LPS structure and PhoQ activity are important for Salmonella Typhimurium virulence in the Galleria mellonella infection model [corrected].

    Directory of Open Access Journals (Sweden)

    Jennifer K Bender

    Full Text Available The larvae of the wax moth, Galleria mellonella, have been used experimentally to host a range of bacterial and fungal pathogens. In this study we evaluated the suitability of G. mellonella as an alternative animal model of Salmonella infection. Using a range of inoculum doses we established that the LD₅₀ of SalmonellaTyphimurium strain NCTC 12023 was 3.6 × 10³ bacteria per larva. Further, a set of isogenic mutant strains depleted of known virulence factors was tested to identify determinants essential for S. Typhimurium pathogenesis. Mutants depleted of one or both of the type III secretion systems encoded by Salmonella Pathogenicity Islands 1 and 2 showed no virulence defect. In contrast, we observed reduced pathogenic potential of a phoQ mutant indicating an important role for the PhoPQ two-component signal transduction system. Lipopolysaccharide (LPS structure was also shown to influence Salmonella virulence in G. mellonella. A waaL(rfaL mutant, which lacks the entire O-antigen (OAg, was virtually avirulent, while a wzz(ST/wzz(fepE double mutant expressing only a very short OAg was highly attenuated for virulence. Furthermore, shortly after infection both LPS mutant strains showed decreased replication when compared to the wild type in a flow cytometry-based competitive index assay. In this study we successfully established a G. mellonella model of S. Typhimurium infection. By identifying PhoQ and LPS OAg length as key determinants of virulence in the wax moth larvae we proved that there is an overlap between this and other animal model systems, thus confirming that the G. mellonella infection model is suitable for assessing aspects of Salmonella virulence function.

  15. Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS

    International Nuclear Information System (INIS)

    For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1β and TNF-α) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE2, TxB2 and PGD2), eugenol and cinnamaldehyde inhibiting also the production of IL-1β and TNF-α. We further demonstrated that there is no unique PGE2 inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers. - Highlights: → We investigated how contact sensitizers modulate an inflammatory response. → We used macrophage-differentiated cell line, U-937 treated with PMA/LPS. → Sensitizers specifically inhibit the production of COX metabolites (PGE2, TxB2). → Several mechanisms of inhibition: COX-2 expression/enzymatic activity, isomerases. → New insight in the biochemical properties of sensitizers.

  16. Neonatal lipopolysaccharide exposure does not diminish the innate immune response to a subsequent lipopolysaccharide challenge in Holstein bull calves.

    Science.gov (United States)

    Benjamin, A L; Korkmaz, F T; Elsasser, T H; Kerr, D E

    2016-07-01

    The innate immune response following experimental mastitis is quite variable between individual dairy cattle. An inflammatory response that minimizes collateral damage to the mammary gland while still effectively resolving the infection following pathogen exposure is beneficial to dairy producers. The ability of a lipopolysaccharide (LPS) exposure in early life to generate a low-responding phenotype and thus reduce the inflammatory response to a later-life LPS challenge was investigated in neonatal bull calves. Ten Holstein bull calves were randomly assigned to either an early life LPS (ELL) group (n=5) or an early life saline (ELS) group (n=5). At 7d of age, calves received either LPS or saline, and at 32d of age, all calves were challenged with an intravenous dose of LPS to determine the effect of the early life treatment (LPS or saline) on the immune response generated toward a subsequent LPS challenge. Dermal fibroblast and monocyte-derived macrophage cultures from each calf were established at age 20 and 27d, respectively, to model sustained effects from the early life LPS exposure on gene expression and protein production of components within the LPS response pathway. The ELL calves had greater levels of plasma IL-6 and tumor necrosis factor-α than the ELS calves following the early life LPS or saline treatments. However, levels of these 2 immune markers were similar between ELL and ELS calves when both groups were subsequently challenged with LPS. A comparison of the in vitro LPS responses of the ELL and ELS calves revealed similar patterns of protein production and gene expression following an LPS challenge of both dermal fibroblast and monocyte-derived macrophage cultures established from the treatment groups. Whereas an early life exposure to LPS did not result in a dampened inflammatory response toward a later LPS challenge in these neonatal bull calves, the potential that exposure to inflammation or stress in early life or in utero can create an

  17. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium.

    Science.gov (United States)

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-08-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4(+) T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses.

  18. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium

    Science.gov (United States)

    Pastelin-Palacios, Rodolfo; Gil-Cruz, Cristina; Pérez-Shibayama, Christian I; Moreno-Eutimio, Mario A; Cervantes-Barragán, Luisa; Arriaga-Pizano, Lourdes; Ludewig, Burkhard; Cunningham, Adam F; García-Zepeda, Eduardo A; Becker, Ingeborg; Alpuche-Aranda, Celia; Bonifaz, Laura; Gunn, John S; Isibasi, Armando; López-Macías, Constantino

    2011-01-01

    Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4+ T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses. PMID:21631497

  19. IL-33 enhances lipopolysaccharide-induced inflammatory cytokine production from mouse macrophages by regulating lipopolysaccharide receptor complex.

    Science.gov (United States)

    Espinassous, Quentin; Garcia-de-Paco, Elvira; Garcia-Verdugo, Ignacio; Synguelakis, Monique; von Aulock, Sonja; Sallenave, Jean-Michel; McKenzie, Andrew N J; Kanellopoulos, Jean

    2009-07-15

    Bacterial LPS triggers monocytes and macrophages to produce several inflammatory cytokines and mediators. However, once exposed to LPS, they become hyporesponsive to a subsequent endotoxin challenge. This phenomenon is defined as LPS desensitization or tolerance. Previous studies have identified some components of the biochemical pathways involved in negative modulation of LPS responses. In particular, it has been shown that the IL-1R-related protein ST2 could be implicated in LPS tolerance. The natural ligand of ST2 was recently identified as IL-33, a new member of the IL-1 family. In this study, we investigated whether IL-33 triggering of ST2 was able to induce LPS desensitization of mouse macrophages. We found that IL-33 actually enhances the LPS response of macrophages and does not induce LPS desensitization. We demonstrate that this IL-33 enhancing effect of LPS response is mediated by the ST2 receptor because it is not found in ST2 knockout mice. The biochemical consequences of IL-33 pretreatment of mouse macrophages were investigated. Our results show that IL-33 increases the expression of the LPS receptor components MD2 (myeloid differentiation protein 2) and TLR-4, the soluble form of CD14 and the MyD88 adaptor molecule. In addition, IL-33 pretreatment of macrophages enhances the cytokine response to TLR-2 but not to TLR-3 ligands. Thus, IL-33 treatment preferentially affects the MyD88-dependent pathway activated by the TLR. PMID:19553541

  20. Opc expression, LPS immunotype switch and pilin conversion contribute to serum resistance of unencapsulated meningococci.

    Directory of Open Access Journals (Sweden)

    Kerstin Hubert

    Full Text Available Neisseria meningitidis employs polysaccharides and outer membrane proteins to cope with human serum complement attack. To screen for factors influencing serum resistance, an assay was developed based on a colorimetric serum bactericidal assay. The screening used a genetically modified sequence type (ST-41/44 clonal complex (cc strain lacking LPS sialylation, polysaccharide capsule, the factor H binding protein (fHbp and MutS, a protein of the DNA repair mechanism. After killing of >99.9% of the bacterial cells by serum treatment, the colorimetric assay was used to screen 1000 colonies, of which 35 showed enhanced serum resistance. Three mutant classes were identified. In the first class of mutants, enhanced expression of Opc was identified. Opc expression was associated with vitronectin binding and reduced membrane attack complex deposition confirming recent observations. Lipopolysaccharide (LPS immunotype switch from immunotype L3 to L8/L1 by lgtA and lgtC phase variation represented the second class. Isogenic mutant analysis demonstrated that in ST-41/44 cc strains the L8/L1 immunotype was more serum resistant than the L3 immunotype. Consecutive analysis revealed that the immunotypes L8 and L1 were frequently observed in ST-41/44 cc isolates from both carriage and disease. Immunotype switch to L8/L1 is therefore suggested to contribute to the adaptive capacity of this meningococcal lineage. The third mutant class displayed a pilE allelic exchange associated with enhanced autoaggregation. The mutation of the C terminal hypervariable region D of PilE included a residue previously associated with increased pilus bundle formation. We suggest that autoaggregation reduced the surface area accessible to serum complement and protected from killing. The study highlights the ability of meningococci to adapt to environmental stress by phase variation and intrachromosomal recombination affecting subcapsular antigens.

  1. Inhibition of Neuroinflammation in LPS-Activated Microglia by Cryptolepine

    Directory of Open Access Journals (Sweden)

    Olumayokun A. Olajide

    2013-01-01

    Full Text Available Cryptolepine, an indoloquinoline alkaloid in Cryptolepis sanguinolenta, has anti-inflammatory property. In this study, we aimed to evaluate the effects of cryptolepine on lipopolysaccharide (LPS- induced neuroinflammation in rat microglia and its potential mechanisms. Microglial activation was induced by stimulation with LPS, and the effects of cryptolepine pretreatment on microglial activation and production of proinflammatory mediators, PGE2/COX-2, microsomal prostaglandin E2 synthase and nitric oxide/iNOS were investigated. We further elucidated the role of Nuclear Factor-kappa B (NF-κB and the mitogen-activated protein kinases in the antiinflammatory actions of cryptolepine in LPS-stimulated microglia. Our results showed that cryptolepine significantly inhibited LPS-induced production of tumour necrosis factor-alpha (TNFα, interleukin-6 (IL-6, interleukin-1beta (IL-1β, nitric oxide, and PGE2. Protein and mRNA levels of COX-2 and iNOS were also attenuated by cryptolepine. Further experiments on intracellular signalling mechanisms show that IκB-independent inhibition of NF-κB nuclear translocation contributes to the anti-neuroinflammatory actions of cryptolepine. Results also show that cryptolepine inhibited LPS-induced p38 and MAPKAPK2 phosphorylation in the microglia. Cell viability experiments revealed that cryptolepine (2.5 and 5 μM did not produce cytotoxicity in microglia. Taken together, our results suggest that cryptolepine inhibits LPS-induced microglial inflammation by partial targeting of NF-κB signalling and attenuation of p38/MAPKAPK2.

  2. The roles of lipopolysaccharide receptor cluster and large-conductance Ca2 +-activated potassium channel in the lipopolysaccharide recognition%脂多糖受体簇和大电导Ca2+活K+通道在脂多糖信号识别中的作用

    Institute of Scientific and Technical Information of China (English)

    李亮; 王焕亮; 李东亮; 张丽; 类维富

    2012-01-01

    背景 细菌脂多糖(lipopolysaccharide,LPS)可激活细胞合成和释放多种细胞因子,导致全身炎症反应.LPS识别及跨膜信号转导是引起细胞效应的关键,成为近年的研究热点.目的 对新近提出的“LPS受体簇”理论和大电导Ca2+激活K+通道(MaxiK)在LPS信号识别中的作用研究进展进行综述.内容 LPS与CD14结合后,不同的信号分子在脂质筏内聚集,LPS被释放到脂质双分子层,并与由多种受体分子组成的受体簇相互作用.根据不同的细胞类型和细菌刺激,形成了不同的LPS受体簇.MaxiK通道在LPS诱导的巨噬细胞信号转导过程的早期即被激活.并且以IκB-α/NF-κB为中心的促炎症反应依赖MaxiK的功能.趋向 需要进一步研究来阐明LPS受体簇在细胞膜特定区域内形成的确切分子机制,以及组成受体簇的几种蛋白分子在刺激识别和信号转导过程中的作用.%Background Bacterial lipopolysaccharide(LPS) induces cytokine synthesis and secretion in cells,subsequently resulting in systemic inflammatory response.The LPS receptor recognition and transmembrane signal transduction play a key role in LPS-induced cell activation. Objective To review a novel theory of LPS receptor activation cluster and the role of largeconductance Ca2+-activated potassium channel (MaxiK) in LPS recognition.Content Following ligation of CD14 by LPS,different signaling molecules are recruited at the site of the ligation within lipid rafts,where LPS is then briefly released into the lipid bilayer and finally interacts with a complex of receptors.Depending on the cell type and the bacterial stimulus,different LPS receptor clusters can be formed.The activation of the MaxiK channel is an early step in LPS-induced transmembrane signal transduction in macrophages.And the central IκB-α/NF-κB-dependent proinflammatory pathway depends on the function of MaxiK channel in macrophages.Trend The molecular mechanism of LPS receptor recruitment

  3. Quercetin Reduces Inflammatory Responses in LPS-Stimulated Cardiomyoblasts

    Directory of Open Access Journals (Sweden)

    Cristina Angeloni

    2012-01-01

    Full Text Available Flavonoids possess several biological and pharmacological activities. Quercetin (Q, a naturally occurring flavonoid, has been shown to downregulate inflammatory responses and provide cardioprotection. However, the mechanisms behind the anti-inflammatory properties of Q in cardiac cells are poorly understood. In inflammation, nitric oxide (NO acts as a proinflammatory mediator and is synthesized by inducible nitric oxide synthase (iNOS in response to pro-inflammatory agents such as lipopolysaccharide (LPS, a causative agent in myocardial depression during sepsis. In the present study, we evaluated the protective effect of Q on rat cardiac dysfunction during sepsis induced by LPS. Pretreatment of H9c2 cardiomyoblasts with Q inhibited LPS-induced iNOS expression and NO production and counteracted oxidative stress caused by the unregulated NO production that leads to the generation of peroxynitrite and other reactive nitrogen species. In addition, Q pretreatment significantly counteracted apoptosis cell death as measured by immunoblotting of the cleaved caspase 3 and caspase 3 activity. Q also inhibited the LPS-induced phosphorylation of the stress-activated protein kinases (JNK/SAPK and p38 MAP kinase that are involved in the inhibition of cell growth as well as the induction of apoptosis. In conclusion, these results suggest that Q might serve as a valuable protective agent in cardiovascular inflammatory diseases.

  4. Interaction of Gram-negative bacteria with cationic proteins: Dependence on the surface characteristics of the bacterial cell

    Directory of Open Access Journals (Sweden)

    Isabella R Prokhorenko

    2009-03-01

    Full Text Available Isabella R Prokhorenko1, Svetlana V Zubova1, Alexandr Yu Ivanov2, Sergey V Grachev31Laboratory of Molecular Biomedicine, Institute of Basic Biological Problems; 2Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia; 3I.M. Sechenov’s Moscow Medical Academy, Moscow, Russia Abstract: Gram-negative bacteria can enter the bloodstream and interact with serum cationic proteins. The character of interaction will depend on the surface characteristics of bacterial cells, which are determined by bacterial chemotype and density of lipopolysaccharide (LPS packing in the cell wall. It was shown that the lysozyme treatment resulted in the increase sensitivity to hypotonic shock. Signifi cant differences to this effect were found between Escherichia coli strain D21 and D21f2 under treatment with physiological protein concentration. On the basis of electrokinetic measurements and studies of the interaction of cells with lysozyme, the hypothesis was formed that the cell wall of the E. coli strain D21f2 contains more LPS and has a higher density of their packing than the cell wall of the E. coli D21 cells. The effect of lysozyme and lactoferrin on the viability of E. coli cells of two different strains was examined. Lysozyme was found to more effectively inhibit the growth of the E. coli D21 bacteria, and lactoferrin suppressed mainly the growth of the E. coli D21f2 bacteria. These results indicate that the differences in LPS core structure of bacterial R-chemotype, which determines surface charge and density of LPS packing, plays an essential role in the mechanisms of interaction of the cationic proteins with the cell wall.Keywords: lipopolysaccharide, Escherichia coli, chemotype, lysozyme, lactoferrin, colony-forming units

  5. O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa.

    Science.gov (United States)

    Rapicavoli, Jeannette N; Kinsinger, Nichola; Perring, Thomas M; Backus, Elaine A; Shugart, Holly J; Walker, Sharon; Roper, M Caroline

    2015-12-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. PMID:26386068

  6. Effect of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharides and inflammatory cytokines: an in vitro study using a human colonic microbiota model.

    Science.gov (United States)

    Rodes, Laetitia; Khan, Afshan; Paul, Arghya; Coussa-Charley, Michael; Marinescu, Daniel; Tomaro-Duchesneau, Catherine; Shao, Wei; Kahouli, Imen; Prakash, Satya

    2013-04-01

    Gut-derived lipopolysaccharides (LPS) are critical to the development and progression of chronic low-grade inflammation and metabolic diseases. In this study, the effects of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharide and inflammatory cytokine concentrations were evaluated using a human colonic microbiota model. Lactobacillus reuteri, L. rhamnosus, L. plantarum, Bifidobacterium animalis, B. bifidum, B. longum, and B. longum subsp. infantis were identified from the literature for their anti-inflammatory potential. Each bacterial culture was administered daily to a human colonic microbiota model during 14 days. Colonic lipopolysaccharides, and Gram-positive and negative bacteria were quantified. RAW 264.7 macrophage cells were stimulated with supernatant from the human colonic microbiota model. Concentrations of TNF-alpha, IL-1beta, and IL-4 cytokines were measured. Lipopolysaccharide concentrations were significantly reduced with the administration of B. bifidum (-46.45 +/- 5.65%), L. rhamnosus (-30.40 +/- 5.08%), B. longum (-42.50 +/- 1.28%), and B. longum subsp. infantis (-68.85 +/- 5.32%) (p bacteria were distinctly affected by the probiotic administered. There was a probiotic strain-specific effect on immunomodulatory responses of RAW 264.7 macrophage cells. B. longum subsp. infantis demonstrated higher capacities to reduce TNF-alpha concentrations (-69.41 +/- 2.78%; p probiotic bacteria, such as B. longum subsp. infantis, might decrease colonic lipopolysaccharide concentrations, which might reduce the proinflammatory tone. This study has noteworthy applications in the field of biotherapeutics for the prevention and/or treatment of inflammatory and metabolic diseases. PMID:23568206

  7. Lipopolysaccharide induces IFN-γ production in human NK cells

    Directory of Open Access Journals (Sweden)

    Leonid M Kanevskiy

    2013-01-01

    Full Text Available NK cells have been shown to play a regulatory role in sepsis. According to the current view, NK cells become activated via macrophages or dendritic cells primed by lipopolysaccharide (LPS. Recently TLR4 gene expression was detected in human NK cells suggesting the possibility of a direct action of LPS on NK cells. In this study, effects of LPS on NK cell cytokine production and cytotoxicity were studied using highly purified human NK cells. LPS induced IFN-γ production in the presence of IL-2 in cell populations containing >98% CD56+ cells. Surprisingly, in the same experiments LPS decreased NK cell degranulation. No significant expression of markers related to blood dendritic cells, monocytes or T or B lymphocytes in the NK cell preparations was observed; the portions of HLA-DRbright, CD14+, CD3+ and CD20+ cells amounted to less than 0.1% within the cell populations. No more than 0.2% of NK cells were shown to be slightly positive for surface TLR4 in our experimental system, although intracellular staining revealed moderate amounts of TLR4 inside the NK cell population. These cells were negative for surface CD14, the receptor participating in LPS recognition by TLR4. Incubation of NK cells with IL-2 or/and LPS did not lead to an increase in TLR4 surface expression. TLR4–CD56+ NK cells isolated by cell sorting secreted IFN-γ in response to LPS. Antibody to TLR4 did not block the LPS-induced increase in IFN-γ production. We have also shown that Re-form of LPS lacking outer core oligosaccharide and O-antigen induces less cytokine production in NK cells than full length LPS. We speculate that the polysaccharide fragments of LPS molecule may take part in LPS-induced IFN-γ production by NK cells. Collectively our data suggest the existence of a mechanism of LPS direct action on NK cells distinct from established TLR4-mediated signaling.

  8. Lipopolysaccharide Clearance, Bacterial Clearance, and Systemic Inflammatory Responses Are Regulated by Cell Type–Specific Functions of TLR4 during Sepsis

    OpenAIRE

    Deng, Meihong; Scott, Melanie J.; Loughran, Patricia; Gibson, Gregory; Sodhi, Chhinder; Watkins, Simon; Hackam, David; Billiar, Timothy R

    2013-01-01

    The morbidity associated with bacterial sepsis is the result of host immune responses to pathogens, which are dependent on pathogen recognition by pattern recognition receptors, such as TLR4. TLR4 is expressed on a range of cell types, yet the mechanisms by which cell-specific functions of TLR4 lead to an integrated sepsis response are poorly understood. To address this, we generated mice in which TLR4 was specifically deleted from myeloid cells (LysMTLR4KO) or hepatocytes (HCTLR4KO) and then...

  9. Neonatal exposure to lipopolysaccharide enhances vulnerability of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life

    OpenAIRE

    Fan, Lir-Wan; Tien, Lu-Tai; Lin, Rick C. S.; Simpson, Kimberly L.; Rhodes, Philip G.; Cai, Zhengwei

    2011-01-01

    Brain inflammation in early life has been proposed to play important roles in the development of neurodegenerative disorders in adult life. To test this hypothesis, we used a neonatal rat model of lipopolysaccharide (LPS) exposure (1,000 EU/g body weight, intracerebral injection on P5) to produce brain inflammation. By P70, when LPS-induced behavioral deficits were spontaneously recovered, animals were challenged with rotenone, a commonly used pesticide, through subcutaneous mini-pump infusio...

  10. Neuroprotective role of pseudoginsenoside-F11 on activated microgfia induced by lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    Xiu-liBI; Jing-yuYANG; Ying-xuDONG; LiangYU; Chun-fuWU

    2004-01-01

    AIM: In the present study, the neuroprotective effect and its possible molecular mechanisms of pseudoginsenoside-F11 (PF11),a saponin existed in American ginseng, on activated N9 microglia induced by lipopolysaccharide (LPS) were studied. RESULTS:The results showed that PF11 inhibited the activation of p38 ,p42/44 mitogen-activated protein kinases (MAPKs), and the degradation of IkB alpha (IrBα) induced by LPS. However, it

  11. Chronic lipopolysaccharide exposure induces cognitive dysfunction without affecting BDNF expression in the rat hippocampus

    OpenAIRE

    Zhu, Bin; Wang, Zhi-Gang; Ding, Jie; Liu, Ning; WANG Da-ming; Ding, Liang-cai; YANG, CHUN

    2014-01-01

    Previous studies have shown that lipopolysaccharide (LPS) has the potential to cause cognitive dysfunction. However, the underlying pathogenesis has yet to be fully elucidated. Increasing attention is being focused on infection in the central nervous system. Therefore, the present study aimed to investigate the behavioral performance of rats receiving intraperitoneal injections of LPS and to determine the expression levels of amyloid-β (Aβ), brain-derived neurotrophic factor (BDNF) and pro-in...

  12. Lipopolysaccharide-Induced Biliary Factors Enhance Invasion of Salmonella enteritidis in a Rat Model

    OpenAIRE

    Islam, Abul F. M. W.; Nathan D. Moss; Dai, Yung; Smith, Murray S. R.; Collins, Andrew M.; Jackson, Graham D. F.

    2000-01-01

    In this study, the role of the hepatobiliary system in the early pathogenesis of Salmonella enteritidis infection was investigated in a rat model. Intravenous (i.v.) challenge with lipopolysaccharide (LPS) has previously been shown to enhance the translocation of normal gut flora. We first confirmed that LPS can similarly promote the invasion of S. enteritidis. Oral infection of outbred Australian Albino Wistar rats with 106 to 107 CFU of S. enteritidis led to widespread tissue invasion after...

  13. Lipopolysaccharide-Induced Differential Expression of miRNAs in Male and Female Rhipicephalus haemaphysaloides Ticks

    OpenAIRE

    Fangfang Wang; Haiyan Gong; Houshuang Zhang; Yongzhi Zhou; Jie Cao; Jinlin Zhou

    2015-01-01

    Lipopolysaccharide (LPS) stimulates the innate immune response in arthropods. In tick vectors, LPS activates expression of immune genes, including those for antibacterial peptides. miRNAs are 21-24 nt non-coding small RNAs that regulate target mRNAs at the post-transcriptional level. However, our understanding of tick innate immunity is limited to a few cellular immune reactions and some characterized immune molecules. Moreover, there is little information on the regulation of the immune syst...

  14. Lithium modifies brain arachidonic and docosahexaenoic metabolism in rat lipopolysaccharide model of neuroinflammation

    OpenAIRE

    Basselin, Mireille; Kim, Hyung-Wook; Chen, Mei; Ma, Kaizong; Rapoport, Stanley I.; Robert C. Murphy; Farias, Santiago E.

    2010-01-01

    Neuroinflammation, caused by 6 days of intracerebroventricular infusion of a low dose of lipopolysaccharide (LPS; 0.5 ng/h), stimulates brain arachidonic acid (AA) metabolism in rats, but 6 weeks of lithium pretreatment reduces this effect. To further understand this action of lithium, we measured concentrations of eicosanoids and docosanoids generated from AA and docosahexaenoic acid (DHA), respectively, in high-energy microwaved rat brain using LC/MS/MS and two doses of LPS. In rats fed a l...

  15. Lipopolysaccharide-induced leptin release is neurally controlled

    OpenAIRE

    Mastronardi, C. A.; Yu, W. H.; Srivastava, V. K.; Dees, W L; McCann, S M

    2001-01-01

    Our hypothesis is that leptin release is controlled neurohormonally. Conscious, male rats bearing indwelling, external, jugular catheters were injected with the test drug or 0.9% NaCl (saline), and blood samples were drawn thereafter to measure plasma leptin. Anesthesia decreased plasma leptin concentrations within 10 min to a minimum at 120 min, followed by a rebound at 360 min. Administration (i.v.) of lipopolysaccharide (LPS) increased plasma leptin to almost tw...

  16. Posttranscriptional Suppression of Lipopolysaccharide-Stimulated Inflammatory Responses by Macrophages in Middle-Aged Mice: A Possible Role for Eukaryotic Initiation Factor 2 α.

    Science.gov (United States)

    Shirato, Ken; Imaizumi, Kazuhiko

    2014-01-01

    The intensities of macrophage inflammatory responses to bacterial components gradually decrease with age. Given that a reduced rate of protein synthesis is a common age-related biochemical change, which is partially mediated by increased phosphorylation of eukaryotic initiation factor-2 α (eIF-2 α ), we investigated the mechanism responsible for the deterioration of macrophage inflammatory responses, focusing specifically on the age-related biochemical changes in middle-aged mice. Peritoneal macrophages isolated from 2-month-old (young) and 12-month-old (middle-aged) male BALB/c mice were stimulated with lipopolysaccharide (LPS). Although LPS-stimulated secretion of tumor necrosis factor- α (TNF- α ) by the macrophages from middle-aged mice was significantly lower than that from young mice, LPS caused marked increases in levels of TNF- α mRNA in macrophages from middle-aged as well as young mice. Moreover, LPS evoked similar levels of phosphorylation of c-Jun N-terminal kinase (JNK) and nuclear factor- κ B (NF- κ B) in young and middle-aged mice. In contrast, the basal level of phosphorylated eIF-2 α in macrophages from middle-aged mice was higher than that in macrophages from young mice. Salubrinal, an inhibitor of the phosphatase activity that dephosphorylates eIF-2 α , suppressed the LPS-stimulated inflammatory responses in a murine macrophage cell line RAW264.7. These results suggest that posttranscriptional suppression of macrophage inflammatory responses during middle age requires phosphorylation of eIF-2 α . PMID:24808968

  17. Posttranscriptional Suppression of Lipopolysaccharide-Stimulated Inflammatory Responses by Macrophages in Middle-Aged Mice: A Possible Role for Eukaryotic Initiation Factor 2α

    Directory of Open Access Journals (Sweden)

    Ken Shirato

    2014-01-01

    Full Text Available The intensities of macrophage inflammatory responses to bacterial components gradually decrease with age. Given that a reduced rate of protein synthesis is a common age-related biochemical change, which is partially mediated by increased phosphorylation of eukaryotic initiation factor-2α (eIF-2α, we investigated the mechanism responsible for the deterioration of macrophage inflammatory responses, focusing specifically on the age-related biochemical changes in middle-aged mice. Peritoneal macrophages isolated from 2-month-old (young and 12-month-old (middle-aged male BALB/c mice were stimulated with lipopolysaccharide (LPS. Although LPS-stimulated secretion of tumor necrosis factor-α (TNF-α by the macrophages from middle-aged mice was significantly lower than that from young mice, LPS caused marked increases in levels of TNF-α mRNA in macrophages from middle-aged as well as young mice. Moreover, LPS evoked similar levels of phosphorylation of c-Jun N-terminal kinase (JNK and nuclear factor-κB (NF-κB in young and middle-aged mice. In contrast, the basal level of phosphorylated eIF-2α in macrophages from middle-aged mice was higher than that in macrophages from young mice. Salubrinal, an inhibitor of the phosphatase activity that dephosphorylates eIF-2α, suppressed the LPS-stimulated inflammatory responses in a murine macrophage cell line RAW264.7. These results suggest that posttranscriptional suppression of macrophage inflammatory responses during middle age requires phosphorylation of eIF-2α.

  18. The Innate Immune Response in Lateolabrax japonicus Induced by Lipopolysaccharide from Glaciecola polaris Strain ARK149 (LMG21854)

    Institute of Scientific and Technical Information of China (English)

    CHEN Ji-gang; YANG Ji-fang; XIONG Juan; MAO Zhi-juan; WANG Hai-li

    2010-01-01

    Glaciecola polaris strain ARK 149, a Gram-negative bacterium from Arctic seas, was used to derive lipopolysaccharide (LPS), and the effect of the LPS inducing some innate immunity parameters was investigated in Japanese sea bass,Lateolabrax japonicus. The results showed that the LPS could enhance the phagocytosis activity, lysozyme activity,and bacteriolytic activity in L.japonicus, significantly (P<0.05) at 1, 7, 14, 21, 28, and 35 d after LPS-injection. The indexes of three parameters increased to the peak of value at 28th d post LPS-injection. Moreover, RT-PCR analysis suggested that LPS significantly up-regulated the expression of both IL-8 and hepcidin in several tissues. These data suggest that the LPS extracted from Glaciecola polaris strain ARK149 can induce innate immunity in L. japonicus.

  19. Lipopolysaccharide-Mediated Induction of Concurrent IL-1β and IL-23 Expression in THP-1 Cells Exhibits Differential Requirements for Caspase-1 and Cathepsin B Activity.

    Science.gov (United States)

    Wynick, Christopher; Petes, Carlene; Tigert, Alexander; Gee, Katrina

    2016-08-01

    The inflammasome is a multimeric protein complex required for interleukin (IL)-1β production. Upon lipopolysaccharide (LPS) triggering of toll-like receptor (TLR)-4 and subsequent ATP signaling, the NOD-like receptor containing-pyrin domain 3 (NLRP3) inflammasome is activated to cleave pro-caspase-1 into caspase-1, allowing the secretion of IL-1β. IL-1β is known to function with IL-23 in the regulation of IL-17-producing CD4(+) T cells, Th17 cells, in adaptive immunity. Recently, studies have shown that IL-1β and IL-23 together activate IL-17-producing innate lymphoid cells, demonstrating that the pair may exhibit additional effects on cell differentiation. Using an in vitro model of bacterial infection, LPS treatment of human monocytic cells, we investigated the molecular mechanisms involved in the co-expression of IL-1β and IL-23. We found that IL-1β is partially required for optimal LPS-induced IL-23 production. We also found that IL-23 production was partially dependent on ATP signaling via the P2X7 receptor, whereas IL-1β production required this signaling. Furthermore, we identified a novel role for cathepsin B activity in IL-23 production. Taken together, this study identifies differential requirements for the co-expression of IL-1β and IL-23. Due to their similar roles in Th17 differentiation, characterization of the regulatory mechanisms for LPS-induced IL-1β and IL-23 may reveal novel information into the pathology of the inflammatory response particularly during bacterial infection. PMID:27096899

  20. Modulation of cytochrome P450 2A5 activity by lipopolysaccharide: low-dose effects and non-monotonic dose-response relationship.

    Directory of Open Access Journals (Sweden)

    Ana C A X De-Oliveira

    Full Text Available Mouse cytochrome P450 (CYP 2A5 is induced by inflammatory conditions and infectious diseases that down-regulate the expression and activity of most other CYP isoforms. Enhanced oxidative stress and nuclear factor (erythroid 2-related factor 2 (Nrf2 transcription factor activation have been hypothesised to mediate up-regulation of CYP2A5 expression in the murine liver. The unique and complex regulation of CYP2A5, however, is far from being thoroughly elucidated. Sepsis and high doses of bacterial lipopolysaccharide (LPS elicit oxidative stress in the liver, but depression, not induction, of CYP2A5 has been observed in studies of mice treated with LPS. The foregoing facts prompted us to evaluate the response of CYP2A5 liver activity in female DBA-2 mice over a broad range of LPS doses (0, 0.025, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, and 20 mg/kg. Cytokine levels (interleukin [IL]-2, IL-4, IL-6, IL-10, IL-17A, interferon gamma, tumour necrosis factor alpha and nitric oxide (NO were measured in the blood serum. Activities of CYP1A (EROD and CYP2B (BROD in the liver were also determined for comparative purposes. LPS depressed CYP2A5 at low doses (0.025-2.0 mg/kg but not at doses (>2 mg/kg that increased pro-inflammatory cytokines and NO serum levels, and depressed CYP1A and CYP2B activities. Blockade of pro-inflammatory cytokines and the overproduction of NO induced by co-treatment with pentoxifylline and LPS and iNOS inhibition with aminoguanidine both extended down-regulation of CYP2A5 to the high dose range while not affecting LPS-induced depression of CYP1A and CYP2B. Overall, the results suggested that NO plays a role in the reversal of the low-dose LPS-induced depression of CYP2A5 observed when mice were challenged with higher doses of LPS.

  1. Maleylated-BSA suppresses lipopolysaccharide-induced IL-6 production by activating the ERK-signaling pathway in murine RAW264.7 cells.

    Science.gov (United States)

    Tada, Rui; Koide, Yusuke; Yamamuro, Mitsuaki; Tanaka, Riki; Hidaka, Akira; Nagao, Koichiro; Aramaki, Yukihiko

    2014-03-01

    Macrophages are well known for their ability to induce diverse beneficial immune responses, especially in the defense against pathogens. However, an excessive activation of macrophages may cause harmful inflammation. In this context, the suppression of excessive macrophage activation would be a promising therapeutic strategy for treating inflammatory diseases. We have previously found that maleylated-bovine serum albumin (maleylated-BSA) suppresses the production of inflammatory mediators in murine macrophages. However, the immunosuppressive effects and underlying mechanism(s) of maleylated-BSA remain unclear. Here, we report that pretreatment with maleylated-BSA strongly inhibited the production of interleukin 6 (IL-6) induced by bacterial lipopolysaccharide (LPS) in murine RAW264.7 cells. This inhibitory effect of maleylated-BSA on LPS-induced IL-6 production was eliminated by treatment with an extracellular signal-regulated kinase (ERK) inhibitor, U0126, indicating the involvement of ERK pathways. Taken together, we have shown that maleylated-BSA suppresses LPS-induced production of IL-6 via the activation of an ERK signaling pathway in murine macrophages. The findings of this study imply the possibility of a novel therapeutic strategy for inflammatory diseases.

  2. Toll-like receptor 4, a novel signal transducer for lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    杨清武; 朱佩芳; 王正国; 蒋建新

    2002-01-01

    @@Lipopolysaccharide (LPS), or endotoxin, is the major component of the outer surface of gram-negative bacteria. LPS is a potent activator of the cells of the immune and inflammation systems, including macrophages, monocytes and endothelial cells, and contributes to systemic changes seen in septic shock.1,2 It has long been believed that LPS is responsible for several fatal consequences of gram-negative infection. Cell activation by LPS constitutes the first step in the cascade of events believed to lead to the manifestation of gram-negative sepsis, which results in approximately 20 000 annual deaths in the United States3 and 30% mortality rate of known cases in China.Therefore, the action mechanism of LPS is one of the most important problems in the research field of immunity, inflammation and surgery. Researchers have investigated the mechanism of cell activity and injury of LPS for a long time. In 1990, CD14,the glycosyl-phosphatidylinositol (GPI)-linked plasma membrane protein, was identified as a proximal LPS receptor on the cell surface of macrophages, and it was suggested that CD14 and LBP (lipopolysaccharide binding protein) played an important role in the effect mechanism of LPS. CD14 seemed to receive LPS via transfer from the plasma protein LBP. Then, two action patterns were recognized. CD14 positive cells, such as macrophages and leukocytes, were activated after LPS combined with LBP and interacted with CD14. But, CD14 negative cells (for example, endothelial cells), were activated through other receptors that we did not know of in the cell surface after LPS, LBP and soluble CD14 (sCD14) combined with the compounds. However, there are some questions to be answered. Firstly, because CD14 lacks cytoplasmic doman, it is unlikely to act as the transducer. Secondly, the action pattern of LPS through CD14 and LBP may be in dose-dependent mode, but, in conditions of high dosage and long exposure to LPS action, CD14 and LBP do not play an important role in

  3. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination.

    Science.gov (United States)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-02-13

    Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies. PMID:26530889

  4. Emodin ameliorates lipopolysaccharides-induced corneal inflammation in rats

    Institute of Scientific and Technical Information of China (English)

    Guo-Ling; Chen; Jing-Jing; Zhang; Xin; Kao; Lu-Wan; Wei; Zhi-Yu; Liu

    2015-01-01

    · AIM: To investigate the effect of emodin on pseudomonas aeruginosa lipopolysaccharides(LPS)-induced corneal inflammation in rats.· METHODS: Corneal infection was induced by pseudomonas aeruginosa LPS in Wistar rats. The inflammation induced by LPS were examined by slit lamp microscope and cytological checkup of aqueous humor.Corneal tissue structure was observed by hematoxylin and eosin(HE) staining. The activation of nuclear factor kappa B(NF-κB) was determined by Western blot.Messenger ribonucleic acid(m RNA) of tumor necrosis factor-α(TNF-α) and intercellular adhesion molecule-1(ICAM-1) in LPS-challenged rat corneas were measured with reverse transcription-polymerase chain reaction(RT-PCR).· RESULTS: Typical manifestations of acute corneal inflammation were observed in LPS-induce rat model,and the corneal inflammatory response and structure were improved in rats pretreated with emodin. Treatment with emodin could improve corneal structure, reduce corneal injure by reducing corneal inflammatory response. Emodin could inhibit the decreasing lever of inhibitor of kappa B alpha(IкBα) express, and the m RNA expression of TNF-α and ICAM-1 in corneal tissues was also inhibited by emodin. The differences were statistically significant between groups treated with emodin and those without treatment(P <0.01).·CONCLUSION: Emodin could ameliorate LPS-induced corneal inflammation, which might via inhibiting the activation of NF-κB.

  5. Induction of oxidative burst response in human neutrophils by immune complexes made in vitro of lipopolysaccharide and hyperimmune serum from chronically infected patients

    DEFF Research Database (Denmark)

    Kronborg, G; Fomsgaard, Anette; Jensen, E T;

    1993-01-01

    Purified lipopolysaccharide (LPS) from Pseudomonas aeruginosa was used as an antigen for immune complex (IC) formation in vitro together with hyperimmune sera from chronically P. aeruginosa-infected patients with cystic fibrosis (CF). P. aeruginosa LPS by itself did not induce an oxidative burst ...

  6. Instillation of coarse ash particulate matter and lipopolysaccharide produces a systemic inflammatory response in mice

    Energy Technology Data Exchange (ETDEWEB)

    Finnerty, K.; Choi, J.E.; Lau, A.; Davis-Gorman, G.; Diven, C.; Seaver, N.; Linak, W.P.; Witten, M.; McDonagh, P.F. [Arizona Health Science Center, Tucson, AZ (United States)

    2007-07-01

    Coronary ischemic events increase significantly following a 'bad air' day. Ambient particulate matter (PM10) is the pollutant most strongly associated with these events. PM10 produces inflammatory injury to the lower airways. It is not clear, however, whether pulmonary inflammation translates to a systemic response. Lipopolysaccharide (LPS) is a proinflammatory molecule often associated with the coarse fraction of PM. It was hypothesized that PM > 2.5 from coal plus LPS induce pulmonary inflammation leading to a systemic inflammatory response. Mice were intratracheally instilled with saline, PM (200 {mu} g), PM+ LPS10 (PM+ 10 {mu} g LPS), or PM+ LPS100 (PM+ 100 {mu} g LPS). Eighteen hours later, histologic analysis was performed on lungs from each group. Pulmonary and systemic inflammation were assessed by measuring the proinflammatory cytokines tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-6 in the pulmonary supernatant and plasma. In a follow-up study, the effects of LPS alone were assessed. Histologic analysis revealed a dose-dependent elevation in pulmonary inflammation with all treatments. Pulmonary TNF-{alpha} and IL-6 both increased significantly with PM+ LPS100 treatment. Regarding plasma, TNF-{alpha} significantly increased in both PM+ LPS10 and PM+ LPS100 treatments. For plasma IL-6, all groups tended to rise with a significant increase in the PM+ LPS100 group. The results of the follow-up study indicate that the responses to PM+ LPS were not due to LPS alone. These results suggest that coarse coal fly ash PM > 2.5 combined with LPS produced pulmonary and systemic inflammatory responses. The resulting low-level systemic inflammation may contribute to the increased severity of ischemic heart disease observed immediately following a bad air day.

  7. Nitric oxide production by murine spleen cells stimulated with lipopolysaccharide from Actinobacillus actinomycetemcomitans.

    Science.gov (United States)

    Sosroseno, Wihaskoro; Herminajeng, Endang; Susilowati, Heni; Budiarti, Sri

    2002-12-01

    The aim of this study was to determine whether Actinobacillus actinomycetemcomitans lipopolysaccharide (LPS-A. actinomycetemcomitans) could induce murine spleen cells to produce nitric oxide (NO). Spleen cells derived from Balb/c mice were stimulated with LPS-A. actinomycetemcomitans or LPS from Escherichia coli for 4 days. The effects of N(G)-monomethyl-L-arginine (NMMA), polymyxin B, and cytokines (IFN-gamma and IL-4) on the production of NO were also assessed. The NO production from the carrageenan-treated spleen cells stimulated with LPS-A. actinomycetemcomitans or both LPS-A. actinomycetemcomitans and IFN-gamma was determined. The carrageenan-treated mice were transferred with splenic macrophages and the NO production was assessed from the spleen cells stimulated with LPS-A. actinomycetemcomitans or LPS-A. actinomycetemcomitans and IFN-gamma. The results showed that NO production was detectable in the cultures of spleen cells stimulated with LPS-A. actinomycetemcomitans in a dose-dependent fashion, but was lower than in the cells stimulated with LPS from E. coli. The NO production was blocked by NMMA and polymyxin B. IFN-gamma up-regulated but IL-4 suppressed the production of NO by the spleen cells stimulated with LPS-A. actinomycetemcomitans. The carrageenan-treated spleen cells failed to produce NO after stimulation with LPS-A. actinomycetemcomitans or both LPS-A. actinomycetemcomitans and IFN-gamma. Adoptive transfer of splenic macrophages to the carrageenan-treated mice could restore the ability of the spleen cells to produce NO. The results of the present study suggest that LPS-A. actinomycetemcomitans under the regulatory control of cytokines induces murine spleen cells to produce NO and that splenic macrophages are the cellular source of the NO production. Therefore, these results may support the view that NO production by LPS-A. actinomycetemcomitans-stimulated macrophages may play a role in the course of periodontal diseases. PMID:16887678

  8. The effect of capsaicin on circulating biomarkers, soluble tumor necrosis factor and soluble tumor necrosis factor-receptor-1 and -2 levels in vivo using lipopolysaccharide-treated mice

    Directory of Open Access Journals (Sweden)

    Yoshio Ijiri

    2014-01-01

    Full Text Available The circulating soluble tumor necrosis factor (sTNF and sTNF-receptor (R 1 and -R2 have known as septic biomarker. The pungent component of capsicum, capsaicin (Cap, has several associated physiological activities, including anti-oxidant, anti-bacterial and anti-inflammatory effects. The aim of this study was to elucidate the effect of Cap on circulating sTNF and sTNF-R1 and -R2 in vivo using lipopolysaccharide (LPS-treated mice. LPS (20 mg/kg, ip-treated group was significantly increased circulating sTNF, sTNF-R1, and -R2 and TNF-α mRNA expression levels compared to the vehicle group. Treatment with LPS (20 mg/kg, ip + Cap (4 mg/kg, sc-treated group was significantly decreased both circulating sTNF levels (after 1 h only and TNF-α mRNA expression (after 6 h compared to the LPS-treated group. There is an early increase in circulating sTNF, sTNR-R1, and -R2 observed in the LPS-treated mice. Since Cap inhibits this initial increase as biomarkers, circulating sTNF, it is considered a potent treatment option for TNF-α-related diseases, such as septicemia. In conclusion, Cap interferes with TNF-α mRNA transcription and exerts an inhibiting effect on TNF-α release from macrophages in the early phase after LPS stimulation. Thus, Cap is considered a potent agent for the treatment of TNF-α-related diseases, such as septicemia.

  9. The in vivo effect of lipopolysaccharide on the spontaneous release of transmitter from motor nerve terminals.

    OpenAIRE

    Liu, S H; Sheu, T. J.; Lin, R. H.; Lin-Shiau, S. Y.

    1995-01-01

    1. The in vivo effect of E. coli lipopolysaccharide (LPS) on the spontaneous release of transmitter was studied in the isolated phrenic nerve-diaphragm preparation of the mouse. 2. The resting membrane potential was decreased and frequency of miniature endplate potentials (m.e.p.ps) was increased by treatment with LPS. 3. Pretreatment of diaphragms with ouabain markedly increased the frequency of m.e.p.ps in control group but not in the LPS group. 4. When mice were treated with polymyxin B (a...

  10. Interaction of Pulmonary Surfactant Protein C with CD14 and Lipopolysaccharide

    OpenAIRE

    Augusto, Luis A.; Synguelakis, Monique; Johansson, Jan; Pedron, Thierry; Girard, Robert; Chaby, Richard

    2003-01-01

    In addition to their effects on alveolar surface tension, some components of lung surfactant also have immunological functions. We found recently that the hydrophobic lung surfactant protein SP-C specifically binds to the lipid A region of lipopolysaccharide (LPS). In this study, we show that SP-C also interacts with CD14. Four observations showed cross talk between the three molecules SP-C, LPS, and CD14. (i) Like LBP, SP-C allows the binding of a fluorescent LPS to cells expressing CD14 (th...

  11. Recurrent exposure to subclinical lipopolysaccharide increases mortality and induces cardiac fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    Wilbur Y W Lew

    Full Text Available BACKGROUND: Circulating subclinical lipopolysaccharide (LPS occurs in health and disease. Ingesting high fatty meals increases LPS that cause metabolic endotoxemia. Subclinical LPS in periodontal disease may impair endothelial function. The heart may be targeted as cardiac cells express TLR4, the LPS receptor. It was hypothesized that recurrent exposure to subclinical LPS increases mortality and causes cardiac fibrosis. METHODS: C57Bl/6 mice were injected with intraperitoneal saline (control, low dose LPS (0.1 or 1 mg/kg, or moderate dose LPS (10 or 20 mg/kg, once a week for 3 months. Left ventricular (LV function (echocardiography, hemodynamics (tail cuff pressure and electrocardiograms (telemetry were measured. Cardiac fibrosis was assessed by picrosirius red staining and LV expression of fibrosis related genes (QRT-PCR. Adult cardiac fibroblasts were isolated and exposed to LPS. RESULTS: LPS injections transiently increased heart rate and blood pressure (<6 hours and mildly decreased LV function with full recovery by 24 hours. Mice tolerated weekly LPS for 2-3 months with no change in activity, appearance, appetite, weight, blood pressure, LV function, oximetry, or blood chemistries. Mortality increased after 60-90 days with moderate, but not low dose LPS. Arrhythmias occurred a few hours before death. LV collagen fraction area increased dose-dependently from 3.0±0.5% (SEM in the saline control group, to 5.6±0.5% with low dose LPS and 9.7±0.9% with moderate dose LPS (P<0.05 moderate vs low dose LPS, and each LPS dose vs control. LPS increased LV expression of collagen Iα1, collagen IIIα1, MMP2, MMP9, TIMP1, periostin and IL-6 (P<0.05 moderate vs low dose LPS and vs control. LPS increased α-SMA immunostaining of myofibroblasts. LPS dose-dependently increased IL-6 in isolated adult cardiac fibroblasts. CONCLUSIONS: Recurrent exposure to subclinical LPS increases mortality and induces cardiac fibrosis.

  12. A Mannosyl Transferase Required for Lipopolysaccharide Inner Core Assembly in Rhizobium leguminosarum: Purification, substrate specificity, and expression in Salmonella waaC mutants*

    OpenAIRE

    Kanipes, Margaret I.; Ribeiro, Anthony A.; Lin, Shanhua; Cotter, Robert J.; Raetz, Christian R. H.

    2003-01-01

    The lipopolysaccharide (LPS) core domain of Gram-negative bacteria plays an important role in outer membrane stability and host interactions. Little is known about the biochemical properties of the glycosyltransferases that assemble the LPS core. We now report the purification and characterization of the Rhizobium leguminosarum mannosyl transferase LpcC, which adds a mannose unit to the inner 3-deoxy-D-manno-octulosonic acid (Kdo) moiety of the LPS precursor, Kdo2-lipid IVA. LpcC containing a...

  13. Mutations in the Lipopolysaccharide biosynthesis pathway interfere with crescentin-mediated cell curvature in Caulobacter crescentus.

    Science.gov (United States)

    Cabeen, Matthew T; Murolo, Michelle A; Briegel, Ariane; Bui, N Khai; Vollmer, Waldemar; Ausmees, Nora; Jensen, Grant J; Jacobs-Wagner, Christine

    2010-07-01

    Bacterial cell morphogenesis requires coordination among multiple cellular systems, including the bacterial cytoskeleton and the cell wall. In the vibrioid bacterium Caulobacter crescentus, the intermediate filament-like protein crescentin forms a cell envelope-associated cytoskeletal structure that controls cell wall growth to generate cell curvature. We undertook a genetic screen to find other cellular components important for cell curvature. Here we report that deletion of a gene (wbqL) involved in the lipopolysaccharide (LPS) biosynthesis pathway abolishes cell curvature. Loss of WbqL function leads to the accumulation of an aberrant O-polysaccharide species and to the release of the S layer in the culture medium. Epistasis and microscopy experiments show that neither S-layer nor O-polysaccharide production is required for curved cell morphology per se but that production of the altered O-polysaccharide species abolishes cell curvature by apparently interfering with the ability of the crescentin structure to associate with the cell envelope. Our data suggest that perturbations in a cellular pathway that is itself fully dispensable for cell curvature can cause a disruption of cell morphogenesis, highlighting the delicate harmony among unrelated cellular systems. Using the wbqL mutant, we also show that the normal assembly and growth properties of the crescentin structure are independent of its association with the cell envelope. However, this envelope association is important for facilitating the local disruption of the stable crescentin structure at the division site during cytokinesis.

  14. Compound list: LPS [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available LPS LPS 00A07 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/LPS.Human.in_vitro....Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/LPS.Rat.in_vitro

  15. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1 beta-induced chronic inflammation

    NARCIS (Netherlands)

    Liang, Wen; Lindeman, Jan H.; Menke, Aswin L.; Koonen, Debby P.; Morrison, Martine; Havekes, Louis M.; van den Hoek, Anita M.; Kleemann, Robert

    2014-01-01

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1 beta

  16. Resveratrol Inhibits Inflammatory Responses via the Mammalian Target of Rapamycin Signaling Pathway in Cultured LPS-Stimulated Microglial Cells

    OpenAIRE

    Zhong, Lian-Mei; Zong, Yi; Sun, Lin; Guo, Jia-Zhi; Zhang, Wei; He, Ying; Song, Rui; Wang, Wen-Min; Xiao, Chun-jie; Lu, Di

    2012-01-01

    Background Resveratrol have been known to possess many pharmacological properties including antioxidant, cardioprotective and anticancer effects. Although current studies indicate that resveratrol produces neuroprotection against neurological disorders, the precise mechanisms for its beneficial effects are still not fully understood. We investigate the effect of anti-inflammatory and mechamisms of resveratrol by using lipopolysaccharide (LPS)-stimulated murine microglial BV-2 cells. Methodolo...

  17. Dose dependency and individual variability of the lipopolysaccharide-induced bovine acute phase protein response

    DEFF Research Database (Denmark)

    Jacobsen, S.; Andersen, P.H.; Tølbøll, T.;

    2004-01-01

    In order to investigate the dose dependency and the individual variability of the lipopolysaccharide (LPS)-induced acute phase protein response in cattle, 8 nonlactating, nonpregnant Danish Holstein cows were challenged 3 times each by intravenous injection of increasing doses (10, 100, and 1000 ng....../kg, consecutively) of Escherichia coli LPS with 3-wk intervals. All 3 LPS doses resulted in a rapid increase in serum concentrations of haptoglobin and serum amyloid A (SAA) and a decrease in serum concentrations of albumin in all 8 cows. Serum concentrations of acute phase proteins (APP) remained altered...... and haptoglobin concentrations in either of the challenges, which suggests that the synthesis of haptoglobin and SAA are regulated in different ways. In conclusion, cattle are highly susceptible to LPS, as very low doses of LPS elicited acute phase albumin, SAA, and haptoglobin responses. Concentrations of APP...

  18. Protective effect of carvacrol on acute lung injury induced by lipopolysaccharide in mice.

    Science.gov (United States)

    Feng, Xiaosheng; Jia, Aiqing

    2014-08-01

    Carvacrol, the major component of Plectranthus amboinicus, has been known to exhibit anti-inflammatory activities. The aim of this study was to investigate the effects of carvacrol on lipopolysaccharide (LPS)-induced endotoxemia and acute lung injury (ALI) in mice. Mice were injected intraperitoneally (i.p.) with LPS and the mortality of mice for 7 days were observed twice a day. Meanwhile, the protective effect of carvacrol (20, 40 or 80 mg/kg) on LPS-induced endotoxemia were detected. Using an experimental model of LPS-induced ALI, we examined the effect of carvacrol in resolving lung injury. The results showed that carvacrol could improve survival during lethal endotoxemia and attenuate LPS-induced ALI in mice. The anti-inflammatory mechanisms of carvacrol may be due to its ability to inhibit NF-κB and MAPKs signaling pathways, thereby inhibiting inflammatory cytokines TNF-α, IL-6 and IL-1β production. PMID:24577726

  19. HSF-1 is involved in attenuating the release of inflammatory cytokines induced by LPS through regulating autophagy.

    Science.gov (United States)

    Tong, Zhongyi; Jiang, Bimei; Zhang, Lingli; Liu, Yanjuan; Gao, Min; Jiang, Yu; Li, Yuanbin; Lu, Qinglan; Yao, Yongming; Xiao, Xianzhong

    2014-05-01

    Autophagy plays a protective role in endotoxemic mice. Heat shock factor 1 (HSF-1) also plays a crucial protective role in endotoxemic mice by decreasing inflammatory cytokines. The purpose of this study was to determine whether HSF-1 is involved in attenuating the release of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated mice and peritoneal macrophages (PMs) through regulating autophagy activity. Autophagosome formation in HSF-1(+/+) and HSF-1(-/-) mice and PMs stimulated by LPS was examined by Western blotting and immunofluorescence. Lipopolysaccharide-induced autophagy and inflammatory cytokines were examined in HSF-1(+/+) and HSF-1(-/-) PMs treated with 3-methyladenine (3-MA) or rapamycin. Results showed that LPS-induced autophagy was elevated transiently at 12 h but declined at 24 h in the livers and lungs of mice. Higher levels of inflammatory cytokines and lower autophagy activity were detected in HSF-1(-/-) mice and PMs compared with HSF-1(+/+) mice and PMs. Interestingly, LPS-induced release of inflammatory cytokines did not further increase in HSF-1(-/-) PMs treated with 3-MA but aggravated in HSF-1(+/+) PMs. Lipopolysaccharide-induced autophagy did not decrease in HSF-1(-/-) PMs treated with 3-MA but decreased in HSF-1 PMs(+/+). Taken together, our results suggested that HSF-1 attenuated the release of inflammatory cytokines induced by LPS by regulating autophagy activity.

  20. An Unexpected Duo: Rubredoxin Binds Nine TPR Motifs to Form LapB, an Essential Regulator of Lipopolysaccharide Synthesis.

    Science.gov (United States)

    Prince, Chelsy; Jia, Zongchao

    2015-08-01

    Lipopolysaccharide (LPS) synthesis and export are essential pathways for bacterial growth, proliferation, and virulence. The essential protein LapB from Escherichia coli has recently been identified as a regulator of LPS synthesis. We have determined the crystal structure of LapB (without the N-terminal transmembrane helix) at 2 Å resolution using zinc single-wavelength anomalous diffraction phasing derived from a single bound zinc atom. This structure demonstrates the presence of nine tetratricopeptide repeats (TPR) motifs, including two TPR folds that were not predicted from sequence, and a rubredoxin-type metal binding domain. The rubredoxin domain is bound intimately to the TPR motifs, which has not been previously observed or predicted. Mutations in the rubredoxin/TPR interface inhibit in vivo cell growth, and in vitro studies indicate that these modifications cause local displacement of rubredoxin from its binding site without changing the secondary structure of LapB. LapB is the first reported structure to contain both a rubredoxin domain and TPR motifs.

  1. Lipopolysaccharide heterogeneity in the atypical group of novel emerging Brucella species.

    Science.gov (United States)

    Zygmunt, Michel S; Jacques, Isabelle; Bernardet, Nelly; Cloeckaert, Axel

    2012-09-01

    Recently, novel Brucella strains with phenotypic characteristics that were atypical for strains belonging to the genus Brucella have been reported. Phenotypically many of these strains were initially misidentified as Ochrobactrum spp. Two novel species have been described so far for these strains, i.e., B. microti and B. inopinata, and other strains genetically related to B. inopinata may constitute other novel species as well. In this study, we analyzed the lipopolysaccharides (LPS) (smooth LPS [S-LPS] and rough LPS [R-LPS]) of these atypical strains using different methods and a panel of monoclonal antibodies (MAbs) directed against several epitopes of the Brucella O-polysaccharide (O-PS) and R-LPS. Among the most striking results, Brucella sp. strain BO2, isolated from a patient with chronic destructive pneumonia, showed a completely distinct S-LPS profile in silver stain gels that looked more similar to that of enterobacterial S-LPS. This strain also failed to react with MAbs against Brucella O-PS epitopes and showed weak reactivity with anti-R-LPS MAbs. B. inopinata reference strain BO1 displayed an M-dominant S-LPS type with some heterogeneity relative to the classical M-dominant Brucella S-LPS type. Australian wild rodent strains belonging also to the B. inopinata group showed a classical A-dominant S-LPS but lacked the O-PS common (C) epitopes, as previously reported for B. suis biovar 2 strains. Interestingly, some strains also failed to react with anti-R-LPS MAbs, such as the B. microti reference strain and B. inopinata BO1, suggesting modifications in the core-lipid A moieties of these strains. These results have several implications for serological typing and serological diagnosis and underline the need for novel tools for detection and correct identification of such novel emerging Brucella spp.

  2. Milk Thistle Extract and Silymarin Inhibit Lipopolysaccharide Induced Lamellar Separation of Hoof Explants in Vitro

    Directory of Open Access Journals (Sweden)

    Nicole Reisinger

    2014-10-01

    Full Text Available The pathogenesis of laminitis is not completely identified and the role of endotoxins (lipopolysaccharides, LPS in this process remains unclear. Phytogenic substances, like milk thistle (MT and silymarin, are known for their anti-inflammatory and antioxidant properties and might therefore have the potential to counteract endotoxin induced effects on the hoof lamellar tissue. The aim of our study was to investigate the influence of endotoxins on lamellar tissue integrity and to test if MT and silymarin are capable of inhibiting LPS-induced effects in an in vitro/ex vivo model. In preliminary tests, LPS neutralization efficiency of these phytogenics was determined in an in vitro neutralization assay. Furthermore, tissue explants gained from hooves of slaughter horses were tested for lamellar separation after incubation with different concentrations of LPS. By combined incubation of explants with LPS and either Polymyxin B (PMB; positive control, MT or silymarin, the influence of these substances on LPS-induced effects was assessed. In the in vitro neutralization assay, MT and silymarin reduced LPS concentrations by 64% and 75%, respectively, in comparison PMB reduced 98% of the LPS concentration. In hoof explants, LPS led to a concentration dependent separation. Accordantly, separation force was significantly decreased by 10 µg/mL LPS. PMB, MT and silymarin could significantly improve tissue integrity of explants incubated with 10 µg/mL LPS. This study showed that LPS had a negative influence on the structure of hoof explants in vitro. MT and silymarin reduced endotoxin activity and inhibited LPS-induced effects on the lamellar tissue. Hence, MT and silymarin might be used to support the prevention of laminitis and should be further evaluated for this application.

  3. Garlic (Allium sativum) Extracts Inhibits Lipopolysaccharide-Induced Toll-Like Receptor 4 Dimerization

    Science.gov (United States)

    Garlic has been used as a folk medicine for a long history. Numerous studies demonstrated that garlic extracts and its sulfur-containing compounds inhibit nuclear factor-kappa B (NF-kB) activation induced by various receptor agonist including lipopolysaccharide (LPS). These effects suggest that garl...

  4. Serum amyloid A isoforms in serum and synovial fluid in horses with lipopolysaccharide-induced arthritis

    NARCIS (Netherlands)

    Jacobsen, S.; Niewold, T.A.; Halling-Thomsen, M.; Nanni, S.; Olsen, E.; Lindegaard, C.; Andersen, P.H.

    2006-01-01

    The aim of the study was to determine the intraarticular set-Urn amyloid A (SAA) response pattern in horses with inflammatory arthritis. Inflammatory arthritis was induced by injection of lipopolysaccharide (LPS) into the radiocarpal joint of four horses. Serum and synovial fluid (SF) samples were c

  5. Protective effects of paroxetine on the lipopolysaccharide injured hippocampal-derived neural stem cell

    Institute of Scientific and Technical Information of China (English)

    彭正午

    2013-01-01

    Objective To investigate the effects of paroxetine on the cell viability and expression of the phosphorylated ERK1/2 in lipopolysaccharide LPS injured hippocampalderived neural stem cells (NSCs) .Methods The NSCs were derived from hippocampus of fetal rats,after the

  6. Liposomal lipopolysaccharide initiates TRIF-dependent signaling pathway independent of CD14.

    Directory of Open Access Journals (Sweden)

    Sachiko Watanabe

    Full Text Available Lipopolysaccharide (LPS is recognized by CD14 with Toll-like receptor 4 (TLR4, and initiates 2 major pathways of TLR4 signaling, the MyD88-dependent and TRIF-dependent signaling pathways. The MyD88-dependent pathway induces inflammatory responses such as the production of TNF-α, IL-6, and IL-12 via the activation of NFκB and MAPK. The TRIF-dependent pathway induces the production of type-I IFN, and RANTES via the activation of IRF-3 and NFκB, and is also important for the induction of adaptive immune responses. CD14 plays a critical role in initiating the TRIF-dependent signaling pathway response to LPS, to support the internalization of LPS via endocytosis. Here, we clearly demonstrate that intracellular delivery of LPS by LPS-formulated liposomes (LPS-liposomes initiate only TRIF-dependent signaling via clathrin-mediated endocytosis, independent of CD14. In fact, LPS-liposomes do not induce the production of TNF-α and IL-6 but induce RANTES production in peritoneal macrophages. Additionally, LPS-liposomes could induce adaptive immune responses effectively in CD14-deficient mice. Collectively, our results strongly suggest that LPS-liposomes are useful as a TRIF-dependent signaling-based immune adjuvant without inducing unnecessary inflammation.

  7. The Aeromonas salmonicida Lipopolysaccharide Core from Different Subspecies: The Unusual subsp. pectinolytica.

    Science.gov (United States)

    Merino, Susana; Tomás, Juan M

    2016-01-01

    Initial hydridization tests using Aeromonas salmonicida typical and atypical strains showed the possibility of different lipopolysaccharide (LPS) outer cores among these strains. By chemical structural analysis, LPS-core SDS-PAGE gel migration, and functional and comparative genomics we demonstrated that typical A. salmonicida (subsp. salmonicida) strains and atypical subsp. masoucida and probably smithia strains showed the same LPS outer core. A. salmonicida subsp. achromogenes strains show a similar LPS outer core but lack one of the most external residues (a galactose linked α1-6 to heptose), not affecting the O-antigen LPS linkage. A. salmonicida subsp. pectinolytica strains show a rather changed LPS outer core, which is identical to the LPS outer core from the majority of the A. hydrophila strains studied by genomic analyses. The LPS inner core in all tested A. salmonicida strains, typical and atypical, is well-conserved. Furthermore, the LPS inner core seems to be conserved in all the Aeromonas (psychrophilic or mesophilic) strains studied by genomic analyses.

  8. The antimicrobial antiproteinase elafin binds to lipopolysaccharide and modulates macrophage responses.

    Science.gov (United States)

    McMichael, Jonathan W; Roghanian, Ali; Jiang, Lu; Ramage, Robert; Sallenave, Jean-Michel

    2005-05-01

    Lipopolysaccharides (LPS) of the outer membrane of Gram-negative bacteria represent a primary target for innate immune responses. We demonstrate here that the antimicrobial/anti-neutrophil elastase full-length elafin (FL-EL) is able to bind both smooth and rough forms of LPS. The N-terminus was shown to bind both forms of LPS more avidly. We demonstrate that the lipid A core-binding proteins polymyxin B (PB) and LPS-binding protein (LBP) compete with elafin for binding, and that LBP is able to displace prebound elafin from LPS. When PB, FL-EL, N-EL, and C-EL were pre-incubated with LPS before addition to immobilized LBP, PB was the most potent inhibitor of LPS transfer to LBP. These data prompted us to examine the biological consequences of elafin binding to LPS, using tumor necrosis factor (TNF)-alpha release by murine macrophages. In serum-containing conditions, N-EL had no effect, whereas both C-EL and FL-EL inhibited TNF-alpha production. In serum-free conditions, however, all moieties had a stimulatory activity on TNF-alpha release, with C-EL being the most potent at the highest concentration. The differential biological activity of elafin in different conditions suggests a role for this molecule in either LPS detoxification or activation of innate immune responses, depending on the external cellular environment. PMID:15668324

  9. Physiological and Behavioral Responses to Interleukin-1β and LPS in Vagotomized Mice

    OpenAIRE

    Wieczorek, Marek; Swiergiel, Artur H.; Pournajafi-Nazarloo, Hossein; Dunn, Adrian J.

    2005-01-01

    It is well established that peripheral administration of interleukin-1 (IL-1) and lipopolysaccharide (LPS) can activate the hypothalamo-pituitary-adrenocortical (HPA) axis, alter brain catecholamine and indoleamine metabolism, and affect behavior. However, the mechanisms of these effects are not fully understood. Stimulation of afferents of the vagus nerve has been implicated in the induction of Fos in the brain, changes in body temperature, brain norepinephrine, and some behavioral responses...

  10. NADPH oxidase and aging drive microglial activation, oxidative stress and dopaminergic neurodegeneration following systemic LPS administration

    OpenAIRE

    Qin, Liya; Liu, Yuxin; Hong, Jau-Shyong; Crews, Fulton T.

    2013-01-01

    Parkinson’s disease is characterized by a progressive degeneration of substantia nigra (SN) dopaminergic neurons with age. We previously found that a single systemic lipopolysaccharide (LPS, 5 mg/kg, i.p.) injection caused a slow progressive loss of tyrosine hydroxylase immunoreactive (TH+IR) neurons in SN associated with increasing motor dysfunction. In this study, we investigated the role of NADPH oxidase (NOX) in inflammation-mediated SN neurotoxicity. A comparison of control (NOX2+/+) mic...

  11. Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantia nigra

    OpenAIRE

    Jeong, Hey-Kyeong; Jou, Ilo; Joe, Eun-hye

    2010-01-01

    It has been suggested that brain inflammation is important in aggravation of brain damage and/or that inflammation causes neurodegenerative diseases including Parkinson's disease (PD). Recently, systemic inflammation has also emerged as a risk factor for PD. In the present study, we evaluated how systemic inflammation induced by intravenous (iv) lipopolysaccharides (LPS) injection affected brain inflammation and neuronal damage in the rat. Interestingly, almost all brain inflammatory response...

  12. Bone Marrow Mesenchymal Stromal Cells Attenuate Organ Injury Induced by LPS and Burn

    OpenAIRE

    Yagi, Hiroshi; Soto-Gutierrez, Alejandro; Kitagawa, Yuko; Tilles, Arno W.; Tompkins, Ronald G.; Yarmush, Martin L

    2010-01-01

    Bone marrow mesenchymal stromal cells (MSCs) suppress immune cell responses and have beneficial effects in various inflammatory-related immune disorders. A therapeutic modality for systemic inflammation and its consequences is not available yet. Thus, this work investigates the therapeutic effects of MSCs in injury-models induced by Lipopolysaccharide (LPS) or burn. Gene expression was analyzed in MSCs when exposed to inflammatory serum from injured animals and it showed remarkable alteration...

  13. Silymarin Inhibits Morphological Changes in LPS-Stimulated Macrophages by Blocking NF-κB Pathway

    OpenAIRE

    Kim, Eun Jeong; Lee, Min Young; Jeon, Young Jin

    2015-01-01

    The present study showed that silymarin, a polyphenolic flavonoid isolated from milk thistle (Silybum marianum), inhibited lipopolysaccharide (LPS)-induced morphological changes in the mouse RAW264.7 macrophage cell line. We also showed that silymarin inhibited the nuclear translocation and transactivation activities of nuclear factor-kappa B (NF-κB), which is important for macrophage activation-associated changes in cell morphology and gene expression of inflammatory cytokines. BAY-11-7085, ...

  14. SILAC-MS Based Characterization of LPS and Resveratrol Induced Changes in Adipocyte Proteomics

    DEFF Research Database (Denmark)

    Nøhr, Mark K; Kroager, Toke P; Sanggaard, Kristian W;

    2016-01-01

    Adipose tissue inflammation is believed to play a pivotal role in the development obesity-related morbidities such as insulin resistance. However, it is not known how this (low-grade) inflammatory state develops. It has been proposed that the leakage of lipopolysaccharides (LPS), originating from...... to emerge as important posttranscriptional regulators of protein expression. Furthermore, resveratrol could be a prime candidate in ameliorating dysfunctioning adipose tissue induced by inflammatory stimulation....

  15. Paroxetine differentially modulates LPS-induced TNFα and IL-6 production in mouse macrophages

    OpenAIRE

    Durairaj, Haritha; Steury, Michael D.; Parameswaran, Narayanan

    2015-01-01

    Paroxetine is a selective serotonin reuptake inhibitor (SSRI) that is clinically used for the treatment of depression in human patients. Because of recent reports on the role of serotonin in modulating inflammation and the link between inflammation and depression, we sought to test the effect of paroxetine directly on macrophage response to an inflammatory stimulus. Lipopolysaccharide (LPS) treatment of mouse macrophages significantly enhanced TNFα and IL-6 production. Paroxeti...

  16. Effects of dexamethasone and cox inhibitors on intracranial pressure and cerebral perfusion in the lipopolysaccharide treated rats with hyperammonemia

    DEFF Research Database (Denmark)

    Rohde, Johan; Pedersen, Hans; Bjerring, Peter N;

    2015-01-01

    lipopolysaccharide (LPS) on the brain can be prevented by dexamethasone and cyclooxygenase (COX) inhibitors. METHOD: Fifty-four male Wistar rats, 6 in each group, were divided into the following groups: Saline+ saline; LPS (2 mg/kg)+saline; LPS+indomethacin (10 mg/kg); LPS+diclofenac (10mg/kg); LPS+dexamethasone (2......mg/kg) in experiment A. Experiment-B included the following groups: LPS+NH3 (140 μmol/kg/min)+saline; LPS+NH3+indomethacin; LPS+NH3+diclofenac and LPS+NH3+dexamethasone. ICP was monitored via a catheter placed in cisterna magna and changes in CBF were recorded by laser Doppler flowmetry. RESULTS: LPS...... was associated with a decrease in 6-keto-PGF1α. Dexamethasone only reduced the LPS induced increase in ICP but not CBF, and partly the 6-keto-PGF1α plasma concentration in the combined setup. CONCLUSION: These data indicate that activation of cycloooxygenases is of central importance for development...

  17. Core Oligosaccharide of Plesiomonas shigelloides PCM 2231 (Serotype O17 Lipopolysaccharide — Structural and Serological Analysis

    Directory of Open Access Journals (Sweden)

    Anna Maciejewska

    2013-02-01

    Full Text Available The herein presented complete structure of the core oligosaccharide of lipopolysaccharide (LPS P. shigelloides Polish Collection of Microorganisms (PCM 2231 (serotype O17 was investigated by 1H, 13C NMR spectroscopy, mass spectrometry, chemical analyses and serological methods. The core oligosaccharide is composed of an undecasaccharide, which represents the second core type identified for P. shigelloides serotype O17 LPS. This structure is similar to that of the core oligosaccharide of P. shigelloides strains 302-73 (serotype O1 and 7-63 (serotype O17 and differs from these only by one sugar residue. Serological screening of 55 strains of P. shigelloides with the use of serum against identified core oligosaccharide conjugated with bovine serum albumin (BSA indicated the presence of similar structures in the LPS core region of 28 O-serotypes. This observation suggests that the core oligosaccharide structure present in strain PCM 2231 could be the most common type among P. shigelloides lipopolysaccharides.

  18. Lipopolysaccharide induced inflammation in the perivascular space in lungs

    Directory of Open Access Journals (Sweden)

    Pabst Reinhard

    2008-07-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS contained in tobacco smoke and a variety of environmental and occupational dusts is a toxic agent causing lung inflammation characterized by migration of neutrophils and monocytes into alveoli. Although migration of inflammatory cells into alveoli of LPS-treated rats is well characterized, the dynamics of their accumulation in the perivascular space (PVS leading to a perivascular inflammation (PVI of pulmonary arteries is not well described. Methods Therefore, we investigated migration of neutrophils and monocytes into PVS in lungs of male Sprague-Dawley rats treated intratracheally with E. coli LPS and euthanized after 1, 6, 12, 24 and 36 hours. Control rats were treated with endotoxin-free saline. H&E stained slides were made and immunohistochemistry was performed using a monocyte marker and the chemokine Monocyte-Chemoattractant-Protein-1 (MCP-1. Computer-assisted microscopy was performed to count infiltrating cells. Results Surprisingly, the periarterial infiltration was not a constant finding in each animal although LPS-induced alveolitis was present. A clear tendency was observed that neutrophils were appearing in the PVS first within 6 hours after LPS application and were decreasing at later time points. In contrast, mononuclear cell infiltration was observed after 24 hours. In addition, MCP-1 expression was present in perivascular capillaries, arteries and the epithelium. Conclusion PVI might be a certain lung reaction pattern in the defense to infectious attacks.

  19. Comparison of the effect of lps and pam3 on ventilated lungs

    Directory of Open Access Journals (Sweden)

    Goldmann Torsten

    2010-04-01

    Full Text Available Abstract Background While lipopolysaccharide (LPS from Gram-negative bacteria has been shown to augment inflammation in ventilated lungs information on the effect of Gram-positive bacteria is lacking. Therefore the effect of LPS and a lipopetide from Gram-positive bacteria, PAM3, on ventilated lungs were investigated. Methods C57/Bl6 mice were mechanically ventilated. Sterile saline (sham and different concentrations of LPS (1 μg and 5 μg and PAM3 (50 nM and 200 nM were applied intratracheally. Lung function parameters and expression of MIP-2 and TNFα as well as influx of neutrophils were measured. Results Mechanical ventilation increased resistance and decreased compliance over time. PAM3 but not LPS significantly increased resistance compared to sham challenge (P Conclusions These data suggest that PAM3 similar to LPS enhances ventilator-induced inflammation. Moreover, PAM3 but not LPS increases pulmonary resistance in ventilated lungs. Further studies are warranted to define the role of lipopetides in ventilator-associated lung injury.

  20. The anti-inflammatory effect of TR6 on LPS-induced mastitis in mice.

    Science.gov (United States)

    Hu, Xiaoyu; Fu, Yunhe; Tian, Yuan; Zhang, Zecai; Zhang, Wenlong; Gao, Xuejiao; Lu, Xiaojie; Cao, Yongguo; Zhang, Naisheng

    2016-01-01

    [TRIAP]-derived decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRIAP-derived decoy peptide (TR6) containing, the N-terminal portion of the third helical region of the [TIRAP] TIR domain (sequence "N"-RQIKIWFQNRRMKWK and -KPGFLRDPWCKYQML-"C"). We evaluated the effects of TR6 on lipopolysaccharide-induced mastitis in mice. In vivo, the mastitis model was induced by LPS administration for 24h, and TR6 treatment was initiated 1h before or after induction of LPS. In vitro, primary mouse mammary epithelial cells and neutrophils were used to investigate the effects of TR6 on LPS-induced inflammatory responses. The results showed that TR6 significantly inhibited mammary gland hisopathologic changes, MPO activity, and LPS-induced production of TNF-α, IL-1β and IL-6. In vitro, TR6 significantly inhibited LPS-induced TNF-α and IL-6 production and phosphorylation of NF-κB and MAPKs. In conclusion, this study demonstrated that the anti-inflammatory effect of TR6 against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB and MAPK signaling pathways. TR6 may be a promising therapeutic reagent for mastitis treatment.

  1. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    Science.gov (United States)

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation.

  2. Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner.

    Directory of Open Access Journals (Sweden)

    Kelly A Foley

    Full Text Available Alterations in the composition of the gut microbiome and/or immune system function may have a role in the development of autism spectrum disorders (ASD. The current study examined the effects of prenatal and early life administration of lipopolysaccharide (LPS, a bacterial mimetic, and the short chain fatty acid, propionic acid (PPA, a metabolic fermentation product of enteric bacteria, on developmental milestones, locomotor activity, and anxiety-like behavior in adolescent male and female offspring. Pregnant Long-Evans rats were subcutaneously injected once a day with PPA (500 mg/kg on gestation days G12-16, LPS (50 µg/kg on G15-16, or vehicle control on G12-16 or G15-16. Male and female offspring were injected with PPA (500 mg/kg or vehicle twice a day, every second day from postnatal days (P 10-18. Physical milestones and reflexes were monitored in early life with prenatal PPA and LPS inducing delays in eye opening. Locomotor activity and anxiety were assessed in adolescence (P40-42 in the elevated plus maze (EPM and open-field. Prenatal and postnatal treatments altered behavior in a sex-specific manner. Prenatal PPA decreased time spent in the centre of the open-field in males and females while prenatal and postnatal PPA increased anxiety behavior on the EPM in female rats. Prenatal LPS did not significantly influence those behaviors. Evidence for the double hit hypothesis was seen as females receiving a double hit of PPA (prenatal and postnatal displayed increased repetitive behavior in the open-field. These results provide evidence for the hypothesis that by-products of enteric bacteria metabolism such as PPA may contribute to ASD, altering development and behavior in adolescent rats similar to that observed in ASD and other neurodevelopmental disorders.

  3. Shiga toxin 1 induces on lipopolysaccharide-treated astrocytes the release of tumor necrosis factor-alpha that alter brain-like endothelium integrity.

    Directory of Open Access Journals (Sweden)

    Verónica I Landoni

    Full Text Available The hemolytic uremic syndrome (HUS is characterized by hemolytic anemia, thrombocytopenia and renal dysfunction. The typical form of HUS is generally associated with infections by Gram-negative Shiga toxin (Stx-producing Escherichia coli (STEC. Endothelial dysfunction induced by Stx is central, but bacterial lipopolysaccharide (LPS and neutrophils (PMN contribute to the pathophysiology. Although renal failure is characteristic of this syndrome, neurological complications occur in severe cases and is usually associated with death. Impaired blood-brain barrier (BBB is associated with damage to cerebral endothelial cells (ECs that comprise the BBB. Astrocytes (ASTs are inflammatory cells in the brain and determine the BBB function. ASTs are in close proximity to ECs, hence the study of the effects of Stx1 and LPS on ASTs, and the influence of their response on ECs is essential. We have previously demonstrated that Stx1 and LPS induced activation of rat ASTs and the release of inflammatory factors such as TNF-α, nitric oxide and chemokines. Here, we demonstrate that rat ASTs-derived factors alter permeability of ECs with brain properties (HUVECd; suggesting that functional properties of BBB could also be affected. Additionally, these factors activate HUVECd and render them into a proagregant state promoting PMN and platelets adhesion. Moreover, these effects were dependent on ASTs secreted-TNF-α. Stx1 and LPS-induced ASTs response could influence brain ECs integrity and BBB function once Stx and factors associated to the STEC infection reach the brain parenchyma and therefore contribute to the development of the neuropathology observed in HUS.

  4. Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner.

    Science.gov (United States)

    Foley, Kelly A; Ossenkopp, Klaus-Peter; Kavaliers, Martin; Macfabe, Derrick F

    2014-01-01

    Alterations in the composition of the gut microbiome and/or immune system function may have a role in the development of autism spectrum disorders (ASD). The current study examined the effects of prenatal and early life administration of lipopolysaccharide (LPS), a bacterial mimetic, and the short chain fatty acid, propionic acid (PPA), a metabolic fermentation product of enteric bacteria, on developmental milestones, locomotor activity, and anxiety-like behavior in adolescent male and female offspring. Pregnant Long-Evans rats were subcutaneously injected once a day with PPA (500 mg/kg) on gestation days G12-16, LPS (50 µg/kg) on G15-16, or vehicle control on G12-16 or G15-16. Male and female offspring were injected with PPA (500 mg/kg) or vehicle twice a day, every second day from postnatal days (P) 10-18. Physical milestones and reflexes were monitored in early life with prenatal PPA and LPS inducing delays in eye opening. Locomotor activity and anxiety were assessed in adolescence (P40-42) in the elevated plus maze (EPM) and open-field. Prenatal and postnatal treatments altered behavior in a sex-specific manner. Prenatal PPA decreased time spent in the centre of the open-field in males and females while prenatal and postnatal PPA increased anxiety behavior on the EPM in female rats. Prenatal LPS did not significantly influence those behaviors. Evidence for the double hit hypothesis was seen as females receiving a double hit of PPA (prenatal and postnatal) displayed increased repetitive behavior in the open-field. These results provide evidence for the hypothesis that by-products of enteric bacteria metabolism such as PPA may contribute to ASD, altering development and behavior in adolescent rats similar to that observed in ASD and other neurodevelopmental disorders.

  5. The Effect of Divergence in Feed Efficiency on the Intestinal Microbiota and the Intestinal Immune Response in Both Unchallenged and Lipopolysaccharide Challenged Ileal and Colonic Explants.

    Science.gov (United States)

    Vigors, Stafford; O'Doherty, John V; Kelly, Alan K; O'Shea, Cormac J; Sweeney, Torres

    2016-01-01

    Feed efficiency is an important trait in pig production, with evidence to suggest that the efficiencies of a variety of biological systems contribute to variation in this trait. Little work has been conducted on the contribution of the intestinal innate immune response to divergence in feed efficiency. Hence, the objective of this study was to examine select bacterial populations and gene expression profiles of a range of targets relating to gut health and immunity in the intestine of pigs phenotypically divergent in feed efficiency in: a) the basal state; and (b) following an ex-vivo lipopolysaccharide (LPS) challenge of ileal and colonic tissue. Male pigs (initial BW 22.4 kg (SD = 2.03)) were fed a standard finishing diet for the final 43 days prior to slaughter to evaluate feed intake and growth for the purpose of calculating residual feed intake (RFI). On day 115, 16 animals (average weight 85 kg, SEM 2.8 kg), designated high RFI (HRFI) and low RFI (LRFI) were slaughtered. The LRFI pigs had increased lactobacillus spp. in the caecum compared to HRFI pigs (P RFI groups did not differ in the expression of the measured genes involved in the innate immune system in the basal ileal or colonic tissues (P > 0.10). Interestingly, there was an interaction between RFI and LPS for the cytokines IL-8, IL-1, IL-6, TNF-α, Interferon-γ (IFN-γ) and SOCS3, with the LRFI group having consistently lower gene expression in the colon following the LPS challenge, compared to the HRFI group. The lower gene expression of SOCS and cytokines following an ex vivo LPS challenge supports the theory that a possible energy saving mechanism exists in the intestinal innate immune response to an immune challenge in more feed efficient pigs. PMID:26840831

  6. Shiga Toxin 1 Induces on Lipopolysaccharide-Treated Astrocytes the Release of Tumor Necrosis Factor-alpha that Alter Brain-Like Endothelium Integrity

    Science.gov (United States)

    Landoni, Verónica I.; Schierloh, Pablo; de Campos Nebel, Marcelo; Fernández, Gabriela C.; Calatayud, Cecilia; Lapponi, María J.; Isturiz, Martín A.

    2012-01-01

    The hemolytic uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia and renal dysfunction. The typical form of HUS is generally associated with infections by Gram-negative Shiga toxin (Stx)-producing Escherichia coli (STEC). Endothelial dysfunction induced by Stx is central, but bacterial lipopolysaccharide (LPS) and neutrophils (PMN) contribute to the pathophysiology. Although renal failure is characteristic of this syndrome, neurological complications occur in severe cases and is usually associated with death. Impaired blood-brain barrier (BBB) is associated with damage to cerebral endothelial cells (ECs) that comprise the BBB. Astrocytes (ASTs) are inflammatory cells in the brain and determine the BBB function. ASTs are in close proximity to ECs, hence the study of the effects of Stx1 and LPS on ASTs, and the influence of their response on ECs is essential. We have previously demonstrated that Stx1 and LPS induced activation of rat ASTs and the release of inflammatory factors such as TNF-α, nitric oxide and chemokines. Here, we demonstrate that rat ASTs-derived factors alter permeability of ECs with brain properties (HUVECd); suggesting that functional properties of BBB could also be affected. Additionally, these factors activate HUVECd and render them into a proagregant state promoting PMN and platelets adhesion. Moreover, these effects were dependent on ASTs secreted-TNF-α. Stx1 and LPS-induced ASTs response could influence brain ECs integrity and BBB function once Stx and factors associated to the STEC infection reach the brain parenchyma and therefore contribute to the development of the neuropathology observed in HUS. PMID:22479186

  7. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Salamon, Achim; Adam, Stefanie; Herzmann, Nicole [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Taubenheim, Jan [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Peters, Kirsten [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.

  8. Neonatal lipopolysaccharide exposure induces long-lasting learning impairment, less anxiety-like response and hippocampal injury in adult rats

    OpenAIRE

    Wang, Kuo-Ching; Fan, Lir-Wan; Kaizaki, Asuka; Pang, Yi; Cai, Zhengwei; Tien, Lu-Tai

    2013-01-01

    Infection during early neonatal period has been shown to cause lasting neurological disabilities and is associated with the subsequent impairment in development of learning and memory ability and anxiety-related behavior in adults. We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in cognitive deficits in juvenile rats (P21); thus, the goal of the present study was to determine whether neonatal LPS exposure has long-lasting effects in adult rats. After an LP...

  9. IL-17A is implicated in lipopolysaccharide-induced neuroinflammation and cognitive impairment in aged rats via microglial activation

    OpenAIRE

    Sun, Jie; Zhang, Susu; Zhang, Xiang; Zhang, Xiaobao; Dong, Hongquan; Qian, Yanning

    2015-01-01

    Background Neuroinflammation is considered a risk factor for impairments in neuronal function and cognition that arise with trauma, infection, and/or disease. IL-17A has been determined to be involved in neurodegenerative diseases such as multiple sclerosis. Recently, IL-17A has been shown to be upregulated in lipopolysaccharide(LPS)-induced systemic inflammation. This study aims to explore the role of IL-17A in LPS-induced neuroinflammation and cognitive impairment. Methods Male Sprague–Dawl...

  10. Anti-inflammatory effects of Hwang-Heuk-San, a traditional Korean herbal formulation, on lipopolysaccharide-stimulated murine macrophages

    OpenAIRE

    Kang, Hye Joo; Hong, Su Hyun; Kang, Kyung-Hwa; Park, Cheol; Choi, Yung Hyun

    2015-01-01

    Background Hwang-Heuk-San (HHS), a Korean traditional herbal formula comprising four medicinal herbs, has been used to treat patients with inflammation syndromes and digestive tract cancer for hundreds of years; however, its anti-inflammatory potential is poorly understood. The aim of the present study was to investigate the anti-inflammatory effects of HHS using a lipopolysaccharide (LPS)-activated RAW 264.7 macrophage model. Methods The inhibitory effects of HHS on LPS-induced nitric oxide ...

  11. Effect of peripheral benzodiazepine receptor ligands on lipopolysaccharide-induced tumor necrosis factor activity in thioglycolate-treated mice.

    OpenAIRE

    Matsumoto, T.; Ogata, M.; Koga, K.; Shigematsu, A

    1994-01-01

    To investigate the effect of peripheral and central benzodiazepine receptor ligands on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF) activity in mouse macrophages, three types of ligands, 4'-chlorodiazepam (pure peripheral), midazolam (mixed), and clonazepam (pure central), were compared. Midazolam and 4'-chlorodiazepam significantly suppressed LPS (1-microgram/ml)-induced TNF activity in thioglycolate-elicited mouse macrophages. In every concentration examined (0.001 to 100 mi...

  12. Genome-wide immunity studies in the rabbit: transcriptome variations in peripheral blood mononuclear cells after in vitro stimulation by LPS or PMA-Ionomycin

    OpenAIRE

    Jacquier, Vincent; Estellé, Jordi; Schmaltz-Panneau, Barbara; Lecardonnel, Jerôme,; Moroldo, Marco; Lemonnier, Gaetan; Turner-Maier, Jason; Duranthon, Veronique; Oswald, Isabelle; Gidenne, Thierry

    2015-01-01

    BackgroundOur purpose was to obtain genome-wide expression data for the rabbit species on the responses of peripheral blood mononuclear cells (PBMCs) after in vitro stimulation by lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) and ionomycin. This transcriptome profiling was carried out using microarrays enriched with immunity-related genes, and annotated with the most recent data available for the rabbit genome.ResultsThe LPS affected 15 to 20 times fewer genes than PMA-Ionomycin...

  13. Genome-wide immunity studies in the rabbit: transcriptome variations in peripheral blood mononuclear cells after in vitro stimulation by LPS or PMA-Ionomycin

    OpenAIRE

    Jacquier, Vincent; Estellé, Jordi; Schmaltz-Panneau, Barbara; Lecardonnel, Jérôme; Moroldo, Marco; Lemonnier, Gaëtan; Turner-Maier, Jason; Duranthon, Véronique; Oswald, Isabelle P.; Gidenne, Thierry; Rogel-Gaillard, Claire

    2015-01-01

    Background Our purpose was to obtain genome-wide expression data for the rabbit species on the responses of peripheral blood mononuclear cells (PBMCs) after in vitro stimulation by lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) and ionomycin. This transcriptome profiling was carried out using microarrays enriched with immunity-related genes, and annotated with the most recent data available for the rabbit genome. Results The LPS affected 15 to 20 times fewer genes than PMA-Ionomy...

  14. Single-cell and population NF-κB dynamic responses depend on lipopolysaccharide preparation.

    Directory of Open Access Journals (Sweden)

    Miriam V Gutschow

    Full Text Available BACKGROUND: Lipopolysaccharide (LPS, found in the outer membrane of gram-negative bacteria, elicits a strong response from the transcription factor family Nuclear factor (NF-κB via Toll-like receptor (TLR 4. The cellular response to lipopolysaccharide varies depending on the source and preparation of the ligand, however. Our goal was to compare single-cell NF-κB dynamics across multiple sources and concentrations of LPS. METHODOLOGY/PRINCIPAL FINDINGS: Using live-cell fluorescence microscopy, we determined the NF-κB activation dynamics of hundreds of single cells expressing a p65-dsRed fusion protein. We used computational image analysis to measure the nuclear localization of the fusion protein in the cells over time. The concentration range spanned up to nine orders of magnitude for three E. coli LPS preparations. We find that the LPS preparations induce markedly different responses, even accounting for potency differences. We also find that the ability of soluble TNF receptor to affect NF-κB dynamics varies strikingly across the three preparations. CONCLUSIONS/SIGNIFICANCE: Our work strongly suggests that the cellular response to LPS is highly sensitive to the source and preparation of the ligand. We therefore caution that conclusions drawn from experiments using one preparation may not be applicable to LPS in general.

  15. Molecular cloning of Japanese eel Anguilla japonica TNF-α and characterization of its expression in response to LPS, poly I:C and Aeromonas hydrophila infection

    Science.gov (United States)

    Feng, Jianjun; Guan, Ruizhang; Guo, Songlin; Lin, Peng; Zadlock, Frank

    2014-09-01

    As a potent pleiotropic cytokine, tumor necrosis factor-alpha (TNF-α) plays an important role in innate immune responses. The cDNA sequence and genomic structure of the TNF-α gene ( Aj TNF-α) in the Japanese eel ( Anguilla japonica) were identified and characterized. The full-length AjTNF-α cDNA was 1 546 bp, including a 5'-untranslated region (UTR) of 13 bp, a 3'-UTR of 879 bp and an open reading frame of 654 bp encoding a protein of 218 amino acids. The full-length genomic sequence of AjTNF-α was 2 392 bp and included four exons and three introns. The putative AjTNF-α protein contained TNF family signature motifs, including a protease cleavage site, a transmembrane domain and two conserved cysteine residues. Quantitative real-time reverse transcription PCR analysis revealed AjTNF-α expression in a wide range of tissues, with predominant expression in blood and liver. Lower levels of expression were seen in spleen, gills, kidney, intestine, heart, and skin, with very low levels in muscle. The modulation of AjTNF-α expression after injection of eels with lipopolysaccharide (LPS), the viral mimic, poly I:C, or Aeromonas hydrophila was assessed in blood, liver, and kidney. In blood, TNF-α mRNA levels increased rapidly and then rapidly decreased after stimulation with LPS, poly I:C or A. hydrophila. However, the response to LPS and A. hydrophila peaked at 6 h while for poly I:C the peak was at 12 h. In liver, after injection with A. hydrophila, an up- and down-regulation of AjTNF-α expression occurred twice, peaking at 6 h and 24 h, respectively. No remarkable increase of AjTNF-α expression appeared in liver until 72 h after LPS or poly I:C treatment. In kidney, AjTNF-α expression increased significantly only at 72 h post-stimulation with LPS or A. hydrophila. Our results suggest that AjTNF-α plays an important role in fish in the defense against viral and bacterial infection.

  16. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity.

    Science.gov (United States)

    Hersoug, L-G; Møller, P; Loft, S

    2016-04-01

    The composition of the gut microbiota and excessive ingestion of high-fat diets (HFD) are considered to be important factors for development of obesity. In this review we describe a coherent mechanism of action for the development of obesity, which involves the composition of gut microbiota, HFD, low-grade inflammation, expression of fat translocase and scavenger receptor CD36, and the scavenger receptor class B type 1 (SR-BI). SR-BI binds to both lipids and lipopolysaccharide (LPS) from Gram-negative bacteria, which may promote incorporation of LPS in chylomicrons (CMs). These CMs are transported via lymph to the circulation, where LPS is transferred to other lipoproteins by translocases, preferentially to HDL. LPS increases the SR-BI binding, transcytosis of lipoproteins over the endothelial barrier,and endocytosis in adipocytes. Especially large size adipocytes with high metabolic activity absorb LPS-rich lipoproteins. In addition, macrophages in adipose tissue internalize LPS-lipoproteins. This may contribute to the polarization from M2 to M1 phenotype, which is a consequence of increased LPS delivery into the tissue during hypertrophy. In conclusion, evidence suggests that LPS is involved in the development of obesity as a direct targeting molecule for lipid delivery and storage in adipose tissue. PMID:26712364

  17. Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice.

    Science.gov (United States)

    Shao, Guoxi; Tian, Yinggang; Wang, Haiyu; Liu, Fangning; Xie, Guanghong

    2015-12-01

    Melatonin, a secretory product of the pineal gland, has been reported to have antioxidant and anti-inflammatory effects. However, the protective effects of melatonin on lipopolysaccharide (LPS)-induced mastitis have not been reported. The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of melatonin on LPS-induced mastitis both in vivo and in vitro. In vivo, our results showed that melatonin attenuated LPS-induced mammary histopathologic changes and myeloperoxidase (MPO) activity. Melatonin also inhibited LPS-induced inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) production in mammary tissues. In vitro, melatonin was found to inhibit LPS-induced TNF-α and IL-6 production in mouse mammary epithelial cells. Melatonin also suppressed LPS-induced Toll-like receptor 4 (TLR4) expression and nuclear factor-kappaB (NF-κB) activation in a dose-dependent manner. In addition, melatonin was found to up-regulate the expression of PPAR-γ. Inhibition of PPAR-γ by GW9662 reduced the anti-inflammatory effects of melatonin. In conclusion, we found that melatonin, for the first time, had protective effects on LPS-induced mastitis in mice. The anti-inflammatory mechanism of melatonin was through activating PPAR-γ which subsequently inhibited LPS-induced inflammatory responses.

  18. Differential Responses Between Monocytes and Monocyte-Derived Macrophages for Lipopolysaccharide Stimulation of Calves

    Institute of Scientific and Technical Information of China (English)

    Yijie Guo; Guoqi Zhao; Sachi Tanaka; Takahiro Yamaguchi

    2009-01-01

    In this experiment Toll-like receptor expression pattern in monocytes and monocyte-derived macrophages by lipopolysaccharide (LPS) stimulation was examined. Jugular venous blood was collected from four Japanese calves, and the peripheral blood mononuclear cells (PBMCs) were isolated. The cells were directly used for collecting monocytes by magnetic cell sorting or cultured for 7 days to collect monocyte-derived macrophages in Repcell. Then we analyzed the mRNA expression pattern of TLRs and cytokines in monocytes and monocyte-derived macrophages after LPS stimulation for 24 h. LPS stimulation of both monocytes and monocyte-derived macrophages resulted in an increase in the levels of mRNA transcripts for TNF-α, IL-6 and IL-8. Moreover, TNF-α and IL-6 mRNA expressions were significantly augmented by LPS stimulation in monocyte-derived macrophages.TLRs mRNA expressions were unchanged after LPS stimulation of monocytes, while TLRs mRNA expressions in monocyte-derived macrophages were complicated. TLR1, 3, 5, 8 and 10 were significantly decreased after LPS stimulation and there were no differences in the mRNA expressions of TLR2, 4, 6 and 7 between the groups of control and LPS stimulation. Besides, no expression of TLR9 was found. As antigen presenting cells, monocytes and monocyte-derived macrophages respond differently to LPS, so they may have different functions in the innate immune system. Cellular & Molecular Immunology. 2009;6(3):223-229.

  19. Interaction of peptide-bound beads with lipopolysaccharide and lipoproteins.

    Science.gov (United States)

    Suzuki, Masatsugu M; Matsumoto, Megumi; Omi, Hiroyuki; Kobayashi, Tomomi; Nakamura, Akio; Kishi, Hiroko; Kobayashi, Sei; Takagi, Takashi

    2014-05-01

    We previously reported the generation of lipopolysaccharide (LPS)-binding peptides by phage display and chemical modification. Among them, a dodecapeptide designated Li5-025 (K'YSSSISSIRAC'; K' and C' denote d-lysine and d-cysteine, respectively) showed a high binding affinity for LPS and was resistant to protease digestion (Suzuki et al., 2010). In the current study, Li5-025-bound silica beads, hereafter referred to as P-beads, were generated and found to be devoid of LPS-neutralizing activity. Thus, LPS bound to the P-beads could be directly used in the Limulus amebocyte lysate (LAL) assay. P-beads bound LPS dissolved in solutions of ethanol, pH4, pH10, and 0.5M NaCl and LPS bound to the P-beads was quantitatively assayed. The sensitivity of this assay was observed to be approximately 0.1pg/mL LPS. P-beads bound LPS dissolved in antithrombin III (AT III) solution which is a strong inhibitor of activated factors C and B as well as the clotting enzyme in the LAL assay; the inhibitory effect of AT III was completely reversed upon washing the P-beads with 25% acetonitrile. This was employed as the first step for the detection of free LPS in plasma using the LAL assay. LPS added to human plasma at 0°C followed by application to the P-beads and subsequent washing with 25% acetonitrile resulted in low LPS activity as detected by the LAL assay. However, further washing of the P-beads with 0.1% Triton X100 in 25% acetonitrile resulted in high LPS activity. This is the first instance of quantitative detection of free LPS in plasma using the LAL assay, and the sensitivity of this method was observed to be 1pg/mL of LPS. The proteins eluted in the 0.1% Triton X-100 wash were analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis. Two protein bands of 28kDa and 18kDa were predominantly observed. Mass spectrometry analysis revealed that the 28kDa and 18kDa bands corresponded to apolipoprotein A-I (apoA-I) and apolipoprotein A-II (apoA-II), respectively. Apo

  20. Cell surface physico chemistry alters biofilm development of Pseudomonas aeruginosa lipopolysaccharide mutants

    NARCIS (Netherlands)

    Flemming, CA; Palmer, RJ; Arrage, AA; Van der Mei, HC; White, DC

    1999-01-01

    The hydrophobic and electrostatic characteristics of bacterial cell surfaces were compared with attachment proclivity and biomass accumulation over time between wildtype Pseudomonas aeruginosa serotype O6 (possesses A and B band LPS), and three LPS-deficient mutants, vi;. A28 (A(+)B(-)), R5 (A(+)B(-

  1. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages

    Directory of Open Access Journals (Sweden)

    Persidsky Yuri

    2011-02-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS, the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS contributes to neuronal injury. Bowman-Birk inhibitor (BBI, a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α and of ROS. In contrast, BBI pretreatment (1-100 μg/ml of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml, had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml had no effect on N-methyl-D-aspartic acid (NMDA-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.

  2. Dexamethasone protects airway epithelial cell line NCI-H292 against lipopolysaccharide induced endoplasmic reticulum stress and apoptosis

    Institute of Scientific and Technical Information of China (English)

    SHANG Yan; WANG Fang; BAI Chong; HUANG Yi; ZHAO Li-jun; YAO Xiao-peng; LI Qiang; SUN Shu-han

    2011-01-01

    Background Endoplasmic reticulum (ER) stress and ER stress-mediated apoptosis were reported to be involved in the pathogenesis of several diseases. In a recent study, it was reported that the ER stress pathway was activated in the lungs of lipopolysaccharide (LPS)-treated mice. It was also found that the C/EBP homologous protein (CHOP), an apoptosis-related molecule, played a key role in LPS-induced lung damage. The aim of this study was to verify whether LPS could activate the ER stress response in airway epithelial cells and which molecule was involved in the pathway.This study was also aimed at finding new reagents to protect the airway epithelial cells during LPS injury.Methods ER stress markers were observed in LPS-incubated NCI-H292 cells. SiRNA-MUC5AC was transfected into NCI-H292 cells. The effects of dexamethasone and erythromycin were observed in LPS-induced NCI-H292 cells.Results LPS incubation increased the expression of ER stress markers at the protein and mRNA levels. The knockout of MUC5AC in cells attenuated the increase in ER stress markers after incubation with LPS. Dexamethasone and erythromycin decreased caspase-3 activity in LPS-induced NCI-H292 cells.Conclusions LPS may activate ER stress through the overexpression of MUC5AC. Dexamethasone may protect human airway epithelial cells against ER stress-related apoptosis by attenuating the overload of MUC5AC.

  3. α-Phenyl-n-tert-butyl-nitrone Attenuates Lipopolysaccharide-induced Brain Injury and Improves Neurological Reflexes and Early Sensorimotor Behavioral Performance in Juvenile Rats

    OpenAIRE

    Fan, Lir-Wan; Chen, Ruei-Feng; Mitchell, Helen J.; Lin, Rick C.S.; Simpson, Kimberly L.; Rhodes, Philip G.; Cai, Zhengwei

    2008-01-01

    Our previous study showed that treatment with α-phenyl-n-tert-butyl-nitrone (PBN) after exposure to lipopolysaccharide (LPS) reduced LPS-induced white matter injury in the neonatal rat brain. The object of the current study was to further examine whether PBN has long-lasting protective effects and ameliorates LPS-induced neurological dysfunction. Intracerebral (i.c.) injection of LPS (1 mg/kg) was performed in postnatal day (P) 5 Sprague Dawley rat pups and PBN (100 mg/kg) or saline was admin...

  4. Lipopolysaccharide-induced cytokine production in peripheral blood mononuclear cells : Intracellular localization of tumor necrosis factor alpha and interleukin 1 beta detected with a three-color immunofluorescence technique

    NARCIS (Netherlands)

    deBont, ESJM; Niemarkt, AE; Tamminga, RYJ; Kimpen, JLL; Kamps, WA; deLeij, LHMF

    1996-01-01

    Lipopolysaccharide (LPS) can induce monocytes to produce various cytokines such as tumor necrosis factor alpha (TNF alpha) and interleukin 1 beta (IL-1 beta). In the present study, the kinetics of both intracellular and extra cellular accumulation of TNF alpha and IL-1 beta in LPS stimulated mononuc

  5. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Rafi eRashid

    2016-06-01

    Full Text Available Antimicrobial peptides (AMPs are utilized by both eukaryotic and prokaryotic organisms. AMPs such as the human beta defensins, human neutrophil peptides, human cathelicidin, and many bacterial bacteriocins are cationic and capable of binding to anionic regions of the bacterial surface. Cationic AMPs (CAMPs target anionic lipids (e.g. phosphatidylglycerol (PG and cardiolipins (CL in the cell membrane and anionic components (e.g. lipopolysaccharide (LPS and lipoteichoic acid (LTA of the cell envelope. Bacteria have evolved mechanisms to modify these same targets in order to resist CAMP killing, e.g. lysinylation of PG to yield cationic lysyl-PG and alanylation of LTA. Since CAMPs offer a promising therapeutic alternative to conventional antibiotics, which are becoming less effective due to rapidly emerging antibiotic resistance, there is a strong need to improve our understanding about the AMP mechanism of action. Recent literature suggests that AMPs often interact with the bacterial cell envelope at discrete foci. Here we review recent AMP literature, with an emphasis on focal interactions with bacteria, including (1 CAMP disruption mechanisms, (2 delocalization of membrane proteins and lipids by CAMPs, and (3 CAMP sensing systems and resistance mechanisms. We conclude with new approaches for studying the bacterial membrane, e.g., lipidomics, high resolution imaging and non-detergent-based membrane domain extraction.

  6. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides.

    Science.gov (United States)

    Rashid, Rafi; Veleba, Mark; Kline, Kimberly A

    2016-01-01

    Antimicrobial peptides (AMPs) are utilized by both eukaryotic and prokaryotic organisms. AMPs such as the human beta defensins, human neutrophil peptides, human cathelicidin, and many bacterial bacteriocins are cationic and capable of binding to anionic regions of the bacterial surface. Cationic AMPs (CAMPs) target anionic lipids [e.g., phosphatidylglycerol (PG) and cardiolipins (CL)] in the cell membrane and anionic components [e.g., lipopolysaccharide (LPS) and lipoteichoic acid (LTA)] of the cell envelope. Bacteria have evolved mechanisms to modify these same targets in order to resist CAMP killing, e.g., lysinylation of PG to yield cationic lysyl-PG and alanylation of LTA. Since CAMPs offer a promising therapeutic alternative to conventional antibiotics, which are becoming less effective due to rapidly emerging antibiotic resistance, there is a strong need to improve our understanding about the AMP mechanism of action. Recent literature suggests that AMPs often interact with the bacterial cell envelope at discrete foci. Here we review recent AMP literature, with an emphasis on focal interactions with bacteria, including (1) CAMP disruption mechanisms, (2) delocalization of membrane proteins and lipids by CAMPs, and (3) CAMP sensing systems and resistance mechanisms. We conclude with new approaches for studying the bacterial membrane, e.g., lipidomics, high resolution imaging, and non-detergent-based membrane domain extraction. PMID:27376064

  7. Effects of PEGylation on membrane and lipopolysaccharide interactions of host defense peptides.

    Science.gov (United States)

    Singh, Shalini; Papareddy, Praveen; Mörgelin, Matthias; Schmidtchen, Artur; Malmsten, Martin

    2014-04-14

    Effects of poly(ethylene glycol) (PEG) conjugation on peptide interactions with lipid membranes and lipopolysaccharide (LPS) were investigated for KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYTLR), an antimicrobial and anti-inflammatory peptide derived from human heparin cofactor II. In particular, effects of PEG length and localization was investigated by ellipsometry, circular dichroism, nanoparticle tracking analysis, and fluorescence/electron microscopy. PEGylation of KYE28 reduces peptide binding to lipid membranes, an effect accentuated at increasing PEG length, but less sensitive to conjugation site. The reduced binding causes suppressed liposome leakage induction, as well as bacterial lysis. As a result of this, the antimicrobial effects of KYE28 is partially lost with increasing PEG length, but hemolysis also strongly suppressed and selecticity improved. Through this, conditions can be found, at which the PEGylated peptide displays simultaneously efficient antimicrobial affects and low hemolysis in blood. Importantly, PEGylation does not markedly affect the anti-inflammatory effects of KYE28. The combination of reduced toxicity, increased selectivity, and retained anti-inflammatory effect after PEGylation, as well as reduced scavenging by serum proteins, thus shows that PEG conjugation may offer opportunities in the development of effective and selective anti-inflammatory peptides. PMID:24588750

  8. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J. [Institute of Microcirculation, Hebei North University, Zhangjiakou, China, Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei (China)

    2014-02-17

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na{sup +}-K{sup +}-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na{sup +}-K{sup +}-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na{sup +}-K{sup +}-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  9. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Directory of Open Access Journals (Sweden)

    Z.G. Zhao

    2014-02-01

    Full Text Available The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL on lipopolysaccharide (LPS-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1, myeloperoxidase (MPO, and Na+-K+-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT and aspartate aminotransferase (AST in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na+-K+-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na+-K+-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  10. Nonradiolabeling assay for WaaP, an essential sugar kinase involved in biosynthesis of core lipopolysaccharide of Pseudomonas aeruginosa.

    Science.gov (United States)

    Zhao, Xin; Wenzel, Cory Q; Lam, Joseph S

    2002-06-01

    waaP is present in the lipopolysaccharide (LPS) core gene clusters of a wide range of gram-negative bacteria, and is an essential gene in Pseudomonas aeruginosa. The WaaP protein is a sugar kinase that adds phosphate to heptose I in the core oligosaccharide. This study describes the standardization and utility of a chemiluminescence-based enzyme-linked immunosorbent assay for the detection of WaaP kinase activity. Important features of the assay include high sensitivity, the preparation of dephosphorylated LPS as a substrate, and the use of monoclonal antibody 7-4 that specifically recognizes phosphate substituents in the LPS core.

  11. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced inflammatory bone resorption, and protects against alveolar bone loss in mice.

    Science.gov (United States)

    Tominari, Tsukasa; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Miyaura, Chisato; Inada, Masaki

    2015-01-01

    Epigallocatechin gallate (EGCG), a major polyphenol in green tea, possesses antioxidant properties and regulates various cell functions. Here, we examined the function of EGCG in inflammatory bone resorption. In calvarial organ cultures, lipopolysaccharide (LPS)-induced bone resorption was clearly suppressed by EGCG. In osteoblasts, EGCG suppressed the LPS-induced expression of COX-2 and mPGES-1 mRNAs, as well as prostaglandin E2 production, and also suppressed RANKL expression, which is essential for osteoclast differentiation. LPS-induced bone resorption of mandibular alveolar bones was attenuated by EGCG in vitro, and the loss of mouse alveolar bone mass was inhibited by the catechin in vivo.

  12. Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia

    Directory of Open Access Journals (Sweden)

    Püntener Ursula

    2012-06-01

    Full Text Available Abstract Background Systemic infection leads to generation of inflammatory mediators that result in metabolic and behavioural changes. Repeated or chronic systemic inflammation leads to a state of innate immune tolerance: a protective mechanism against overactivity of the immune system. In this study, we investigated the immune adaptation of microglia and brain vascular endothelial cells in response to systemic inflammation or bacterial infection. Methods Mice were given repeated doses of lipopolysaccharide (LPS or a single injection of live Salmonella typhimurium. Inflammatory cytokines were measured in serum, spleen and brain, and microglial phenotype studied by immunohistochemistry. To assess priming of the innate immune response in the brain, mice were infected with Salmonella typhimurium and subsequently challenged with a focal unilateral intracerebral injection of LPS. Results Repeated systemic LPS challenges resulted in increased brain IL-1β, TNF-α and IL-12 levels, despite attenuated systemic cytokine production. Each LPS challenge induced significant changes in burrowing behaviour. In contrast, brain IL-1β and IL-12 levels in Salmonella typhimurium-infected mice increased over three weeks, with high interferon-γ levels in the circulation. Behavioural changes were only observed during the acute phase of the infection. Microglia and cerebral vasculature display an activated phenotype, and focal intracerebral injection of LPS four weeks after infection results in an exaggerated local inflammatory response when compared to non-infected mice. Conclusions These studies reveal that the innate immune cells in the brain do not become tolerant to systemic infection, but are primed instead. This may lead to prolonged and damaging cytokine production that may have a profound effect on the onset and/or progression of pre-existing neurodegenerative disease.

  13. Smooth and rough Proteus mirabilis lipopolysaccharides studied by total internal reflection ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Gleńska-Olender, J., E-mail: joannaglenska@wp.pl [Institute of Biology, Jan Kochanowski University, 25-406 Kielce (Poland); Świętokrzyski Biobank, Regional Science and Technology Center, 26-060 Chęciny (Poland); Dworecki, K. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Sęk, S. [Department of Chemistry, University of Warsaw, 02-093 Warsaw (Poland); Kwinkowski, M.; Kaca, W. [Institute of Biology, Jan Kochanowski University, 25-406 Kielce (Poland)

    2013-12-02

    Total internal reflection ellipsometry (TIRE), a label-free optical detection technique for studying interactions between biomolecules, was used to examine the adsorption of various forms of lipopolysaccharides (LPSs) isolated from Proteus mirabilis S1959, R110, and R45 strains on a gold surface. The thickness of the adsorbed layers was determined by TIRE, with the average values for S1959, R110, and R45 LPS layers being 78 ± 5, 39 ± 3, and 12 ± 2 nm, respectively. The thickness of LPS layers corresponds to the presence and length of O-specific parts in P. mirabilis LPS molecules. Atomic force microscopy was used as a complementary technique for visualizing lipopolysaccharides on the surface. Force measurements seem to confirm the data obtained from TIRE experiments. - Highlights: • Proteus mirabilis lipopolysaccharides were adsorbed on the gold surface. • Thickness of adsorbed layers was determined by total internal reflection ellipsometry. • Atomic force microscopy was used to visualize lipopolysaccharide build-up on gold surface. • Time is important in the evolution of biomolecular film thickness created on gold surface.

  14. The core and O-polysaccharide structure of the Caulobacter crescentus lipopolysaccharide.

    Science.gov (United States)

    Jones, Michael D; Vinogradov, Evgeny; Nomellini, John F; Smit, John

    2015-01-30

    Here we describe the analysis of the structure of the lipopolysaccharide (LPS) from Caulobacter crescentus strain JS1025, a derivative of C. crescentus CB15 NA1000 with an engineered amber mutation in rsaA, leading to the loss of the protein S-layer and gene CCNA_00471 encoding a putative GDP-L-fucose synthase. LPS was isolated using an aqueous membrane disruption method. Polysaccharide and core oligosaccharide were produced by mild acid hydrolysis and analyzed by nuclear magnetic resonance spectroscopy and chemical methods. Spectra revealed the presence of two polysaccharides, one of them, a rhamnan, could be removed using periodate oxidation. Another polymer, built from 4-amino-4-deoxy-D-rhamnose (perosamine), mannose, and 3-O-methyl-glucose, should be the O-chain of the LPS according to genetic data. The attribution of the rhamnan as a part of LPS or a separate polymer was not possible. PMID:25498010

  15. The core and O-polysaccharide structure of the Caulobacter crescentus lipopolysaccharide.

    Science.gov (United States)

    Jones, Michael D; Vinogradov, Evgeny; Nomellini, John F; Smit, John

    2015-01-30

    Here we describe the analysis of the structure of the lipopolysaccharide (LPS) from Caulobacter crescentus strain JS1025, a derivative of C. crescentus CB15 NA1000 with an engineered amber mutation in rsaA, leading to the loss of the protein S-layer and gene CCNA_00471 encoding a putative GDP-L-fucose synthase. LPS was isolated using an aqueous membrane disruption method. Polysaccharide and core oligosaccharide were produced by mild acid hydrolysis and analyzed by nuclear magnetic resonance spectroscopy and chemical methods. Spectra revealed the presence of two polysaccharides, one of them, a rhamnan, could be removed using periodate oxidation. Another polymer, built from 4-amino-4-deoxy-D-rhamnose (perosamine), mannose, and 3-O-methyl-glucose, should be the O-chain of the LPS according to genetic data. The attribution of the rhamnan as a part of LPS or a separate polymer was not possible.

  16. Sepsis progression to multiple organ dysfunction in carotid chemo/baro-denervated rats treated with lipopolysaccharide.

    Science.gov (United States)

    Nardocci, Gino; Martin, Aldo; Abarzúa, Sebastián; Rodríguez, Jorge; Simon, Felipe; Reyes, Edison P; Acuña-Castillo, Claudio; Navarro, Cristina; Cortes, Paula P; Fernández, Ricardo

    2015-01-15

    Sepsis progresses to multiple organ dysfunction (MOD) due to the uncontrolled release of inflammatory mediators. Carotid chemo/baro-receptors could play a protective role during sepsis. In anesthetized male rats, we measured cardiorespiratory variables and plasma TNF-α, glucocorticoids, epinephrine, and MOD marker levels 90min after lipopolysaccharide (LPS) administration in control (SHAM surgery) and bilateral carotid chemo/baro-denervated (BCN) rats. BCN prior to LPS blunted the tachypneic response and enhanced tachycardia and hypotension. BCN-LPS rats also showed blunted plasma glucocorticoid responses, boosted epinephrine and TNF-α responses, and earlier MOD onset with a lower survival time compared with SHAM-LPS rats. Consequently, the complete absence of carotid chemo/baro-sensory function modified the neural, endocrine and inflammatory responses to sepsis. Thus, carotid chemo/baro-receptors play a protective role in sepsis.

  17. Pre-treatment with bone marrow-derived mesenchymal stem cells inhibits systemic intravascular coagulation and attenuates organ dysfunction in lipopolysaccharide-induced disseminated intravascular coagulation rat model

    Institute of Scientific and Technical Information of China (English)

    WANG Biao; WU Shu-ming; WANG Tao; LIU Kai; ZHANG Gong; ZHANG Xi-quan; YU Jian-hua; LIU Chuan-zhen; FANG Chang-cun

    2012-01-01

    Background Bacterial lipopolysaccharide (LPS) can activate immunological cells to secrete various proinflammatory cytokines involved in the pathophysiological process of disseminated intravascular coagulation (DIC) during infection.In recent years,it has been found that bone marrow-derived mesenchymal stem cells (BMSCs) can affect the activity of these immune cells and regulate the secretion of proinflammatory cytokines.Here,we report the possible protective effect of BMSCs pre-treatment in LPS-induced DIC rat model and the mechanism.Methods Forty-eight adult male rats were divided into five experimental groups and one control group with eight animals in each group.In the treatment groups,0,1×106,2×106,3×106,and 5×106 of BMSCs were injected intravenously for 3 days before LPS injection,while the control group was treated with pure cell culture medium injection.Then,the LPS (3 mg/kg) was injected via the tail vein in the treatment groups,while the control group received 0.9% NaCl.Blood was withdrawn before and 4 and 8 hours after LPS administration.The following parameters were monitored:platelets (PLT),fibrinogen (Fib),D-dimer (D-D),activated partial thromboplastin time (APTT),prothrombin time (PT),tumor necrosis factor-o (TNF-α),interferon-γ (IFN-γ),interleukin-1β (IL-1β),creatinine (Cr),alanine aminotransferase (ALT),creatinine kinase-MB (CK-MB),and endothelin (ET).Results Compared with the control group,a significant change of coagulation parameters were found in the experimental groups.The plasma level of the inflammatory mediator (TNF-α,IFN-γ,IL-1β),organ indicator (Cr,ALT,and CK-MB),and ET in the experimental groups were much lower (P <0.05) than that in the control group.Furthermore,some of these effects were dose-dependent; the statistical comparison of the plasma levels between the groups (from group 2 to group 5) showed a significant difference (P<0.05),except the ALT and CK-MB levels (P>0.05).Conclusion Pre-treatment with BMSCs can

  18. Humoral immune response against lipopolysaccharide and cytoplasmic proteins of Brucella abortus in cattle vaccinated with B. abortus S19 or experimentally infected with Yersinia enterocolitica serotype 0:9.

    OpenAIRE

    Baldi, P C; Giambartolomei, G H; Goldbaum, F A; Abdón, L F; C.A. Velikovsky; Kittelberger, R; Fossati, C A

    1996-01-01

    The humoral immune responses against three different antigens of Brucella abortus were monitored by enzyme-linked immunosorbent assay in cattle vaccinated with B. abortus S19 or experimentally infected with Yersinia enterocolitica serotype 0:9. Immunoglobulin G (IgG) and IgM responses against (i) B. abortus lipopolysaccharide (LPS), (ii) total cytoplasmic proteins depleted of LPS (LPS-free CYT), and (iii) B. abortus 18-kDa cytoplasmic protein were measured. Vaccinated animals and Yersinia-inf...

  19. Blood-Borne Lipopolysaccharide Is Rapidly Eliminated by Liver Sinusoidal Endothelial Cells via High-Density Lipoprotein.

    Science.gov (United States)

    Yao, Zhili; Mates, Jessica M; Cheplowitz, Alana M; Hammer, Lindsay P; Maiseyeu, Andrei; Phillips, Gary S; Wewers, Mark D; Rajaram, Murugesan V S; Robinson, John M; Anderson, Clark L; Ganesan, Latha P

    2016-09-15

    During Gram-negative bacterial infections, excessive LPS induces inflammation and sepsis via action on immune cells. However, the bulk of LPS can be cleared from circulation by the liver. Liver clearance is thought to be a slow process mediated exclusively by phagocytic resident macrophages, Kupffer cells (KC). However, we discovered that LPS disappears rapidly from the circulation, with a half-life of 2-4 min in mice, and liver eliminates about three quarters of LPS from blood circulation. Using microscopic techniques, we found that ∼75% of fluor-tagged LPS in liver became associated with liver sinusoidal endothelial cells (LSEC) and only ∼25% with KC. Notably, the ratio of LSEC-KC-associated LPS remained unchanged 45 min after infusion, indicating that LSEC independently processes the LPS. Most interestingly, results of kinetic analysis of LPS bioactivity, using modified limulus amebocyte lysate assay, suggest that recombinant factor C, an LPS binding protein, competitively inhibits high-density lipoprotein (HDL)-mediated LPS association with LSEC early in the process. Supporting the previous notion, 3 min postinfusion, 75% of infused fluorescently tagged LPS-HDL complex associates with LSEC, suggesting that HDL facilitates LPS clearance. These results lead us to propose a new paradigm of LSEC and HDL in clearing LPS with a potential to avoid inflammation during sepsis. PMID:27534554

  20. Drugs composed of polysaccharides obtained from lipopolysaccharides extracted from bacteria

    International Nuclear Information System (INIS)

    This invention concerns a protection and control agent against irradiation in living beings, composed of polysaccharides, called PS, obtained from lipopolysaccharides (LPS), which in turn are extracted from Gram-negative bacteria after separation of the major part and preferably all the initial lipid content of these LPS's. The molecular weight of the PS ingredients, once purified, is between 8,000 and 35,000 and mainly around 10,000. They contain: around 50 to 70% carbon hydrates by weight; around 1 to 8% hexoamines by weight; around 1 to 5% amino-compounds, among which 1 to 2% amino-acids by weight less than 1% and preferably no fatty acids or lipids and their phosphorus content is around 0.2 to 0.5% by weight

  1. Innate immune defenses exhibit circadian rhythmicity and differential temporal sensitivity to a bacterial endotoxin in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Lazado, Carlo C; Skov, Peter Vilhelm; Pedersen, Per Bovbjerg

    2016-08-01

    The present study investigated the daily dynamics of humoral immune defenses and the temporal influence in the sensitivity of these responses to a bacterial endotoxin in Nile tilapia (Oreochromis niloticus). The first experiment subjected the fish to two photoperiod conditions, 12L:12D (LD) and 0L:24D (DD), for 20 days to characterize the rhythms of humoral immunity. Serum alkaline phosphatase (ALP), lysozyme (LYZ), peroxidase (PER) and protease (PRO) exhibited significant rhythmicity under LD but not in DD. No significant rhythms were observed in esterase (ESA) and anti-protease (ANTI) in both photoperiod conditions. Fish reared under LD were subsequently subjected to DD while the group previously under DD was exposed to LD, and this carried on for 3 days before another set of samples was collected. Results revealed that the rhythms of LYZ, PER and PRO but not ALP persisted when photoperiod was changed from LD to DD. Nonetheless, immune parameters remained arrhythmic in the group subjected from DD to LD. Cluster analysis of the humoral immune responses under various light conditions revealed that each photic environment had distinct daily immunological profile. In the second experiment, fish were injected with bacterial endotoxin lipopolysaccharide (LPS) either at ZT3 (day) or at ZT15 (night) to evaluate the temporal sensitivity of humoral immunity to a pathogen-associated molecular pattern. The results demonstrated that responses to LPS were gated by the time of day. LPS significantly modulated serum ALP and ANTI activities but only when the endotoxin was administered at ZT3. Serum LYZ and PER were stimulated at both injection times but with differing response profiles. Modulated LYZ activity was persistent when injected at ZT3 but transient when LPS was applied at ZT15. The magnitude of LPS-induced PER activity was higher when the endotoxin was delivered at ZT3 versus ZT15. It was further shown that plasma cortisol was significantly elevated but only when LPS

  2. Innate immune defenses exhibit circadian rhythmicity and differential temporal sensitivity to a bacterial endotoxin in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Lazado, Carlo C; Skov, Peter Vilhelm; Pedersen, Per Bovbjerg

    2016-08-01

    The present study investigated the daily dynamics of humoral immune defenses and the temporal influence in the sensitivity of these responses to a bacterial endotoxin in Nile tilapia (Oreochromis niloticus). The first experiment subjected the fish to two photoperiod conditions, 12L:12D (LD) and 0L:24D (DD), for 20 days to characterize the rhythms of humoral immunity. Serum alkaline phosphatase (ALP), lysozyme (LYZ), peroxidase (PER) and protease (PRO) exhibited significant rhythmicity under LD but not in DD. No significant rhythms were observed in esterase (ESA) and anti-protease (ANTI) in both photoperiod conditions. Fish reared under LD were subsequently subjected to DD while the group previously under DD was exposed to LD, and this carried on for 3 days before another set of samples was collected. Results revealed that the rhythms of LYZ, PER and PRO but not ALP persisted when photoperiod was changed from LD to DD. Nonetheless, immune parameters remained arrhythmic in the group subjected from DD to LD. Cluster analysis of the humoral immune responses under various light conditions revealed that each photic environment had distinct daily immunological profile. In the second experiment, fish were injected with bacterial endotoxin lipopolysaccharide (LPS) either at ZT3 (day) or at ZT15 (night) to evaluate the temporal sensitivity of humoral immunity to a pathogen-associated molecular pattern. The results demonstrated that responses to LPS were gated by the time of day. LPS significantly modulated serum ALP and ANTI activities but only when the endotoxin was administered at ZT3. Serum LYZ and PER were stimulated at both injection times but with differing response profiles. Modulated LYZ activity was persistent when injected at ZT3 but transient when LPS was applied at ZT15. The magnitude of LPS-induced PER activity was higher when the endotoxin was delivered at ZT3 versus ZT15. It was further shown that plasma cortisol was significantly elevated but only when LPS

  3. Bacterial toxicity of oxide nanoparticles and their effects on bacterial surface biomolecules

    Science.gov (United States)

    Jiang, Wei

    Toxicity of nano-scaled Al2O3, SiO2, TiO2 and ZnO to bacteria (Bacillus subtilis, Escherichia coli and Pseudomonas fluorescens) was examined and compared to that of their respective bulk (micro-scaled) counterparts. All nanoparticles (NPs) but TiO2 showed higher toxicity than their bulk counterparts. Toxicity of released metal ions was differentiated from that of the oxide particles. ZnO was the most toxic among the three NPs, causing 100% mortality to the three tested bacteria. TEM images showed attachment of NPs to the bacteria, suggesting that the toxicity was affected by bacterial attachment. The effects of oxide NPs on bacteria cells and bacterial surface biomolecules were studied by FTIR spectroscopy to provide a better understanding of their cytotoxicity. Lipopolysaccharide (LPS) and lipoteichoic acid could bind to oxide NPs through hydrogen bonding and ligand exchange, but the cytotoxicity of NPs seemed largely related to the function-involved or structural changes to proteins and phospholipids. The three NPs decreased the intensity ratio of beta-sheets/alpha-helices, indicating protein structure change, which may affect cell physiological activities. The phosphodiester bond of L-alpha-Phosphatidyl-ethanolamine (PE) was broken by ZnO NPs, forming phosphate monoesters and resulting in the highly disordered alkyl chain. Such damage to phospholipid molecular structure may lead to membrane rupture and cell leaking, which is consistent with the fact that ZnO is the most toxic of the three NPs. LPS and PE are amphiphilic biomolecules that are major constituents of the outer membrane of Gram-negative bacteria. Their micelles and vesicles were studied as model cell membranes to evaluate NP effects on membrane construction. The adsorption of polysaccharides on Al2O3 and TiO 2 NPs dispersed LPS vesicles and micelles. LPS coated Al2O 3 NPs, while it caused the aggregation of TiO2 NPs according to atom force microscopy images. Desorption from the two NPs was slow due

  4. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    Science.gov (United States)

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway. PMID:25008149

  5. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    Science.gov (United States)

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway.

  6. Lipopolysaccharide-Induced Apoptosis of Astrocytes: Therapeutic Intervention by Minocycline.

    Science.gov (United States)

    Sharma, Arpita; Patro, Nisha; Patro, Ishan K

    2016-05-01

    Astrocytes are most abundant glial cell type in the brain and play a main defensive role in central nervous system against glutamate-induced toxicity by virtue of numerous transporters residing in their membranes and an astrocyte-specific enzyme glutamine synthetase (GS). In view of that, a dysregulation in the astrocytic activity following an insult may result in glutamate-mediated toxicity accompanied with astrocyte and microglial activation. The present study suggests that the lipopolysaccharide (LPS)-induced inflammation results in significant astrocytic apoptosis compared to other cell types in hippocampus and minocycline could not efficiently restrict the glutamate-mediated toxicity and apoptosis of astrocytes. Upon LPS exposure 76 % astrocytes undergo degeneration followed by 44 % oligodendrocytes, 26 % neurons and 10 % microglia. The pronounced astrocytic apoptosis resulted from the LPS-induced glutamate excitotoxicity leading to their hyperactivation as evident from their hypertrophied morphology, glutamate transporter 1 upregulation and downregulation of GS. Therapeutic minocycline treatment to LPS-infused rats efficiently restricted the inflammatory response and degeneration of other cell types but could not significantly combat with the apoptosis of astrocytes. Our study demonstrates a novel finding on cellular degeneration in the hippocampus revealing more of astrocytic death and suggests a more careful consideration on the protective efficacy of minocycline. PMID:26188416

  7. LPS impairs oxygen utilization in epithelia by triggering degradation of the mitochondrial enzyme Alcat1.

    Science.gov (United States)

    Zou, Chunbin; Synan, Matthew J; Li, Jin; Xiong, Sheng; Manni, Michelle L; Liu, Yuan; Chen, Bill B; Zhao, Yutong; Shiva, Sruti; Tyurina, Yulia Y; Jiang, Jianfei; Lee, Janet S; Das, Sudipta; Ray, Anuradha; Ray, Prabir; Kagan, Valerian E; Mallampalli, Rama K

    2016-01-01

    Cardiolipin (also known as PDL6) is an indispensable lipid required for mitochondrial respiration that is generated through de novo synthesis and remodeling. Here, the cardiolipin remodeling enzyme, acyl-CoA:lysocardiolipin-acyltransferase-1 (Alcat1; SwissProt ID, Q6UWP7) is destabilized in epithelia by lipopolysaccharide (LPS) impairing mitochondrial function. Exposure to LPS selectively decreased levels of carbon 20 (C20)-containing cardiolipin molecular species, whereas the content of C18 or C16 species was not significantly altered, consistent with decreased levels of Alcat1. Alcat1 is a labile protein that is lysosomally degraded by the ubiquitin E3 ligase Skp-Cullin-F-box containing the Fbxo28 subunit (SCF-Fbxo28) that targets Alcat1 for monoubiquitylation at residue K183. Interestingly, K183 is also an acetylation-acceptor site, and acetylation conferred stability to the enzyme. Histone deacetylase 2 (HDAC2) interacted with Alcat1, and expression of a plasmid encoding HDAC2 or treatment of cells with LPS deacetylated and destabilized Alcat1, whereas treatment of cells with a pan-HDAC inhibitor increased Alcat1 levels. Alcat1 degradation was partially abrogated in LPS-treated cells that had been silenced for HDAC2 or treated with MLN4924, an inhibitor of Cullin-RING E3 ubiquitin ligases. Thus, LPS increases HDAC2-mediated Alcat1 deacetylation and facilitates SCF-Fbxo28-mediated disposal of Alcat1, thus impairing mitochondrial integrity. PMID:26604221

  8. Impact of training status on LPS-induced acute inflammation in humans

    DEFF Research Database (Denmark)

    Olesen, Jesper; Biensø, Rasmus Sjørup; Meinertz, S.;

    2015-01-01

    The aim of the present study was to examine the impact of training status on the ability to induce a lipopolysaccharide (LPS)-induced inflammatory response systemically as well as in skeletal muscle (SkM) and adipose tissue (AT) in human subjects. Methods: Seventeen young (23.8 ± 2.5 years of age....... Vastus lateralis muscle and abdominal subcutaneous AT biopsies were obtained Pre, 60 and 120 min after the LPS injection. Results: LPS increased the systemic plasma TNFα and IL-6 level as well as the TNFα and IL-6 mRNA content in SkM and AT of both UT and T. Whereas the LPS-induced inflammatory response...... in SkM was enhanced in T subjects relative to UT, the inflammatory response systemically and in AT was somewhat delayed in T subjects relative to UT. Conclusion: The present findings highlight that training status affects the ability to induce a LPS-induced acute inflammatory response in a tissue...

  9. Poly(ADP-ribose) polymerase 1 inhibition protects human aortic endothelial cells against LPS-induced inflammation response

    Institute of Scientific and Technical Information of China (English)

    Xiaonu Peng; Wenjun Li; Wei Zhang

    2012-01-01

    Atherosclerosis is a chronic inflammatory disease.Tolllike receptor 4 (TLR4) is an important signaling receptor and plays a critical role in the inflammatory response.Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme that can regulate the expression of various inflammatory genes.In this study,we investigated the role and the underlying mechanisms of PARP1 on lipopolysaccharide (LPS)-induced inflammation in human aortic endothelial cells.Compared with the control,LPS stimulation increased the protein expression of TLR4 and PARP1.TLR4 inhibition reduced LPS-induced upregulation of inducible nitric oxide synthase (iNOS) and ICAM-1 as well as PARP1. Nuclear factor κB (NF-κB) inhibition decreased ICAM-1 and iNOS expression.Inhibition of PARP1 decreased protein expression of inflammatory cytokines induced by LPS stimulation,probably through preventing NF-KB nuclear translocation. Our study demonstrated that LPS increased ICAM-1 and iNOS expression via TLR4/PARP1/NF-KB pathway.PARP1 might be an indispensable factor in TLR4-mediated inflammation after LPS stimulation.PARP1 inhibition might shed light on the treatment of LPS-induced inflammatory cytokines expression during atherosclerosis.

  10. Evidence for lipopolysaccharide-induced differentiation of RAW264⋅ 7 murine macrophage cell line into dendritic like cells

    Indian Academy of Sciences (India)

    Rajiv K Saxena; Val Vallyathan; Daniel M Lewis

    2003-02-01

    Effect of lipopolysaccharide (LPS) on RAW264.7 macrophage cell line was studied. LPS-treated RAW264.7 cells increased in cell size and acquired distinct dendritic morphology. At the optimal dose of LPS (1 g/ml), almost 70% RAW264.7 cells acquired dendritic morphology. Flow cytometric studies indicate that the cell surface markers known to be expressed on dendritic cells and involved in antigen presentation and T cell activation (B7.1, B7.2, CD40, MHC class II antigens and CD1d) were also markedly upregulated on LPS-treated RAW264.7 cells. Our results suggest the possibility that LPS by itself could constitute a sufficient signal for differentiation of macrophages into DC-like cells.

  11. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP 2 -PLC.

    Science.gov (United States)

    Mateos, Melina V; Kamerbeek, Constanza B; Giusto, Norma M; Salvador, Gabriela A

    2016-06-01

    This article presents additional data regarding the study "The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium" [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells.

  12. Effects of neutral sulfate berberine on LPS-induced cardiomyocyte TNF-αsecretion, abnormal calcium cycling, and cardiac dysfunction in rats

    Institute of Scientific and Technical Information of China (English)

    Jing YANG; Hua-dong WANG; Da-xiang LU; Yan-ping WANG; Ren-bin QI; Jing LI; Fei LI; Chu-jie LI

    2006-01-01

    Aim: To evaluate the effect of neutral sulfate berberine on cardiac function, tumornecrosis factor α (TNF-α) release, and intracellular calcium concentration ([Ca2+]i)in cardiomyocytes exposed to lipopolysaccharide (LPS). Methods: Primary cultured rat cardiomyocytes were prepared from ventricles of 3-4-day old SpragueDawley rats. TNF-α concentrations in cell-conditioned media were measured by using a Quantikine enzyme-linked immunosorbent assay kit, and cardiomyocyte [Ca2+]i was measured by using Fura-2/AM. The isolated rat hearts were perfused in the Langendorff mode. Results: LPS at doses of 1, 5, 10, and 20 μg/mL markedly stimulated TNF-α secretion from cardiomyocytes, and neutral sulfate berberine inhibited LPS-induced TNF-α production. Intracellular calcium concentration was significantly decreased after LPS stimulation for 1 h, and increased 2 h after LPS treatment. Pretreatment with neutral sulfate berberine reversed the LPS-induced [Ca2+]i alterations, although neutral sulfate berberine did not inhibit a rapid increase in cardiomyocyte [Ca2+]i induced by LPS. Perfusion of isolated hearts with LPS (100 μg/mL) for 20 min resulted in significantly impaired cardiac performance at 120 min after LPS challenge: the maximal rate of left ventricular pressure rise and fall (±dp/dtmax) decreased compared with the control. In contrast, ±dp/dtmax at 120min in hearts perfused with neutral sulfate berberine (1 μmol/L) for 10 min followed by 20 min LPS (100 μg/mL) was greater than the corresponding value in the LPS group. Conclusion: Neutral sulfate berberine inhibits LPS-stimulated myocardial TNF-α production, impairs calcium cycling, and improves LPS-induced contractile dysfunction in intact heart.

  13. Supplementation of Lactobacillus acidophilus fermentation product can attenuate the acute phase response following a lipopolysaccharide challenge in pigs.

    Science.gov (United States)

    This study was designed to determine if feeding a Lactobacillus acidophilus fermentation product to weaned pigs would reduce stress and acute phase responses (APR) following a lipopolysaccharide (LPS) challenge. Pigs (n=30; 6.4±0.1 kilograms body weight) were housed individually in pens with ad libi...

  14. 17 beta-estradiol and progesterone do not influence the production of cytokines from lipopolysaccharide-stimulated monocytes in humans

    NARCIS (Netherlands)

    Schipper, M; Heineman, MJ; Faas, M; Bouman, A.

    2004-01-01

    Objective: To test whether 17beta-estradiol or progesterone influence the cytokine productive capacity of lipopolysaccharide (LPS)-stimulated monocytes in humans. Design: Prospective study. Setting: Academic research institution. Patient(s): Seven women in the luteal phase of a normal ovarian cycle,

  15. Effects of dietary humic and butyric acid on growth performance and response to lipopolysaccharide in young pigs

    Science.gov (United States)

    Humic acid (MFG) and fat protected butyric acid (BA) has been shown to modulate energy metabolism and inflammation. Therefore, the objectives of this study were to determine the effects of MFG and BA, alone and in combination, on growth performance and response to lipopolysaccharide (LPS) induced in...

  16. The β-adrenoceptor agonist clenbuterol is a potent inhibitor of the LPS-induced production of TNF-α and IL-6 in vitro and in vivo

    NARCIS (Netherlands)

    Izeboud, C.A.; Monshouwer, M.; Miert, A.S.J.P.A.M. van; Witkamp, R.F.

    1999-01-01

    Objective and Design: To investigate the suppressive effects of the β-agonist clenbuterol on the release of TNF-α and IL-6 in a lipopolysaccharide (LPS)-model of inflammation, both in vitro and in vivo. Material and Subjects: Human U-937 cell line (monocyte-derived macrophages), and male Wistar rats

  17. LPS from Porphyromonas gingivalis increases the sensitivity of contractile response mediated by endothelin-B (ET(B)) receptors in cultured endothelium-intact rat coronary arteries

    DEFF Research Database (Denmark)

    Ghorbani, Bahareh; Holmstrup, Palle; Edvinsson, Lars;

    2010-01-01

    The purpose of our study was to examine if lipopolysaccharide (LPS) from Porphyromonas gingivalis (P.g.) modifies the vasomotor responses to Endothelin-1 (ET-1) and Sarafotoxin 6c (S6c) in rat coronary arteries. The arteries were studied directly or following organ culture for 24h in absence and ...

  18. Vibrio cholerae porin OmpU induces LPS tolerance by attenuating TLR-mediated signaling.

    Science.gov (United States)

    Sakharwade, Sanica C; Mukhopadhaya, Arunika

    2015-12-01

    Porins can act as pathogen-associated molecular patterns, can be recognized by the host immune system and modulate immune responses. Vibrio choleraeporin OmpU aids in bacterial survival in the human gut by increasing resistance against bile acids and anti-microbial peptides. V. choleraeOmpU is pro-inflammatory in nature. However, interestingly, it can also down-regulate LPS-mediated pro-inflammatory responses. In this study, we have explored how OmpU-pretreatment affects LPS-mediated responses. Our study indicates that OmpU-pretreatment followed by LPS-activation does not induce M2-polarization of macrophages/monocytes. Further, OmpU attenuates LPS-mediated TLR2/TLR6 signaling by decreasing the association of TLRs along with recruitment of MyD88 and IRAKs to the receptor complex. This results in decreased translocation of NFκB in the nucleus. Additionally, OmpU-pretreatment up-regulates expression of IRAK-M, a negative regulator of TLR signaling, in RAW 264.7 mouse macrophage cells upon LPS-stimulation. Suppressor cytokine IL-10 is partially involved in OmpU-induced down-regulation of LPS-mediated TNFα production in human PBMCs. Furthermore, OmpU-pretreatment also affects macrophage function, by enhancing phagocytosis in LPS-treated RAW 264.7 cells, and down-regulates LPS-induced cell surface expression of co-stimulatory molecules. Altogether, OmpU causes suppression of LPS-mediated responses by attenuating the LPS-mediated TLR signaling pathway.

  19. Amiloride attenuates lipopolysaccharide-accelerated atherosclerosis via inhibition of NHE1-dependent endothelial cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Gui-mei CUI; Yu-xi ZHAO; Na-na ZHANG; Zeng-shan LIU; Wan-chun SUN; Qi-sheng PENG

    2013-01-01

    Aim: To investigate the effects of the potassium-sparing diuretic amiloride on endothelial cell apoptosis during lipopolysaccharide (LPS)-accelerated atherosclerosis.Methods: Human umbilical vein endothelial cells (HUVECs) were exposed to LPS (100 ng/mL) in the presence of drugs tested.The activity of Na+/H+ exchanger 1 (NHE1) and calpain,intracellular free Ca2+ level ([Ca2+]i),as well as the expression of apoptosis-related proteins in the cells were measured.For in vivo study,ApoE-deficient (ApoE-/-) mice were fed high-fat diets with 0.5% (w/w) amiloride for 4 weeks and LPS (10 μg/mouse) infusion into caudal veins.Afterwards,atherosclerotic lesions,NHE1 activity and Bcl-2 expression in the aortic tissues were evaluated.Results: LPS treatment increased NHE1 activity and [Ca2+]i in HUVECs in a time-dependent manner,which was associated with increased activity of the Ca2+-dependent protease calpain.Amiloride (1-10 μmol/L) significantly suppressed LPS-induced increases in NHE1 activity,[Ca2+]i.and calpain activity.In the presence of the Ca2+ chelator BAPTA (0.5 mmol/L),LPS-induced increase of calpain activity was also abolished.In LPS-treated HUVECs,the expression of Bcl-2 protein was significantly decreased without altering its mRNA level.In the presence of amiloride (10 μmol/L) or the calpain inhibitor ZLLal (50 μmol/L),the down-regulation of Bcl-2 protein by LPS was blocked.LPS treatment did not alter the expression of Bax and Bak proteins in HUVECs.In the presence of amiloride,BAPTA or ZLLal,LPS-induced HUVEC apoptosis was significantly attenuated.In ApoE-/-mice,administration of amiloride significantly suppressed LPS-accelerated atherosclerosis and LPS-induced increase of NHE1 activity,and reversed LPS-induced down-regulation of Bcl-2 expression.Conclusion: LPS stimulates NHE1 activity,increases [Ca2+]i,and activates calpain,which leads to endothelial cell apoptosis related to decreased Bcl-2 expression.Amiloride inhibits NHE1 activity,thus attenuates LPS

  20. Ovine fetal thymus response to lipopolysaccharide-induced chorioamnionitis and antenatal corticosteroids.

    Directory of Open Access Journals (Sweden)

    Elke Kuypers

    Full Text Available RATIONALE: Chorioamnionitis is associated with preterm delivery and involution of the fetal thymus. Women at risk of preterm delivery receive antenatal corticosteroids which accelerate fetal lung maturation and improve neonatal outcome. However, the effects of antenatal corticosteroids on the fetal thymus in the settings of chorioamnionitis are largely unknown. We hypothesized that intra-amniotic exposure to lipopolysaccharide (LPS causes involution of the fetal thymus resulting in persistent effects on thymic structure and cell populations. We also hypothesized that antenatal corticosteroids may modulate the effects of LPS on thymic development. METHODS: Time-mated ewes with singleton fetuses received an intra-amniotic injection of LPS 7 or 14 days before preterm delivery at 120 days gestational age (term = 150 days. LPS and corticosteroid treatment groups received intra-amniotic LPS either preceding or following maternal intra-muscular betamethasone. Gestation matched controls received intra-amniotic and maternal intra-muscular saline. The fetal intra-thoracic thymus was evaluated. RESULTS: Intra-amniotic LPS decreased the cortico-medullary (C/M ratio of the thymus and increased Toll-like receptor (TLR 4 mRNA and CD3 expression indicating involution and activation of the fetal thymus. Increased TLR4 and CD3 expression persisted for 14 days but Foxp3 expression decreased suggesting a change in regulatory T-cells. Sonic hedgehog and bone morphogenetic protein 4 mRNA, which are negative regulators of T-cell development, decreased in response to intra-amniotic LPS. Betamethasone treatment before LPS exposure attenuated some of the LPS-induced thymic responses but increased cleaved caspase-3 expression and decreased the C/M ratio. Betamethasone treatment after LPS exposure did not prevent the LPS-induced thymic changes. CONCLUSION: Intra-amniotic exposure to LPS activated the fetal thymus which was accompanied by structural changes. Treatment

  1. Study of monocyte membrane proteome perturbation during lipopolysaccharide-induced tolerance using iTRAQ-based quantitative proteomic approach

    KAUST Repository

    Zhang, Huoming

    2010-07-02

    Human monocytes\\' exposure to low-level lipopolysaccharide (LPS) induces temporary monocytic insensitivity to subsequent LPS challenge. The underlying mechanism of this phenomenon could have important clinical utilities in preventing and/or treating severe infections. In this study, we used an iTRAQ-based quantitative proteomic approach to comprehensively characterize the membrane proteomes of monocytes before and after LPS exposure. We identified a total of 1651 proteins, of which 53.6% were membrane proteins. Ninety-four percent of the proteins were quantified and 255 proteins were shown to be tightly regulated by LPS. Subcellular location analysis revealed organelle-specific response to LPS exposure: more than 90% of identified mitochondrial membrane proteins were significant downregulated, whereas the majority of proteins from other organelles such as ER, Golgi and ribosome were upregulated. Moreover, we found that the expression of most receptors potentially involved in LPS signal pathway (CD14, toll-like receptor 4, CD11/CD18 complex) were substantially decreased, while the expression of molecules involved in LPS neutralization were enhanced after LPS challenge. Together, these findings could be of significance in understanding the mechanism of LPS tolerance and provide values for designing new approaches for regulating monocytic responses in sepsis patients.

  2. Cerebrolysin attenuates cerebral and hepatic injury due to lipopolysaccharide in rats.

    Science.gov (United States)

    Abdel-Salam, O M E; Omara, E A; Mohammed, N A; Youness, E R; Khadrawy, Y A; Sleem, A A

    2013-12-01

    This study aimed to investigate the effect of cerebrolysin on oxidative stress in the brain and liver during systemic inflammation. Rats were intraperitoneally challenged with a single subseptic dose of lipopolysaccharide (LPS; 300 μg/kg) without or with cerebrolysin at doses of 21.5, 43 or 86 mg/kg. After 4 h, rats were euthanized and the brain and liver tissues were subjected to biochemical and histopathological analyses. Cerebrolysin revealed inhibitory effects on the elevation of lipid peroxidation and nitric oxide induced by LPS. In contrast, the decrease in reduced glutathione level and paraoxonase activity induced by LPS was attenuated by an injection of cerebrolysin in a dose-dependent manner. Moreover, cerebrolysin reduced LPS-induced activation of brain NF-κB and reversed LPS-induced decline of brain butyrylcholinesterase and acetylcholinesterase activities in a dose-dependent manner. Histopathological analyses revealed that neuronal damage and liver necrosis induced by LPS were ameliorated by cerebrolysin dose-dependently. Cerebrolysin treatment dose-dependently attenuated LPS-induced expressions in cyclooxygenase 2, inducible nitric oxide synthase, and caspase-3 in the cortex or striatum as well as the liver. These results suggest that cerebrolysin treatment might have beneficial therapeutic effects in cerebral inflammation. Cerebrolysin might also prove of value in liver disease and this possibility requires further exploration. PMID:24423658

  3. Intracellular delivery of lipopolysaccharide induces effective Th1-immune responses independent of IL-12.

    Directory of Open Access Journals (Sweden)

    Sachiko Watanabe

    Full Text Available Lipopolysaccharide (LPS is responsible for many of the inflammatory responses and pathogenic effects of Gram-negative bacteria, however, it also induces protective immune responses. LPS induces the production of inflammatory cytokines such as TNF-α, IL-6, and IL-12 from dendritic cells (DCs and macrophages. It is thought that IL-12 is required for one of the protective immune responses induced by LPS, the T helper 1 (Th1-immune response, which include the production of IFN-γ from Th1cells and IgG2c class switching. Here, we clearly demonstrate that intracellular delivery of LPS by LPS-formulated liposomes (LPS-liposomes does not induce the production of inflammatory cytokines from DCs, but enhances Th1-immune responses via type-I IFNs, independent of IL-12. Collectively, our results strongly suggest that LPS-liposomes can effectively induce Th1-immune responses without inducing unnecessary inflammation, and may be useful as an immune adjuvant to induce protective immunity.

  4. Adiponectin deficiency exacerbates lipopolysaccharide/ D-galactosamine-induced liver injury in mice

    Institute of Scientific and Technical Information of China (English)

    Hitoshi Matsumoto; Yuji Matsuzawa; Iichiro Shimomura; Norio Hayashi; Shinji Tamura; Yoshihiro Kamada; Shinichi Kiso; Juichi Fukushima; Akira Wada; Norikazu Maeda; Shinji Kihara; Tohru Funahashi

    2006-01-01

    AIM: To examine the effects of adiponectin on the functions of Kupffer cells, key modulators of lipopolysaccharide (LPS) -induced liver injury.METHODS: D-galactosamine (GaIN) and LPS were injected intraperitoneally into adiponectin-/- mice and wild type mice. Kupffer cells, isolated from Sprague-Dawley rats, were preincubated with or without adiponectin, and then treated with LPS.RESULTS: In knockout mice, GalN/LPS injection significantly lowered the survival rate, significantly raised the plasma levels of alanine transaminase and tumor necrosis factor-α (TNF-α) and significantly reduced IL-10 levels compared with wild type mice. TNF-α gene expression in the liver was which higher and those of IL-10 were lower in knockout mice than in wild type mice. In cultured adiponectin-pre-treated Kupffer cells, LPS significantly lowered TNF-α levels and raised IL-10 levels in the culture media and their respective gene expression levels, compared with Kupffer cells without adiponectinpre-treatment.CONCLUSION: Adiponectin supresses TNF-α production and induces IL-10 production by Kupffer cells in response to LPS stimulation, and a lack of adiponectin enhances LPS-induced liver injury.

  5. Dynamics of Antagonistic Potency of Rhodobacter capsulatus PG Lipopolysaccharide against Endotoxin-Induced Effects.

    Science.gov (United States)

    Kabanov, D S; Serov, D A; Zubova, S V; Grachev, S V; Prokhorenko, I R

    2016-03-01

    The dynamics of antagonistic potency of lipopolysaccharide (LPS) isolated from Rhodobacter capsulatus PG on the synthesis of proinflammatory (TNF-α, IL-1β, IL-8, IL-6, IFN-γ) and antiinflammatory (IL-10, IL-1Ra) cytokines induced by highly stimulatory endotoxins from Escherichia coli or Salmonella enterica have been studied. Using human whole blood, we have shown that R. capsulatus PG LPS inhibited most pronouncedly the endotoxin-induced synthesis of TNF-α, IL-1β, IL-8, and IL-6 during the first 6 h after endotoxin challenge. Similarly, the endotoxin-induced release of IFN-γ was abolished by R. capsulatus PG LPS as well (24 h). In contrast to the above-mentioned cytokines, the relatively weak antagonistic activity of R. capsulatus PG LPS against endotoxin-triggered production of IL-6 and IL-8 was revealed. Since R. capsulatus PG LPS displays more potent antagonistic activity against deleterious effects of S. enterica LPS than those of E. coli LPS in the cases of such cytokines as IL-1β (6 and 24 h), IL-6 and IL-8 (4 h), we conclude that the effectiveness of protective action of antagonist is mostly determined by the primary lipid A structure of the employed agonist.

  6. Effect of lipopolysaccharide on the biological characteristics of human skin fibroblasts and hypertrophic scar tissue formation.

    Science.gov (United States)

    Yang, Hongming; Hu, Chao; Li, Fengyu; Liang, Liming; Liu, Lingying

    2013-06-01

    Burn injury-mediated destruction of the skin barrier normally induces microbial invasion, in turn leading to the development of systemic infection and occasional septic shock by the release of endotoxins. The objective of this work was to study the influence of lipopolysaccharide (LPS) on the biological characteristics of normal skin fibroblasts and to elucidate the influence of LPS in the initial stage of skin wound healing. Twenty patients with hypertrophic scar in proliferative stage were selected randomly and primary cultures were established from fibroblasts derived from their hypertrophic scar tissue and normal skin. Normal skin fibroblasts of passage 3 were stimulated with different concentrations of LPS. LPS stimulated the proliferation and collagen synthesis of fibroblasts within a certain extent of concentrations (0.005-0.5 μg/mL) (P effect on normal skin fibroblasts-continuous passage of these fibroblasts resulted in ultrastructural pattern similar to fibroblasts derived from hypertrophic scar tissue, and the findings was substantiated by hematoxylin and eosin staining and immunohistochemistry detection of proliferation cell nuclear antigen, type I procollagen and α-smooth muscle actin. Our results suggest that LPS might convert normal skin fibroblasts to hypertrophic scar tissue fibroblasts and participate in the formation of hypertrophic scar; hence, appropriate concentration of LPS may have no effect or be beneficial to skin wound healing, whereas excessive concentration of LPS may delay the time of wound healing. PMID:23653386

  7. Lipopolysaccharide disrupts the directional persistence of alveolar myofibroblast migration through EGF receptor.

    Science.gov (United States)

    Li, Huiping; Yuan, Xiaobing; Tang, Jun; Zhang, Yongjun

    2012-03-15

    Bronchopulmonary dysplasia (BPD) is characterized by alveolar simplification with decreased alveolar number and increased airspace size. Formation of alveoli involves a process known as secondary septation triggered by myofibroblasts. This study investigated the underlying mechanisms of altered lung morphogenesis in a rat model of BPD induced by intra-amniotic injection of lipopolysaccharide (LPS). Results showed that LPS disrupted alveolar morphology and led to abnormal localization of myofibroblasts in the lung of newborn rats, mostly in primary septa with few in secondary septa. To identify potential mechanisms, in vitro experiments were carried out to observe the migration behavior of myofibroblasts. The migration speed of lung myofibroblasts increased with LPS treatment, whereas the directional persistence decreased. We found that LPS induced activation of EGFR and overexpression of its ligand, TGF-α in myofibroblasts. AG1478, an EGFR inhibitor, abrogated the enhanced locomotivity of myofibroblasts by LPS and also increased the directional persistence of myofibroblast migration. Myofibroblasts showed a high asymmetry of phospho-EGFR localization, which was absent after LPS treatment. Application of rhTGF-α to myofibroblasts decreased the directional persistence. Our findings indicated that asymmetry of phospho-EGFR localization in myofibroblasts was important for cell migration and its directional persistence. We speculate that LPS exposure disrupts the asymmetric localization of phospho-EGFR, leading to decreased stability of cell polarity and final abnormal location of myofibroblasts in vivo, which is critical to secondary septation and may contribute to the arrested alveolar development in BPD.

  8. The effects of propolis on cytokine production in lipopolysaccharide-stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Hatice Özbilge

    2011-12-01

    Full Text Available Objectives: Propolis, a bee-product, has attracted researchers’ interest in recent years because of several biological and pharmacological properties. Lipopolysaccharide (LPS is a component of the outer membrane of Gram-negative bacteria and has an important role in the pathogenesis of septic shock and several inflammatory diseases by causing excessive release of inflammatory cytokines. The aim of this study was to investigate the effects of ethanol extract of propolis collected in Kayseri and its surroundings on production of pro-inflammatory cytokines in LPS-stimulated macrophages.Materials and methods: In vitro, U937 human macrophage cells were grown in RPMI-1640 medium supplemented with fetal bovine serum (10% and penicillin-streptomycin (2% and divided into: control, LPS treated, and propolis+LPS treated cell groups. After incubation in an atmosphere of 5% CO2 and at 37°C of cells, interleukin (IL-1β, IL-6 and tumor necrosis factor (TNF-α levels were measured in cell-free supernatants by ELISA.Results: IL-1β, IL-6 and TNF-α levels increased in LPS treated cell group according to control, statistically significant. Each cytokine levels significantly decreased in LPS and propolis treated cell group according to only LPS treated cell group (p<0.05.Conclusion: Propolis is a natural product to be examined for usage when needed the suppression of pro-inflammatory cytokines. J Clin Exp Invest 2011; 2 (4: 366-370

  9. Cerebrolysin attenuates cerebral and hepatic injury due to lipopolysaccharide in rats.

    Science.gov (United States)

    Abdel-Salam, O M E; Omara, E A; Mohammed, N A; Youness, E R; Khadrawy, Y A; Sleem, A A

    2013-12-01

    This study aimed to investigate the effect of cerebrolysin on oxidative stress in the brain and liver during systemic inflammation. Rats were intraperitoneally challenged with a single subseptic dose of lipopolysaccharide (LPS; 300 μg/kg) without or with cerebrolysin at doses of 21.5, 43 or 86 mg/kg. After 4 h, rats were euthanized and the brain and liver tissues were subjected to biochemical and histopathological analyses. Cerebrolysin revealed inhibitory effects on the elevation of lipid peroxidation and nitric oxide induced by LPS. In contrast, the decrease in reduced glutathione level and paraoxonase activity induced by LPS was attenuated by an injection of cerebrolysin in a dose-dependent manner. Moreover, cerebrolysin reduced LPS-induced activation of brain NF-κB and reversed LPS-induced decline of brain butyrylcholinesterase and acetylcholinesterase activities in a dose-dependent manner. Histopathological analyses revealed that neuronal damage and liver necrosis induced by LPS were ameliorated by cerebrolysin dose-dependently. Cerebrolysin treatment dose-dependently attenuated LPS-induced expressions in cyclooxygenase 2, inducible nitric oxide synthase, and caspase-3 in the cortex or striatum as well as the liver. These results suggest that cerebrolysin treatment might have beneficial therapeutic effects in cerebral inflammation. Cerebrolysin might also prove of value in liver disease and this possibility requires further exploration.

  10. Age-associated metabolic dysregulation in bone marrow-derived macrophages stimulated with lipopolysaccharide

    Science.gov (United States)

    Fei, Fan; Lee, Keith M.; McCarry, Brian E.; Bowdish, Dawn M. E.

    2016-03-01

    Macrophages are major contributors to age-associated inflammation. Metabolic processes such as oxidative phosphorylation, glycolysis and the urea cycle regulate inflammatory responses by macrophages. Metabolic profiles changes with age; therefore, we hypothesized that dysregulation of metabolic processes could contribute to macrophage hyporesponsiveness to LPS. We examined the intracellular metabolome of bone marrow-derived macrophages from young (6–8 wk) and old (18–22 mo) mice following lipopolysaccharide (LPS) stimulation and tolerance. We discovered known and novel metabolites that were associated with the LPS response of macrophages from young mice, which were not inducible in macrophages from old mice. Macrophages from old mice were largely non-responsive towards LPS stimulation, and we did not observe a shift from oxidative phosphorylation to glycolysis. The critical regulatory metabolites succinate, γ-aminobutyric acid, arginine, ornithine and adenosine were increased in LPS-stimulated macrophages from young mice, but not macrophages from old mice. A shift between glycolysis and oxidative phosphorylation was not observed during LPS tolerance in macrophages from either young or old mice. Metabolic bottlenecks may be one of the mechanisms that contribute to the dysregulation of LPS responses with age.

  11. Goat cathelicidin-2 is secreted by blood leukocytes regardless of lipopolysaccharide stimulation.

    Science.gov (United States)

    Srisaikham, Supreena; Suksombat, Wisitiporn; Yoshimura, Yukinori; Isobe, Naoki

    2016-03-01

    It has been reported that goat cathelicidin-2, an antimicrobial peptide, localizes in leukocytes and is present in milk. Here, we examined whether cathelicidin-2 is secreted by leukocytes. Different concentrations (10(5) -10(8) cells/mL) of blood leukocytes were cultured for 0-48 h with or without lipopolysaccharide (LPS). After culture, the concentrations of cathelicidin-2 in the conditioned media were measured. Blood was collected from male goats 0-24 h after the intravenous injection of Escherichia coli O111:B4 LPS. The plasma cathelicidin-2 concentrations were determined and the blood leukocytes immunostained with anti-cathelicidin-2 antibody to calculate the proportion of cathelicidin-2-positive cells in the total leukocytes. When higher concentrations of leukocytes were cultured, the cathelicidin-2 concentrations in the media increased significantly, whereas the addition of LPS to the media caused no further increase. The plasma cathelicidin-2 concentrations did not increase with time after LPS infusion. The proportion of cathelicidin-2-positive cells in the total leukocytes was significantly reduced 1 h after LPS injection compared with that at 0 h, but increased again at 6 h and thereafter. These results suggest that cathlicidin-2 is secreted by leukocytes even without LPS stimulation, whereas LPS may be required for cathelicidin-2-containing leukocytes to be recruited from the blood to tissues showing inflammation. PMID:26212721

  12. Obese mice exhibit an altered behavioural and inflammatory response to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Catherine B. Lawrence

    2012-09-01

    Obesity is associated with an increase in the prevalence and severity of infections. Genetic animal models of obesity (ob/ob and db/db mice display altered centrally-mediated sickness behaviour in response to acute inflammatory stimuli such as lipopolysaccharide (LPS. However, the effect of diet-induced obesity (DIO on the anorectic and febrile response to LPS in mice is unknown. This study therefore determined how DIO and ob/ob mice respond to a systemic inflammatory challenge. C57BL/6 DIO and ob/ob mice, and their respective controls, were given an intraperitoneal (i.p. injection of LPS. Compared with controls, DIO and ob/ob mice exhibited an altered febrile response to LPS (100 μg/kg over 8 hours. LPS caused a greater and more prolonged anorexic effect in DIO compared with control mice and, in ob/ob mice, LPS induced a reduction in food intake and body weight earlier than it did in controls. These effects of LPS in obese mice were also seen after a fixed dose of LPS (5 μg. LPS (100 μg/kg induced Fos protein expression in several brain nuclei of control mice, with fewer Fos-positive cells observed in the brains of obese mice. An altered inflammatory response to LPS was also observed in obese mice compared with controls: changes in cytokine expression and release were detected in the plasma, spleen, liver and peritoneal macrophages in obese mice. In summary, DIO and ob/ob mice displayed an altered behavioural response and cytokine release to systemic inflammatory challenge. These findings could help explain why obese humans show increased sensitivity to infections.

  13. Protective effect of linarin against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure.

    Science.gov (United States)

    Kim, Seok-Joo; Cho, Hong-Ik; Kim, So-Jin; Park, Jin-Hyun; Kim, Joon-Sung; Kim, Young Ho; Lee, Sang Kook; Kwak, Jong-Hwan; Lee, Sun-Mee

    2014-09-01

    Linarin was isolated from Chrysanthemum indicum L. Fulminant hepatic failure is a serious clinical syndrome that results in massive inflammation and hepatocyte death. Apoptosis is an important cellular pathological process in d-galactosamine (GalN)/lipopolysaccharide (LPS)-induced liver injury, and regulation of liver apoptosis might be an effective therapeutic method for fulminant hepatic failure. This study examined the cytoprotective mechanisms of linarin against GalN/LPS-induced hepatic failure. Mice were given an oral administration of linarin (12.5, 25 and 50mg/kg) 1h before receiving GalN (800 mg/kg)/LPS (40 μg/kg). Linarin treatment reversed the lethality induced by GalN/LPS. After 6h of GalN/LPS injection, the serum levels of alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor (TNF)-α, interleukin-6 and interferon-γ were significantly elevated. GalN/LPS increased toll-like receptor 4 and interleukin-1 receptor-associated kinase protein expression. These increases were attenuated by linarin. Linarin attenuated the increased expression of Fas-associated death domain and caspase-8 induced by GalN/LPS, reduced the cytosolic release of cytochrome c and caspase-3 cleavage induced by GalN/LPS, and reduced the pro-apoptotic Bim phosphorylation induced by GalN/LPS. However, linarin increased the level of anti-apoptotic Bcl-xL and phosphorylation of STAT3. Our results suggest that linarin alleviates GalN/LPS-induced liver injury by suppressing TNF-α-mediated apoptotic pathways.

  14. Intra-hippocampal injection of lipopolysaccharide inhibits kindled seizures and retards kindling rate in adult rats.

    Science.gov (United States)

    Ahmadi, Amin; Sayyah, Mohammad; Khoshkholgh-Sima, Baharak; Choopani, Samira; Kazemi, Jafar; Sadegh, Mehdi; Moradpour, Farshad; Nahrevanian, Hossein

    2013-04-01

    Neuroinflammation facilitates seizure acquisition and epileptogenesis in developing brain. Yet, the studies on impact of neuroinflammation on mature brain epileptogenesis have led to inconsistent results. Hippocampus is particularly vulnerable to damage caused by ischemia, hypoxia and trauma, and the consequent neuroinflammation, which can lead in turn to epilepsy. Lipopolysaccharide (LPS) is extensively used in experimental studies to induce neuroinflammation. In this study, effect of acute and chronic intra-CA1 infusion of LPS on amygdala-kindled seizures and epileptogenesis was examined in mature rats. LPS (5 μg/rat) inhibited evoked amygdala afterdischarges and behavioral seizures. Anticonvulsant effect of LPS was observed 0.5 h after administration and continued up to 24 h. This effect was accompanied by intra-hippocampal elevation of nitric oxide (NO), interleukin1-β, and tumor necrosis factor-α and was prevented by microglia inhibitor, naloxone, NO synthase inhibitor, Nω-nitro-L-arginine methyl ester, cyclooxygenase inhibitor, piroxicam, and interleukin1-β receptor antagonist, interleukin1-ra. Moreover, daily intra-hippocampal injection of LPS significantly retarded kindling rate. In order to further elucidate the effect of LPS on synaptic transmission and short-term plasticity, changes in field excitatory postsynaptic potentials and population spikes were measured in stratum radiatum and stratum pyramidale of LPS-treated kindled rats. LPS impaired baseline synaptic transmission in hippocampal Schaffer collateral-CA1 synapse and reduced the magnitude of paired-pulse facilitation. Our results suggest that direct suppression of presynaptic mechanisms in Schaffer collateral-CA1 synapses, as well as the inflammatory mediators released by LPS in the hippocampus, is involved in antiepileptic effect of LPS.

  15. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongshan [Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ (United Kingdom); College of Life Sciences, Sichuan University, Chengdu 610065 (China); Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); Xiang, Quanju [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); Department of Microbiology, College of Resource and Environment Science, Sichuan Agriculture University, Yaan 625000 (China); Zhu, Xiaofeng [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Dong, Haohao [Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); He, Chuan [School of Electronics and Information, Wuhan Technical College of Communications, No. 6 Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065 (China); Wang, Haiyan; Zhang, Yizheng [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Wang, Wenjian, E-mail: Wenjian166@gmail.com [Laboratory of Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080 (China); Dong, Changjiang, E-mail: C.Dong@uea.ac.uk [Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ (United Kingdom)

    2014-09-26

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg{sup 2+}. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg{sup 2+}, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.

  16. CCR5 deficiency increased susceptibility to lipopolysaccharide-induced acute renal injury.

    Science.gov (United States)

    Lee, Dong Hun; Park, Mi Hee; Hwang, Chul Ju; Hwang, Jae Yeon; Yoon, Hae Suk; Yoon, Do Young; Hong, Jin Tae

    2016-05-01

    C-C chemokine receptor 5 (CCR5) regulates leukocyte chemotaxis and activation, and its deficiency exacerbates development of nephritis. Therefore, we investigated the role of CCR5 during lipopolysaccharide (LPS)-induced acute kidney injury. CCR5-deficient (CCR5-/-) and wild-type (CCR5+/+) mice, both aged about 10 months, had acute renal injury induced by intraperitoneal injection of LPS (10 mg/kg). Compared with CCR5+/+ mice, CCR5-/- mice showed increased mortality and renal injury, including elevated creatinine and blood urea nitrogen levels, following LPS challenge. Compared to CCR5+/+ mice, CCR5-/- mice also exhibited greater increases in the serum concentrations of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β following LPS challenge. Furthermore, infiltration of macrophages and neutrophils, expression of intracellular adhesion molecule (ICAM)-1, and the number of apoptotic cells were more greatly increased by LPS treatment in CCR5-/- mice than in CCR5+/+ mice. The concentrations of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β were also significantly increased in the kidney of CCR5-/- mice after LPS challenge. Moreover, primary kidney cells from CCR5-/- mice showed greater increases in TNF-α production and p38 MAP kinase activation following treatment with LPS compared with that observed in the cells from CCR5+/+ mice. LPS-induced TNF-α production and apoptosis in the primary kidney cells from CCR5-/- mice were inhibited by treatment with p38 MAP kinase inhibitor. These results suggest that CCR5 deficiency increased the production of TNF-α following LPS treatment through increased activation of the p38 pathway in the kidney, resulting in renal apoptosis and leukocyte infiltration and led to exacerbation of LPS-induced acute kidney injury.

  17. Cordyceps sobolifera extract ameliorates lipopolysaccharide-induced renal dysfunction in the rat.

    Science.gov (United States)

    Wu, Ming-Feng; Li, Ping-Chia; Chen, Chin-Chiu; Ye, Su-Shin; Chien, Chiang-Ting; Yu, Chia-Cherng

    2011-01-01

    Cordyceps Sobolifera (CS), an economic traditional Chinese herb, may ameliorate nephrotoxicity-induced renal dysfunction in the rat via antioxidant, anti-apoptosis, and anti-autophagy mechanisms. We investigated the water extract of fermented whole broth of CS on lipopolysaccharide (LPS)-induced renal cell injury in vitro and in vivo. CS effect on LPS-induced epithelial Lilly pork kidney (PK1) and Madin-Darby canine kidney epithelial (MDCK) cell death was detected with MTT assay. Two-month treatment of CS effects on renal blood flow (RBF), glomerular filtration rate (GFR), plasma blood urea nitrogen, creatinine level and leukocytes (WBC) count were determined in the LPS-treated rats. We further examined the effects of CS supplement on renal tubular oxidative stress, endoplasmic reticulum stress, apoptosis and autophagy by Western blot analysis. LPS dose-dependently induced PK1 and MDCK cell death, which can be ameliorated by CS treatment. LPS significantly decreased RBF and GFR and increased blood leukocyte counts, plasma blood urea nitrogen and creatinine level in the rat after 24 hours of injury. LPS enhanced renal tubular ER stress, autophagy and apoptosis via by increase protein expressions of GRP78, caspase 12, Beclin-1 and Bax/Bcl-2 ratio. These findings are associated with the significant staining in renal proximal and distal tubular ED-1, GRP78, Beclin-1 autophagy, and TUNEL apoptosis in the LPS-treated kidneys. Two months of CS supplement significantly improved RBF, GFR and WBC values and reduced ED-1, GRP78, Beclin-1 autophagy and TUNEL apoptosis in the LPS-treated kidneys. Long-term CS treatment reduced LPS-induced stress responses and tissue damage possibly via blocking LPS-triggered signaling pathways.

  18. Genes of the adaptive immune system are expressed early in zebrafish larval development following lipopolysaccharide stimulation

    Institute of Scientific and Technical Information of China (English)

    LI Fengling; ZHANG Shicui; WANG Zhiping; LI Hongyan

    2011-01-01

    Information regarding immunocompetence of the adaptive immune system (AIS) in zebrafish Danio rerio remains limited. Here, we stimulated an immune response in fish embryos,larvae and adults using lipopolysaccharide (LPS) and measured the upregulation of a number of AIS-related genes (Rag2, AID, TCRAC, IgLC-1, mIg, sIg, IgZ and DAB) 3 and 18 h later. We found that all of the genes evaluated were strongly induced following LPS stimulation, with most of them responding at 8 d post fertilization. This confirms that a functional adaptive immune response is present in D. rerio larvae, and provides a window for further functional analyses.

  19. Protective role of interleukin 6 in the lipopolysaccharide-galactosamine septic shock model.

    OpenAIRE

    Barton, B E; Jackson, J V

    1993-01-01

    C57BL/6J mice given low doses of lipopolysaccharide (LPS) (100 ng per mouse) plus D-galactosamine (8 mg per mouse) die within 24 h following LPS administration. We used this septic shock model to confirm the role of tumor necrosis factor in mortality using a monoclonal antibody to tumor necrosis factor to prevent lethality. Furthermore, we demonstrated that interleukin 6, rather than playing a lethal role, protected mice against death in this septic shock model. Antibody to interleukin 6 did ...

  20. Control of lipopolysaccharide biosynthesis and release by Escherichia coli and Salmonella typhimurium.

    OpenAIRE

    Ishiguro, E E; Vanderwel, D; Kusser, W

    1986-01-01

    The influence of the relA gene on lipopolysaccharide (LPS) biosynthesis and release by Escherichia coli and Salmonella typhimurium was investigated. Similar results were obtained with both species. The incorporation of [3H]galactose into LPS by galE mutants was inhibited by at least 50% (as compared with normal growing controls) during amino acid deprivation of relA+ strains. This inhibition could be prevented by the treatment of the amino acid-deprived relA+ bacteria with chloramphenicol, a ...