WorldWideScience

Sample records for bacteria laboratory formation

  1. Biofilm Formation by Gram-Negative Bacteria on Central Venous Catheter Connectors: Effect of Conditioning Films in a Laboratory Model

    OpenAIRE

    Murga, R.; Miller, J.M.; Donlan, R. M.

    2001-01-01

    Human blood components have been shown to enhance biofilm formation by gram-positive bacteria. We investigated the effect of human blood on biofilm formation on the inner lumen of needleless central venous catheter connectors by several gram-negative bacteria, specifically Enterobacter cloacae, Pseudomonas aeruginosa, and Pantoea agglomerans. Results suggest that a conditioning film of blood components promotes biofilm formation by these organisms in an in vitro system.

  2. Sulphur bacteria mediated formation of Palaeoproterozoic phosphorites

    Science.gov (United States)

    Joosu, Lauri; Lepland, Aivo; Kirsimäe, Kalle

    2014-05-01

    Modern phosphorite formation is typically associated with high productivity in upwelling areas where apatite (Ca-phosphate) precipitation is mediated by sulphur oxidising bacteria [1]. They inhabit the oxic/anoxic interface within the upper few centimetres of sediment column, accumulating phosphate in their cells under oxic conditions and releasing it rapidly when conditions become anoxic. Sulphur bacteria are known to live in close association with a consortium of anaerobic methane oxidising archaea and syntrophic sulphate-reducing bacteria. Paleoproterozoic, c. 2.0 Ga Zaonega Formation in Karelia, Russia contains several P-rich intervals in the upper part of 1500 m thick succession of organic-rich sedimentary rocks interlayered with mafic tuffs and lavas. Apatite in these P-rich intervals forms impure laminae, lenses and round-oval nodules which diameters typically range from 300 to 1000 μm. Individual apatite particles in P-rich laminae and nodules commonly occur as cylinders that are 1-8 μm long and have diameters of 0.5-4 μm. Cross-sections of best preserved cylindrical apatite particles reveal a thin outer rim whereas the internal parts consist of small anhedral elongated crystallites, intergrown with carbonaceous material. During recrystallization the outer rim thickens towards interior and cylinders may attain hexagonal crystal habit, but their size and shape remains largely unchanged [2]. The sizes of Zaonega nodules are similar to giant sulphide-oxidising bacteria known from modern and ancient settings [3, 4]. Individual apatite cylinders and aggregates have shapes and sizes similar to the methanotrophic archaea that inhabit microbial mats in modern seep/vent areas where they operate in close associations with sulphur-oxidising microbial communities [5]. Seep/vent influence during the Zaonega phosphogenesis is indicated by variable, though positive Eu anomaly, expected in magmatically active sedimentary environment experiencing several lava flows

  3. Molecular mechanism of magnet formation in bacteria.

    Science.gov (United States)

    Matsunaga, T; Sakaguchi, T

    2000-01-01

    Magnetic bacteria have an ability to synthesize intracellular ferromagnetic crystalline particles consisting of magnetite (Fe3O4) or greigite (Fe3S4) which occur within a specific size range (50-100 nm). Bacterial magnetic particles (BMPs) can be distinguished by the regular morphology and the presence of an thin organic membrane enveloping crystals from abiologically formed magnetite. The particle is the smallest magnetic crystal that has a regular morphology within the single domain size. Therefore, BMPs have an unfathomable amount of potential value for various technological applications not only scientific interests. However, the molecular and genetic mechanism of magnetite biomineralization is hardly understood although iron oxide formation occurs widely in many higher animals as well as microorganisms. In order to elucidate the molecular and genetic mechanisms of magnetite biomineralization, a magnetic bacterium Magnetospirillum sp. AMB-1, for which gene transfer and transposon mutagenesis techniques had been recently developed, has been used as a model organism. Several findings and information on the BMPs formation process have been obtained within this decade by means of studies with this model organism and its related one. Biomineralization mechanism and potential availability in biotechnology of bacterial magnets have been elucidated through molecular and genetic approach. PMID:16232810

  4. Fungi and bacteria involved in desert varnish formation

    Science.gov (United States)

    Taylor-George, S.; Palmer, F.; Staley, J. T.; Curtiss, B.; Adams, J. B.; Borns, D. J.

    1983-01-01

    Desert varnish is a coating of ferromanganese oxides and clays that develops on rock surfaces in arid to semi-arid regions. Active respiration but not photosynthesis was detected on varnished rock surfaces from the Sonoran Desert. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations, and cultivation experiments indicate that both fungi, primarily dematiaceous hyphomycetes, and bacteria are found on and within desert varnish coatings from the arid regions studied. Some fungi grow as microcolonial fungi (MCF) on rocks, and microscopic observations suggest MCF become incorporated in the varnish coating. SEM-EDAX (energy dispersive X-ray systems) analyses indicate the MCF contain 3 of the characteristic elements of varnish: iron, aluminum, and silicon. In some locations, MCF are also enriched in manganese relative to the rock substratum. Furthermore, some of the dematiaceous hyphomycetes that have been cultivated are able to oxidize manganese under laboratory conditions. It is possible that manganese-oxidizing bacteria, which are found in varnish, also play an important role in varnish formation.

  5. Laboratory Studies Of Circumstellar Carbonaceous Grain Formation

    Science.gov (United States)

    Contreras, Cesar; Sciamma-O'Brien, Ella; Salama, Farid

    2014-06-01

    The study of the formation processes of dust is essential to understand the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar (IS) chemistry and in the formation of organic molecules, little is known on the formation processes of carbonaceous dust. We report the progress that was recently achieved in this domain using NASA Ames’ COSmIC facility (Contreras & Salama 2013, ApJS, 208, 6). PAHs are important chemical building blocks of IS dust. They are detected in IDPs and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs are an important, ubiquitous component of the ISM. The formation of PAHs from smaller molecules has not been extensively studied. Therefore, we have performed laboratory experiments to study the dynamic processes of carbon grain formation, starting from the smallest hydrocarbon molecules into the formation of larger PAH and further into nanograins. Studies of IS dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include the atoms O, N, and S, have recently been performed in our laboratory using the COSmIC facility to provide conditions that simulate IS and circumstellar environments. The species formed in the COSmiC chamber through a pulsed discharge nozzle plasma source are detected and characterized with a cavity ringdown spectrometer coupled to a time-of-flight mass spectrometer, thus providing both spectroscopic and ion mass information in-situ. Analysis of solid soot particles was also conducted using scanning electron microscopy at the UCSC/NASA Ames’ MACS facility. The SEM analysis of the deposition of soot from methane and acetylene precursors seeded in argon plasmas provide examples on the types of nanoparticles and micrograins that are produced in these gas mixtures under our experimental conditions. From these measurements, we derive information on

  6. [PERSISTENCE OF BORDETELLA PERTUSSIS BACTERIA AND A POSSIBLE MECHANISM OF ITS FORMATION].

    Science.gov (United States)

    Karataev, G I; Sinyashina, L N; Medkova, A Yu; Semin, E G

    2015-01-01

    A growth of pertussis morbidity is observed in many countries of the world against the background of mass vaccindtion. Forms of the disease course have changed. Atypical forms of pertussis occur predominately in adolescents and adults. Asymptomatic carriage of the causative agent has been established. Infection of infants with. BordetelIa pertussis bacteria in more than 90% of cases occurs from parents and relatives. A prolonged persistence of the causative agent has been identified. Morbidity increase in developed countries is associated with the use of acellular vaccines, that do not protect from the infection, but reduce severity of the disease. A change of genotypes of the circulating bacteria strains is observed ubiquitously. Formation of a persistent form of B. pertussis is possible due to a reversible integration of IS-elements into bvgAS operon and other virulence genes. The results of studies of invasion and survival of B. pertussis bacteria in eukaryotic cells, a change in B. pertussis bacteria population after experimental infection of laboratory mice and monkeys are presented, accumulation of avirulent insertion Bvg mutants of B. pertussis was detected. The data obtained are in accordance with the results of analysis of causative agent population in patients with typical and atypical forms of pertussis in humans. More than 50% of the population of B. pertussis bacteria in practically healthy carriers was shown to be presented by avirulent insertion Bvg mutants. B. pertussis virulence reducing as a result of inactivation of single or several virulence genes probably provide long-term persistence of bacteria in host organism and formation of apparently healthy vehicles. Follow-up studies on that front would help to formulate new attitudes to preventive measures of pertussis and lead to development of fundamentally new pharmaceuticals (vaccines) preventing formation of bacterial persistence. PMID:26951000

  7. Biofilm Formation by Bacteria Isolated from Intravenous Catheters

    Directory of Open Access Journals (Sweden)

    Sina Hedayati

    2015-10-01

    Full Text Available Background: Reports on the association of nosocomial bacterial infections with indwelling medical devices such as intravenous catheters (IVC has increased in recent years. The potential to form biofilm on these devices seems to be the main reason for establishment of such infections. The aim of this study was to measure the potential of biofilm formation by bacterialisolates from IVCs.Methods: Seventy-one IVCs were collected from hospitalized patients in ICU, NICU, hematology and oncology wards at Taleghani Hospital from Jan 2010 to Jan 2011. The bacterial isolates were identified using the standard biochemical tests and the potential to form biofilms was determined by the microtiter plate assay method (MTP and colony morphology using Congo red agar plates (CRA.Results: Overall, 54 (71% IVCs were colonized and 76 bacteria were isolated among which, 64 (84.2% were coagulase negative staphylococci (CoNS, 3 (3.9% S. aureus, 3 (3.9% Enterococcus spp., 2 (2.6% E. coli and 4 (5.3% were miscellaneous isolates not further identified. Among the CoNS, biofilm formation was observed in 68.7% and 82.8% of bacteriausing MTP and CRA methods, respectively. S. aureus and E. coli isolates also were biofilm producers but Enterococcus and other unknown isolates were biofilm negative.Conclusions: Our results confirm that the prevalent biofilm forming bacteria on IVCs were CoNS and that was the reason for high rates of nosocomial infections.

  8. Antibiotic Resistance of Gram Negative Bacteria Isolated From Urine Cultures in Our Laboratory

    Directory of Open Access Journals (Sweden)

    Hakan Temiz

    2008-12-01

    Full Text Available In this study; we analyzed the antimicrobial susceptibility of Gram negative bacteria isolated from urine cultures in the Microbiology Laboratory of Dicle University Medical Faculty Hospital from January 2006 to December 2006; retrospectively. Escherichia coli and Klebsiella species were the most frequently isolated bacteria from both outpatients and hospitalized patients. The most effective antibiotics to these bacteria were carbapenems. These results were suggested to be useful for empirical treatment of urinary system infections in our hospital.

  9. Quorum quenching bacteria isolated from the sludge of a wastewater treatment plant and their application for controlling biofilm formation.

    Science.gov (United States)

    Kim, A-Leum; Park, Son-Young; Lee, Chi-Ho; Lee, Chung-Hak; Lee, Jung-Kee

    2014-11-28

    Bacteria recognize changes in their population density by sensing the concentration of signal molecules, N-acyl-homoserine lactones (AHLs). AHL-mediated quorum sensing (QS) plays a key role in biofilm formation, so the interference of QS, referred to as quorum quenching (QQ), has received a great deal of attention. A QQ strategy can be applied to membrane bioreactors (MBRs) for advanced wastewater treatment to control biofouling. To isolate QQ bacteria that can inhibit biofilm formation, we isolated diverse AHL-degrading bacteria from a laboratory-scale MBR and sludge from real wastewater treatment plants. A total of 225 AHLdegrading bacteria were isolated from the sludge sample by enrichment culture. To identify the enzyme responsible for AHL degradation in QQ bacteria, AHL-degrading activities were analyzed using cell-free lysate, culture supernatant, and whole cells. Afipia sp. and Acinetobacter sp. strains produced the intracellular QQ enzyme, whereas Pseudomonas sp. and Micrococcus sp. produced the extracellular QQ enzyme that was most likely to produce AHLacylase. AHL-degrading activity was observed in whole-cell assay with the Microbacterium sp. and Rhodococcus sp. strains. There has been no report for AHL-degrading capability in the case of Streptococcus sp. and Afipia sp. strains. Finally, inhibition of biofilm formation by isolated QQ bacteria or enzymes was observed on glass slides and 96-well microtiter plates using crystal violet staining. QQ strains or enzymes not only inhibited initial biofilm development but also reduced established biofilms. PMID:25112313

  10. Bacteria for improvement of oil recovery: a laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Behlulgil, K.; Mehmetoglu, M.T.

    2002-05-01

    In microbial enhanced oil recovery (MEOR) technique, microorganisms and/or their products (gases, chemicals) are used in the enhancement of oil recovery. In the present study, MEOR is tested for Garzan (26 {sup o} API) crude oil, produced from Southeast Turkey. This work consists of shut-in pressure tests and microbial water flooding experiments. In shut-in pressure tests, the oil is placed in a stainless steel cell and a certain amount of microbial solution (Clostridium acetobutylicum) is introduced. During the soaking period, the pressure increase is monitored. Results of the measurements carried out after this stage show that gas (mainly CO{sub 2}) production by the bacteria decreases the oil viscosity effectively. In microbial flooding experiments, an unconsolidated, preflooded reservoir model is subjected to microbial treatment and then flooded with water under varying conditions. The bacteria used in these experiments were Clostridium acetobutylicum and mixed soil bacteria. When compared with a conventional water flood, the results of microbial runs showed that the residual oil recovery increased more than 100% and the pH of the medium decreased. (author)

  11. Coryneform bacteria in infectious diseases: clinical and laboratory aspects.

    OpenAIRE

    Coyle, M B; Lipsky, B A

    1990-01-01

    Coryneform isolates from clinical specimens frequently cannot be identified by either reference laboratories or research laboratories. Many of these organisms are skin flora that belong to a large number of taxonomic groups, only 40% of which are in the genus Corynebacterium. This review provides an update on clinical presentations, microbiological features, and pathogenic mechanisms of infections with nondiphtheria Corynebacterium species and other pleomorphic gram-positive rods. The early l...

  12. Effect of irradiation of bacteria on the formation of spores

    International Nuclear Information System (INIS)

    Studies were carried out on bacteria: Bac. subtilis, Bac. cereus, Cl. perfringens, Cl. botulinum which were irradiated in two media (PBS and broth containing 1% of protein) with 100, 1000, 5000 and 10 000 X-radiation doses. The results obtained show that: all bacteria species studied (vegetative forms) are characterized by a high sensitivity to X-radiation, though distinctly lower than the species of Enterobacteriaceae family; the bacteria species studied are characterized by various sporing rate. The highest sporing rate was shown by Bac. cereus, the following: Bac. subtilis, Cl. perfringens and Cl. botulinum; increased X-radiation doses weaken sporing of Bac. subtilis and Bac. cereus. This effect could not be observed in Cl. perfringens and Cl. botulinum. (author)

  13. Biofilm formation and dispersal in Gram-positive bacteria

    NARCIS (Netherlands)

    Abee, T.; Kovacs, A.T.; Kuipers, O.P.; Veen, van der S.

    2011-01-01

    Biofilms are structured communities of bacteria, which are adhered to a surface and embedded in a self-produced matrix of extracellular polymeric substances. Since biofilms are very resistant to antimicrobial agents, they are at the basis of a range of problems, including quality and safety issues i

  14. Extracellular DNA formation during biofilm development by freshwater bacteria

    DEFF Research Database (Denmark)

    Tang, Lone; Schramm, Andreas; Revsbech, Niels Peter;

    2011-01-01

    a transient peak at 6 hours, and in Rheinheimera the concentration peaked at 12 hours and remained high. Interestingly, the Rheinheimera biofilm dispersed immediately after the eDNA concentration peaked. The antimicrobial effect of eDNA was tested in growth experiments, and Rheinheimera was strongly......Extracellular DNA (eDNA) has been shown to be important for biofilm formation, both in the initial step of biofilm formation (attachment), and for securing the structural stability of the mature biofilm. It is unclear whether a general consensus exists for when in biofilm formation the presence of...... eDNA is most important. In this study, we investigated the significance of eDNA during biofilm formation in four freshwater isolates. The aim was to relate the quantity and timing of eDNA production to the isolates’ ability to form biofilms. eDNA and biofilm biomass was quantified over time during...

  15. Actinide Biocolloid Formation in Brine by Halophilic Bacteria

    International Nuclear Information System (INIS)

    We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide

  16. Role in Cheese Flavour Formation of Heterofermentative Lactic Acid Bacteria from Mesophilic Starter Cultures

    DEFF Research Database (Denmark)

    Pedersen, Thomas Bæk

    Undefined mesophilic cheese starters are complex ecosystems that contain both homofermentative and heterofermentative lactic acid bacteria, with the Lactococcus genera representing the former and Lceuonostoc and sometimes Lactobacillus the latter. These starters originate from old butter starters...... dairy strains had, in comparison with plant isolates, the ability to ferment citrate and lacked several genes involved in the fermentation of complex carbohydrates. The presented research in this thesis has gained insight in to the role of heterofermentative lactic acid bacteria in cheese flavour...... formation. The traditional DL-starters contained numerous of strains of heterofermentative Le. mesenteroides, whereas Le. pseudomesenteroides and  only were found in some starters. The potential of heterofermentative lactic acid bacteria to effect the flavour formation in cheese seems to be dependent on how...

  17. STUDY ON PROBIOTIC POTENTIAL AND LABORATORY SCALE PRODUCTION OF LACTIC ACID BACTERIA

    Directory of Open Access Journals (Sweden)

    Ambule A.H.

    2012-08-01

    Full Text Available Lactic acid bacteria were isolated from dairy food. They were identified on the basis of theirmorphological, cultural and biochemical characterastics.The cell free supernatant of lactic acid bacteria were ableto inhibit the growth ofE.coli,Klebsiella aerogens,Salmonella spp. , S.aureus, P.mirabilies and Ps .aeruginosa.The probiotic properties of isolate of lactic acid bacteria (LAB-VI were investigated. The LAB-VI wassusceptible to antibiotics like ampicillin, gentamycin, ciprofloxacin, ofloxacin and streptomycin. Maximumbiomass of LAB – VI was obtained at pH: 5, inoculum size 4% v/v & incubation period 48 hrs. Efficacy ofcoconut extract medium (Type I and Type II on growth, lactic acid and hydrogen peroxide production by LAB-VI was studied using laboratory bioreactor in batch fermentation. The type II coconut extract medium gave higherbiomass yield than type I (coconut extract medium. The biomass production from MRS was more than coconutextract medium. The formulated coconut extract medium (Type II should be used to substitute MRS, since thesubstrate is economical, readily available and reduce quantity of the expensive supplements. The bacteriocinactivity of the bacteriocin from fermented Type I & Type II coconut extract media were 1:6 & 1:8 respectively.The bacteriocin activity was tested againstKlebsiella aerogens

  18. New insights on molecular regulation of biofilm formation in plant-associated bacteria

    Institute of Scientific and Technical Information of China (English)

    Luisa F. Castiblanco; George W. Sundin

    2016-01-01

    Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extrac-ellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multi-cellular behavior.

  19. New insights on molecular regulation of biofilm formation in plant-associated bacteria.

    Science.gov (United States)

    Castiblanco, Luisa F; Sundin, George W

    2016-04-01

    Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extracellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multicellular behavior. PMID:26377849

  20. Elemental sulfur formation and nitrogen removal from wastewaters by autotrophic denitrifiers and anammox bacteria.

    Science.gov (United States)

    Liu, Chunshuang; Zhao, Dongfeng; Yan, Laihong; Wang, Aijie; Gu, Yingying; Lee, Duu-Jong

    2015-09-01

    Elemental sulfur (S(0)) formation from and nitrogen removal on sulfide, nitrate and ammonium-laden wastewaters were achieved by denitrifying ammonium oxidation (DEAMOX) reactor with autotrophic denitrifiers and anaerobic ammonium oxidation (anammox) bacteria. The sulfide to nitrate ratio is a key process parameter for excess accumulation of S(0) and a ratio of 1.31:1 is a proposed optimum. The Alishewanella, Thauera and Candidatus Anammoximicrobium present respectively the autotrophic denitrifiers and anammox bacteria for the reactor. DEAMOX is demonstrated promising biological process for treating organics-deficient (S+N) wastewaters with excess S(0) production. PMID:26022701

  1. Technical Note: Enhanced reactivity of nitrogenous organohalogen formation from plant litter to bacteria

    Directory of Open Access Journals (Sweden)

    J. J. Wang

    2012-06-01

    Full Text Available C1/C2 organohalogens (organohalogens with one or two carbon atoms can have significant environmental toxicity and ecological impact, such as carcinogenesis, ozone depletion and global warming. Natural halogenation processes have been identified for a wide range of natural organic matter, including soils, plant and animal debris, algae, and fungi. Yet, few have considered these organohalogens generated from the ubiquitous bacteria, one of the largest biomass pools on Earth. Here, we report and confirm the formation of chloroform (CHCl3 dichloro-acetonitrile (CHCl2CN, chloral hydrate (CCl3CH(OH2 and their brominated analogues by direct halogenation of seven strains of common bacteria and nine cellular monomers. Comparing different major C stocks during litter decomposition stages in terrestrial ecosystems, from plant litter, decomposed litter, to bacteria, increasing reactivity for nitrogenous organohalogen yield was observed with decreasing C/N ratio. Our results raise the possibility that natural halogenation of bacteria represents a significant and overlooked contribution to global organohalogen burdens. As bacteria are decomposers that alter the C quality by transforming organic matter pools from high to low C/N ratio and constitute a large organic N pool, the bacterial activity is expected to affect the C, N, and halogen cycling through natural halogenation reactions.

  2. Glyphosate degradation by immobilized bacteria: laboratory studies showing feasibility for glyphosate removal from waste water.

    Science.gov (United States)

    Heitkamp, M A; Adams, W J; Hallas, L E

    1992-09-01

    To evaluate immobilized bacteria technology for the removal of low levels of glyphosate (N-phosphonomethylglycine) from aqueous industrial effluents, microorganisms with glyphosate-degrading activity obtained from a fill and draw enrichment reactor inoculated with activated sludge were first exposed to glyphosate production wastes containing 500-2000 mg glyphosate/L. The microorganisms were then immobilized by adsorption onto a diatomaceous earth biocarrier contained in upflow Plexiglas columns. The columns were aerated, maintained at pH 7.0-8.0, incubated at 25 degrees C, supplemented with NH4NO3 (50 mg/L), and exposed to glyphosate process wastes pumped upflow through the biocarrier. Glyphosate degradation to aminomethylphosphonic acid was initially > 96% for 21 days of operation at flows yielding hydraulic residence times (HRTs) as short as 42 min. Higher flow rate studies showed > 98% removal of 50 mg glyphosate/L from the waste stream could be achieved at a HRT of 23 min. Glyphosate removal of > 99% at a 37-min HRT was achieved under similar conditions with a column inoculated with a pure culture of Pseudomonas sp. strain LBr, a bacterium known to have high glyphosate-degrading activity. After acid shocking (pH 2.8 for 18 h) of a column of immobilized bacteria, glyphosate-degrading activity was regained within 4 days without reinoculation. Although microbial growth and glyphosate degradation were not maintained under low organic nutrient conditions in the laboratory, the low levels of degradable carbon (45-94 mg/L) in the industrial effluent were sufficient to support prolonged glyphosate-degrading activity. The results demonstrated that immobilized bacteria technology is effective in removing low levels of glyphosate in high-volume liquid waste streams. PMID:1464067

  3. Formation of an adduct between fosfomycin and glutathione: a new mechanism of antibiotic resistance in bacteria.

    OpenAIRE

    Arca, P; Rico, M; Braña, A F; Villar, C J; Hardisson, C; Suárez, J E

    1988-01-01

    Plasmid-borne resistance to fosfomycin in bacteria is due to modification of the antibiotic molecule by a glutathione S-transferase that catalyzes the formation of a covalent bond between the sulfhydryl residue of the cysteine in glutathione and the C-1 of fosfomycin. This reaction results in opening of the epoxide ring of the antibiotic to form an inactive adduct, the structure of which was confirmed by nuclear magnetic resonance. Dialyzed extracts prepared from resistant Escherichia coli st...

  4. Aggregation and biofilm formation of bacteria isolated from domestic drinking water

    OpenAIRE

    Ramalingam, B.; R. Sekar; Boxall, J. B.; Biggs, C.

    2013-01-01

    The objective of this study was to investigate the autoaggregation, coaggregation and biofilm formation of four bacteria namely Sphingobium, Xenophilus, Methylobacterium and Rhodococcus isolated from drinking water. Auto and coaggregation studies were performed by both qualitative (DAPI staining) and semi-quantitative (visual coaggregation) methods and biofilms produced by either pure or dual-cultures were quantified by crystal violet method. Results from the semi-quantitative ...

  5. Oxalate-Degrading Capacities of Gastrointestinal Lactic Acid Bacteria and Urinary Tract Stone Formation

    OpenAIRE

    Mohammad Kargar; Rouhi Afkari; Sadegh Ghorbani-Dalini

    2013-01-01

    Background: Calcium oxalate is one the most significant causes of human kidney stones. Increasing oxalate uptake results in increased urinary oxalate. Elevated urinary oxalate is one the most important causes of kidney stone formation. This study aims to evaluate oxalate-degrading capacity of lactic acid bacteria and its impact on incidence of kidney stone.Materials and Methods: This case-control study was conducted on serum, urinary, and fecal samples. The research population included a tota...

  6. The influences of fish infusion broth on the biogenic amines formation by lactic acid bacteria

    OpenAIRE

    Esmeray Küley; Fatih Özogul; Esra Balikçi; Mustafa Durmus; Deniz Ayas

    2013-01-01

    The influences of fish infusion decarboxylase broth (IDB) on biogenic amines (BA) formation by lactic acid bacteria (LAB) were investigated. BA productions by single LAB strains were tested in five different fish (anchovy, mackerel, white shark, sardine and gilthead seabream) IDB. The result of the study showed that significant differences in ammonia (AMN) and BA production were observed among the LAB strains in fish IDB (p < 0.05). The highest AMN and TMA production by LAB strains were obser...

  7. Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    Science.gov (United States)

    Möhler, O.; Georgakopoulos, D. G.; Morris, C. E.; Benz, S.; Ebert, V.; Hunsmann, S.; Saathoff, H.; Schnaiter, M.; Wagner, R.

    2008-10-01

    The ice nucleation activities of five different Pseudomonas syringae, Pseudomonas viridiflava and Erwinia herbicola bacterial species and of Snomax™ were investigated in the temperature range between -5 and -15°C. Water suspensions of these bacteria were directly sprayed into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of -5.7°C. At this temperature, about 1% of the Snomax™ cells induced immersion freezing of the spray droplets before the droplets evaporated in the cloud chamber. The living cells didn't induce any detectable immersion freezing in the spray droplets at -5.7°C. After evaporation of the spray droplets the bacterial cells remained as aerosol particles in the cloud chamber and were exposed to typical cloud formation conditions in experiments with expansion cooling to about -11°C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets. Then, only a minor fraction of the cells acted as heterogeneous ice nuclei either in the condensation or the immersion mode. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between -7 and -11°C with an ice nucleation (IN) active fraction of the order of 10-4. In agreement to previous literature results, the ice nucleation efficiency of Snomax™ cells was much larger with an IN active fraction of 0.2 at temperatures around -8°C.

  8. Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2008-04-01

    Full Text Available The ice nucleation activities of five different Pseudomonas syringae, Pseudomonas viridiflava and Erwinia herbicola bacterial species and of SnomaxTM were investigated in the temperature range between −5 and −15°C. Water suspensions of these bacteria were directly spray into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of −5.7°. At this temperature, about 1% of the SnomaxTM cells induced freezing of the spray droplets before they evaporated in the cloud chamber. The other suspensions of living cells didn't induce any measurable ice concentration during spray formation at −5.7°. The remaining aerosol was exposed to typical cloud activation conditions in subsequent experiments with expansion cooling to about −11°C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets and then eventually acted as ice nuclei to freeze the droplets. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between −7 and −11°C with an INA fraction of the order of 10−4. The ice nucleation efficiency of SnomaxTM cells was much larger with an INA fraction of 0.2 at temperatures around −8°C.

  9. Formation of Fe(III)-containing mackinawite from hydroxysulphate green rust by sulphate reducing bacteria

    International Nuclear Information System (INIS)

    The interactions between Fe(II-III) hydroxysulphate GR(SO42-) and sulphate reducing bacteria (SRB) were studied. The considered SRB, Desulfovibrio desulfuricans subsp. aestuarii ATCC 29578, were added with GR(SO42-) to culture media. Different conditions were envisioned, corresponding to various concentrations of bacteria, various sources of sulphate (dissolved SO42- + GR(SO42-) or GR(SO42-) alone) and various atmospheres (N2:H2 or N2:CO2:H2). In the first part of the study, CO2 was deliberately omitted so as to avoid the formation of carbonated compounds, and GR(SO42-) was the only source of sulphate. Cell concentration increases from ∼4 x 107 to ∼7 x 108 cells/mL in 2 weeks. The evolution with time of the iron compounds, monitored by Raman spectroscopy and X-ray diffraction, showed the progressive formation of a FeS compound, the Fe(III)-containing mackinawite. This result is consistent with the association GR(SO42-)/SRB/FeS observed in rust layers formed on steel in seawater. In the presence of CO2 and additional dissolved sulphate species, a rapid growth of the bacteria could be observed, leading to the total transformation of GR(SO42-) into mackinawite, found in three physico-chemical states (nanocrystalline, crystalline stoichiometric FeS and Fe(III)-containing), and siderite FeCO3.

  10. Laboratory Verification of Occulter Contrast Performance and Formation Flight

    Science.gov (United States)

    Sirbu, Dan

    2014-01-01

    Direct imaging of an exo-Earth is a difficult technical challenge. First, the intensity ratio between the parent star and its dim, rocky planetary companion is expected to be ten billion times. Additionally, for a planetary companion in the habitable zone the angular separation to the star is very small, such that only nearby stars are feasible targets. An external occulter is a spacecraft that is flown in formation with the observing space telescope and blocks starlight prior to the entrance pupil. Its shape must be specially designed to control for diffraction and be tolerant of errors such as misalignment, manufacturing, and deformations. In this dissertation, we present laboratory results pertaining to the optical verification of the contrast performance of a scaled occulter and implementation of an algorithm for the alignment of the telescope in the shadow of the occulter. The experimental testbed is scaled from space dimensions to the laboratory by maintaining constant Fresnel numbers while preserving an identical diffraction integral. We present monochromatic results in the image plane showing contrast better than 10 orders of magnitude, consistent with the level required for imaging an Exo-earth, and obtained using an optimized occulter shape. We compare these results to a baseline case using a circular occulter and to the theoretical predictions. Additionally, we address the principal technical challenge in the formation flight problem through demonstration of an alignment algorithm that is based on out-of-band leaked light. Such leaked light can be used a map to estimate the location of the telescope in the shadow and perform fine alignment during science observations.

  11. Growth of silicone-immobilized bacteria on polycarbonate membrane filters, a technique to study microcolony formation under anaerobic conditions

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1997-01-01

    A technique was developed to study microcolony formation by silicone- immobilized bacteria on polycarbonate membrane filters under anaerobic conditions. A sudden shift to anaerobiosis was obtained by submerging the filters in medium which was depleted for oxygen by a pure culture of bacteria. The...

  12. Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria

    CERN Document Server

    Peruani, Fernando; Jakovljevic, Vladimir; Sogaard-Andersen, Lotte; Deutsch, Andreas; Bar, Markus; 10.1103/PhysRevLett.108.098102

    2013-01-01

    We characterize cell motion in experiments and show that the transition to collective motion in colonies of gliding bacterial cells confined to a monolayer appears through the organization of cells into larger moving clusters. Collective motion by non-equilibrium cluster formation is detected for a critical cell packing fraction around 17%. This transition is characterized by a scale-free power-law cluster size distribution, with an exponent $0.88\\pm0.07$, and the appearance of giant number fluctuations. Our findings are in quantitative agreement with simulations of self-propelled rods. This suggests that the interplay of self-propulsion of bacteria and the rod-shape of bacteria is sufficient to induce collective motion.

  13. Oil spill dispersants induce formation of marine snow by phytoplankton-associated bacteria.

    Science.gov (United States)

    van Eenennaam, Justine S; Wei, Yuzhu; Grolle, Katja C F; Foekema, Edwin M; Murk, AlberTinka J

    2016-03-15

    Unusually large amounts of marine snow, including Extracellular Polymeric Substances (EPS), were formed during the 2010 Deepwater Horizon oil spill. The marine snow settled with oil and clay minerals as an oily sludge layer on the deep sea floor. This study tested the hypothesis that the unprecedented amount of chemical dispersants applied during high phytoplankton densities in the Gulf of Mexico induced high EPS formation. Two marine phytoplankton species (Dunaliella tertiolecta and Phaeodactylum tricornutum) produced EPS within days when exposed to the dispersant Corexit 9500. Phytoplankton-associated bacteria were shown to be responsible for the formation. The EPS consisted of proteins and to lesser extent polysaccharides. This study reveals an unexpected consequence of the presence of phytoplankton. This emphasizes the need to test the action of dispersants under realistic field conditions, which may seriously alter the fate of oil in the environment via increased marine snow formation. PMID:26781957

  14. Chemical reaction and dust formation studies in laboratory hydrocarbon plasmas.

    Science.gov (United States)

    Hippler, Rainer; Majumdar, Abhijit; Thejaswini, H. C.

    Plasma chemical reaction studies with relevance to, e.g., Titan's atmosphere have been per-formed in various laboratory plasmas [1,2]. Chemical reactions in a dielectric barrier discharge at medium pressure of 250-300 mbar have been studied in CH4 /N2 and CH4 /Ar gas mixtures by means of mass spectrometry. The main reaction scheme is production of H2 by fragmenta-tion of CH4 , but also production of larger hydrocarbons like Cn Hm with n up to 10 including formation of different functional CN groups is observed. [1] A. Majumdar and R. Hippler, Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition, Rev. Sci. Instrum. 78, 075103 (2007) [2] H.T. Do, G. Thieme, M. Frühlich, H. Kersten, and R. Hippler, Ion Molecule and Dust Particle Formation in Ar/CH4 , Ar/C2 H2 and Ar/C3 H6 Radio-frequency Plasmas, Contrib. Plasma Phys. 45, No. 5-6, 378-384 (2005)

  15. Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2008-10-01

    Full Text Available The ice nucleation activities of five different Pseudomonas syringae, Pseudomonas viridiflava and Erwinia herbicola bacterial species and of Snomax™ were investigated in the temperature range between −5 and −15°C. Water suspensions of these bacteria were directly sprayed into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of −5.7°C. At this temperature, about 1% of the Snomax™ cells induced immersion freezing of the spray droplets before the droplets evaporated in the cloud chamber. The living cells didn't induce any detectable immersion freezing in the spray droplets at −5.7°C. After evaporation of the spray droplets the bacterial cells remained as aerosol particles in the cloud chamber and were exposed to typical cloud formation conditions in experiments with expansion cooling to about −11°C. During these experiments, the bacterial cells first acted as cloud condensation nuclei to form cloud droplets. Then, only a minor fraction of the cells acted as heterogeneous ice nuclei either in the condensation or the immersion mode. The results indicate that the bacteria investigated in the present study are mainly ice active in the temperature range between −7 and −11°C with an ice nucleation (IN active fraction of the order of 10−4. In agreement to previous literature results, the ice nucleation efficiency of Snomax™ cells was much larger with an IN active fraction of 0.2 at temperatures around −8°C.

  16. Neutrophil extracellular traps formation by bacteria causing endometritis in the mare.

    Science.gov (United States)

    Rebordão, M R; Carneiro, C; Alexandre-Pires, G; Brito, P; Pereira, C; Nunes, T; Galvão, A; Leitão, A; Vilela, C; Ferreira-Dias, G

    2014-12-01

    Besides the classical functions, neutrophils (PMNs) are able to release DNA in response to infectious stimuli, forming neutrophil extracellular traps (NETs) and killing pathogens. The pathogenesis of endometritis in the mare is not completely understood. The aim was to evaluate the in vitro capacity of equine PMNs to secrete NETs by chemical activation, or stimulated with Streptococcus equi subspecies zooepidemicus (Szoo), Escherichia coli (Ecoli) or Staphylococcus capitis (Scap) strains obtained from mares with endometritis. Ex vivo endometrial mucus from mares with bacterial endometritis were evaluated for the presence of NETs. Equine blood PMNs were used either without or with stimulation by phorbol-myristate-acetate (PMA), a strong inducer of NETs, for 1-3h. To evaluate PMN ability to produce NETs when phagocytosis was impaired, the phagocytosis inhibitor cytochalasin (Cyt) was added after PMA. After the addition of bacteria, a subsequent 1-h incubation was carried out in seven groups. NETs were visualized by 4',6-diamidino-2-phenylindole (DAPI) and anti-histone. Ex vivo samples were immunostained for myeloperoxidase and neutrophil elastase. A 3-h incubation period of PMN + PMA increased NETs (p endometritis. Scanning electron microscopy showed the spread of NETs formed by smooth fibers and globules that can be aggregated in thick bundles. Formation of NETs and the subsequent entanglement of bacteria suggest that equine NETs might be a complementary mechanism in fighting some of the bacteria causing endometritis in the mare. PMID:25218891

  17. STUDY ON PROBIOTIC POTENTIAL AND LABORATORY SCALE PRODUCTION OF LACTIC ACID BACTERIA

    OpenAIRE

    Ambule A.H.; Timande S.P; Soni S.B

    2012-01-01

    Lactic acid bacteria were isolated from dairy food. They were identified on the basis of theirmorphological, cultural and biochemical characterastics.The cell free supernatant of lactic acid bacteria were ableto inhibit the growth ofE.coli,Klebsiella aerogens,Salmonella spp. , S.aureus, P.mirabilies and Ps .aeruginosa.The probiotic properties of isolate of lactic acid bacteria (LAB-VI) were investigated. The LAB-VI wassusceptible to antibiotics like ampicillin, gentamycin, ciprofloxacin, oflo...

  18. Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Raghupathi, Prem Krishnan; Herschend, Jakob;

    2015-01-01

    Bacterial attachment and biofilm formation can lead to poor hygienic conditions in food processing environments. Furthermore, interactions between different bacteria may induce or promote biofilm formation. In this study, we isolated and identified a total of 687 bacterial strains from seven......-culture biofilm production with high relevance for food safety and food production facilities....

  19. Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation.

    Science.gov (United States)

    Aspray, Thomas J; Frey-Klett, Pascale; Jones, Julie E; Whipps, John M; Garbaye, Jean; Bending, Gary D

    2006-11-01

    Mycorrhization helper bacteria (MHB), isolated from phylogenetically distinct ectomycorrhizal symbioses involving Lactarius rufus, Laccaria bicolor or Suillus luteus, were tested for fungus specificity to enhance L. rufus-Pinus sylvestris or L. bicolor-P. sylvestris mycorrhiza formation. As MHB isolated from the L. rufus and S. luteus mycorrhiza were originally characterised using a microcosm system, we assessed their ability to enhance mycorrhiza formation in a glasshouse system in order to determine the extent to which MHB are system-specific. Paenibacillus sp. EJP73, an MHB for L. rufus in the microcosm, significantly enhanced L. bicolor mycorrhiza formation in the glasshouse, demonstrating that the MHB effect of this bacterium is neither fungus-specific nor limited to the original experimental system. Although the five MHB strains studied were unable to significantly enhance L. rufus mycorrhiza formation, two of them did have a significant effect on dichotomous short root branching by L. rufus. The effect was specific to Paenibacillus sp. EJP73 and Burkholderia sp. EJP67, the two strains isolated from L. rufus mycorrhiza, and was not associated with auxin production. Altered mycorrhiza architecture rather than absolute number of mycorrhizal roots may be an important previously overlooked parameter for defining MHB effects. PMID:16983568

  20. Laboratory and Numerical Modeling of Smoke Characteristics for Superfog Formation

    Science.gov (United States)

    Bartolome, C.; Lu, V.; Tsui, K.; Princevac, M.; Venkatram, A.; Mahalingam, S.; Achtemeier, G.; Weise, D.

    2011-12-01

    Land management techniques in wildland areas include prescribed fires to promote biodiversity and reduce risk of severe wildfires across the United States. Several fatal car pileups have been associated with smoke-related visibility reduction from prescribed burns. Such events have occurred in year 2000 on the interstate highways I-10 and I-95, 2001 on the I-4, 2006 on the I-95, and 2008 on the I-4 causing numerous fatalities, injuries, and damage to property. In some of the cases visibility reduction caused by smoke and fog combinations traveling over roadways have been reported to be less than 3 meters, defined as superfog. Our research focuses on delineating the conditions that lead to formation of the rare phenomena of superfog and creating a tool to enable land managers to effectively plan prescribed burns and prevent tragic events. It is hypothesized that the water vapor from combustion, live fuels, soil moisture, and ambient air condense onto the cloud condensation nuclei (CCN) particles emitted from low intensity smoldering fires. Physical and numerical modeling has been used to investigate these interactions. A physical model in the laboratory has been developed to characterize the properties of smoke resulting from smoldering pine needle litters at the PSW Forest Service in Riverside, CA. Temporal measurements of temperature, relative humidity, sensible heat flux, radiation heat flux, convective heat flux, particulate matter concentrations and visibilities have been measured for specific cases. The size distribution and number concentrations of the fog droplets formed inside the chamber by mixing cool dry and moist warm air masses to produce near superfog visibilities were measured by a Phase Doppler Particle Analyzer. Thermodynamic modeling of smoke and ambient air was conducted to estimate liquid water contents (LWC) available to condense into droplets and form significant reductions in visibility. The results show that LWC of less than 2 g m-3 can be

  1. Radiosensitivity of subterranean bacteria in the Hungarian upper permian siltstone formation

    International Nuclear Information System (INIS)

    The main purpose of this work was to study the radioresistance of subterranean aerobic and anaerobic isolates from the Hungarian Upper Permian Siltstone (Aleurolite) Formation, in order to assess the safety of potential sites of future underground repositories for nuclear waste. A total of 93 isolates were studied. The radiosensitivities of these aerobic and anaerobic bacteria isolates were determined: the D10 values (decimal reducing doses) of the aerobic spore-formers lay in the range 0.80-2.44 kGy, and those of the anaerobic spore-formers lay in the range 1.86-4.93 kGy. The D10 values of the aerobic and anaerobic vegetative isolates were much lower, in the ranges 0.11-0.57 and 0.22-0.40 kGy, respectively. The variability in bacterial radioresistance indicates the biodiversity at this potential disposal site. These results can affect the construction of a future underground repository, since knowledge of the most resistant microorganism may be of importance as concerns calculation of the time required to inactivate the bacteria surrounding the containers

  2. The influences of fish infusion broth on the biogenic amines formation by lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Esmeray Küley

    2013-01-01

    Full Text Available The influences of fish infusion decarboxylase broth (IDB on biogenic amines (BA formation by lactic acid bacteria (LAB were investigated. BA productions by single LAB strains were tested in five different fish (anchovy, mackerel, white shark, sardine and gilthead seabream IDB. The result of the study showed that significant differences in ammonia (AMN and BA production were observed among the LAB strains in fish IDB (p < 0.05. The highest AMN and TMA production by LAB strains were observed for white shark IDB. The all tested bacteria had decarboxylation activity in fish IDB. The uppermost accumulated amines by LAB strains were tyramine (TYM, dopamine, serotonin and spermidine. The maximum histamine production was observed in sardine (101.69 mg/L and mackerel (100.84 mg/L IDB by Leuconostoc mesenteroides subsp. cremoris and Pediococcus acidophilus, respectively. Lactobacillus delbrueckii subsp. lactis and Pediococcus acidophilus had a high TYM producing capability (2943 mg/L and 1157 mg/L in sardine IDB.

  3. Induction of trap formation in nematode-trapping fungi by bacteria-released ammonia.

    Science.gov (United States)

    Su, H N; Xu, Y Y; Wang, X; Zhang, K Q; Li, G H

    2016-04-01

    A total of 11 bacterial strains were assayed for bacteria-induced trap formation in the nematode-trapping fungus Arthrobotrys oligospora YMF1·01883 with two-compartmented Petri dish. These strains were identified on the basis of their 16S rRNA gene sequences. Volatile organic compounds (VOCs) of eight isolates were extracted using solid-phase micro-extraction (SPME) and their structures were identified based on gas chromatography-mass spectrometry (GC-MS). At the same time, all isolates were used for quantitative measurement of ammonia by the indophenol blue method. The effects of pure commercial compounds on inducement of trap formation in A. oligospora were tested. Taken together, results demonstrated that the predominant bacterial volatile compound inducing trap formation was ammonia. Meanwhile, ammonia also played a role in other nematode-trapping fungi, including Arthrobotrys guizhouensis YMF1·00014, producing adhesive nets; Dactylellina phymatopaga YMF1·01474, producing adhesive knobs; Dactylellina cionopaga YMF1·01472, producing adhesive columns and Drechslerella brochopaga YMF1·01829, producing constricting rings. PMID:26928264

  4. Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces.

    Science.gov (United States)

    Bellenberg, Sören; Díaz, Mauricio; Noël, Nanni; Sand, Wolfgang; Poetsch, Ansgar; Guiliani, Nicolas; Vera, Mario

    2014-11-01

    Bioleaching of metal sulfides is an interfacial process where biofilm formation is considered to be important in the initial steps of this process. Among the factors regulating biofilm formation, molecular cell-to-cell communication such as quorum sensing is involved. A functional LuxIR-type I quorum sensing system is present in Acidithiobacillus ferrooxidans. However, cell-to-cell communication among different species of acidophilic mineral-oxidizing bacteria has not been studied in detail. These aspects were the scope of this study with emphasis on the effects exerted by the external addition of mixtures of synthetic N-acyl-homoserine-lactones on pure and binary cultures. Results revealed that some mixtures had inhibitory effects on pyrite leaching. Some of them correlated with changes in biofilm formation patterns on pyrite coupons. We also provide evidence that A. thiooxidans and Acidiferrobacter spp. produce N-acyl-homoserine-lactones. In addition, the observation that A. thiooxidans cells attached more readily to pyrite pre-colonized by living iron-oxidizing acidophiles than to heat-inactivated or biofilm-free pyrite grains suggests that other interactions also occur. Our experiments show that pre-cultivation conditions influence A. ferrooxidans attachment to pre-colonized pyrite surfaces. The understanding of cell-to-cell communication may consequently be used to develop attempts to influence biomining/bioremediation processes. PMID:25172572

  5. Chemomodulation of cellular movement, collective formation of vortices by swarming bacteria, and colonial development

    Science.gov (United States)

    Ben-Jacob, Eshel; Cohen, Inon; Czirók, András; Vicsek, Tamás; Gutnick, David L.

    1997-02-01

    Bacterial colonies have developed sophisticated modes of cooperative behavior which enable them to respond to adverse growth conditions. It has been shown that such behavior can be manifested in formation of complex colonial patterns. Certain Bacillus species exhibit collective migration, “turbulent like” flow and emergence of whirlpools during colonial development. Here we present experimental observations of collective behavior and a generic model to explain such behavior. The model incorporates self-propelled and interacting “particles” (swarmers). We show that velocity interaction between the particles can lead to a synchronized movement. To explain vortices formation, we propose a plausible mechanism involving a special chemotactic response (rotational chemotaxis) which is based on speed modulations according to the concentration of a chemoattractant. This mechanism differs from that exhibited by swimming bacteria. We show that the chemomodulation of swarmers' speed together with the velocity interactions impose a torque on the collective motion and can lead to formation of vortices. The inclusion of both attractive and repulsive rotational chemotaxis in the model captures the salient features of the observed growth patterns.

  6. Plasmid Instability in Batch Cultures of Recombinant Bacteria. A Laboratory Experiment.

    Science.gov (United States)

    Bentley, William E.; Kompala, Dhinakar S.

    1990-01-01

    Described is a laboratory experiment designed to expose students to problem-solving methods individually and as a group. Included are background information, a list of materials, laboratory procedures, analysis methods, and probable results. (CW)

  7. Formation of the light-harvesting complex I (B870) of anoxygenic phototrophic purple bacteria.

    Science.gov (United States)

    Drews, G

    1996-09-01

    The light-harvesting (LH) complex I (B870) of anoxygenic photosynthetic purple bacteria is the oligomeric form of its subunit B820 consisting of the low-molecular-weight polypeptides alpha, beta, bacteriochlorophyll (BChl), and carotenoids in the stoichiometric ratio [alpha1 beta1 (BChl2) Crt1-2]n. LHI surrounds the photochemical reaction center (RC). The major absorption band of the LHI complex is species-specific and is found at 870-890 nm; those of the subunit and the monomeric BChl a (dissolved in methanol) absorb at 820 and 770 nm, respectively. The isolated LHI complex can be reversibly dissociated to the B820 subunit or to the polypeptides and pigments by addition of detergents. Reconstitution of the B820 or the functional B870 complex is still possible after partial truncation of the N- or C-terminal regions of the alpha- or beta-polypeptide or of the beta-polypeptide only. The minimal structural requirements for reconstitution of a spectrally wild-type form after truncation of the polypeptides and/or modifications of the BChl molecule are described. The insertion of the LHIalpha- and LHIbeta-polypeptides into the membrane and the in vivo assembly of LHI, studied in a cell-free system and in whole cells of Rhodobacter capsulatus, depend on the primary structures of both polypeptides, BChl, the chaperones DnaK and GroEL, membrane-bound proteins, and energized membranes. Exchanges, deletions, or insertions of amino acyl residues, especially in the conserved region of the N-terminus of the LHIalpha-polypeptide, prevent or reduce the efficiency and stability of the LHI assembly. Therefore, reconstitution of LHI in a detergent micelle does not exactly reproduce the formation of the LHI complex in the photosynthetic membrane in vivo. The N-terminal domains play a crucial role in the formation of the oligomeric protein scaffold and of the pigment array. Facultatively phototrophic bacteria such as Rhodospirillum (Rsp.) rubrum or Rhodobacter (Rba.) capsulatus can

  8. Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil: A laboratory study

    International Nuclear Information System (INIS)

    A soil column experiment was carried out to investigate the effects of inoculation of bacteria on metal bioavailability, mobility and potential leachability through single chemical extraction, consequential extraction and in situ soil solution extraction technologies. Results showed that bacteria inoculated, including Azotobacter chroococcum, Bacillus megaterium and Bacillus mucilaginosus, may pose both positive and negative impacts on bioavailability and mobility of heavy metals in soil, depending on the chemical nature of the metals. The activities of bacteria led to an increase of water dissolved organic carbon (DOC) concentration and a decrease of pH value, which enhanced metal mobility and bioavailability (e.g. an increase of water-soluble and HOAc-soluble Zn). On the other hand, bacteria could immobilize metals (e.g. a great reduction of water-soluble Pb) due to the adsorption by bacterial cell walls and possible sedimentation reactions with phosphate or other anions produced through bacterial metabolism. - Influence of bacterial activities on heavy metal is two-edged

  9. Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron reducing bacteria

    Directory of Open Access Journals (Sweden)

    Furukawa Yoko

    2005-10-01

    Full Text Available Experimental batch and miscible-flow cultures were studied in order to determine the mechanistic pathways of microbial Fe(III respiration in ferruginous smectite clay, NAu-1. The primary purpose was to resolve if alteration of smectite and release of Fe precedes microbial respiration. Alteration of NAu-1, represented by the morphological and mineralogical changes, occurred regardless of the extent of microbial Fe(III reduction in all of our experimental systems, including those that contained heat-killed bacteria and those in which O2, rather than Fe(III, was the primary terminal electron acceptor. The solid alteration products observed under transmission electron microscopy included poorly crystalline smectite with diffuse electron diffraction signals, discrete grains of Fe-free amorphous aluminosilicate with increased Al/Si ratio, Fe-rich grains, and amorphous Si globules in the immediate vicinity of bacterial cells and extracellular polymeric substances. In reducing systems, Fe was also found as siderite. The small amount of Fe partitioned to the aqueous phase was primarily in the form of dissolved Fe(III species even in the systems in which Fe(III was the primary terminal electron acceptor for microbial respiration. From these observations, we conclude that microbial respiration of Fe(III in our laboratory systems proceeded through the following: (1 alteration of NAu-1 and concurrent release of Fe(III from the octahedral sheets of NAu-1; and (2 subsequent microbial respiration of Fe(III.

  10. Formation of Fe-sulfides in cultures of sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    The purpose of this study was to synthesize Fe-sulfides produced with sulfate-reducing bacteria under experimental laboratory conditions. Fe-sulfides were precipitated with biologically produced sulfide in cultures growing at 22, 45, and 60 deg. C for up to 16 weeks. Abiotic controls were prepared by reacting liquid media with Na2S solutions. Precipitates were collected anaerobically, freeze-dried and analyzed by X-ray diffraction. Additional analyses included total Fe and S content, magnetic susceptibility, specific surface area, and scanning electron microscopy. Mackinawite (FeS) and greigite (Fe3S4) were the dominant iron sulfide phases formed in sulfate-reducing bacterial cultures. An increase in the incubation temperature from 22 to 60 deg. C enhanced the crystallinity of the Fe-sulfides. Generally, greigite was more prevalent in abiotic samples and mackinawite in biogenic materials. Pyrite (FeS2) was also found in abiotic precipitates. Abiotic samples had a higher magnetic susceptibility because of the greigite and displayed improved crystallinity compared to biotic materials.

  11. Formation of Fe-sulfides in cultures of sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Gramp, Jonathan P. [Department of Microbiology, Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210 (United States); Bigham, Jerry M.; Jones, F. Sandy [School of Environment and Natural Resources, 2021 Coffey Road, Ohio State University, Columbus, OH 43210 (United States); Tuovinen, Olli H., E-mail: tuovinen.1@osu.edu [Department of Microbiology, Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210 (United States) and Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI 33101 Tampere (Finland)

    2010-03-15

    The purpose of this study was to synthesize Fe-sulfides produced with sulfate-reducing bacteria under experimental laboratory conditions. Fe-sulfides were precipitated with biologically produced sulfide in cultures growing at 22, 45, and 60 deg. C for up to 16 weeks. Abiotic controls were prepared by reacting liquid media with Na{sub 2}S solutions. Precipitates were collected anaerobically, freeze-dried and analyzed by X-ray diffraction. Additional analyses included total Fe and S content, magnetic susceptibility, specific surface area, and scanning electron microscopy. Mackinawite (FeS) and greigite (Fe{sub 3}S{sub 4}) were the dominant iron sulfide phases formed in sulfate-reducing bacterial cultures. An increase in the incubation temperature from 22 to 60 deg. C enhanced the crystallinity of the Fe-sulfides. Generally, greigite was more prevalent in abiotic samples and mackinawite in biogenic materials. Pyrite (FeS{sub 2}) was also found in abiotic precipitates. Abiotic samples had a higher magnetic susceptibility because of the greigite and displayed improved crystallinity compared to biotic materials.

  12. Formation of Fe-sulfides in cultures of sulfate-reducing bacteria.

    Science.gov (United States)

    Gramp, Jonathan P; Bigham, Jerry M; Jones, F Sandy; Tuovinen, Olli H

    2010-03-15

    The purpose of this study was to synthesize Fe-sulfides produced with sulfate-reducing bacteria under experimental laboratory conditions. Fe-sulfides were precipitated with biologically produced sulfide in cultures growing at 22, 45, and 60 degrees C for up to 16 weeks. Abiotic controls were prepared by reacting liquid media with Na(2)S solutions. Precipitates were collected anaerobically, freeze-dried and analyzed by X-ray diffraction. Additional analyses included total Fe and S content, magnetic susceptibility, specific surface area, and scanning electron microscopy. Mackinawite (FeS) and greigite (Fe(3)S(4)) were the dominant iron sulfide phases formed in sulfate-reducing bacterial cultures. An increase in the incubation temperature from 22 to 60 degrees C enhanced the crystallinity of the Fe-sulfides. Generally, greigite was more prevalent in abiotic samples and mackinawite in biogenic materials. Pyrite (FeS(2)) was also found in abiotic precipitates. Abiotic samples had a higher magnetic susceptibility because of the greigite and displayed improved crystallinity compared to biotic materials. PMID:19962824

  13. A study on the effects of some laboratory-derived genetic mutations on biofilm formation by Listeria monocytogenes

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.; Parvathi, A.; George, J.; Krohne, G.; Karunasagar, Indrani; Karunasagar, Iddya

    polymeric substance, and the biofilm bacteria are resistant to antimicrobials such as plant disinfectants, UV light and drying. Biofilm formation in the food processing environment by pathogenic bacteria is of great concern, since such bacteria can... calculated for the O.D 595 values obtained and compared using Mann-Whitney U test (n=3, P<0.05). Results and discussion Biofilm formation by pathogenic microorganisms is of immense significance to food processing industries. L. monocytogenes is one...

  14. Laboratory Investigation of Organic Aerosol Formation from Aromatic Hydrocarbons

    Science.gov (United States)

    Molina, Luisa T.; Molina, Mario J.; Zhang, Renyi

    2006-08-23

    Our work for this DOE funded project includes: (1) measurements of the kinetics and mechanism of the gas-phase oxidation reactions of the aromatic hydrocarbons initiated by OH; (2) measurements of aerosol formation from the aromatic hydrocarbons; and (3) theoretical studies to elucidate the OH-toluene reaction mechanism using quantum-chemical and rate theories.

  15. Oxalate-Degrading Capacities of Gastrointestinal Lactic Acid Bacteria and Urinary Tract Stone Formation

    Directory of Open Access Journals (Sweden)

    Mohammad Kargar

    2013-10-01

    Full Text Available Background: Calcium oxalate is one the most significant causes of human kidney stones. Increasing oxalate uptake results in increased urinary oxalate. Elevated urinary oxalate is one the most important causes of kidney stone formation. This study aims to evaluate oxalate-degrading capacity of lactic acid bacteria and its impact on incidence of kidney stone.Materials and Methods: This case-control study was conducted on serum, urinary, and fecal samples. The research population included a total of 200 subjects divided in two equal groups. They were selected from the patients with urinary tract stones, visiting urologist, and also normal people. The level of calcium, oxalate, and citrate in the urinary samples, parathyroid and calcium in the serum samples, and degrading activity of fecal lactobacillus strains of all the subjects were evaluated. Then, data analysis was carried out using SPSS-11.5, χ2 test, Fisher’s exact test, and analysis of variance. Results: The results revealed that the patients had higher urinary level of oxalate and calcium, as well as higher serum level of parathyroid hormone than normal people. In contrast, urinary level of citrate was higher in normal people. In addition, there was a significant difference between the oxalate-degrading capacities of lactobacillus isolated from the patients and their normal peers.Conclusion: Reduction of digestive lactobacillus-related oxalate-degrading capacity and increased serum level of parathyroid hormone can cause elevated urinary level of oxalate and calcium in people with kidney stone.

  16. Heterogeneous ice nucleation activity of bacteria : new laboratory experiments at simulated cloud conditions

    OpenAIRE

    Möhler, O.; Georgakopoulos, D. G.; Morris, C. E.; S. Benz; Ebert, V.; Hunsmann, S.; Saathoff, H.; M. Schnaiter; Wagner, R.

    2008-01-01

    The ice nucleation activities of five different Pseudomonas syringae, Pseudomonas viridiflava and Erwinia herbicola bacterial species and of Snomax™ were investigated in the temperature range between −5 and −15°C. Water suspensions of these bacteria were directly sprayed into the cloud chamber of the AIDA facility of Forschungszentrum Karlsruhe at a temperature of −5.7°C. At this temperature...

  17. Proteomic insights into intra- and intercellular plant-bacteria symbiotic association during root nodule formation

    OpenAIRE

    Salavati, Afshin; Shafeinia, Alireza; Klubicova, Katarina; Bushehri, Ali A. S.; Komatsu, Setsuko

    2013-01-01

    Over the last several decades, there have been a large number of studies done on the all aspects of legumes and bacteria which participate in nitrogen-fixing symbiosis. The analysis of legume–bacteria interaction is not just a matter of numerical complexity in terms of variants of gene products that can arise from a single gene. Bacteria regulate their quorum-sensing genes to enhance their ability to induce conjugation of plasmids and symbiotic islands, and various protein secretion mechanism...

  18. NGC 4550 - A laboratory for testing galaxy formation

    Science.gov (United States)

    Rix, Hans-Walter; Franx, Marijn; Fisher, David; Illingworth, Garth

    1992-01-01

    The kinematic and photometric structure of the two components of the E7/S0 galaxy NGC 4550 are evaluated quantitatively to determine the system's morphology. Attention is given to whether the data indicate a rotating bulge with a counterrotating disk or a pair of counterstreaming disks, and formation scenarios are discussed in the light of the findings. The data examined include long-slit spectroscopy with evidence of bimodality in the line-of-sight velocity distribution. Two photometrically inseparable counterstreaming disk components are identified and their velocities given. The structure and the formation scenarios given point to the feasibility of absorption of external material by galaxy disks without extreme heating. The possibility of detecting stellar counterrotation in S0 disks is discussed based on the study of NGC 4550.

  19. Long-term effects of antibiotics on the elimination of chemical oxygen demand, nitrification, and viable bacteria in laboratory-scale wastewater treatment plants.

    Science.gov (United States)

    Schmidt, Susan; Winter, Josef; Gallert, Claudia

    2012-10-01

    Antibiotics and other pharmaceuticals are contaminants of the environment because of their widespread use and incomplete removal by microorganisms during wastewater treatment. The influence of a mixture of ciprofloxacin (CIP), gentamicin (GM), sulfamethoxazole (SMZ)/trimethoprim (TMP), and vancomycin (VA), up to a final concentration of 40 mg/L, on the elimination of chemical oxygen demand (COD), nitrification, and survival of bacteria, as well as the elimination of the antibiotics, was assessed in a long-term study in laboratory treatment plants (LTPs). In the presence of 30 mg/L antibiotics, nitrification of artificial sewage by activated sludge ended at nitrite. Nitrate formation was almost completely inhibited. No nitrification at all was possible in the presence of 40 mg/L antibiotics. The nitrifiers were more sensitive to antibiotics than heterotrophic bacteria. COD elimination in antibiotic-stressed LTPs was not influenced by ≤20 mg/L antibiotics. Addition of 30 mg/L antibiotic mixture decreased COD removal efficiency for a period, but the LTPs recovered. Similar results were obtained with 40 mg/L antibiotic mixture. The total viable count of bacteria was not affected negatively by the antibiotics. It ranged from 2.2 × 10(6) to 8.2 × 10(6) colony-forming units per milliliter (CFU/mL) compared with the control at 1.4 × 10(6)-6.3 × 10(6) CFU/mL. Elimination of the four antibiotics during phases of 2.4-30 mg/L from the liquid was high for GM (70-90 %), much lower for VA, TMP, and CIP (0-50 %), and highly fluctuating for SMZ (0-95 %). The antibiotics were mainly adsorbed to the sludge and not biodegraded. PMID:22622431

  20. Formation factor logging by electrical methods. Comparison of formation factor logs obtained in situ and in the laboratory

    Science.gov (United States)

    Löfgren, Martin; Neretnieks, Ivars

    2003-03-01

    In this paper, a new in situ method for obtaining the formation factor, which is essential for the matrix diffusion, is described and tested in intrusive igneous rock. The method is based on electrical resistivity measurements in rock where the pore water and rock resistivities are essential parameters. The method is based on electromigration instead of diffusion as in traditional diffusion experiments. In previous works, quantitative formation factors of rock have been obtained by electrical methods in the laboratory. Here, a similar approach is used in situ. An in situ logging campaign was performed by SKB during 2000 in the 1700-m-deep borehole KLX02 in Laxemar, Sweden. The rock resistivity was measured with the slimhole Dual Laterolog from Antares. The groundwater resistivity was measured with the Difference Flow Meter from Posiva. A formation factor log was obtained with the maximum vertical resolution of 10 cm. In order to validate the log, 100 rock samples were taken from the bore core, and a formation factor log was obtained by using electrical methods in the laboratory. Both direct current (DC) and alternating current (AC) were used. The measurements on the core confirmed that the in situ log was quantitative, but with a possible systematic error. The in situ formation factors were on average about 1/3 to 1/5 of the laboratory formation factors, depending on depth.

  1. Interactions between marine snow and heterotrophic bacteria: aggregate formation and microbial dynamics

    DEFF Research Database (Denmark)

    Grossart, H.P.; Kiørboe, Thomas; Tang, K.W.;

    2006-01-01

    bacteria depended on phytoplankton growth and aggregation dynamics. The community composition of especially attached bacteria significantly differed between the 2 algal cultures. Our study suggests that phytoplankton aggregation and vertical fluxes are closely linked to interactions between the marine...... well as abundance, colonization behaviour, and community composition of bacteria during the growth of 2 marine diatoms (Thalassiosira weissflogii and Navicula sp.) under axenic and non-axenic conditions. Community composition of free-living and attached bacteria during phytoplankton growth and...... aggregation was studied by amplification of 16S rRNA gene fragments and denaturing gradient gel electrophoresis (DGGE). Our results show that the presence of bacteria was a prerequisite for aggregation of T. weissflogii but not of Navicula sp. Occurrences of distinct populations of free-living and attached...

  2. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Clara S; Fakra, Sirine C; Emerson, David; Fleming, Emily J; Edwards, Katrina J

    2011-07-01

    Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans. Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk's metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 {micro}m h(-1)). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger ({approx}100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature.

  3. Technical Note: Reactivity of C1 and C2 organohalogens formation – from plant litter to bacteria

    Directory of Open Access Journals (Sweden)

    J. J. Wang

    2012-10-01

    Full Text Available C1/C2 organohalogens (organohalogens with one or two carbon atoms can have significant environmental toxicity and ecological impact, such as carcinogenesis, ozone depletion and global warming. Natural halogenation processes have been identified for a wide range of natural organic matter, including soils, plant and animal debris, algae, and fungi. Yet, few have considered these organohalogens generated from the ubiquitous bacteria, one of the largest biomass pools on earth. Here, we report and confirm the formation of chloroform (CHCl3 dichloro-acetonitrile (CHCl2CN, chloral hydrate (CCl3CH(OH2 and their brominated analogues by direct halogenation of seven strains of common bacteria and nine cellular monomers. Comparing different major C stocks during litter decomposition stages in terrestrial ecosystems, from plant litter, decomposed litter, to bacteria, we found increasing reactivity for nitrogenous organohalogen yield with decreasing C/N ratio. Our results raise the possibility that natural halogenation of bacteria represents a significant and overlooked contribution to global organohalogen burdens. As bacteria are decomposers that alter the C quality by transforming organic matter pools from high to low C/N ratio and constitute a large organic N pool, the bacterial activity is expected to affect the C, N, and halogen cycling through natural halogenation reactions.

  4. Coexistence of Fe(II)- and Mn(II)-oxidizing bacteria govern the formation of deep sea umber deposits

    Science.gov (United States)

    Peng, Xiaotong; Ta, Kaiwen; Chen, Shun; Zhang, Lijuan; Xu, Hengchao

    2015-11-01

    The genesis of umber deposits has remained controversial for several decades. Recently, microbial Fe(II) oxidation associated with low-temperature diffuse venting has been identified as a key process for the formation of umber deposits, but the exact biogeochemical mechanisms involved to the precipitation of Mn oxides in umber deposits still remain unknown. Here, we used nano secondary ion mass spectrometer, synchrotron-based X-ray absorption spectroscopy, electron microscopy, and molecular techniques to demonstrate the coexistence of two types of metal-oxidizing bacteria within deep-sea hydrothermal umber deposits at the South Mid-Atlantic Ridge, where we found unique spheroids composed of biogenic Fe oxyhydroxides and Mn oxides in the deposits. Our data show that Fe oxyhydroxides and Mn oxides are metabolic by-products of lithotrophic Fe(II)-oxidizing bacteria and heterotrophic Mn(II)-oxidizing bacteria, respectively. The hydrothermal vents fuel lithotrophic microorganisms, which constitute a trophic base that might support the activities of heterogenic Mn(II)-oxidizing bacteria. The biological origin of umber deposits shed light on the importance of geomicrobiological interaction in triggering the formation of metalliferous deposits, with important implications for the generation of submarine Mn deposits and crusts.

  5. Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions

    Institute of Scientific and Technical Information of China (English)

    Shuang Liu; Fan Zhang; Jian Chen; Guoxin Sun

    2011-01-01

    In Rhodopseudomonas palustris,an arsM gene,encoding bacterial and archaeal homologues of the mammalian Cyt19 As(ⅢH)S-adenosylmethionine methytransferase,was regulated by arsenicals.An expression of arsM was introduced into strains for the methylation of arsenic.When arsM was expressed in Sphingomonas desiccabilis and Bacillus idriensis,it had 10 folds increase of methyled arsenic gas compared to wild type in aqueous system.In soil system,about 2.2%-4.5% of arsenic was removed by biovolatilization during 30 days.This study demonstrated that arsenic could be removed through volatilization from the contaminated soil by bacteria which have arsM gene expressed.These results showed that it is possible to use microorganisms expressing arsM as an inexnensive,effìcient strategy for arsenic bioremediation from contaminated water and soil.

  6. Effect of Punica granatum L. Flower Water Extract on Five Common Oral Bacteria and Bacterial Biofilm Formation on Orthodontic Wire

    OpenAIRE

    Elahe Vahid Dastjerdi; Zahra Abdolazimi; Marzieh Ghazanfarian; Parisa Amdjadi; Mohammad Kamalinejad; Arash Mahboubi

    2014-01-01

    Background: Use of herbal extracts and essences as natural antibacterial compounds has become increasingly popular for the control of oral infectious diseases. Therefore, finding natural antimicrobial products with the lowest side effects seems necessary. The present study sought to assess the effect of Punica granatum L. water extract on five oral bacteria and bacterial biofilm formation on orthodontic wire. Methods: Antibacterial property of P. granatum L. water extract was primarily evalua...

  7. NODC Standard Format Marine Bacteria (F009) Data (1975-1979) (NODC Accession 0014148)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Bacteria (F009) data set contains data from bacteriological studies of the water column and ocean bottom. Data include the density (number per unit...

  8. Pathogenic bacteria profile and antimicrobial susceptibility patterns of ear infection at Bahir Dar Regional Health Research Laboratory Center, Ethiopia.

    Science.gov (United States)

    Hailu, Derese; Mekonnen, Daniel; Derbie, Awoke; Mulu, Wondemagegn; Abera, Bayeh

    2016-01-01

    Ear infection linked with frequent antibiotic prescription, hearing impairment, severe disability and death is a public health threat in developing countries. However, there is scarcity of documented data in the study area. Therefore, this study aimed at determining bacterial etiologic agents and their antimicrobial susceptibility patterns among patients of all age groups referred to Bahir Dar Regional Health Research Laboratory Center. Retrospective data recorded on culture and antimicrobial susceptibility profile were retrieved for analysis. Pus swabs from discharging ears collected and processed for aerobic bacteria culture and susceptibility testing. Of the total 368 pus swab samples processed, 296 (80.4 %) were culture positive. Of which, 289 (97.6 %) were bacteria and 7 (2.4 %) were yeast cells. The proportion of ear infection was higher in males (92.7 %) than females (65 %) (P = 0.014). The frequency of ear infection below 21 years of age was 65.2 %. The predominant isolate was Pseudomonas aeruginosa (29.7 %) followed by Staphylococcus aureus (26.3 %) and Proteus spp. (21.9 %). High level of antimicrobial resistance rates were observed for amoxicillin/clavulanic acid, ampicillin and penicillin whereas ciprofloxacin, ceftriaxone, chloramphenicol, cotrimoxazole, gentamicin and amikacin were found effective against the isolated bacteria. Aerobic bacterial otitis media linked with high levels of resistance against amoxicillin/clavulanic acid and ampicillin is major health problem in the study area. Moreover, considerable level of oxacillin resistant S. aureus suggests the diffusion of methicillin resistant S. aureus in the community. Therefore, treatment of otitis media in the study area needs to be guided by antibiotic susceptibility testing of isolates. PMID:27119070

  9. Accumulation and Distribution of Lead and Chromium in Laboratory-Scale Constructed Wetlands Inoculated with Metal-Tolerant Bacteria.

    Science.gov (United States)

    Amabilis-Sosa, Leonel E; Siebe, Christina; Moeller-Chávez, Gabriela; Durán-Domínguez-de-Bazúa, María del Carmen

    2015-01-01

    The accumulation and distribution of lead and chromium was tested in a laboratory-scale constructed wetland (CW) inoculated with metal-tolerant bacteria. Two non-inoculated systems also were evaluated, one planted and the other unplanted. Mass balances indicated that 57% of chromium input was accumulated into inoculated CW after 151 days of operation. The distribution was similar in support media and vegetation, in which 78% was transferred to aerial part. Similarly Pb was accumulated 29% in the support media and 39% in vegetation, which was distributed 52% in rhizome and 48% in aerial part. Significantly lower amounts of heavy metals were accumulated in non-inoculated systems than in the inoculated wetlands (p < 0.005). In addition, a markedly higher proportion of chromium in aerial vegetation and of lead in the suspended fraction of the effluent was exhibited, which raises a subsequent recovery of the metal by harvest and settling, respectively. Results indicate that CW inoculated with metal-tolerant bacteria might be a suitable option for treating wastewater with content of lead and chromium. PMID:26023800

  10. Pseudoxanthomonas bacteria that drive deposit formation of wood extractives can be flocculated by cationic polyelectrolytes.

    Science.gov (United States)

    Leino, Taina; Raulio, Mari; Stenius, Per; Laine, Janne; Salkinoja-Salonen, Mirja

    2012-01-01

    Runnability problems caused by suspended bacteria in water using industries, have, in contrast to biofilms, received little attention. We describe here that Pseudoxanthomonas taiwanensis, a wide-spread and abundant bacterium in paper machine water circuits, aggregated dispersions of wood extractives ("pitch") and resin acid, under conditions prevailing in machine water circuits (10(9) cfu ml(-1), pH 8, 45°C). The aggregates were large enough (up to 50 μm) so that they could be expected to clog wires and felts and to reduce dewatering of the fiber web. The Pseudoxanthomonas bacteria were negatively charged over a pH range of 3.2-10. Cationic polyelectrolytes of the types used as retention aids or fixatives to flocculate "anionic trash" in paper machines were effective in flocculating the Pseudoxanthomonas bacteria. The polyelectrolyte most effective for this purpose was of high molecular weight (7-8 × 10(6) g mol(-1)) and low charge density (1 meq g(-1)), whereas polyelectrolytes that effectively zeroed the electrophoretic mobility (i.e., neutralized the negative charge) of the bacterium were less effective in flocculating the bacteria. Based on the results, we concluded that the polyelectrolytes functioning by bridging mechanism, rather than by neutralization of the negative charge, may be useful as tools for reducing harmful deposits resulting from interaction of bacteria with wood extractives in warm water industry. PMID:21720776

  11. Laboratory Studies of the Effects of Ambient Conditions, Soot Emissions, and Fuel Properties on Contrail Formation

    Science.gov (United States)

    Beyersdorf, A. J.; Anderson, B. E.; Bulzan, D.; Miake-Lye, R. C.; Tacina, K.; Thornhill, K. L.; Winstead, E.; Wong, H.; Ziemba, L. D.

    2010-12-01

    Contrail formation by aircraft can affect the global radiation budget and is the most uncertain component of aviation impacts on climate change. Field campaigns studying contrail formation have given insight into their formation pathways. However in order to improve simulations of contrail production, laboratory studies of the initial processes of contrail formation from aircraft-emitted soot are needed. As part of the Aviation Climate Change Research Initiative (ACCRI), laboratory studies of contrail formation from simulated aircraft emissions were performed at the particulate aerosol laboratory (PAL) at the NASA Glenn Research Center. The facility consists of a controlled soot source connected to a flow-through chamber which can simulate atmospheric conditions at altitudes up to 45,000 ft. Soot was made by a propane-fueled CAST generator and allowed to mix with water vapor and sulfuric acid to simulate aircraft emissions. Optical particle counters were employed at two distances from the nozzle tip that provided number concentration and size distributions of newly formed ice particles. The formation of ice particles is presented for chamber temperatures and pressures simulating altitudes between 15,000 and 40,000 feet. Initial results show the role of soot concentration, soot size, concentration of co-emitted pollutants and ambient conditions in ice particle formation.

  12. Effect of Diuron on aquatic bacteria in laboratory-scale wastewater treatment ponds with special reference to Aeromonas species studied by colony hybridization.

    Science.gov (United States)

    Sumpono; Perotti, P; Belan, A; Forestier, C; Lavedrine, B; Bohatier, J

    2003-01-01

    Six laboratory-scale wastewater treatment ponds were filled with sediment and water obtained from a reference pond (a wastewater treatment plant located in a rural environment at Montel-de-Gelat, Puy-de-Dôme, France). They were kept at 20 degrees C, with alternative light and dark periods (12 h-12 h), and fed with raw effluent supplied weekly. Three of them were treated with Diuron (dissolved in DMSO) at a final concentration 10 mg/l, while the other three received only DMSO. Physico-chemical parameters, total bacteria, cultivable bacteria, and Aeromonas spp. were measured periodically until 41 days after the Diuron contamination. Total bacteria were treated with 4,6-diamidino 2-phenylindole (DAPI) and counted by epifluoroscence microscopy. The cultivable bacteria were quantified on plate count agar medium and Aeromonas spp. using colony hybridization. In the contaminated pilots, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), volatile suspended solids (VSS), ammonium, phosphorus, and bacteria increased, but dissolved oxygen decreased. The abundance of total bacteria, cultivable bacteria (multiplied by 30), and Aeromonas spp. increased for two weeks after Diuron introduction, reverting to initial values three weeks later. The percentage of cultivable bacteria relative to total bacteria was 0.2% in controls and 1.2% in treated pilots, while the percentage of Aeromonas spp. relative to cultivable bacteria decreased from 6-10% to 2%. Our results suggest that Diuron, which acts on the photosystem II of phototrophs, supports the development of cultivable bacteria through new carbon sources derived from the decomposition of photosynthetic micro-organisms, but does not specifically support Aeromonas spp. PMID:12656266

  13. The formation, destruction and chemical influence of water ice: a review of recent laboratory results

    Science.gov (United States)

    Oberg, Karin I.

    2015-08-01

    Water ice is ubiquitous in dense molecular clouds, the stellar nurseries of the Galaxy. Recent theoretical investigations (Cleeves et al. 2014) suggest that much of this pre-stellar ice survives disk formation and thus takes part in forming of planets and planetesimals. Interstellar and circumstellar ice abundances thus affect the compositions of planets. The presence of water ice is also important for the formation of other molecules on grains. Water is the most abundant ice constituent and therefore sets the ice diffusion environment, which regulates for example the organic photochemistry proposed to drive the complex chemical evolution during star formation.The processes that regulate the formation, destruction and chemical influence of water have all been explored in laboratory experiments. One of the most significant advances in recent years is the arrival of laboratory experiments on hydrogen additions to condensed O, O2 and O3 — the proposed main formation pathways of water ice. These experiments have revealed how the interplay between diffusion and reaction barriers together regulate the water formation chemistry as well as the chemistry of closely related carbon-bearing species such as CO2. A very different set of laboratory experiments have in the same time period constrained the efficiency of non-thermal water desorption, especially UV-induced ice photodesorption. Laboratory work on other non-thermal desorption pathways, e.g. chemical desorption, has also advanced, though more experiments are needed to quantify the importance of these desorption pathways relative to photodesorption. There are also an increasing number of experiments aimed at constraining the diffusion environment of water-dominated ices and its effects on the formation of organics when ice mixtures are exposed to UV photons or other kinds of energetic radiation.I will review the many significant laboratory water ice experiments that has been relaized in the past few years and how they

  14. Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria

    OpenAIRE

    2013-01-01

    Most bacteria in nature live in surface-associated communities rather than planktonic populations. Nonetheless, how surface-associated environments shape bacterial evolutionary adaptation remains poorly understood. Here we show that subjecting Pseudomonas aeruginosa to repeated rounds of swarming, a collective form of surface migration, drives remarkable parallel evolution towards a hyperswarmer phenotype. In all independently evolved hyperswarmers, the reproducible hyperswarming phenotype is...

  15. Silver nanoparticles formation by extracellular polymeric substances (EPS) from electroactive bacteria.

    Science.gov (United States)

    Li, Shan-Wei; Zhang, Xing; Sheng, Guo-Ping

    2016-05-01

    Microbial extracellular polymeric substances (EPS) excreted from microorganisms were a complex natural biological polymer mixture of proteins and polysaccharides, which played an important roles in the transport of metals, such as Ag(+). Electroactive bacteria, is an important class of environmental microorganisms, which can use iron or manganese mineral as terminal electron acceptors to generate energy for biosynthesis and cell maintenance. In this work, the EPS extracted of three electroactive bacteria (Shewanella oneidensis, Aeromonas hydrophila, and Pseudomonas putida) were used for reducing Ag(+) and forming silver nanoparticles (AgNPs). Results showed that all the three microbial EPS could reduce Ag(+) to AgNPs. The formed AgNPs were characterized in depth by the UV-visible spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. The main components in the EPS from the three electroactive bacteria were analyzed. The presence of cytochrome c in these EPS was confirmed, and they were found to contribute to the reduction of Ag(+) to AgNPs. The results indicated that the EPS of electroactive bacteria could act as a reductant for AgNPs synthesis and could provide new information to understand the fate of metals and their metal nanoparticles in the natural environments. PMID:26797954

  16. Concentration and detection of bacteria in virtual environmental samples based on non-immunomagnetic separation and quantum dots by using a laboratory-made system

    Science.gov (United States)

    Cheng, Zhi; Wu, Taihu; Chen, Feng; Du, Yaohua; Gu, Biao; Li, Chao; Yang, Zijian

    2012-03-01

    This study investigated a method that simultaneously detects three bacteria, Salmonella typhimurium, Escherichia coli, and Staphylococcus aureus via an approach that combines un-immunized magnetic nanoparticles for the enrichment and antibody-conjugated quantum dots (QDs) as fluorescence markers, by using a laboratory-made system. In the enrichment procedure, the un-immunized superparamagnetic polymer nanoparticles and the three bacteria formed "beadcell" complex. Magnetic nanoparticles with different size were used and some interferents were added into the bacteria suspension respectively to check the influence on concentration efficiency. In the immuno-fluorescence labeling procedure, QDs with different emission wavelenghs were immobilized with antibody. Antibody conjugated QDs capture the bacteria selectively and specifically so that "sandwich" complex were formed. The suspension of the labeled bacteria was trickled onto a microporous membrane. A 450nm semiconductor laser was used as a part of the laboratory-made system to excite the QDs. Three PMT detectors were utilized to detect the fluorescence intensity. These un-immunized magnetic nanoparticles can be applied in nonspecific separation and enrichment of bacteria from environmental samples, and this method, of which the detection procedures are completed within 2 h, can be applied to the cost-effective and rapid detecting of bacterial contamination.

  17. Microbial degradation of the brominated flame retardant TBNPA by groundwater bacteria: laboratory and field study.

    Science.gov (United States)

    Balaban, Noa; Bernstein, Anat; Gelman, Faina; Ronen, Zeev

    2016-08-01

    In the present study, the biodegradation of the brominated flame retardant tribromoneopentylalcohol (TBNPA) by a groundwater enrichment culture was investigated using a dual carbon ((13)C/(12)C)- bromine ((81)Br/(79)Br) stable isotope analysis. An indigenous aerobic bacterial consortium was enriched from the polluted groundwater underlying an industrial site in the northern Negev Desert, Israel, where TBNPA is an abundant pollutant. Aerobic biodegradation was shown to be rapid, with complete debromination within a few days, whereas anaerobic biodegradation was not observed. Biodegradation under aerobic conditions was accompanied by a significant carbon isotope effect with an isotopic enrichment factor of ɛCbulk = -8.8‰ ± 1.5‰, without any detectable bromine isotope fractionation. It was found that molecular oxygen is necessary for biodegradation to occur, suggesting an initial oxidative step. Based on these results, it was proposed that H abstraction from the C-H bond is the first step of TBNPA biodegradation under aerobic conditions, and that the C-H bond cleavage results in the formation of unstable intermediates, which are rapidly debrominated. A preliminary isotopic analysis of TBNPA in the groundwater underlying the industrial area revealed that there are no changes in the carbon and bromine isotope ratio values downstream of the contamination source. Considering that anoxic conditions prevail in the groundwater of the contaminated site, the lack of isotope shifts in TBNPA indicates the lack of TBNPA biodegradation in the groundwater, in accordance with our findings. PMID:27183339

  18. Formation of Short-Chain Fatty Acids from H2 and CO2 by a Mixed Culture of Bacteria

    OpenAIRE

    Goldberg, I.; Cooney, C L

    1981-01-01

    The biological utilization of CO2 and H2 for the formation of short-chain fatty acids was studied by using a mixed culture of bacteria. Optimization of a medium was carried out in continuous culture to identify limiting factors which controlled growth and production of organic acids. The optimal pH for growth and acid production was 7.0 at 37°C; the maximal cell concentration obtained was 5.9 g of cells per liter (dry weight), and the maximal amount of volatile acids formed was 4.7 g/liter, w...

  19. New Discoveries in Planetary Systems and Star Formation through Advances in Laboratory Astrophysics

    CERN Document Server

    WGLA, AAS; Cowan, John; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    As the panel on Planetary Systems and Star Formation (PSF) is fully aware, the next decade will see major advances in our understanding of these areas of research. To quote from their charge, these advances will occur in studies of solar system bodies (other than the Sun) and extrasolar planets, debris disks, exobiology, the formation of individual stars, protostellar and protoplanetary disks, molecular clouds and the cold ISM, dust, and astrochemistry. Central to the progress in these areas are the corresponding advances in laboratory astro- physics which are required for fully realizing the PSF scientific opportunities in the decade 2010-2020. Laboratory astrophysics comprises both theoretical and experimental studies of the underlying physics and chemistry which produce the observed spectra and describe the astrophysical processes. We discuss four areas of laboratory astrophysics relevant to the PSF panel: atomic, molecular, solid matter, and plasma physics. Section 2 describes some of the new opportunitie...

  20. Laboratory simulations of suprauroral mechanisms leading to perpendicular ion heating and conic formation

    International Nuclear Information System (INIS)

    Laboratory experiments are presented simulating aspects of perpendicular ion heating and conic formation that are observed or hypothesized to occur in the terrestrial ionosphere and magnetosphere. Previous laboratory observations of ion conics in the presence of the current-driven electrostatic ion cyclotron wave are reviewed. Field-aligned ion beams, accompanied by beam-generated electrostatic ion cyclotron modes, resulted in perpendicular energization of beam ions and also the heating of background plasma ions. Antenna-launched broadband and narrow-band lower hybrid waves produced considerable perpendicular ion heating and non-Maxwellian tail formation. Laboratory results are discussed in light of in situ measurements by the S3-3 satellite and the MARIE sounding rocket

  1. Exploration of fluid dynamic indicators/causative factors in the formation of tower structures in staphylococci bacteria bio-films

    Science.gov (United States)

    Sherman, Erica; Derek, Moormeier; Bayles, Kenneth; Wei, Timothy

    2015-11-01

    Staphylococcus aureus bacteria form biofilms with distinct structures that facilitate their ability to tolerate treatment and to spread within the body. As such, staph infections represent one of the greatest threats to post-surgery patients. It has been found that flow conditions play a significant role in the developmental and dispersal activity of a biofilm. The coupling between the growing biofilm and surrounding flow, however, is not well understood. Indeed, little is know why bacteria form tower structures under certain conditions but not in a predictable way. μ-PTV measurements were made in a microchannel to try to identify fluid dynamic indicators for the formation of towers in biofilm growth. Preliminary experiments indicated changes in the near wall flow up to five hours before a tower formed. The reason for that is the target of this investigation. Staphylococcus aureus bacteria were cultured in the Bioflux Fluxion channel and subjected to a steady shear rate of 0.5 dynes. In addition to μ-PTV measurement, nuclease production and cell number density counts were observed prior to and during tower development. These were compared against measurements made under the same nominal flow conditions where a tower did not form.

  2. Selection of a site adapted to the realization of an underground laboratory in clay formations

    International Nuclear Information System (INIS)

    Research carried out in Italy by ENEA for site selection of an underground laboratory in a clay formation are presented. Mine roadways, abandoned tunnels, natural or artificial escarpments are prospected. The Pasquasia potash mine in Sicily was selected. The decline reach the lower pliocen starta from -110m to -200m below surface through a clay formation. The site selected for the laboratory is 160 m deep. A 50 meter-long horizontal tunnel will be dug. Experiments planned include thermal, hydrological, mechanical and thermomechanical behavior of clays. Data on temperature variations, interstitial fluid pressure, total pressure, deformations produced by a heater placed in clay will be obtained. Data related to mechanical behavior of formation will be recorded before, during and after the construction of the gallerie. Convergence of borehole will be also studied

  3. Effect of Punica granatum L. Flower Water Extract on Five Common Oral Bacteria and Bacterial Biofilm Formation on Orthodontic Wire.

    Directory of Open Access Journals (Sweden)

    Elahe Vahid Dastjerdi

    2014-12-01

    Full Text Available Use of herbal extracts and essences as natural antibacterial compounds has become increasingly popular for the control of oral infectious diseases. Therefore, finding natural antimicrobial products with the lowest side effects seems necessary. The present study sought to assess the effect of Punica granatum L. water extract on five oral bacteria and bacterial biofilm formation on orthodontic wire.Antibacterial property of P. granatum L. water extract was primarily evaluated in brain heart infusion agar medium using well-plate method. The minimum inhibitory concentration and minimum bactericidal concentration were determined by macro-dilution method. The inhibitory effect on orthodontic wire bacterial biofilm formation was evaluated using viable cell count in biofilm medium. At the final phase, samples were fixed and analyzed by Scanning Electron Microscopy.The growth inhibition zone diameter was proportional to the extract concentration. The water extract demonstrated the maximum antibacterial effect on Streptococcus sanguinis ATCC 10556 with a minimum inhibitory concentration of 6.25 mg/ml and maximum bactericidal effect on S. sanguinis ATCC 10556 and S. sobrinus ATCC 27607 with minimum bactericidal concentration of 25 mg/ml. The water extract decreased bacterial biofilm formation by S. sanguinis, S. sobrinus, S. salivarius, S. mutans ATCC 35608 and E. faecalis CIP 55142 by 93.7-100%, 40.6-99.9%, 85.2-86.5%, 66.4-84.4% and 35.5-56.3% respectively.Punica granatum L. water extract had significant antibacterial properties against 5 oral bacteria and prevented orthodontic wire bacterial biofilm formation. However, further investigations are required to generalize these results to the clinical setting.

  4. Formation of lactic acid bacteria-yeasts communities on the olive surface during Spanish-style Manzanilla fermentations.

    Science.gov (United States)

    Arroyo-López, F N; Bautista-Gallego, J; Domínguez-Manzano, J; Romero-Gil, V; Rodriguez-Gómez, F; García-García, P; Garrido-Fernández, A; Jiménez-Díaz, R

    2012-12-01

    This work examines the formation of poly-microbial communities adhered to the surface of Manzanilla olive fruits processed according to the Spanish style. The experimental design consisted of four pilot fermenters inoculated with four Lactobacillus pentosus strains, plus another fermenter which was not inoculated and fermented spontaneously. Lactic acid bacteria and yeasts were analysed in depth on olive epidermis throughout fermentation by plate count, molecular techniques and scanning electron microscopy. Data show that in all cases high population levels (above 8 log(10) CFU per olive) were reached for both groups of microorganisms at the second week of fermentation and that these counts never fell below 6 log(10) CFU per olive during the 3 months that fermenters were monitored. In situ observation of olive epidermis slices revealed a strong aggregation and adhesion between bacteria and yeasts by the formation of a matrix which embedded the microorganisms. Geotrichum candidum, Pichia galeiformis and Candida sorbosa were the main yeast species isolated from these biofilms at the end of fermentation (confirmed by RFLP analysis of the 5.8S-ITS region), while molecular characterization of lactobacilli isolates by means of RAPD-PCR with primer OPL(5) showed in many cases a high similarity in their banding profiles with the inoculated strains. Results obtained in this survey show the importance of studying the olive epidermis throughout fermentation, because ultimately, olives are ingested by consumers. PMID:22986192

  5. Proteinaceous determinants of surface colonization in bacteria: Bacterial adhesion and biofilm formation from a protein secretion perspective

    Directory of Open Access Journals (Sweden)

    MickaelDesvaux

    2013-10-01

    Full Text Available Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative, monoderm (archetypal Gram-positive and diderm-mycolate (archetypal acid-fast bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field.

  6. Characterization of sulphate scaling formation damage from laboratory measurements to predict well productivity decline

    Energy Technology Data Exchange (ETDEWEB)

    Bedrikovetsky, P.G.; Monteiro, R. [Universidade Estadual do Norte Fluminense (UENF), Macae, RJ (Brazil). Lab. de Engenharia e Exploracao de Petroleo (LENEP); Moraes, G.P. [Centro Federal de Educacao Tecnologica (CEFET), Macae, RJ (Brazil). Unidade de Ensino Descentralizada (UNED-Macae); Lopes Junior, R.P. [PETROBRAS, Macae, RJ (Brazil). Unidade de Negocios da Bacia de Campos; Rosario, F.F.; Bezerra, M.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    Barium sulphate scaling is a chronicle disaster during offshore waterflood project where injected and formation waters are incompatible, and their mixing causes salt precipitation. It was detected in several fields of Campos Basin. The mathematical model for sulphate precipitation contains two empirical parameters: the reaction kinetics coefficient that characterizes how fast the precipitation is going on, and the formation damage coefficient showing which permeability impairment the precipitation causes. Knowledge of these two parameters is essential for reliable prediction of the well productivity decline during sea/produced water injection. These parameters are empirical and depend on rock properties; therefore they should be determined from laboratory coreflood tests by forcing the injected and formation waters through rock. Despite these tests have been presented in numerous papers, there were no attempts to determine the model coefficients from laboratory data in order to perform the laboratory-data-based reservoir simulation. A new method for simultaneous determination of both coefficients from the coreflood data is developed. The method determines the kinetic coefficient from ion concentration measurements at the core effluent; then the formation damage coefficient is determined from the pressure drop measurements. The laboratory procedures are routine, the data are available in the literature. The method is based on inverse problem for reactive flow in rocks. The inverse solution is obtained from the exact quasi steady state concentration profile during coreflood. The proposed method furnishes unique values for two coefficients, and the solution is stable with respect to small perturbations of the measured values. The laboratory data on sulphate scaling by CENPES/PETROBRAS, Brazil, and Herriot-Watt University, UK, were treated, and the data were used for prediction of productivity decline in Campos Basin reservoir. The well behaviour forecast and history

  7. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils.

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Mujawar, Liyakat Hamid; Shahzad, Tanvir; Almeelbi, Talal; Ismail, Iqbal M I; Oves, Mohammad

    2016-02-01

    Intensive agricultural practices and cultivation of exhaustive crops has deteriorated soil fertility and its quality in agroecosystems. According to an estimate, such practices will convert 30% of the total world cultivated soil into degraded land by 2020. Soil structure and fertility loss are one of the main causes of soil degradation. They are also considered as a major threat to crop production and food security for future generations. Implementing safe and environmental friendly technology would be viable solution for achieving sustainable restoration of degraded soils. Bacterial and fungal inocula have a potential to reinstate the fertility of degraded land through various processes. These microorganisms increase the nutrient bioavailability through nitrogen fixation and mobilization of key nutrients (phosphorus, potassium and iron) to the crop plants while remediate soil structure by improving its aggregation and stability. Success rate of such inocula under field conditions depends on their antagonistic or synergistic interaction with indigenous microbes or their inoculation with organic fertilizers. Co-inoculation of bacteria and fungi with or without organic fertilizer are more beneficial for reinstating the soil fertility and organic matter content than single inoculum. Such factors are of great importance when considering bacteria and fungi inocula for restoration of degraded soils. The overview of presented mechanisms and interactions will help agriculturists in planning sustainable management strategy for reinstating the fertility of degraded soil and assist them in reducing the negative impact of artificial fertilizers on our environment. PMID:26805616

  8. Co-feeding of microalgae and bacteria may result in increased N assimilation in Artemia as compared to mono-diets, as demonstrated by a 15N isotope uptake laboratory study

    OpenAIRE

    Toi, H.T.; Boeckx, P.; Sorgeloos, P.; Bossier, P.; Van Stappen, G.

    2014-01-01

    This study investigated the effect of the co-feeding of bacteria and microalgae on nitrogen (N) assimilation in an Artemia franciscana gnotobiotic laboratory culture test. Two strains of bacteria were used, HT3 and HT6, isolated from previous Artemia laboratory cultures. These were fed in combination with microalga Dunaliella tertiolecta strains, either the high quality DT 19/6B or the low quality DT 19/27 strain. Each combination of algae and bacteria was offered in different proportions, i....

  9. Spectrum of bacteria associated with diabetic foot ulcer and biofilm formation: A prospective study

    Directory of Open Access Journals (Sweden)

    Asima Banu

    2015-09-01

    The organisms causing chronic diabetic foot ulcers were commonly multidrug-resistant; this was also observed among biofilm formers. Therefore, screening for biofilm formation, along with the usual antibiogram, needs to be performed as a routine procedure in chronic diabetic ulcers to formulate effective treatment strategies for these patients.

  10. Comparing laboratory column test treatments with field profiles of fecal indicator bacteria and virus from concentrated source areas

    Science.gov (United States)

    Feighery, J.; Culligan, P.; Ferguson, A. S.; Mailloux, B. J.; McKay, L. D.; Ahmed, K.; Alam, M.; Huq, M.; Emch, M.; Serre, M. L.; Yunus, M.; van Geen, A.

    2010-12-01

    Fecal contamination of potable water supplies is prevalent throughout the developing world. In rural Bangladesh, groundwater contamination of shallow unconfined aquifers is attributed to the infiltration of fecal organisms from sewage ponds, sewage ditches and latrines. However, few studies conclusively link sources to wells at the scale required for microbial transport to occur. We present a combined field and laboratory investigation into the transport of the fecal indicator bacteria Escherichia coli (E. coli) and enteric viral indicator F+ RNA coliphage (MS-2) using drive point piezometers and extracted sediment cores. Fieldwork and coring took place in the Matlab Upazila, Bangladesh. Field measurements at the 100-cm scale were made using an array of three drive-point piezometers under highly contaminated ponds and canals over a 10-day period during the peak of the monsoon season. The profiles of E. coli detected under ponds and canals by a culture-based most probable number method were consistent with a first order filtration rate over the distances studied and filtration rates ranged from 1 - 8 m-1. In order to determine possible attachment mechanisms and the influence of sediment treatments applied in laboratory testing, duplicate column transport studies at the 10-cm scale were performed on intact cores processed immediately on-site, intact cores preserved by freezing, dried repacked sediment, acid-washed repacked sediment, and a uniform silica sand. Two ionic strengths (3.5 and 20 mM) were used to encompass the range of electrical conductivity typically found in the shallow portion of the aquifer. Columns were dissected and the attached E. coli quantified by section. Even at the solution chemistry less favorable for particle attachment (low ionic strength), filtration rates for the core tested on-site predict a transport distance of 0.5m for a 4-log unit reduction in E. coli concentration. Although the filtration rates found in the field study are lower

  11. Inhibitory effects of Tamarix hispida extracts on planktonic form and biofilm formation of six pathogenic bacteria

    OpenAIRE

    Zianab Mohsenipour; Mehdi Hassanshahian

    2015-01-01

     Introduction: Biofilms are communities of microorganisms embedded in a self-produced extracellular polymeric matrix. Bacterial cells are protected from antimicrobial agents in biofilm structure. Biofilms formation cause many problems in industry, medicine and microbial drug resistance; thus it is essential to find new techniques for removing and inhibiting biofilms. This study aimed to examine the antimicrobial effect of Tamarix hispida alcoholic extracts against six path...

  12. Periodic Colony Formation of Bacteria Due to their Cell Reproduction and Movement

    Science.gov (United States)

    Itoh, H.; Wakita, J.; Watanabe, K.; Matsuyama, T.; Matsushita, M.

    We have experimentally investigated periodic pattern formation produced by bacterial species Proteus mirabilis, which forms concentric-ring-like colonies by repeating migration and rest alternately on the surface of a solid agar medium. We distinguish three phases (initial lag phase, the following migration and consolidation phases that appear alternately) for the colony growth. Here we mainly used physical approaches in order to try to understand the formation of concentric-ring-like colonies, such as cutting the part of a colony during its growth. Global chemical signals governing the colony formation from the center were not found. We also checked phase entrainment quantitatively by letting two colonies collide with each other and confirmed that it does not take place in macroscopic scales. When we cut a colony just behind the migrating front shortly after the migration started, the migration ended earlier and the following consolidation lasted longer. However, the following cycles were not influenced by the cut, i.e., the following migration and consolidation phases were both found to return normal. The cut results in the stop of supply of cell population to the migrating front by internal waves. In fact the cell population on the new terrace during the first migration after the cut was less than that without cut. Furthermore, the cell population density was found to be recovered to the ordinary value by the end of the consolidation. All these experimental results suggest that the most important factor for the repetition of migration and consolidation phases is the cell population density.

  13. Location, formation and biosynthetic regulation of cellulases in the gliding bacteria Cytophaga hutchinsonii

    Directory of Open Access Journals (Sweden)

    Elijah Johnson

    2006-01-01

    Full Text Available An analysis of the recently published genome sequence of Cytophagahutchinsonii revealed an unusual collection of genes for an organism that can attackcrystalline cellulose. Consequently, questions were being raised by cellulase scientists, as towhat mechanism this organism uses to degrade its insoluble substrates. Cellulose, being ahighly polymeric compound and insoluble in water, cannot enter the cell walls ofmicroorganisms. Cellulose-degrading enzymes have therefore to be located on the surface ofthe cell wall or released extracellularly. The location of most cellulase enzymes has beenstudied. However, basic information on C. hutchinsonii cellulases is almost non-existent. Inthe present study, the location, formation and biosynthetic regulation of cellulases in C.hutchinsonii were demonstrated on different substrates. Various fractions isolated from C.hutchinsonii after cell rupture were assayed for carboxymethyl-cellulase activity (CMC.The cellulases were found to be predominantly cell-free during active growth on solka-flok,although 30% of activity was recorded on cell-bound enzymes. Relatively little CM-cellulase was formed when cells were grown on glucose and cellobiose. Apparently glucoseor labile substrates such as cellobiose seem to repress the formation of CM-cellulase. Thesefindings should provide some insight into possible hydrolysis mechanisms by C.hutchinsonii.

  14. Neotenic formation in laboratory colonies of the termite Coptotermes gestroi after orphaning

    Directory of Open Access Journals (Sweden)

    Ana Maria Costa-Leonardo

    2004-04-01

    Full Text Available The termite Coptotermes gestroi (Wasmann, 1896 (Rhinotermitidae: Coptotermitinae is an exotic species in Brazil and information concerning its reproductive developmental biology is scarce. We induced the formation of neotenics in laboratory colonies through orphaning experiments. Orphaning experiments were conducted in three-year old colonies of C. gestroi kept under laboratory conditions. After three months, eight nymphoid neotenics were observed in one colony after queen removal. Histological analysis showed that these neotenics were non-functional. The results suggest that these individuals may have arisen from the first nymphal instar (N1 or from an early N1 instar after one or two larval moults. Neotenics also were recorded on two incipient colonies of C. gestroi that lost the queen naturally.

  15. Formation of chloroform in spruce forest soil - results from laboratory incubation studies

    DEFF Research Database (Denmark)

    Haselmann, K.F.; Laturnus, F.; Svensmark, B.; Grøn, C.

    2000-01-01

    The release of chloroform, 1,1,1-trichloroethane, tetrachloromethane, trichloroethene and tetrachloroethene from an organic rich spruce forest soil was studied in laboratory incubation experiments by dynamic headspace analysis, thermodesorption and gas chromatography. Performance parameters are...... presented for the dynamic headspace system. For spruce forest soil, the results showed a significant increase in chloroform concentration in the headspace under aerobic conditions over a period of seven days, whereas the concentration of the other compounds remained fairly constant. A biogenic formation of...... chloroform is suggested, whereas for the other compounds anthropogenic sources are assumed. The addition of trichloroacetic acid to the soil increased the release of chloroform from the soil. It is, therefore, suggested that trichloroacetic acid also contributed to the formation of chloroform. Under the...

  16. Effects of biodegradable plastics on the predominant culturable bacteria associated with soil aggregate formation and stability after 9 months of incubation in natural soil

    Science.gov (United States)

    An in vitro study of the effects of biodegradable plastics on the predominant soil aggregating bacteria associated to soil aggregate formation and stability after 9 months of incubation in soil. Caesar-TonThat TC, Fukui R*, Caesar AJ., Lartey, RT, and Gaskin, JF. USDA-Agricultural Research Service, ...

  17. Mechanisms affecting the transport and retention of bacteria, bacteriophage and microspheres in laboratory-scale saturated fractures

    Science.gov (United States)

    Seggewiss, G.; Dickson, S. E.

    2013-12-01

    Groundwater is becoming an increasingly important water source due to the ever-increasing demands from agricultural, residential and industrial consumers. In search of more secure sources, wells are routinely finished over large vertical depths in bedrock aquifers, creating new hydraulic pathways and thus increasing the risk of cross contamination. Moreover, hydraulic pathways are also being altered and created by increasing water withdrawal rates from these wells. Currently, it is not well understood how biological contaminants are transported through, and retained in, fractured media thereby making risk assessment and land use decisions difficult. Colloid transport within fractured rock is a complex process with several mechanisms affecting transport and retention, including: advection, hydrodynamic dispersion, diffusion, size exclusion, adsorption, and decay. Several researchers have investigated the transport of bacteria, bacteriophage, and microspheres (both carboxylated and plain) to evaluate the effects of surface properties and size on transport and retention. These studies have suggested that transport is highly dependent on the physico-chemical properties of the particle, the fracture, and the carrying fluid. However, these studies contain little detail regarding the specific mechanisms responsible for transport beyond speculating about their existence. Further, little work has been done to compare the transport of these particulate materials through the same fracture, allowing for direct observations based on particulate size and surface properties. This research examines the similarities and differences in transport and retention between four different particles through two different laboratory-scale, saturated fractures. This work is designed to explore the effects of particle size, surface properties, ionic strength of the carrying solution, and aperture field characteristics on transport and retention in single, saturated fractures. The particulates

  18. The marine bacteria Shewanella frigidimarina NCIMB400 upregulates the type VI secretion system during early biofilm formation.

    Science.gov (United States)

    Linares, Denis; Jean, Natacha; Van Overtvelt, Perrine; Ouidir, Tassadit; Hardouin, Julie; Blache, Yves; Molmeret, Maëlle

    2016-02-01

    Shewanella sp. are facultative anaerobic Gram-negative bacteria, extensively studied for their electron transfer ability. Shewanella frigidimarina has been detected and isolated from marine environments, and in particular, from biofilms. However, its ability to adhere to surfaces and form a biofilm is poorly understood. In this study, we show that the ability to adhere and to form a biofilm of S. frigidimarina NCIMB400 is significantly higher than that of Shewanella oneidensis in our conditions. We also show that this strain forms a biofilm in artificial seawater, whereas in Luria-Bertani, this capacity is reduced. To identify proteins involved in early biofilm formation, a proteomic analysis of sessile versus planktonic membrane-enriched fractions allowed the identification of several components of the same type VI secretion system gene cluster: putative Hcp1 and ImpB proteins as well as a forkhead-associated domain-containing protein. The upregulation of Hcp1 a marker of active translocation has been confirmed using quantitative reverse transcription polymerase chain reaction. Our data demonstrated the presence of a single and complete type VI secretion system in S. frigidimarina NCIMB400 genome, upregulated in sessile compared with planktonic conditions. The fact that three proteins including the secreted protein Hcp1 have been identified may suggest that this type VI secretion system is functional. PMID:26617163

  19. LABORATORY INVESTIGATIONS OF POLYCYCLIC AROMATIC HYDROCARBON FORMATION AND DESTRUCTION IN THE CIRCUMSTELLAR OUTFLOWS OF CARBON STARS

    International Nuclear Information System (INIS)

    The formation and destruction mechanisms of interstellar dust analogs formed from a variety of polycyclic aromatic hydrocarbon (PAH) and hydrocarbon molecular precursors are studied in the laboratory. We used the newly developed facility COSmIC, which simulates interstellar and circumstellar environments, to investigate both PAHs and species that include the cosmically abundant atoms O, N, and S. The species generated in a discharge plasma are detected, monitored, and characterized in situ using highly sensitive techniques that provide both spectral and ion mass information. We report here the first series of measurements obtained in these experiments which focus on the characterization of the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars. We compare and discuss the relative efficiencies of the various molecular precursors that lead to the formation of the building blocks of carbon grains. We discuss the most probable molecular precursors in terms of size and structure and the implications for the expected growth and destruction processes of interstellar carbonaceous dust

  20. LABORATORY INVESTIGATIONS OF POLYCYCLIC AROMATIC HYDROCARBON FORMATION AND DESTRUCTION IN THE CIRCUMSTELLAR OUTFLOWS OF CARBON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Cesar S.; Salama, Farid, E-mail: cesar.contreras@nasa.gov, E-mail: Farid.Salama@nasa.gov [Space Science and Astrobiology Division, NASA-Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-09-15

    The formation and destruction mechanisms of interstellar dust analogs formed from a variety of polycyclic aromatic hydrocarbon (PAH) and hydrocarbon molecular precursors are studied in the laboratory. We used the newly developed facility COSmIC, which simulates interstellar and circumstellar environments, to investigate both PAHs and species that include the cosmically abundant atoms O, N, and S. The species generated in a discharge plasma are detected, monitored, and characterized in situ using highly sensitive techniques that provide both spectral and ion mass information. We report here the first series of measurements obtained in these experiments which focus on the characterization of the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars. We compare and discuss the relative efficiencies of the various molecular precursors that lead to the formation of the building blocks of carbon grains. We discuss the most probable molecular precursors in terms of size and structure and the implications for the expected growth and destruction processes of interstellar carbonaceous dust.

  1. Geology of the host formation for the new hydraulic fracturing facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Liquid low-level radioactive wastes are disposed of at Oak Ridge National Laboratory (ORNL) by the hydrofracture process. Wastes are mixed with cement and other additives to form a slurry that is injected into a low permeability shale at 300-m depth. Important properties for a host shale formation at a hydrofracture facility include: (1) predictable fracture behavior; (2) hydrologic isolation; and (3) favorable mineralogy and geochemistry to retard radionuclide migration and enhance grout stability. The stratigraphy, petrology, diagenesis, structural geology, and hydrology of the Pumpkin Valley Shale host formation at the ORNL site are summarized and discussed in light of these three properties. Empirical data from hydrofracture operations at ORNL over the past 25 years suggest that many aspects of the Pumpkin Valley Shale make it favorable for use as a host. This observation agrees with analysis of several aspects of the Pumpkin Valley Shale geology at the ORNL site. Although presently available data suggest that the permeability of the Pumpkin Valley Shale is low and that it should provide sufficient hydrologic isolation, more data are needed to properly evaluate this aspect of host formation performance

  2. Formation of histamine and biogenic amines in cold-smoked tuna: An investigation of psychrotolerant bacteria from samples implicated in cases of histamine fish poisoning

    DEFF Research Database (Denmark)

    Emborg, Jette; Dalgaard, Paw

    2006-01-01

    . Product characteristics and profiles of biogenic amines in the implicated products were also recorded. In the single poisoning case, psychrotolerant Morganella morganii -like bacteria most likely was responsible for the histamine production in CST with 2.2% ñ 0.6% NaCl in the water phase (WPS). In...... commercial samples of CST and cold-smoked blue marlin (4.1 to 12.7% WPS). Challenge tests at 5øC with psychrotolerant M. morganii and P. phosphoreum in CST with 4.4% WPS revealed growth and toxic histamine formation by the psychrotolerant M. morganii -like bacteria but not by P. phosphoreum. In a storage...

  3. Laboratory experiments on the formation and recoil jet transport of aerosol by laser ablation

    Science.gov (United States)

    Hirooka, Yoshi; Tanaka, Kazuo A.; Imamura, Keisuke; Okazaki, Katsuya

    2016-05-01

    In a high-repetition rate inertial fusion reactor, the first wall will be subjected to repeated ablation along with pellet implosions, which then leads to the formation of aerosol to scatter and/or deflect laser beams for the subsequent implosion, affecting the overall reactor performance. Proposed in the present work is a method of in-situ directed transport of aerosol particles by the use of laser ablation-induced jet recoil momenta. Lithium and carbon are used as the primary ablation targets, the former of which is known to form aerosol in the form of droplet, and the latter of which tends to form carbon nanotubes. Laboratory-scale experiments have been conducted to irradiate airborne aerosol particles with high-intensity laser to produce ablation-induced jet. Data have indicated a change in aerosol flow direction, but only in the case of lithium.

  4. A new laboratory method for evaluating formation damage in fractured carbonate reservoirs

    Institute of Scientific and Technical Information of China (English)

    Ye Yan; Yan Jienian; Zou Shengli; Wang Shuqi; Lu Rende

    2008-01-01

    Natural carbonate core samples with artificial fractures are often used to evaluate the damage of fractured carbonate formations in the laboratory. It is shown that the most frequent error for evaluation results directly from the random width characterized by the artificial fractures. To solve this problem,a series of simulated fractured core samples made of stainless steel with a given width of fracture were prepared. The relative error for the width of artificial fracture decreased to 1%. The width of natural and artificial fractures in carbonate reservoirs can be estimated by image log data. A series of tests for formation damage were conducted by using the stainless steel simulated core samples flushed with different drilling fluids, such as the suifonate/polymer drill-in fluid and the solids-free drill-in fluid with or without ideal packing bridging materials. Based on the experimental results using this kind of simulated cores, a novel approach to the damage control of fractured carbonate reservoirs was presented. The effective temporary plugging ring on the end face of the simulated core sample can be observed clearly.The experimental results also show that the stainless steel simulated cores made it possible to visualize the solids and filtrate invasion.

  5. Laboratory Studies of the Role of Amines in Particle Formation, Growth and Climate

    Energy Technology Data Exchange (ETDEWEB)

    Finlayson-Pitts, Barbara J. [Univ. of California, Irvine, CA (United States)

    2015-02-07

    Organosulfur compounds have a variety of sources, particularly biological processes in the oceans. Their oxidation in air forms sulfur dioxide, which is further oxidized to sulfuric acid, as well as methanesulfonic acid (MSA). While sulfuric acid is a well known precursor to particles in air, MSA had not been regarded as a source of new particle formation. Laboratory studies were carried out under this project that showed MSA forms new particles quite efficiently in the presence of amines and water vapor. The data could be reproduced with a relatively simple kinetics model representing cluster formation and growth, which is promising for representing this chemistry in global climate models. The initial steps in the kinetics scheme are based on quantum chemical calculations of likely clusters. The organosulfur chemistry was introduced into an atmospheric model for southern California and used to predict the impact of going to a fossil-fuel free world in which anthropogenic emissions of SO2 are removed, but the natural processes remain.

  6. Rock Formation and Cosmic Radiation Exposure Ages in Gale Crater Mudstones from the Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, Paul; Farley, Ken; Malespin, Charles; Gellert, Ralph; Grotzinger, John

    2014-05-01

    The quadrupole mass spectrometer (QMS) in the Sample Analysis at Mars (SAM) suite of the Mars Science Laboratory (MSL) has been utilized to secure abundances of 3He, 21Ne, 36Ar, and 40Ar thermally evolved from the mudstone in the stratified Yellowknife Bay formation in Gale Crater. As reported by Farley et al. [1] these measurements of cosmogenic and radiogenic noble gases together with Cl and K abundances measured by MSL's alpha particle X-ray spectrometer enable a K-Ar rock formation age of 4.21+0.35 Ga to be established as well as a surface exposure age to cosmic radiation of 78+30 Ma. Understanding surface exposures to cosmic radiation is relevant to the MSL search for organic compounds since even the limited set of studies carried out, to date, indicate that even 10's to 100's of millions of years of near surface (1-3 meter) exposure may transform a significant fraction of the organic compounds exposed to this radiation [2,3,4]. Transformation of potential biosignatures and even loss of molecular structural information in compounds that could point to exogenous or endogenous sources suggests a new paradigm in the search for near surface organics that incorporates a search for the most recently exposed outcrops through erosional processes. The K-Ar rock formation age determination shows promise for more precise in situ measurements that may help calibrate the martian cratering record that currently relies on extrapolation from the lunar record with its ground truth chronology with returned samples. We will discuss the protocol for the in situ noble gas measurements secured with SAM and ongoing studies to optimize these measurements using the SAM testbed. References: [1] Farley, K.A.M Science Magazine, 342, (2013). [2] G. Kminek et al., Earth Planet Sc Lett 245, 1 (2006). [3] Dartnell, L.R., Biogeosciences 4, 545 (2007). [4] Pavlov, A. A., et al. Geophys Res Lett 39, 13202 (2012).

  7. Electrochemical Dissolution Behavior and the Residue Formation Mechanism of Laboratory Made Carbonyl Nickel

    International Nuclear Information System (INIS)

    Highlights: • Why residue is formed during anodic dissolution of carbonyl nickel was explained. • Spatiotemporal pattern of pitting in anodic Ni dissolution was described. • The role of sulfur impurities on anodic Ni dissolution was explained. - Abstract: The anodic dissolution of two laboratory-made Ni samples obtained using the carbonyl method was investigated to understand the origin of residue formation in the anode basket in an electroplating tank. The first sample was obtained with 3 ppm addition of carbonyl sulfide to introduce a small amount of sulfur (CN-S sample). The second was obtained without sulfur impurities (CN sample). Linear sweep voltammetry and chronopotentiometry were applied to characterize the dissolution of these samples. The dissolution of the CN-S sample took place in the active region at low overpotentials. This behavior is determined by the presence of sulfur impurities that break down the passive layer and facilitate Ni dissolution. The CN sample without sulfur was dissolved at high overpotentials. The overpotential-time plots displayed regular large amplitude oscillations in which the overvoltage periodically moved between the transpassive and passive regimes. The anodic dissolution of this sample was controlled by two competing processes: breakdown and formation of the passive layer. Scanning electron microscopy and white light interference microscopy were applied to monitor the morphological changes of the two samples as a function of the dissolution time. The results of these studies showed that the CN-S sample dissolved uniformly across the surface. However, the roughness and the aspect ratio of the protruding features on the surface increased with time. This sample produced a fine residue due to detachment of small protruding crystallites. In contrast, the dissolution of the CN sample involved pit formation and took place predominantly from the bulk of the pits. The dissolution of this sample left a porous skeleton of more

  8. Recirculation System for Geothermal Energy Recovery in Sedimentary Formations: Laboratory Experiments and Numerical Simulations

    Science.gov (United States)

    Elkhoury, J. E.; Detwiler, R. L.; Serajian, V.; Bruno, M. S.

    2012-12-01

    Geothermal energy resources are more widespread than previously thought and have the potential for providing a significant amount of sustainable clean energy worldwide. In particular, hot permeable sedimentary formations provide many advantages over traditional geothermal recovery and enhanced geothermal systems in low permeability crystalline formations. These include: (1) eliminating the need for hydraulic fracturing, (2) significant reduction in risk for induced seismicity, (3) reducing the need for surface wastewater disposal, (4) contributing to decreases in greenhouse gases, and (5) potential use for CO2 sequestration. Advances in horizontal drilling, completion, and production technology from the oil and gas industry can now be applied to unlock these geothermal resources. Here, we present experimental results from a laboratory scale circulation system and numerical simulations aimed at quantifying the heat transfer capacity of sedimentary rocks. Our experiments consist of fluid flow through a saturated and pressurized sedimentary disc of 23-cm diameter and 3.8-cm thickness heated along its circumference at a constant temperature. Injection and production ports are 7.6-cm apart in the center of the disc. We used DI de-aired water and mineral oil as working fluids and explored temperatures from 20 to 150 oC and flow rates from 2 to 30 ml/min. We performed experiments on sandstone samples (Castlegate and Kirby) with different porosity, permeability and thermal conductivity to evaluate the effect of hydraulic and thermal properties on the heat transfer capacity of sediments. The producing fluid temperature followed an exponential form with time scale transients between 15 and 45 min. Steady state outflow temperatures varied between 60% and 95% of the set boundary temperature, higher percentages were observed for lower temperatures and flow rates. We used the flow and heat transport simulator TOUGH2 to develop a numerical model of our laboratory setting. Given

  9. Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of Manduca sexta (Sphingidae, Lepidoptera, Insecta).

    Science.gov (United States)

    Brinkmann, Nicole; Martens, Rainer; Tebbe, Christoph C

    2008-12-01

    Cultivation-independent analyses based on genetic profiling of partial bacterial 16S rRNA genes by PCR-single-strand conformation polymorphism (PCR-SSCP), reverse transcriptase (RT)-PCR-SSCP of the 16S rRNA itself, and stable isotope probing (SIP), followed by RT-PCR-SSCP, were applied to characterize the diversity of metabolically active bacteria in the larval gut of Manduca sexta bred on tobacco leaves under greenhouse conditions. For SIP, hatching larvae were fed with leaves from tobacco plants grown in a (13)CO(2)-enriched atmosphere. Dominant SSCP bands were sequenced and phylogenetically analyzed. Only one major gut colonizer, an Enterococcus relative, was detected; it occurred in the heavy RNA fraction, demonstrating its metabolic activity, and it originated from eggs, where its metabolic activity was also indicated by rRNA-based SSCP profiles. In contrast, a Citrobacter sedlakii relative was detected on eggs by DNA-SSCP, but rRNA-SSCP and SIP-rRNA-SSCP were negative, suggesting that these bacterial cells were inactive. A Burkholderia relative was dominant and metabolically active on the tobacco leaves but inactive inside the gut, where it was also quantitatively reduced, as suggested by lower band intensities in the DNA-based SSCP profiles. SIP-RNA-SSCP detected another metabolically active gut bacterium (Enterobacter sp.) and more bacteria in the light RNA fraction, indicating low or no metabolic activity of the latter inside the gut. We conclude that the larval gut supported only a low diversity of metabolically active bacteria. PMID:18849461

  10. Significant histamine formation in tuna ( Thunnus albacares ) at 2 degrees C - effect of vacuum- and modified atmosphere-packaging on psychrotolerant bacteria

    DEFF Research Database (Denmark)

    Emborg, Jette; Laursen, B. G.; Dalgaard, Paw

    2005-01-01

    and sensory changes were evaluated during storage at 1-3 degrees C. To explain the results obtained with naturally contaminated tuna the effect of VP and MAP on biogenic amine formation by psychrotolerant bacteria was evaluated in challenge tests at 2 degrees C and 10 degrees C. The VP tuna that caused...... of histamine were produced at 2.1 degrees C in inoculated VP tuna by both the psychrotolerant M morganii-like bacteria (7400 +/- 1050 mg/kg) and R phosphoreum (4250 +/- 2050 mg/kg). Interestingly, MAP with 40% CO2/60% O-2, in challenge tests, had a strong inhibitory effect on growth and histamine formation...... tuna it is suggested, for lean tuna loins, to replace vacuum packaging with MAP containing similar to 40% CO2 and similar to 60% O-2. (c) 2005 Elsevier B.V. All rights reserved....

  11. Use of Potential Probiotic Lactic Acid Bacteria (LAB) Biofilms for the Control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 Biofilms Formation

    OpenAIRE

    Gómez, Natacha C.; Ramiro, Juan M. P.; Quecan, Beatriz X. V.; de Melo Franco, Bernadette D. G.

    2016-01-01

    Use of probiotic biofilms can be an alternative approach for reducing the formation of pathogenic biofilms in food industries. The aims of this study were (i) to evaluate the probiotic properties of bacteriocinogenic (Lactococcus lactis VB69, L. lactis VB94, Lactobacillus sakei MBSa1, and Lactobacillus curvatus MBSa3) and non-bacteriocinogenic (L. lactis 368, Lactobacillus helveticus 354, Lactobacillus casei 40, and Weissela viridescens 113) lactic acid bacteria (LAB) isolated from Brazilian’...

  12. Formation of Nodular Structures and Nitrogen Fixation by Rhizobia on Oilseed Rape Roots Following Treatment with Pectionolytic Bacteria

    Institute of Scientific and Technical Information of China (English)

    HUXIAOJIA; ZHANGXUEJIANG

    1996-01-01

    Nodular structures were formed by rhizobia on oilseed rape oilseed rape roots following treatment with pectinolytic bacteria.Nodules developed within 50 days.Photomicrograph of nodule cells showed that the capsulated bacteria were intracellular.Rhizobia resolated from the root nodules retained not only the ability of nodulation but also the characteristic of resistance to 100μg neomycin mL-1,A low nitrogenase activity of the nodules was determined by the method of acetylene reduction.

  13. The Biodiversity of Lactic Acid Bacteria in Greek Traditional Wheat Sourdoughs Is Reflected in Both Composition and Metabolite Formation

    OpenAIRE

    De Vuyst, Luc; Schrijvers, Vincent; Paramithiotis, Spiros; Hoste, Bart; Vancanneyt, Marc; Swings, Jean; Kalantzopoulos, George; Tsakalidou, Effie; Messens, Winy

    2002-01-01

    Lactic acid bacteria (LAB) were isolated from Greek traditional wheat sourdoughs manufactured without the addition of baker's yeast. Application of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cell protein, randomly amplified polymorphic DNA-PCR, DNA-DNA hybridization, and 16S ribosomal DNA sequence analysis, in combination with physiological traits such as fructose fermentation and mannitol production, allowed us to classify the isolated bacteria into the species Lactob...

  14. Killing of enteric bacteria in drinking water by a copper device for use in the home: laboratory evidence.

    Science.gov (United States)

    Sudha, V B Preethi; Singh, K Ojit; Prasad, S R; Venkatasubramanian, Padma

    2009-08-01

    Water inoculated with 500-1000 colony forming units/ml of Escherichia coli, Salmonella Typhi and Vibrio cholerae was stored overnight at room temperature in copper pots or in glass bottles containing a copper coil devised by us. The organisms were no longer recoverable when cultured on conventional media, by contrast with water stored in control glass bottles under similar conditions. The amount of copper leached into the water after overnight storage in a copper pot or a glass bottle with a copper device was less than 475 parts per billion, which is well within the safety limits prescribed by the WHO. The device is inexpensive, reusable, easy to maintain, durable, does not need energy to run and appears to be safe. It has the potential to be used as a household water purification method for removing enteric bacteria, especially in developing countries. PMID:19230946

  15. ON WATER FORMATION IN THE INTERSTELLAR MEDIUM: LABORATORY STUDY OF THE O+D REACTION ON SURFACES

    International Nuclear Information System (INIS)

    In the interstellar medium (ISM), an important channel of water formation is the reaction of atoms on the surface of dust grains. Here, we report on a laboratory study of the formation of water via the O+D reaction network. While prior studies were done on ices, as appropriate to the formation of water in dense clouds, we explored how water formation occurs on bare surfaces, i.e., in conditions mimicking the transition from diffuse to dense clouds (Av ∼ 1-5). Reaction products were detected during deposition and afterward when the sample is brought to a high temperature. We quantified the formation of water and intermediary products, such as D2O2, over a range of surface temperatures (15-25 K). The detection of OD on the surface signals the importance of this reactant in the overall scheme of water formation in the ISM.

  16. Effect of soil invertebrates on the formation of humic substances under laboratory conditions

    Science.gov (United States)

    Frouz, J.; Li, X.; Brune, A.; Pizl, V.; Abakumov, E. V.

    2011-08-01

    The complete polymerization of phenols and proteins (one of the processes involved in the formation of humic substances) was explained. It was shown that fly ( Bibio marci) larvae and earthworms ( Aporrectodea caliginosa) participate in the complete polymerization of phenols and proteins. In a laboratory experiment, invertebrates participated in the degradation of organic matter and the synthesis of humic substances, which was proved in experiments with 14C-labeled phenols and proteins. The same organic substances (phenols and proteins) without the impact of invertebrates were used as the control substances. The distributions of the 14C isotope in alkaline extracts separated by solubility in acids (humic and fulvic acids) was compared to those of the control substances. The portion of the 14C isotope in the humic acids in the excrements of Bibio marci was higher than that in the control substances. The content of 14C-labeled humic substances in the excrements of the earthworm Aporrectodea caliginosa exceeded the control values only in the experiment with proteins. When clay material was added to the organic substances, the portion of the 14C isotope in the humic acids increased in both experiments with phenols and proteins. When these substrates passed through the digestive tracts of the invertebrates, the polymerization of organic substances and the inclusion of proteins and phenols into humic acids occurred.

  17. Laboratory formation of fullerenes from PAHs: Top-down interstellar chemistry

    CERN Document Server

    Zhen, Junfeng; Paardekooper, Daniel M; Linnartz, Harold; Tielens, Alexander G G M

    2014-01-01

    Interstellar molecules are thought to build up in the shielded environment of molecular clouds or in the envelope of evolved stars. This follows many sequential reaction steps of atoms and simple molecules in the gas phase and/or on (icy) grain surfaces. However, these chemical routes are highly inefficient for larger species in the tenuous environment of space as many steps are involved and, indeed, models fail to explain the observed high abundances. This is definitely the case for the C$_{60}$ fullerene, recently identified as one of the most complex molecules in the interstellar medium. Observations have shown that, in some PDRs, its abundance increases close to strong UV-sources. In this letter we report laboratory findings in which C$_{60}$ formation can be explained by characterizing the photochemical evolution of large PAHs. Sequential H losses lead to fully dehydrogenated PAHs and subsequent losses of C$_{2}$ units convert graphene into cages. Our results present for the first time experimental evide...

  18. Population Dynamics and Metabolite Target Analysis of Lactic Acid Bacteria during Laboratory Fermentations of Wheat and Spelt Sourdoughs▿

    OpenAIRE

    Van der Meulen, Roel; Scheirlinck, Ilse; Van Schoor, Ann; Huys, Geert; Vancanneyt, Marc; Vandamme, Peter; De Vuyst, Luc

    2007-01-01

    Four laboratory sourdough fermentations, initiated with wheat or spelt flour and without the addition of a starter culture, were prepared over a period of 10 days with daily back-slopping. Samples taken at all refreshment steps were used for determination of the present microbiota. Furthermore, an extensive metabolite target analysis of more than 100 different compounds was performed through a combination of various chromatographic methods including liquid chromatography-mass spectrometry and...

  19. Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces

    DEFF Research Database (Denmark)

    Bagge, Dorthe; Hjelm, M.; Johansen, C.;

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended...

  20. Ultrastructural analysis of volutin-acidocalciumosomes formation in some species of bacteria, spirochetes, yeast and protozoa during morphogenesis and under environment different factors action

    International Nuclear Information System (INIS)

    Ultrastructure organization of volutin granules in some species of bacteria, spirochetes, yeast and protozoa cellular architecture was studied during morphogenesis and under environment different factors action leading to pathological changes. As the result of complex electron microscopic studies of morphogenesis in some species of prokaryotes and eukaryotic organisms the formation of new structures of volutin-acidocal-ciumosomes has been established within cell cytoplasm. In addition, under the ionizing roentgen and irradiation as well as some antibiotics action morphometric changes and changes in optical properties were also shown. Electron microscopic identification of volutin granules changes in structural organization in bacteria, spirochetes, yeast and protozoa might serve as appropriate express-method for visual evaluation of damage and reparation processes during environment

  1. Laboratory Scale of Liquid Coal Fuel Combustion Process and Exhaust Gas Formation

    Directory of Open Access Journals (Sweden)

    Kartika K. Hendratna

    2010-01-01

    Full Text Available Problem statement: Much research of coal has been already undertaken to ascertain the possibilities of coal being used as substitute for heavy fuel oil in the transportation sector. The effects of using coal as transportation fuel to the environment must also be considered. This study will review several aspects of the coal oil combustion process including combustion behavior, flame stability, some emissions from exhaust gas; CO, NOx and the particulate matter in a well insulated laboratory scale furnace for more stable of combustion. Approach: New way for preparation for liquid coal oil steady combustion on a 2.75 m horizontal boiler with four annular segment tubes, a water jacket system and a system for measurement of water temperature inside was archived. Data was gained by applying liquid coal in the experiment. Detailed preparation and setting for steady combustion of coal oil and formation of the exhaust gas were discussed based on data sampling from four sample points in each centre of the angular tube segments. Results: Preparation for coal oil combustion is an important point in the successful of combustion. Heating coal fuel to than 100°C, heating the fuel line to the same temperature and providing enough air pressure for atomization of coal oil until 0.1 MPa allows coal fuel smoothly atomized in the semi gas phase. There was enough of air combustion via a blower with 4500 L min-1 of flow rate and a 24 L min-1 of water flow rate in the water jacket transforms the energy of the fuel to the heat. Uncolored of the exhaust gas and the physical inspection describes the completion of combustion. This result close-relates with the pollutants formation in the exhaust gas. Conclusion: By conducting a deep research process, there is a chance for the substitute of heavy fuel oil with liquid coal fuel with no special treatment needed in combustion process without ignoring the contribution of the combustion results as an environmental problem.

  2. Influence of sulfate-reducing bacteria on the corrosion of steel in seawater: laboratory and in situ study

    International Nuclear Information System (INIS)

    A fouling reactor was designed to study, the influence of a mixed bio-film on AISI 316 L stainless steel. The bio-film was formed on the steel surface by the fermentative bacterium Vibrio natriegens. The sulfate-reducing bacterium Desulfovibrio vulgaris was then introduced in the reactor and colonized the surface, constituting approximately 5 % of the total population. The settlement of an anaerobic bacterium in the bio-film shows in it the existence of anaerobic micro-niches. Stainless steel electrochemical behavior was analyzed using open circuit potential and potentiodynamic polarization curves. Growth of the bio-film does not induce corrosion, but seems to change the cathodic oxygen reduction kinetics, diminishing the corrosion hazard. This effect increases when D. vulgaris grows in the bio-film. An ennobling of the open circuit potential was observed, similar to field cases already described. A case of drilling corrosion of carbon steel in a harbour area showed the characteristics of anaerobic corrosion related to sulfate-reducing bacteria. The total cultivatable SRB population was quantified and metabolic types were enumerated using specific electron donors. A maximum cell density of 1,1 x 108 cells/ cm2 was estimated, revealing a very important growth of SRB on surfaces. Population structure was different in corroded and non-corroded areas. In corroded area, SRB utilizing benzoate and propionate were more abundant. A strain belonging to the sporulating genus Desulfotomaculum was isolated using these substrates, suggesting a partial aeration in the area of hole appearance. However, in vitro corrosion assays showed that the bacterial population sampled in this area induced a consequent weight loss of steel coupons, in the absence of oxygen. This was observed only with a diversified population, similar to that present in situ. It could not be reproduced with a mixed culture of two purified strains. (author)

  3. Laboratory Simulation of an Iron(II)-rich Precambrian Marine Upwelling System to Explore the Growth of Photosynthetic Bacteria.

    Science.gov (United States)

    Maisch, Markus; Wu, Wenfang; Kappler, Andreas; Swanner, Elizabeth D

    2016-01-01

    A conventional concept for the deposition of some Precambrian Banded Iron Formations (BIF) proceeds on the assumption that ferrous iron [Fe(II)] upwelling from hydrothermal sources in the Precambrian ocean was oxidized by molecular oxygen [O2] produced by cyanobacteria. The oldest BIFs, deposited prior to the Great Oxidation Event (GOE) at about 2.4 billion years (Gy) ago, could have formed by direct oxidation of Fe(II) by anoxygenic photoferrotrophs under anoxic conditions. As a method for testing the geochemical and mineralogical patterns that develop under different biological scenarios, we designed a 40 cm long vertical flow-through column to simulate an anoxic Fe(II)-rich marine upwelling system representative of an ancient ocean on a lab scale. The cylinder was packed with a porous glass bead matrix to stabilize the geochemical gradients, and liquid samples for iron quantification could be taken throughout the water column. Dissolved oxygen was detected non-invasively via optodes from the outside. Results from biotic experiments that involved upwelling fluxes of Fe(II) from the bottom, a distinct light gradient from top, and cyanobacteria present in the water column, show clear evidence for the formation of Fe(III) mineral precipitates and development of a chemocline between Fe(II) and O2. This column allows us to test hypotheses for the formation of the BIFs by culturing cyanobacteria (and in the future photoferrotrophs) under simulated marine Precambrian conditions. Furthermore we hypothesize that our column concept allows for the simulation of various chemical and physical environments - including shallow marine or lacustrine sediments. PMID:27500924

  4. The effect of impeller type on silica sol formation in laboratory scale agitated tank

    Science.gov (United States)

    Nurtono, Tantular; Suprana, Yayang Ade; Latif, Abdul; Dewa, Restu Mulya; Machmudah, Siti; Widiyastuti, Winardi, Sugeng

    2016-02-01

    The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cation resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm.

  5. The effect of impeller type on silica sol formation in laboratory scale agitated tank

    Energy Technology Data Exchange (ETDEWEB)

    Nurtono, Tantular; Suprana, Yayang Ade; Latif, Abdul; Dewa, Restu Mulya; Machmudah, Siti; Widiyastuti,, E-mail: widi@chem-eng.its.ac.id; Winardi, Sugeng [Chemical Engineering Department, Institute of Technology Sepuluh Nopember, Surabaya 60111 (Indonesia)

    2016-02-08

    The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cation resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm.

  6. The effect of impeller type on silica sol formation in laboratory scale agitated tank

    International Nuclear Information System (INIS)

    The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cation resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm

  7. General principles for the formation and proliferation of a wall-free (L-form) state in bacteria

    OpenAIRE

    Mercier, Romain; Kawai, Yoshikazu; Errington, Jeff

    2014-01-01

    eLife digest Bacterial cells are surrounded by a cell wall made of a molecule called peptidoglycan. This wall is important for many aspects of cell survival including the maintenance of cell shape and protection from mechanical damage. However, many bacteria are able to switch to a state in which they don't have a cell wall. Although this wall-free state was discovered several decades ago, little is known about its general properties because there isn't a quick and reliable method for making ...

  8. New Discoveries in Planetary Systems and Star Formation through Advances in Laboratory Astrophysics

    OpenAIRE

    WGLA, AAS; Brickhouse, Nancy; Cowan, John; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Herbst, Eric; Olive, Keith(School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, U.S.A.); Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    As the panel on Planetary Systems and Star Formation (PSF) is fully aware, the next decade will see major advances in our understanding of these areas of research. To quote from their charge, these advances will occur in studies of solar system bodies (other than the Sun) and extrasolar planets, debris disks, exobiology, the formation of individual stars, protostellar and protoplanetary disks, molecular clouds and the cold ISM, dust, and astrochemistry. Central to the progress in these areas ...

  9. New laboratory procedures for evaluation of drilling induced formation damage and horizontal well performance

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, N.G.; Adair, K.L.

    1995-05-01

    Horizontal well performance can decrease due to drilling induced formation damage. Thus, it is important to evaluate formation damage before drilling. The formation damage is usually modelled using a skin factor which is assumed to be constant. These tests compare the final permeability after mud damage, to the initial undamaged permeability. This method is over-simplified since it does not take into consideration the variable nature in which wellbore cleanup occurs. By measuring the regain permeability at incrementally increasing pressure differentials across the core, a more comprehensive test was developed to evaluate the drilling mud damage removal. The new test procedure indicated that fluid inflow will not occur until a minimum `threshold pressure` is achieved. Development of a finite-difference wellbore simulator to model early-time transient productivity in a horizontal well was also discussed. 8 ref., 14 figs.

  10. THE FORMATION OF STUDENTS’ LEARNING-COGNITIVE COMPETENCES BASED ON LABORATORY WORKS IN COMPUTER SCIENCE AND ICT

    Directory of Open Access Journals (Sweden)

    EVGENIY YUR’EVICH ANDRUSENKO

    2015-01-01

    Full Text Available Changes in Russian education must be made in an inte-grated way. Strategic goal of the state policy in the field of education is to enhance access to quality education, which must be relevant to the requirements of the inno-vative development of economy, current needs of society and all citizens. The list of tasks includes the competence approach as an important part of modernization of educa-tion. Among the key competences are distinguished learning-cognitive competences, for the formation of which are indicated teaching methods, forms and means. Laboratory work in computer science and ICT is one of such means. Laboratory work is a link between theoreti-cal and practical learning and is an important component of theory and practice: it strengthens and improves knowledge and skills, which are used in the process of further studies.

  11. Prevalence and impact of single-strain starter cultures of lactic acid bacteria on metabolite formation in sourdough.

    Science.gov (United States)

    Ravyts, Frédéric; De Vuyst, Luc

    2011-09-01

    Flavour of type II sourdoughs is influenced by the ingredients, processing conditions, and starter culture composition. It is, however, not fully clear to what extent different sourdough lactic acid bacteria (LAB) contribute to flavour. Therefore, two types of flour (rye and wheat) and different LAB starter culture strains were used to prepare sourdoughs, thereby leaving the yeast microbiota uncontrolled. All LAB starter culture strains tested were shown to be prevalent and to acidify the flour/water mixture to pH values between 3.1 and 3.9 after 24h of fermentation. Multiple aldehydes, alcohols, ketones, and carboxylic acids were produced by the sourdough-associated microbiota throughout the fermentation period. Based on the organoleptic evaluation of breads produced with these sourdoughs, five LAB strains were selected to perform prolonged wheat and rye fermentations as to their capacity to result in an acidic (Lactobacillus fermentum IMDO 130101, Lactobacillus plantarum IMDO 130201, and Lactobacillus crustorum LMG 23699), buttermilk-like (Lactobacillus amylovorus DCE 471), or fruity flavour (Lactobacillus sakei CG1). Upon prolonged fermentation, higher metabolite concentrations were produced. For instance, L. sakei CG1 produced the highest amounts of 3-methyl-1-butanol, which was further converted into 3-methylbutyl acetate. The latter compound resulted in a fruity banana flavour after 48h of fermentation, probably due to yeast interference. Rye fermentations resulted in sourdoughs richer in volatiles than wheat, including 3-methyl-1-butanol, 2-phenylethanol, and ethyl acetate. PMID:21645811

  12. Laboratory Scale of Liquid Coal Fuel Combustion Process and Exhaust Gas Formation

    OpenAIRE

    Kartika K. Hendratna; Osami Nishida; Hirotsugu Fujita; Wataru Harano

    2010-01-01

    Problem statement: Much research of coal has been already undertaken to ascertain the possibilities of coal being used as substitute for heavy fuel oil in the transportation sector. The effects of using coal as transportation fuel to the environment must also be considered. This study will review several aspects of the coal oil combustion process including combustion behavior, flame stability, some emissions from exhaust gas; CO, NOx and the particulate matter in a well insulated laboratory s...

  13. A simple flow cell for monitoring biofilm formation in laboratory and industrial conditions

    OpenAIRE

    Pereira, Maria Olívia; Vieira, M. J.; Melo, L. F.

    2000-01-01

    This work proposes and discusses a simple flow cell reactor that provides a means to monitoring biofilm growth by periodical removing biofilm-attached slides for off-line, nondestructive and destructive biofilm analysis without the stoppage of the flow. With this flow cell, biofilm growth and respiratory activity can be easily followed, either in well defined laboratory conditions or in an industrial environment. The reproducible and typical biofilm development curves obtained ...

  14. Laboratory study of formation stabilization in uranium in-situ leaching and ground water restoration

    International Nuclear Information System (INIS)

    Laboratory high pressure column tests have shown that the presence of 1-20 ppm of aluminum ion effectively prevents permeability loss during uranium leaching with leachates containing sodium carbonate. If added after permeability loss has occurred, aluminum ion can restore the permeability to nearly its original value. No deleterious effect was observed on uranium leaching performance and the technique should be quite compatible with all field conditions

  15. A Laboratory Study of the Effects of Interbeds on Hydraulic Fracture Propagation in Shale Formation

    Directory of Open Access Journals (Sweden)

    Zhiheng Zhao

    2016-07-01

    Full Text Available To investigate how the characteristics of interbeds affect hydraulic fracture propagation in the continental shale formation, a series of 300 mm × 300 mm × 300 mm concrete blocks with varying interbeds, based on outcrop observation and core measurement of Chang 7-2 shale formation, were prepared to conduct the hydraulic fracturing experiments. The results reveal that the breakdown pressure increases with the rise of thickness and strength of interbeds under the same in-situ field stress and injection rate. In addition, for the model blocks with thick and high strength interbeds, the hydraulic fracture has difficulty crossing the interbeds and is prone to divert along the bedding faces, and the fracturing effectiveness is not good. However, for the model blocks with thin and low strength interbeds, more long branches are generated along the main fracture, which is beneficial to the formation of the fracture network. What is more, combining the macroscopic descriptions with microscopic observations, the blocks with thinner and lower strength interbeds tend to generate more micro-fractures, and the width of the fractures is relatively larger on the main fracture planes. Based on the experiments, it is indicated that the propagation of hydraulic fractures is strongly influenced by the characteristics of interbeds, and the results are instructive to the understanding and evaluation of the fracability in the continental shale formation.

  16. Mg(2+)/Ca(2+) promotes the adhesion of marine bacteria and algae and enhances following biofilm formation in artificial seawater.

    Science.gov (United States)

    He, Xiaoyan; Wang, Jinpeng; Abdoli, Leila; Li, Hua

    2016-10-01

    Adhesion of microorganisms in the marine environment is essential for initiation and following development of biofouling. A variety of factors play roles in regulating the adhesion. Here we report the influence of Ca(2+) and Mg(2+) in artificial seawater on attachment and colonization of Bacillus sp., Chlorella and Phaeodactylum tricornutum on silicon wafer. Extra addition of the typical divalent cations in culturing solution gives rise to significantly enhanced adhesion of the microorganisms. Mg(2+) and Ca(2+) affect the adhesion of Bacillus sp. presumably by regulating aggregation and formation of extracellular polymeric substances (EPS). The ions alter quantity and types of the proteins in EPS, in turn affecting subsequent adhesion. However, it is noted that Mg(2+) promotes adhesion of Chlorella likely by regulating EPS formation and polysaccharide synthesis. Ca(2+) plays an important role in protein expression to enhance the adhesion of Chlorella. For Phaeodactylum tricornutum, Ca(2+) expedites protein synthesis for enhanced adhesion. The results shed some light on effective ways of utilizing divalent cations to mediate formation of biofilms on the marine structures for desired performances. PMID:27362920

  17. Laboratory studies on the effect of ozonation on THM formation in swimming pool water

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Cheema, Waqas Akram;

    2015-01-01

    =17 min; t½,4=18 min). For drinking water, ozone decomposition was fast for the first dose of ozone (t½,1=4 min) and then decreased for the second and third dose of ozone (t½,2=19 min; t½,3=17 min). Chlorination after ozonation revealed that ozone removed reactivity of the dissolved organic carbon toward......Water samples from indoor swimming pool were ozonated at different pH values to evaluate the effect of pH on decomposition of ozone in swimming pool water. Furthermore, drinking and pool water were repeatedly ozonated followed by chlorination to evaluate THM formation. Decomposition of ozone was...... chlorine for drinking water as lower TTHM formation occurred than in non-ozonated samples. For pool water, a higher TTHM formation was observed in ozonated than non-ozonated pool water. Thus, it was observed that ozone reacts markedly different in swimming pool water from the known pattern in drinking...

  18. Laboratory Experiments and Modeling for Interpreting Field Studies of Secondary Organic Aerosol Formation Using an Oxidation Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Jose-Luis [Univ. of Colorado, Boulder, CO (United States)

    2016-02-01

    This grant was originally funded for deployment of a suite of aerosol instrumentation by our group in collaboration with other research groups and DOE/ARM to the Ganges Valley in India (GVAX) to study aerosols sources and processing. Much of the first year of this grant was focused on preparations for GVAX. That campaign was cancelled due to political reasons and with the consultation with our program manager, the research of this grant was refocused to study the applications of oxidation flow reactors (OFRs) for investigating secondary organic aerosol (SOA) formation and organic aerosol (OA) processing in the field and laboratory through a series of laboratory and modeling studies. We developed a gas-phase photochemical model of an OFR which was used to 1) explore the sensitivities of key output variables (e.g., OH exposure, O3, HO2/OH) to controlling factors (e.g., water vapor, external reactivity, UV irradiation), 2) develop simplified OH exposure estimation equations, 3) investigate under what conditions non-OH chemistry may be important, and 4) help guide design of future experiments to avoid conditions with undesired chemistry for a wide range of conditions applicable to the ambient, laboratory, and source studies. Uncertainties in the model were quantified and modeled OH exposure was compared to tracer decay measurements of OH exposure in the lab and field. Laboratory studies using OFRs were conducted to explore aerosol yields and composition from anthropogenic and biogenic VOC as well as crude oil evaporates. Various aspects of the modeling and laboratory results and tools were applied to interpretation of ambient and source measurements using OFR. Additionally, novel measurement methods were used to study gas/particle partitioning. The research conducted was highly successful and details of the key results are summarized in this report through narrative text, figures, and a complete list of publications acknowledging this grant.

  19. The cosmic MeV neutrino background as a laboratory for black hole formation

    Directory of Open Access Journals (Sweden)

    Hasan Yüksel

    2015-12-01

    Full Text Available Calculations of the cosmic rate of core collapses, and the associated neutrino flux, commonly assume that a fixed fraction of massive stars collapse to black holes. We argue that recent results suggest that this fraction instead increases with redshift. With relatively more stars vanishing as “unnovae” in the distant universe, the detectability of the cosmic MeV neutrino background is improved due to their hotter neutrino spectrum, and expectations for supernova surveys are reduced. We conclude that neutrino detectors, after the flux from normal SNe is isolated via either improved modeling or the next Galactic SN, can probe the conditions and history of black hole formation.

  20. Laboratory studies of the formation of molecular hydrogen on surfaces at cryogenic temperatures.

    OpenAIRE

    Creighan, S. C.

    2006-01-01

    The interstellar medium (ISM) is the region of space between the stars, where star and planet formation occurs. Molecular hydrogen in the ISM initiates all the chemistry that occurs in these regions and without it, no stars or planets could form. The molecules formed by the chemistry initiated by H2 provide cooling mechanisms for the huge molecular clouds which collapse to form stars. It is well known that the abundance of molecular hydrogen in the ISM is too high for it to form through gas p...

  1. New laboratory procedures for evaluation of drilling induced formation damage and horizontal well performance: an update

    Energy Technology Data Exchange (ETDEWEB)

    Adair, K.L. [Resman Oil and Gas Ltd. (Canada); Gruber, N.G. [Core Laboratories Canada Ltd. (Canada)

    1996-12-31

    Dynamic leakoff/regain permeability and threshold pressure data was analyzed from a total of 37 special core studies performed on twenty carbonate and sandstone formations from Western Canada. The investigation was prompted by previous findings suggesting the importance of these parameters in assessing drilling mud damage and cleanup performance. Empirical equations were developed to predict threshold inflow pressure, regain permeability, and skin and well productivity, as a function of permeability drawdown. The correlations identified in this paper could be used during horizontal well planning and evaluation to estimate well productivity, inflow contribution profile, and drawdown required for effective damage control. 9 refs., 2 tabs., 13 figs.

  2. Formation of polyhydroxylated isoflavones from the soybean seed isoflavones daidzein and glycitein by bacteria isolated from tempe.

    Science.gov (United States)

    Klus, K; Barz, W

    1995-12-01

    Five tempe-derived bacterial strains identified as Micrococcus or Arthrobacter species were shown to transform the soybean isoflavones daidzein and glycitein to polyhydroxylated isoflavones by different hydroxylation reactions. All strains converted glycitein and daidzein to 6,7,4'-trihydroxyisoflavone (factor 2) and the latter substrate also to 7,8,4'-trihydroxyisoflavone. Three strains transformed daidzein to 7,8,3',4'-tetrahydroxyisoflavone and 6,7,3',4'-tetrahydroxyisoflavone. In addition, two strains formed 6,7,8,4'-tetrahydroxyisoflavone from daidzein. Conversion of glycitein by these two strains led to the formation of factor 2 and 6,7,3',4'-tetrahydroxyisoflavone. The structures of these transformation products were elucidated by spectroscopic techniques and chemical degradation. PMID:8588745

  3. Insights into the formation mechanism of chloropropanol fatty acid esters under laboratory-scale deodorization conditions.

    Science.gov (United States)

    Hori, Katsuhito; Hori-Koriyama, Natsuko; Tsumura, Kazunobu; Fukusaki, Eiichiro; Bamba, Takeshi

    2016-08-01

    Chloropropanol fatty acid esters (CPFAEs) are well-known contaminants in refined oils and fats, and several research groups have studied their formation. However, the results obtained in these studies were not satisfactory because the CPFAEs were not analyzed comprehensively. Thus, in the present study, a comprehensive analysis was performed to obtain new details about CPFAE formation. Each lipid (monopalmitin, dipalmitin, tripalmitin, monoolein, diolein, triolein, and crude palm oil) was heated at 250°C for 90 min, and the CPFAEs were analyzed using supercritical fluid chromatography/tandem mass spectrometry. It was found that CP fatty acid monoesters were formed from monoacylglycerols and diacylglycerols after heating in the presence of a chlorine compound. In addition, CP fatty acid diesters were formed from diacylglycerols and triacylglycerols under the same conditions. In the case of crude palm oil, only CP fatty acid diesters were formed. Therefore, these results indicated that CPFAEs in refined palm oil were formed mainly from triacylglycerols. PMID:26822095

  4. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors

    Science.gov (United States)

    Baesman, S.M.; Bullen, T.D.; Dewald, J.; Zhang, Dongxiao; Curran, S.; Islam, F.S.; Beveridge, T.J.; Oremland, R.S.

    2007-01-01

    Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [??] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods (???10-nm diameter by 200-nm length), which cluster together, forming larger (???1,000-nm) rosettes composed of numerous individual shards (???100-nm width by 1,000-nm length). In contrast, Sulfurospirillium barnesii forms extremely small, irregularly shaped nanospheres (diameter electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  5. Antibiotic susceptibility of coagulase-negative staphylococci isolated from very low birth weight babies: comprehensive comparisons of bacteria at different stages of biofilm formation

    Directory of Open Access Journals (Sweden)

    Garland Suzanne M

    2010-05-01

    Full Text Available Abstract Background Coagulase-negative staphylococci are major causes of bloodstream infections in very low birth weight babies cared for in Neonatal Intensive Care Units. The virulence of these bacteria is mainly due to their ability to form biofilms on indwelling medical devices. Biofilm-related infections often fail to respond to antibiotic chemotherapy guided by conventional antibiotic susceptibility tests. Methods Coagulase-negative staphylococcal blood culture isolates were grown in different phases relevant to biofilm formation: planktonic cells at mid-log phase, planktonic cells at stationary phase, adherent monolayers and mature biofilms and their susceptibilities to conventional antibiotics were assessed. The effects of oxacillin, gentamicin, and vancomycin on preformed biofilms, at the highest achievable serum concentrations were examined. Epifluorescence microscopy and confocal laser scanning microscopy in combination with bacterial viability staining and polysaccharide staining were used to confirm the stimulatory effects of antibiotics on biofilms. Results Most coagulase-negative staphylococcal clinical isolates were resistant to penicillin G (100%, gentamicin (83.3% and oxacillin (91.7% and susceptible to vancomycin (100%, ciprofloxacin (100%, and rifampicin (79.2%. Bacteria grown as adherent monolayers showed similar susceptibilities to their planktonic counterparts at mid-log phase. Isolates in a biofilm growth mode were more resistant to antibiotics than both planktonic cultures at mid-log phase and adherent monolayers; however they were equally resistant or less resistant than planktonic cells at stationary phase. Moreover, for some cell-wall active antibiotics, concentrations higher than conventional MICs were required to prevent the establishment of planktonic cultures from biofilms. Finally, the biofilm-growth of two S. capitis isolates could be enhanced by oxacillin at the highest achievable serum concentration. Conclusion

  6. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors.

    Science.gov (United States)

    Baesman, Shaun M; Bullen, Thomas D; Dewald, James; Zhang, Donghui; Curran, Seamus; Islam, Farhana S; Beveridge, Terry J; Oremland, Ronald S

    2007-04-01

    Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [epsilon] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods ( approximately 10-nm diameter by 200-nm length), which cluster together, forming larger ( approximately 1,000-nm) rosettes composed of numerous individual shards ( approximately 100-nm width by 1,000-nm length). In contrast, Sulfurospirillum barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. PMID:17277198

  7. Laboratory studies of H retention and LiH formation in liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Rojo, A.B. [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain); UC3M Madrid, 126, 28903 Getafe (Spain); Oyarzabal, E. [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain); U.N.E.D. Ciudad Universitaria, S/N, 28040, Madrid Spain (Spain); Tabarés, F.L., E-mail: tabares@ciemat.es [Ass. Euratom-Ciemat, Av. Complutense 22, 28040 Madrid (Spain)

    2014-12-15

    Highlights: • Absorption and thermal desorption experiments of hydrogen isotopes in liquid lithium have been performed at exposure temperatures up to 400 °C. • The kinetics of the involved processes indicate a two-stage mechanism for hydride production. • TDS peaks at temperatures well below the expected one for thermal decomposition of the hydride were systematically recorded, although only a small fraction of the absorbed gas was released during the TDS cycle. • The absorption of H{sub 2} in a D{sub 2}-loaded sample was investigated at two temperatures, and no obvious influence of the preexisting species in the rate of absorption of H{sub 2} was seen. • Deuterium absorption takes place at a higher rate than that of hydrogen. - Abstract: Laboratory experiments on H/D retention on liquid lithium followed by thermal desorption spectrometry (TDS) have been performed at Ciemat. Two different experimental set ups were used in order to expose liquid Li to hydrogen gas or to hydrogen glow discharge plasmas at temperatures up to 673 K. In the present work the results concerning the gas phase absorption are addressed. Two different kinetics of absorption were identified from the time evolution of the uptake. Alternate exposures to H{sub 2} and D{sub 2} were carried out in order to study the isotope exchange and its possible use for tritium retention control in Fusion Reactor. Although important differences were found in the absorption kinetics of both species, the total retention seems to be governed by the total sum of hydrogenic isotopes, and only small differences were found in the corresponding TDS spectra, on which evidence of some isotope exchange is observed. The results are discussed in relation to the potential use of liquid lithium walls in a Fusion Reactor.

  8. Laboratory column experiments for radionuclide adsorption studies of the Culebra dolomite member of the Rustler Formation

    International Nuclear Information System (INIS)

    Radionuclide transport experiments were carried out using intact cores obtained from the Culebra member of the Rustler Formation inside the Waste Isolation Pilot Plant, Air Intake Shaft. Twenty-seven separate tests are reported here and include experiments with 3H, 22Na, 241Am, 239Np, 228Th, 232U and 241Pu, and two brine types, AIS and ERDA 6. The 3H was bound as water and provides a measure of advection, dispersion, and water self-diffusion. The other tracers were injected as dissolved ions at concentrations below solubility limits, except for americium. The objective of the intact rock column flow experiments is to demonstrate and quantify transport retardation coefficients, (R) for the actinides Pu, Am, U, Th and Np, in intact core samples of the Culebra Dolomite. The measured R values are used to estimate partition coefficients, (kd) for the solute species. Those kd values may be compared to values obtained from empirical and mechanistic adsorption batch experiments, to provide predictions of actinide retardation in the Culebra. Three parameters that may influence actinide R values were varied in the experiments; core, brine and flow rate. Testing five separate core samples from four different core borings provided an indication of sample variability. While most testing was performed with Culebra brine, limited tests were carried out with a Salado brine to evaluate the effect of intrusion of those lower waters. Varying flow rate provided an indication of rate dependent solute interactions such as sorption kinetics

  9. Laboratory column experiments for radionuclide adsorption studies of the Culebra dolomite member of the Rustler Formation

    Energy Technology Data Exchange (ETDEWEB)

    Lucero, D.A.; Heath, C.E. [Sandia National Labs., Albuquerque, NM (United States); Brown, G.O. [Oklahoma State Univ., Stillwater, OK (United States). Biosystems and Agricultural Engineering Dept.

    1998-04-01

    Radionuclide transport experiments were carried out using intact cores obtained from the Culebra member of the Rustler Formation inside the Waste Isolation Pilot Plant, Air Intake Shaft. Twenty-seven separate tests are reported here and include experiments with {sup 3}H, {sup 22}Na, {sup 241}Am, {sup 239}Np, {sup 228}Th, {sup 232}U and {sup 241}Pu, and two brine types, AIS and ERDA 6. The {sup 3}H was bound as water and provides a measure of advection, dispersion, and water self-diffusion. The other tracers were injected as dissolved ions at concentrations below solubility limits, except for americium. The objective of the intact rock column flow experiments is to demonstrate and quantify transport retardation coefficients, (R) for the actinides Pu, Am, U, Th and Np, in intact core samples of the Culebra Dolomite. The measured R values are used to estimate partition coefficients, (kd) for the solute species. Those kd values may be compared to values obtained from empirical and mechanistic adsorption batch experiments, to provide predictions of actinide retardation in the Culebra. Three parameters that may influence actinide R values were varied in the experiments; core, brine and flow rate. Testing five separate core samples from four different core borings provided an indication of sample variability. While most testing was performed with Culebra brine, limited tests were carried out with a Salado brine to evaluate the effect of intrusion of those lower waters. Varying flow rate provided an indication of rate dependent solute interactions such as sorption kinetics.

  10. Phase I - Laboratory Study Effects of Cement Grout Structures on Colloid Formation from SRS Soils

    International Nuclear Information System (INIS)

    Studies were conducted to better understand the influence of grout structures and fills on colloid formation. Low-Level Waste is disposed in concrete vaults and trenches at the E-Area Low-Level Waste Facility (LLWF). Two types of enhanced trench disposal are approved for use including; Intimately-Mixed Cement-Stabilized waste forms, such as Ashcrete and Blowcrete resulting from operation of the Consolidated Incinerator Facility, and Cement-Stabilized Encapsulated waste, where waste forms (e.g., contaminated equipment) will be surrounded by a grout or other cementitious material. The presence of concrete structures and process of grouting in trenches are expected to generate colloids, both from the grout itself and as a result of the interactions of these cementitious materials and their degradation products with the surrounding soils. The extent of occurrence, mobility, and influence on contaminant transport of colloidal materials in aquifer systems is the subject of this study. The intent of this study is not to modify the PA but to aid in our understanding of the significance of this phenomenon. Information generated in this study will help in considering whether colloid-enhanced contaminant migration should be considered in establishing waste acceptance criteria and in the design and development of waste disposal systems

  11. Use of Potential Probiotic Lactic Acid Bacteria (LAB) Biofilms for the Control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 Biofilms Formation.

    Science.gov (United States)

    Gómez, Natacha C; Ramiro, Juan M P; Quecan, Beatriz X V; de Melo Franco, Bernadette D G

    2016-01-01

    Use of probiotic biofilms can be an alternative approach for reducing the formation of pathogenic biofilms in food industries. The aims of this study were (i) to evaluate the probiotic properties of bacteriocinogenic (Lactococcus lactis VB69, L. lactis VB94, Lactobacillus sakei MBSa1, and Lactobacillus curvatus MBSa3) and non-bacteriocinogenic (L. lactis 368, Lactobacillus helveticus 354, Lactobacillus casei 40, and Weissela viridescens 113) lactic acid bacteria (LAB) isolated from Brazilian's foods and (ii) to develop protective biofilms with these strains and test them for exclusion of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium. LAB were tested for survival in acid and bile salt conditions, surface properties, biosurfactant production, β-galactosidase and gelatinase activity, antibiotic resistance and presence of virulence genes. Most strains survived exposure to pH 2 and 4% bile salts. The highest percentages of auto-aggregation were obtained after 24 h of incubation. Sixty-seven percentage auto-aggregation value was observed in W. viridescens 113 and Lactobacillus curvatus MBSa3 exhibited the highest co-aggregation (69% with Listeria monocytogenes and 74.6% with E. coli O157:H7), while the lowest co-aggregation was exhibited by W. viridescens 113 (53.4% with Listeria monocytogenes and 38% with E. coli O157:H7). Tests for hemolytic activity, bacterial cell adherence with xylene, and drop collapse confirmed the biosurfactant-producing ability of most strains. Only one strain (L. lactis 368) produced β-galactosidase. All strains were negative for virulence genes cob, ccf, cylLL, cylLs, cyllM, cylB, cylA and efaAfs and gelatinase production. The antibiotic susceptibility tests indicated that the MIC for ciprofloxacin, clindamycin, gentamicin, kanamycin, and streptomycin did not exceed the epidemiological cut-off suggested by the European Food Safety Authority. Some strains were resistant to one or more antibiotics and resistance

  12. Lamella formation and emigration from the water by a laboratory colony of Biomphalaria glabrata (SAY in flow-through system

    Directory of Open Access Journals (Sweden)

    Ricardo D. A. Dannemann

    1992-01-01

    Full Text Available Lamella formation and emigration from the water were investigated in juvenile Biomphalaria glabrata reared at two temperatures in aquaria with a constant water flow. Most snails (97.4% reared at the lower temperature (21- C formed lamella at the shell aperture and emigrated from the water, whereas only 10.1% did so at 25- C. Eighty percent of emigrations at 21- C occurred within a period of 15 days, 70-85 days after hatching. A comparison of the studies done so far indicates that the phenomenon may be affected by the ageing of snail colonies kept in the laboratory and their geographic origin, rather than the rearing conditions. This hypothesis, however, requires experimental confirmation.

  13. Laboratory Investigations of Titan Haze Formation: Characterization of Gas Phase and Particle Phase Nitrogen

    Science.gov (United States)

    Horst, Sarah; Yoon, Heidi; Li, Rui; deGouw, Joost; Tolbert, Margaret

    2014-11-01

    Prior to the arrival of the Cassini-Huygens spacecraft, aerosol production in Titan’s atmosphere was believed to begin in the stratosphere where chemical processes are predominantly initiated by far ultraviolet (FUV) radiation. However, the discovery of very heavy ions, coupled with Cassini Ultraviolet Imaging Spectrograph (UVIS) occultation measurements that show haze absorption up to 1000 km altitude (Liang et al., 2007), indicates that haze formation initiates in the thermosphere. The energy environment of the thermosphere is significantly different from the stratosphere; in particular there is a greater flux of extreme ultraviolet (EUV) photons and energetic particles available to initiate chemical reactions, including the destruction of N2, in the upper atmosphere. The discovery of previously unpredicted nitrogen species in measurements of Titan’s atmosphere by the Cassini Ion and Neutral Mass Spectrometer (INMS) indicates that nitrogen participates in the chemistry to a much greater extent than was appreciated before Cassini (Vuitton et al., 2007). Additionally, measurements obtained by the Aerosol Collector Pyrolyzer (ACP) carried by Huygens to Titan’s surface may indicate that Titan’s aerosols contain significant amounts of nitrogen (Israël et al., 2005, 2006). The degree of nitrogen incorporation in the haze particles is important for understanding the diversity of molecules that may be present in Titan’s atmosphere and on its surface. We have conducted a series of Titan atmosphere simulation experiments using either spark discharge (tesla coil) or FUV photons (deuterium lamp) to initiate chemistry in CH4/N2 gas mixtures ranging from 0.01% CH4/99.99% N2 to 10% CH4/90% N2. We obtained in situ measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the particle composition as a function of particle size and a proton-transfer ion-trap mass spectrometer (PIT-MS) to measure the composition of gas phase

  14. A formative evaluation of problem-based learning as an instructional strategy in a medical laboratory technician course

    Science.gov (United States)

    Nelson, Diane Patricia

    2002-09-01

    This study is a formative evaluation of problem-based learning as an effective course delivery strategy in a second year introductory Medical Laboratory Technician discipline-specific hematology course. This strategy can serve two purposes in this type of course: discipline specific content knowledge and process skills learning. A needs study identified that students required additional workplace skills as they entered the clinical internship. Students tested well on the national registry examinations, discipline-specific content knowledge, but group process skills needed improvement in the areas of collaboration, communication, and critical reasoning. Problem-based learning was identified as an change intervention to help provide these skills. A search of the literature revealed that the Baker College cultural and physical environment would support this intervention. Twelve cases were written, situated in a clinical laboratory environment, addressing learning issues identified in a modified Delphi survey of laboratory personnel e.g. fiscal responsibility, turn-around time, invasiveness of laboratory techniques, and holistic view of healthcare environment. A hematology class of 13 students received the intervention. The cases were structured to proceed from instructor-centered (guided) learning issues to learner-centered learning issues. Observations of the in-group collaboration processes were documented, as well as oral presentations and critical reasoning, with students given periodic feedback on these skills. Student surveys provided data about satisfaction, attitude to PBL process, and self-efficacy. Multiple choice discipline-specific content examinations were given and compared with classes from the previous four years. The study found that students receiving the PBL treatment scored as well as or better than students from previous years on traditional multiple choice exams. Recall questions showed positive significance and application/analysis questions

  15. Decarboxylative Conversion of Hydroxycinnamic Acids by Klebsiella oxytoca and Erwinia uredovora, Epiphytic Bacteria of Polymnia sonchifolia Leaf, Possibly Associated with Formation of Microflora on the Damaged Leaves.

    Science.gov (United States)

    Hashidoko, Y; Urashima, M; Yoshida, T; Mizutani, J

    1993-01-01

    Two bacteria, Klebsiella oxytoca and Erwinia uredovora, which constituted epiphytic microftora on yacon (Polymnia sonchifolia) leaves, converted hydroxycinnamic acids into hydroxystyrenes decarboxylatively. Hydroxycinnamate decarboxylase was extracted as crude protein from the bacterial cells, and was substrate-inducible. This decarboxylation was for the bacteria a detoxification of hydroxycinnamic acids of plants, but the metabolites were toxic to other test bacteria and fungi, including some phytopathogens. The possible ecological role of these epiphytic bacteria on the host-plant was discussed. from the viewpoint of their chemical interaction via the styrene derivatives. PMID:27314772

  16. Methanotrophic bacteria.

    OpenAIRE

    Hanson, R S; Hanson, T. E.

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehy...

  17. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2006

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A; Raschke, K

    2006-03-16

    This report describes evaluation of collapse evolution for selected LLNL underground nuclear tests at the Nevada Test Site (NTS). The work is being done at the request of Bechtel Nevada and supports the Department of Energy National Nuclear Security Association Nevada Site Office Borehole Management Program (BMP). The primary objective of this program is to close (plug) weapons program legacy boreholes that are deemed no longer useful. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Our statements on cavity collapse and crater formation are input into their safety decisions. The BMP is an on-going program to address hundreds of boreholes at the NTS. Each year Bechtel Nevada establishes a list of holes to be addressed. They request the assistance of the Lawrence Livermore National Laboratory and Los Alamos National Laboratory Containment Programs to provide information related to the evolution of collapse history and make statements on completeness of collapse as relates to surface crater stability. These statements do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program and the Chemistry Biology and Nuclear Sciences Division who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

  18. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2007

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, S K; Pawloski, G A; Raschke, K

    2007-04-26

    This report describes evaluation of collapse evolution for selected LLNL underground nuclear tests at the Nevada Test Site (NTS). The work is being done at the request of NSTec and supports the Department of Energy National Nuclear Security Association Nevada Site Office Borehole Management Program (BMP). The primary objective of this program is to close (plug) weapons program legacy boreholes that are deemed no longer useful. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Our statements on cavity collapse and crater formation are input into their safety decisions. The BMP is an on-going program to address hundreds of boreholes at the NTS. Each year NSTec establishes a list of holes to be addressed. They request the assistance of the Lawrence Livermore National Laboratory and Los Alamos National Laboratory Containment Programs to provide information related to the evolution of collapse history and make statements on completeness of collapse as relates to surface crater stability. These statements do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program and the Chemical Sciences Division who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. The following unclassified summary

  19. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A

    2012-01-30

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater

  20. A laboratory study on formation of oil-SPM aggregates using the NIST standard reference material 1941b. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Khelifa, A.; Fieldhouse, B.; Wang, Z.; Yang, C.; Landriault, M.; Fingas, M.; Brown, C.E.; Gamble, L. [Environment Canada, Ottawa, ON (Canada). ; Pjontek, D. [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering

    2007-07-01

    The dispersion of spilled oil in water can be enhanced by a natural process in which suspended particulate matter (SPM) combines with oil droplets to form Oil-SPM aggregates (OSA). A laboratory setup and procedure were developed in this study to examine the formation of OSAs in which the sediment (Standard Reference Material 1941b) was mixed with Arabian Medium, Alaska North Slope and South Louisiana crudes at concentrations varying from 25 to 300 mg/L. The OSAs were separated from the bulk water using a newly developed procedure. Gas chromatography combined with flame ionization analysis was used to measure the oil trapped in the OSAs. The sediment trapped in the sinking OSAs was then isolated for gravimetric quantification. This procedure has the potential to isolate sinking OSAs with minimum alteration with dispersed oil. Oil mass of less than 2 mg trapped in OSAs was measured with 0.8 mg uncertainty at a 95 per cent confidence level. This setup was capable of imaging droplets of 0.1 {mu}g and up in size. The study showed that formation of sinking OSAs reaches maximum efficiency at an optimum oil to sediment ratio that decreases from 0.5 to approximately 0.1 when the ratio between oil density and the water density increases from 0.84 to 0.97. The percentage of oil trapped in sinking OSAs increases quickly from approximately 0.5 per cent to 30 per cent of the initial oil mass when sediment concentration increases from 25 to 100 mg/l. The highest trapping efficiency was found to decrease exponentially with oil density. 33 refs., 2 tabs., 12 figs.

  1. A laboratory study on formation of oil-SPM aggregates using the NIST standard reference material 1941b

    Energy Technology Data Exchange (ETDEWEB)

    Khelifa, A.; Fieldhouse, B.; Wang, Z.; Yang, C.; Landriault, M.; Fingas, M.; Brown, C.E.; Gamble, L. [Environment Canada, Ottawa, ON (Canada). ; Pjontek, D. [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering

    2007-07-01

    The dispersion of spilled oil in water can be enhanced by a natural process in which suspended particulate matter (SPM) combines with oil droplets to form Oil-SPM aggregates (OSA). A laboratory setup and procedure were developed in this study to examine the formation of OSAs in which the sediment (Standard Reference Material 1941b) was mixed with Arabian Medium, Alaska North Slope and South Louisiana crudes at concentrations varying from 25 to 300 mg/L. The OSAs were separated from the bulk water using a newly developed procedure. Gas chromatography combined with flame ionization analysis was used to measure the oil trapped in the OSAs. The sediment trapped in the sinking OSAs was then isolated for gravimetric quantification. This procedure has the potential to isolate sinking OSAs with minimum alteration with dispersed oil. Oil mass of less than 2 mg trapped in OSAs was measured with 0.8 mg uncertainty at a 95 per cent confidence level. This setup was capable of imaging droplets of 0.1 {mu}g and up in size. The study showed that formation of sinking OSAs reaches maximum efficiency at an optimum oil to sediment ratio that decreases from 0.5 to approximately 0.1 when the ratio between oil density and the water density increases from 0.84 to 0.97. The percentage of oil trapped in sinking OSAs increases quickly from approximately 0.5 per cent to 30 per cent of the initial oil mass when sediment concentration increases from 25 to 100 mg/l. The highest trapping efficiency was found to decrease exponentially with oil density. 33 refs., 2 tabs., 12 figs.

  2. Establishment and Exploration of identification of bacteria in microbiology laboratories%浅谈微生物实验室中细菌的鉴定方法建立及探索

    Institute of Scientific and Technical Information of China (English)

    杨燕兰; 梁嘉雯

    2016-01-01

    目的:对洁净室收集到的某一微生物进行鉴定。方法采用无菌操作技术对所采集的环境菌进行分离培养,结合革兰氏染色法技术及API鉴定系统,对环境菌进行鉴定分析,从而建立起微生物实验室中细菌的鉴定方法与步骤。结果待鉴定菌有96.1%的可能性是表皮葡萄球菌,2.1%的可能性是产色葡萄球菌。结论该方法的鉴定概率属于“好的鉴定”。%ObjectiveTo identify a microorganism colected in the clean room.Methods Using aseptic technique colected bacteria were isolated and cultured environment, combined with gram staining technology and API identification systems, forensic analysis of environmental bacteria, in order to establish microbiological laboratory methods and procedures identified in bacteria.Results The possibility that the unknown microorganism is staphylococcus epidermidis is 96.1%, the possibility that the unknown microorganism is staphylococcus chromogenes is 2.1%.ConclusionThe identification probability of the method belongs to “good identification”.

  3. Spectrophotometric Determination of 6-Propyl-2-Thiouracil in Pharmaceutical Formulations Based on Prussian Blue Complex Formation: An Undergraduate Instrumental Analysis Laboratory Experiment

    Science.gov (United States)

    Zakrzewski, Robert; Skowron, Monika; Ciesielski, Witold; Rembisz, Zaneta

    2016-01-01

    The laboratory experiment challenges students to determine 6-propyl-2-thiouracil (PTU) based on Prussian blue complex formation. Prussian blue is formed by ferricyanide and Fe(II) ions which are generated in situ from Fe(III) ions reduced by PTU. The absorbance of this product was measured at a wavelength of 840 nm, after a reaction time of 30…

  4. The effects of bacteria on crystalline rock

    International Nuclear Information System (INIS)

    Many reactions involving inorganic minerals at water-rock interfaces have now been recognized to be bacterially mediated; these reactions could have a significant effect in the excavation of vaults for toxic and radioactive waste disposal. To investigate the role that bacteria play in the natural aqueous environment of crystalline rock the microbial growth factors of nutrition, energy and environment are described. Microbial activity has been investigated in Atomic Energy of Canada's Underground Research Laboratory (URL), situated in the Archean granitic Lac du Bonnet Batholith, Winnipeg, Manitoba. Faults, initiated in the Early Proterozoic, and later-formed fractures, provide ground-water pathways. Planktonic bacteria, free-swimming in the groundwater, have been observed in over 100 underground borehole samples. The number of bacteria varied from 103 to 105 mL-1 and appeared to decrease with depth and with increased salinity of the water. However, in the natural environment of deep (100-500 m) crystalline rocks, where nutrition is limited, formation of biofilms by sessile bacteria is a successful survival strategy. Natural biofilms at the URL and biofilms grown in bioreactors have been studied. The biofilms can accumulate different elements, depending upon the local environment. Precipitates of iron have been found in all the biofilms studied, where they are either passively accumulated or utilized as an energy source. Within the biofilm active and extensive biogeochemical immobilization of dissolved elements is controlled by distinct bacterial activities which are sufficiently discrete for hematite and siderite to be precipitated in close proximity

  5. Origin and Diversity of Metabolically Active Gut Bacteria from Laboratory-Bred Larvae of Manduca sexta (Sphingidae, Lepidoptera, Insecta)▿

    OpenAIRE

    Brinkmann, Nicole; Martens, Rainer; Christoph C Tebbe

    2008-01-01

    Cultivation-independent analyses based on genetic profiling of partial bacterial 16S rRNA genes by PCR-single-strand conformation polymorphism (PCR-SSCP), reverse transcriptase (RT)-PCR-SSCP of the 16S rRNA itself, and stable isotope probing (SIP), followed by RT-PCR-SSCP, were applied to characterize the diversity of metabolically active bacteria in the larval gut of Manduca sexta bred on tobacco leaves under greenhouse conditions. For SIP, hatching larvae were fed with leaves from tobacco p...

  6. Cable Bacteria in Freshwater Sediments

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus;

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable...... bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and...... marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary...

  7. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria......, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility and by...... actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria, the...

  8. Anaerobic bacteria

    Science.gov (United States)

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  9. Causes of gas formations in the urinary tract

    International Nuclear Information System (INIS)

    During diagnostic procedures for various diseases, five patients underwent intravenous pyelograms which showed gas formations in the collector system, in absence of acute stmptoms. Laboratory chemical, bacteriologic and radiologic examinations explained the origin of these gas formations. In one patient with diabetes mellitus and in another with an oesophageal neoplasm, infections were caused by gas forming bacteria. In three cases, bladder fistula formations were present by Crohn's disease, colon diverticulosis and a gynecological malignancy. (orig.)

  10. High-Throughput Identification of Bacteria and Yeast by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry in Conventional Medical Microbiology Laboratories

    OpenAIRE

    van Veen, S. Q.; Claas, E.C.J.; Kuijper, Ed J

    2010-01-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs and can be considered an alternative for conventional biochemical and molecular identification systems in a conventional microbiological laboratory. First, we evaluated MALDI-TOF MS using 327 clinical isolates previously cultured from patient materials and identified by conventional techniques (Vitek-II, API, and biochemical tests). Dis...

  11. Radionuclides, inorganic constitutents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1992

    International Nuclear Information System (INIS)

    The U.S. Geological Survey and the Idaho Department of Water Resources, in response to a request from the U.S. Department of Energy, sampled 18 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, inorganic constituents, organic compounds, and bacteria. The samples were collected from 13 irrigation wells, 1 domestic well, 1 spring, 2 stock wells, and 1 public supply well. Quality assurance samples also were collected and analyzed. None of the samples analyzed for radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. Most of the samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting levels. None of the samples contained reportable concentrations of purgeable organic compounds or pesticides. Total coliform bacteria was present in nine samples

  12. Radionuclides, inorganic constituents, organic compounds, and bacteria in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1990

    International Nuclear Information System (INIS)

    The US Geological Survey and the Idaho Department of Water Resources, in response to a request from the US Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for manmade pollutants and naturally occurring constituents. The samples were collected from seven irrigation wells, five domestic wells, two springs, one stock well, two dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. The water samples were analyzed for selected radionuclides, inorganic constituents, organic compounds, and bacteria. None of the radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concentrations exceeded their respective reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting level. Toluene concentrations exceeded the reporting level in one water sample. Two samples contained fecal coliform bacteria counts that exceeded established maximum contaminant levels for drinking water

  13. Effect of consumption of dairy products with probiotic bacteria on biofilm formation on silicone rubber implant surfaces in an artificial throat

    NARCIS (Netherlands)

    Van der Mei, HC; Van de Belt-Gritter, B; van Weissenbruch, R; Dijk, F; Albers, FWJ; Busscher, HJ

    1999-01-01

    Indwelling voice prostheses are most often made of silicone rubber. However, the silicone rubber surface attracts large quantities of yeasts and bacteria and their colonization on the valve side of voice prostheses leads to frequent malfunctioning Indwelling voice prostheses are therefore usually re

  14. Formation of histamine and biogenic amines in cold-smoked tuna: An investigation of psychrotolerant bacteria from samples implicated in cases of histamine fish poisoning

    DEFF Research Database (Denmark)

    Emborg, Jette; Dalgaard, Paw

    2006-01-01

    . Product characteristics and profiles of biogenic amines in the implicated products were also recorded. In the single poisoning case, psychrotolerant Morganella morganii -like bacteria most likely was responsible for the histamine production in CST with 2.2% ñ 0.6% NaCl in the water phase (WPS). In...

  15. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Dougal, R.A. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Electrical and Computer Engineering

    1993-08-01

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a {sup 60}Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of {sup 60}Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 {mu}g/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. {sup 60}Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants.

  16. Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria

    International Nuclear Information System (INIS)

    High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a 60Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of 60Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 μg/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. 60Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants

  17. Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions

    Science.gov (United States)

    Gandin, Charles-Andre; Ratke, Lorenz

    2008-01-01

    The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.

  18. Formation of Glycidyl Fatty Acid Esters Both in Real Edible Oils during Laboratory-Scale Refining and in Chemical Model during High Temperature Exposure.

    Science.gov (United States)

    Cheng, Weiwei; Liu, Guoqin; Liu, Xinqi

    2016-07-27

    In the present study, the formation mechanisms of glycidyl fatty acid esters (GEs) were investigated both in real edible oils (soybean oil, camellia oil, and palm oil) during laboratory-scale preparation and refining and in chemical model (1,2-dipalmitin (DPG) and 1-monopalmitin (MPG)) during high temperature exposure (160-260 °C under nitrogen). The formation process of GEs in the chemical model was monitored using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The results showed that the roasting and pressing process could produce certain amounts of GEs that were much lower than that produced in the deodorization process. GE contents in edible oils increased continuously and significantly with increasing deodorization time below 200 °C. However, when the temperature exceeded 200 °C, GE contents sharply increased in 1-2 h followed by a gradual decrease, which could verify a simultaneous formation and degradation of GEs at high temperature. In addition, it was also found that the presence of acylglycerol (DAGs and MAGs) could significantly increase the formation yield of GEs both in real edible oils and in chemical model. Compared with DAGs, moreover, MAGs displayed a higher formation capacity but substantially lower contribution to GE formation due to their low contents in edible oils. In situ ATR-FTIR spectroscopic evidence showed that cyclic acyloxonium ion intermediate was formed during GE formation derived from DPG and MPG in chemical model heated at 200 °C. PMID:27319409

  19. Laboratory and modeling studies on the effects of water and soot emissions and ambient conditions on the formation of contrail ice particles in the jet regime

    Directory of Open Access Journals (Sweden)

    H.-W. Wong

    2011-09-01

    Full Text Available Contrails and contrail-induced cirrus clouds are identified as the most uncertain components in determining aviation impacts on global climate change. Parameters affecting contrail ice particle formation immediately after engine exit plane (<5 s in plume age may be critical to ice particle properties used in large scale models predicting contrail radiative forcing. Despite this, detailed understanding of these parametric effects is still limited. In this paper, we present results from recent laboratory and modeling studies conducted to investigate the effects of water and soot emissions and ambient conditions on the near-field formation of contrail ice particles. The Particle Aerosol Laboratory (PAL at the NASA Glenn Research Center and the Aerodyne microphysical parcel model for contrail ice particle formation were employed. Our studies show that exhaust water concentrations have a significant impact on contrail ice particle formation. When soot was introduced, ice particle formation was observed only when exhaust water concentration was above a critical level. When no soot or sulfuric acid was introduced, homogeneous ice particle formation was unfavorable. Soot particles were found to compete for water vapor condensation, and higher soot concentrations emitted into the chamber resulted in smaller ice particles being formed. Chamber conditions corresponding to higher altitude standard day conditions were found to favor ice particle formation as expected. The microphysical model captures experimental trends well, but discrepancies between the model and the experiments exist as the model predicts narrower ice particle size distributions and ice particle sizes nearly a factor of two larger than measured. These discrepancies are likely due to the lack of treatment of turbulent mixing in the model and particle loss and scatter during the experimental sampling process. Future measurement activities are planned to investigate other important

  20. Hydraulic characterization of the boom clay formation from the HADES underground laboratory in Mol: evolution and assessment of the piezometric techniques

    International Nuclear Information System (INIS)

    The network of piezometers installed in the Boom clay formation from the HADES Underground laboratory (-223 m) at Mol is an invaluable tool for the measurement and physical understanding of the groundwater flow towards a non closes deep repository system in an argillaceous formation. The hydraulic testing, test interpretation and groundwater sampling methodologies in a plastic clay (19 - 26 % H2O) at medium depth are presented. The results obtained from in situ tests (metric to local scale, 1 to 30 m) and from laboratory experiments on vertical and horizontal clay plugs (centimetric scale, 3 - 7 cm) have put into evidence the anisotropy of the Boom clay. The horizontal hydraulic conductivity is approximately 2.4 times higher than the vertical one. Laboratory and in situ results are discussed. Their comparison gives coherent hydraulic and transport parameters supporting the model used to describe quantitatively the migration of radionuclides through the clay. Meanwhile, concerning the hydraulic conductivity, a large discrepancy still subsists with the regional model (kilometric scale, 40 km x 80 km) which is presently being revisited (i.a. boundary conditions and refinement of the mesh, from 5 to 0.5 km) and with the regional observations often too scarce (water level measurements in the sandy aquifers surrounding the Boom clay formation). (authors). 8 refs., 2 figs., 1 tab

  1. Comparison of culture and PCR assays for detection of bacteria in laboratory rats and mice%培养法和 PCR法用于实验大、小鼠细菌检测的比较分析

    Institute of Scientific and Technical Information of China (English)

    冯洁; 谢建云; 冯丽萍; 魏晓锋; 高诚

    2015-01-01

    Objective To compare the efficiency of bacteria culture and PCR assays for detection of Staphylococcus aureus ( S.aureus) , Pseudomonas aeruginosa ( P.aeruginosa) and Klebsiella pneumoniae ( K.pneumoniae) in laboratory rats and mice.Methods Bacteria culture combined with biochemical identification and PCR assay were used to detect 78 SPF rats and 422 SPF mice and the results of the two methods were compared .Results All the 78 rats were negative .Of the 422 mice, the positive rate by culture was 7.11%(30/422), of which, 10 were S.aureus, 22 were P.aeruginosa, and 2 were K.pneumoniae.The positive rate by PCR was 7.58%(32/422), of which, 10 were S.aureus, 25 were P. aeruginosa, and 2 were K.pneumoniae.Conclusions The high sensitivity , rapid procedure and easy to operate of PCR assay makes it valuable for rapid bacteria diagnosis and large-scale screening in laboratory animals .%目的:比较培养法和PCR法对实验大、小鼠的细菌检测效果。方法分别采用传统细菌分离培养结合生化鉴定方法和PCR方法,对78只SPF级大鼠和422只SPF级小鼠进行检测,对两种方法的检测结果进行比较分析。结果78只SPF级大鼠均未检测出阳性。422只SPF级小鼠,培养法检测阳性率7.11%(30/422),其中金黄色葡萄球菌10只,绿脓杆菌22只,肺炎克雷伯杆菌2只。 PCR法检测阳性率7.58%(32/422),其中金黄色葡萄球菌10只,绿脓杆菌25只,肺炎克雷伯杆菌2只。结论 PCR法的敏感性高于培养法,操作简便、快捷,适用于实验动物细菌的快速诊断和大规模的质量筛查。

  2. Bacteria-Mineral Interactions on the Surfaces of Metal-Resistant Bacteria

    International Nuclear Information System (INIS)

    The extraordinary ability of indigenous microorganisms, like metal-resistant bacteria, for biotransformation of toxic compounds is of considerable interest for the emerging area of environmental bioremediation. However, the underlying mechanisms by which metal-resistant bacteria transform toxic compounds are currently unknown and await elucidation. The project's objective was to study stress-induced responses of metal-resistant bacteria to environmental changes and chemical stimulants. This project involved a multi-institutional collaboration of our LLNL group with the group of Dr. H.-Y. Holman (Lawrence Berkeley National Laboratory). In this project, we have utilized metal-resistant bacteria Arthrobacter oxydans as a model bacterial system. We have utilized atomic force microscopy (AFM) to visualize for the first time at the nanometer scale formation of stress-induced structures on bacterial surfaces in response to Cr (VI) exposure. We have demonstrated that structure, assembly, and composition of these stress-induced structures are dependent on Cr (VI) concentrations. Our AFM observations of the appearance and development of stress-induced layers on the surfaces of Arthrobacter oxydans bacteria exposed to Cr (VI) were confirmed by Dr. Holman's biochemical, electron microscopy, and synchrotron infrared spectromicroscopy studies. In general, in vitro imaging of live microbial and cellular systems represents one of the most challenging issues in application of AFM. Various approaches for immobilization of bacteria on the substrate for in vitro imaging were tested in this project. Imaging of live bacteria was achieved, however further optimization of experimental methods are needed for high-resolution visualization of the cellular environmental structural dynamics by AFM. This project enhanced the current insight into molecular architecture, structural and environmental variability of bacterial systems. The project partially funded research for two book chapters (1

  3. Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces

    DEFF Research Database (Denmark)

    Bagge, Dorthe; Hjelm, M.; Johansen, C.; Huber, I.; Gram, Lone

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in...

  4. Effect of ozonation of swimming pool water on formation of volatile disinfection by-products - A laboratory study

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Cheema, Waqas Akram;

    2016-01-01

    approximated 17-19 min in all samples. Subsequent chlorination revealed ozone removed reactivity of dissolved organic carbon toward chlorine for tap and polluted pool water, decreasing formation rate of trihalomethanes (TTHM). In pool water higher rates of TTHM formation was observed after the initial ozone...... dosage, however this decreased with subsequent treatments. For tap and polluted pool water, ozone reacted directly with the pollutants resulting in a short ozone half-life, removing reactivity towards chlorine oxidation and preventing TTHM production. Conversely for pool water samples, due to the long...... half-life of ozone, the molecule decomposed to hydroxyl radicals. These in turn reacted with aqueous organic matter increasing chlorine reactivity and rates of TTHM formation. Formation of other non-regulated volatile byproducts (e.g. dichloracetonitrile, trichlorpropanone and trichloronitromethane...

  5. Estimation of maximum burial depth of Neogene-Quaternary fore-arc basin formation based on laboratory porosity measurements under pressure

    Science.gov (United States)

    Uehara, Shin-ichi; Tamura, Yukie; Marumo, Haruna; Mitsuhashi, Shunsuke

    2016-05-01

    Estimating the maximum effective stress that rocks have experienced, Pe,max, or the maximum burial depth for sedimentary rocks, Dmax, is important for many types of research, ranging from engineering applications to estimation of tectonic evolution. We estimated Pe,max and Dmax for the Kazusa fore-arc basin formations (the Kazusa Group) in the Boso Peninsula of Japan using a laboratory-based method. We carried out measurements of porosity n with siltstone specimens from the Kazusa Group formations (the Umegase, Otadai, Kiwada, Ohara, and Katsuura formations) under various effective pressure Pe conditions and estimated Pe,max from the inflection points of the log Pe-log n curve on the Pe increasing path. Except for the specimens from the Ohara Formation, estimated values of Pe,max ranged from approximately 13-24 MPa. This range corresponded to approximately 1.3-3.2 km of Dmax. Differences in Dmax among the specimens were at least four times smaller than distances normal to bedding planes among the sampling locations. This suggests that the formations were not deposited horizontally, but that deposition proceeded as the subsidence center of the fore-arc basin moved in a northwestward (NW) direction, and that formations were then uplifted almost horizontally. The Pe,max of the specimens from the Ohara Formation were 6-10 MPa smaller than the others. Thus, it is possible that pore pressure at the sampling location was more than 6 MPa larger than the hydrostatic condition when the sediments were deposited and lithified. Previous studies reported the center of a high-porosity zone at the Ohara Formation, and this high-porosity zone probably developed due to Pp over-pressurization. These results support the applicability of this method to estimation of tectonic evolution of sedimentary basins and magnitude of over-pressurization.

  6. Intermediate Scale Laboratory Testing to Understand Mechanisms of Capillary and Dissolution Trapping during Injection and Post-Injection of CO2 in Heterogeneous Geological Formations

    Energy Technology Data Exchange (ETDEWEB)

    Illangasekare, Tissa [Colorado School of Mines, Golden, CO (United States); Trevisan, Luca [Colorado School of Mines, Golden, CO (United States); Agartan, Elif [Colorado School of Mines, Golden, CO (United States); Mori, Hiroko [Colorado School of Mines, Golden, CO (United States); Vargas-Johnson, Javier [Colorado School of Mines, Golden, CO (United States); Gonzalez-Nicolas, Ana [Colorado School of Mines, Golden, CO (United States); Cihan, Abdullah [Colorado School of Mines, Golden, CO (United States); Birkholzer, Jens [Colorado School of Mines, Golden, CO (United States); Zhou, Quanlin [Colorado School of Mines, Golden, CO (United States)

    2015-03-31

    Carbon Capture and Storage (CCS) represents a technology aimed to reduce atmospheric loading of CO2 from power plants and heavy industries by injecting it into deep geological formations, such as saline aquifers. A number of trapping mechanisms contribute to effective and secure storage of the injected CO2 in supercritical fluid phase (scCO2) in the formation over the long term. The primary trapping mechanisms are structural, residual, dissolution and mineralization. Knowledge gaps exist on how the heterogeneity of the formation manifested at all scales from the pore to the site scales affects trapping and parameterization of contributing mechanisms in models. An experimental and modeling study was conducted to fill these knowledge gaps. Experimental investigation of fundamental processes and mechanisms in field settings is not possible as it is not feasible to fully characterize the geologic heterogeneity at all relevant scales and gathering data on migration, trapping and dissolution of scCO2. Laboratory experiments using scCO2 under ambient conditions are also not feasible as it is technically challenging and cost prohibitive to develop large, two- or three-dimensional test systems with controlled high pressures to keep the scCO2 as a liquid. Hence, an innovative approach that used surrogate fluids in place of scCO2 and formation brine in multi-scale, synthetic aquifers test systems ranging in scales from centimeter to meter scale developed used. New modeling algorithms were developed to capture the processes controlled by the formation heterogeneity, and they were tested using the data from the laboratory test systems. The results and findings are expected to contribute toward better conceptual models, future improvements to DOE numerical codes, more accurate assessment of storage capacities, and optimized placement strategies. This report presents the experimental and modeling methods

  7. Dual-species biofilms formation by Escherichia coli O157:H7 and environmental bacteria isolated from fresh-cut processing plants

    Science.gov (United States)

    Biofilm formation is a mechanism adapted by many microorganisms that enhances the survival in stressful environments. In food processing facilities, bacterial strains with strong biofilm forming capacities are more likely to survive the daily cleaning and disinfection. Foodborne bacterial pathogens,...

  8. Bioreporter bacteria for landmine detection

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S. [Oak Ridge National Lab., TN (United States); Youngblood, T. [Frisby Technologies, Aiken, SC (United States); Lamothe, D. [American Technologies, Inc., Huntsville, AL (United States). Ordnance/Explosives Environmental Services Div.

    1998-04-01

    Landmines (and other UXO) gradually leak explosive chemicals into the soil at significant concentrations. Bacteria, which have adapted to scavenge low concentrations of nutrients, can detect these explosive chemicals. Uptake of these chemicals results in the triggering of specific bacterial genes. The authors have created genetically recombinant bioreporter bacteria that detect small concentrations of energetic chemicals. These bacteria are genetically engineered to produce a bioluminescent signal when they contact specific explosives. A gene for a brightly fluorescent compound can be substituted for increased sensitivity. By finding the fluorescent bacteria, you find the landmine. Detection might be accomplished using stand-off illumination of the minefield and GPS technology, which would result in greatly reduced risk to the deminers. Bioreporter technology has been proven at the laboratory scale, and will be tested under field conditions in the near future. They have created a bacterial strain that detects sub-micromolar concentrations of o- and p-nitrotoluene. Related bacterial strains were produced using standard laboratory protocols, and bioreporters of dinitrotoluene and trinitrotoluene were produced, screening for activity with the explosive compounds. Response time is dependent on the growth rate of the bacteria. Although frill signal production may require several hours, the bacteria can be applied over vast areas and scanned quickly, producing an equivalent detection speed that is very fast. This technology may be applicable to other needs, such as locating buried explosives at military and ordnance/explosive manufacturing facilities.

  9. Thermo-hydro-mechanical processes in the nearfield around a HLW repository in argillaceous formations. Vol. I. Laboratory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chun-Liang; Czaikowski, Oliver; Rothfuchs, Tilmann; Wieczorek, Klaus

    2013-06-15

    All over the world, clay formations are being investigated as host medium for geologic disposal of radioactive waste because of their favourable properties, such as very low hydraulic conductivity against fluid transport, good sorption capacity for retardation of radionuclides, and high potential of self-sealing of fractures. The construction of a repository, the disposal of heat-emitting high-level radioactive waste (HLW), the backfilling and sealing of the remaining voids, however, will inevitably induce mechanical (M), hydraulic (H), thermal (T) and chemical (C) disturbances to the host formation and the engineered barrier system (EBS) over very long periods of time during the operation and post-closure phases of the repository. The responses and resulting property changes of the clay host rock and engineered barriers are to be well understood, characterized, and predicted for assessing the long-term performance and safety of the repository.

  10. Rumen bacteria

    International Nuclear Information System (INIS)

    The rumen is the most extensively studied gut community and is characterized by its high population density, wide diversity and complexity of interactions. This complex, mixed microbial culture is comprised of prokaryote organisms including methane-producing archaebacteria, eukaryote organisms, such as ciliate and flagellate protozoa, anaerobic phycomycete fungi and bacteriophage. Bacteria are predominant (up to 1011 viable cells per g comprising 200 species) but a variety of ciliate protozoa occur widely (104-106/g distributed over 25 genera). The anaerobic fungi are also widely distributed (zoospore population densities of 102-104/g distributed over 5 genera). The occurrence of bacteriophage is well documented (107-109 particles/g). This section focuses primarily on the widely used methods for the cultivation and the enumeration of rumen microbes, especially bacteria, which grow under anaerobic conditions. Methods that can be used to measure hydrolytic enzymes (cellulases, xylanases, amylases and proteinases) are also described, along with cell harvesting and fractionation procedures. Brief reference is also made to fungi and protozoa, but detailed explanations for culturing and enumerating these microbes is presented in Chapters 2.4 and 2.5

  11. Explosively driven two-shockwave tools with application to ejecta formation at the Los Alamos National Laboratory Proton Radiography Facility

    Science.gov (United States)

    Buttler, William

    2013-06-01

    We present the development of an explosively driven physics tool to generate two mostly uniaxial shockwaves. The tool is being used to extend single shockwave ejecta models to a subsequent shockwave event separated by a time interval on the order of a few microseconds. We explore the possibility of varying the amplitude of both the first and second shockwaves, and we apply the tool in experimental geometries on Sn with a surface roughness of Ra = 0 . 8 μ m. We then evaluate the tool further at the Los Alamos National Laboratory Proton Radiography (pRad) Facility in an application to Sn with larger scale perturbations of wavelength 550 μ m, and various amplitudes that gave wave-number amplitude products of η0 2 π / λ = { 3 / 4 , 1 / 2 , 1 / 4 , 1 / 8 } , where the perturbation amplitude is η0, and the wave-number k = 2 π / λ . The pRad data and velocimetry imply it should be possible to develop a second shock ejecta model based on unstable Richtmyer-Meshkov physics. In collaboration with David Oro, Fesseha Mariam, Alexander Saunders, Malcolm Andrews, Frank Cherne, James Hammerberg. Robert Hixson, Christopher Morris, Russell Olson, Dean Preston, Joseph Stone, Dale Tupa, and Wendy Vogan-McNeil, Los Alamos National Laboratory,

  12. Geotechnical characterization through in situ and laboratory tests of several geological formations present in the route of the Future Fix Connection between Spain and Morocco through Gibraltar Strait

    International Nuclear Information System (INIS)

    CEDEX and SECEGSA (Sociedad Española para la Comunicación Fija a través del Estrecho de Gibraltar), Have been collaborating since a few decades ago to study different technical aspects related to the Fix Connection through the Gibraltar Strait, mainly in relation to the geological and geotechnical properties of the different formations present in the route. In order to do so, many studies of geotechnical characterization of materials, in situ and laboratory testing campaigns have been carried out. Furthermore, they have participated in some Expertise Committees carrying out some advice work related to studies performed by other organizations. This paper presents a brief description of the most relevant aspects of the main geological and geotechnical studies performed related to this Project of the Future Fix Connection and obtained through the study of SECEGSAs extensive data base. Moreover, it includes a synopsis of the geotechnical characterization carried out through in situ and laboratory tests on different Miocene and Eocene formations from the Algeciras Unit, present in the route of the future Fix Connection between Spain and gibraltar through the Gibraltar Strait. (Author)

  13. DECONTAMINATION OF HEAVY METALS WITH BACTERIA

    Science.gov (United States)

    OBJECTIVES: To discover, improve, understand the mechanisms and use naturally occurring bacteria to decontiminate in situ heavy metals from the soils, sediments and waters to protect human health and the environment. ABSTRACT: Our laboratory (Vesper et al. ...

  14. THE FORMATION OF STUDENTS’ LEARNING-COGNITIVE COMPETENCES BASED ON LABORATORY WORKS IN COMPUTER SCIENCE AND ICT

    OpenAIRE

    EVGENIY YUR’EVICH ANDRUSENKO

    2015-01-01

    Changes in Russian education must be made in an inte-grated way. Strategic goal of the state policy in the field of education is to enhance access to quality education, which must be relevant to the requirements of the inno-vative development of economy, current needs of society and all citizens. The list of tasks includes the competence approach as an important part of modernization of educa-tion. Among the key competences are distinguished learning-cognitive competences, for the formation o...

  15. 从腐败食品中分离的乳酸菌生物被膜形成的影响因素%Effect of Different Cultivation Conditions on Biofilm Formation of Lactic Acid Bacteria Isolated from Spoiled Food

    Institute of Scientific and Technical Information of China (English)

    谢丽斯; 张宏梅; 刘学禄; 张文艳; 黄宝威; 许佳晶; 郑添信; 刘彦兰

    2011-01-01

    从腐败的蔬菜和肉质食品中分离筛选乳酸菌(LAB),并以其作为研究对象,对乳酸菌生物成膜不同影响因素进行研究.生化分离鉴定乳酸菌,在不同的营养物质浓度及培养条件下,用96孔板法检测乳酸菌成膜.在无外添加物,37℃和42℃的培养温度,pH 4有利于乳酸菌生物膜的形成,低温不利于生物膜的形成.低浓度的NaCl可促进LAB形成生物膜,但高于某浓度,就抑制LAB成膜.不同LAB菌株对不同葡萄糖浓度成膜效果不同,且与温度交互作用.结果表明,腐败食品中乳酸菌具有一定的生物被膜形成能力,控制乳酸菌生物膜的形成对于防治食品的腐败变质具有一定的意义.%To isolate and identify lactic acid bacteria (LAB) from spoiled food and investigate the effect of different factors on biofilm formation. The strains were identified by the biochemistry methods. Biofilm formation was tested by microtiter-plate method under the different nutrient conditions, temperature and pH. The strains' biofilm was detected by microtiter - plate method. 37℃, 42℃ and pH4 suboptimal for growth increased the production of biofilm. Low concentration of sodium chloride enhanced the biofilm formation (BF), but above a certain level, BFs were restrained. Different concentrations of glucose have different effect on strains biofilm formation at different temperatures. BFs were spread widely among lactic acid bacteria from spoiled food. Preventing the formation of BFs has its significance in food preservation.

  16. Thermally-Induced Chemistry and the Jovian Icy Satellites: A Laboratory Study of the Formation of Sulfur Oxyanions

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2011-01-01

    Laboratory experiments have demonstrated that magnetospheric radiation in the Jovian system drives reaction chemistry in ices at temperatures relevant to Europa and other icy satellites. Here we present new results on thermally-induced reactions at 50-100 K in solid H2O-SO2 mixtures, reactions that take place without the need for a high-radiation environment. We find that H2O and SO2 react to produce sulfur Oxyanions, such as bisulfite, that as much as 30% of the SO2 can be consumed through this reaction, and that the products remain in the ice when the temperature is lowered, indicating that these reactions are irreversible. Our results suggest that thermally-induced reactions can alter the chemistry at temperatures relevant to the icy satellites in the Jovian system.

  17. DEVELOPMENT OF TOFU PRODUCTION METHOD WITH PROBIOTIC BACTERIA ADDITION

    Directory of Open Access Journals (Sweden)

    Dorota Zielińska

    2015-06-01

    Full Text Available The aim of the study was to develop a production method for tofu with probiotic bacteria under laboratory conditions. The works included: selection of a strain and tofu production conditions, and a storage test of the manufactured product. It was concluded that the sensory quality of tofu with the addition of different probiotic cultures did not differ significantly (p>0.01, depending on used strains and their mixtures, and the sample quality was comparable to the commercial product. It was observed that the number of Lactobacillus bacteria in study samples was the factor determining the palatability of tofu (r= 0.75. On the other hand, the sensory quality of products was significantly affected by the production method of tofu with the addition of probiotic bacteria. It was concluded that the formation of curds from soy beverage by the addition of CaSO4, followed by inoculation with Lactobacillus casei ŁOCK 0900 at the amount of 9.26 log CFU/g and incubation at temp. of 37C for 2h as well as for 20h are methods recommended for production tofu with regard to sensory qualities of the final product among all tested methods. The number of lactic acid bacteria in studied tofu samples was maintained at the high level (109-1010 CFU/g, and the number of Bifidobacterium animalis ssp lactis BB-12 bacteria did not exceed 103 CFU/g, whereas the number of Lactobacillus bacteria was equal to 108-109 CFU/g. For the period of 15 days of storage of tofu with probiotic bacteria at the temperature of 4C the number of lactic acid bacteria was maintained at the constant level of approx. 109 CFU/g. It was concluded that it is possible to produce tofu with probiotic bacteria that has acceptable sensory characteristics and a high number of lactic acid bacteria, therefore the product could be considered as a functional one.

  18. Evidence of DNA double strand breaks formation in Escherichia coli bacteria exposed to alpha particles of different LET assessed by the SOS response

    International Nuclear Information System (INIS)

    Ionizing radiation produces a plethora of lesion upon DNA which sometimes is generated among a relatively small region due to clustered energy deposition events, the so called locally multiply damaged sites that could change to DSB. Such clustered damages are more likely to occur in high LET radiation exposures. The effect of alpha particles of different LET was evaluated on the bacterium Escherichia coli either by survival properties or the SOS response activity. Alpha radiation and LET distribution was controlled by means of Nuclear Track Detectors. The results suggest that alpha particles produce two types of lesion: lethal lesions and SOS inducing-mutagenic, a proportion that varies depending on the LET values. The SOS response as a sensitive parameter to assess RBE is mentioned. - Highlights: ► High LET radiation produce locally multiple damaged sites upon DNA. ► Bacteria were exposed to alpha particles of different LET. ► Results suggest that alpha particles produce lethal and SOS inducing/mutagenic. ► The proportion of such lesions varies depending on the LET values.

  19. An inquiry-based biochemistry laboratory structure emphasizing competency in the scientific process: a guided approach with an electronic notebook format.

    Science.gov (United States)

    L Hall, Mona; Vardar-Ulu, Didem

    2014-01-01

    The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students through their laboratory work at a steady pace that encourages them to focus on quality observations, careful data collection and thought processes surrounding the chemistry involved. It motivates students to work in a collaborative manner with frequent opportunities for feedback, reflection, and modification of their ideas. Each laboratory activity has four stages to keep the students' efforts on track: pre-lab work, an in-lab discussion, in-lab work, and a post-lab assignment. Students are guided at each stage by an instructor created template that directs their learning while giving them the opportunity and flexibility to explore new information, ideas, and questions. These templates are easily transferred into an electronic journal (termed the E-notebook) and form the basic structural framework of the final lab reports the students submit electronically, via a learning management system. The guided-inquiry based approach presented here uses a single laboratory activity for undergraduate Introductory Biochemistry as an example. After implementation of this guided learning approach student surveys reported a higher level of course satisfaction and there was a statistically significant improvement in the quality of the student work. Therefore we firmly believe the described format to be highly effective in promoting student learning and engagement. PMID:24376181

  20. INFLATION OF A DIPOLE FIELD IN LABORATORY EXPERIMENTS: TOWARD AN UNDERSTANDING OF MAGNETODISK FORMATION IN THE MAGNETOSPHERE OF A HOT JUPITER

    International Nuclear Information System (INIS)

    Giant exoplanets at close orbits, or so-called hot Jupiters, are supposed to have an intensive escape of upper atmospheric material heated and ionized by the radiation of a host star. An interaction between outflowing atmospheric plasma and the intrinsic planetary magnetic dipole field leads to the formation of a crucial feature of a hot Jupiter's magnetosphere—an equatorial current-carrying magnetodisk. The presence of a magnetodisk has been shown to influence the topology of a hot Jupiter's magnetosphere and to change a standoff distance of the magnetopause. In this paper, the basic features of the formation of a hot Jupiter's magnetodisk are studied by means of a laboratory experiment. A localized central source produces plasma that expands outward from the surface of the dipole and inflates the magnetic field. The observed structure of magnetic fields, electric currents, and plasma density indicates the formation of a relatively thin current disk extending beyond the Alfvénic point. At the edge of the current disk, an induced magnetic field was found to be several times larger than the field of the initial dipole.

  1. Eye formation in semi-hard cheese: X-ray computed tomography as a non-invasive tool for assessing the influence of adjunct lactic acid bacteria

    OpenAIRE

    Guggisberg, Dominik; Fröhlich-Wyder, Marie-Therese; Irmler, Stefan; Greco, Mark; Wechsler, Daniel; Schuetz, Philipp

    2013-01-01

    Eye formation is an important feature for various cheese varieties. This study firstly aimed to evaluate the potential of X-ray computed tomography (CT) and image analysis software as a non-invasive method to quantify cheese eye volume. The quantification of the eye volume by CT was validated with 12 eyeless hard cheeses made with the inclusion of 0–100 hollow PP balls (Ø = 10 or 20 mm). The results obtained for the total volume of the ‘artificial eyes’ showed a good correlation with the volu...

  2. Cable Bacteria in Freshwater Sediments.

    Science.gov (United States)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus B; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-09-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  3. Experimental investigation of the formation and propagation of plasma jets created by a power laser: application to laboratory astrophysics

    International Nuclear Information System (INIS)

    Plasma jets are often observed in the polar regions of Young Stellar Objects (YSO). For a better understanding of the whole processes at the origin of their formation and evolution, this research thesis aims at demonstrating the feasibility of a plasma jet generation by a power laser, and at investigating its characteristics. After a detailed description of Young Stellar Objects jets and an overview of theoretical models, the author describes some experiments performed with gas guns, pulsed machines and power lasers. He describes means of generation of a jet by laser interaction via strong shock propagation. He reports experimental work, describing the target, laser operating conditions and the determination of jet parameters: speed, temperature, density. Then, he introduces results obtained for plasma jet propagation in vacuum, describes their evolution with respect to initial conditions (target type, laser operating conditions), and identifies optimal conditions for generating a jet similar to that in astrophysical conditions. He considers their propagation in ambient medium like for YSO jets in interstellar medium. Two distinct cases are investigated: collision of two successive shocks in a gaseous medium, and propagation of a plasma jet in a gas jet

  4. Quantitative Analyses of Force-Induced Amyloid Formation in Candida albicans Als5p: Activation by Standard Laboratory Procedures.

    Directory of Open Access Journals (Sweden)

    Cho X J Chan

    Full Text Available Candida albicans adhesins have amyloid-forming sequences. In Als5p, these amyloid sequences cluster cell surface adhesins to create high avidity surface adhesion nanodomains. Such nanodomains form after force is applied to the cell surface by atomic force microscopy or laminar flow. Here we report centrifuging and resuspending S. cerevisiae cells expressing Als5p led to 1.7-fold increase in initial rate of adhesion to ligand coated beads. Furthermore, mechanical stress from vortex-mixing of Als5p cells or C. albicans cells also induced additional formation of amyloid nanodomains and consequent activation of adhesion. Vortex-mixing for 60 seconds increased the initial rate of adhesion 1.6-fold. The effects of vortex-mixing were replicated in heat-killed cells as well. Activation was accompanied by increases in thioflavin T cell surface fluorescence measured by flow cytometry or by confocal microscopy. There was no adhesion activation in cells expressing amyloid-impaired Als5pV326N or in cells incubated with inhibitory concentrations of anti-amyloid dyes. Together these results demonstrated the activation of cell surface amyloid nanodomains in yeast expressing Als adhesins, and further delineate the forces that can activate adhesion in vivo. Consequently there is quantitative support for the hypothesis that amyloid forming adhesins act as both force sensors and effectors.

  5. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    Science.gov (United States)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  6. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    Science.gov (United States)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-04-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.

  7. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells.

    Science.gov (United States)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20-40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  8. Back To Bacteria.

    Science.gov (United States)

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  9. Influence of Lactobacillus plantarum WCFS1 on post-acidification, metabolite formation and survival of starter bacteria in set-yoghurt.

    Science.gov (United States)

    Settachaimongkon, Sarn; van Valenberg, Hein J F; Gazi, Inge; Nout, M J Robert; van Hooijdonk, Toon C M; Zwietering, Marcel H; Smid, Eddy J

    2016-10-01

    The objectives of this study were to evaluate the growth and survival of the model probiotic strain Lactobacillus plantarum WCFS1 in co-culture with traditional yoghurt starters and to investigate the impact of preculturing on their survival and metabolite formation in set-yoghurt. L. plantarum WCFS1 was precultured under sublethal stress conditions (combinations of elevated NaCl and low pH) in a batch fermentor before inoculation in milk. Adaptive responses of L. plantarum WCFS1 were evaluated by monitoring bacterial population dynamics, milk acidification and changes in volatile and non-volatile metabolite profiles of set-yoghurt. The results demonstrated that sublethal preculturing did not significantly affect survival of L. plantarum WCFS1. On the other hand, incorporation of sublethally precultured L. plantarum WCFS1 significantly impaired the survival of Lactobacillus delbrueckii subsp. bulgaricus which consequently reduced the post-acidification of yoghurt during refrigerated storage. A complementary metabolomics approach using headspace SPME-GC/MS and (1)H NMR combined with multivariate statistical analysis revealed substantial impact of sublethally precultured L. plantarum WCFS1 on the metabolite profiles of set-yoghurt. This study provides insight in the technological implications of non-dairy model probiotic strain L. plantarum WCFS1, such as its good stability in fermented milk and the inhibitory effect on post-acidification. PMID:27375240

  10. New Insight on the Response of Bacteria to Fluoride

    OpenAIRE

    Breaker, R R

    2012-01-01

    Fluoride has been used for decades to prevent caries and it is well established that this anion can inhibit the growth of bacteria. However, the precise effects that fluoride has on bacteria and the mechanisms that bacteria use to overcome fluoride toxicity have largely remained unexplored. Recently, my laboratory reported the discovery of biological systems that bacteria use to sense fluoride and reduce fluoride toxicity. These sensors and their associated genes are very widespread in biolog...

  11. Bacteria isolated from amoebae/bacteria consortium

    Science.gov (United States)

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  12. Biological hydrogen formation by thermophilic bacteria

    NARCIS (Netherlands)

    Bielen, A.A.M.

    2014-01-01

      Hydrogen gas (H2) is an important chemical commodity. It is used in many industrial processes and is applicable as a fuel. However, present production processes are predominantly based on non-renewable resources. In a biological H2 (bioH2) production process,

  13. Biological hydrogen formation by thermophilic bacteria

    OpenAIRE

    Bielen, A.A.M.

    2014-01-01

      Hydrogen gas (H2) is an important chemical commodity. It is used in many industrial processes and is applicable as a fuel. However, present production processes are predominantly based on non-renewable resources. In a biological H2 (bioH2) production process, known as dark-fermentation, fermentative microorganisms are able to generate H2 from renewable resources like carbohydrate-rich plant material or industrial waste streams. Because of their favourable biomass degrading capabilities...

  14. Ecophysiology of terminal carbon metabolizing bacteria in anoxic sedimentary environments

    International Nuclear Information System (INIS)

    Chemical, radiotracer, and microbiological experiments were used to understand the transformation of simple carbon compounds by anaerobic bacteria in diverse aquatic sediments and laboratory cultures. The mildly acidic sediments of Knack Lake (pH 6.2), displayed low rates of organic decomposition, and methane formation occurred almost exclusively from acetate. Low pH inhibited methanogenesis and organic decomposition. Fall turnover in Lake Mendota sediments was associated with dramatic changes in environmental parameters including: elevated concentrations of sulfate and carbon metabolites, increased rates of sulfate reduction, decreased levels of methanogenesis, increased ratio (by viable counts) of sulfate reducing to methanogenic bacteria, and higher 14CO2/14C4 + 14CO2 gas ratios produced during the biodegradation of 14C-carbon substrates (e.g., acetate and methanol). Hydrogen consumption by sulfate reducers in Lake Mendota sediments and in co-cultures of Desulfovibrio vulgaris and Methanosarcina barkeri led to an alteration in the carbon and electron flow pathway resulting in increased CO2, sulfide production, and decreased methanogenesis. These data agreed with the environmental observations in Lake Mendota that high sulfate concentrations resulted in higher ratios of CO2/CH4 produced from the degradation of organic matter. A new glycine-metabolizing acetogenic species was isolated and characterized from Knaack Lake which further extended the known diversity of anaerobic bacteria in nature

  15. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  16. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  17. Biogeochemical processes in a clay formation in situ experiment: Part E - Equilibrium controls on chemistry of pore water from the Opalinus Clay, Mont Terri Underground Research Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Highlights: → Equilibrium models of water-rock reactions in clay rocks are reviewed. → Analyses of pore waters of the Opalinus Clay from boreholes in the Mont Terri URL, Switzerland, are tabulated. → Results of modelling with various mineral controls are compared with the analyses. → Best agreement results with calcite, dolomite and siderite or daphnite saturation, Na-K-Ca-Mg exchange and/or kaolinite, illite, quartz and celestite saturation. → This approach allows calculation of the chemistry of pore water in clays too impermeable to yield water samples. - Abstract: The chemistry of pore water (particularly pH and ionic strength) is an important property of clay rocks being considered as host rocks for long-term storage of radioactive waste. Pore waters in clay-rich rocks generally cannot be sampled directly. Instead, their chemistry must be found using laboratory-measured properties of core samples and geochemical modelling. Many such measurements have been made on samples from the Opalinus Clay from the Mont Terri Underground Research Laboratory (URL). Several boreholes in that URL yielded water samples against which pore water models have been calibrated. Following a first synthesis report published in 2003, this paper presents the evolution of the modelling approaches developed within Mont Terri URL scientific programs through the last decade (1997-2009). Models are compared to the composition of waters sampled during dedicated borehole experiments. Reanalysis of the models, parameters and database enabled the principal shortcomings of the previous modelling efforts to be overcome. The inability to model the K concentrations correctly with the measured cation exchange properties was found to be due to the use of an inappropriate selectivity coefficient for Na-K exchange; the inability to reproduce the measured carbonate chemistry and pH of the pore waters using mineral-water reactions alone was corrected by considering clay mineral equilibria. Re

  18. Biogeochemical processes in a clay formation in situ experiment: Part E - Equilibrium controls on chemistry of pore water from the Opalinus Clay, Mont Terri Underground Research Laboratory, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, F.J., E-mail: fjpearson@gmail.com [Ground-Water Geochemistry, 5108 Trent Woods Dr., New Bern, NC 28562 (United States); Tournassat, Christophe; Gaucher, Eric C. [BRGM, B.P. 36009, 45060 Orleans Cedex 2 (France)

    2011-06-15

    Highlights: > Equilibrium models of water-rock reactions in clay rocks are reviewed. > Analyses of pore waters of the Opalinus Clay from boreholes in the Mont Terri URL, Switzerland, are tabulated. > Results of modelling with various mineral controls are compared with the analyses. > Best agreement results with calcite, dolomite and siderite or daphnite saturation, Na-K-Ca-Mg exchange and/or kaolinite, illite, quartz and celestite saturation. > This approach allows calculation of the chemistry of pore water in clays too impermeable to yield water samples. - Abstract: The chemistry of pore water (particularly pH and ionic strength) is an important property of clay rocks being considered as host rocks for long-term storage of radioactive waste. Pore waters in clay-rich rocks generally cannot be sampled directly. Instead, their chemistry must be found using laboratory-measured properties of core samples and geochemical modelling. Many such measurements have been made on samples from the Opalinus Clay from the Mont Terri Underground Research Laboratory (URL). Several boreholes in that URL yielded water samples against which pore water models have been calibrated. Following a first synthesis report published in 2003, this paper presents the evolution of the modelling approaches developed within Mont Terri URL scientific programs through the last decade (1997-2009). Models are compared to the composition of waters sampled during dedicated borehole experiments. Reanalysis of the models, parameters and database enabled the principal shortcomings of the previous modelling efforts to be overcome. The inability to model the K concentrations correctly with the measured cation exchange properties was found to be due to the use of an inappropriate selectivity coefficient for Na-K exchange; the inability to reproduce the measured carbonate chemistry and pH of the pore waters using mineral-water reactions alone was corrected by considering clay mineral equilibria. Re

  19. Efecto de la asociación alga-bacteria Bostrychia calliptera (Rhodomelaceae) en el porcentaje de remoción de cromo en laboratorio The effect of chromium removal by Algae-bacteria Bostrychia calliptera (Rhodomelaceae) consortia under laboratory conditions

    OpenAIRE

    Ana Lucía Rengifo-Gallego; Enrique Peña-Salamanca; Neyla Benitez-Campo

    2012-01-01

    Para determinar el porcentaje de remoción de cromo en la asociación alga-bacteria, se tomaron ejemplares del alga Bostrychia calliptera de pneumatóforos de Avicennia germinans y Rizophora mangle, en la desembocadura del Río Dagua, Pacífico colombiano. El ensayo se realizó in vitro en agua marina sintética a dos concentraciones de cromo 5 y 10mg/L, empleando biorreactores con cuatro tratamientos; i) material Alga-Bacteria (AB), ii) material algal con antibiótico Alga-antibiótico (AA), iii) con...

  20. Microgravity effects on pathogenicity of bacteria

    OpenAIRE

    Wang, Ya-Juan; Liu, Chang-Ting

    2013-01-01

    Microgravity is one of the important environmental conditions during spaceflight. A series of studies have shown that many kinds of bacteria could be detected in space station and space shuttle. Space environment or simulated microgravity may throw a certain influence on those opportunistic pathogens and lead to some changes on their virulence, biofilm formation and drug tolerance. The mechanism of bacteria response to space environment or simulated microgravity has not been defined. However,...

  1. Magnetization processes in magnetotactic bacteria systems

    Czech Academy of Sciences Publication Activity Database

    Polyakova, T.; Zablotskyy, Vitaliy A.

    2005-01-01

    Roč. 293, - (2005), s. 365-370. ISSN 0304-8853. [International Conference on Scientific and Clinical Aplications of Magnetic Carriers. Lyon, 20.05.04-22.05.04] Grant ostatní: MCF: Nanomag-Lab(XE) N 2004-003177 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetotactic bacteria * magnetization process * chemotaxis * bacteria * magnetosomes * chain formation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.985, year: 2005

  2. Characterization of (per)chlorate-reducing bacteria

    OpenAIRE

    Wolterink, A.F.W.M.

    2004-01-01

    Some bacteria can use (per)chlorateas terminal electron acceptor for growth. These bacteria convert perchlorate via chlorate and chlorite into chloride and molecular oxygen. Oxygen formation in microbial respiration is unique. In this study two chlorate-reducing strains belonging to the species Pseudomonas chloritidismutans and a (per)chlorate-reducing strain Dechloromonas hortensis were isolated. The characterization of the chlorate-reducing strain AW-1, which was isolated from a bioreactor ...

  3. Corrosion of low alloy steels in natural seawater. Influence of alloying elements and bacteria

    International Nuclear Information System (INIS)

    Metallic infrastructures immersed in natural seawater are exposed to important corrosion phenomena, sometimes characterised as microbiologically influenced corrosion. The presence of alloying elements in low alloy steels could present a corrosion resistance improvement of the structures. In this context, tests are performed with commercial steel grades, from 0,05 wt pc Cr to 11,5 wt pc Cr. They consist in 'on site' immersion in natural seawater on the one hand, and in laboratory tests with immersion in media enriched with marine sulphide-producing bacteria on the other hand. Gravimetric, microbiological, electrochemical measurements and corrosion product analyses are carried out and show that corrosion phenomenon is composed of several stages. A preliminary step is the reduction of the corrosion kinetics and is correlated with the presence of sessile sulphide-producing bacteria and an important formation of sulphur-containing species. This phase is shorter when the alloying element content of the steel increases. This phase is probably followed by an increase of corrosion, appearing clearly after an 8-month immersion in natural seawater for some of the grade steels. Chromium and molybdenum show at the same time a beneficial influence to generalised corrosion resistance and a toxic effect on sulphide-producing bacteria. This multidisciplinary study reflects the complexity of the interactions between bacteria and steels; sulphide-producing bacteria seem to be involved in corrosion processes in natural seawater and complementary studies would have to clarify occurring mechanisms. (author)

  4. Aggregation Patterns in Stressed Bacteria

    CERN Document Server

    Tsimring, L S; Aranson, I S; Ben-Jacob, E; Cohen, I; Shochet, O; Tsimring, Lev; Levine, Herbert; Aranson, Igor; Ben-Jacob, Eshel; Cohen, Inon; Shochet, Ofer

    1995-01-01

    We study the formation of spot patterns seen in a variety of bacterial species when the bacteria are subjected to oxidative stress due to hazardous byproducts of respiration. Our approach consists of coupling the cell density field to a chemoattractant concentration as well as to nutrient and waste fields. The latter serves as a triggering field for emission of chemoattractant. Important elements in the proposed model include the propagation of a front of motile bacteria radially outward form an initial site, a Turing instability of the uniformly dense state and a reduction of motility for cells sufficiently far behind the front. The wide variety of patterns seen in the experiments is explained as being due the variation of the details of the initiation of the chemoattractant emission as well as the transition to a non-motile phase.

  5. Barite encrustation of benthic sulfur-oxidizing bacteria at a marine cold seep.

    Science.gov (United States)

    Stevens, E W N; Bailey, J V; Flood, B E; Jones, D S; Gilhooly, W P; Joye, S B; Teske, A; Mason, O U

    2015-11-01

    Crusts and chimneys composed of authigenic barite are found at methane seeps and hydrothermal vents that expel fluids rich in barium. Microbial processes have not previously been associated with barite precipitation in marine cold seep settings. Here, we report on the precipitation of barite on filaments of sulfide-oxidizing bacteria at a brine seep in the Gulf of Mexico. Barite-mineralized bacterial filaments in the interiors of authigenic barite crusts resemble filamentous sulfide-oxidizing bacteria of the genus Beggiatoa. Clone library and iTag amplicon sequencing of the 16S rRNA gene show that the barite crusts that host these filaments also preserve DNA of Candidatus Maribeggiatoa, as well as sulfate-reducing bacteria. Isotopic analyses show that the sulfur and oxygen isotope compositions of barite have lower δ(34)S and δ(18)O values than many other marine barite crusts, which is consistent with barite precipitation in an environment in which sulfide oxidation was occurring. Laboratory experiments employing isolates of sulfide-oxidizing bacteria from Gulf of Mexico seep sediments showed that under low sulfate conditions, such as those encountered in brine fluids, sulfate generated by sulfide-oxidizing bacteria fosters rapid barite precipitation localized on cell biomass, leading to the encrustation of bacteria in a manner reminiscent of our observations of barite-mineralized Beggiatoa in the Gulf of Mexico. The precipitation of barite directly on filaments of sulfide-oxidizing bacteria, and not on other benthic substrates, suggests that sulfide oxidation plays a role in barite formation at certain marine brine seeps where sulfide is oxidized to sulfate in contact with barium-rich fluids, either prior to, or during, the mixing of those fluids with sulfate-containing seawater in the vicinity of the sediment/water interface. As with many other geochemical interfaces that foster mineral precipitation, both biological and abiological processes likely contribute

  6. Functional genomics of lactic acid bacteria: from food to health

    OpenAIRE

    Douillard, F.P.; Vos, de, W.M.

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumen...

  7. Functional genomics of lactic acid bacteria: from food to health

    NARCIS (Netherlands)

    Douillard, F.P.; Vos, de W.M.

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria a

  8. Summary of bacteria found in captive sea turtles 2002-Present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The database contains a summary of bacteria which have been isolated in sea turtles dead and alive at the NOAA Galveston Laboratory and is based on reports received...

  9. Genomics of Probiotic Bacteria

    Science.gov (United States)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  10. Learning Chemistry from Bacteria

    OpenAIRE

    Clardy, Jon

    2013-01-01

    Dr. Jon Clardy Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University All animals, including humans, originated and evolved on a planet already teeming with bacteria, and the two kingdoms of life have been competing and cooperating through their joint history. Although bacteria are most familiar as pathogens, some bacteria produce small molecules that are essential for the biology of animals and other eukaryotes. This lecture explores some of...

  11. HYDROMECHANICS LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — Naval Academy Hydromechanics Laboratory The Naval Academy Hydromechanics Laboratory (NAHL) began operations in Rickover Hall in September 1976. The primary purpose...

  12. In situ and laboratory investigations of fluid flow through an argillaceous formation at different scales of space and time, Tournemire tunnel, southern France

    Science.gov (United States)

    Boisson, Jean-Yves; Bertrand, Lucien; Heitz, Jean-François; Golvan, Yann Moreau-Le

    2001-01-01

    In the context of a research and development program on waste disposal, an experimental site (Tournemire tunnel, Aveyron, France) was selected by the French Institute for Nuclear Protection and Safety (IPSN) in order to undertake studies on potential fluid flow at different scales of space and time within a 250-m-thick argillaceous formation. The argillite has a low natural water content ( 3-5%) and very low radii access porosity. Diffusion (tritiated water) coefficients (1×10-12 to 2×10-11 m2/s) and hydraulic conductivities derived from different types of laboratory tests (10-14 to 10-13 m/s) are characteristics of a very low-permeable rock. In situ hydraulic tests (including long-term hydraulic-head measurements) were used to obtain values for hydraulic head and hydraulic conductivity at a scale of 1-10 m (10-13 to 10-11 m/s). Despite uncertainties on these data (due to a scale factor, presence of fissures, and possible artefacts due to hydro-chemo-mechanical coupling), it is expected that fluid flow is essentially governed by diffusion processes. Identification of possible natural flows at larger scales of time and space was investigated using natural isotopic tracers from interstitial fluids. Modelling, based on the deuterium profile along the clay formation and assuming pure diffusion processes, provides estimations of possible flow times. However, lack of knowledge concerning the past geological evolution of the site and the possible role of a fracture network do not permit reduction of uncertainties on these estimations at this stage. Résumé. Dans le cadre de son programme de recherche et développement sur les stockages de déchets, un site expérimental (tunnel de Tournemire, Aveyron, France) a été sélectionné par l'Institut de Protection et Sûreté Nucléaire (IPSN) pour conduire des études sur les possibilités de transferts de fluides à différentes échelles de temps et d'espace au sein d'une formation argileuse de 250 m d'épaisseur. L

  13. Molecular analysis of deep subsurface bacteria

    International Nuclear Information System (INIS)

    Deep sediments samples from site C10a, in Appleton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina were studied to determine their microbial community composition, DNA homology and mol %G+C. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. Total DNA hybridization and mol %G+C analysis of deep sediment bacterial isolates suggested that each formation is comprised of different microbial communities. Depositional environment was more important than site and geological formation on the DNA relatedness between deep subsurface bacteria, since more 70% of bacteria with 20% or more of DNA homology came from the same depositional environments. Based on phenotypic and genotypic tests Pseudomonas spp. and Acinetobacter spp.-like bacteria were identified in 85 million years old sediments. This suggests that these microbial communities might have been adapted during a long period of time to the environmental conditions of the deep subsurface

  14. An individual-based model for biofilm formation at liquid surfaces

    Science.gov (United States)

    Ardré, Maxime; Henry, Hervé; Douarche, Carine; Plapp, Mathis

    2015-12-01

    The bacterium Bacillus subtilis frequently forms biofilms at the interface between the culture medium and the air. We present a mathematical model that couples a description of bacteria as individual discrete objects to the standard advection-diffusion equations for the environment. The model takes into account two different bacterial phenotypes. In the motile state, bacteria swim and perform a run-and-tumble motion that is biased toward regions of high oxygen concentration (aerotaxis). In the matrix-producer state they excrete extracellular polymers, which allows them to connect to other bacteria and to form a biofilm. Bacteria are also advected by the fluid, and can trigger bioconvection. Numerical simulations of the model reproduce all the stages of biofilm formation observed in laboratory experiments. Finally, we study the influence of various model parameters on the dynamics and morphology of biofilms.

  15. Aerobic Anoxygenic Phototrophic Bacteria

    OpenAIRE

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynt...

  16. Method of Analysis by the U.S. Geological Survey California District Sacramento Laboratory?Determination of Trihalomethane Formation Potential, Method Validation, and Quality-Control Practices

    Science.gov (United States)

    Crepeau, Kathryn L.; Fram, Miranda S.; Bush, Noel

    2004-01-01

    An analytical method for the determination of the trihalomethane formation potential of water samples has been developed. The trihalomethane formation potential is measured by dosing samples with chlorine under specified conditions of pH, temperature, incubation time, darkness, and residual-free chlorine, and then analyzing the resulting trihalomethanes by purge and trap/gas chromatography equipped with an electron capture detector. Detailed explanations of the method and quality-control practices are provided. Method validation experiments showed that the trihalomethane formation potential varies as a function of time between sample collection and analysis, residual-free chlorine concentration, method of sample dilution, and the concentration of bromide in the sample.

  17. Metallization of bacteria cells

    Institute of Scientific and Technical Information of China (English)

    LI; Xiangfeng; (黎向锋); LI; Yaqin; (李雅芹); CAI; Jun; (蔡军); ZHANG; Deyuan; (张德远)

    2003-01-01

    Bacteria cells with different standard shapes are well suited for use as templates for the fabrication of magnetic and electrically conductive microstructures. In this paper, metallization of bacteria cells is demonstrated by an electroless deposition technique of nickel-phosphorus initiated by colloid palladium-tin catalyst on the surfaces of Citeromyces matritensis and Bacillus cereus. The activated and metallized bacteria cells have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). Results showed that both Citeromyces matritensis and Bacillus cereus had no deformation in shape after metallization; the metallized films deposited on the surfaces of bacteria cells are homogeneous in thickness and noncrystalline in phase structure. The kinetics of colloid palladium-tin solution and electroless plating on bacteria cells is discussed.

  18. In situ and laboratory investigations of fluid flow through an argillaceous formation at different scales of space and time, Tournemire tunnel, southern France

    Science.gov (United States)

    Boisson, Jean-Yves; Bertrand, Lucien; Heitz, Jean-François; Golvan, Yann Moreau-Le

    2001-01-01

    In the context of a research and development program on waste disposal, an experimental site (Tournemire tunnel, Aveyron, France) was selected by the French Institute for Nuclear Protection and Safety (IPSN) in order to undertake studies on potential fluid flow at different scales of space and time within a 250-m-thick argillaceous formation. The argillite has a low natural water content ( 3-5%) and very low radii access porosity. Diffusion (tritiated water) coefficients (1×10-12 to 2×10-11 m2/s) and hydraulic conductivities derived from different types of laboratory tests (10-14 to 10-13 m/s) are characteristics of a very low-permeable rock. In situ hydraulic tests (including long-term hydraulic-head measurements) were used to obtain values for hydraulic head and hydraulic conductivity at a scale of 1-10 m (10-13 to 10-11 m/s). Despite uncertainties on these data (due to a scale factor, presence of fissures, and possible artefacts due to hydro-chemo-mechanical coupling), it is expected that fluid flow is essentially governed by diffusion processes. Identification of possible natural flows at larger scales of time and space was investigated using natural isotopic tracers from interstitial fluids. Modelling, based on the deuterium profile along the clay formation and assuming pure diffusion processes, provides estimations of possible flow times. However, lack of knowledge concerning the past geological evolution of the site and the possible role of a fracture network do not permit reduction of uncertainties on these estimations at this stage. Résumé. Dans le cadre de son programme de recherche et développement sur les stockages de déchets, un site expérimental (tunnel de Tournemire, Aveyron, France) a été sélectionné par l'Institut de Protection et Sûreté Nucléaire (IPSN) pour conduire des études sur les possibilités de transferts de fluides à différentes échelles de temps et d'espace au sein d'une formation argileuse de 250 m d'épaisseur. L

  19. Automated Microbial Metabolism Laboratory

    Science.gov (United States)

    1973-01-01

    Development of the automated microbial metabolism laboratory (AMML) concept is reported. The focus of effort of AMML was on the advanced labeled release experiment. Labeled substrates, inhibitors, and temperatures were investigated to establish a comparative biochemical profile. Profiles at three time intervals on soil and pure cultures of bacteria isolated from soil were prepared to establish a complete library. The development of a strategy for the return of a soil sample from Mars is also reported.

  20. Induction of trap formation in nematode-trapping fungi by a bacterium.

    Science.gov (United States)

    Li, Lei; Ma, Mingchuan; Liu, Yongjun; Zhou, Jingwei; Qu, Qing; Lu, Kaiping; Fu, Denggao; Zhang, KeQin

    2011-09-01

    Three soil bacterial strains were identified as Chryseobacterium sp. TFB on the basis of their 16S rRNA gene sequences. Conidia of Arthrobotrys oligospora produced a few mycelial traps (MT) and conidial traps (CT) when cultured with bacterial cells that they did not produce when cultured with a bacterial cell-free culture filtrate. However, co-culture of A. oligospora with bacterial cells and bacteria-free filtrate simultaneously induced MT and CT in large amounts. With the increased concentration of bacteria-free filtrate, the number of typical CT increased, but conidial germination was progressively inhibited. Scanning electron microscopy of A. oligospora co-cultured with bacteria revealed that bacterial attachment to hyphae was a prerequisite to trap formation and that bacteria-free filtrate facilitated bacterial attachments to hyphae. The results that the addition of nutrients in co-culture medium decreased the number of traps suggest that this type of trap formation may be favoured at a low nutrient status. Eight fungi tested were able to form MT and CT when co-cultured with bacterial cells and bacteria-free culture filtrate, but the abilities varied among species. This study provides novel evidence that under laboratory conditions, soil bacteria attaching to hyphae could induce traps in nematode-trapping fungi. PMID:21722172

  1. Indicator For Pseudomonas Bacteria

    Science.gov (United States)

    Margalit, Ruth

    1990-01-01

    Characteristic protein extracted and detected. Natural protein marker found in Pseudomonas bacteria. Azurin, protein containing copper readily extracted, purified, and used to prepare antibodies. Possible to develop simple, fast, and accurate test for marker carried out in doctor's office.

  2. Conversion of a laboratory-based test for phenylalanine detection to a simple paper-based format and implications for PKU screening in low-resource settings.

    Science.gov (United States)

    Thiessen, Gregory; Robinson, Robert; De Los Reyes, Kim; Monnat, Raymond J; Fu, Elain

    2015-01-21

    Laboratory-based testing does not reach many individuals in lower-resource settings who could benefit from access to appropriate tests for diagnosis and therapy. A critical issue is laboratory-based testing often requires an environment with a high level of resources and supporting infrastructure that is not available in many areas of the world. The current report describes the conversion of a laboratory-based test for phenylalanine detection to a simple paper-based test appropriate for use in low-resource settings. The paper-based test is easy to operate, with all reagents stored dry on the card, is compatible with visible detection for clinically relevant concentrations of phenylalanine, and has a time to result of 10 minutes. Next steps for test development are discussed in the context of the potential for the paper-based Phe test to be used as a newborn PKU screening test in settings that are not well served by existing screening approaches. PMID:25427275

  3. Bacteria-Triggered Release of Antimicrobial Agents

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Chiang, Wen-Chi; Tolker-Nielsen, Tim;

    2014-01-01

    Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular...... material is demonstrated by the bacteria‐triggered release of antibiotics to control bacterial populations and signaling molecules to modulate quorum sensing. The self‐regulating system provides the basis for the development of device‐relevant polymeric materials, which only release antibiotics in...... dependency of the titer of bacteria surrounding the medical device....

  4. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    Directory of Open Access Journals (Sweden)

    E. S. Vorobey

    2012-03-01

    Full Text Available Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molecules of the Quorum sensing system. Coordination of bacterial cells activity in the biofilms gives them significant advantages: in the biofilms bacteria are protected from the influence of the host protective factors and the antibacterial drugs.

  5. Method of analysis at the U.S. Geological Survey California Water Science Center, Sacramento Laboratory - determination of haloacetic acid formation potential, method validation, and quality-control practices

    Science.gov (United States)

    Zazzi, Barbara C.; Crepeau, Kathryn L.; Fram, Miranda S.; Bergamaschi, Brian A.

    2005-01-01

    An analytical method for the determination of haloacetic acid formation potential of water samples has been developed by the U.S. Geological Survey California Water Science Center Sacramento Laboratory. The haloacetic acid formation potential is measured by dosing water samples with chlorine under specified conditions of pH, temperature, incubation time, darkness, and residual-free chlorine. The haloacetic acids formed are bromochloroacetic acid, bromodichloroacetic acid, dibromochloroacetic acid, dibromoacetic acid, dichloroacetic acid, monobromoacetic acid, monochloroacetic acid, tribromoacetic acid, and trichloroacetic acid. They are extracted, methylated, and then analyzed using a gas chromatograph equipped with an electron capture detector. Method validation experiments were performed to determine the method accuracy, precision, and detection limit for each of the compounds. Method detection limits for these nine haloacetic acids ranged from 0.11 to 0.45 microgram per liter. Quality-control practices include the use of blanks, quality-control samples, calibration verification standards, surrogate recovery, internal standard, matrix spikes, and duplicates.

  6. Experimental evolution with bacteria in complex environments

    OpenAIRE

    Hall, Alex R.

    2009-01-01

    Experiments with microbes are a powerful tool for addressing general questions in evolutionary ecology. Microbial evolution is also interesting in its own right, and often clinically relevant. I have used experimental evolution of bacteria (Pseudomonas spp.) in controlled laboratory environments to investigate the role of environmental heterogeneity in the evolution of phenotypic diversity. Some of my results provide insight on general processes, while others are specific to ba...

  7. The talking language in some major Gram-negative bacteria.

    Science.gov (United States)

    Banerjee, Goutam; Ray, Arun Kumar

    2016-08-01

    Cell-cell interaction or quorum sensing (QS) is a vital biochemical/physiological process in bacteria that is required for various physiological functions, including nutrient uptake, competence development, biofilm formation, sporulation, as well as for toxin secretion. In natural environment, bacteria live in close association with other bacteria and interaction among them is crucial for survival. The QS-regulated gene expression in bacteria is a cell density-dependent process and the initiation process depends on the threshold level of the signaling molecule, N-acyl-homoserine lactone (AHL). The present review summarizes the QS signal and its respective circuit in Gram-negative bacteria. Most of the human pathogens belong to Gram-negative group, and only a few of them cause disease through QS system. Thus, inhibition of pathogenic bacteria is important. Use of antibiotics creates a selective pressure (antibiotics act as natural selection factor to promote one group of bacteria over another group) for emerging multidrug-resistant bacteria and will not be suitable for long-term use. The alternative process of inhibition of QS in bacteria using different natural and synthetic molecules is called quorum quenching. However, in the long run, QS inhibitors or blockers may also develop resistance, but obviously it will solve some sort of problems. In this review, we also have stated the mode of action of quorum-quenching molecule. The understanding of QS network in pathogenic Gram-negative bacteria will help us to solve many health-related problems in future. PMID:27062655

  8. The effect of lactic acid bacteria on cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  9. Creation of a dynamic database and analysis of LIDAR measurements in web format at the Laboratory of Environmental Laser Applications at the Nuclear and Energy Research Institute

    International Nuclear Information System (INIS)

    The LIDAR system (Light Detection and Ranging) laser remote sensing at the Nuclear and Energy Research Institute - Laboratory of Environmental Laser Applications allows on line measurements of variations in the concentrations of atmospheric aerosols by sending a laser beam to the atmosphere and collecting the backscattered light. Such a system supplies a great number of physical parameters that must be managed in an agile form to the attainment of a real time analysis. Database implementation therefore becomes an important toll of communication and graphical visualization of measurements. A criterion for classification of this valuable information was adopted, establishing defined levels of storage from specific characteristics of the determined data types. The compilation and automation of these measurements will promote optimized integration between data, analysis and retrieval of the resulting properties and of the atmosphere, improving future research and data analysis. (author)

  10. Oil eating bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The article discusses the unusual technology of using oil-eating bacteria to increase oil recovery. The background for the discovery that bacteria injection into the reservoirs may increase the oil recovery is the study of microbial action in breaking down oil pollution. About 20 per cent of the organisms living naturally in the sea can eat oil. But they need water to grow. In the absence of water, the bacteria produce enzymes to make the oil water soluble and allow them to extract nutrients from them. Oil does not vanish upon being eaten, but enzymes from the digestive process act as effective detergents to wash away the oil, which is then easier to recover.

  11. Study into the applicability of laboratory data to natural conditions: Laser fluorescence spectroscopy for the analysis of Cm(III) complex formation with humate and fulvate

    International Nuclear Information System (INIS)

    The complex formation of Cm(III) with humic acid or fulvic acid isolated from a Gorleben groundwater is analysed in 0.1 M NaClO4 at pH = 6.0 by means of the time-resolved, laser-induced fluorescence spectroscopy. The humate and fulvate complexes are characterized by their excitation, emission, and life spectra. Complexation constants are derived by way of spectroscopic speciation in the trace concentration range (Cm(III) = 2.1-10.1x10-8 mol L-1). The results obtained for Cm-humate (lg β = 6.22±0.05) and Cm-fulvate (lg β = 6.05±0.11) are in very good agreement with those obtained for Am(III) in the saturation concentration range of the humic acid ([Am(I II) = 10-5 mol L1-1). (orig.)

  12. Widespread Distribution of Ability to Oxidize Manganese Among Freshwater Bacteria

    OpenAIRE

    Gregory, Eileen; Staley, James T.

    1982-01-01

    Manganese-oxidizing heterotrophic bacteria were found to comprise a significant proportion of the bacterial community of Lake Washington (Seattle, Wash.) and Lake Virginia (Winter Park, Fla.). Identification of these freshwater bacteria showed that members of a variety of genera are capable of oxidizing manganese. Isolates maintained in the laboratory spontaneously lost the ability to oxidize manganese. A direct correlation was found between the presence of plasmid DNA and the ability of the ...

  13. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    OpenAIRE

    E. S. Vorobey; O. S. Voronkova; A. I. Vinnikov

    2012-01-01

    Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molec...

  14. Immunity to intracellular bacteria

    OpenAIRE

    Stefan H. E. Kaufmann; Follows, George A.; Martin E. Munik

    1992-01-01

    Immunity to intracellular bacteria including Mycobacterium tuberculosis. Mycobacterium leprae, and Listeria monocytogenes depends on specific T cells. Evidence to be described suggests that CD4 (alpha/beta)T cells which interact with each other and with macrophages contribute to acquired resistence against as well as pathogenesis of intracellular bacterial infections.

  15. Immunity to intracellular bacteria

    Directory of Open Access Journals (Sweden)

    Stefan H. E. Kaufmann

    1992-01-01

    Full Text Available Immunity to intracellular bacteria including Mycobacterium tuberculosis. Mycobacterium leprae, and Listeria monocytogenes depends on specific T cells. Evidence to be described suggests that CD4 (alpha/betaT cells which interact with each other and with macrophages contribute to acquired resistence against as well as pathogenesis of intracellular bacterial infections.

  16. Laboratory Astrophysics White Paper

    Science.gov (United States)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  17. Analytical Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s analytical laboratories in Pittsburgh, PA, and Albany, OR, give researchers access to the equipment they need to thoroughly study the properties of materials...

  18. National laboratories

    International Nuclear Information System (INIS)

    The foundation of a 'National Laboratory' which would support a Research center in synchrotron radiation applications is proposed. The essential features of such a laboratory differing of others centers in Brazil are presented. (L.C.)

  19. Laboratory Tests

    Science.gov (United States)

    Laboratory tests check a sample of your blood, urine, or body tissues. A technician or your doctor ... compare your results to results from previous tests. Laboratory tests are often part of a routine checkup ...

  20. Computational Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains a number of commercial off-the-shelf and in-house software packages allowing for both statistical analysis as well as mathematical modeling...

  1. Radiographic markers - A reservoir for bacteria?

    Energy Technology Data Exchange (ETDEWEB)

    Tugwell, Jenna, E-mail: jenna.tugwell@googlemail.co [Department of Radiology, Ysbyty Gwynedd Hospital, Bangor, North Wales (United Kingdom); Maddison, Adele [Nuffield Health, Shrewsbury Hospital (United Kingdom)

    2011-05-15

    Introduction: Amongst the most frequently handled objects in the radiology department are radiographic markers. They are personal accessories used with every patient, and are kept in the radiographers pockets when not utilised. Upon enquiry it was discovered that many radiographers disregarded the potential of these accessories to become a vector for cross-contamination thus never or rarely clean them. The aims of this study were therefore to identify if radiographic markers are a reservoir for bacteria and to establish an effective cleaning method for decontaminating them. Methodology: 25 radiographers/student radiographers were selected for this study. Swabbing of their markers prior and post cleaning took place. The microbiology laboratory subsequently analyzed the results by quantifying and identifying the bacteria present. The participants also completed a closed questionnaire regarding their markers (e.g. frequency of cleaning and type of marker) to help specify the results gained from the swabbing procedure. Results: From the sample swabbed, 92% were contaminated with various organisms including Staphylococcus and Bacillus species, the amount of bacteria present ranged from 0 to >50 CFU. There were no significant differences between disinfectant wipes and alcohol gel in decontaminating the markers. Both successfully reduced their bacterial load, with 80% of the markers post cleaning having 0 CFU. Conclusion: The results indicated that radiographic markers can become highly contaminated with various organisms thus serve as a reservoir for bacteria. In addition, the markers need to be cleaned on a regular basis, with either disinfectant wipes or alcohol gel to reduce their bacterial load.

  2. Radiographic markers - A reservoir for bacteria?

    International Nuclear Information System (INIS)

    Introduction: Amongst the most frequently handled objects in the radiology department are radiographic markers. They are personal accessories used with every patient, and are kept in the radiographers pockets when not utilised. Upon enquiry it was discovered that many radiographers disregarded the potential of these accessories to become a vector for cross-contamination thus never or rarely clean them. The aims of this study were therefore to identify if radiographic markers are a reservoir for bacteria and to establish an effective cleaning method for decontaminating them. Methodology: 25 radiographers/student radiographers were selected for this study. Swabbing of their markers prior and post cleaning took place. The microbiology laboratory subsequently analyzed the results by quantifying and identifying the bacteria present. The participants also completed a closed questionnaire regarding their markers (e.g. frequency of cleaning and type of marker) to help specify the results gained from the swabbing procedure. Results: From the sample swabbed, 92% were contaminated with various organisms including Staphylococcus and Bacillus species, the amount of bacteria present ranged from 0 to >50 CFU. There were no significant differences between disinfectant wipes and alcohol gel in decontaminating the markers. Both successfully reduced their bacterial load, with 80% of the markers post cleaning having 0 CFU. Conclusion: The results indicated that radiographic markers can become highly contaminated with various organisms thus serve as a reservoir for bacteria. In addition, the markers need to be cleaned on a regular basis, with either disinfectant wipes or alcohol gel to reduce their bacterial load.

  3. Can bacteria save the planet?

    OpenAIRE

    Hunter, Philip

    2010-01-01

    Bacteria might just hold the key to preserving the environment for our great grandchildren. Philip Hunter explores some of the novel ways in which systems biology and biotechnology are harnessing bacteria to produce renewable energy and clean up pollution.

  4. Cable Bacteria in Freshwater Sediments

    OpenAIRE

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus B.; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the fre...

  5. Manufacture of Probiotic Bacteria

    Science.gov (United States)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  6. Exopolysaccharides from Marine Bacteria

    Institute of Scientific and Technical Information of China (English)

    CHI Zhenming; FANG Yan

    2005-01-01

    Microbial polysaccharides represent a class of important products of growing interest for many sectors of industry. In recent years, there has been a growing interest in isolating new exopolysaccharides (EPSs)-producing bacteria from marine environments, particularly from various extreme marine environments. Many new marine microbial EPSs with novel chemical compositions, properties and structures have been found to have potential applications in fields such as adhesives,textiles, pharmaceuticals and medicine for anti-cancer, food additives, oil recovery and metal removal in mining and industrial waste treatments, etc This paper gives a brief summary of the information about the EPSs produced by marine bacteria,including their chemical compositions, properties and structures, together with their potential applications in industry.

  7. Lipoprotein sorting in bacteria.

    Science.gov (United States)

    Okuda, Suguru; Tokuda, Hajime

    2011-01-01

    Bacterial lipoproteins are synthesized as precursors in the cytoplasm and processed into mature forms on the cytoplasmic membrane. A lipid moiety attached to the N terminus anchors these proteins to the membrane surface. Many bacteria are predicted to express more than 100 lipoproteins, which play diverse functions on the cell surface. The Lol system, composed of five proteins, catalyzes the localization of Escherichia coli lipoproteins to the outer membrane. Some lipoproteins play vital roles in the sorting of other lipoproteins, lipopolysaccharides, and β-barrel proteins to the outer membrane. On the basis of results from biochemical, genetic, and structural studies, we discuss the biogenesis of lipoproteins in bacteria, their importance in cellular functions, and the molecular mechanisms underlying efficient sorting of hydrophobic lipoproteins to the outer membrane through the hydrophilic periplasm. PMID:21663440

  8. Bacteria, Phages and Septicemia

    OpenAIRE

    Gaidelytė, Aušra; Vaara, Martti; Bamford, Dennis H.

    2007-01-01

    The use of phages is an attractive option to battle antibiotic resistant bacteria in certain bacterial infections, but the role of phage ecology in bacterial infections is obscure. Here we surveyed the phage ecology in septicemia, the most severe type of bacterial infection. We observed that the majority of the bacterial isolates from septicemia patients spontaneously secreted phages active against other isolates of the same bacterial strain, but not to the strain causing the disease. Such ph...

  9. Bacteria, food, and cancer

    OpenAIRE

    Rooks, Michelle G.; Garrett, Wendy S.

    2011-01-01

    Gut microbes are essential components of the human organism—helping us metabolize food into energy, produce micronutrients, and shape our immune systems. Having a particular pattern of gut microbes is also increasingly being linked to medical conditions including obesity, inflammatory bowel disease, and diabetes. Recent studies now indicate that our resident intestinal bacteria may also play a critical role in determining one's risk of developing cancer, ranging from protection against cancer...

  10. Lethal Mutagenesis of Bacteria

    OpenAIRE

    Bull, James J; Wilke, Claus O.

    2008-01-01

    Lethal mutagenesis, the killing of a microbial pathogen with a chemical mutagen, is a potential broad-spectrum antiviral treatment. It operates by raising the genomic mutation rate to the point that the deleterious load causes the population to decline. Its use has been limited to RNA viruses because of their high intrinsic mutation rates. Microbes with DNA genomes, which include many viruses and bacteria, have not been considered for this type of treatment because their low intrinsic mutatio...

  11. Bacteria are not Lamarckian

    OpenAIRE

    Danchin, Antoine

    2007-01-01

    Instructive influence of environment on heredity has been a debated topic for centuries. Darwin's identification of natural selection coupled to chance variation as the driving force for evolution, against a formal interpretation proposed by Lamarck, convinced most scientists that environment does not specifically instruct evolution in an oriented direction. This is true for multicellular organisms. In contrast, bacteria were long thought of as prone to receive oriented influences from their ...

  12. Denitrification by extremely halophilic bacteria

    Science.gov (United States)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  13. Antifouling activity of symbiotic bacteria from sponge Aplysina gerardogreeni

    OpenAIRE

    Aguila-Ramirez, Ruth Noemi; Hernandez-Guerrero, Claudia Judith; Gonzalez-Acosta, Barbara; Id-Daoud, Ghezlane; Hewitt, Samantha; Pope, Josephine; Hellio, Claire

    2014-01-01

    A key area in marine antifoulant research is the discovery of new environmentally friendly solutions that prevent biofilm formation and associated biocorrosion. Taking into consideration the natural mechanisms of marine organisms to protect against epibiosis, new biomimetic solutions can be utilised against biofouling, and marine bacteria are promising agents. Therefore, the goal of this study was to identify cultivable bacteria with antifouling (AF) activity associated with the sponge Aplysi...

  14. The Chemical Ecology of Predatory Soil Bacteria.

    Science.gov (United States)

    Findlay, Brandon L

    2016-06-17

    The study of natural products is entering a renaissance, driven by the discovery that the majority of bacterial secondary metabolites are not produced under standard laboratory conditions. Understanding the ecological role of natural products is key to efficiently directing our screening efforts, and to ensuring that each screen efficiently captures the full biosynthetic repertoire of the producing organisms. Myxobacteria represent one of the most common and diverse groups of bacteria, with roughly 2500 strains publically available. Fed largely through predation, the myxobacteria have developed a large repertoire of natural products that target other microorganisms, including bacteria and fungi. Many of these interactions can be observed in predation assays, providing direct evidence for environmental interactions. With a focus on Myxococcus xanthus, this review will highlight how recent advances in myxobacteria are revealing the chemical ecology of bacterial natural products. PMID:27035738

  15. Pepsin homologues in bacteria

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2009-09-01

    Full Text Available Abstract Background Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. Results Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. Conclusion The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication

  16. Can Pulp Fibroblasts Kill Cariogenic Bacteria? Role of Complement Activation.

    Science.gov (United States)

    Jeanneau, C; Rufas, P; Rombouts, C; Giraud, T; Dejou, J; About, I

    2015-12-01

    Complement system activation has been shown to be involved in inflammation and regeneration processes that can be observed within the dental pulp after moderate carious decay. Studies simulating carious injuries in vitro have shown that when human pulp fibroblasts are stimulated by lipoteichoic acid (LTA), they synthetize all complement components. Complement activation leads to the formation of the membrane attack complex (MAC), which is known for its bacterial lytic effect. This work was designed to find out whether human pulp fibroblasts can kill Streptococcus mutans and Streptococcus sanguinis via complement activation. First, histological staining of carious tooth sections showed that the presence of S. mutans correlated with an intense MAC staining. Next, to simulate bacterial infection in vitro, human pulp fibroblasts were incubated in serum-free medium with LTA. Quantification by an enzymatic assay showed a significant increase of MAC formation on bacteria grown in this LTA-conditioned medium. To determine whether the MAC produced by pulp fibroblasts was functional, bacteria sensitivity to LTA-conditioned medium was evaluated using agar well diffusion assay and succinyl dehydrogenase (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide [MTT]) assay. Both assays showed that S. mutans and S. sanguinis were sensitive to LTA-conditioned medium. Finally, to evaluate whether MAC formation on cariogenic bacteria, by pulp fibroblasts, can be directly induced by the presence of these bacteria, a specific coculture model of human pulp fibroblasts and bacteria was developed. Immunofluorescence revealed an intense MAC labeling on bacteria after direct contact with pulp fibroblasts. The observed MAC formation and its lethal effects were significantly reduced when CD59, an inhibitor of MAC formation, was added. Our findings demonstrate that the MAC produced by LTA-stimulated pulp fibroblasts is functional and can kill S. mutans and S. sanguinis. Taken together

  17. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten;

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including an...... overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid...

  18. Laboratory Building.

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  19. Metabolism of polychlorinated biphenyls by marine bacteria

    International Nuclear Information System (INIS)

    There have been no reports of laboratory studies of PCB metabolism by marine organisms. A few workers have analyzed marine animals for products of PCB metabolism. A search for hydroxylated PCBs in marine fish proved inconclusive. Phenolic metabolites of PCBs have been identified in seals and guillemot. PCBs that had been hydroxylated and excreted by marine organisms would most likely be found in the sediments, so in our laboratory we conducted a search for these compounds in marine sediments. Two kilograms of organic-rich surface sediment from Buzzards Bay, Massachusetts, were extracted. The phenolic fraction was isolated and analyzed by gas chromatography-mass spectrometry (GC-MS). Neither wide mass scans nor selected mass searches produced any evidence of hydroxylated PCB derivatives. It was felt that if any marine organisms were capable of metabolism of PCBs, some marine bacteria should have that capability. Thus a series of laboratory experiments was conducted to test this possibility. Reported here is the finding of PCB metabolism by marine bacteria in batch culture

  20. Interaction between Chlorella vulgaris and bacteria:interference and resource competition

    Institute of Scientific and Technical Information of China (English)

    QU Liang; WANG Renjun; ZHAO Peng; CHEN Ruinan; ZHOU Wenli; TANG Liuqing; TANG Xuexi

    2014-01-01

    Research of interaction mechanism between Chlorella vulgaris and two bacterial strains (Z-QD08 and Z-QS01) were conducted under laboratory conditions. Growth rates of bacteria and C. vulgaris were tested under co-culture conditions to evaluate the effects of concentrations of C. vulgaris and bacteria on their interactions. To test whether the availability of inorganic nutrients, vitamins and trace metals affects the interactions between C. vulgaris and bacteria, experiments were performed with or without the culture medium filtrate of C. vulgaris or bacteria. The results showed that the growth of C. vulgaris was promot-ed at low concentrations of bacteria (5×106 cells/ml), and expressed a positive correlation with the bacteria density, whereas opposite trend was observed for treatments with high bacteria density (10×106 cells/ml and 20×106 cells/ml). The growth rate of bacteria decreased with the increasing concentrations of C. vul-garis. The growth of bacteria Z-QD08 was inhibited by C. vulgaris through interference competition, while the mechanism for interaction between bacteria Z-QS01 and C. vulgaris was resource competition. The influence of cell density on the interaction between microalgae and bacteria was also discussed. These ex-periments confirm some elements of published theory on interactions between heterotrophic bacteria and microalgae and suggest that heterotrophic bacteria play an important role in the development of blooms in natural waters.

  1. Visualization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Evaluates and improves the operational effectiveness of existing and emerging electronic warfare systems. By analyzing and visualizing simulation results...

  2. Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Dynamics Lab replicates vibration environments for every Navy platform. Testing performed includes: Flight Clearance, Component Improvement, Qualification, Life...

  3. Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: To conduct fundamental studies of highway materials aimed at understanding both failure mechanisms and superior performance. New standard test methods are...

  4. Bacteria counting method based on polyaniline/bacteria thin film.

    Science.gov (United States)

    Zhihua, Li; Xuetao, Hu; Jiyong, Shi; Xiaobo, Zou; Xiaowei, Huang; Xucheng, Zhou; Tahir, Haroon Elrasheid; Holmes, Mel; Povey, Malcolm

    2016-07-15

    A simple and rapid bacteria counting method based on polyaniline (PANI)/bacteria thin film was proposed. Since the negative effects of immobilized bacteria on the deposition of PANI on glass carbon electrode (GCE), PANI/bacteria thin films containing decreased amount of PANI would be obtained when increasing the bacteria concentration. The prepared PANI/bacteria film was characterized with cyclic voltammetry (CV) technique to provide quantitative index for the determination of the bacteria count, and electrochemical impedance spectroscopy (EIS) was also performed to further investigate the difference in the PANI/bacteria films. Good linear relationship of the peak currents of the CVs and the log total count of bacteria (Bacillus subtilis) could be established using the equation Y=-30.413X+272.560 (R(2)=0.982) over the range of 5.3×10(4) to 5.3×10(8)CFUmL(-1), which also showed acceptable stability, reproducibility and switchable ability. The proposed method was feasible for simple and rapid counting of bacteria. PMID:26921555

  5. Quorum sensing in plant-pathogenic bacteria.

    Science.gov (United States)

    Von Bodman, Susanne B; Bauer, W Dietz; Coplin, David L

    2003-01-01

    Quorum sensing (QS) allows bacteria to assess their local population density and/or physical confinement via the secretion and detection of small, diffusible signal molecules. This review describes how phytopathogenic bacteria have incorporated QS mechanisms into complex regulatory cascades that control genes for pathogenicity and colonization of host surfaces. Traits regulated by QS include the production of extracellular polysaccharides, degradative enzymes, antibiotics, siderophores, and pigments, as well as Hrp protein secretion, Ti plasmid transfer, motility, biofilm formation, and epiphytic fitness. Since QS regulatory systems are often required for pathogenesis, interference with QS signaling may offer a means of controlling bacterial diseases of plants. Several bacterial pathogens of plants that have been intensively studied and have revealed information of both fundamental and practical importance are reviewed here: Agrobacterium tumefaciens, Pantoea stewartii, Erwinia carotovora, Ralstonia solanacearum, Pseudomonas syringae, Pseudomonas aeruginosa, and Xanthomonas campestris. PMID:12730390

  6. Sulfur-oxidizing bacteria in environmental technology.

    Science.gov (United States)

    Pokorna, Dana; Zabranska, Jana

    2015-11-01

    Hydrogen sulfide is widely known as the most undesirable component of biogas that caused not only serious sensoric and toxic problems, but also corrosion of concrete and steel structures. Many agricultural and industrial waste used in biogas production, may contain a large amount of substances that serve as direct precursors to the formation of sulfide sulfur-sources of hydrogen sulfide in the biogas. Biological desulfurization methods are currently promoted to abiotic methods because they are less expensive and do not produce undesirable materials which must be disposed of. The final products of oxidation of sulfides are no longer hazardous. Biological removal of sulfide from a liquid or gaseous phase is based on the activity of sulfur-oxidizing bacteria. They need an oxidizing agent such as an acceptor of electrons released during the oxidation of sulfides-atmospheric oxygen or oxidized forms of nitrogen. Different genera of sulfur-oxidizing bacteria and their technological application are discussed. PMID:25701621

  7. Metabolic activity of permafrost bacteria below the freezing point

    Science.gov (United States)

    Rivkina, E. M.; Friedmann, E. I.; McKay, C. P.; Gilichinsky, D. A.

    2000-01-01

    Metabolic activity was measured in the laboratory at temperatures between 5 and -20 degrees C on the basis of incorporation of (14)C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5 degrees C) to 20 days (-10 degrees C) to ca. 160 days (-20 degrees C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature.

  8. Transmission of specific groups of bacteria through water distribution system.

    Science.gov (United States)

    Grabińska-Łoniewska, Anna; Wardzyńska, Grazyna; Pajor, Elzbieta; Korsak, Dorota; Boryń, Krystyna

    2007-01-01

    Microbial contamination of a water distribution system was examined. The number and the taxonomy of non-pigmented and pigmented heterotrophic bacteria (HB), number of bacteria (Pseudomonas sp., Enterococcus sp., Campylobacter sp., Yersinia sp., representatives of the Enterobacteriaceae, coagulase-positive staphylococci, and C. pefringens) in the bulk water phase, biomass of zoogloeal aggregates of bacteria, fungi, algae, protozoa and rotifers (ZABFAPR) (separated from the above on 5 microm pore size filters) and in pipe sediments was determined. An increased number of HB occurred at the sampling sites situated as close as 4.2 km to the Water Treatment Plant (WTP), and was especially significant at 10.3 km. It was shown that the main reservoir of hygienically relevant bacteria did not occur in the water phase which is monitored in routine control analyses carried out by the WTP laboratories, but in the ZABFAPR biomass not monitored so far. PMID:17650683

  9. Beneficial bacteria inhibit cachexia.

    Science.gov (United States)

    Varian, Bernard J; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M; Mirabal, Sheyla; Erdman, Susan E

    2016-03-15

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  10. Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    ToddKlaenhammer

    2013-04-01

    Full Text Available Lactic acid bacteria (LAB are a diverse group of Gram-positive bacteria found in a vast array of environments including dairy products and the human gastrointestinal tract. In both niches, surface proteins play a crucial role in mediating interactions with the surrounding environment. The sortase enzyme is responsible for covalently coupling a subset of surface dependent proteins (SDPs to the cell wall of Gram-positive organisms through recognition of a conserved C-terminal LPXTG motif. Genomic sequencing of LAB and annotation has allowed for the identification of sortase and SDPs. Historically, sortase and SDPs were predominately investigated for their role in mediating pathogenesis. Identification of these proteins in LAB has shed light on their important roles in mediating nutrient acquisition through proteinase P as well as positive probiotic attributes including adhesion, mucus barrier function, and immune signaling. Furthermore, sortase expression signals in LAB have been exploited as a means to develop oral vaccines targeted to the gastrointestinal tract. In this review, we examine the collection of studies which evaluate sortase and SDPs in select species of dairy associated and health promoting LAB.

  11. Effect of ciliates on nitrification and nitrifying bacteria in Baltic Sea sediments

    OpenAIRE

    Prast, M.; Bischof, Adrian A.; Waller, Uwe; Amann, R.; Berninger, U.-G.

    2007-01-01

    Nitrification in aquatic sediments is catalyzed by bacteria. While many autecological studies on these bacteria have been published, few have regarded them as part of the benthic microbial food web. Ciliates are important as grazers on bacteria, but also for remineralization of organic matter. We tested the hypothesis that ciliates can affect nitrification. Experiments with Baltic Sea sediments in laboratory flumes, with or without the addition of cultured ciliates, were conducted. We found i...

  12. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    Science.gov (United States)

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  13. Mycelial bacteria of saline soils

    Science.gov (United States)

    Zvyagintsev, D. G.; Zenova, G. M.; Oborotov, G. V.

    2008-10-01

    The actinomycetal complexes of saline soils comprise the representatives of the Streptomyces and Micromonospora genera, the number of which are hundreds and thousands of CFU/g soil. Complexes of mycelial bacteria in saline soils are poorer in terms of number (by 1-3 orders of magnitude) and taxonomic composition than the complexes of the zonal soil types. A specific feature of the actinomycetal complexes of saline soils is the predominance of halophilic, alkaliphilic, and haloalkaliphilic streptomycetes that well grow at pH 8-9 and concentrations of NaCl close to 5%. Actinomycetes in saline soils grow actively, and the length of their mycelium reaches 140 m in 1 gram of soil. The haloalkaliphilic streptomycetes grow fast and inhibit the formation of spores at pH 9 and high concentrations of salts (Na2SO4 and MgCl2, 5%) as compared to their behavior on a neutral medium with a salt concentration of 0.02%. They are characterized by the maximal radial growth rate of colonies on an alkaline medium with 5% NaCl.

  14. Immunomodulatory properties of probiotic bacteria

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen

    2007-01-01

    Certain lactic acid bacteria (LAB) are part of the commensal intestinal flora and considered beneficial for health, as they compete with pathogens for adhesion sites in the intestine and ferment otherwise indigestible compounds. Another important property of these so-called probiotic bacteria is...... cytokines when stimulated with bacteria, and the cytokine pattern induced by specific bacteria resembled the pattern induced in MoDC, except for TNF-alpha and IL-6, which were induced in response to different bacteria in blood DC/monocytes and monocyte-derived DC. Autologous NK cells produced IFN-gamma when...... cultured with blood DC, monocytes and monocyte-derived DC and IL-12-inducing bacteria, whereas only DC induced IFN-gamma production in allogeneic T cells. In vitro-generated DC is a commonly used model of tissue DC, but they differ in certain aspects from intestinal DC, which are in direct contact with the...

  15. A Comparison of Heat versus Methanol Fixation for Gram Staining Bacteria

    Science.gov (United States)

    Minnerath, Jeanne M.; Roland, Jenna M.; Rossi, Lucas C.; Weishalla, Steven R.; Wolf, Melissa M.

    2009-01-01

    Gram staining bacteria is a fundamental technique introduced in general biology and microbiology laboratory courses. Two common problems students encounter when Gram staining bacteria are (1) having a difficult time locating bacterial cells on the microscope slide and (2) over-decolorizing bacterial cells during the staining procedure such that…

  16. Interactions between Diatoms and Bacteria

    OpenAIRE

    Amin, Shady A.; Parker, Micaela S.; Armbrust, E. Virginia

    2012-01-01

    Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding hi...

  17. Radiation-resistant asporogenic bacteria

    International Nuclear Information System (INIS)

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned. (Tsukamoto, Y.)

  18. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik; Ovesen, K.

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached a...... higher level in the hot water distribution system (2.1 d–1 to 2.3 d–1) than in the hot water tank (1.4 d–1 to 2.2 d–1) indicating an important area for surface associated growth. The net growth rate of the suspended bacteria measured in hot water from the top, middle and bottom of the hot water tank, in...... the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water...

  19. Laboratory Tests

    Science.gov (United States)

    ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ... or conditions. What are lab tests? Laboratory tests are medical procedures that involve testing samples of blood, urine, or other tissues or ...

  20. Bacteria, phages and septicemia.

    Directory of Open Access Journals (Sweden)

    Ausra Gaidelyte

    Full Text Available The use of phages is an attractive option to battle antibiotic resistant bacteria in certain bacterial infections, but the role of phage ecology in bacterial infections is obscure. Here we surveyed the phage ecology in septicemia, the most severe type of bacterial infection. We observed that the majority of the bacterial isolates from septicemia patients spontaneously secreted phages active against other isolates of the same bacterial strain, but not to the strain causing the disease. Such phages were also detected in the initial blood cultures, indicating that phages are circulating in the blood at the onset of sepsis. The fact that most of the septicemic bacterial isolates carry functional prophages suggests an active role of phages in bacterial infections. Apparently, prophages present in sepsis-causing bacterial clones play a role in clonal selection during bacterial invasion.

  1. Bacteriophages of methanotrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tyutikow, F.M. (All-Union Research Inst. for Genetics and Selection of Industrial Microorganisms, Moscow, USSR); Bespalova, I.A.; Rebentish, B.A.; Aleksandrushkina, N.N.; Krivisky, A.S.

    1980-10-01

    Bacteriophages of methanotrophic bacteria have been found in 16 out of 88 studied samples (underground waters, pond water, soil, gas and oil installation waters, fermentor cultural fluids, bacterial paste, and rumen of cattle) taken in different geographic zones of the Soviet Union. Altogether, 23 phage strains were isolated. By fine structure, the phages were divided into two types (with very short or long noncontractile tails); by host range and serological properties, they fell into three types. All phages had guanine- and cytosine-rich double-stranded deoxyribonucleic acid consisting of common nitrogen bases. By all of the above-mentioned properties, all phages within each of the groups were completely identical to one another, but differed from phages of other groups.

  2. A formação dos oostegitos em Porcellio dilatatus Brandt (Crustácea, Isopoda, Oniscidea em laboratório Formation of oostegites in Porcellio dilatatus Brandt (Crustácea, Isopoda, Oniscidea in laboratory

    Directory of Open Access Journals (Sweden)

    Jayme de Loyola e Silva

    1999-01-01

    Full Text Available Woodlice were reared in laboratory in the environmental climate of the city of Curitiba, Brazil, with the purpose of getting to know the process of formation of oostegites. Two kinds of cultivation were adopted: natural populations to be controlled were kept in small glass aquariums resembling the natural environment; and, new-bom woodlice were raised each one isolated in small plastic receptacles, with a special diet until two years old or over. When adults, after recognizing their sexes, males and females were put together to copulate during one or more days, and some of the females were fertilized. After 30 days, the fertilized females realized ecdise and acquired oostegites. The complete process (copulation, fecundation, incubation and birth occurred between 25 and 50 days. The females fertilized only once produced one or more broods, each brood varying from 10 to 30 youngs. The spermatic mass reserved in the seminal receptacle depleted after having realized one, two or, rarely, three broods; the females without sperm in the receptacle realized ecdise, lost oostegites and got again virginal aspect. Females in such condition, kept alone, isolated from males have never acquire oostegites again. Otherwise, in contact with males, once fertilized they realized ecdise and acquired new oostegites. The authors have concluded that the oostegites only are formed because of the received sperm and its continuity depends on the sperm accumulated in the seminal receptacle, for more than one brood.

  3. Selective toxicity of Catechin-a natural flavonoid towards bacteria.

    Science.gov (United States)

    Fathima, Aafreen; Rao, Jonnalagadda Raghava

    2016-07-01

    Catechin is a plant polyphenol composed of epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) as diastereoisomers. Among the various classes of flavonoids, catechin was found to be the most powerful free radical scavenger, scavenging the reactive oxygen species (ROS) generated due to oxidative damage with antibacterial and anti-inflammatory activity. The toxicity of catechin towards bacteria was studied using gram-positive bacteria (B. subtilis) and gram-negative bacteria (E. coli) as model organisms and was found to be more toxic towards gram-positive bacteria. From the results, catechin was found to be beneficial as well as toxic (inhibitory) to the bacteria at a selective concentration behaving as double-edged swords with an IC50 value of 9 ppm for both the bacteria. The inhibitory mechanism of catechin was by oxidative damage through membrane permeabilization which was confirmed by the formation and treatment of bacterial liposomes. SEM images of the control and treated bacteria reveals membrane damage with morphological changes. PMID:27052380

  4. Electroactive biofilms of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Biofilms formed from a pure strain of Desulfovibrio desulfuricans 27774 on stainless steel and graphite polarised surfaces were studied. The polarisation conditions applied were -0.4 V vs. SCE for different times. A cathodic current related with the biofilms growth was observed with a maximum intensity of -270 mA m-2 that remained stable for several days using graphite electrodes. These sulphate reducing bacteria biofilms present electrocatalytic activity towards hydrogen and oxygen reduction reactions. Electrode polarisation has a selective effect on the catalytic activity. The biofilms were also observed by scanning electronic microscopy revealing the formation of homogeneous films on the surfaces

  5. Airborne bacteria in the atmosphere: Presence, purpose, and potential

    Science.gov (United States)

    Smets, Wenke; Moretti, Serena; Denys, Siegfried; Lebeer, Sarah

    2016-08-01

    Numerous recent studies have highlighted that the types of bacteria present in the atmosphere often show predictable patterns across space and time. These patterns can be driven by differences in bacterial sources of the atmosphere and a wide range of environmental factors, including UV intensity, precipitation events, and humidity. The abundance of certain bacterial taxa is of interest, not only for their ability to mediate a range of chemical and physical processes in the atmosphere, such as cloud formation and ice nucleation, but also for their implications -both beneficial and detrimental-for human health. Consequently, the widespread importance of airborne bacteria has stimulated the search for their applicability. Improving air quality, modelling the dispersal of airborne bacteria (e.g. pathogens) and biotechnological purposes are already being explored. Nevertheless, many technological challenges still need to be overcome to fully understand the roles of airborne bacteria in our health and global ecosystems.

  6. Biogeochemical processes in a clay formation in situ experiment: Part A - Overview, experimental design and water data of an experiment in the Opalinus Clay at the Mont Terri Underground Research Laboratory, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, P., E-mail: paul.wersin@gruner.ch [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)] [Gruner Ltd., Gellertstrasse 55, 4020 Basel (Switzerland); Leupin, O.X. [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland); Mettler, S. [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)] [Solexperts Ltd., Mettlenbachstrasse 25, 8617 Moenchaltorf (Switzerland); Gaucher, E.C. [BRGM, 3 avenue Claude Guillemin, B.P. 36009, 45060 Orleans Cedex 2 (France); Maeder, U. [University of Bern, Institute of Geological Sciences, Baltzerstrasse 3, CH-3012 Bern (Switzerland); De Canniere, P. [SCK.CEN, Waste and Disposal Project, Boeretang 200, 2400 Mol (Belgium); Vinsot, A. [ANDRA, Laboratoire de Recherche Souterrain de Meuse/Haute-Marne, RD960 BP9, 55290 Bure (France); Gaebler, H.E. [BGR, Stilleweg 2, 30655 Hannover (Germany); Kunimaro, T. [JAEA, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kiho, K. [CRIEPI, 1646 Abiko, Abiko-city Chiba 270-1194 (Japan); Eichinger, L. [Hydroisotop, 85301 Schweitenkirchen (Germany)

    2011-06-15

    Highlights: > The composition was affected by the complex interplay of diffusion, mineral and surface reactions. > The {sup 13}C signals for carbon species showed significant variations which could only be partly explained. > The main cations remained remarkably constant during the experiment. > This underlines the strong buffering via cation exchange and carbonate dissolution/precipitation. - Abstract: An in situ test in the Opalinus Clay formation, termed porewater chemistry (PC) experiment, was carried out for a period of 5 years. It was based on the concept of diffusive equilibration whereby a traced water with a composition close to that expected in the formation was continuously circulated and monitored in a packed-off borehole. The main original focus was to obtain reliable data on the pH/pCO{sub 2} conditions of the porewater, but because of unexpected microbiologically-induced redox reactions, the objective was extended to elucidate the biogeochemical processes occurring in the borehole and to understand their impact on pH/pCO{sub 2} and porewater chemistry in the low permeability clay formation. The behaviour of the conservative tracers {sup 2}H and Br{sup -} could be explained by diffusive dilution in the clay and moreover the results showed that diffusive equilibration between the borehole water and the formation occurred within about 3 year's time. However, the composition and pH/pCO{sub 2} conditions differed considerably from those of the in situ porewater. Thus, pH was lower and pCO{sub 2} was higher than indicated by complementary laboratory investigations. The noted differences are explained by microbiologically-induced redox reactions occurring in the borehole and in the interfacial wall area which were caused by an organic source released from the equipment material. The degradation of this source was accompanied by sulfate reduction and - to a lesser extent - by methane generation, which induced a high rate of acetogenic reactions

  7. Quorum sensing communication between bacteria and human cells: signals, targets, and functions

    OpenAIRE

    Holm, Angelika; Vikström, Elena

    2014-01-01

    Both direct and long-range interactions between pathogenic Pseudomonas aeruginosa bacteria and their eukaryotic hosts are important in the outcome of infections. For cell-to-cell communication, these bacteria employ the quorum sensing (QS) system to pass on information of the density of the bacterial population and collectively switch on virulence factor production, biofilm formation, and resistance development. Thus, QS allows bacteria to behave as a community to perform tasks which would be...

  8. Techniques for Reduction and Biomineralization of Radioactive Uranium by Bacteria

    International Nuclear Information System (INIS)

    A new thing revealed by this study was a formation of 'ningyoite', which was made as a new mineral when phosphorus component added into the uranium bioreduction process. In addition, a main sulfide mineral formed by sulfate-reducing bacteria was mackinawite which can incorporate much of uranium as coexisting with metal impurities such as manganese or nickel elements

  9. Screening of endoglucanase-producing bacteria in the saline rhizosphere of Rhizophora mangle

    Directory of Open Access Journals (Sweden)

    André Luís Braghini Sá

    2014-01-01

    Full Text Available In screening the culturable endoglucanase-producing bacteria in the rhizosphere of Rhizophora mangle, we found a prevalence of genera Bacillus and Paenibacillus. These bacteria revealed different activities in endoglucolysis and biofilm formation when exposed to specific NaCl concentrations, indicating modulated growth under natural variations in mangrove salinity.

  10. Chemotactic behavior of deep subsurface bacteria toward carbohydrates, amino acids and a chlorinated alkene

    Energy Technology Data Exchange (ETDEWEB)

    Lopez de Victoria, G. (Puerto Rico Univ., Rio Piedras (Puerto Rico). Dept. of Biology)

    1989-02-01

    The chemotactic behavior of deep terrestrial subsurface bacteria toward amino acids, carbohydrates and trichloroethylene was assayed using a modification of the capillary method and bacterial enumeration by acridine orange direct counts. Eleven isolates of bacteria isolated from six different geological formations were investigated. A bimodal response rather than an absolute positive or negative response was observed in most assays. Most of the isolates were positively chemotactic to low concentrations of substrates and were repelled by high concentrations of the same substrate. However, this was not the case for trichloroethylene (TCE) which was mostly an attractant and elicited the highest responses in all the isolates when compared with amino acids and carbohydrates. The movement rates of these isolates in aseptic subsurface sediments in the absence and presence of TCE were also determined using a laboratory model. All of the isolates showed distinct response range, peak, and threshold concentrations when exposed to the same substrates suggesting that they are possibly different species as has been inferred from DNA homology studies. 101 refs., 4 figs., 57 tabs.

  11. Survival of bacteria in nuclear waste buffer materials. The influence of nutrients, temperature and water activity

    International Nuclear Information System (INIS)

    The concept of deep geological disposal of spent fuel is common to many national nuclear waste programs. Long-lived radioactive waste will be encapsulated in canisters made of corrosion resistant materials e.g. copper and buried several hundred meters below ground in a geological formation. Different types of compacted bentonite clay, or mixtures with sand, will be placed as a buffer around the waste canisters. A major concern for the performance of the canisters is that sulphate-reducing bacteria (SRB) may be present in the clay and induce corrosion by production of hydrogen sulphide. This report presents data on viable counts of SRB in the bedrock of Aespoe hard rock laboratory. A theoretical background on the concept water activity is given, together with basic information about SRB. Some results on microbial populations from a full scale buffer test in Canada is presented. These results suggested water activity to be a strong limiting factor for survival of bacteria in compacted bentonite. As a consequence, experiments were set up to investigate the effect from water activity on survival of SRB in bentonite. Here we show that survival of SRB in bentonite depends on the availability of water and that compacting a high quality bentonite to a density of 2.0 g/cm3, corresponding to a water activity (aw) of 0.96, prevented SRB from surviving in the clay. 24 refs

  12. Nitrous oxide formation during nitritation and nitrification of high-strength wastewater.

    Science.gov (United States)

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl-Heinz

    2013-01-01

    The purpose of this study was to investigate the formation of nitrous oxide (N2O) in nitritation and nitrification under stable, comparable and not limiting conditions typical for treatment of high-strength wastewater. A laboratory-scale aerated chemostat was operated with reject water at different sludge retention times, achieving suppression of nitrate formation by wash-out of nitrite-oxidizing bacteria for nitritation. The N2O formation factor during stable nitritation was higher (2.90% N2O-N /NH4(-)-Nox) than during nitrification (0.74%). The positive correlation of N2O formation rates and ammonium oxidation rates was linear and thus did not contribute to changes of the N2O formation factor. The dominant factor for N2O formation during stable operation was high nitrite concentration, which was positively correlated with N2O formation rates. The highest formation factors were observed during a transition phase from nitrification to nitritation with unstable process conditions (4.81%) and during a short-term experiment with increased pH of 7 (10.28%). The results indicate that even with operational conditions that are regarded favourable for the process of nitritation N2O formation can be limited but not avoided. PMID:23752381

  13. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Mega

  14. Sampling bacteria with a laser

    Science.gov (United States)

    Schwarzwälder, Kordula; Rutschmann, Peter

    2014-05-01

    Water quality is a topic of high interest and it's getting more and more important due to climate change and the implementation of European Water Framework Directive (WFD). One point of interest here is the inflow of bacteria into a river caused by combined sewer overflows which lead untreated wastewater including bacteria directly into a river. These bacteria remain in the river for a certain time, they settle down and can be remobilised again. In our study we want to investigate these processes of sedimentation and resuspension and use the results for the development of a software module coupled with the software Flow3D. Thereby we should be able to simulate and therefore predict the water quality influenced by combined sewer overflows. Hence we need to get information about the bacteria transport and fate. We need to know about the size of the bacteria or of the bacteria clumps and the size of the particles the bacteria are attached to. The agglomerates lead to different characteristics and velocities of settlement. The timespan during this bacteria can be detected in the bulk phase depends on many factors like the intensity of UV light, turbidity of the water, the temperature of the water, if there are grazers and a lot more. The size, density and composition of the agglomerates is just a part of all these influencing factors, but it is extremely difficult to differ between the other effects if we have no information about the simple sedimentation in default of these basic information. However we have a big problem getting the data. The chaining between bacteria or bacteria and particles is not too strong, so filtering the water to get a sieving curve may destroy these connections. We did some experiments similar to PIV (particle image velocimetry) measurements and evaluated the pictures with a macro written for the software ImageJ. Doing so we were able to get the concentration of bacteria in the water and collect information about the size of the bacteria. We

  15. Avaliação em escala laboratorial da utilização do processo eletrolítico no tratamento de águas Laboratory scale assessment of an electrolytic process for water treatment

    Directory of Open Access Journals (Sweden)

    Marcelo Henrique Otenio

    2008-01-01

    Full Text Available Water treatment uses chlorine for disinfection causing formation of trihalomethanes. In this work, an electrolytic water pre-treatment was studied and applied to the water from a fountainhead. The action against microorganisms was evaluated using cast-iron and aluminum electrodes. Assays were made in laboratory using the electrolytic treatment. After 5 min of electrolysis the heterotrophic bacteria count was below 500 cfu/mL and complete elimination of total and fecal coliforms was observed. Using electrolytic treatment as a pretreatment of conventional tap water treatment is proposed.

  16. Bacteria-based concrete: from concept to market

    Science.gov (United States)

    Wiktor, V.; Jonkers, H. M.

    2016-08-01

    The concept of self-healing concrete—a concrete which can autonomously repair itself after crack formation, with no or limited human intervention—has received a lot of attention over the past 10 years as it could help structures to last longer and at a lower maintenance cost. This paper gives an overview on the key aspects and recent advances in the development of the bacteria-based self-healing concrete developed at the University of Technology of Delft (The Netherlands). Research started with the screening and selection of concrete compatible bacteria and nutrients. Several types of encapsulated bacteria and nutrients have been developed and tested. The functionality of these healing agents was demonstrated by showing metabolic activity of activated bacterial spores by oxygen consumption measurements and by regain of material functionality in form of regain of water tightness. Besides development of bacteria-based self-healing concrete, a bacteria-based repair mortar and liquid system were developed for the treatment of aged concrete structures. Field trials have been carried out with either type of bacteria-based systems and the promising results have led to a spinoff company Basilisk Self-Healing Concrete with the aim to further develop these systems and bring them to the market.

  17. Interaction of neptunium with humic acid and anaerobic bacteria

    International Nuclear Information System (INIS)

    Humic acid and bacteria play an important role in the migration of radionuclides in groundwaters. The interaction of neptunium with humic acid and anaerobic bacteria has been investigated by liquid/liquid and solid/liquid extraction systems. For liquid/liquid extraction, the apparent complex formation constant, βα was obtained from the distribution between two phases of neptunium. For solid/liquid extraction, the ratio of sorption to bacteria, Kd, was measured. Kd of humic acid can be evaluated from βα. The large value of βα and Kd means strong interaction of neptunium with organisms. In order to examine the effect of the nature of organism on interaction, the interaction with humic acid was compared to that with non-sterilized or sterilized mixed anaerobic bacteria. The value of βα of humate depended on neptunium ion concentration as well as pH, which showed the effect of polyelectrolyte properties and heterogeneous composition of humic acid. The comparison of interaction with humic acid and bacteria indicated that the Kd value of humic acid was larger than that of bacteria and more strongly depend on pH. (author)

  18. Screening of aspartate dehydrogenase of bacteria

    OpenAIRE

    Fukuda, Shoko; Okamura, Tokumitsu; Yasumasa, Izumi; Takeno, Tomomi; Ohsugi, Masahiro

    2001-01-01

    Fifty-two strains of bacteria cultured under aerobic conditions and 12 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NAD^+. Four strains of bacteria cultured under aerobic conditions and 7 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NADP^+. Seven strains of bacteria cultured under aerobic conditions and 4 strains of bacteria cultured und...

  19. Saxton Transportation Operations Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Saxton Transportation Operations Laboratory (Saxton Laboratory) is a state-of-the-art facility for conducting transportation operations research. The laboratory...

  20. Laboratory Activity to Effectively Teach Introductory Geomicrobiology Concepts to Non-Geology Majors †

    Science.gov (United States)

    Marvasi, Massimiliano; Davila-Vazquez, Yarely C.; Martinez, Lilliam Casillas

    2013-01-01

    We have designed a three-week experiment that can complement any microbiology course, to teach main geomicrobiology concepts for non-geology majors. One of the most difficult concepts for non-geology majors to comprehend is how bacteria serve as a platform for different mineralization reactions. In our three-week laboratory practice, students learn the main principles and conditions required for an induced bacterial mineralization. Upon completion of the laboratory experience, students will: 1) learn how microbial-induced mineralization (such as calcium carbonate formation) is affected by differential media and growth conditions; 2) understand how bacterial physiology affects any induced in situ or in vitro mineralization; 3) comprehend how growing conditions and bacterial physiologies interrelate, resulting in differential crystal formation. The teaching-learning process was assessed using a pre-/posttest with an increase from 26% to 76% in the number of positive answers from the students. We also measured the students’ proficiency while conducting specific technical tasks, revealing no major difficulties while conducting the experiments. A final questionnaire was provided with satisfactory evaluations from the students regarding the organization and content of the practices. 84–86% of the students agreed that the exercises improved their knowledge in geomicrobiology and would like to attend similar laboratories in the future. Such response is the best indicator that the laboratory practice can be implemented in any undergraduate/graduate microbiology course to effectively teach basic geomicrobiology concepts to non-geology majors. PMID:24358384

  1. Laboratory activity to effectively teach introductory geomicrobiology concepts to non-geology majors.

    Science.gov (United States)

    Marvasi, Massimiliano; Davila-Vazquez, Yarely C; Martinez, Lilliam Casillas

    2013-01-01

    We have designed a three-week experiment that can complement any microbiology course, to teach main geomicrobiology concepts for non-geology majors. One of the most difficult concepts for non-geology majors to comprehend is how bacteria serve as a platform for different mineralization reactions. In our three-week laboratory practice, students learn the main principles and conditions required for an induced bacterial mineralization. Upon completion of the laboratory experience, students will: 1) learn how microbial-induced mineralization (such as calcium carbonate formation) is affected by differential media and growth conditions; 2) understand how bacterial physiology affects any induced in situ or in vitro mineralization; 3) comprehend how growing conditions and bacterial physiologies interrelate, resulting in differential crystal formation. The teaching-learning process was assessed using a pre-/posttest with an increase from 26% to 76% in the number of positive answers from the students. We also measured the students' proficiency while conducting specific technical tasks, revealing no major difficulties while conducting the experiments. A final questionnaire was provided with satisfactory evaluations from the students regarding the organization and content of the practices. 84-86% of the students agreed that the exercises improved their knowledge in geomicrobiology and would like to attend similar laboratories in the future. Such response is the best indicator that the laboratory practice can be implemented in any undergraduate/graduate microbiology course to effectively teach basic geomicrobiology concepts to non-geology majors. PMID:24358384

  2. Laboratory Activity to Effectively Teach Introductory Geomicrobiology Concepts to Non-Geology Majors

    Directory of Open Access Journals (Sweden)

    Massimiliano Marvasi

    2013-08-01

    Full Text Available We have designed a three-week experiment that can complement any microbiology course, to teach main geomicrobiology concepts for non-geology majors. One of the most difficult concepts for non-geology majors to comprehend is how bacteria serve as a platform for different mineralization reactions. In our three-week laboratory practice, students learn the main principles and conditions required for an induced bacterial mineralization. Upon completion of the laboratory experience, students will: 1 learn how microbialinduced mineralization (such as calcium carbonate formation is affected by differential media and growth conditions; 2 understand how bacterial physiology affects any induced in situ or in vitro mineralization; 3 comprehend how growing conditions and bacterial physiologies interrelate, resulting in differential crystal formation. The teaching-learning process was assessed using a pre-/posttest with an increase from 26% to 76% in the number of positive answers from the students. We also measured the students’ proficiency while conducting specific technical tasks, revealing no major difficulties while conducting the experiments. A final questionnaire was provided with satisfactory evaluations from the students regarding the organization and content of the practices. 84–86% of the students agreed that the exercises improved their knowledge in geomicrobiology and would like to attend similar laboratories in the future. Such response is the best indicator that the laboratory practice can be implemented in any undergraduate/graduate microbiology course to effectively teach basic geomicrobiology concepts to non-geology majors.

  3. Macroalgal Morphogenesis Induced by Waterborne Compounds and Bacteria in Coastal Seawater.

    Science.gov (United States)

    Grueneberg, Jan; Engelen, Aschwin H; Costa, Rodrigo; Wichard, Thomas

    2016-01-01

    Axenic gametes of the marine green macroalga Ulva mutabilis Føyn (Ria Formosa, locus typicus) exhibit abnormal development into slow-growing callus-like colonies with aberrant cell walls. Under laboratory conditions, it was previously demonstrated that all defects in growth and thallus development can be completely abolished when axenic gametes are inoculated with a combination of two specific bacterial strains originally identified as Roseobacter sp. strain MS2 and Cytophaga sp. strain MS6. These bacteria release diffusible morphogenetic compounds (= morphogens), which act similar to cytokinin and auxin. To investigate the ecological relevance of the waterborne bacterial morphogens, seawater samples were collected in the Ria Formosa lagoon (Algarve, Southern Portugal) at 20 sampling sites and tidal pools to assess their morphogenetic effects on the axenic gametes of U. mutabilis. Specifically the survey revealed that sterile-filtered seawater samples can completely recover growth and morphogenesis of U. mutabilis under axenic conditions. Morphogenetic activities of free-living and epiphytic bacteria isolated from the locally very abundant Ulva species (i.e., U. rigida) were screened using a multiwell-based testing system. The most represented genera isolated from U. rigida were Alteromonas, Pseudoalteromonas and Sulfitobacter followed by Psychrobacter and Polaribacter. Several naturally occurring bacterial species could emulate MS2 activity (= induction of cell divisions) regardless of taxonomic affiliation, whereas the MS6 activity (= induction of cell differentiation and cell wall formation) was species-specific and is probably a feature of difficult-to-culture bacteria. Interestingly, isolated bacteroidetes such as Algoriphagus sp. and Polaribacter sp. could individually trigger complete Ulva morphogenesis and thus provide a novel mode of action for bacterial-induced algal development. This study also highlights that the accumulation of algal growth factors in

  4. Virtual Laboratories

    CERN Document Server

    Hut, P

    2006-01-01

    At the frontier of most areas in science, computer simulations play a central role. The traditional division of natural science into experimental and theoretical investigations is now completely outdated. Instead, theory, simulation, and experimentation form three equally essential aspects, each with its own unique flavor and challenges. Yet, education in computational science is still lagging far behind, and the number of text books in this area is minuscule compared to the many text books on theoretical and experimental science. As a result, many researchers still carry out simulations in a haphazard way, without properly setting up the computational equivalent of a well equipped laboratory. The art of creating such a virtual laboratory, while providing proper extensibility and documentation, is still in its infancy. A new approach is described here, Open Knowledge, as an extension of the notion of Open Source software. Besides open source code, manuals, and primers, an open knowledge project provides simul...

  5. Layer Formation in Semiconvection

    OpenAIRE

    Biello, Joseph A.

    2001-01-01

    Layer formation in a thermally destabilized fluid with stable density gradient has been observed in laboratory experiments and has been proposed as a mechanism for mixing molecular weight in late stages of stellar evolution in regions which are unstable to semiconvection. It is not yet known whether such layers can exist in a very low viscosity fluid: this work undertakes to address that question. Layering is simulated numerically both at high Prandtl number (relevant to the laboratory) in or...

  6. Laboratory investigations

    International Nuclear Information System (INIS)

    Our task is to design mined-repository systems that will adequately secure high-level nuclear waste for at least 10,000 yr and that will be mechanically stable for 50 to 100-yr periods of retrievability during which mistakes could be corrected and a valuable source of energy could be reclaimed, should national policy on the reprocessing of spent fuel ever change. The only credible path for the escape of radionuclides from the repository to the biosphere is through ground-water, and in hard rock, bulk permeability is largely governed by natural and artificial fracture systems. Catastrophic failure of an excavation in hard rock is likely to occur at the weakest links - the discontinuities in the rock mass that is perturbed first by mining and then by radiogenic heating. The laboratory can contribute precise measurements of the pertinent thermomechanical, hydrological and chemical properties and improve our understanding of the fundamental processes through careful experiments under well controlled conditions that simulate the prototype environment. Thus laboratory investigations are necessary, but they are not sufficient, for conventional sample sizes are small relative to natural defects like joints - i.e., the rock mass is not a continuum - and test durations are short compared to those that predictive modeling must take into account. Laboratory investigators can contribute substantially more useful data if they are provided facilities for testing large specimens(say one cubic meter) and for creep testing of all candidate host rocks. Even so, extrapolations of laboratory data to the field in neither space nor time are valid without the firm theoretical foundations yet to be built. Meanwhile in-situ measurements of structure-sensitive physical properties and access to direct observations of rock-mass character will be absolutely necessary

  7. Culham Laboratory

    International Nuclear Information System (INIS)

    The report contains summaries of work carried out under the following headings: fusion research experiments; U.K. contribution to the JET project; supporting studies; theoretical plasma physics, computational physics and computing; fusion reactor studies; engineering and technology; contract research; external relations; staff, finance and services. Appendices cover main characteristics of Culham fusion experiments, staff, extra-mural projects supported by Culham Laboratory, and a list of papers written by Culham staff. (U.K.)

  8. Sewage-pollution indicator bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Rodrigues, V.; Alwares, E.; Rodrigues, C.; Baksh, R.; Jayan, S.; Mohandass, C.

    increased. It is only recently that sewage from major cities like Panaji, Goa, India is treated before disposing into the estuary. It is therefore of interest to determine what the levels of pollution indicator bacteria due to sewage disposal...

  9. Bacteria Delay the Jamming of Particles at Microchannel Bottlenecks.

    Science.gov (United States)

    Sendekie, Zenamarkos Bantie; Gaveau, Arthur; Lammertink, Rob G H; Bacchin, Patrice

    2016-01-01

    Clogging of channels by complex systems such as mixtures of colloidal and biological particles is commonly encountered in different applications. In this work, we analyze and compare the clogging mechanisms and dynamics by pure and mixture suspensions of polystyrene latex particles and Escherichia coli by coupling fluorescent microscopic observation and dynamic permeability measurements in microfluidic filters. Pure particles filtration leads to arches and deposit formation in the upstream side of the microfilter while pure bacteria form streamers in the downstream zone. When mixing particle and bacteria, an unexpected phenomenon occurs: the clogging dynamics is significantly delayed. This phenomenon is related to apparent "slippery" interactions between the particles and the bacteria. These interactions limit the arches formation at the channels entrances and favour the formation of dendritic structures on the pillars between the channels. When these dendrites are eroded by the flow, fragments of the deposit are dragged towards the channels entrances. However, these bacteria/particles clusters being lubricated by the slippery interactions are deformed and stretched by the shear thus facilitating their passage through the microchannels. PMID:27510611

  10. Pilins in gram-positive bacteria: A structural perspective.

    Science.gov (United States)

    Krishnan, Vengadesan

    2015-07-01

    Pilins or fimbrilins are a class of proteins found in bacterial surface pilus, a hair-like surface appendage. Both the Gram-negative and -positive bacteria produce pilins to assemble pili on their cell-surface for different purposes including adherence, twitching motility, conjugation, immunomodulation, biofilm formation, and electron transfer. Immunogenic properties of the pilins make them attractive vaccine candidates. The polymerized pilins play a key role in the initiation of host adhesion, which is a critical step for bacterial colonization and infection. Because of their key role in adhesion and exposure on the cell surface, targeting the pilins-mediated adhesion (anti-adhesion therapy) is also seen as a promising alternative approach for preventing and treating bacterial infections, one that may overcome their ever-increasing repertoires of resistance mechanisms. Individual pilins interact with each other non-covalently to assemble the pilus fiber with the help of associated proteins like chaperones and Usher in Gram-negative bacteria. In contrast, the pilins in Gram-positive bacteria often connect with each other covalently, with the help of sortases. Certain unique structural features present on the pilins distinguish them from one another across different bacterial strains, and these dictate their cellular targets and functions. While the structure of pilins has been extensively studied in Gram-negative pathogenic bacteria, the pilins in Gram-positive pathogenic bacteria have been in only during the last decade. Recently, the discovery of pilins in non-pathogenic bacteria, such as Lactobacillus rhamnosus GG, has received great attention, though traditionally the attention was on pathogenic bacteria. This review summarizes and discusses the current structural knowledge of pilins in Gram-positive bacteria with emphasis on those pilins which are sortase substrates. PMID:26178080

  11. Thymidine kinase diversity in bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.;

    2006-01-01

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The...... TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria....

  12. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    OpenAIRE

    NEENA GARG

    2015-01-01

    Lactic acid bacteria (LAB) is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LA...

  13. Adherention ability of intestinal bacteria

    OpenAIRE

    Morgensternová, Tereza

    2014-01-01

    Probiotics are live microorganisms that provide positive health benefits. Bacteria of the genus Bifidobacterium belong to this group. These bacteria have to meet a number of criteria so that they could be considered for probiotic. These include the ability to survive, grow, and be metabolically active in the gastrointestinal tract of the recipient. Probiotics protect the intestinal mucus from the adhesion of pathogenic organisms. The aim of this thesis was to test the ability of different ...

  14. Thymidine kinase diversity in bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.; Piskur, Jure

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The...... TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria....

  15. A comparative effect of 3 disinfectants on heterotrophic bacteria, iron bacteria and sulfate-reducing bacteria

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The disinfection effect of chlorine dioxide, chlorine and their mixture on heterotrophic bacteria, iron bacteria and sulfate-reducing bacteria in circulating cooling water was studied. The results of the test indicated that high purity chlorine dioxide was the most effective biocide in the 3 disinfectants, and with a dosage of 0.5mg/L, chlorine dioxide could obtain perfect effect. High purity chloride dioxide could have the excellent effect with the pH value of 6 to 10, and could keep it within 72 h. Chlorine and their mixture couldn't reach the effect of chlorine dioxide.

  16. Theory of periodic swarming of bacteria application to Proteus mirabilis

    CERN Document Server

    Czirok, A; Vicsek, T; Czirok, Andras; Matsushita, Mitsugu; Vicsek, Tamas

    2001-01-01

    The periodic swarming of bacteria is one of the simplest examples for pattern formation produced by the self-organized collective behavior of a large number of organisms. In the spectacular colonies of Proteus mirabilis (the most common species exhibiting this type of growth) a series of concentric rings are developed as the bacteria multiply and swarm following a scenario periodically repeating itself. We have developed a theoretical description for this process in order to get a deeper insight into some of the typical processes governing the phenomena in systems of many interacting living units. All of our theoretical results are in excellent quantitative agreement with the complete set of available observations.

  17. Influence of bacteria on film formation inhibiting corrosion

    International Nuclear Information System (INIS)

    Mild steel coupons were incubated separately in two bacterial cultures namely Pseudomonas flava and Pseudomonas stutzeri. A significant reduction in the corrosion rate was observed in presence of P. flava. With a view to understand the mechanisms of microbially influenced corrosion/corrosion inhibition, various electrochemical and biological experiments such as weight change measurements and electrochemical impedance spectroscopy (EIS) measurements were made. The exposed surfaces were examined using scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDAX). The scraped surface film was also examined using FT-IR (Fourier transform infra red) spectroscopy. The results suggest that P. flava have enhancing effect on corrosion inhibitive properties of phosphate film

  18. Kinetic Analysis of Strains of Lactic Acid Bacteria and Acetic Acid Bacteria in Cocoa Pulp Simulation Media toward Development of a Starter Culture for Cocoa Bean Fermentation ▿

    OpenAIRE

    Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc

    2010-01-01

    The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a...

  19. Genetic analysis of symbiosome formation

    NARCIS (Netherlands)

    Ovchinnikova, E.

    2012-01-01

    Endosymbiotic interactions form a fundament of life as we know it and are characterized by the formation of new specialized membrane compartments, in which the microbes are hosted inside living plant cells. A striking example is the symbiosis between legumes and nitrogen-fixing Rhizobium bacteria (r

  20. Isolation and Identification of Concrete Environment Bacteria

    Science.gov (United States)

    Irwan, J. M.; Anneza, L. H.; Othman, N.; Husnul, T.; Alshalif, A. F.

    2016-07-01

    This paper presents the isolation and molecular method for bacteria identification through PCR and DNA sequencing. Identification of the bacteria species is required in order to fully utilize the bacterium capability for precipitation of calcium carbonate in concrete. This process is to enable the addition of suitable catalyst according to the bacterium enzymatic pathway that is known through the bacteria species used. The objective of this study is to isolate, enriched and identify the bacteria species. The bacteria in this study was isolated from fresh urine and acid mine drainage water, Kota Tinggi, Johor. Enrichment of the isolated bacteria was conducted to ensure the bacteria survivability in concrete. The identification of bacteria species was done through polymerase chain reaction (PCR) and rRDNA sequencing. The isolation and enrichment of the bacteria was done successfully. Whereas, the results for bacteria identification showed that the isolated bacteria strains are Bacillus sp and Enterococus faecalis.

  1. A mathematical model for expected time to extinction of pathogenic bacteria through antibiotic

    Science.gov (United States)

    Ghosh, M. K.; Nandi, S.; Roy, P. K.

    2016-04-01

    Application of antibiotics in human system to prevent bacterial diseases like Gastritis, Ulcers, Meningitis, Pneumonia and Gonorrhea are indispensable. Antibiotics saved innumerable lives and continue to be a strong support for therapeutic application against pathogenic bacteria. In human system, bacterial diseases occur when pathogenic bacteria gets into the body and begin to reproduce and crowd out healthy bacteria. In this process, immature bacteria releases enzyme which is essential for bacterial cell-wall biosynthesis. After complete formation of cell wall, immature bacteria are converted to mature or virulent bacteria which are harmful to us during bacterial infections. Use of antibiotics as drug inhibits the bacterial cell wall formation. After application of antibiotics within body, the released bacterial enzyme binds with antibiotic molecule instead of its functional site during the cell wall synthesis in a competitive inhibition approach. As a consequence, the bacterial cell-wall formation as well as maturation process of pathogenic bacteria is halted and the disease is cured with lysis of bacterial cells. With this idea, a mathematical model has been developed in the present research investigation to review the inhibition of biosynthesis of bacterial cell wall by the application of antibiotics as drug in the light of enzyme kinetics. This approach helps to estimate the expected time to extinction of the pathogenic bacteria. Our mathematical approach based on the enzyme kinetic model for finding out expected time to extinction contributes favorable results for understanding of disease dynamics. Analytical and numerical results based on simulated findings validate our mathematical model.

  2. [Antimicrobial susceptibility testing of anaerobic bacteria].

    Science.gov (United States)

    García-Sánchez, José E; García-Sánchez, Enrique; García-García, María Inmaculada

    2014-02-01

    The anaerobic bacteria resistance to antibiotics is increasing, and even has appeared against the most active of those, like metronidazol and carbapenems. This fact forces to make and periodical sensibility tests -at least in the most aggressive and virulent species, in cases that they are isolated from life locations and in the absence of therapeutic response- to check the local sensibility and to establish suitable empiric therapies, all based on multicentric studies carried out in order to this or well to check the activity of new antibiotics. For the laboratory routine, the easiest sensibility method is the E-test/MIC evaluator. Another alternative is microdilution, that's only normalized for Bacteroides. There are preliminary facts that allow the use of disc diffusion method in some species of Bacteroides and Clostridium. For the temporal and multicentric studies, the procedure is dilution in agar plate, the reference method. PMID:24630580

  3. Phototropic sulfur and sulfate-reducing bacteria in the chemocline of meromictic Lake Cadagno, Switzerland

    Directory of Open Access Journals (Sweden)

    Raffaele PEDUZZI

    2004-08-01

    Full Text Available Lake Cadagno, a crenogenic meromictic lake located in the catchment area of a dolomite vein rich in gypsum in the Piora Valley in the southern Alps of Switzerland, is characterized by a compact chemocline with high concentrations of sulfate, steep gradients of oxygen, sulfide and light and a turbidity maximum that correlates to large numbers of bacteria (up to 107 cells ml-1. The most abundant taxa in the chemocline are large- and small-celled purple sulfur bacteria, which account for up to 35% of all bacteria, and sulfate- reducing bacteria that represent up to 23% of all bacteria. Depending on the season, as much as 45% of all bacteria in the chemocline are associated in aggregates consisting of different populations of small-celled purple sulfur bacteria of the genus Lamprocystis (up to 35% of all bacteria and sulfate-reducing bacteria of the family Desulfobulbaceae (up to 12% of all bacteria that are almost completely represented by bacteria closely related to Desulfocapsa thiozymogenes. Their association in aggregates is restricted to small-celled purple sulfur bacteria of the genus Lamprocystis, but not obligate since non-associated cells of bacteria related to D. thiozymogenes are frequently found, especially under limited light conditions in winter and early summer. Aggregate formation and concomitant growth enhancement of isolates of both partners of this association suggests synergistic interactions that might resemble a sulfide-based source-sink relationship between the sulfate-reducing bacterium that is able to sustain growth by a disproportionation of inorganic sulfur compounds (sulfur, thiosulfate, sulfite, with the purple sulfur bacteria acting as a biotic scavenger. The availability of these isolates opens up the door for future studies considering other facets of potential interactions in aggregates since both types of organisms are metabolically highly versatile and interactions may not be limited to sulfur compounds only.

  4. The aerobic activity of metronidazole against anaerobic bacteria.

    Science.gov (United States)

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. PMID:25813393

  5. Probing minority population of antibiotic-resistant bacteria.

    Science.gov (United States)

    Huang, Tianxun; Zheng, Yan; Yan, Ya; Yang, Lingling; Yao, Yihui; Zheng, Jiaxin; Wu, Lina; Wang, Xu; Chen, Yuqing; Xing, Jinchun; Yan, Xiaomei

    2016-06-15

    The evolution and spread of antibiotic-resistant pathogens has become a major threat to public health. Advanced tools are urgently needed to quickly diagnose antibiotic-resistant infections to initiate appropriate treatment. Here we report the development of a highly sensitive flow cytometric method to probe minority population of antibiotic-resistant bacteria via single cell detection. Monoclonal antibody against TEM-1 β-lactamase and Alexa Fluor 488-conjugated secondary antibody were used to selectively label resistant bacteria green, and nucleic acid dye SYTO 62 was used to stain all the bacteria red. A laboratory-built high sensitivity flow cytometer (HSFCM) was applied to simultaneously detect the side scatter and dual-color fluorescence signals of single bacteria. By using E. coli JM109/pUC19 and E. coli JM109 as the model systems for antibiotic-resistant and antibiotic-susceptible bacteria, respectively, as low as 0.1% of antibiotic-resistant bacteria were accurately quantified. By monitoring the dynamic population change of a bacterial culture with the administration of antibiotics, we confirmed that under the antimicrobial pressure, the original low population of antibiotic-resistant bacteria outcompeted susceptible strains and became the dominant population after 5hours of growth. Detection of antibiotic-resistant infection in clinical urine samples was achieved without cultivation, and the bacterial load of susceptible and resistant strains can be faithfully quantified. Overall, the HSFCM-based quantitative method provides a powerful tool for the fundamental studies of antibiotic resistance and holds the potential to provide rapid and precise guidance in clinical therapies. PMID:26852201

  6. DEVELOPMENT OF TOFU PRODUCTION METHOD WITH PROBIOTIC BACTERIA ADDITION

    OpenAIRE

    Dorota Zielińska; Anna Kamińska; Danuta Kołożyn-Krajewska

    2015-01-01

    The aim of the study was to develop a production method for tofu with probiotic bacteria under laboratory conditions. The works included: selection of a strain and tofu production conditions, and a storage test of the manufactured product. It was concluded that the sensory quality of tofu with the addition of different probiotic cultures did not differ significantly (p>0.01), depending on used strains and their mixtures, and the sample quality was comparable to the commercial product. It ...

  7. Clay-Bacteria Systems and Biofilm Production

    Science.gov (United States)

    Steiner, J.; Alimova, A.; Katz, A.; Steiner, N.; Rudolph, E.; Gottlieb, P.

    2007-12-01

    Soil clots and the aerosol transport of bacteria and spores are promoted by the formation of biofilms (bacteria cells in an extracellular polymeric matrix). Biofilms protect microorganisms by promoting adhesion to both organic and inorganic surfaces. Time series experiments on bacteria-clay suspensions demonstrate that biofilm growth is catalyzed by the presence of hectorite in minimal growth media for the studied species: Gram negatives (Pseudomonas syringae and Escherichia coli,) and Gram positives (Staphylococcus aureus and Bacillus subtilis). Soil organisms (P. syringae, B. subtilis) and organisms found in the human population (E. coli, S. aureus) are both used to demonstrate the general applicability of clay involvement. Fluorescent images of the biofilms are acquired by staining with propidium iodide, a component of the BacLightTM Live/Dead bacterial viability staining kit (Molecular Probes, Eugene, OR). The evolving polysaccharide-rich biofilm reacts with the clay interlayer site causing a complex substitution of the two-water hectorite interlayer with polysaccharide. The result is often a three-peak composite of the (001) x-ray diffraction maxima resulting from polysaccharide-expanded clays and an organic-driven contraction of a subset of the clays in the reaction medium. X-ray diffractograms reveal that the expanded set creates a broad maximum with clay subsets at 1.84 nm and 1.41 nm interlayer spacings as approximated by a least squares double Lorentzian fit, and a smaller shoulder at larger 2q, deriving from a contraction of the interlayer spacing. Washing with chlorox removes organic material from the contracted clay and creates a 1-water hectorite single peak in place of the double peak. The clay response can be used as an indirect indicator of biofilm in an environmental system.

  8. Nucleotide Metabolism and its Control in Lactic Acid Bacteria

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Hammer, Karin; Jensen, Peter Ruhdal;

    2005-01-01

    Most metabolic reactions are connected through either their utilization of nucleotides or their utilization of nucleotides or their regulation by these metabolites. In this review the biosynthetic pathways for pyrimidine and purine metabolism in lactic acid bacteria are described including the...... interconversion pathways, the formation of deoxyribonucleotides and the salvage pathways for use of exogenous precursors. The data for the enzymatic and the genetic regulation of these pathways are reviewed, as well as the gene organizations in different lactic acid bacteria. Mutant phenotypes and methods for...... manipulation of nucleotide pools are also discussed. Our aim is to provide an overview of the physiology and genetics of nucleotide metabolism and its regulation that will facilitate the interpretation of data arising from genetics, metabolomics, proteomics, and transcriptomics in lactic acid bacteria....

  9. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Science.gov (United States)

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. PMID:25485864

  10. PREVENTION OF BIOFILM FORMATION ON NORFLOXACINMETRONIDAZOLE TREATED URETERAL LATEX STENTS

    Directory of Open Access Journals (Sweden)

    B. ELAYARAJAH

    2011-01-01

    Full Text Available Biomaterial-associated bacterial infections present common and challenging complications with medical implants. The purpose of this study was to determine the antibacterial properties of latex rubber stents with integrated norfloxacin-metronidazole (synergistic antibacterial agent combinations for the first time in order to prevent the colonization and biofilm formation on the surface of ureteral stents. Treating of latex rubber stents were carried out by adding the norfloxacin-metronidazole with the fresh latex during polymerization (polymerization method. Polymerization was facilitated by adding water and formic acid to the latexantibacterialagents solution mixture. The numbers of adhered bacteria on treated and untreated stents were calculated. Difference in the number of viable bacteria adhered on the surface of treated and untreated stentswere statistically calculated using chi square testing procedure with P < 0.05 considered significant. Tests for persistence were carried out using serial plate transfer method to determine withstanding ability of antibacterial agentss in the stents. A primary skin irritation test was performed on a laboratory animal to determine thehypersensitivity reaction of antibacterial agents treated latex rubber discs. Numbers of adhered bacteria on the surface of antibacterial agents treated and untreated stents were calculated. In the polymerization method, the number of adhered bacteria on the surface of treated stents was reduced to a significant level (P<0.05.Persistence test showed the antibacterial activity of antibacterial agents treated stents till 5 days for polymerization method. In primary skin irritation test no significant erythema and edema was detected over the skin of lab animal according to the standard skin irritation scoring.

  11. Insects as alternative hosts for phytopathogenic bacteria.

    Science.gov (United States)

    Nadarasah, Geetanchaly; Stavrinides, John

    2011-05-01

    Phytopathogens have evolved specialized pathogenicity determinants that enable them to colonize their specific plant hosts and cause disease, but their intimate associations with plants also predispose them to frequent encounters with herbivorous insects, providing these phytopathogens with ample opportunity to colonize and eventually evolve alternative associations with insects. Decades of research have revealed that these associations have resulted in the formation of bacterial-vector relationships, in which the insect mediates dissemination of the plant pathogen. Emerging research, however, has highlighted the ability of plant pathogenic bacteria to use insects as alternative hosts, exploiting them as they would their primary plant host. The identification of specific bacterial genetic determinants that mediate the interaction between bacterium and insect suggests that these interactions are not incidental, but have likely arisen following the repeated association of microorganisms with particular insects over evolutionary time. This review will address the biology and ecology of phytopathogenic bacteria that interact with insects, including the traditional role of insects as vectors, as well as the newly emerging paradigm of insects serving as alternative primary hosts. Also discussed is one case where an insect serves as both host and vector, which may represent a transitionary stage in the evolution of insect-phytopathogen associations. PMID:21251027

  12. IDENTIFICATION OF BACTERIA IN LATEX PAINTS

    Directory of Open Access Journals (Sweden)

    Rojas, J.

    2008-01-01

    Full Text Available The bacteria are prokaryote organisms with a high capacity to colonize many types of habits. This research was developed with the object to identify extremophiles bacteria presents in latex paint. The bacteria were cultivated in culture mediums TSA, Blood Agar, Mc Conkey and finally the biochemical proof API-NF® for bacteria's isolation and identification, respectively. Characterization showed bacterial profile of Pasteurella sp. Hypothesis that could be found extremophiles bacteria in latex paint were demonstrated.

  13. Electron transport chains of lactic acid bacteria

    OpenAIRE

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic bacteria. Lactococcus lactis, and several other lactic acid bacteria, however respond to the addition of heme in aerobic growth conditions. This response includes increased biomass and robustness. In t...

  14. Cadmium Modulates Biofilm Formation by Staphylococcus epidermidis

    NARCIS (Netherlands)

    Wu, Xueqing; Santos, Regiane R.; Fink-Gremmels, Johanna

    2015-01-01

    The aim of the study was to evaluate the effect of cadmium exposure on Staphylococcus epidermidis (ATCC 35984) biofilm formation. Bacteria were cultured in the absence or presence of different concentrations (0-50 mu M) of cadmium. Biofilm formation and bacterial viability were assessed. Quantitativ

  15. Magnetotactic bacteria, magnetosomes and their application.

    Science.gov (United States)

    Yan, Lei; Zhang, Shuang; Chen, Peng; Liu, Hetao; Yin, Huanhuan; Li, Hongyu

    2012-10-12

    Magnetotactic bacteria (MTB) are a diverse group of microorganisms with the ability to orient and migrate along geomagnetic field lines. This unique feat is based on specific intracellular organelles, the magnetosomes, which, in most MTB, comprise nanometer-sized, membrane bound crystals of magnetic iron minerals and organized into chains via a dedicated cytoskeleton. Because of the special properties of the magnetosomes, MTB are of great interest for paleomagnetism, environmental magnetism, biomarkers in rocks, magnetic materials and biomineralization in organisms, and bacterial magnetites have been exploited for a variety of applications in modern biological and medical sciences. In this paper, we describe general characteristics of MTB and their magnetic mineral inclusions, but focus mainly on the magnetosome formation and the magnetisms of MTB and bacterial magnetosomes, as well as on the significances and applications of MTB and their intracellular magnetic mineral crystals. PMID:22579104

  16. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon and...... nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  17. Methylotrophic bacteria in sustainable agriculture.

    Science.gov (United States)

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices. PMID:27263015

  18. Parotitis due to anaerobic bacteria.

    Science.gov (United States)

    Matlow, A; Korentager, R; Keystone, E; Bohnen, J

    1988-01-01

    Although Staphylococcus aureus remains the pathogen most commonly implicated in acute suppurative parotitis, the pathogenic role of gram-negative facultative anaerobic bacteria and strict anaerobic organisms in this disease is becoming increasingly recognized. This report describes a case of parotitis due to Bacteroides disiens in an elderly woman with Sjögren's syndrome. Literature reports on seven additional cases of suppurative parotitis due to anaerobic bacteria are reviewed. Initial therapy of acute suppurative parotitis should include coverage for S. aureus and, in a very ill patient, coverage of gram-negative facultative organisms with antibiotics such as cloxacillin and an aminoglycoside. A failure to respond clinically to such a regimen or isolation of anaerobic bacteria should lead to the consideration of the addition of clindamycin or penicillin. PMID:3287567

  19. Microencapsulation of probiotic bacteria: technology and potential applications.

    Science.gov (United States)

    Kailasapathy, Kaila

    2002-09-01

    In the recent past, there has been an explosion of probiotic health-based products. Many reports indicated that there is poor survival of probiotic bacteria in these products. Further, the survival of these bacteria in the human gastro-intestinal system is questionable. Providing probiotic living cells with a physical barrier against adverse environmental conditions is therefore an approach currently receiving considerable interest. The technology of micro-encapsulation of probiotic bacterial cells evolved from the immobilised cell culture technology used in the biotechnological industry. Several methods of micro-encapsulation of probiotic bacteria have been reported and include spray drying, extrusion, emulsion and phase separation. None of these reported methods however, has resulted in the large numbers of shelf-stable, viable probiotic bacterial cells necessary for use in industry for development of new probiotic products. The most commonly reported micro-encapsulation procedure is based on the calcium-alginate gel capsule formation. Kappa-carrageenan, gellan gum, gelatin and starch are also used as excipients for the micro-encapsulation of probiotic bacteria. The currently available equipment for micro-encapsulation is not able to generate large quantities of uniform sized micro or nano capsules. There is a need to design and develop equipment that will be able to generate precise and uniform micro or nano capsules in large quantities for industrial applications. The reported food vehicles for delivery of encapsulated probiotic bacteria are yoghurt, cheese, ice cream and mayonnaise. Studies need to be done on the application of micro-encapsulation of probiotic bacteria in other food systems. The number of probiotic supplements will increase in the future. More studies, however, need to be conducted on the efficacy of micro-encapsulation to deliver probiotic bacteria and their controlled or targeted release in the gastrointestinal tract. PMID:12400637

  20. Platelets and infections—complex interactions with bacteria

    Directory of Open Access Journals (Sweden)

    Hind eHAMZEH-COGNASSE

    2015-02-01

    Full Text Available Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-Like Receptors but also integrins conventionally described in the hemostatic response, such as GPIIb-IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of Neutrophil Extracellular Traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet-bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the

  1. The influence of marine microbial activities on aerosol production: A laboratory mesocosm study

    Science.gov (United States)

    Alpert, Peter A.; Kilthau, Wendy P.; Bothe, Dylan W.; Radway, JoAnn C.; Aller, Josephine Y.; Knopf, Daniel A.

    2015-09-01

    The oceans cover most of the Earth's surface, contain nearly half the total global primary biomass productivity, and are a major source of atmospheric aerosol particles. Here we experimentally investigate links between biological activity in seawater and sea spray aerosol (SSA) flux, a relationship of potential significance for organic aerosol loading and cloud formation over the oceans and thus for climate globally. Bubbles were generated in laboratory mesocosm experiments either by recirculating impinging water jets or glass frits. Experiments were conducted with Atlantic Ocean seawater collected off the eastern end of Long Island, NY, and with artificial seawater containing cultures of bacteria and phytoplankton Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Changes in SSA size distributions occurred during all phases of bacterial and phytoplankton growth, as characterized by cell concentrations, dissolved organic carbon, total particulate carbon, and transparent exopolymer particles (gel-forming polysaccharides representing a major component of biogenic exudate material). Over a 2 week growth period, SSA particle concentrations increased by a factor of less than 2 when only bacteria were present and by a factor of about 3 when bacteria and phytoplankton were present. Production of jet-generated SSA particles of diameter less than 200 nm increased with time, while production of all particle diameters increased with time when frits were used. The implications of a marine biological activity dependent SSA flux are discussed.

  2. The specificationof nano-structure superficial layers in some of the pathogen bacteria

    Directory of Open Access Journals (Sweden)

    Shilla Jalalpoor

    2010-11-01

    Full Text Available Background: The superficial layer is a part of the cellular envelop that is seen in bacteria and archaea. This superficial layer is a single layer structure composed of subordinate proteins or glycoproteins. The superficial layer is the outer most cellular structure that is in the exchange and reaction around environment with bacteria. This structure has very diversity in bacteria different types.Materials and Method: The related articles to superficial layer were extracted of these articles: Pubmed, Elsevier Science, and Yahoo, from 1995 to 2010 years. For this purpose keywords were searched including superficial layer, pathogenesis, pathogen bacteria,Results: There is consensus in the case of the superficial layer and about the existence of this superficial structure lead to increased pathogenesis in bacteria, in all of the research articles.Conclusion: S-layers in pathogen bacteria with bacteria protection against bacteriophages and phagocytosis, resistance against low pH, adhesion, stabilisation of the membrane and providing adhesion sites for exoproteins caused pathogenesis, infection resistant and antibiotic resistant in host.The result of this study shows the prevalence of considerable S-layer in pathogen bacteria and this matter identified the bacteria generator importance of this structure in the laboratory

  3. Streptococcus gordonii Biofilm Formation: Identification of Genes that Code for Biofilm Phenotypes

    OpenAIRE

    Loo, C. Y.; Corliss, D. A.; Ganeshkumar, N.

    2000-01-01

    Viridans streptococci, which include Streptococcus gordonii, are pioneer oral bacteria that initiate dental plaque formation. Sessile bacteria in a biofilm exhibit a mode of growth that is distinct from that of planktonic bacteria. Biofilm formation of S. gordonii Challis was characterized using an in vitro biofilm formation assay on polystyrene surfaces. The same assay was used as a nonbiased method to screen isogenic mutants generated by Tn916 transposon mutagenesis for defective biofilm fo...

  4. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  5. FOOTWEAR PERFORMANCE LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory provides biomechanical and physical analyses for both military and commercial footwear. The laboratory contains equipment that is integral to the us...

  6. Bio Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry and biology laboratories The Bio Engineering Laboratory (BeL) is theonly full spectrum biotechnology capability within the Department...

  7. Physical Sciences Laboratory (PSL)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL's Physical Sciences Laboratory (PSL) houses 22 research laboratories for conducting a wide-range of research including catalyst formulation, chemical analysis,...

  8. Application of flow cytometry and fluorescent in situ hybridization for assessment of exposures to airborne bacteria.

    OpenAIRE

    de Lange, J L; Thorne, P. S.; Lynch, N.

    1997-01-01

    Current limitations in the methodology for enumeration and identification of airborne bacteria compromise the precision and accuracy of bioaerosol exposure assessment. In this study, flow cytometry and fluorescent in situ hybridization (FISH) were evaluated for the assessment of exposures to airborne bacteria. Laboratory-generated two-component bioaerosols in exposures chambers and complex native bioaerosols in swine barns were sampled with two types of liquid impingers (all-glass impinger-30...

  9. Ecology of Anti-Biofilm Agents II: Bacteriophage Exploitation and Biocontrol of Biofilm Bacteria

    OpenAIRE

    Stephen T. Abedon

    2015-01-01

    Bacteriophages are the viruses of bacteria. In the guise of phage therapy they have been used for decades to successfully treat what are probable biofilm-containing chronic bacterial infections. More recently, phage treatment or biocontrol of biofilm bacteria has been brought back to the laboratory for more rigorous assessment as well as towards the use of phages to combat environmental biofilms, ones other than those directly associated with bacterial infections. Considered in a companion ar...

  10. Peptidoglycan from Bacillus cereus Mediates Commensalism with Rhizosphere Bacteria from the Cytophaga-Flavobacterium Group

    OpenAIRE

    Peterson, Snow Brook; Dunn, Anne K.; Klimowicz, Amy K.; Handelsman, Jo

    2006-01-01

    Previous research in our laboratory revealed that the introduction of Bacillus cereus UW85 can increase the populations of bacteria from the Cytophaga-Flavobacterium (CF) group of the Bacteroidetes phylum in the soybean rhizosphere, suggesting that these rhizosphere microorganisms have a beneficial relationship (G. S. Gilbert, J. L. Parke, M. K. Clayton, and J. Handelsman, Ecology 74:840-854, 1993). In the present study, we determined the frequency at which CF bacteria coisolated with B. cere...

  11. Rapid Evolution of Culture-Impaired Bacteria During Adaptation to Biofilm Growth

    OpenAIRE

    Jon Penterman; Dao Nguyen; Erin Anderson; Benjamin J. Staudinger; Everett P. Greenberg; Joseph S. Lam; Pradeep K. Singh

    2014-01-01

    Biofilm growth increases the fitness of bacteria in harsh conditions. However, bacteria from clinical and environmental biofilms can exhibit impaired growth in culture, even when the species involved are readily culturable and permissive conditions are used. Here, we show that culture-impaired variants of Pseudomonas aeruginosa arise rapidly and become abundant in laboratory biofilms. The culture-impaired phenotype is caused by mutations that alter the outer-membrane lipopolysaccharide struct...

  12. Programmed survival of soil bacteria

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Molin, Søren; Sternberg, Claus;

    Biological containment systems have been developed for Pseudomonas putida and related soil bacteria. The systems are based on combinations of lethal genes and regulated gene expression. Two types of killing function have been employed: 1) A membrane protein interfering with the membrane potential...

  13. Role of Bacteria in Oncogenesis

    OpenAIRE

    Chang, Alicia H; Parsonnet, Julie

    2010-01-01

    Summary: Although scientific knowledge in viral oncology has exploded in the 20th century, the role of bacteria as mediators of oncogenesis has been less well elucidated. Understanding bacterial carcinogenesis has become increasingly important as a possible means of cancer prevention. This review summarizes clinical, epidemiological, and experimental evidence as well as possible mechanisms of bacterial induction of or protection from malignancy.

  14. Engineering robust lactic acid bacteria

    NARCIS (Netherlands)

    Bron, P.A.; Bokhorst-van de Veen, van H.; Wels, M.; Kleerebezem, M.

    2011-01-01

    For centuries, lactic acid bacteria (LAB) have been industrially exploited as starter cultures in the fermentation of foods and feeds for their spoilage-preventing and flavor-enhancing characteristics. More recently, the health-promoting effects of LAB on the consumer have been widely acknowledged,

  15. Effects of biofilm formation on the electrochemical behavior of AISI 304 SS in board machine environment

    Energy Technology Data Exchange (ETDEWEB)

    Carp, L.; Hakkarainen, T. [VTT Manufacturing Technology (Finland); Raaska, L. [VTT Biotechnology and Food Research (Finland)

    1999-11-01

    The electrochemical behavior of and biofilm formation on AISI 304 stainless steel were studied in board machine environment with natural bacteria population. Open circuit potentials, redox-potential as well as different electrochemical measurements were performed. The biofilms formed were analyzed by microbial cultivation and by epifluorescence microscopy. The results of the measurements were compared with those performed both in sterilized white water and in artificial white water. The anodic polarization behavior of just immersed specimens was very similar in biotic (real), artificial and abiotic (sterilized) white water. Pitting initiated at very low potentials and continued to very negative values. The initiation of pitting became more difficult when the immersion time increased to 7 or 8 days in real, artificial or sterilized water. When the immersion time further increased, the pitting nucleated more easily in sterilized white water as well as in artificial white water than in biotic white water. In the laboratory equipment it was possible to maintain the biofilm already formed in the board mill, but the amount of sulfate reducing bacteria decreased and the amount of biofilm did not further increase. The composition and structure of the biofilm formed in laboratory differed from that formed in board mill conditions. The preliminary results indicate that the formation of biofilm in biotic white water rather inhibits than enhances the pitting corrosion of type AISI 304 stainless steel.

  16. Unexpected photoreactivation of Vibrio harveyi bacteria living in ionization environment

    Science.gov (United States)

    Alifano, P.; Nassisi, V.; Siciliano, M. V.; Talà, A.; Tredici, S. M.

    2011-05-01

    Bacteria undergoing environmental effects is extremely interesting for structural, mechanistic, and evolutionary implications. Luminescent bacteria that have evolved in a specific ambient have developed particular responses and their behavior can give us new suggestions on the task and production of luciferina proteins. To analyze the UV interaction under controlled laboratory conditions, we used photoluminescent bacterial strains belonging to a new species evolutionarily close to Vibrio harveyi sampled from a coastal cave with a high radon content that generates ionizing radiation. The survival of the bacterial strains was analyzed, in the light and in the dark, following a variety of genotoxic treatments including UV radiation exposure. The strains were irradiated by a germicide lamp. The results demonstrated that most of the strains exhibited a low rate of survival after the UV exposure. After irradiation by visible light following the UV exposure, all strains showed a high capability of photoreactivation when grown. This capability was quite unexpected because these bacteria were sampled from a dark ambient without UV radiation. This leads us to hypothesize that the photoreactivation in these bacteria might have been evolved to repair DNA lesions also induced by different radiation sources other than UV (e.g., x-ray) and that the luminescent bacteria might use their own light emission to carry out the photoreactivation. The high capability of photoreactivation of these bacteria was also justified by the results of deconvolution. The deconvolution was applied to the emission spectra and it was able to show evidence of different light peaks. The presence of the visible peak could control the photolysis enzyme.

  17. Unexpected photoreactivation of Vibrio harveyi bacteria living in ionization environment

    International Nuclear Information System (INIS)

    Bacteria undergoing environmental effects is extremely interesting for structural, mechanistic, and evolutionary implications. Luminescent bacteria that have evolved in a specific ambient have developed particular responses and their behavior can give us new suggestions on the task and production of luciferina proteins. To analyze the UV interaction under controlled laboratory conditions, we used photoluminescent bacterial strains belonging to a new species evolutionarily close to Vibrio harveyi sampled from a coastal cave with a high radon content that generates ionizing radiation. The survival of the bacterial strains was analyzed, in the light and in the dark, following a variety of genotoxic treatments including UV radiation exposure. The strains were irradiated by a germicide lamp. The results demonstrated that most of the strains exhibited a low rate of survival after the UV exposure. After irradiation by visible light following the UV exposure, all strains showed a high capability of photoreactivation when grown. This capability was quite unexpected because these bacteria were sampled from a dark ambient without UV radiation. This leads us to hypothesize that the photoreactivation in these bacteria might have been evolved to repair DNA lesions also induced by different radiation sources other than UV (e.g., x-ray) and that the luminescent bacteria might use their own light emission to carry out the photoreactivation. The high capability of photoreactivation of these bacteria was also justified by the results of deconvolution. The deconvolution was applied to the emission spectra and it was able to show evidence of different light peaks. The presence of the visible peak could control the photolysis enzyme.

  18. Fuzzy species among recombinogenic bacteria

    Directory of Open Access Journals (Sweden)

    Fraser Christophe

    2005-03-01

    Full Text Available Abstract Background It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species. Results Alleles at individual loci were widely distributed among the named species but this distorting effect of recombination was largely buffered by using concatenated sequences, which resolved clusters corresponding to the three species most numerous in the sample, N. meningitidis, N. lactamica and N. gonorrhoeae. A few isolates arose from the branch that separated N. meningitidis from N. lactamica leading us to describe these species as 'fuzzy'. Conclusion A multilocus approach using large samples of closely related isolates delineates species even in the highly recombinogenic human Neisseria where individual loci are inadequate for the task. This approach should be applied by taxonomists to large samples of other groups of closely-related bacteria, and especially to those where species delineation has historically been difficult, to determine whether genotypic clusters can be delineated, and to guide the definition of species.

  19. Different Abilities of Eight Mixed Cultures of Methane-oxidizing Bacteria to Degrade TCE

    DEFF Research Database (Denmark)

    Broholm, Kim; Christensen, Thomas Højlund; Jensen, Bjørn K.

    1993-01-01

    The ability of eight mixed cultures of methane-oxidizing bacteria to degrade trichloroethylene (TCE) was examined in laboratory batch experiments. This is one of the first reported works studying TCE degradation by mixed cultures of methane-oxidizing bacteria at 10°C, a common temperature for soils...... degradation of methane and TCE. During the first 10–15 days after the addition of methane a significant degradation of methane and a minor degradation of TCE were observed. This experiment revealed that the ability of mixed cultures of methane-oxidizing bacteria to degrade TCE varied significantly even though...

  20. Epithermal neutron activation analysis of CR(VI)-reducer basalt-inhabiting bacteria

    International Nuclear Information System (INIS)

    Epithermal neutron activation analysis (ENAA) has been applied to studying elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance (ESR) demonstrating that the bacteria differ in the rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(VI) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 μg/g of dry weight) indicate bacterial adaptation to the environmental conditions typical of the basalts. The concentrations of at least 12-19 different elements ranging from major- to ultratrace ones were determined in each type of bacteria simultaneously. The range of concentrations spans over 8 orders of magnitude

  1. Portable File Format (PFF) specifications.

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H.,

    2015-02-01

    Created at Sandia National Laboratories, the Portable File Format (PFF) allows binary data transfer across computer platforms. Although this capability is supported by many other formats, PFF files are still in use at Sandia, particularly in pulsed power research. This report provides detailed PFF specifications for accessing data without relying on legacy code.

  2. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids

    Directory of Open Access Journals (Sweden)

    Richardson Anthony J

    2013-01-01

    Full Text Available Abstract Background The products of protein breakdown in the human colon are considered to be detrimental to gut health. Amino acid catabolism leads to the formation of sulfides, phenolic compounds and amines, which are inflammatory and/or precursors to the formation of carcinogens, including N-nitroso compounds. The aim of this study was to investigate the kinetics of protein breakdown and the bacterial species involved. Results Casein, pancreatic casein hydrolysate (mainly short-chain peptides or amino acids were incubated in vitro with suspensions of faecal bacteria from 3 omnivorous and 3 vegetarian human donors. Results from the two donor groups were similar. Ammonia production was highest from peptides, followed by casein and amino acids, which were similar. The amino acids metabolized most extensively were Asp, Ser, Lys and Glu. Monensin inhibited the rate of ammonia production from amino acids by 60% (P = 0.001, indicating the involvement of Gram-positive bacteria. Enrichment cultures were carried out to investigate if, by analogy with the rumen, there was a significant population of asaccharolytic, obligately amino acid-fermenting bacteria (‘hyper-ammonia-producing’ bacteria; HAP in the colon. Numbers of bacteria capable of growth on peptides or amino acids alone averaged 3.5% of the total viable count, somewhat higher than the rumen. None of these were HAP, however. The species enriched included Clostridium spp., one of which was C. perfringens, Enterococcus, Shigella and Escherichia coli. Conclusions Protein fermentation by human faecal bacteria in the absence of sugars not only leads to the formation of hazardous metabolic products, but also to the possible proliferation of harmful bacteria. The kinetics of protein metabolism were similar to the rumen, but HAP bacteria were not found.

  3. Teaching Cardiovascular Integrations with Computer Laboratories.

    Science.gov (United States)

    Peterson, Nils S.; Campbell, Kenneth B.

    1985-01-01

    Describes a computer-based instructional unit in cardiovascular physiology. The program (which employs simulated laboratory experimental techniques with a problem-solving format is designed to supplement an animal laboratory and to offer students an integrative approach to physiology through use of microcomputers. Also presents an overview of the…

  4. Enumeration of petroleum hydrocarbon utilizing bacteria

    International Nuclear Information System (INIS)

    In-situ biological treatment is one among a number of emerging technologies that may be applied to the remediation of contaminated soils and groundwater. In 1985, a surface spill of 1,500 gallons of dielectric transformer oil at the Sandia National Laboratories (HERMES II facility) resulted in contamination of soil up to depths of 160 feet. The extent of contamination and site characteristics favored the application of in-situ bioremediation as a potential remedial technology. The purpose of this research was to enumerate indigenous microbial populations capable of degrading petroleum hydrocarbons. Microbial enumeration and characterization methods suitably adapted for hydrocarbon utilizing bacteria were used as an indicator of the presence of viable microbial consortia in excavated oil samples with hydrocarbon (TPH) concentrations ranging from 300 to 26,850 ppm. Microbial activity was quantified by direct and streak plating soil samples on silica gel media. Effects of toxicity and temperature were studied using batch cultures of hydrocarbon utilizing bacteria (selectively isolated in an enrichment medium), at temperatures of 20 and 35 C. It was concluded from this study that it is possible to isolate native microorganisms from contaminated soils from depths of 60 to 160 feet, and with oil concentration ranging from 300 to 26,850 ppm. About 62% of the microorganisms isolated form the contaminated soil were capable of using contaminant oil as a substrate for growth and metabolism under aerobic conditions. Growth rates were observed to be 50% higher for the highest contaminant concentration at 20 C. Resistance to toxicity to contaminant oil was also observed to be greater at 20 C than at 35 C

  5. Amyloid formation: functional friend or fearful foe?

    Science.gov (United States)

    Bergman, P; Roan, N R; Römling, U; Bevins, C L; Münch, J

    2016-08-01

    Amyloid formation has been most studied in the context of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, as well as in amyloidosis. However, it is becoming increasingly clear that amyloid is also present in the healthy setting; for example nontoxic amyloid formation is important for melanin synthesis and in innate immunity. Furthermore, bacteria have mechanisms to produce functional amyloid structures with important roles in bacterial physiology and interaction with host cells. Here, we will discuss some novel aspects of fibril-forming proteins in humans and bacteria. First, the amyloid-forming properties of the antimicrobial peptide human defensin 6 (HD6) will be considered. Intriguingly, unlike other antimicrobial peptides, HD6 does not kill bacteria. However, recent data show that HD6 can form amyloid structures at the gut mucosa with strong affinity for bacterial surfaces. These so-called nanonets block bacterial invasion by entangling the bacteria in net-like structures. Next, the role of functional amyloid fibrils in human semen will be discussed. These fibrils were discovered through their property to enhance HIV infection but they may also have other yet unknown functions. Finally, the role of amyloid formation in bacteria will be reviewed. The recent finding that bacteria can make amyloid in a controlled fashion without toxic effects is of particular interest and may have implications for human disease. The role of amyloid in health and disease is beginning to be unravelled, and here, we will review some of the most recent findings in this exciting area. PMID:27151743

  6. Physico-chemical factors and bacteria in fish ponds

    OpenAIRE

    Jun, X.; Xiuzheng, F.; Tongbing, Y.

    2000-01-01

    Analyses of pond water and mud samples show that nitrifying bacteria (including ammonifying bacteria, nitrite bacteria, nitrobacteria and denitrifying bacteria) are in general closely correlated with various physico-chemical factors, ammonifying bacteria are mainly correlated with dissolved oxygen; denitrifying bacteria are inversely correlated with phosphorus; nitrite bacteria are closely correlated with nitrites, nitrobacteria are inversely correlated with ammoniac nitrogen. The nitrifying ...

  7. Health significance and occurrence of injured bacteria in drinking water

    Science.gov (United States)

    McFeters, G. A.; LeChevallier, M. W.; Singh, A.; Kippin, J. S.

    1986-01-01

    Enteropathogenic and indicator bacteria become injured in drinking water with exposure to sublethal levels of various biological, chemical and physical factors. One manifestation of this injury is the inability to grow and form colonies on selective media containing surfactants. The resulting underestimation of indicator bacteria can lead to a false estimation of water potability. m-T7 medium was developed specifically for the recovery of injured coliforms (both "total" and fecal) in drinking water. The m-T7 method was used to survey operating drinking water treatment and distribution systems for the presence of injured coliforms that were undetected with currently used media. The mean recovery with m-Endo LES medium was less than 1/100 ml while it ranged between 6 and 68/100ml with m-T7 agar. The majority of samples giving positive results with m-T7 medium yielded no detectable coliforms with m-Endo LES agar. Over 95% of the coliform bacteria in these samples were injured. Laboratory experiments were also done to ascribe the virulence of injured waterborne pathogens. Enteropathogens including Salmonella typhimurium, Yersinia enterocolitica and Shigella spp. required up to 20 times the chlorine levels to produce the same injury in enterotoxigenic Escherichia coli (ETEC) and nonpathogenic coliforms. Similar results were seen with Y. enterocolitica exposed to copper. The recovery of ETEC was followed by delayed enterotoxin production, both in vitro and in the gut of experimental animals. This indicates that injured waterborne enteropathogenic bacteria can be virulent.

  8. "DRUG RESISTANCE PATTERN IN ISOLATED BACTERIA FROM BLOOD CULTURES"

    Directory of Open Access Journals (Sweden)

    A. Sobhani

    2004-05-01

    Full Text Available Bacteremia is an important infectious disease which may lead to death. Common bacteria and pattern of antibiotic resistance in different communities are different and understanding these differences is important. In the present study, relative frequency and pattern of drug resistance have been examined in bacteria isolated from blood cultures in Razi Hospital laboratory. The method of the study was descriptive. Data collection was carried out retrospectively. Total sample consisted of 311 positive blood cultures from 1999 to 2001. Variables under study were bacterial strains, antibiotics examined in antibiogram, microbial resistance, and patients' age and sex. The most common isolated bacteria were Salmonella typhi (22.2% and the least common ones were Citrobacter (1.6%. The highest antibiotic resistance was seen against amoxicillin (88.4%. The proportion of males to females was1: 1/1 and the most common age group was 15-44 (47.3%. Common bacteria and pattern of antibiotic resistance were different in some areas and this subject requires further studies in the future.

  9. Bartonella-like bacteria carried by domestic mite species.

    Science.gov (United States)

    Kopecký, Jan; Nesvorná, Marta; Hubert, Jan

    2014-01-01

    Bacteria of the genus Bartonella are carried by haematophagous mites, ticks, fleas and flies, and attack the erythrocytes of mammals. Here we describe a Bartonella-like clade, a distinct group related to Bartonellaceae, in stored-product mites (Acari: Astigmata) and a predatory mite Cheyletus eruditus (Acari: Prostigmata) based on the analysis of cloned 16S rRNA gene sequences. By using the clade-specific primers, closely related Bartonella-like 16S rRNA sequences were amplified from both laboratory colonies and field strains of three synanthropic mite species (Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae) and a predatory mite. Altogether, sequences of Bartonella-like bacteria were found in 11 strains, but were not detected in Dermatophagoides farinae and D. pteronyssinus and two strains of L. destructor. All obtained sequences formed a separate cluster branching as a sister group to Bartonellaceae and related to other separate clusters comprising uncultured bacterial clones from human skin and hemipteran insects (Nysius plebeius and Nysius sp.). The classification of sequences into operational taxonomic units (OTUs) showed a difference between A. siro and T. putrescentiae suggesting that the Bartonella-like bacteria are different in these two mite species. However, species specific sequences in separate OTUs were observed also for C. eruditus. Possible symbiotic interactions between Bartonella-like bacteria and their mite hosts are discussed. PMID:24711066

  10. Simulating Experiments on Enrichment of Gold by Bacteria and Their Geochemical Significance

    Institute of Scientific and Technical Information of China (English)

    张景荣; 陆建军; 等

    1997-01-01

    The experiments on the enrichment of gold by bacteria indicate that bacteria have a very intense capacity of enriching gold and act as an arrester of trace gold in sea water,Bacteria enrich gold in two forms:absorption and adsorption.Absorption means that gold finds its way into organisms and it is combined with the mercapto group of protein,whereas adsorption means that gold is adsorbed on organisma by amino acid secreted by cell walls,Bacteria are organisms with very high vitality and reproductive capacity and huge productivity in nature Bacteria,which are important geolgical agents for gold enrichment and can exert effects on geological environments by their metabolism,are of important geochemical significance for the formation of gold-bearing black rock series.

  11. Smokeless Tobacco May Contain Potentially Harmful Bacteria

    Science.gov (United States)

    ... 160769.html Smokeless Tobacco May Contain Potentially Harmful Bacteria Infections, diarrhea and vomiting are possible consequences, FDA ... products can harbor several species of potentially harmful bacteria, researchers warn. Two types in particular -- Bacillus licheniformis ...

  12. Killer Pigments in Bacteria: An Ecological Nightmare.

    Science.gov (United States)

    Benathen, Isaiah A.; Saccardi, Marion

    2000-01-01

    Describes an alternative to teaching ecology by using bacteria to test competitor survival. Students observe a time-dependent selective killing of other unrelated bacteria by Pseudomonas aeruginosa. (SAH)

  13. Stellar formation

    CERN Document Server

    Reddish, V C

    1978-01-01

    Stellar Formation brings together knowledge about the formation of stars. In seeking to determine the conditions necessary for star formation, this book examines questions such as how, where, and why stars form, and at what rate and with what properties. This text also considers whether the formation of a star is an accident or an integral part of the physical properties of matter. This book consists of 13 chapters divided into two sections and begins with an overview of theories that explain star formation as well as the state of knowledge of star formation in comparison to stellar structure

  14. Re-engineering bacteria for ethanol production

    Science.gov (United States)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  15. IDENTIFICATION OF BACTERIA IN LATEX PAINTS

    OpenAIRE

    Rojas, J

    2008-01-01

    The bacteria are prokaryote organisms with a high capacity to colonize many types of habits. This research was developed with the object to identify extremophiles bacteria presents in latex paint. The bacteria were cultivated in culture mediums TSA, Blood Agar, Mc Conkey and finally the biochemical proof API-NF® for bacteria's isolation and identification, respectively. Characterization showed bacterial profile of Pasteurella sp. Hypothesis that could be found extremophiles bac...

  16. Genetics of Lactic Acid Bacteria

    Science.gov (United States)

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  17. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    Directory of Open Access Journals (Sweden)

    NEENA GARG

    2015-10-01

    Full Text Available Lactic acid bacteria (LAB is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LAB are used as starter culture, consortium members and bioprotective agents in food industry that improve food quality, safety and shelf life. A variety of probiotic LAB species are available including Lactobacillus acidophilus, L. bulgaricus, L. lactis, L. plantarum, L. rhamnosus, L. reuteri, L. fermentum, Bifidobacterium longum, B. breve, B. bifidum, B. esselnsis, B. lactis, B. infantis that are currently recommended for development of functional food products with health-promoting capacities.

  18. Dissipative Shocks behind Bacteria Gliding

    CERN Document Server

    Virga, Epifanio G

    2014-01-01

    Gliding is a means of locomotion on rigid substrates utilized by a number of bacteria includingmyxobacteria and cyanobacteria. One of the hypotheses advanced to explain this motility mechanism hinges on the role played by the slime filaments continuously extruded from gliding bacteria. This paper solves in full a non-linear mechanical theory that treats as dissipative shocks both the point where the extruded slime filament comes in contact with the substrate, called the filament's foot, and the pore on the bacterium outer surface from where the filament is ejected. We prove that kinematic compatibility for shock propagation requires that the bacterium uniform gliding velocity (relative to the substrate) and the slime ejecting velocity (relative to the bacterium) must be equal, a coincidence that seems to have already been observed.

  19. The Preliminary Report on Rumen Protozoa Grazing Rate on Bacteria with a Fluorescence-Labeled Technique

    Institute of Scientific and Technical Information of China (English)

    WANG Meng-zhi; WANG Hong-rong; LI Guo-xiang; CAO Heng-chun; LU Zhan-jun

    2008-01-01

    Studies on the bacterial predation rate by rumen protozoa were carried out under laboratory conditions using a technique of fluorescence-labeled bacteria (FLB). Four Xuhuai goats were used in this experiment to obtain rumen protozoa and bacteria. Two groups were designed as follows: One group was the whole bacteria which were labeled using fluorescence through removing free bacteria from rumen fluid (WFLB); the other group was the bacteria which were labeled using fluorescence without removing free bacteria from rumen fluid (FLB). The result indicated that the bacterial predation rates of rumen Protozoa was 398.4 cells/(cell h) for the group WFLB, 230.4 cells/(cell h) for the group FLB, when the corresponding values expressed as bacteria-N, they were 2.15Pg N/(cell h) for the group WFLB, and 1.24Pg N/(cell h) for the group FLB, respectively. Extrapolating the assimilation quantity of nitrogen by ciliates on bacteria of Xuhuai goat, there were 103.2mg N/(d capita) for the group WFLB, and 59.5mg N/(d capita) for the group FLB, respectively. It was estimated that protein losses due to microbial recycling were 0.645g pro/(d capita) for the group WFLB and 0.372g pro/(d capita) for the group FLB, respectively. In addition, the fluorescence-labeled technique would be a potential assay for the determination of bacterial predation rate by rumen protozoa.

  20. Laboratory Studies of Astrophysical Jets

    CERN Document Server

    Ciardi, Andrea

    2009-01-01

    Jets and outflows produced during star-formation are observed on many scales: from the "micro-jets" extending a few hundred Astronomical Units to the "super-jets" propagating to parsecs distances. Recently, a new "class" of short-lived (hundreds of nano-seconds) centimetre-long jets has emerged in the laboratory as a complementary tool to study these complex astrophysical flows. Here I will discuss and review the recent work done on "simulating" protostellar jets in the laboratory using z-pinch machines.

  1. Box-shaped halophilic bacteria.

    OpenAIRE

    Javor, B; Requadt, C; Stoeckenius, W

    1982-01-01

    Three morphologically similar strains of halophilic, box-shaped procaryotes have been isolated from brines collected in the Sinai, Baja California (Mexico), and southern California (United States). Although the isolates in their morphology resemble Walsby's square bacteria, which are a dominant morphological type in the Red Sea and Baja California brines, they are probably not identical to them. The cells show the general characteristics of extreme halophiles and archaebacteria. They contain ...

  2. Folate Production by Probiotic Bacteria

    OpenAIRE

    Stefano Raimondi; Alberto Amaretti; Maddalena Rossi

    2011-01-01

    Probiotic bacteria, mostly belonging to the genera Lactobacillus and Bifidobacterium, confer a number of health benefits to the host, including vitamin production. With the aim to produce folate-enriched fermented products and/or develop probiotic supplements that accomplish folate biosynthesis in vivo within the colon, bifidobacteria and lactobacilli have been extensively studied for their capability to produce this vitamin. On the basis of physiological studies and genome analysis, wild-typ...

  3. Magnetotactic Bacteria from Extreme Environments

    OpenAIRE

    Lefèvre, Christopher T; Dennis A. Bazylinski

    2013-01-01

    Magnetotactic bacteria (MTB) represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4) or greigite (Fe3S4) and cause cells to align along the Earth’s geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic–anoxic interface (OAI) in water columns or sediments of aqu...

  4. Interactions among endophytic bacteria and fungi: effects and potentials

    Indian Academy of Sciences (India)

    W M M S Bandara; Gamini Seneviratne; S A Kulasooriya

    2006-12-01

    Plants benefit extensively by harbouring endophytic microbes. They promote plant growth and confer enhanced resistance to various pathogens. However, the way the interactions among endophytes influence the plant productivity has not been explained. Present study experimentally showed that endophytes isolated from rice (Oryza sativa) used as the test plant produced two types of interactions; biofilms (bacteria attached to mycelia) and mixed cultures with no such attachments. Acidity, as measured by pH in cultures with biofilms was higher than that of fungi alone, bacteria alone or the mixed cultures. Production of indoleacetic acid like substances (IAAS) of biofilms was higher than that of mixed cultures, fungi or bacteria. Bacteria and fungi produced higher quantities of IAAS than mixed cultures. In mixed cultures, the potential of IAAS production of resident microbes was reduced considerably. There was a negative relationship between IAAS and pH of the biofilms, indicating that IAAS was the main contributor to the acidity. However, such a relationship was not observed in mixed cultures. Microbial acid production is important for suppressing plant pathogens. Thus the biofilm formation in endophytic environment seems to be very important for healthy and improved plant growth. However, it is unlikely that an interaction among endophytes takes place naturally in the endophytic environment, due to physical barriers of plant tissues. Further, critical cell density dependant quorum sensing that leads to biofilm formation may not occur in the endophytic environment as there is a limited space. As such in vitro production and application of beneficial biofilmed inocula of endophytes are important for improved plant production in any agro-ecosystem. The conventional practice of plant inoculation with monocultures or mixed cultures of effective microbes may not give the highest microbial effect, which may only be achieved by biofilm formation.

  5. Bacteria interfere with A-actinomycetemcomitans colonization

    OpenAIRE

    Teughels, Wim; Haake, S. Kinder; Sliepen, Isabelle; Pauwels, Martine; Van Eldere, Johan; Cassiman, Jean-Jacques; Quirynen, Marc

    2007-01-01

    It is known that beneficial bacteria can suppress the emergence of pathogenic bacteria, particularly in the gastrointestinal tract. This study examined the potential for a similar suppression of Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans colonization of epithelial cells, due to its potential relevance in periodontal diseases. Seven presumed beneficial bacteria were examined for their ability to interfere, exclude, or displace A. actinomycetemcomitans from epithelial cells...

  6. Laser-Based Identification of Pathogenic Bacteria

    Science.gov (United States)

    Rehse, Steven J.

    2009-01-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the…

  7. Magnetotactic bacteria at the geomagnetic equator

    International Nuclear Information System (INIS)

    Magnetotatic bacteria are observed in freshwater and marine sediments of Fortaleza, Brazil, situated close to the geomagnetic equator. Both South-seeking and North-seeking bacteria are present in roughly equal numbers in the same samples. This observation is consistent with the hypothesis that the vertical component of the geomagnetic field selects the predominant polarity type among magnetotactic bacteria in natural environments. (Author)

  8. Drosophila lifespan enhancement by exogenous bacteria

    OpenAIRE

    Brummel, Ted; Ching, Alisa; Seroude, Laurent; Simon, Anne F.; Benzer, Seymour

    2004-01-01

    We researched the lifespan of Drosophila under axenic conditions compared with customary procedure. The experiments revealed that the presence of bacteria during the first week of adult life can enhance lifespan, despite unchanged food intake. Later in life, the presence of bacteria can reduce lifespan. Certain long-lived mutants react in different ways, indicating an interplay between bacteria and longevity-enhancing genes.

  9. Regularities of polymer substances transformation into methane by thermophilic anaerobic bacteria

    OpenAIRE

    V. І. Karpenko; L. S. Yastremska; І. G. Burun; Y. V. Lembey; O. S. Tatarchenko

    2006-01-01

    The paper shows the regularities of polymer substances transformation into methane by extracted thermophilic anaerobic bacteria. The sequence of substrate use by the methane generating bacteria corresponds to the energy efficiency of the methane genesis reactions as in the first place hydrogen is used and then acetate is. Combined cultivation of extracted different anaerobic cultures gives the opportunity to increase ethanol and hydrogen yield as well as the effectiveness of methane formation.

  10. Coral-Associated Bacteria and Their Role in the Biogeochemical Cycling of Sulfur▿

    OpenAIRE

    Raina, Jean-Baptiste; Tapiolas, Dianne; Willis, Bette L.; Bourne, David G

    2009-01-01

    Marine bacteria play a central role in the degradation of dimethylsulfoniopropionate (DMSP) to dimethyl sulfide (DMS) and acrylic acid, DMS being critical to cloud formation and thereby cooling effects on the climate. High concentrations of DMSP and DMS have been reported in scleractinian coral tissues although, to date, there have been no investigations into the influence of these organic sulfur compounds on coral-associated bacteria. Two coral species, Montipora aequituberculata and Acropor...

  11. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite

    OpenAIRE

    Moreau, Jennifer L.; Sun, Limin; Chow, Laurence C.; Xu, Hockin H. K.

    2011-01-01

    Dental composites do not hinder bacteria colonization and plaque formation. Caries at the restoration margins is a frequent reason for replacement of existing restorations, which accounts for 50 to 70% of all restorations. The objectives of this study were to examine the filler level effect on nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) and investigate the load-bearing and acid-neutralizing properties and bacteria inhibition. NACP with 116-nm particle size wer...

  12. Galaxy formation

    International Nuclear Information System (INIS)

    Galaxy formation is at the forefront of observation and theory in cosmology. An improved understanding is essential for improving our knowledge both of the cosmological parameters, of the contents of the universe, and of our origins. In these lectures intended for graduate students, galaxy formation theory is reviewed and confronted with recent observational issues. In lecture 1, the following topics are presented: star formation considerations, including IMF, star formation efficiency and star formation rate, the origin of the galaxy luminosity function, and feedback in dwarf galaxies. In lecture 2, we describe formation of disks and massive spheroids, including the growth of supermassive black holes, negative feedback in spheroids, the AGN-star formation connection, star formation rates at high redshift and the baryon fraction in galaxies.

  13. Comparative functional genomics of amino acid metabolism of lactic acid bacteria

    OpenAIRE

    Pastink, M.I.

    2009-01-01

    The amino acid metabolism of lactic acid bacteria used as starters in industrial fermentations has profound effects on the quality of the fermented foods. The work described in this PhD thesis was initiated to use genomics technologies and a comparative approach to link the gene content of some well-known lactic acid bacteria to flavor formation and to increase our general knowledge in the area of amino acid metabolism. The three well-known lactic acid bacteria that were used in these studies...

  14. Dormant state in bacteria: Conceptions and implications for terrestrial biogeoscience and astrobiology

    Science.gov (United States)

    Mulyukin, A.

    2003-04-01

    Gaining insight into strategies and mechanisms that ensure long term-preservation of microorganisms in various environments, including cold habitats, is a very important issue for terrestrial biogeoscience and astrobiology. This communication has a focus on the analysis of the published and our experimental data regarding the dormant state of different microorganisms, with an emphasis on non-spore-forming bacteria, which are widely spread in numerous ecological niches (e.g. permafrost sediments). Albeit it is recognized that one of the strategies to endure environmental stresses is entering of non-spore-forming bacteria into the viable-but-non-culturable state, a question of whether these microorganisms have the resting stage remains unclear. However, our previous studies showed that non-spore-forming bacteria and yeast could form cyst-like cells that possess many attributes of constitutively resting cells. As applied to the survival strategy of non-spore-forming bacteria in permafrost sediments, recognizing a very important role of the viable-but-nonculturable state in asporogenous bacteria, we however believe that their long-term maintenance in such habitats is due to the formation of cyst-like cells. Interestingly, bacterial isolates from permafrost sediments showed a greater productivity of autoregulatory factors, favoring the transition of cells into the resting state, and a more elevated resistance to some stresses than closely related collection strains. This suggests a greater potentiality of the permafrost isolates to enter the resting stage and thereby to survive for millennia years in natural habitats. However, it is known that only a little part of microorganisms that are present in environmental samples can be enumerated by standard plating on agar media, and a discrepancy between the total number of cells and those capable of forming colonies is a rather common case. Such a discrepancy can be due to either the actual non-culturability of microbial

  15. Expulsion of swimming bacteria by a circular flow

    Science.gov (United States)

    Sokolov, Andrey; Aronson, Igor

    Macroscopic shear flow alters swimming trajectories in a highly nontrivial way and results in dramatic reduction of viscosity and heterogeneous bacterial distributions. We report on experimental and theoretical studies of rapid expulsion of microswimmers, such as motile bacteria, by a circular flow created by a rotating microparticle. We observed a formation of a macroscopic depletion area in a high-shear region, in the vicinity of a microparticle. The rapid migration of bacteria from the shear-rich area is caused by a circular structure of the flow rather than intrinsic random fluctuations of bacteria orientations, in stark contrast to planar shear flow. Our mathematical model revealed that expulsion is a combined effect of motility and alignment by a vortical flow. Our findings offer a novel approach for manipulation of motile microorganisms and shed new light on bacteria-flow interactions. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science And Engineering, under Contract No. DE AC02-06CH11357.

  16. Role of bacteria in the etiopathogenesis of inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Increased numbers of mucosa-associated Escherichia coli are observed in both of the major inflammatory bowel diseases, Crohn's disease (CD) and ulcerative colitis (DC). A potential pathophysiological link between the presence of pathogenic invasive bacteria and genetic host susceptibility of patients with ileal CD is suspected. In CD patients, with increased ileal expression of the CEACAM6 molecule acting as a receptor recognized by type 1 pilus bacterial adhesin, and with the identification of mutations in the NOD2-encoding gene, the presence of pathogenic invasive bacteria could be the link between abnormal ileal bacterial colonization and innate immune responses to invasive bacteria. In a susceptible host, the sequential etiological steps of the disease induced by adherent-invasive E. Coli (AIEC) are: (1) abnormal colonization via binding to the CEACAM6 receptor, which is overexpressed in the ileal mucosa of CD patients; (2) ability to adhere to and to invade intestinal epithelial cells, which allows bacteria to cross the mucosal barrier; (3) survival and replication within infected macrophages in the lamina propria; and (4) induction of tumor necrosis factor-a secretion and granuloma formation.

  17. Hydrodynamics of catheter biofilm formation

    CERN Document Server

    Sotolongo-Costa, Oscar; Rodriguez-Perez, Daniel; Martinez-Escobar, Sergio; Fernandez-Barbero, Antonio

    2009-01-01

    A hydrodynamic model is proposed to describe one of the most critical problems in intensive medical care units: the formation of biofilms inside central venous catheters. The incorporation of approximate solutions for the flow-limited diffusion equation leads to the conclusion that biofilms grow on the internal catheter wall due to the counter-stream diffusion of blood through a very thin layer close to the wall. This biological deposition is the first necessary step for the subsequent bacteria colonization.

  18. Epithermal Neutron Activation Analysis (ENAA) of Cr(VI)-reducer Basalt-inhabiting Bacteria

    CERN Document Server

    Tsibakhashvili, N Ya; Kirkesali, E I; Aksenova, N G; Kalabegishvili, T L; Murusidze, I G; Mosulishvili, L M; Holman, H Y N

    2005-01-01

    Epithermal neutron activation analysis (ENAA) has been applied to studying elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance (ESR) demonstrating that the bacteria differ in the rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(V) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 $\\mu $g/g of dry weight) indicate bacterial adaptation to the environmental condition...

  19. Isolation, Characterization, and Genetic Diversity of Ice Nucleation Active Bacteria on Various Plants

    Directory of Open Access Journals (Sweden)

    DIANA ELIZABETH WATURANGI

    2009-06-01

    Full Text Available Ice nucleation active (INA bacteria is a group of bacteria with the ability to catalyze the ice formation at temperature above -10 oC and causing frost injury in plants. Since, most of the literature on INA bacteria were from subtropical area, studies of INA bacteria from tropical area are needed. We sampled eight fruits and 36 leaves of 21 plant species, and then identified through biochemical and genetic analysis. INA bacteria were characterized for INA protein classification, pH stability, and optimization of heat endurance. We discovered 15 INA bacteria from seven plants species. Most of bacteria are oxidase and H2S negative, catalase and citrate positive, gram negative, and cocoid formed. These INA bacteria were classified in to three classes based on their freezing temperature. Most of the isolates were active in heat and pH stability assay. Some isolates were analysed for 16S rRNA gene. We observed that isolates from Morinda citrifolia shared 97% similiarity with Pseudomonas sp. Isolate from Piper betle shared 93% similarity with P. pseudoalcaligenes. Isolate from Carica papaya shared 94% similarity with Pseudomonas sp. While isolate from Fragaria vesca shared 90% similarity with Sphingomonas sp.

  20. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    OpenAIRE

    Alix M Denoncourt; Paquet, Valérie E.; Charette, Steve J.

    2014-01-01

    Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging...

  1. Acetic acid bacteria spoilage of bottled red wine -- a review.

    Science.gov (United States)

    Bartowsky, Eveline J; Henschke, Paul A

    2008-06-30

    Acetic acid bacteria (AAB) are ubiquitous organisms that are well adapted to sugar and ethanol rich environments. This family of Gram-positive bacteria are well known for their ability to produce acetic acid, the main constituent in vinegar. The oxidation of ethanol through acetaldehyde to acetic acid is well understood and characterised. AAB form part of the complex natural microbial flora of grapes and wine, however their presence is less desirable than the lactic acid bacteria and yeast. Even though AAB were described by Pasteur in the 1850s, wine associated AAB are still difficult to cultivate on artificial laboratory media and until more recently, their taxonomy has not been well characterised. Wine is at most risk of spoilage during production and the presence of these strictly aerobic bacteria in grape must and during wine maturation can be controlled by eliminating, or at least limiting oxygen, an essential growth factor. However, a new risk, spoilage of wine by AAB after packaging, has only recently been reported. As wine is not always sterile filtered prior to bottling, especially red wine, it often has a small resident bacterial population (Bottled red wines, sealed with natural cork closures, and stored in a vertical upright position may develop spoilage by acetic acid bacteria. This spoilage is evident as a distinct deposit of bacterial biofilm in the neck of the bottle at the interface of the wine and the headspace of air, and is accompanied with vinegar, sherry, bruised apple, nutty, and solvent like off-aromas, depending on the degree of spoilage. This review focuses on the wine associated AAB species, the aroma and flavour changes in wine due to AAB metabolism, discusses the importance of oxygen ingress into the bottle and presents a hypothesis for the mechanism of spoilage of bottled red wine. PMID:18237809

  2. Monitoring sulfide and sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  3. The laboratories of geological studies

    International Nuclear Information System (INIS)

    This educational document comprises 4 booklets in a folder devoted to the presentation of the ANDRA's activities in geological research laboratories. The first booklet gives a presentation of the missions of the ANDRA (the French agency for the management of radioactive wastes) in the management of long life radioactive wastes. The second booklet describes the approach of waste disposal facilities implantation. The third booklet gives a brief presentation of the scientific program concerning the underground geologic laboratories. The last booklet is a compilation of questions and answers about long-life radioactive wastes, the research and works carried out in geologic laboratories, the public information and the local socio-economic impact, and the storage of radioactive wastes in deep geological formations. (J.S.)

  4. Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)

    Science.gov (United States)

    Chappelle, E. W.; Picciolo, G. L.; Curtis, C. A.; Knust, E. A.; Nibley, D. A.; Vance, R. B.

    1975-01-01

    A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics.

  5. Effectiveness of hand washing and disinfection methods in removing transient bacteria after patient nursing.

    OpenAIRE

    Ojajärvi, J.

    1980-01-01

    The effectiveness of various hand washing and disinfection methods in removing transient skin bacteria was studied in hospital after dry or moist contamination of the hands when nursing burn patients. The results were compared with those of laboratory tests with volunteers. A fairly good correlation of the bacterial reductions existed between hospital and laboratory tests. All other methods removed Staph. aureus from the hands more effectively than liquid soap. Gram-negative bacilli were more...

  6. Bacteria and vampirism in cinema.

    Science.gov (United States)

    Castel, O; Bourry, A; Thévenot, S; Burucoa, C

    2013-09-01

    A vampire is a non-dead and non-alive chimerical creature, which, according to various folklores and popular superstitions, feeds on blood of the living to draw vital force. Vampires do not reproduce by copulation, but by bite. Vampirism is thus similar to a contagious disease contracted by intravascular inoculation with a suspected microbial origin. In several vampire films, two real bacteria were staged, better integrated than others in popular imagination: Yersinia pestis and Treponema pallidum. Bacillus vampiris was created for science-fiction. These films are attempts to better define humans through one of their greatest fears: infectious disease. PMID:23916557

  7. Turning Bacteria Suspensions into Superfluids

    Science.gov (United States)

    López, Héctor Matías; Gachelin, Jérémie; Douarche, Carine; Auradou, Harold; Clément, Eric

    2015-07-01

    The rheological response under simple shear of an active suspension of Escherichia coli is determined in a large range of shear rates and concentrations. The effective viscosity and the time scales characterizing the bacterial organization under shear are obtained. In the dilute regime, we bring evidence for a low-shear Newtonian plateau characterized by a shear viscosity decreasing with concentration. In the semidilute regime, for particularly active bacteria, the suspension displays a "superfluidlike" transition where the viscous resistance to shear vanishes, thus showing that, macroscopically, the activity of pusher swimmers organized by shear is able to fully overcome the dissipative effects due to viscous loss.

  8. The bioleaching of different sulfide concentrates using thermophilic bacteria

    Science.gov (United States)

    Torres, F.; Blázquez, M. L.; González, F.; Ballester, A.; Mier, J. L.

    1995-05-01

    The bioleaching of different mineral sulfide concentrates with thermophilic bacteria (genus Sulfolobus @#@) was studied. Since the use of this type of bacteria in leaching systems involves stirring and the control of temperature, the influence of the type of stirring and the pulp density on dissolution rates was studied in order to ascertain the optimum conditions for metal recovery. At low pulp densities, the dissolution kinetic was favored by pneumatic stirring, but for higher pulp densities, orbital stirring produced the best results. A comparative study of three differential concentrates, one mixed concentrate, and one global concentrate was made. Copper and iron extraction is directly influenced by bacterial activity, while zinc dissolution is basically due to an indirect mechanism that is activated in the presence of copper ions. Galvanic interactions between the different sulfides favors the selective bioleaching of some phases (sphalerite and chalcopyrite) and leads to high metal recovery rates. However, the formation of galvanic couples depends on the type of concentrate.

  9. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  10. Lincoln Laboratory Grid

    Data.gov (United States)

    Federal Laboratory Consortium — The Lincoln Laboratory Grid (LLGrid) is an interactive, on-demand parallel computing system that uses a large computing cluster to enable Laboratory researchers to...

  11. String Formatting Considered Harmful for Novice Programmers

    Science.gov (United States)

    Hughes, Michael C.; Jadud, Matthew C.; Rodrigo, Ma. Mercedes T.

    2010-01-01

    In Java, "System.out.printf" and "String.format" consume a specialised kind of string commonly known as a format string. In our study of first-year students at the Ateneo de Manila University, we discovered that format strings present a substantial challenge for novice programmers. Focusing on their first laboratory we found that 8% of all the…

  12. Laboratory-acquired brucellosis

    DEFF Research Database (Denmark)

    Fabiansen, C.; Knudsen, J.D.; Lebech, A.M.

    2008-01-01

    Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9......Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9...

  13. TO THE QUESTION OF BIOSYNTHESIS OF CROTONALDEHYDE OF WINE YEAST AND LACTIC ACID BACTERIA DURING VINIFICATION

    Directory of Open Access Journals (Sweden)

    Kushnereva E. V.

    2014-01-01

    Full Text Available The article investigates the possible pathways for the formation of crotonaldehyde in wine production in the result of the activity of wine yeast and lactic acid bacteria. It established that exposure to exhaust gases, noble rot, pathogens and pests on grape plant does not lead to the biosynthesis of crotonaldehyde in grape berry. The experimental data to identify probable pathways for the formation of crotonaldehyde during vinification has been presented. The effect of the test substance on the life of yeasts and lactic acid bacteria has been estimated

  14. Geotechnical characterization through in situ and laboratory tests of several geological formations present in the route of the Future Fix Connection between Spain and Morocco through Gibraltar Strait; Caracterizacion geotecnica mediante ensayos in situ y de laboratorio de algunas formaciones geologicas presentes en la traza de la Futura Conexion Fija entre Espana y Marruecos a traves del estrecho de Gibraltar

    Energy Technology Data Exchange (ETDEWEB)

    Perucho Martinez, A.; Diez Torres, J. A.; Muniz Menendez, M.; Cano Linares, H.; Ruiz Fonticiella, J. M.

    2015-07-01

    CEDEX and SECEGSA (Sociedad Española para la Comunicación Fija a través del Estrecho de Gibraltar), Have been collaborating since a few decades ago to study different technical aspects related to the Fix Connection through the Gibraltar Strait, mainly in relation to the geological and geotechnical properties of the different formations present in the route. In order to do so, many studies of geotechnical characterization of materials, in situ and laboratory testing campaigns have been carried out. Furthermore, they have participated in some Expertise Committees carrying out some advice work related to studies performed by other organizations. This paper presents a brief description of the most relevant aspects of the main geological and geotechnical studies performed related to this Project of the Future Fix Connection and obtained through the study of SECEGSAs extensive data base. Moreover, it includes a synopsis of the geotechnical characterization carried out through in situ and laboratory tests on different Miocene and Eocene formations from the Algeciras Unit, present in the route of the future Fix Connection between Spain and gibraltar through the Gibraltar Strait. (Author)

  15. Bacteria for power generation; Des bacteries pour produire de l'electricite

    Energy Technology Data Exchange (ETDEWEB)

    Timizar, N.

    2003-11-01

    The metabolism of some anaerobic bacteria allows to generate electrons thanks to some redox processes. Thus it is possible to produce clean and renewable electricity from sewage sludges, forest soils or marine sediments rich in bacteria and organic compounds. The bio-battery is today no more an utopia and several laboratories contribute to its permanent improvement. Recently, the properties of a bacteria named Rhodoferax ferriducens have been explored: this bacteria sticks directly on the anode, metabolizes the sugar and directly transfers its electrons to the anode without the need of an insoluble intermediate compound. Some poly-aniline conductive polymers when coated on a platinum anode can multiply the energy efficiency of the battery. Also, some possible substitutes to the costly platinum, used for the electrodes, are under study. Short paper. (J.S.)

  16. A novel, optical, on-line bacteria sensor for monitoring drinking water quality

    Science.gov (United States)

    Højris, Bo; Christensen, Sarah Christine Boesgaard; Albrechtsen, Hans-Jørgen; Smith, Christian; Dahlqvist, Mathis

    2016-04-01

    Today, microbial drinking water quality is monitored through either time-consuming laboratory methods or indirect on-line measurements. Results are thus either delayed or insufficient to support proactive action. A novel, optical, on-line bacteria sensor with a 10-minute time resolution has been developed. The sensor is based on 3D image recognition, and the obtained pictures are analyzed with algorithms considering 59 quantified image parameters. The sensor counts individual suspended particles and classifies them as either bacteria or abiotic particles. The technology is capable of distinguishing and quantifying bacteria and particles in pure and mixed suspensions, and the quantification correlates with total bacterial counts. Several field applications have demonstrated that the technology can monitor changes in the concentration of bacteria, and is thus well suited for rapid detection of critical conditions such as pollution events in drinking water.

  17. Studies to control biofilm formation by coupling ultrasonication of natural waters and anodization of titanium.

    Science.gov (United States)

    Nithila, S D Ruth; Anandkumar, B; Vanithakumari, S C; George, R P; Mudali, U Kamachi; Dayal, R K

    2014-01-01

    The main objective of this study was to investigate the combined effect of ultrasonication of natural waters and anodization of titanium on microbial density and biofilm formation tendency on titanium surfaces. Application of 24 kHz, 400 W high power ultrasound through a 14 mm horn type SS (stainless steel) Sonicator with medium amplitude of 60% for 30 min brought about three order decrease in total bacterial density of laboratory tap water, cooling tower water and reservoir water and two order decrease in seawater. Studies on the effect of ultrasonication on dilute pure cultures of Gram-negative and Gram-positive bacteria showed five order and three order decrease for Pseudomonas sp. and Flavobacterium sp. respectively and two order and less than one order decrease for Bacillus sp. and Micrococcus sp. respectively. Ultrasonication increased lag phase and reduced logarithmic population increase and specific growth rate of Gram-negative bacteria whereas for Gram-positive bacteria specific growth rate increased. Studies on the biofilm formation tendency of these ultrasonicated mediums on titanium surface showed one order reduction under all conditions. Detailed biofilm imaging by advanced microscopic techniques like AFM, SEM and epifluorescence microscopy clearly visualized the lysed/damaged cells and membrane perforations due to ultrasonication. Combination of ultrasonication and anodization brought about maximum decrease in bacterial density and biofilm formation with greater than two order decrease in seawater, two order decrease in Bacillus sp. culture and more than four order decrease in Flavobacterium sp. culture establishing the synergistic effect of anodization and ultrasonication in this study. PMID:23871547

  18. Influence of tropical leaf litter on nitrogen mineralization and community structure of ammonia-oxidizing bacteria

    Directory of Open Access Journals (Sweden)

    Diallo, MD.

    2015-01-01

    Full Text Available Description of the subject. The present study concerns the relationships among leaf litter decomposition, substrate quality, ammonia-oxidizing bacteria (AOB community composition and nitrogen (N availability. Decomposition of organic matter affects the biogeochemical cycling of carbon (C and N. Since the composition of the soil microbial community can alter the physiological capacity of the community, it is timely to study the litter quality effect on N dynamic in ecosystems. Objectives. The aim of this study was to determine the influence of leaf litter decomposition on N mineralization. The specific objectives of this study were to evaluate the influence of the litter biochemistry of five plants species (Faidherbia albida A.Chev., Azadirachta indica A.Juss., Casuarina equisetifolia L., Andropogon gayanus Kunth and Eragrostis tremula Hochst. ex Steud. on N mineralization in a tropical ferrous soil (Lixisol, nitrification, and genetic diversity of ammonia-oxidizing bacteria. Denaturing gradient gel electrophoresis (DGGE of amplified fragments of genes coding for 16S rRNA was used to study the development of bacterial communities during decomposition of leaf litter in soils. Method. Community structure of AOB was determined at two time periods: day 0 and day 140. Ten strains were tested and each of these strains produced a single band. Thus, DGGE DNA band patterns were used to estimate bacterial diversity. Plant secondary compounds such as polyphenols are purported to influence nutrient cycling by affecting organic matter degradation, mineralization rates, N availability and humus formation. In a laboratory study, we investigated the influence of six phenolic acids (ferulic, gallic, vanillic, syringic, p-coumaric and p-HBA acids commonly found in the plant residues on N mineralization and NH4+ and NO3- production in soils. Results. The results showed that litter type did affect soil nitrification. Faidherbia albida litter was associated with

  19. How Is the Oxidative Capacity of the Cloud Aqueous Phase Modified By Bacteria?

    Science.gov (United States)

    Deguillaume, L.; Mouchel-Vallon, C.; Passananti, M.; Wirgot, N.; Joly, M.; Sancelme, M.; Bianco, A.; Cartier, N.; Brigante, M.; Mailhot, G.; Delort, A. M.; Chaumerliac, N. M.

    2014-12-01

    The aqueous phase photochemical reactions of constituents present in atmospheric water like H2O2, NO3-, NO2- and Fe(III) aqua-complexes or organic complexes can form radicals such as the hydroxyl radical HO within the water drop. However, the literature lacks of data precising the rate of HO formation and the relative contribution of the photochemical sources of HO. The production of radicals in cloud aqueous phase drives the oxidative capacity of the cloud medium and the efficiency of organic matter oxidation. The oxidation of organic compounds is suspected to lead to oxygenated species that could contribute to secondary organic aerosol (SOA) mass (Ervens et al., 2011). In current cloud chemistry models, HO concentrations strongly depend on the organic and iron amount. For high concentrations of organic compounds, this radical is efficiently consumed during the day due to the oxidation process. When iron concentrations are typical from continental cloud, the photolysis of Fe(III) complexes and the Fenton reaction drive the HO concentrations in the cloud models. The concept of biocatalysed reactions contributing to atmospheric chemistry as an alternative route to photochemistry is quite new (Vaïtilingom et al., 2013); it emerged from the recent discovery of metabolically active microorganisms in clouds. Microorganisms are well-known to degrade organic matter but they could also interact with oxidant species such as H2O2 (or their precursors) thanks to their oxidative and nitrosative stress metabolism that will act directly on these species and on their interactions with iron (metalloproteins and siderophores). For the moment, biological impact on radical chemistry within cloud has not been yet considered in cloud chemistry models. Bacterial activity will be introduced as catalysts in a multiphase cloud chemistry model using degradation rates measured in the laboratory. For example, biodegradation rates of the oxidants H2O2 by model bacteria will be tested in the

  20. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  1. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  2. Central Laboratories Services

    Data.gov (United States)

    Federal Laboratory Consortium — The TVA Central Laboratories Services is a comprehensive technical support center, offering you a complete range of scientific, engineering, and technical services....

  3. ANALYTICAL MICROBIOLOGY LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains equipment that performs a broad array of microbiological analyses for pathogenic and spoilage microorganisms. It performs challenge studies...

  4. Environmental Microbiology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Microbiology Laboratory, located in Bldg. 644 provides a dual-gas respirometer for measurement of oxygen consumption and carbon dioxide evolution...

  5. Vehicle Development Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the development of prototype deployment platform vehicles for offboard countermeasure systems. DESCRIPTION: The Vehicle Development Laboratory is...

  6. Intelligent Optics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Intelligent Optics Laboratory supports sophisticated investigations on adaptive and nonlinear optics; advancedimaging and image processing; ground-to-ground and...

  7. Laboratory of Chemical Physics

    Data.gov (United States)

    Federal Laboratory Consortium — Current research in the Laboratory of Chemical Physics is primarily concerned with experimental, theoretical, and computational problems in the structure, dynamics,...

  8. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  9. Fuels Processing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Fuels Processing Laboratory in Morgantown, WV, provides researchers with the equipment they need to thoroughly explore the catalytic issues associated with...

  10. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  11. Embedded Processor Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Embedded Processor Laboratory provides the means to design, develop, fabricate, and test embedded computers for missile guidance electronics systems in support...

  12. Thermogravimetric Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Thermogravimetric Analysis Laboratory in Morgantown, WV, researchers study how chemical looping combustion (CLC) can be applied to fossil energy systems....

  13. FOOD SAFETY TESTING LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory develops screening assays, tests and modifies biosensor equipment, and optimizes food safety testing protocols for the military and civilian sector...

  14. COGNITIVE PERFORMANCE LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts basic and applied human research studies to characterize cognitive performance as influenced by militarily-relevant contextual and physical...

  15. Atmospheric Measurements Laboratory (AML)

    Data.gov (United States)

    Federal Laboratory Consortium — The Atmospheric Measurements Laboratory (AML) is one of the nation's leading research facilities for understanding aerosols, clouds, and their interactions. The AML...

  16. Virtual Training Devices Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Virtual Training Devices (VTD) Laboratory at the Life Cycle Software Engineering Center, Picatinny Arsenal, provides a software testing and support environment...

  17. Engineered Natural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — With its pressure vessels that simulate the pressures and temperatures found deep underground, NETL’s Engineered Natural Systems Laboratory in Pittsburgh, PA, gives...

  18. Tactical Systems Integration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Tactical Systems Integration Laboratory is used to design and integrate computer hardware and software and related electronic subsystems for tactical vehicles....

  19. [Theme: Using Laboratories.

    Science.gov (United States)

    Pritchard, Jack; Braker, Clifton

    1982-01-01

    Pritchard discusses the opportunities for applied learning afforded by laboratories. Braker describes the evaluation of cognitive, affective, and psychomotor skills in the agricultural mechanics laboratory. (SK)

  20. DMTB: the magnetotactic bacteria database

    Science.gov (United States)

    Pan, Y.; Lin, W.

    2012-12-01

    Magnetotactic bacteria (MTB) are of interest in biogeomagnetism, rock magnetism, microbiology, biomineralization, and advanced magnetic materials because of their ability to synthesize highly ordered intracellular nano-sized magnetic minerals, magnetite or greigite. Great strides for MTB studies have been made in the past few decades. More than 600 articles concerning MTB have been published. These rapidly growing data are stimulating cross disciplinary studies in such field as biogeomagnetism. We have compiled the first online database for MTB, i.e., Database of Magnestotactic Bacteria (DMTB, http://database.biomnsl.com). It contains useful information of 16S rRNA gene sequences, oligonucleotides, and magnetic properties of MTB, and corresponding ecological metadata of sampling sites. The 16S rRNA gene sequences are collected from the GenBank database, while all other data are collected from the scientific literature. Rock magnetic properties for both uncultivated and cultivated MTB species are also included. In the DMTB database, data are accessible through four main interfaces: Site Sort, Phylo Sort, Oligonucleotides, and Magnetic Properties. References in each entry serve as links to specific pages within public databases. The online comprehensive DMTB will provide a very useful data resource for researchers from various disciplines, e.g., microbiology, rock magnetism and paleomagnetism, biogeomagnetism, magnetic material sciences and others.

  1. Update and evaluation of 16SpathDB, an automated comprehensive database for identification of medically important bacteria by 16S rRNA gene sequencing

    OpenAIRE

    Yeung, Shiu-yan; 楊兆恩

    2013-01-01

    Identification of pathogens is one of the important duties of clinical microbiology laboratory. Traditionally, phenotypic tests are used to identify the bacteria. However, due to some limitations of the phenotypic tests, the bacteria may not be identified sometimes and cannot be identified promptly. 16S rRNA gene sequencing is a rapid and accurate method to achieve this target. It is especially useful for identify rare or slow growing bacteria. However, the interpretation of the 16S rRNA gene...

  2. The stability of a homogeneous suspension of chemotactic bacteria

    Science.gov (United States)

    Subramanian, G.; Koch, Donald L.; Fitzgibbon, Sean R.

    2011-04-01

    The linear stability of a homogeneous dilute suspension of chemotactic bacteria in a constant chemoattractant gradient is analyzed. The bacteria execute a run-and-tumble motion, typified by the species E. coli, wherein periods of smooth swimming (runs) are interrupted by abrupt uncorrelated changes in swimming direction (tumbles). Bacteria tumble less frequently when swimming toward regions of higher chemoattractant concentration, leading to a mean bacterial orientation and velocity in the base state. The stability of an unbounded suspension, both with and without a chemoattractant, is controlled by coupled long wavelength perturbations of the fluid velocity and bacterial orientation fields. In the former case, the most unstable perturbations have their wave vector oriented along the chemoattractant gradient. Chemotaxis reduces the critical bacteria concentration, for the onset of collective swimming, compared with that predicted by Subramanian and Koch ["Critical bacterial concentration for the onset of collective swimming," J. Fluid Mech. 632, 359 (2009)] in the absence of a chemoattractant. A part of this decrease may be attributed to the increase in the mean tumbling time in the presence of a chemoattractant gradient. A second destabilizing influence comes from the ability of the shearing motion, associated with a velocity perturbation in which the velocity and chemical gradients are aligned, to sweep prealigned bacteria into the local extensional quadrant thereby creating a stronger destabilizing active stress than in an initially isotropic suspension. The chemoattractant gradient also fundamentally alters the unstable spectrum for any finite wavenumber. In suspensions of bacteria that do not tumble, Saintillan and Shelley ["Instabilities and pattern formation in active particle suspensions: Kinetic theory and continuum simulations," Phys. Rev. Lett. 100, 178103 (2008); "Instabilities, pattern formation and mixing in active suspensions," Phys. Fluids 20

  3. Chemical abatement of acid mine drainage formation

    Energy Technology Data Exchange (ETDEWEB)

    Steven, J.

    1987-01-01

    Chemical and thermodynamic data were used to develop a unified model of hydroxo-, sulfato-, and bisulfato-iron complexes and their stability constants in iron-sulfate solutions. Free energy of formation for each ligand series species was hypothesized to be linear in ligand number because of supporting evidence from the literature. Laboratory tests on the inhibition of acid mine drainage bacteria were conducted. Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds. Low-pH cultures of Thiobacillus thioxidans significantly increased zinc sulfide dissolution rates relative to sterile controls. Sodium lauryl sulfate, benzoic acid, and sorbic acid at concentrations of 10, 25, and 50 mg/liter, respectively, in identical low-pH, batch cultures of Thiobacillus thiooxidans, were sufficient for complete inhibition of bacterial zinc sulfide dissolution. Pilot-scale experiments on the abatement of acid mine drainage formation in both fresh and weathered pyritic coal refuse were also conducted. At doses of 0.5 g/kg and 5.0 g/kg in fresh and weathered refuse, respectively, sodium benzoate, potassium sorbate, and most significantly, sodium lauryl surface, reduced the rate of iron, sulfate, and acidity production in water-leached barrels of coal refuse material.

  4. A novel, optical, on-line bacteria sensor for monitoring drinking water quality

    DEFF Research Database (Denmark)

    Højris, Bo; Christensen, Sarah Christine Boesgaard; Albrechtsen, Hans-Jørgen;

    2016-01-01

    Today, microbial drinking water quality is monitored through either time-consuming laboratory methods or indirect on-line measurements. Results are thus either delayed or insufficient to support proactive action. A novel, optical, on-line bacteria sensor with a 10-minute time resolution has been...... conditions such as pollution events in drinking water....

  5. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    OpenAIRE

    H. M. Dayal; K. C. Tiwari; Kamlesh Mehta; Chandrashekhar,

    1988-01-01

    During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  6. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    Directory of Open Access Journals (Sweden)

    H. M. Dayal

    1988-04-01

    Full Text Available During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  7. Using a Microbial Physiologic and Genetic Approach to Investigate How Bacteria Sense Physical Stimuli

    Science.gov (United States)

    Mussi, María Alejandra; Actis, Luis A.; de Mendoza, Diego; Cybulski, Larisa E.

    2014-01-01

    A laboratory exercise was designed to illustrate how physical stimuli such as temperature and light are sensed and processed by bacteria to elaborate adaptive responses. In particular, we use the well-characterized Des pathway of "Bacillus subtilis" to show that temperature modulates gene expression, resulting ultimately in modification…

  8. ADAPTATIONS OF INDIGENOUS BACTERIA TO FUEL CONTAMINATION IN KARST AQUIFERS IN SOUTH-CENTRAL KENTUCKY

    Science.gov (United States)

    Byl, Thomas D.; Metge, David W.; Daniel T. Agymang; Bradley, Michael W.; Hileman, Gregg; Harvey, Ronald W.

    2014-01-01

    The karst aquifer systems in southern Kentucky can be dynamic and quick to change. Microorganisms that live in these unpredictable aquifers are constantly faced with environmental changes. Their survival depends upon adaptations to changes in water chemistry, taking advantage of positive stimuli and avoiding negative environmental conditions. The U.S. Geological Survey conducted a study in 2001 to determine the capability of bacteria to adapt in two distinct regions of water quality in a karst aquifer, an area of clean, oxygenated groundwater and an area where the groundwater was oxygen depleted and contaminated by jet fuel. Water samples containing bacteria were collected from one clean well and two jet fuel contaminated wells in a conduit-dominated karst aquifer. Bacterial concentrations, enumerated through direct count, ranged from 500,000 to 2.7 million bacteria per mL in the clean portion of the aquifer, and 200,000 to 3.2 million bacteria per mL in the contaminated portion of the aquifer over a twelve month period. Bacteria from the clean well ranged in size from 0.2 to 2.5 mm, whereas bacteria from one fuel-contaminated well were generally larger, ranging in size from 0.2 to 3.9 mm. Also, bacteria collected from the clean well had a higher density and, consequently, were more inclined to sink than bacteria collected from contaminated wells. Bacteria collected from the clean portion of the karst aquifer were predominantly (,95%) Gram-negative and more likely to have flagella present than bacteria collected from the contaminated wells, which included a substantial fraction (,30%) of Gram-positive varieties. The ability of the bacteria from the clean portion of the karst aquifer to biodegrade benzene and toluene was studied under aerobic and anaerobic conditions in laboratory microcosms. The rate of fuel biodegradation in laboratory studies was approximately 50 times faster under aerobic conditions as compared to anaerobic, sulfur-reducing conditions. The

  9. Impact of iron-reducing bacteria on the properties of argillites in the context of radioactive waste geological disposal

    International Nuclear Information System (INIS)

    The presence of indigenous microorganisms in deep clayey geological formations raises the issue, regarding radioactive waste geological disposal, of the influence of bacterial activity on the confinement properties of materials, including the clayey host rock. Iron-reducing bacteria (IRB) activity is assessed in batch experiments in the presence of argillite samples from an in situ experimental laboratory at Tournemire (Aveyron, France). The results show the availability of structural Fe(III) from the clay minerals for biochemical reactions (bioreduction). In laboratory conditions, a significant impact of IRB on the alteration of clay minerals, mainly the illite-smectite mixed layer (I-Sm), is indeed observed. Such reactions may locally modify the physicochemical conditions and the stability of clay minerals (essentially smectites) prevailing in such deep facilities. More generally, bacterial activity could play an important role on clay mineral alteration and in situ experiments need to be performed in order to quantify the reaction rates and show the representative of these phenomena in the framework of the safety assessment of waste disposal. (authors)

  10. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB). They...... utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms in...... other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative of the...

  11. Computational modeling of drug-resistant bacteria. Final report

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, Preston [Middle Tennessee State University

    2015-03-12

    Initial proposal summary: The evolution of antibiotic-resistant mutants among bacteria (superbugs) is a persistent and growing threat to public health. In many ways, we are engaged in a war with these microorganisms, where the corresponding arms race involves chemical weapons and biological targets. Just as advances in microelectronics, imaging technology and feature recognition software have turned conventional munitions into smart bombs, the long-term objectives of this proposal are to develop highly effective antibiotics using next-generation biomolecular modeling capabilities in tandem with novel subatomic feature detection software. Using model compounds and targets, our design methodology will be validated with correspondingly ultra-high resolution structure-determination methods at premier DOE facilities (single-crystal X-ray diffraction at Argonne National Laboratory, and neutron diffraction at Oak Ridge National Laboratory). The objectives and accomplishments are summarized.

  12. Disk susceptibility testing of slow-growing anaerobic bacteria.

    Science.gov (United States)

    Kwok, Y Y; Tally, F P; Sutter, V L; Finegold, S M

    1975-01-01

    The susceptibility of 55 strains of slow-growing anaerobes to eight clinically useful or potentially useful antibiotics was determined by agar dilution and disk diffusion tests. Strains of the genera Peptococcus, Peptostreptococcus, Megasphaera, Veillonella, Eubacterium, Bifidobacterium, Clostridium, and Fusobacterium were included. All strains were susceptible to chloramphenicol, but varied in their susceptibility to penicillin, lincomycin, clindamycin, tetracyclines, and vancomycin. Correlation between minimal inhibitory concentration and inhibition zone diameters was generally good. Prediction of susceptibility based on zone diameter measurements appeared satisfactory. Although routine susceptibility testing of anaerobic bacteria is not recommended, there are circumstances where such testing is relevant to the clinical situation. For those laboratories ill-equipped to do dilution tests, a disk diffusion test would give relatively accurate preliminary information. Quantitative susceptibility tests could then be done by a reference laboratory. PMID:1137353

  13. Theory of periodic swarming of bacteria: Application to Proteus mirabilis

    Science.gov (United States)

    Czirók, A.; Matsushita, M.; Vicsek, T.

    2001-03-01

    The periodic swarming of bacteria is one of the simplest examples for pattern formation produced by the self-organized collective behavior of a large number of organisms. In the spectacular colonies of Proteus mirabilis (the most common species exhibiting this type of growth), a series of concentric rings are developed as the bacteria multiply and swarm following a scenario that periodically repeats itself. We have developed a theoretical description for this process in order to obtain a deeper insight into some of the typical processes governing the phenomena in systems of many interacting living units. Our approach is based on simple assumptions directly related to the latest experimental observations on colony formation under various conditions. The corresponding one-dimensional model consists of two coupled differential equations investigated here both by numerical integrations and by analyzing the various expressions obtained from these equations using a few natural assumptions about the parameters of the model. We determine the phase diagram corresponding to systems exhibiting periodic swarming, and discuss in detail how the various stages of the colony development can be interpreted in our framework. We point out that all of our theoretical results are in excellent agreement with the complete set of available observations. Thus the present study represents one of the few examples where self-organized biological pattern formation is understood within a relatively simple theoretical approach, leading to results and predictions fully compatible with experiments.

  14. Open source approaches to establishing Roseobacter clade bacteria as synthetic biology chassis for biogeoengineering

    Science.gov (United States)

    Boeing, Philipp; Wolfenden, Bethan; Smith, Patrick; Beaufoy, William; Rose, Simon; Ratisai, Tonderai; Zaikin, Alexey

    2016-01-01

    Aim. The nascent field of bio-geoengineering stands to benefit from synthetic biologists’ efforts to standardise, and in so doing democratise, biomolecular research methods. Roseobacter clade bacteria comprise 15–20% of oceanic bacterio-plankton communities, making them a prime candidate for establishment of synthetic biology chassis for bio-geoengineering activities such as bioremediation of oceanic waste plastic. Developments such as the increasing affordability of DNA synthesis and laboratory automation continue to foster the establishment of a global ‘do-it-yourself’ research community alongside the more traditional arenas of academe and industry. As a collaborative group of citizen, student and professional scientists we sought to test the following hypotheses: (i) that an incubator capable of cultivating bacterial cells can be constructed entirely from non-laboratory items, (ii) that marine bacteria from the Roseobacter clade can be established as a genetically tractable synthetic biology chassis using plasmids conforming to the BioBrickTM standard and finally, (iii) that identifying and subcloning genes from a Roseobacter clade species can readily by achieved by citizen scientists using open source cloning and bioinformatic tools. Method. We cultivated three Roseobacter species, Roseobacter denitrificans, Oceanobulbus indolifexand Dinoroseobacter shibae. For each species we measured chloramphenicol sensitivity, viability over 11 weeks of glycerol-based cryopreservation and tested the effectiveness of a series of electroporation and heat shock protocols for transformation using a variety of plasmid types. We also attempted construction of an incubator-shaker device using only publicly available components. Finally, a subgroup comprising citizen scientists designed and attempted a procedure for isolating the cold resistance anf1 gene from Oceanobulbus indolifexcells and subcloning it into a BioBrickTM formatted plasmid. Results. All species were stable

  15. Open source approaches to establishing Roseobacter clade bacteria as synthetic biology chassis for biogeoengineering.

    Science.gov (United States)

    Borg, Yanika; Grigonyte, Aurelija Marija; Boeing, Philipp; Wolfenden, Bethan; Smith, Patrick; Beaufoy, William; Rose, Simon; Ratisai, Tonderai; Zaikin, Alexey; Nesbeth, Darren N

    2016-01-01

    Aim. The nascent field of bio-geoengineering stands to benefit from synthetic biologists' efforts to standardise, and in so doing democratise, biomolecular research methods. Roseobacter clade bacteria comprise 15-20% of oceanic bacterio-plankton communities, making them a prime candidate for establishment of synthetic biology chassis for bio-geoengineering activities such as bioremediation of oceanic waste plastic. Developments such as the increasing affordability of DNA synthesis and laboratory automation continue to foster the establishment of a global 'do-it-yourself' research community alongside the more traditional arenas of academe and industry. As a collaborative group of citizen, student and professional scientists we sought to test the following hypotheses: (i) that an incubator capable of cultivating bacterial cells can be constructed entirely from non-laboratory items, (ii) that marine bacteria from the Roseobacter clade can be established as a genetically tractable synthetic biology chassis using plasmids conforming to the BioBrick(TM) standard and finally, (iii) that identifying and subcloning genes from a Roseobacter clade species can readily by achieved by citizen scientists using open source cloning and bioinformatic tools. Method. We cultivated three Roseobacter species, Roseobacter denitrificans, Oceanobulbus indolifexand Dinoroseobacter shibae. For each species we measured chloramphenicol sensitivity, viability over 11 weeks of glycerol-based cryopreservation and tested the effectiveness of a series of electroporation and heat shock protocols for transformation using a variety of plasmid types. We also attempted construction of an incubator-shaker device using only publicly available components. Finally, a subgroup comprising citizen scientists designed and attempted a procedure for isolating the cold resistance anf1 gene from Oceanobulbus indolifexcells and subcloning it into a BioBrick(TM) formatted plasmid. Results. All species were stable

  16. Transformation of gram positive bacteria by sonoporation

    Science.gov (United States)

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  17. Mortality of fecal bacteria in seawater.

    OpenAIRE

    Garcia-Lara, J.; Menon, P.; Servais, P; Billen, G.

    1991-01-01

    We propose a method for determining the mortality rate for allochthonous bacteria released in aquatic environments without interference due to the loss of culturability in specific culture media. This method consists of following the disappearance of radioactivity from the trichloroacetic acid-insoluble fraction in water samples to which [3H]thymidine-prelabeled allochthonous bacteria have been added. In coastal seawater, we found that the actual rate of disappearance of fecal bacteria was 1 ...

  18. Utilization of xylooligosaccharides by selected ruminal bacteria.

    OpenAIRE

    Cotta, M A

    1993-01-01

    The ability of ruminal bacteria to utilize xylooligosaccharides was examined. Xylooligosaccharides were prepared by partially hydrolyzing oat spelt xylan in phosphoric acid. This substrate solution was added (0.2%, wt/vol) to a complex medium containing yeast extract and Trypticase that was inoculated with individual species of ruminal bacteria, and growth and utilization were monitored over time. All of the xylanolytic bacteria examined were able to utilize this oligosaccharide mixture as a ...

  19. QUANTATITIVE PCR ASSAY FOR MARINE BACTERIA

    OpenAIRE

    Brunk, Clifford F.

    2003-01-01

    Monitoring the bacterial flora in coastal marine waters by conventional techniques has been difficult as most of the bacteria do not readily grow on culture plates and their morphologies are virtually identical in the microscope. Molecular techniques, particularly characterizing bacteria using polymerase chain reaction (PCR) amplification of their small subunit ribosomal RNA (SSU rRNA) genes, has dramatically improved the ability to identify bacteria from environmental samples. Identificatio...

  20. Selection-Driven Gene Loss in Bacteria

    OpenAIRE

    Koskiniemi, Sanna; Sun, Song; Berg, Otto; Andersson, Dan I.

    2012-01-01

    Gene loss by deletion is a common evolutionary process in bacteria, as exemplified by bacteria with small genomes that have evolved from bacteria with larger genomes by reductive processes. The driving force(s) for genome reduction remains unclear, and here we examined the hypothesis that gene loss is selected because carriage of superfluous genes confers a fitness cost to the bacterium. In the bacterium Salmonella enterica, we measured deletion rates at 11 chromosomal positions and the fitne...

  1. Pathogenic bacteria and timing of laying

    OpenAIRE

    Moller, Anders P.; Soler, Juan J; Nielsen, J T; Galván, Ismael

    2015-01-01

    Pathogenic bacteria constitute a serious threat to viability of many organisms. Because growth of most bacteria is favored by humid and warm environmental conditions, earlier reproducers in seasonal environments should suffer less from the negative consequences of pathogenic bacteria. These relationships, and the effects on reproductive success, should be particularly prominent in predators because they are frequently exposed to pathogenic microorganisms from sick prey. Here, we presented and...

  2. Grazing of acidophilic bacteria by a flagellated protozoan.

    Science.gov (United States)

    McGinness, S; Johnson, D B

    1992-01-01

    A biflagellated protozoan was isolated from an acidic drainage stream located inside a disused pyrite mine. The stream contained copious amounts of "acid streamer" bacterial growths, and the flagellate was observed in situ apparently grazing the streamer bacteria. The protozoan was obligately acidophilic, growing between pH 1.8 and 4.5, but not at pH 1.6 or 5.0, with optimum growth between pH 3 and 4. It was highly sensitive to copper, molybdenum, silver, and uranium, but tolerated ferrous and ferric iron up to 50 and 25 mM, respectively. In the laboratory, the protozoan was found to graze a range of acidophilic bacteria, including the chemolithotrophs Thiobacillus ferrooxidans, Leptospirillum ferrooxidans, and the heterotroph Acidiphilium cryptum. Thiobacillus thiooxidans and Thiobacillus acidophilus were not grazed. Filamentous growth of certain acidophiles afforded some protection against being grazed by the flagellate. In mixed cultures of T. ferrooxidans and L. ferrooxidans, the protozoan isolate displayed preferential grazing of the former. The possibility of using acidophilic protozoa as a means of controlling bacteria responsible for the production of acid mine drainage is discussed. PMID:24192830

  3. On the swimming motion of spheroidal magnetotactic bacteria

    International Nuclear Information System (INIS)

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  4. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media.

    Science.gov (United States)

    Bai, Hongjuan; Cochet, Nelly; Pauss, André; Lamy, Edvina

    2016-03-01

    The simultaneous role of bacteria cell properties and porous media grain size on bacteria transport and deposition behavior was investigated in this study. Transport column experiments and numerical HYDRUS-1D simulations of three bacteria with different cell properties (Escherichia coli, Klebsiella oxytoca, and Rhodococcus rhodochrous) were carried out on two sandy media with different grain sizes, under saturated steady state flow conditions. Each bacterium was characterized by cell size and shape, cell motility, electrophoretic mobility, zeta potential, hydrophobicity and potential of interaction with the sand surface. Cell characteristics affected bacteria transport behavior in the fine sand, but similar bacteria breakthroughs and retardation factors observed in the coarse sand, indicated that bacteria transport was more depended on grain size than on bacteria cell properties. Retention decreased with increasing hydrophobicity and increased with increasing electrophoretic mobility of bacteria for both sand. The increasing sand grain size resulted in a decrease of bacteria retention, except for the motile E. coli, indicating that retention of this strain was more dependent on cell motility than on the sand grain size. Bacteria deposition coefficients obtained from numerical simulations of the retention profiles indicated that straining was an important mechanism affecting bacteria deposition of E. coli and Klebsiella sp., in the fine sand, but the attachment had the same importance as straining for R. rhodochrous. The results obtained in the coarse sand did not permit to discriminate the predominant mechanism of bacteria deposition and the relative implication of bacteria cell properties of this process. PMID:26705829

  5. Bacteria/virus filter membrane

    Science.gov (United States)

    Lysaght, M. S.; Goodwin, F.; Roebelen, G.

    1977-01-01

    Hollow acrylate fiber membrane that filters bacterial and viral organisms can be used with closed-cycle life-support systems for underwater habitations or laboratories. Membrane also has applications in fields of medicine, gnotobiotics, pharmaceutical production, and industries and research facilities that require sterile water. Device eliminates need for strong chemicals or sterilizing agents, thereby reducing costs.

  6. Quorum sensing in gram-negative bacteria

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.J.; Høiby, N.; Givskov, Michael Christian

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community, and the mechanism is referred to as quorum sensing (QS). Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal...... molecules. Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread. These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment and...

  7. In vitro susceptibility testing of anaerobic bacteria.

    Science.gov (United States)

    Washington, J A

    1979-01-01

    In vitro susceptibility testing of anaerobic bacteria should be limited to isolates from persistent or recurrent infections that have been treated adequately and appropriately with antimicrobial agents and, in reference centers, to collections of isolates in order to monitor alterations in susceptibility of species to various antimicrobial agents. An agar dilution reference method is being evaluated currently; however, practicality limits sporadic testing of single isolates to disk elution or broth dilution techniques. No single disk diffusion method has yet been found to be acceptable for testing anaerobic bacteria, and the results obtained with standardized procedures for aerobic and facultatively anaerobic bacteria are not applicable to anaerobic bacteria. PMID:288163

  8. Anaerobic thermophilic bacteria isolated from a Venezuelan oil field and its potential use in microbial improved oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Trebbau, G.; Fernandez, B.; Marin, A. [INTEVEP S.A., Caracas (Venezuela)

    1995-12-31

    The objective of this work is to determine the ability of indigenous bacteria from a Venezuelan oil field to grow under reservoir conditions inside a porous media, and to produce metabolites capable of recovering residual crude oil. For this purpose, samples of formation waters from a central-eastern Venezuelan oil reservoir were enriched with different carbon sources and a mineral basal media. Formation water was used as a source of trace metals. The enrichments obtained were incubated at reservoir temperature (71{degrees}C), reservoir pressure (1,200 psi), and under anaerobic conditions for both outside and inside porous media (Berea core). Growth and metabolic activity was followed outside porous media by measuring absorbance at 660 nm, increases in pressure, and decreases in pH. Inside porous media bacterial activity was determined by visual examination of the produced waters (gas bubbles and bacterial cells). All the carbohydrates tested outside porous media showed good growth at reservoir conditions. The pH was lowered, gases such as CO{sub 2} and CH{sub 4} were identified by GC. Surface tension was lowered in some enrichments by 30% when compared to controls. Growth was decreased inside porous media, but gases were produced and helped displace oil. In addition, 10% residual oil was recovered from the Berea core. Mathematical modeling was applied to the laboratory coreflood experiment to evaluate the reproducibility of the results obtained.

  9. Natural biofilm formation with Legionella pneumophila.

    Science.gov (United States)

    Portier, Emilie; Héchard, Yann

    2013-01-01

    Biofilm formation could be studied in various conditions. Most of the studies with Legionella pneumophila used monospecies biofilm in culture media. In some cases, it is important to study bacteria in conditions more close to environmental conditions. In this paper, we describe protocols to produce natural biofilms from river water that were spiked with L. pneumophila. PMID:23150397

  10. Cell Size Regulation in Bacteria

    Science.gov (United States)

    Amir, Ariel

    2014-05-01

    Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable model for cell size control, and calculate the cell size and interdivision time distributions, as well as the correlations between these variables. We suggest ways of extracting the model parameters from experimental data, and show that existing data for E. coli supports partial size control, and a particular explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the next initiation event. This hypothesis accounts for the experimentally observed correlations between mother and daughter cells as well as the exponential dependence of size on growth rate.

  11. Single Bacteria as Turing Machines

    Science.gov (United States)

    Bos, Julia; Zang, Qiucen; Vyawahare, Saurabh; Austin, Robert

    2014-03-01

    In Allan Turing's famous 1950 paper on Computing Machinery and Intelligence, he started with the provocative statement: ``I propose to consider the question, `Can machines think?' This should begin with definitions of the meaning of the terms `machine' and `think'.'' In our own work on exploring the way that organisms respond to stress and evolve, it seems at times as if they come to remarkably fast solutions to problems, indicating some sort of very clever computational machinery. I'll discuss how it would appear that bacteria can indeed create a form of a Turing Machine, the first example of a computer, and how they might use this algorithm to do rapid evolution to solve a genomics problem.

  12. Laboratory Information Systems.

    Science.gov (United States)

    Henricks, Walter H

    2016-03-01

    Laboratory information systems (LISs) supply mission-critical capabilities for the vast array of information-processing needs of modern laboratories. LIS architectures include mainframe, client-server, and thin client configurations. The LIS database software manages a laboratory's data. LIS dictionaries are database tables that a laboratory uses to tailor an LIS to the unique needs of that laboratory. Anatomic pathology LIS (APLIS) functions play key roles throughout the pathology workflow, and laboratories rely on LIS management reports to monitor operations. This article describes the structure and functions of APLISs, with emphasis on their roles in laboratory operations and their relevance to pathologists. PMID:26851660

  13. Sterol synthesis in diverse bacteria

    Directory of Open Access Journals (Sweden)

    Jeremy H Wei

    2016-06-01

    Full Text Available Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc, which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from 5 phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria and Verrucomicrobia and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult

  14. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  15. Progress in Research of Bacteria Fertilizer Strengthening Resistance of Plants

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Bacteria fertilizer is used most widely among all kinds of microbial fertilizers. We summarize the research headway of bacteria fertilizer. It mainly focuses on bacteria fertilizer improving the stress resistance of plant. Then we can offer basis to research and exploit bacteria fertilizer. These bacteria include azotobacter, photosynthetic bacteria, Bacillus mucilaginosus siliceous, phosphorus bacteria, plant growth-promoting rhizobacteria(PGPR), effective microorganism(EM).

  16. Increased Tolerance to Heavy Metals Exhibited by Swarming Bacteria

    Science.gov (United States)

    Anyan, M.; Shrout, J. D.

    2014-12-01

    Pseudomonas aeruginosa is a ubiquitous, Gram-negative bacterium that utilizes several different modes of motility to colonize surfaces, including swarming, which is the coordinated movement of cells over surfaces in groups. Swarming facilitates surface colonization and biofilm development for P. aeruginosa, and it is known that swarming behavior is influenced by changes in nutrient composition and surface moisture. To understand the fate and cycling of heavy metals in the environment, it is important to understand the interaction and toxicity of these metals upon bacteria. While previous studies have shown surface-attached bacterial biofilms to be highly resistant to heavy metal toxicity, little is known about the influence of heavy metals upon surface motile bacteria and developing biofilms. Using a combination of laboratory assays we examined differences in bacterial behavior in response to two metals, Cd and Ni. We find that surface swarming bacteria are able to grow on 4x and 2.5x more Cd and Ni, respectively, than planktonic cells (i.e., test tube cultures). P. aeruginosa was able to swarm in the presence ≤0.051mM Ni and ≤0.045mM Cd. To investigate the bioavailability of metals to bacteria growing under our examined conditions, we separated cell and supernatant fractions of P. aeruginosa cultures, and used ICP-MS techniques to measure Cd and Ni sorption. A greater percentage of Cd than Ni was sorbed by both cells and supernatant (which contains rhamnolipid, a surfactant known to sorb some metals and improve swarming). While we show that cell products such as rhamnolipid bind heavy metals (as expected) and should limit metal bioavailability, our results suggest at least one additional mechanism (as yet undetermined) that promotes cell survival during swarming in the presence of these heavy metals.

  17. Isolating the effects of storm events on arctic aquatic bacteria: temperature, nutrients, and community composition as controls on bacterial productivity

    OpenAIRE

    Adams, Heather E.; Crump, Byron C; Kling, George W

    2015-01-01

    Storm events can pulse nutrients and carbon from soils and provide an important subsidy to food webs in oligotrophic streams and lakes. Bacterial nutrient limitation and the potential response of stream aquatic bacteria to storm events was investigated in arctic tundra environments by manipulating both water temperature and inorganic nutrient concentrations in short (up to 4 days) and long duration (up to 2 weeks) laboratory mesocosm experiments. Inorganic N and P additions increased bacteria...

  18. Relationship between the adhesive properties of bacteria and their transport and colonization in the subsurface environment. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, M.

    1997-03-13

    The adhesion of bacteria to sediment particle or rock surfaces considerably effects their transport in subsurface environments. This research focuses on the macromolecular properties of bacteria that determine their adhesiveness and on the significance of adhesion in transport of subsurface bacteria. Specific objectives include (1) to obtain adhesion mutants of subsurface Pseudomonas species altered in surface adhesives; (2) to determine alterations in adhesives in selected mutants; (3) to evaluate the effect of adhesiveness on transport and long-term distribution and colonization of bacteria in porous media. Primary methods will be tranposon mutagenesis to generate adhesion mutants, biochemical analyses of cell surface polymers, and the use of laboratory columns containing subsurface materials to study the distribution and transport of bacteria along flow paths over time.

  19. The δ15N and δ18O values of N2O produced during the co-oxidation of ammonia by methanotrophic bacteria

    Science.gov (United States)

    Mandernack, Kevin W.; Mills, Christopher T.; Johnson, Craig A.; Rahn, Thomas; Kinney, Chad

    2009-01-01

    In order to determine if the δ15N and δ18O values of N2O produced during co-oxidation of NH4+ by methanotrophic (methane oxidizing) bacteria can be isotopically distinguished from N2O produced either by autotrophic nitrifying or denitrifying bacteria, we conducted laboratory incubation experiments with pure cultures of methanotrophic bacteria that were provided NH4Cl as an oxidation substrate. The N2O produced during NH4+ oxidation by methanotrophic bacteria showed nitrogen isotope fractionation between NH4+ and N2O (εN2O–NH4+) of − 48 and − 55‰ for Methylomonas methanica and Methylosinus trichosporium, OB3b respectively. These large fractionations are similar to those previously measured for autotrophic nitrifying bacteria and consistent with N2O formation by multiple rate limiting steps that include NH4+oxidation by the methane monooxygenase enzyme and reduction of NO2− to N2O. Consequently, N2O formed by NH4+ oxidation via methanotrophic or autotrophic nitrifying bacteria might generally be characterized by lower δ15NN2O values than that formed by denitrificaiton, although this also depends on the variability of δ15N of available nitrogen sources (e.g., NH4+, NO3−, NO2−). Additional incubations with M. trichosporium OB3b at high and low CH4 conditions in waters of different δ18O values revealed that 19–27% of the oxygen in N2O was derived from O2 with the remainder from water. The biochemical mechanisms that could explain this amount of O2 incorporation are discussed. The δ18O of N2O formed under high CH4 conditions was ~ + 15‰ more positive than that formed under lower CH4 conditions. This enrichment resulted in part from the incorporation of O2 into N2O that was enriched in 18O due to an isotope fractionation effect of − 16.1 ± 2.0‰ and − 17.5 ± 5.4‰ associated with O2 consumption during the high and low methane concentration incubations, respectively. Therefore, N2O formed by NH4+

  20. Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea.

    Science.gov (United States)

    Imhoff, J F; Stöhr, R

    2003-01-01

    Increasing evidence is accumulating that highlights the important role of bacteria in bacteria-sponge associations. It appears to be equally important to analyse the specific association of bacteria with sponges, to realise the biological function of biologically active substances produced by sponge-associated bacteria, and to consider the relationship between bacteria and sponges in the search for new pharmaceutical products. In this chapter the current knowledge on bacteria-sponge associations is briefly reviewed. Results are summarised that were obtained by three major methodological approaches: (1) classical microscope observations, (2) investigations attempting to characterise sponge-associated bacteria by describing pure culture isolates, and (3) the rapidly growing evidence from genetic analyses of sponge-associated bacteria. Special emphasis is given to the evidence of possible symbiotic interactions between bacteria and sponges and to the synthesis of natural products by bacteria isolated from or associated with marine sponges. Case studies including morphological and genetic studies together with results from pure culture studies have been performed with bacteria from the sponges Rhodopaloeides odorabile, Aplysina cavernicola, and Halichondria panicea. In addition, new results on bacteria associated with Halichondria panicea are also presented. PMID:15825639