WorldWideScience

Sample records for bacteria anaerobic

  1. Anaerobic bacteria

    Science.gov (United States)

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  2. Parotitis due to anaerobic bacteria.

    Science.gov (United States)

    Matlow, A; Korentager, R; Keystone, E; Bohnen, J

    1988-01-01

    Although Staphylococcus aureus remains the pathogen most commonly implicated in acute suppurative parotitis, the pathogenic role of gram-negative facultative anaerobic bacteria and strict anaerobic organisms in this disease is becoming increasingly recognized. This report describes a case of parotitis due to Bacteroides disiens in an elderly woman with Sjögren's syndrome. Literature reports on seven additional cases of suppurative parotitis due to anaerobic bacteria are reviewed. Initial therapy of acute suppurative parotitis should include coverage for S. aureus and, in a very ill patient, coverage of gram-negative facultative organisms with antibiotics such as cloxacillin and an aminoglycoside. A failure to respond clinically to such a regimen or isolation of anaerobic bacteria should lead to the consideration of the addition of clindamycin or penicillin. PMID:3287567

  3. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  4. In vitro susceptibility testing of anaerobic bacteria.

    Science.gov (United States)

    Washington, J A

    1979-01-01

    In vitro susceptibility testing of anaerobic bacteria should be limited to isolates from persistent or recurrent infections that have been treated adequately and appropriately with antimicrobial agents and, in reference centers, to collections of isolates in order to monitor alterations in susceptibility of species to various antimicrobial agents. An agar dilution reference method is being evaluated currently; however, practicality limits sporadic testing of single isolates to disk elution or broth dilution techniques. No single disk diffusion method has yet been found to be acceptable for testing anaerobic bacteria, and the results obtained with standardized procedures for aerobic and facultatively anaerobic bacteria are not applicable to anaerobic bacteria. PMID:288163

  5. Comparative activity of ciprofloxacin against anaerobic bacteria.

    OpenAIRE

    Sutter, V L; Kwok, Y Y; Bulkacz, J

    1985-01-01

    The in vitro activity of ciprofloxacin was assessed against 362 strains of anaerobic bacteria and compared with that of cefoxitin, clindamycin, metronidazole, and mezlocillin. Only 31% of the strains tested were susceptible to ciprofloxacin. The other agents were active against most of the strains tested.

  6. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...... consortia. Despite the potentially adverse effects, only few inorganic electron acceptors potentially utilizable for anaerobic respiration have been investigated with respect to negative interactions in anaerobic digesters. In this chapter we review competitive and inhibitory interactions between anaerobic...... respiring populations and methanogenic consortia in bioreactors. Due to the few studies in anaerobic digesters, many of our discussions are based upon studies of defined cultures or natural ecosystems...

  7. [Antimicrobial susceptibility testing of anaerobic bacteria].

    Science.gov (United States)

    García-Sánchez, José E; García-Sánchez, Enrique; García-García, María Inmaculada

    2014-02-01

    The anaerobic bacteria resistance to antibiotics is increasing, and even has appeared against the most active of those, like metronidazol and carbapenems. This fact forces to make and periodical sensibility tests -at least in the most aggressive and virulent species, in cases that they are isolated from life locations and in the absence of therapeutic response- to check the local sensibility and to establish suitable empiric therapies, all based on multicentric studies carried out in order to this or well to check the activity of new antibiotics. For the laboratory routine, the easiest sensibility method is the E-test/MIC evaluator. Another alternative is microdilution, that's only normalized for Bacteroides. There are preliminary facts that allow the use of disc diffusion method in some species of Bacteroides and Clostridium. For the temporal and multicentric studies, the procedure is dilution in agar plate, the reference method. PMID:24630580

  8. [Sensitivity of anaerobic bacteria to therapeutic agents (Zurich 1984)].

    Science.gov (United States)

    Wüst, J; Hardegger, U

    1985-12-28

    There are several reports in the literature on resistance of anaerobic bacteria against antimicrobial agents. Therefore, 231 anaerobic strains of various bacterial genera, isolated from clinical specimens during fall 1984, were tested for susceptibility to antimicrobial agents active against anaerobic bacteria. Whereas 23% of the Bacteroides species not belonging to the B. fragilis group were resistant to penicillin, the anaerobic bacteria were still susceptible to chloramphenicol, clindamycin and the nitroimidazoles. The resistance rate against the various new beta-lactam antibiotics was comparable to results of other studies. Due to the increasing resistance it is recommended that the susceptibility of clinically important anaerobes be tested by appropriate techniques. The agar diffusion test must not be used due to unreliable results. Instead, the minimal inhibitory concentration should be determined or the "broth-disk" test performed. PMID:4089587

  9. The Role of Anaerobic Bacteria in Cystic Fibrosis Lung Disease.

    OpenAIRE

    Murray, Michelle

    2014-01-01

    Recurrent bacterial infections in Cystic Fibrosis (CF) are the primary cause for morbidity and mortality in CF. Advancements in second generation sequencing and evolution of the lung microbiome has prompted greater interest in other bacteria present in the lung. Anaerobic bacteria have been one of the most common bacteria found on molecular sequencing, their cause and role is as of yet unknown. In our project, we recruited 450 patients prospectively and followed them at both stable and exacer...

  10. The aerobic activity of metronidazole against anaerobic bacteria.

    Science.gov (United States)

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. PMID:25813393

  11. Biochemistry and physiology of anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  12. Susceptibility of anaerobic bacteria to carbenicillin.

    Science.gov (United States)

    Blazevic, D J; Matsen, J M

    1974-05-01

    One hundred and seventy-one strains of anaerobes were tested for susceptibility to carbenicillin by using agar dilution, broth dilution, and two disk diffusion methods. The minimal inhibitory concentration (MIC) for 67% of 51 strains of Bacteroides fragilis, 7 of 9 strains of Bacteroides melaninogenicus, and all of 8 strains of Eubacterium was 100 mug or less per ml. The MICs of the remaining anaerobes were 50 mug or less per ml. The broth dilution results were felt to be the most accurate of the four methods utilized. PMID:4462461

  13. Sulfate-reducing bacteria in anaerobic bioreactors.

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrenc

  14. Pectinase Activity of Anaerobic and Facultatively Anaerobic Bacteria Associated with Soft Rot of Yam (Diascorea rotundata)

    OpenAIRE

    Obi, Samuel K. C.

    1981-01-01

    Anaerobic and facultatively anaerobic bacteria associated with soft rot of yam (Diascorea rotundata) were isolated by the looping-out method and found to consist of Clostridium (three isolates), Corynebacterium (three isolates), Vibrio (one isolate), and Bacillus lentus (one isolate). Enzyme assay for hydrolase, lyase, and pectinesterase activities by the cup-plate method showed that except for Vibrio sp., B. lentus, and two isolates of Corynebacterium no pectinase activity could be detected ...

  15. Sulfate-reducing bacteria in anaerobic bioreactors.

    OpenAIRE

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the occurrence of sulfate reduction was considered to be undesired. However, there are some recent developments in which sulfate reduction is optimized for the removal of sulfur compounds from waste streams. In...

  16. A simple and sensitive quality control method of the anaerobic atmosphere for identification and antimicrobial susceptibility testing of anaerobic bacteria

    DEFF Research Database (Denmark)

    Justesen, Tage; Justesen, Ulrik Stenz

    2013-01-01

    The maintenance of a strict anaerobic atmosphere is essential for the culture of strict anaerobic bacteria. We describe a simple and sensitive quality control method of the anaerobic atmosphere, based on the measurement of the zone diameter around a 5-μg metronidazole disk when testing an...

  17. Interaction of neptunium with humic acid and anaerobic bacteria

    International Nuclear Information System (INIS)

    Humic acid and bacteria play an important role in the migration of radionuclides in groundwaters. The interaction of neptunium with humic acid and anaerobic bacteria has been investigated by liquid/liquid and solid/liquid extraction systems. For liquid/liquid extraction, the apparent complex formation constant, βα was obtained from the distribution between two phases of neptunium. For solid/liquid extraction, the ratio of sorption to bacteria, Kd, was measured. Kd of humic acid can be evaluated from βα. The large value of βα and Kd means strong interaction of neptunium with organisms. In order to examine the effect of the nature of organism on interaction, the interaction with humic acid was compared to that with non-sterilized or sterilized mixed anaerobic bacteria. The value of βα of humate depended on neptunium ion concentration as well as pH, which showed the effect of polyelectrolyte properties and heterogeneous composition of humic acid. The comparison of interaction with humic acid and bacteria indicated that the Kd value of humic acid was larger than that of bacteria and more strongly depend on pH. (author)

  18. [Anaerobic bacteria 150 years after their discovery by Pasteur].

    Science.gov (United States)

    García-Sánchez, José Elías; García-Sánchez, Enrique; Martín-Del-Rey, Ángel; García-Merino, Enrique

    2015-02-01

    In 2011 we celebrated the 150th anniversary of the discovery of anaerobic bacteria by Louis Pasteur. The interest of the biomedical community on such bacteria is still maintained, and is particularly focused on Clostridium difficile. In the past few years important advances in taxonomy have been made due to the genetic, technological and computing developments. Thus, a significant number of new species related to human infections have been characterised, and some already known have been reclassified. At pathogenic level some specimens of anaerobic microflora, that had not been isolated from human infections, have been now isolated in some clinical conditions. There was emergence (or re-emergence) of some species and clinical conditions. Certain anaerobic bacteria have been associated with established infectious syndromes. The virulence of certain strains has increased, and some hypotheses on their participation in certain diseases have been given. In terms of diagnosis, the routine use of MALDI-TOF has led to a shortening of time and a cost reduction in the identification, with an improvement directly related to the improvement of data bases. The application of real-time PCR has been another major progress, and the sequencing of 16srRNA gene and others is currently a reality for several laboratories. Anaerobes have increased their resistance to antimicrobial agents, and the emergence of resistance to carbapenems and metronidazole, and multi-resistance is a current reality. In this situation, linezolid could be an effective alternative for Bacteroides. Fidaxomicin is the only anti-anaerobic agent introduced in the recent years, specifically for the diarrhoea caused by C.difficile. Moreover, some mathematical models have also been proposed in relation with this species. PMID:23648369

  19. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    Science.gov (United States)

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P < 0.05). Notably, the ampicillin and cephalothin resistance rates were significantly increased after anaerobic digestion by 12.0% and 14.3%, respectively (P < 0.05). The distribution of ARB in the sewage sludge had seasonal change characteristics. Except for chlorotetracycline resistant bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05). PMID:25693388

  20. Enrichment culture of marine anaerobic ammonium oxidation (anammox) bacteria

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong-jie

    2016-01-01

    The present study investigates the enrichment of anaerobic ammonium oxidation (anammox) bacteria in the marine environment using sediment samples obtained from the East China Sea and discusses the nitrogen removal efficiency of marine anammox bioreactor. Enrichment of anammox bacteria with simultaneous removal of nitrite and ammonium ions was observed in the Anaerobic Sequencing Batch Reactor under a total nitrogen loading rate of 0.37kg-N m-3day-1. In this study, The nitrogen removal efficiency was up to 80% and the molar-reaction ratio of ammonium, nitrite and nitrate was 1.0:1.22:0.22 which was a little different from a previously reported ratio of 1.0:1.32:0.26 in a freshwater system.

  1. Anaerobic bacteria colonizing the lower airways in lung cancer patients

    Directory of Open Access Journals (Sweden)

    Anna Malm

    2011-07-01

    Full Text Available Anaerobes comprise most of the endogenous oropharyngeal microflora, and can cause infections of airways in lung cancer patients who are at high risk for respiratory tract infections. The aim of this study was to determine the frequency and species diversity of anaerobes in specimens from the lower airways of lung cancer patients. Sensitivity of the isolates to conventional antimicrobial agents used in anaerobe therapy was assessed. Respiratory secretions obtained by bronchoscopy from 30 lung cancer patients were cultured onto Wilkins- -Chalgren agar in anaerobic conditions at 37°C for 72–96 hours. The isolates were identified using microtest Api 20A. The minimal inhibitory concentrations for penicillin G, amoxicillin/clavulanate, piperacillin/tazobactam, cefoxitin, imipenem, clindamycin, and metronidazole were determined by E-test. A total of 47 isolates of anaerobic bacteria were detected in 22 (73.3% specimens. More than one species of anaerobe was found in 16 (53.3% samples. The most frequently isolated were Actinomyces spp. and Peptostreptococcus spp., followed by Eubacterium lentum, Veillonella parvula, Prevotella spp., Bacteroides spp., Lactobacillus jensenii. Among antibiotics used in the study amoxicillin/clavulanate and imipenem were the most active in vitro (0% and 2% resistant strains, respectively. The highest resistance rate was found for penicillin G and metronidazole (36% and 38% resistant strains, respectively. The results obtained confirm the need to conduct analyses of anaerobic microflora colonizing the lower respiratory tract in patients with lung cancer to monitor potential etiologic factors of airways infections, as well as to propose efficient, empirical therapy. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 2, pp. 263–266

  2. Aerobic and Anaerobic Starvation Metabolism in Methanotrophic Bacteria

    OpenAIRE

    Roslev, P.; King, G. M.

    1995-01-01

    The capacity for anaerobic metabolism of endogenous and selected exogenous substrates in carbon- and energy-starved methanotrophic bacteria was examined. The methanotrophic isolate strain WP 12 survived extended starvation under anoxic conditions while metabolizing 10-fold less endogenous substrate than did parallel cultures starved under oxic conditions. During aerobic starvation, the cell biomass decreased by 25% and protein and lipids were the preferred endogenous substrates. Aerobic prote...

  3. Xylitol Production From D-Xylose by Facultative Anaerobic Bacteria

    OpenAIRE

    Rangaswamy, Sendil

    2003-01-01

    Seventeen species of facultative anaerobic bacteria belonging to three genera (Serratia, Cellulomonas, and Corynebacterium) were screened for the production of xylitol; a sugar alcohol used as a sweetener in the pharmaceutical and food industries. A chromogenic assay of both solid and liquid cultures showed that 10 of the 17 species screened could grow on D-xylose and produce detectable quantities of xylitol during 24-96 h of fermentation. The ten bacterial species were studied for the effe...

  4. Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties

    OpenAIRE

    Niftrik, L.A.M.P. van; Jetten, M.S.M.

    2012-01-01

    Summary: Anaerobic ammonium-oxidizing (anammox) bacteria defy many microbiological concepts and share numerous properties with both eukaryotes and archaea. Among their most intriguing characteristics are their compartmentalized cell plan and archaeon-like cell wall. Here we review our current knowledge about anammox cell biology. The anammox cell is divided into three separate compartments by bilayer membranes. The anammox cell consists of (from outside to inside) the cell wall, paryphoplasm,...

  5. Disk susceptibility testing of slow-growing anaerobic bacteria.

    Science.gov (United States)

    Kwok, Y Y; Tally, F P; Sutter, V L; Finegold, S M

    1975-01-01

    The susceptibility of 55 strains of slow-growing anaerobes to eight clinically useful or potentially useful antibiotics was determined by agar dilution and disk diffusion tests. Strains of the genera Peptococcus, Peptostreptococcus, Megasphaera, Veillonella, Eubacterium, Bifidobacterium, Clostridium, and Fusobacterium were included. All strains were susceptible to chloramphenicol, but varied in their susceptibility to penicillin, lincomycin, clindamycin, tetracyclines, and vancomycin. Correlation between minimal inhibitory concentration and inhibition zone diameters was generally good. Prediction of susceptibility based on zone diameter measurements appeared satisfactory. Although routine susceptibility testing of anaerobic bacteria is not recommended, there are circumstances where such testing is relevant to the clinical situation. For those laboratories ill-equipped to do dilution tests, a disk diffusion test would give relatively accurate preliminary information. Quantitative susceptibility tests could then be done by a reference laboratory. PMID:1137353

  6. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    Science.gov (United States)

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. PMID:26958851

  7. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    Science.gov (United States)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume; Kappler, Andreas; Bernard, Sylvain; Obst, Martin; Férard, Céline; Skouri-Panet, Fériel; Guigner, Jean-Michel; Posth, Nicole; Galvez, Matthieu; Brown, Gordon E., Jr.; Guyot, François

    2009-02-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types of precipitates could be discriminated: (1) mineralized filaments at distance from the cells, (2) globules of 100 ± 25 nm in diameter, at the cell surface and (3) a 40-nm thick mineralized layer within the periplasm. All of those phases were shown to be intimately associated with organic molecules. Periplasmic encrustation was accompanied by an accumulation of protein moieties. In the same way, exopolysaccharides were associated with the extracellular mineralized filaments. The evolution of cell encrustation was followed by TEM over the time course of a culture: cell encrustation proceeded progressively, with rapid precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All these findings provide new information to further the understanding of molecular processes involved in iron biomineralization by anaerobic iron-oxidizing bacteria and

  8. Lack of activity of sulfamethoxazole and trimethoprim against anaerobic bacteria.

    Science.gov (United States)

    Rosenblatt, J E; Stewart, P R

    1974-07-01

    The activity of sulfamethoxazole (SMX), trimethoprim (TMP), and the combination of the two was determined against a variety of anaerobic bacteria. Brucella agar was somewhat inhibitory for SMX and TMP but activity was good and equivalent in Diagnostic Sensitivity Test Agar (Oxoid) and Mueller-Hinton agar and the latter was selected for use in these studies. Agar dilution susceptibility tests showed that 95 of 98 anaerobic isolates were resistant to >/=100 mug of SMX per ml and 85 were resistant to >/=6.25 mug of TMP per ml. "Checkerboard" agar dilution studies of combined activity showed that 66 of 72 isolates were resistant to >/= (100 mug of SMX per ml + 6.25 mug of TMP per ml) and only six isolates were susceptible to the synergistic activity of the combination. The majority of 32 isolates tested by the disk diffusion method were also resistant to SMX and TMP individually and to the combination 25-mug disk. Correlation between agar dilution minimal inhibitory concentration and disk zone size results was in general good for individual agents. Four Bacteroides fragilis isolates were inhibited by the combination 25-mug disk but were resistant to SMX + TMP by agar dilution "checkerboard." This discrepancy may have been due to different incubation periods since disk results also showed resistance when read after 48 h (as is done with agar dilution) rather than the standard 24 h for disk tests. These studies suggest that SMX and TMP, either individually or in combination, are not active against the great majority of anaerobic bacteria. PMID:15828176

  9. Effects of gamma ray and electron-beam irradiations on survival of anaerobic and facultatively anaerobic bacteria

    International Nuclear Information System (INIS)

    An extension of the approval for food irradiation is desired due to the increase in the incidence of food poisoning in the world. One anaerobic (Clostridium perfringens) and four facultatively anaerobic (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Enteritidis) bacteria irradiated with gamma ray or electron beam (E-beam) were tested in terms of survival on agar under packaging atmosphere. Using pouch pack, effects of two irradiations on survival of anaerobic and facultatively anaerobic bacteria were evaluated comparatively. E-beam irradiation was more effective than gamma ray irradiation in decreasing the lethal dose 10% (D10) value of B. cereus at 4 deg C, slightly more effective in that of E. coli O157, and similarly effective in that of the other three bacteria at 4 deg C. The gamma irradiation of the bacteria without incubation at 4 deg C before irradiation was more effective than that of the bacteria with incubation overnight at 4 deg C before irradiation in decreasing the D10 values of these bacteria (B. cereus, E. coli O157, and L. monocytogenes). Furthermore, ground beef patties inoculated with bacteria were irradiated with 1 kGy by E-beam (5 MeV) at 4 deg C. The inoculated bacteria in the 1-9 mm beef patties were killed by 1 kGy E-beam irradiation and some bacteria in more than 9 mm beef patties were not killed by the irradiation. (author)

  10. Anaerobic Biodegradation of Pristane by Nitrate Reducing Bacteria

    Science.gov (United States)

    Dawson, K. S.; Freeman, K. H.; Macalady, J. L.

    2007-12-01

    In recent sediments, microbial biodegradation provides a control on the long-term preservation of organic matter, through the preferential loss of certain biomolecules and the alteration and concentration of other more recalcitrant molecules. Biodegradation of hydrocarbons derived from membrane lipids, has been demonstrated by both aerobic and strictly anaerobic culturing experiments. The isoprenoid pristane, once considered stable under anaerobic conditions, is in fact degraded by a denitrifying microcosm (BREGNARD et al., 1997) and a methanogenic, sulphate-reducing enrichment culture (GROSSI, 2000). We recently demonstrated pristane biodegradation and accompanying loss of nitrate by an activated sludge isolate. The measured nitrate consumption accounts for a 7.1 +/- 0.4 mg loss of pristane, 4.74% of the initial substrate, in 181 days, assuming pristane conversion to CO2. We have characterized the microorganisms active in the biodegradation process, through the creation of a 16S rDNA clone library, as well as fluorescence in situ hybridization (FISH). Experiments are in progress to enrich cultures of sulfate reducing bacteria that utilize pristane as a sole carbon source and to characterize reaction mechanisms in pristane-oxidizing pathways.

  11. Technique for preparation of anaerobic microbes: Rodshaped cellulolytic bacteria

    Directory of Open Access Journals (Sweden)

    Amlius Thalib

    2001-10-01

    Full Text Available Preparation of anaerobic-rod cellulolytic bacteria with coating technique has been conducted. Steps of the processes involved were cultivation, coating, evaporation, and drying. Coating agent used was Gum Arabic, and drying techniquesconducted were freeze drying and sun drying. pH of culture media was firstly optimized to obtain the maximal population ofbacteria. Both coated and uncoated preparates were subjected to drying. Morphological and Gram type identifications showed that uncoated preparate dried with freeze drying is not contaminated (ie. all bacteria are rod shape with Gram-negative type while the one dried with sun drying is not morphologically pure (ie. containing of both rod and coccus shapes with Gram negative and positive. The coated preparates dried by both freeze and sun drying, were not contaminated (ie. all are rods with Gram-negative. The coating and drying processes decreased viability of preparates significantly. However, the decreasing of viability of coated preparate are lower than uncoated preparate (ie. 89 vs. 97%. Total count of bacteria in sun-drying coated preparate are higher (P<0.05 than the uncoated preparate (ie. 3.38 x 1010 vs. 1.97 x 1010 colony/g DM. Activity of sun-drying coated preparate to digest elephant grass and rice straw was higher (P<0.01 than the sun-drying uncoated preparate with the in vitro DMD values were 42.7 vs. 35.5% for elephant grass substrate and 29.3 vs. 24.6% for rice straw substrate. Therefore, it is concluded that coating technique has a positive effects on the preparation of rumen bacteria.

  12. Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated From Surgical Site Infection of Hospitalized Patients

    Science.gov (United States)

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Beheshtirouy, Samad; Asgharzadeh, Mohammad; Pirzadeh, Tahereh; Asghari, Babak; Alizadeh, Naser; Toloue Ostadgavahi, Ali; Sorayaei Somesaraei, Vida; Memar, Mohammad Yousef

    2015-01-01

    Background: Surgical Site Infections (SSIs) are infections of incision or deep tissue at operation sites. These infections prolong hospitalization, delay wound healing, and increase the overall cost and morbidity. Objectives: This study aimed to investigate anaerobic and aerobic bacteria prevalence in surgical site infections and determinate antibiotic susceptibility pattern in these isolates. Materials and Methods: One hundred SSIs specimens were obtained by needle aspiration from purulent material in depth of infected site. These specimens were cultured and incubated in both aerobic and anaerobic condition. For detection of antibiotic susceptibility pattern in aerobic and anaerobic bacteria, we used disk diffusion, agar dilution, and E-test methods. Results: A total of 194 bacterial strains were isolated from 100 samples of surgical sites. Predominant aerobic and facultative anaerobic bacteria isolated from these specimens were the members of Enterobacteriaceae family (66, 34.03%) followed by Pseudomonas aeruginosa (26, 13.4%), Staphylococcus aureus (24, 12.37%), Acinetobacter spp. (18, 9.28%), Enterococcus spp. (16, 8.24%), coagulase negative Staphylococcus spp. (14, 7.22%) and nonhemolytic streptococci (2, 1.03%). Bacteroides fragilis (26, 13.4%), and Clostridium perfringens (2, 1.03%) were isolated as anaerobic bacteria. The most resistant bacteria among anaerobic isolates were B. fragilis. All Gram-positive isolates were susceptible to vancomycin and linezolid while most of Enterobacteriaceae showed sensitivity to imipenem. Conclusions: Most SSIs specimens were polymicrobial and predominant anaerobic isolate was B. fragilis. Isolated aerobic and anaerobic strains showed high level of resistance to antibiotics. PMID:26421133

  13. Regularities of polymer substances transformation into methane by thermophilic anaerobic bacteria

    OpenAIRE

    V. І. Karpenko; L. S. Yastremska; І. G. Burun; Y. V. Lembey; O. S. Tatarchenko

    2006-01-01

    The paper shows the regularities of polymer substances transformation into methane by extracted thermophilic anaerobic bacteria. The sequence of substrate use by the methane generating bacteria corresponds to the energy efficiency of the methane genesis reactions as in the first place hydrogen is used and then acetate is. Combined cultivation of extracted different anaerobic cultures gives the opportunity to increase ethanol and hydrogen yield as well as the effectiveness of methane formation.

  14. Nitrogen removal by autotrophic ammonium oxidizing bacteria enrichment under anaerobic conditions

    OpenAIRE

    Pongsak (Lek) Noophan; Chalermraj Wantawin; Siriporn Sripiboon; Sanya Sirivitayapakorn

    2008-01-01

    Sludge from an anoxic tank at the centralized wastewater treatment plant, Nong Khaem, Bangkok, Thailand, was inoculatedin an anaerobic sequencing batch reactor (ASBR). The optimal compositions and operating conditions of the stock of autotrophic ammonium oxidizing bacteria medium were determined. The process of oxidizing ammonium with bacteria under anaerobic conditions is often referred to as the Anammox process (NO2- to N2 gas, using NH4+ as the electron donor and NO2- as the electron accep...

  15. Nitrogen removal by autotrophic ammonium oxidizing bacteria enrichment under anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Pongsak (Lek Noophan

    2008-07-01

    Full Text Available Sludge from an anoxic tank at the centralized wastewater treatment plant, Nong Khaem, Bangkok, Thailand, was inoculatedin an anaerobic sequencing batch reactor (ASBR. The optimal compositions and operating conditions of the stock of autotrophic ammonium oxidizing bacteria medium were determined. The process of oxidizing ammonium with bacteria under anaerobic conditions is often referred to as the Anammox process (NO2- to N2 gas, using NH4+ as the electron donor and NO2- as the electron acceptor. The startup period for the anammox culture took more than three months. With ammoniumand nitrite concentration ratios of 1:1.38 and 1:1.6, the nitrogen conversion rate zero order. Fluorescent in situ hybridization(FISH was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis. Results from this work demonstrated a shift in the species of ammonium oxidizing bacteria from Nitrosomonas spp. to Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis, with increased ammonium concentrations from 3 mM to 15 mM. Under NH4+:NO2- ratios of 1:1.38 and 1:1.6 the ammoniumoxidizing bacteria were able to remove both ammonium and nitrite simultaneously. The specific nitrogen removal rate of theanammox bacteria (Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis was significantly higher than that of anaerobic ammonium oxidizing bacteria (Nitrosomonas spp.. Anaerobic ammonium oxidizing bacteria (Candidati Brocadia anammoxidans and Kuenenia stuttgartiensis are strict anaerobes.

  16. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    Science.gov (United States)

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes

  17. Modified broth-disk method for testing the antibiotic susceptibility of anaerobic bacteria.

    Science.gov (United States)

    Wilkins, T D; Thiel, T

    1973-03-01

    The most commonly used method for testing the antibiotic susceptibility of aerobic and facultative bacteria is the disk diffusion method. However, some anaerobic bacteria do not grow well enough in anaerobic jars for performance of disk diffusion tests. A modification of the broth-disk method of Schneierson allowed us to determine antibiotic susceptibility in a completely anaerobic environment. Commercial antibiotic disks were added anaerobically to tubes of prereduced brain heart infusion broth to achieve a concentration of each antibiotic approximating that attainable in blood. The tubes were then inoculated and incubated for 18 h. Resistance or susceptibility to each antibiotic was determined according to the amount of growth in each tube as compared with a control culture without the antibiotic. There was good correlation between results obtained by this broth-disk method and minimal inhibitory concentrations. PMID:4790595

  18. Anaerobic bacteria: evaluation of disc susceptibility to four cephalosporins.

    Science.gov (United States)

    Dubois, J; Pechère, J C

    1978-01-01

    The disc diffusion technique was evaluated with 178 strains of anaerobes and four cephalosporins (cephalothin, cefamandole, cefazolin and cefoxitin). Good correlation in results was found in comparison with the agar dilution technique (p less than 0.001) with the exception of cefamandole and cefazolin against anaerobic cocci (p greater than 0.05). Choosing a breakpoint of 8 microgram/ml for distinguishing susceptible and resistant strains, we determined corresponding incubation, the rate of error is less than 1% for false susceptible and less than 5% for false resistant. However, some strains of anaerobic cocci required a 48 hour incubation period for allowing visible growth. Moreover, a great deal (60.5%) of overlapping zone diameters made interpretation of disc diffusion test difficult among Bacteroides fragilis strains classed as susceptible, intermediate and resistant occuring with cefoxitin. The results have shown that the cephalothin disk will not accurately predict susceptibility of B. fragilis to cefoxitin. PMID:730395

  19. New techniques for growing anaerobic bacteria: experiments with Clostridium butyricum and Clostridium acetobutylicum

    International Nuclear Information System (INIS)

    Stable membrane fragments derived from Escherichia coli produce and maintain strict anaerobic conditions when added to liquid or solid bacteriological media. Techniques for growing Clostridium butyricum and Clostridium acetobutylicum in membrane-containing media are described. Liquid cultures initiated by very small inocula can be grown in direct contact with air. In solid media, colonies develop rapidly from individual cells even without incubation in anaerobic jars or similar devices. Observations on growth rates, spontaneous mutations, radiation, and oxygen sensitivity of anaerobic bacteria have been made using these new techniques

  20. New techniques for growing anaerobic bacteria: Experiments with Clostridium butyricum and Clostridium acetobutylicum

    International Nuclear Information System (INIS)

    Stable membrane fragments derived from Escherichia coli produce and maintain strict anaerobic conditions when added to liquid or solid bacteriological media. Techniques for growing Clostridium butyricum and Clostridium acetobutylicum in membrane containing media are described. Liquid cultures initiated by very small inocula can be grown in direct contact with air. In solid media, colonies develop rapidly from individual cells even without incubation in anaerobic jars or similar devices. Observations on growth rates, spontaneous mutations, radiation and oxygen sensitivity of anaerobic bacteria have been made using these new techniques

  1. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Sliekers, AO; Lavik, G.; Schmid, M.; Jørgensen, BB; Kuenen, JG; Damste, JSS; Strous, M.; Jetten, MSM

    2003-01-01

    ). Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N(2) in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing the...... anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors(3). Nutrient profiles, fluorescently labelled RNA probes, (15)N tracer experiments and the distribution of specific 'ladderane' membrane lipids(4) indicate that ammonium diffusing upwards from the anoxic deep water is consumed...

  2. Degradation of BTEX by anaerobic bacteria: physiology and application

    OpenAIRE

    Weelink, S.A.B.; Eekert, van, M.H.A.; Stams, A.J.M.

    2010-01-01

    Pollution of the environment with aromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX) is often observed. The cleanup of these toxic compounds has gained much attention in the last decades. In situ bioremediation of aromatic hydrocarbons contaminated soils and groundwater by naturally occurring microorganisms or microorganisms that are introduced is possible. Anaerobic bioremediation is an attractive technology as these compounds are often present in the a...

  3. Distribution of Digoxin-reducing, Oxalate-degrading, and Total Anaerobic Bacteria in the Human Colon

    OpenAIRE

    Weaver, G A; Krause, J A; Allison, M J; Lindenbaum, J.

    2011-01-01

    Samples of the mucosal surface of the caecum and sigmoid colon were obtained from 33 colonoscopy subjects for microbiol studies using a microbiology brush system. Faecal samples and caecal lumen aspirates were also obtained. Estimated numbers of digoxin-reducing, oxalate-degrading and total anaerobic bacteria from the caecal brush samples correlated significantly with the respective concentrations of these organisms from the sigmoid area. The concentrations of oxalate-degrading bacteria and t...

  4. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing

    Directory of Open Access Journals (Sweden)

    Allyson Lee Brady

    2015-09-01

    Full Text Available Carbon monoxide (CO is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45–65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 µmoles CO day-1 g (wet weight-1 within 5 selected sites. Active anaerobic carboxydotrophic bacteria were identified using 13CO DNA stable isotope probing (SIP combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in 13CO incubations. The predominant bacteria that assimilated 13C derived from CO were closely related (>98% to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies.

  5. Isolation of aerobic and anaerobic bacteria from suspected enterotoxaemia cases in lambs

    Directory of Open Access Journals (Sweden)

    N. S. Mechael

    2012-01-01

    Full Text Available Ninety cases of clinically diagnosed enterotoxemia infection in lambs at AL-Hamdaniya region where studied for isolation of aerobic and anaerobic bacterial causes, faecal samples were collected from all suspected cases during January- June 2008, the results show that 41.6% of the isolates were Cl. perfringens as pure single isolates, while mixed infection of Cl. perfringens with each of Enterococci and staphylococcus in percentage of 26.04%, 20.83% respectively, also mixed infection of Cl. septicum with each of Staphylococcus and E.coli were isolated at the percentage of 5.2%, 6.25% respectively. Highest bacterial isolation was from the faecal samples collected during April. McIntosh jar method show isolation of pure culture of anaerobic bacteria (Cl. perfringens, while Candle jar method show detection of 56 isolates in mixed cultures of aerobic and anaerobic bacteria.

  6. Prevalence of Anaerobic and Aerobic Bacteria in Early Onset Neonatal Sepsis

    Directory of Open Access Journals (Sweden)

    F Nili

    2008-09-01

    Full Text Available "nBackground: To determine prospectively the prevalence of anaerobic and aerobic infection in early onset (during 72 hours of age neonatal sepsis, in Tehran Vali-e-Asr Hospital."nMethods: Among all the live birth, neonates suspecting of having septicemia were investigated for isolation of micro­organisms. Culture bottle containing enriched tryptic soy broth was used for standard blood culture system to detect aerobes and an ANAEROBIC/F bottle was inoculated using BACTEC 9120 continuous monitoring blood culture system to deter­mine the growth of anaerobic bacteria. Among 1724 live births, 402 consecutive neonates suspecting of having septicemia were investigated for isolation of micro organism."nResults: A total of 27 episodes of early onset neonatal sepsis occurred with an incidence of 15.66 (11.6 aerobe + 4.0 anaer­obe per 1000 live births. Aerobic bacteria were the major etiological agents, accounting for 20 cases. 7 (26% cases had posi­tive blood cultures with anaerobic bacteria. Propionibacterium and Peptostreptococccus (amongst anaerobic and coagu­lase-negative staphylococci and staphylococcus aureus (amongst aerobic were the most commonly isolated organisms. Compari­son of clinical findings and demographic characteristics between aerobic and anaerobic infection did not have a signifi­cant statistical difference."nConclusion: Our impression is that while anaerobic bacteremia in the newborn infants can occasionally cause severe morbid­ity and mortality, majority of cases experience a self limited illness with transient bacteremia.

  7. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    OpenAIRE

    H. M. Dayal; K. C. Tiwari; Kamlesh Mehta; Chandrashekhar,

    1988-01-01

    During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  8. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    Directory of Open Access Journals (Sweden)

    H. M. Dayal

    1988-04-01

    Full Text Available During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  9. Evaluation of Port-A-Cul transport system for protection of anaerobic bacteria.

    Science.gov (United States)

    Mena, E; Thompson, F S; Armfield, A Y; Dowell, V R; Reinhardt, D J

    1978-07-01

    The protection of anaerobes in Port-A-Cul (PAC) transport system (Bioquest, Div. of Becton, Dickinson &Co., Cockeysville, Md.) tubes and vials was studied. Ten species of obligately anaerobic bacteria commonly isolated from clinical specimens were used to prepare simulated swab and fluid specimens in high and low concentrations. Samples in PAC tubes and vials were held for 2, 24, and 48 h at ambient temperature and in a refrigerator. In addition, samples of the simulated specimens were exposed to controlled anaerobic and aerobic conditions in vented tubes and vials, with and without PAC medium, at ambient and refrigerator temperatures. Viable bacterial colony counts from specimens in PAC tubes and vials used as recommended by the manufacturer were consistently greater than those from specimens exposed to the different controlled conditions. The protection in PAC was about equal for specimens with either high or low concentrations of bacteria. Protection of the anaerobes in PAC was more obvious with swab than with fluid specimens. Quantitative recovery of anaerobes from refrigerated PAC samples, with few exceptions, was comparable to that from PAC samples held at ambient temperature. PMID:353071

  10. Binary Interactions of Antagonistic Bacteria with Candida albicans Under Aerobic and Anaerobic Conditions.

    Science.gov (United States)

    Benadé, Eliska; Stone, Wendy; Mouton, Marnel; Postma, Ferdinand; Wilsenach, Jac; Botha, Alfred

    2016-04-01

    We used both aerobic and anaerobic liquid co-cultures, prepared with Luria Bertani broth, to study the effect of bacteria on the survival of Candida albicans in the external environment, away from an animal host. The bacteria were represented by Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Clostridium, Enterobacter, Klebsiella pneumoniae, Kluyvera ascorbata and Serratia marcescens. Under aerobic conditions, the yeast's growth was inhibited in the presence of bacterial growth; however, under anaerobic conditions, yeast and bacterial growth in co-cultures was similar to that observed for pure cultures. Subsequent assays revealed that the majority of bacterial strains aerobically produced extracellular hydrolytic enzymes capable of yeast cell wall hydrolysis, including chitinases and mannan-degrading enzymes. In contrast, except for the A. hydrophila strain, these enzymes were not detected in anaerobic bacterial cultures, nor was the antimicrobial compound prodigiosin found in anaerobic cultures of S. marcescens. When we suspended C. albicans cells in crude extracellular enzyme preparations from K. pneumoniae and S. marcescens, we detected no negative effect on yeast viability. However, we found that these preparations enhance the toxicity of prodigiosin towards the yeast, especially in combination with mannan-degrading enzymes. Analyses of the chitin and mannan content of yeast cell walls revealed that less chitin was produced under anaerobic than aerobic conditions; however, the levels of mannan, known for its low permeability, remained the same. The latter phenomenon, as well as reduced production of the bacterial enzymes and prodigiosin, may contribute to anaerobic growth and survival of C. albicans in the presence of bacteria. PMID:26566932

  11. Bacteremia due to anaerobic bacteria: epidemiology in a northern Bari Hospital, Italy

    Directory of Open Access Journals (Sweden)

    Maria Antonietta Distasi

    2015-06-01

    Full Text Available Background. Anaerobic bacteria are part of the commensal bacterial flora of skin and mucosae. Iatrogenic and pathological conditions altering this commensal relationship cause life-threatening diseases. Materials and Methods. We analysed the blood cultures sent to the microbiology of our hospital between 2008 and the first quarter of 2013 to measure the frequency of bacteraemia caused by anaerobia. We examined 3138 vials of blood cultures for anaerobia, inoculated following in-house standard procedures. The colonies grown in absence of air were subjected to biochemical analysis. The MICs of metronidazole for 23 of the 26 organisms was tested. Results. Twelve bacteria of the Bacteroides genus were identified, 9 Propionibacterium acnes, 1 Peptosctreptococcus micros, 1 Lactobacillus acidophilus, 1 Clostridium perfringens, 1 Prevotella oralis, 1 Eubacterium lentum. Conclusions. The analysis of the results suggests that the incidence of cultures positive to anaerobia was constant across the years. We note that advanced age, altered mucocutaneous tropism, alterations to the oral and intestinal bacterial flora intensify the risk of anaerobial pathogenicity. The analysis of the metronidazole-determined MIC suggests that the intestinal anaerobic flora responds well to therapy and prophylaxis with Metronidazole, while the anaerobic bacteria residing on skin and other mucosae are resistant. It is however hard to determine the clinical impact of anaerobic bacteremiae and their effect on the outcome of the patient, due to the scarcity of available clinical data.

  12. Aerobic and anaerobic spore-forming bacteria in Sardinian honey.

    OpenAIRE

    Farris, Giovanni Antonio; Fatichenti, Fabrizio; Deiana, Pietrino; Agostini, Franco

    1986-01-01

    Apart from an ubiquitous microflora, this investigation into 52 samples of honey revealed some undesirable spore-forming bacteria, Bacillus alvei and B. larvae which are bee pathogens. Bacillus cereus can cause spoilage and food poisoning. It is, therefore, considered essential that every country includes microbiological standards in its Food Safety Regulations for honey, so that the consumer is guaranteed as to the wholesomeness as well as the quality of the product.

  13. In vitro activity of ceftriaxone combined with tazobactam against anaerobic bacteria.

    Science.gov (United States)

    Wüst, J; Hardegger, U

    1994-02-01

    The in vitro activity of ceftriaxone combined with tazobactam against 190 strains of anaerobic bacteria was compared with that of amoxicillin with clavulanic acid, ampicillin with sulbactam, piperacillin alone and with tazobactam, cefoxitin, and imipenem, i.e. beta-lactam antibiotics established in the treatment of anaerobic infections. All anaerobes tested were susceptible to ceftriaxone when tazobactam was added at fixed ratios (ceftriaxone to tazobactam) of 2:1 and 8:1 and at constant concentrations of 2,4 and 8 mg/l, respectively. When 4 mg/l tazobactam was added, the MICs of ceftriaxone for 83 of 94 strains of the Bacteroides fragilis group were reduced by a factor of 8 to 512; for eight strains, this reduction was two to fourfold. Only the MICs of ceftriaxone for three Bacteroides fragilis strains were not influenced. PMID:8013494

  14. Anaerobic Ammonium-Oxidizing (Anammox) Bacteria and Associated Activity in Fixed-Film Biofilters of a Marine Recirculating Aquaculture System†

    OpenAIRE

    Tal, Yossi; Joy E M Watts; Schreier, Harold J.

    2006-01-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR product...

  15. Diversity and Ubiquity of Bacteria Capable of Utilizing Humic Substances as Electron Donors for Anaerobic Respiration

    OpenAIRE

    Coates, John D.; Cole, Kimberly A.; Chakraborty, Romy; O'Connor, Susan M.; Achenbach, Laurie A.

    2002-01-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-a...

  16. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria

    DEFF Research Database (Denmark)

    Musat, Niculina; Halm, Hannah; Winterholler, Bärbel;

    2008-01-01

    -SIMS), and show that it allows simultaneous phylogenetic identification and quantitation of metabolic activities of single microbial cells in the environment. Using HISH-SIMS, individual cells of the anaerobic, phototropic bacteria Chromatium okenii, Lamprocystis purpurea, and Chlorobium clathratiforme...... a significant role in the nitrogen and carbon cycles in the environment. By introducing this quantification method for the ecophysiological roles of individual cells, our study opens a variety of possibilities of research in environmental microbiology, especially by increasing the ability to examine...

  17. Extracellular enzyme activity in anaerobic bacterial cultures: evidence of pullulanase activity among mesophilic marine bacteria.

    OpenAIRE

    C. Arnosti; Repeta, D. J.

    1994-01-01

    The extracellular enzymatic activity of a mixed culture of anaerobic marine bacteria enriched on pullulan [alpha(1,6)-linked maltotriose units] was directly assessed with a combination of gel permeation chromatography (GPC) and nuclear magnetic resonance spectroscopy (NMR). Hydrolysis products of pullulan were separated by GPC into three fractions with molecular weights of > or = 10,000, approximately 5,000, and < or = 1,200. NMR spectra of these fractions demonstrated that pullulan was rapid...

  18. TELLURITE RESISTANCE AND REDUCTION DURING AEROBIC AND ANAEROBIC GROWTH OF BACTERIA ISOLATED FROM SARCHESHME COPPER MINE

    OpenAIRE

    A. Akhavan Sepahei ، V. Rashetnia

    2009-01-01

    Tellurium compounds can be found in high concentrations in land and water near sites of waste discharge of industrial manufacturing processes and anodic sludge of copper mine. Potassium tellurite (K2TeO3) is toxic to many microorganisms at concentrations >1mg/mL. In this research, some species of facultative anaerobic bacteria (Bacillus sp.) were isolated from Sarcheshme copper mine(Kerman, Iran) which demonstrated high-level-resistance to tellurite and accumulation of metallic tellurium crys...

  19. STUDY OF RELATIONSHIP BETWEEN DEPTH OF PERIODONTAL POCKETS, ANAEROBIC BACTERIA AND INFLAMMATORY CELLS IN PERIODONTITIS

    OpenAIRE

    P. Owlia; Salari MH.; H Saderi; Z. Kadkhoda

    2000-01-01

    In this study 100 cases of advanced periodontitis were compared with a control group of 100 persons. The parameters were the depth of the periodontal pockets, radiographic images, presence of inflammatory cells and different types of anaerobic bacteria in the pockets. The depth of pocket was measured by a sterile probe and the presence of inflammatory cells was determined through sterile curettage. The smears were stained by Gimsa and Gram methods. For the purpose of microbiological studies, ...

  20. A modified bioautographic method for antibacterial component screening against anaerobic and microaerophilic bacteria.

    Science.gov (United States)

    Kovács, Judit K; Horváth, Györgyi; Kerényi, Monika; Kocsis, Béla; Emődy, Levente; Schneider, György

    2016-04-01

    Direct bioautography is a useful method to identify antimicrobial compounds with potential therapeutic importance. Because of technical limitations till now, it has been applied only for aerobic bacteria. In this work we present the modification of the original method by which antimicrobial screening of bacteria requiring modified atmosphere became feasible by direct bioautography. Here we demonstrate its applicability by testing three anaerobic Clostridium perfringens and three microaerophilic Campylobacter jejuni strains against two essential oils, clove and thyme. Antimicrobial component profiles of clove and thyme essential oils against these two medically important pathogenic bacteria were compared and significant differences were revealed in their inhibition capacities. Linalool, a component of thyme essential oil exerted a more expressed antibacterial activity against C. perfringens than against C. jejuni. Our results demonstrate that direct bioautography is not only suitable for testing aerobic bacteria, but by applying the presently described modified version it can also contribute to the quest to find novel antimicrobial agents against multidrug resistant anaerobic and microaerophilic bacteria. PMID:26853123

  1. Radionuclide sorption to a mixture of anaerobic bacteria in the repository environment

    International Nuclear Information System (INIS)

    The sorption of the radionuclides, Pu, Np, Pa, Sr and Cs, to a mixture of anaerobic bacteria activated under specific conditions of temperature, pH and depleted nutrients after a long dormant period has been investigated. For Pu, after 4 hours at neutral pH, the distribution coefficient (Kd) between bacteria and aqueous phase at 308 and 278K was around 103-4 (ml g-1). Over 5 days, however, the Kd at 308K increased to over 105. Sterilized (dead) and dormant anaerobic bacteria adsorbed Pu to the same extent. Kd for Np at 308K after 5 days had a low value around 102. After 10 days, however, Kd was >100-fold higher. On the other hand, Kd for Np at 278K remained low, without any significant increase over time. The interaction between Pa and bacteria was found to be stronger than that for Np, with Kd for Pa about 100 times higher. For Sr and Ca, significant Kd change was not seen through 120 d. The value for Sr is a few times larger than that for Cs due to the different electrostatic interaction with the bacteria based on the charge of ion. (author)

  2. [Utility of MALDI-TOF MS for the identification of anaerobic bacteria].

    Science.gov (United States)

    Zárate, Mariela S; Romano, Vanesa; Nievas, Jimena; Smayevsky, Jorgelina

    2014-01-01

    The analysis by MALDI-TOF MS (Matrix-assited laser desorption/ionization time-of-flight mass spectrometry) has become a reference method for the identification of microorganisms in Clinical Microbiology. However, data on some groups of microorganisms are still controversial. The aim of this study is to determine the utility of MALDI-TOF MS for the identification of clinical isolates of anaerobic bacteria. One-hundred and six anaerobic bacteria isolates were analyzed by MALDI-TOF MS and by conventional biochemical tests. In those cases where identification by conventional methodology was not applicable or in the face of discordance between sequencing methodologies, 16 S rRNA gene sequence analysis was performed. The conventional method and MALDI-TOF MS agreed at genus and species level by 95.3 %. Concordance in gram-negative bacilli was 91.4% and 100% among gram-positive bacilli; there was also concordance both in the 8 isolates studied in gram-positive cocci and in the single gram-negative cocci included. The data obtained in this study demonstrate that MALDI-TOF MS offers the possibility of adequate identification of anaerobic bacteria. PMID:25011591

  3. Effect of radiation dose on the recovery of aerobic and anaerobic bacteria from mice

    International Nuclear Information System (INIS)

    The presence of aerobic and anaerobic bacteria in the blood, spleen, and liver was investigated in mice that were exposed to 7, 8, 9 or 10 Gy 60Co radiation. Microorganisms were detected more often in animals exposed to higher doses of radiation. The number of mice that were culture positive and the number of isolates in one site increased with increasing dose. Bacteria were recovered in mice killed at various times after radiation, in 3 of 100 mice exposed to 7 Gy, in 13 of 100 irradiated with 8 Gy, in 23 of 90 exposed to 9 Gy, and in 34 of 87 irradiated with 10 Gy. The predominant organisms recovered were Escherichia coli, anerobic Gram-positive cocci, Proteus mirabilis, Staphylococcus aureus, and Bacteroides spp. Escherichia coli and anaerobes were more often isolated in animals exposed to 10 Gy, while S. aureus was more often recovered in those irradiated with 9 Gy. These data demonstrate a relationship between the dose of radiation and the rate of infection due to enteric aerobic and anaerobic bacteria

  4. Effect of radiation dose on the recovery of aerobic and anaerobic bacteria from mice

    Energy Technology Data Exchange (ETDEWEB)

    Brook, I.; Walker, R.I.; MacVittie, T.J.

    1986-01-01

    The presence of aerobic and anaerobic bacteria in the blood, spleen, and liver was investigated in mice that were exposed to 7, 8, 9, or 10 Gy /sup 60/Co radiation. Microorganisms were detected more often in animals exposed to higher doses of radiation. The number of mice that were culture positive and the number of isolates in one site increased with increasing dose. Bacteria were recovered in mice killed at various times after radiation, in 3 of 100 mice exposed to 7 Gy, in 13 of 100 irradiated with 8 Gy, in 23 of 90 exposed to 9 Gy, and in 34 of 87 irradiated with 10 Gy. The predominant organisms recovered were Escherichia coli, anerobic Gram-positive cocci, Proteus mirabilis, Staphylococcus aureus, and Bacteroides spp. Escherichia coli and anaerobes were more often isolated in animals exposed to 10 Gy, while S. aureus was more often recovered in those irradiated with 9 Gy. These data demonstrate a relationship between the dose of radiation and the rate of infection due to entire aerobic and anaerobic bacteria. Reprints.

  5. Anaerobic Respiration on Tellurate and Other Metalloids in Bacteria from Hydrothermal Vent Fields in the Eastern Pacific Ocean

    OpenAIRE

    Csotonyi, Julius T.; Stackebrandt, Erko; Yurkov, Vladimir

    2006-01-01

    This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) hydrothermal vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean hydrothermal vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with hydrothermal vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and red...

  6. Fermentative hydrogen production from anaerobic bacteria using a membrane bioreactor

    International Nuclear Information System (INIS)

    Continuous H2 production from glucose was studied at short hydraulic retention times (HRT) of 4.69 - 0.79 h using a membrane bioreactor (MBR) with a hollow-fiber filtration unit and mixed cells as inoculum. The reactor was inoculated with sewage sludge, which were heat-treated at 90 C for harvesting spore-forming, H2-producing bacteria, and fed with synthetic wastewater containing 1% (w/v) glucose. With decreasing HRT, volumetric H2 production rate increased but the H2 production yield to glucose decreased gradually. The H2 content in biogas was maintained at 50 - 70% (v/v) and no appreciable CH4 was detected during the operation. The maximal volumetric H2 production rate and H2 yield to glucose were 1714 mmol H2/L.d and 1.1 mol H2/mol glucose, respectively. These results indicate that the MBR should be considered as one of the most promising systems for fermentative H2 production. (authors)

  7. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, Christel, E-mail: christel.kampman@wur.nl [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Hendrickx, Tim L.G. [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands); Luesken, Francisca A.; Alen, Theo A. van; Op den Camp, Huub J.M.; Jetten, Mike S.M. [Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Zeeman, Grietje; Buisman, Cees J.N.; Temmink, Hardy [Sub-department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen (Netherlands)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A new concept for low-temperature anaerobic sewage treatment is proposed. Black-Right-Pointing-Pointer In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. Black-Right-Pointing-Pointer The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. Black-Right-Pointing-Pointer The volumetric consumption rate has to be increased by an order of magnitude for practical application. Black-Right-Pointing-Pointer Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to 'Candidatus Methylomirabilis oxyfera' were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO{sub 2}{sup -}-N/L d (using synthetic medium) and 37.8 mg NO{sub 2}{sup -}-N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass

  8. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment

    International Nuclear Information System (INIS)

    Highlights: ► A new concept for low-temperature anaerobic sewage treatment is proposed. ► In this concept, denitrification and methane oxidation are performed by Methylomirabilis oxyfera. ► The bacteria were enriched from fresh water sediment using sequencing fed-batch reactors. ► The volumetric consumption rate has to be increased by an order of magnitude for practical application. ► Further research should focus on systems with improved biomass retention. - Abstract: Despite many advantages of anaerobic sewage treatment over conventional activated sludge treatment, it has not yet been applied in temperate zones. This is especially because effluent from low-temperature anaerobic treatment contains nitrogen and dissolved methane. The presence of nitrogen and methane offers the opportunity to develop a reactor in which methane is used as electron donor for denitrification. Such a reactor could be used in a new concept for low-temperature anaerobic sewage treatment, consisting of a UASB-digester system, a reactor for denitrification coupled to anaerobic methane oxidation, and a nitritation reactor. In the present study denitrifying methanotrophic bacteria similar to ‘Candidatus Methylomirabilis oxyfera’ were enriched. Maximum volumetric nitrite consumption rates were 33.5 mg NO2−-N/L d (using synthetic medium) and 37.8 mg NO2−-N/L d (using medium containing effluent from a sewage treatment plant), which are similar to the maximum rate reported so far. Though the goal was to increase the rates, in both reactors, after reaching these maximum rates, volumetric nitrite consumption rates decreased in time. Results indicate biomass washout may have significantly decelerated enrichment. Therefore, to obtain higher volumetric consumption rates, further research should focus on systems with complete biomass retention.

  9. Differential Susceptibility of Bacteria to Mouse Paneth Cell a-Defensins under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Jennifer R. Mastroianni

    2014-10-01

    Full Text Available Small intestinal Paneth cells secrete a-defensin peptides, termed cryptdins (Crps in mice, into the intestinal lumen, where they confer immunity to oral infections and define the composition of the ileal microbiota. In these studies, facultative bacteria maintained under aerobic or anaerobic conditions displayed differential sensitivities to mouse a-defensins under in vitro assay conditions. Regardless of oxygenation, Crps 2 and 3 had robust and similar bactericidal activities against S. typhimurium and S. flexneri, but Crp4 activity against S. flexneri was attenuated in the absence of oxygen. Anaerobic bacteria varied in their susceptibility to Crps 2-4, with Crp4 showing less activity than Crps 2 and 3 against Enterococcus faecalis, and Bacteroides fragilis in anaerobic assays, but Fusobacterium necrophorum was killed only by Crp4 and not by Crps 2 and 3. The influence of anaerobiosis in modulating Crp bactericidal activities in vitro suggests that a-defensin effects on the enteric microbiota may be subject to regulation by local oxygen tension.

  10. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Boopathy, R. [Argonne National Lab., IL (United States); Kulpa, C.F. [Notre Dame Univ., IN (United States). Dept. of Biological Sciences

    1994-06-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

  11. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    International Nuclear Information System (INIS)

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO2. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions

  12. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions

    International Nuclear Information System (INIS)

    Mixed bacteria were enriched from soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs). The anaerobic degradation characteristics by the enriched bacteria with different initial naphthalene concentrations were investigated under nitrate reducing conditions. The results showed that the mixed bacteria could degrade nearly all the naphthalene over the incubations of 25 days when the initial naphthalene concentration was below 30 mg/L. The degradation rates of naphthalene increased with increasing initial concentrations. A high naphthalene concentration of 30 mg/L did not inhibit neither on the bacterial growth nor on the naphthalene degradation ability. The accumulation of nitrite was occurred during the reduction of nitrate, and a nitrite concentration of 50 mg/L had no inhibition effect on the degradation of naphthalene. The calculation of electron balances revealed that most of the naphthalene was oxidized whereas a small proportion was used for cell synthesis.

  13. Significance of anaerobes and oral bacteria in community-acquired pneumonia.

    Directory of Open Access Journals (Sweden)

    Kei Yamasaki

    Full Text Available BACKGROUND: Molecular biological modalities with better detection rates have been applied to identify the bacteria causing infectious diseases. Approximately 10-48% of bacterial pathogens causing community-acquired pneumonia are not identified using conventional cultivation methods. This study evaluated the bacteriological causes of community-acquired pneumonia using a cultivation-independent clone library analysis of the 16S ribosomal RNA gene of bronchoalveolar lavage specimens, and compared the results with those of conventional cultivation methods. METHODS: Patients with community-acquired pneumonia were enrolled based on their clinical and radiological findings. Bronchoalveolar lavage specimens were collected from pulmonary pathological lesions using bronchoscopy and evaluated by both a culture-independent molecular method and conventional cultivation methods. For the culture-independent molecular method, approximately 600 base pairs of 16S ribosomal RNA genes were amplified using polymerase chain reaction with universal primers, followed by the construction of clone libraries. The nucleotide sequences of 96 clones randomly chosen for each specimen were determined, and bacterial homology was searched. Conventional cultivation methods, including anaerobic cultures, were also performed using the same specimens. RESULTS: In addition to known common pathogens of community-acquired pneumonia [Streptococcus pneumoniae (18.8%, Haemophilus influenzae (18.8%, Mycoplasma pneumoniae (17.2%], molecular analysis of specimens from 64 patients with community-acquired pneumonia showed relatively higher rates of anaerobes (15.6% and oral bacteria (15.6% than previous reports. CONCLUSION: Our findings suggest that anaerobes and oral bacteria are more frequently detected in patients with community-acquired pneumonia than previously believed. It is possible that these bacteria may play more important roles in community-acquired pneumonia.

  14. Growth of silicone-immobilized bacteria on polycarbonate membrane filters, a technique to study microcolony formation under anaerobic conditions

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1997-01-01

    A technique was developed to study microcolony formation by silicone- immobilized bacteria on polycarbonate membrane filters under anaerobic conditions. A sudden shift to anaerobiosis was obtained by submerging the filters in medium which was depleted for oxygen by a pure culture of bacteria. The...

  15. Activity of difloxacin (A-56619) and A-56620 against clinical anaerobic bacteria in vitro.

    OpenAIRE

    Bansal, M B; Thadepalli, H

    1987-01-01

    We determined the MICs of difloxacin (A-56619) and A-56620 against anaerobic bacteria and assessed the effects of alterations in pH, size of inoculum, addition of human serum, and repeated exposure to subinhibitory levels of antibiotics. We tested for synergism of these drugs with cefoxitin against Bacteroides spp. We found that difloxacin and A-56620 were as active as ciprofloxacin, inhibiting about 90% of B. fragilis (4 micrograms/ml) and other Bacteroides spp. (8 micrograms/ml), A-56620 be...

  16. Anaerobic ammonium-oxidizing bacteria gain antibiotic resistance during long-term acclimatization.

    Science.gov (United States)

    Zhang, Zheng-Zhe; Zhang, Qian-Qian; Guo, Qiong; Chen, Qian-Qian; Jiang, Xiao-Yan; Jin, Ren-Cun

    2015-09-01

    Three broad-spectrum antibiotics, amoxicillin (AMX), florfenicol (FF) and sulfamethazine (SMZ), that inhibit bacteria via different target sites, were selected to evaluate the acute toxicity and long-term effects on anaerobic ammonium oxidation (anammox) granules. The specific anammox activity (SAA) levels reduced by approximately half within the first 3 days in the presence of antibiotics but no nitrite accumulation was observed in continuous-flow experiments. However, the SAA levels and heme c content gradually recovered as the antibiotic concentrations increased. Extracellular polymeric substances (EPS) analysis suggested that anaerobic ammonium-oxidizing bacteria gradually developed a better survival strategy during long-term acclimatization, which reduced the antibiotic stress via increased EPS secretion that provided a protective 'cocoon.' In terms of nitrogen removal efficiency, anammox granules could resist 60 mg-AMX L(-1), 10 mg-FF L(-1) and 100 mg-SMZ L(-1). This study supported the feasibility of using anammox granules to treat antibiotic-containing wastewater. PMID:26111629

  17. Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil

    International Nuclear Information System (INIS)

    This study focuses on the presence of phenols in digestate from seven Swedish large-scale anaerobic digestion processes and their impact on the activity of ammonia oxidising bacteria (AOB) in soil. In addition, the importance of feedstock composition and phenol degradation capacity for the occurrence of phenols in the digestate was investigated in the same processes. The results revealed that the content of phenols in the digestate was related to the inhibition of the activity of AOB in soil (EC5 = 26 μg phenols g-1 d.w. soil). In addition, five pure phenols (phenol, o-, p-, m-cresol and 4-ethylphenol) inhibited the AOB to a similar extent (EC5 = 43-110 μg g-1 d.w. soil). The phenol content in the digestate was mainly dependent on the composition of the feedstock, but also to some extent by the degradation capacity in the anaerobic digestion process. Swine manure in the feedstock resulted in digestate containing higher amounts of phenols than digestate from reactors with less or no swine manure in the feedstock. The degradation capacity of phenol and p-cresol was studied in diluted small-scale batch cultures and revealed that anaerobic digestion at mesophilic temperatures generally exhibited a higher degradation capacity compared to digestion at thermophilic temperature. Although phenol, p-cresol and 4-ethylphenol were quickly degraded in soil, the phenols added with the digestate constitute an environmental risk according to the guideline values for contaminated soils set by the Swedish Environmental Protection Agency. In conclusion, the management of anaerobic digestion processes is of decisive importance for the production of digestate with low amounts of phenols, and thereby little risks for negative effects of the phenols on the soil ecosystem

  18. Ultraviolet irradiation of bacteria under anaerobic conditions: implications for Prephanerozoic evolution

    International Nuclear Information System (INIS)

    The history of the rise of atmospheric oxygen and subsequent time of development of an ultraviolet light screening ozone layer has far reaching consequences in interpreting Prephanerozoic (4.5 to 0.6 billion years ago) evolution and ecology. A special anaerobic glove box was constructed to study the relative sensitivities of different groups of bacteria to uv light under varying conditions. Although there is no concensus concerning the oxygen concentration in the early atmosphere, total anoxic conditions were assumed in these studies. The flux of the uv radiation at 253.7 nm within the chamber is slightly higher than calculated from estimates of the present solar luminosity constant at this wavelength. Strict anaerobes, possibly direct decendants from early reducing conditions on Earth (e.g. Clostridium), facultative anaerobes (e.g. Escherichia, Enterobacter), and aerobes (e.g. Pseudomonas) were irradiated and examined for survival as a function of uv dosage. In these studies, photoreactivation, the amelioration of uv damage by visible light, was demonstrated for the first time to exist in an obligate anaerobe. The number of cells in unprotected cultures, exposed to 20 minutes of uv radiation is generally reduced by 99.9%. However, several mechanisms of protection were found: (1) photoreactivation, (2) absorption of uv by nitrates in aqueous irradiation media, (3) intertwiningof growing filaments into cohesive structures called mats, e.g. the matting habit, (4) dark enzymatic repair of photodamage; and (5) inherent radiation resistance. These experimental results coupled with a literature review of uv effects strongly suggests that the Berkner-Marshall hypothesis is no longer tenable

  19. Conversion of hemicelluloses and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmosphere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. Thermophilic anaerobic ethanol producing bacteria can be used for fermentation of the hemicelluloses fraction of lignocellulosic biomass. However, physiological studies of thermophilic anaerobic bacteria have shown that the ethanol yield decreases at increasing substrate concentration. The biochemical limitations causing this phenomenon are not known in detail. Physiological and biochemical studies of a newly characterized thermophilic anaerobic ethanol producing bacterium, Thermoanaerobacter mathranii, was performed. This study included extraction of intracellular metabolites and enzymes of the pentose phosphate pathway and glycolysis. These studies revealed several bottlenecks in the D-xylose metabolism. This knowledge makes way for physiological and genetic engineering of this strain to improve the ethanol yield and productivity at high concentration of D-xylose. (au)

  20. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria.

    Science.gov (United States)

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-08-15

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. PMID:26048927

  1. Plutonium Oxidation State Distribution under Aerobic and Anaerobic Subsurface Conditions for Metal-Reducing Bacteria

    Science.gov (United States)

    Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.

    2009-12-01

    The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration

  2. In vitro activity of pipecolic acid amide of clindamycin (U-57930E) on anaerobic bacteria compared with those of clindamycin, cefoxitin, and chloramphenicol.

    OpenAIRE

    Dhawan, V K; Bansal, M B; Thadepalli, H

    1982-01-01

    In vitro activity of pipecolic acid amide of clindamycin (U-57930E) against 265 isolates of anaerobic bacteria, including 66 strains of Bacteroides fragilis, was compared with those of clindamycin, chloramphenicol, and cefoxitin. At therapeutically achievable concentrations, the activities of all four antibiotics against anaerobic bacteria were similar.

  3. TELLURITE RESISTANCE AND REDUCTION DURING AEROBIC AND ANAEROBIC GROWTH OF BACTERIA ISOLATED FROM SARCHESHME COPPER MINE

    Directory of Open Access Journals (Sweden)

    A. Akhavan Sepahei ، V. Rashetnia

    2009-10-01

    Full Text Available Tellurium compounds can be found in high concentrations in land and water near sites of waste discharge of industrial manufacturing processes and anodic sludge of copper mine. Potassium tellurite (K2TeO3 is toxic to many microorganisms at concentrations >1mg/mL. In this research, some species of facultative anaerobic bacteria (Bacillus sp. were isolated from Sarcheshme copper mine(Kerman, Iran which demonstrated high-level-resistance to tellurite and accumulation of metallic tellurium crystals. High-level-resistance was observed for Bacilli and cocci grown with certain organic carbon sources, implying that tellurite reduction is not essential to confer tellurite resistance. Level of adsorption was determined by inductively coupled plasma and spectrophotometer (Diethyldithiocarbamate method. The level of tellurite concentration in the bacteria cell and the formation of tellurium nanocrystals were illuminated by transmission electron microscope and scanning electron microscope. The Te(0 crystals occur internally and each microorganism forms a distinctly different structure (for example Bacillus selenitreducens make tellurium nano rod. In this study it was found that microorganism can grow 3.in 1500mg/L-2000mg/L and higher tellurite concentrations. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. This study is important because native bacteria from Sarcheshme (Kerman, Iran that may show high-level-resistance to tellurite, were isolated.

  4. Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean.

    Science.gov (United States)

    Csotonyi, Julius T; Stackebrandt, Erko; Yurkov, Vladimir

    2006-07-01

    This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) hydrothermal vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean hydrothermal vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with hydrothermal vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and reduces metal(loid)s anaerobically than aerobically, suggesting that anaerobic metal(loid) respiration might be an important process in bacteria that are symbiotic with vent fauna. Isolates from Axial Volcano and Explorer Ridge were tested for their ability to reduce tellurate, selenite, metavanadate, or orthovanadate in the absence of alternate electron acceptors. In the presence of metal(loid)s, strains showed an ability to grow and produce ATP, whereas in the absence of metal(loid)s, no growth or ATP production was observed. The protonophore carbonyl cyanide m-chlorophenylhydrazone depressed metal(loid) reduction. Anaerobic tellurate respiration will be a significant component in describing biogeochemical cycling of Te at hydrothermal vents. PMID:16820492

  5. Susceptibility of anaerobic bacteria to metronidazole, ornidazole, and tinidazole and routine susceptibility testing by standardized methods.

    Science.gov (United States)

    Wust, J

    1977-04-01

    A total of 114 strains of anaerobic bacteria were examined for their susceptibility to metronidazole, ornidazole, and tinidazole by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration in different media. All strains, with the exception of the isolates of Propionibacterium acnes, were inhibited by 3.1 mug each and killed by 6.3 mug each of all three nitroimidazole compounds per ml. No significant differences in MIC values were found among metronidazole, ornidazole, and tinidazole. Only minor differences were detected by comparing MIC values obtained in brain heart infusion agar with and without sheep blood, brucella agar, and Mueller-Hinton agar (both containing blood). When the strains were tested by the modified broth-disk method proposed by the Anaerobe Laboratory of the Virginia Polytechnic Institute (VPI), there was good correlation with the MIC values (97.4% agreement for metronidazole and 94.7% for ornidazole and tinidazole). For routine testing, use of a 30-mug-class disk of either nitroimidazole derivative is proposed for the broth-disk method, resulting in a final concentration of 6 mug/ml in the test tubes, a concentration easily attainable in body fluids. In contrast to the broth-disk method, there was very poor correlation between inhibition zone diameters by the standardized VPI agar diffusion test and MIC values. PMID:856015

  6. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose

    DEFF Research Database (Denmark)

    Sommer, P.; Georgieva, Tania I.; Ahring, Birgitte Kiær

    2004-01-01

    A limited number of bacteria, yeast and fungi can convert hemicellulose or its monomers (xylose, arabinose, mannose and galactose) into ethanol with a satisfactory yield and productivity. In the present study we tested a number of thermophilic enrichment cultures, and new isolates of thermophilic...... anaerobic bacterial strains growing optimally at 70-80degreesC for their ethanol production from D-Xylose. The new isolates came from different natural and man-made systems such as hot springs, paper pulp mills and brewery waste water. The test was composed of three different steps; (i) test for conversion...... Of D-Xylose into ethanol; (ii) test for viability and ethanol production in pretreated wheat straw hemicellulose hydrolysate; (iii) test for tolerance against high D-xylose concentrations. A total of 86 enrichment cultures and 58 pure cultures were tested and five candidates were selected which...

  7. Susceptibility of anaerobic bacteria to sulfamethoxazole/trimethoprim and routine susceptibility testing.

    Science.gov (United States)

    Wüst, J; Wilkins, T D

    1978-09-01

    The minimal inhibitory concentrations (MICs) of sulfamethoxazole and trimethoprim against 144 strains of obligately anaerobic bacteria were determined on Diagnostic Sensitivity Test agar (Oxoid) or in prereduced Diagnostic Sensitivity Test broth, both supplemented with sodium pyruvate (1 mg/ml), hemin (5 mug/ml), and vitamin K(1) (1 mug/ml). Fifty-eight percent of the strains were susceptible to sulfamethoxazole alone (MIC disk test proposed by Wilkins and Thiel, modified by using prereduced Diagnostic Sensitivity Test broth instead of brain heart infusion broth and by using a smaller inoculum, there was over 90% correlation with the MICs. Poor results were found when the broth-disk tests were performed in brain heart infusion broth. There was very poor correlation between inhibition zone diameters by an agar diffusion method and MICs. PMID:708016

  8. 16S rRNA gene sequencing in routine identification of anaerobic bacteria isolated from blood cultures

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Skov, Marianne Nielsine; Knudsen, Elisa;

    2010-01-01

    A comparison between conventional identification and 16S rRNA gene sequencing of anaerobic bacteria isolated from blood cultures in a routine setting was performed (n = 127). With sequencing, 89% were identified to the species level, versus 52% with conventional identification. The times for...... identification were 1.5 days and 2.8 days, respectively....

  9. Evaluating primers for profiling anaerobic ammonia oxidizing bacteria within freshwater environments.

    Directory of Open Access Journals (Sweden)

    Puntipar Sonthiphand

    Full Text Available Anaerobic ammonia oxidizing (anammox bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library

  10. Anaerobic ammonium oxidation by Nitrosomonas spp. and anammox bacteria in a sequencing batch reactor.

    Science.gov (United States)

    Lek Noophan, Pongsak; Sripiboon, Siriporn; Damrongsri, Mongkol; Munakata-Marr, Junko

    2009-02-01

    A sequencing batch reactor (SBR) was inoculated with mixed nitrifying bacteria from an anoxic tank at the conventional activated sludge wastewater treatment plant in Nongkhaem, Bangkok, Thailand. This enriched nitrifying culture was maintained under anaerobic conditions using ammonium (NH(4)(+)) as an electron donor and nitrite (NO(2)(-)) as an electron acceptor. Autotrophic ammonium oxidizing bacteria survived under these conditions. The enrichment period for anammox culture was over 100 days. Both ammonium and nitrite conversion rates were proportional to the biomass of ammonium oxidizing bacteria; rates were 0.08 g N/gV SS/d and 0.05 g N/g VSS/d for ammonium and nitrite, respectively, in a culture maintained for 3 months at 42 mg N/L ammonium. The nitrogen transformation rate at a ratio of NH(4)(+)-N to NO(2)(-)-N of 1:1.38 was faster, and effluent nitrogen levels were lower, than at ratios of 1:0.671, 1:2.18, and 1:3.05. Fluorescent in situ hybridization (FISH) was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis). The ammonium oxidizing culture maintained at 42 mg N/L ammonium was enriched for Nitrosomonas spp. (30%) over Candidati B. anammoxidans and K. stuttgartiensis (2.1%) while the culture maintained at 210 mg N/L ammonium was dominated by Candidati B. anammoxidans and K. stuttgartiensis (85.6%). The specific nitrogen removal rate of anammox bacteria (0.6 g N/g anammox VSS/d) was significantly higher than that of ammonium oxidizing bacteria (0.4 g N/g Nitrosomonas VSS/d). Anammox bacteria removed up to 979 mg N/L/d of total nitrogen (ammonium:nitrite concentrations, 397:582 mg N/L). These results suggest significant promise of this approach for application to wastewater with high nitrogen but low carbon content, such as that found in Bangkok. PMID:18423965

  11. Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils.

    Science.gov (United States)

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Cheng, Hai-xiang; Li, Ji; Liu, Xu; Ren, Qian-qi

    2016-04-01

    Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20% soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland. PMID:26621804

  12. Conversion of hemicellulose and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Peter

    1998-02-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmoshpere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. The need for a microorganism able to ferment D-xylose is therefore apparent. Thermophilic anaerobic ethanol producing bacteria can therefore be considered for fermentation of D-xylose. Screening of 130 thermophilic anaerobic bacterial strains, from hot-springs, mesophilic and thermophilic biogas plants, paper pulp industries and brewery waste, were examined for production of ethanol from D-xylose and wet-oxidized hemicellulose hydrolysate. Several strains were isolated and one particular strain was selected for best performance during the screening test. This strain was characterized as a new species, Thermoanaerobacter mathranii. However, the ethanol yield on wet-oxidized hemicellulose hydrolysate was not satisfactory. The bacterium was adapted by isolation of mutant strains, now resistant to the inhibitory compounds present in the hydrolysate. Growth and ethanol yield

  13. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    Science.gov (United States)

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  14. Effect of ph and temperature on the sorption of Np and Pa to mixed anaerobic bacteria

    International Nuclear Information System (INIS)

    While considering the geological disposal of radioactive wastes, the behaviour of the radionuclide Np and its daughter element Pa was investigated in the presence of a mixture of anaerobic bacteria (MAB). Originally, MAB were used for the treatment of pulp and paper wastewater. The interaction between radionuclides and bacteria was evaluated by determining distribution coefficients (Kd) over 10 days and at 5 deg. C and 35 deg. C. Kd for Np at 35 deg. C after 5 days had a low value around 10-2. After 10 days, however, Kd was >100-fold higher. On the other hand, Kd at 5 deg. C was low (10-2) throughout, without any significant increase over time. The interaction between Pa and MAB was found to be stronger than that for Np, with Kd for Pa about 100 times higher. The Kd was controlled by some basic factors; the activity of MAB, the complexing capacity of MAB, and the chemical conditions in the solution such as pH and Eh

  15. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    Science.gov (United States)

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage. PMID:26394860

  16. Experimental modelling of Calcium carbonate precipitation in the presence of phototrophic anaerobic bacteria Rhodovulum sp.

    Science.gov (United States)

    Bundeleva, Irina; Shirokova, Liudmila; Benezeth, Pascale; Pokrovsky, Oleg; Kompantseva, Elena

    2010-05-01

    -potential of the cells. To characterise the link between the rate of bacterial growth (biomass production) and the rate of CaCO3 precipitation, batch kinetic experiments were performed. These experiments were carried out in closed (anaerobic) bottles with initial concentration of calcium from 1 to 20 mM and from 5 to 20 mM bicarbonate. The biomass of cells, pH, [Ca2+] and [Alk] were measured as a function of time. Blank experiments (without cell or autoclaved cells) were always carried out. We found that the optimal conditions for both CaCO3 precipitation and biomass increase for the culture Rhodovulum sp. A-20s, is calcium concentration of 3 mM, whatever the concentration of bicarbonate (5, 10, 15 mM). Note also that for calcium concentration higher than 3 mM, the biomass production decreases. In the case of strictly anaerobic Rhodovulum sp. S-1765 bacteria, the optimal conditions for calcium carbonate precipitation is observed for the bicarbonate concentration of 10 mM, whatever the calcium concentration (3, 5, 10 mM). Overall, the present study allows quantitative modeling of bacterially-induced CaCO3 precipitation. It helps to distinguish between the effect of cell surface functional groups, surface electrical charge, soluble organic matter and metabolic change of solution pH on the rate and nature of precipitating calcium carbonate solid phase.

  17. [A comparative study of various evaluation methods of the antibiotic sensitivity of strict anaerobic bacteria of the subgingival flora].

    Science.gov (United States)

    Kamagate, A; Kone, D; Coulibaly, N T; Brou, E; Sixou, M

    2001-09-01

    The study on the sensitiveness of slow-growing anaerobes bacteria to antibiotics is delicate when you consider the technical motives that make it difficult to transpose the standard methods frequently used in microbiological laboratories. The three main methods used to determine susceptibility to antibiotics are: disk-diffusion test, antibiotics containing microdilution plates and ATB ANA (bioMérieux). The aim of this study is to compare the effectiveness of each of these methods on severe anaerobes bacteria isolated in sub-gingival flora of patients suffering from developing periodontitis (rapidly progressive periodontitis, refractory periodontitis, active stage of adult chronic periodontitis). The observed bacteria are: Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, Campylobacter rectus, Peptostreptococcus micros. Antibiotics used are: ampicilline, amoxicilline, tetracycline, erythromycine, metronidazole. The comparison of the minimal inhibitory concentrations (M.I.C) of each of these methods has permitted to show a strict correlation in the results observed with these three methods, if only the growth of the severe anaerobes bacteria on agar medium does not exceed 72 hours. PMID:11808376

  18. Acid resistance of methanogenic bacteria in a two-stage anaerobic process treating high concentration methanol Wastewater

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xuefei; REN Nanqi

    2007-01-01

    In this study,the two-stage upflow anaerobic sludge blanket(UASB)system and batch experiments were employed to evaluate the performance of anaerobic digestion for the treatment of high concentration methanol wastewater.The acid resistance of granular sludge and methanogenic bacteria and their metabolizing activity were investigated.The results show that the pH of the first UASB changed from 4.9 to 5.8 and 5.5 to 6.2 for the second reactor.Apparently,these were not the advisable pH levels that common metha nogenic bacteria could accept.The methanogenic bacteria of the system,viz.Methanosarcina barkeri,had some acid resistance and could still degrade methanol at pH 5.0.If the methanogenic bacteria were trained further,their acid resistance would be improved somewhat.Granular sludge of the system could protect the methanogenic bacteria within its body against the impact of the acidic environment and make them degrade methanol at pH 4.5.The performance of granular sludge was attributed to its structure,bacteria species,and the distribution of bacterium inside the granule.

  19. Anaerobic ammonium-oxidizing (anammox) bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system.

    Science.gov (United States)

    Tal, Yossi; Watts, Joy E M; Schreier, Harold J

    2006-04-01

    Microbial communities in the biological filter and waste sludge compartments of a marine recirculating aquaculture system were examined to determine the presence and activity of anaerobic ammonium-oxidizing (anammox) bacteria. Community DNA was extracted from aerobic and anaerobic fixed-film biofilters and the anaerobic sludge waste collection tank and was analyzed by amplifying 16S rRNA genes by PCR using anammox-selective and universal GC-clamped primers. Separation of amplified PCR products by denaturing gradient gel electrophoresis and sequencing of the different phylotypes revealed a diverse biofilter microbial community. While Planctomycetales were found in all three communities, the anaerobic denitrifying biofilters contained one clone that exhibited high levels of sequence similarity to known anammox bacteria. Fluorescence in situ hybridization studies using an anammox-specific probe confirmed the presence of anammox Planctomycetales in the microbial biofilm from the denitrifying biofilters, and anammox activity was observed in these biofilters, as detected by the ability to simultaneously consume ammonia and nitrite. To our knowledge, this is the first identification of anammox-related sequences in a marine recirculating aquaculture filtration system, and our findings provide a foundation for incorporating this important pathway for complete nitrogen removal in such systems. PMID:16597996

  20. Stability of SM-7338, a new carbapenem in mediums recommended for the susceptibility testing of anaerobic bacteria and gonococci.

    Science.gov (United States)

    Jones, R N; Gardiner, R V

    1989-01-01

    The stability of SM-7338 was compared to that of imipenem in media used for susceptibility testing anaerobic bacteria and Neisseria gonorrhoeae. SM-7338 was more stable in all media than imipenem. For tests with anaerobic bacteria, the broth-disk elution (in thioglycolate) and other methods recommended by the National Committee for Clinical Laboratory Standards can be accurately used for SM-7338. However, the cysteine content of IsoVitaleX (25.9 g/L) supplement inactivates SM-7338 (20-fold reduction) in gonococcal susceptibility test systems with GC agar base. A cysteine-free supplement would be advised for tests with the carbapenems and clavulanic acid. The SM-7338 disk diffusion test (10 micrograms) results were not significantly influenced by the inactivating substances in the media. PMID:2507217

  1. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor.

    Science.gov (United States)

    Hülsen, Tim; Barry, Edward M; Lu, Yang; Puyol, Daniel; Keller, Jürg; Batstone, Damien J

    2016-09-01

    A key future challenge of domestic wastewater treatment is nutrient recovery while still achieving acceptable discharge limits. Nutrient partitioning using purple phototrophic bacteria (PPB) has the potential to biologically concentrate nutrients through growth. This study evaluates the use of PPB in a continuous photo-anaerobic membrane bioreactor (PAnMBR) for simultaneous organics and nutrient removal from domestic wastewater. This process could continuously treat domestic wastewater to discharge limits (60% of PPB, though the PPB community was highly variable. The outcomes from the current work demonstrate the potential of PPB for continuous domestic (and possibly industrial) wastewater treatment and nutrient recovery. Technical challenges include the in situ COD supply in a continuous reactor system, as well as efficient light delivery. Addition of external (agricultural or fossil) derived organics is not financially nor environmentally justified, and carbon needs to be sourced internally from the biomass itself to enable this technology. Reduced energy consumption for lighting is technically feasible, and needs to be addressed as a key objective in scaleup. PMID:27232993

  2. Characterization of the biochemical-pathway of uranium (VI) reduction in facultative anaerobic bacteria.

    Science.gov (United States)

    Mtimunye, Phalazane J; Chirwa, Evans M N

    2014-10-01

    Cultures of U(VI) reducing bacteria sourced from abandoned uranium mine tailing dam were evaluated for their ability to reduce U(VI) to U(IV). The species in the cultures reduced U(VI) in solutions with initial U(VI) concentration up to 400mgL(-)(1) under a near neutral pH of 6.5. The electron flow pathway and fate of reduced species was also analysed in the individual species in order to evaluate the potential for control and optimisation of the reduction potential at the biochemical level. The results showed that U(VI) reduction in live cells was completely blocked by the NADH-dehydrogenase inhibitor, rotenone (C23H22O6), and thioredoxin inhibitor, cadmium chloride (CdCl2), showing that U(VI) reduction involves the electron flow through NADH-dehydrogenase, a primary electron donor to the electron transport respiratory (ETR) system. Mass balance analysis of uranium species aided by visual and electron microscopy suggest that most U(VI) reduction occurred on the cell surface of the isolated species. This finding indicates the possibility of easy uranium recovery for beneficial use through biological remediation. Should the U(VI) be reduced inside the cell, recovery would require complete disruption of the cells and therefore would be difficult. The study contributes new knowledge on the underlying mechanisms in the U(VI) reduction in facultative anaerobes. PMID:25065785

  3. Antimicrobial activity of some Pacific Northwest woods against anaerobic bacteria and yeast.

    Science.gov (United States)

    Johnston, W H; Karchesy, J J; Constantine, G H; Craig, A M

    2001-11-01

    Extracts of woods commonly used for animal bedding were tested for antimicrobial activity. Essential oils from Alaska cedar (Chamaecyparis nootkatensis), western juniper (Juniperus occidentalis) and old growth Douglas fir (Pseudotsuga menziesii) as well as methanol extracts of wood from these trees plus western red cedar (Thuja plicata) and ponderosa pine (Pinus ponderosa) were tested for antimicrobial activity against anaerobic bacteria and yeast. The test microbes included Fusobacterium necrophorum, Clostridium perfringens, Actinomyces bovis and Candida albicans which are common to foot diseases and other infections in animals. The essential oils and methanol extracts were tested using a standardized broth assay. Only extracts of Alaska cedar and western juniper showed significant antimicrobial activity against each of the microbes tested. The essential oil of Douglas fir did show antimicrobial activity against A. bovis at the concentrations tested. The methanol extracts of the heartwood of Douglas fir and the sapwood of ponderosa pine showed no antimicrobial activity. The major chemical components of western juniper (cedrol and alpha- and beta-cedrene) and Alaska cedar (nootkatin) were also tested. In western juniper, alpha- and beta-cedrene were found to be active components. Nootkatin showed activity only against C. albicans. The inhibitory activity in Alaska cedar oil was high enough to justify further efforts to define the other chemical components responsible for the antimicrobial activity. PMID:11746838

  4. Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Maojin; Yuan, Zhuliang; Zhi, Xiaohua; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190 (China)

    2009-10-15

    Beer lees are the main by-product of the brewing industry. Biohydrogen production from beer lees using anaerobic mixed bacteria was investigated in this study, and the effects of acidic pretreatment, initial pH value and ferrous iron concentration on hydrogen production were studied at 35 C in batch experiments. The hydrogen yield was significantly enhanced by optimizing environmental factors such as hydrochloric acid (HCl) pretreatment of substrate, initial pH value and ferrous iron concentration. The optimal environmental factors of substrate pretreated with 2% HCl, pH = 7.0 and 113.67 mg/l Fe{sup 2+} were observed. A maximum cumulative hydrogen yield of 53.03 ml/g-dry beer lees was achieved, which was approximately 17-fold greater than that in raw beer lees. In addition, the degradation efficiency of the total reducing sugar, and the contents of hemicellulose, cellulose, lignin and metabolites are presented, which showed a strong dependence on the environmental factors. (author)

  5. Distribution of secretory inhibitor of platelet microbiddal protein among anaerobic bacteria isolated from stool of children with diarrhea

    Institute of Scientific and Technical Information of China (English)

    Iuri B Ivanov; Viktor A Gritsenko

    2008-01-01

    AIM: To study the secretory inhibitor of platelet microbicidal protein (SIPHP) phenotypes of faecal anaerobic isolates from patients with diarrhea.METHODS: Faecal isolates of anaerobic bacteria(B.fragiliS,n=42; B.longum,n=70;A.israelii,n=21;E.lentum,n=12) from children with diarrhea were tested.SlPHP production was tested by inhibition of platelet microbicidal protein (PHP) bioactivity against B.subtilis and was expressed as percentage of inhibition of PMP bactericidal activity.RESULTS: Among anaerobic isolates 80% of B.Iongum strains,85.7% of A.israelii strains,50%of E.lentum strains and 92.86% of B.fragilis strains were SIPMP-positive.The isolated anaerobic organisms demonstrated SIPHP production at a mean level of 13.8%±0.7%,14.7%±1.8%,3.9%±0.9% (P<0.05) and 26.8%±7.5% (P<0.05) for bifidobacteria,A.israelii,E.lentum and B.fragilis,respectively.CONCLUSION: Data from the present study may have significant implications in understanding the pathogenesis of microecological disorders in the intestine,as well as for future improvement in the prevention and therapy of anaerobe-associated infections.

  6. Stoke's and anti-Stoke's characteristics of anaerobic and aerobic bacterias at excitation of fluorescence by low-intensity red light: I. Research of anaerobic bacterias

    Science.gov (United States)

    Masychev, Victor I.; Alexandrov, Michail T.

    2000-04-01

    Biopsy or photo dynamic therapy of tumors are usually investigated by fluorescent diagnostics methods. Information on modified method of fluorescence diagnostics of inflammatory diseases is represented in this research. Anaerobic micro organisms are often the cause of these pathological processes. These micro organisms also accompany disbiotic processes in intestines.

  7. Growth and Population Dynamics of Anaerobic Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in a Continuous-Flow Bioreactor

    OpenAIRE

    Peter R. Girguis; Cozen, Aaron E.; DeLong, Edward F

    2005-01-01

    The consumption of methane in anoxic marine sediments is a biogeochemical phenomenon mediated by two archaeal groups (ANME-1 and ANME-2) that exist syntrophically with sulfate-reducing bacteria. These anaerobic methanotrophs have yet to be recovered in pure culture, and key aspects of their ecology and physiology remain poorly understood. To characterize the growth and physiology of these anaerobic methanotrophs and the syntrophic sulfate-reducing bacteria, we incubated marine sediments using...

  8. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.

    Science.gov (United States)

    Coates, John D; Cole, Kimberly A; Chakraborty, Romy; O'Connor, Susan M; Achenbach, Laurie A

    2002-05-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included

  9. [Antimicrobial susceptibility of clinical isolates of aerobic Gram-positive cocci and anaerobic bacteria in 2006].

    Science.gov (United States)

    Yamaguchi, Takahiro; Yoshida, Isamu; Itoh, Yoshihisa; Tachibana, Mineji; Takahashi, Choichiro; Kaku, Mitsuo; Kanemitsu, Keiji; Okada, Masahiko; Horikawa, Yoshinori; Shiotani, Joji; Kino, Hiroyoshi; Ono, Yuka; Baba, Hisashi; Matsuo, Shuji; Asari, Seishi; Toyokawa, Masahiro; Matsuoka, Kimiko; Kusano, Nobuchika; Nose, Motoko; Murase, Mitsuharu; Miyamoto, Hitoshi; Saikawa, Tetsunori; Hiramatsu, Kazufumi; Kohno, Shigeru; Yanagihara, Katsunori; Yamane, Nobuhisa; Nakasone, Isamu; Maki, Hideki; Yamano, Yoshinori

    2010-12-01

    The activity of antibacterial agents against aerobic Gram-positive cocci (26 species, 1022 strains) and anaerobic bacteria (23 species, 184 strains) isolated from clinical specimens in 2006 at 16 clinical facilities in Japan were studied using either broth microdilution or agar dilution method. The ratio of methicillin-resistant strains among Staphylococcus aureus and Staphylococcus epidermidis was 53.0% and 65.8%, suggesting that resistant strains were isolated at high frequency. Vancomycin (VCM) and quinupristin/dalfopristin (QPR/DPR) had good antibacterial activity against methicillin-resistant S. aureus and methicillin-resistant S. epidermidis, with MIC90s of < or = 2 micrcog/mL. The ratio of penicillin (PC) intermediate and resistant strains classified by mutations of PC-binding proteins among Streptococcus pneumoniae was 87.6%. Ceftriaxone, cefpirome, cefepime, carbapenem antibiotics, VCM, teicoplanin, linezolid(LZD) and QPR/DPR had MIC90s of < or = 1 microg/mL against PC-intermediate and resistant S. pneumoniae strains. Against all strains of Enterococcus faecalis and Enterococcus faecium, the MICs of VCM and TEIC were under 2 microg/mL, and no resistant strain was detected, suggesting that these agents had excellent activities against these species. 10.9% of E. faecalis strains or 3.5% of E. faecium strains showed intermediate or resistant to LZD. 24.4% of E. faecium strains showed intermediate or resistant to QPR/DPR. Against all strains of Clostridium difficile, the MIC of VCM were under 1 microg/mL, suggesting that VCM had excellent activity against C. difficile. Carbapenems showed good activity against Peptococcaceae, Bacteroides spp., and Prevotella spp. However since several strains of Bacteroides fragilis showed resistant to carbapenems and the susceptibility of this species should be well-focused in the future. PMID:21425596

  10. [Antimicrobial susceptibility of clinical isolates of aerobic gram-positive cocci and anaerobic bacteria in 2008].

    Science.gov (United States)

    Yoshida, Isamu; Yamaguchi, Takahiro; Kudo, Reiko; Fuji, Rieko; Takahashi, Choichiro; Oota, Reiko; Kaku, Mitsuo; Kunishima, Hiroyuki; Okada, Masahiko; Horikawa, Yoshinori; Shiotani, Joji; Kino, Hiroyoshi; Ono, Yuka; Fujita, Shinichi; Matsuo, Shuji; Kono, Hisashi; Asari, Seishi; Toyokawa, Masahiro; Kusano, Nobuchika; Nose, Motoko; Horii, Toshinobu; Tanimoto, Ayako; Miyamoto, Hitoshi; Saikawa, Tetsunori; Hiramatsu, Kazufumi; Kohno, Shigeru; Yanagihara, Katsunori; Yamane, Nobuhisa; Nakasone, Isamu; Maki, Hideki; Yamano, Yoshinori

    2012-02-01

    The activity of antibacterial agents against aerobic Gram-positive cocci (25 genus or species, 1029 strains) and anaerobic bacteria (21 genus or species, 187 strains) isolated from clinical specimens in 2008 at 16 clinical facilities in Japan were studied using either broth microdilution or agar dilution method. The ratio of methicillin-resistant strains among Staphylococcus aureus and Staphylococcus epidermidis was 59.6% and 81.2%, suggesting that resistant strains were isolated at high frequency. Vancomycin (VCM), linezolid (LZD) and quinupristin/dalfopristin (QPR/DPR) had good antibacterial activity against methicillin-resistant S. aureus and methicillin-resistant S. epidermidis, with MIC90s of < or = 2 microg/mL. The ratio of penicillin (PC) intermediate and resistant strains classified by mutations of PC-binding proteins among Streptococcus pneumoniae was 92.0% that was highest among our previous reports. Cefpirome, carbapenems, VCM, teicoplanin (TEIC), LZD and QPR/DPR had MIC90s of < or = 1 microg/mL against PC-intermediate and resistant S. pneumoniae strains. Against all strains of Enterococcus faecalis and Enterococcus faecium, the MICs of VCM and TEIC were under 2 microg/mL, and no resistant strain was detected, suggesting that these agents had excellent activities against these species. 15.9% of E. faecalis strains and 1.2% of E. faecium strains showed intermediate to LZD. 17.1% of E. faecium strains showed intermediate or resistant to QPR/DPR. Against all strains of Clostridium difficile, the MIC of VCM was under 1 microg/mL, suggesting that VCM had excellent activity. Carbapenems showed good activity against Clostridiales, Bacteroides spp., and Prevotella spp., but one strain of Bacteroides fragilis showed resistant to carbapenems. And so, the susceptibility of this species should be well-focused in the future at detecting continuously. PMID:22808693

  11. [First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans/ Anaerobic Subcommittee of the Asociación Argentina de Microbiología].

    Science.gov (United States)

    Legaria, María C; Bianchini, Hebe M; Castello, Liliana; Carloni, Graciela; Di Martino, Ana; Fernández Canigia, Liliana; Litterio, Mirta; Rollet, Raquel; Rossetti, Adelaida; Predari, Silvia C

    2011-01-01

    Through time, anaerobic bacteria have shown good susceptibility to clinically useful antianaerobic agents. Nevertheless, the antimicrobial resistance profile of most of the anaerobic species related to severe infections in humans has been modified in the last years and different kinds of resistance to the most active agents have emerged, making their effectiveness less predictable. With the aim of finding an answer and for the purpose of facilitating the detection of anaerobic antimicrobial resistance, the Anaerobic Subcommittee of the Asociación Argentina de Microbiología developed the First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans. This document resulted from the compatibilization of the Clinical and Laboratory Standards Institute recommendations, the international literature and the work and experience of the Subcommittee. The Consensus document provides a brief taxonomy review, and exposes why and when anaerobic antimicrobial susceptibility tests should be conducted, and which antimicrobial agents can be used according to the species involved. The recommendations on how to perform, read and interpret in vitro anaerobic antimicrobial susceptibility tests with each method are exposed. Finally, the antibiotic susceptibility profile, the classification of antibiotics according to their in vitro activities, the natural and acquired mechanisms of resistance, the emerging resistance and the regional antibiotic resistance profile of clinically relevant anaerobic species are shown. PMID:21491069

  12. Exogenous nitrate attenuates nitrite toxicity to anaerobic ammonium oxidizing (anammox) bacteria.

    Science.gov (United States)

    Li, Guangbin; Vilcherrez, David; Carvajal-Arroyo, Jose Maria; Sierra-Alvarez, Reyes; Field, Jim A

    2016-02-01

    Anaerobic ammonium oxidizing bacteria (anammox) can be severely inhibited by one of its main substrates, nitrite (NO2(-)). At present, there is limited information on the processes by which anammox bacteria are able to tolerate toxic NO2(-). Intracellular consumption or electrochemically driven (transmembrane proton motive force) NO2(-) export are considered the main mechanisms of NO2(-) detoxification. In this work, we evaluated the potential of exogenous nitrate (NO3(-)) on relieving NO2(-) toxicity, putatively facilitated by NarK, a NO3(-)/NO2(-) transporter encoded in the anammox genome. The relative contribution of NO3(-) to NO2(-) detoxification was found to be pH dependent. Exposure of anammox cells to NO2(-) in absence of their electron donating substrate, ammonium (NH4(+)), causes NO2(-) stress. At pH 6.7 and 7.0, the activity of NO2(-) stressed cells was respectively 0 and 27% of the non-stressed control activity (NO2(-) and NH4(+) fed simultaneously). Exogenous NO3(-) addition caused the recovery to 42% and 80% of the control activity at pH 6.7 and 7.0, respectively. The recovery of the activity of NO2(-) stressed cells improved with increasing NO3(-) concentration, the maximum recovery being achieved at 0.85 mM. The NO3(-) pre-incubation time is less significant at pH 7.0 than at pH 6.7 due to a more severe NO2(-) toxicity at lower pH. Additionally, NO3(-) caused almost complete attenuation of NO2(-) toxicity in cells exposed to the proton gradient disruptor carbonyl cyanide m-chlorophenyl hydrazone at pH 7.5, providing evidence that the NO3(-) attenuation is independent of the proton motive force. The absence of a measurable NO3(-) consumption (or NO3(-) dependent N2 production) during the batch tests leaves NO3(-) dependent active transport of NO2(-) as the only plausible explanation for the relief of NO2(-) inhibition. We suggest that anammox cells can use a secondary transport system facilitated by exogenous NO3(-) to alleviate NO2(-) toxicity. PMID

  13. Multilaboratory evaluation of an agar diffusion disk susceptibility test for rapidly growing anaerobic bacteria.

    Science.gov (United States)

    Barry, A L; Fuchs, P C; Gerlach, E H; Allen, S D; Acar, J F; Aldridge, K E; Bourgault, A M; Grimm, H; Hall, G S; Heizmann, W

    1990-01-01

    A multilaboratory collaborative study was undertaken to determine whether the anaerobic disk diffusion test of Horn et al. could be performed reproducibly and accurately. Tests with nine different antimicrobial disks were evaluated. Reproducibility of the agar diffusion disk method was similar to that of the reference agar dilution test procedure. The anaerobic disk diffusion procedure was found to be a potentially useful method for testing some antimicrobial agents against rapidly growing anaerobes belonging to the Bacteroides fragilis group. These promising results warrant further investigations and validations. PMID:2406872

  14. Degradation Action of the Anaerobic Bacteria and Oxygen to the Polymer

    Institute of Scientific and Technical Information of China (English)

    LU Xiang-Guo; ZHANG Ke

    2008-01-01

    Oxygen could prohibit anaerobic bacterium in the produced water and degrade the polymer molecular chains.Aiming at problems making up aerobic polymer solution by the produced water in Daqing Oil Field, some evaluations were done on the viscosity characteristics of polymer solution and bactericide in anaerobic and aerobic environments. Reasonable aerobic concentration of the produced water was obtained. The experimental results indicate that the viscosity of polymer solution confected by the produced water in the aerobic environment is higher than that of the polymer solution confected by the produced water in the anaerobic environment, and the reasonable ments, but the sterilization effect is better in the aerobic environment.

  15. Monitoring Methanotrophic Bacteria in Hybrid Anaerobic-Aerobic Reactors with PCR and a Catabolic Gene Probe

    OpenAIRE

    Miguez, Carlos B; Shen, Chun F; Bourque, Denis; Guiot, Serge R; Groleau, Denis

    1999-01-01

    We attempted to mimic in small upflow anaerobic sludge bed (UASB) bioreactors the metabolic association found in nature between methanogens and methanotrophs. UASB bioreactors were inoculated with pure cultures of methanotrophs, and the bioreactors were operated by using continuous low-level oxygenation in order to favor growth and/or survival of methanotrophs. Unlike the reactors in other similar studies, the hybrid anaerobic-aerobic bioreactors which we used were operated synchronously, not...

  16. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge

    OpenAIRE

    Luesken, Francisca A.; van Alen, Theo A.; van der Biezen, Erwin; Frijters, Carla; Toonen, Ger; Kampman, Christel; Hendrickx, Tim L. G.; Zeeman, Grietje; Temmink, Hardy; Strous, Marc; Op den Camp, Huub J. M.; Jetten, Mike S. M.

    2011-01-01

    Recently discovered microorganisms affiliated to the bacterial phylum NC10, named “Candidatus Methylomirabilis oxyfera”, perform nitrite-dependent anaerobic methane oxidation. These microorganisms could be important players in a novel way of anaerobic wastewater treatment where ammonium and residual dissolved methane might be removed at the expense of nitrate or nitrite. To find suitable inocula for reactor startup, ten selected wastewater treatment plants (WWTPs) located in The Netherlands w...

  17. The antimicrobial action of low molecular weight chitosan and chitooligosaccharides on growth of anaerobic bacteria isolated from human feces

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Jiří; Koppová, Ingrid; Tishchenko, Galina

    Aberdeen : Rowett Institute-INRA, 2010. s. 103-103. [7th joint symposium of Rowett-INRA:Gut Microbiology: new insight into gut microbial ecosystems. 23.06.2010-25.06.2010, Aberdeen] R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z40500505 Keywords : chitosan * anaerobic bacteria * human faces Subject RIV: EB - Genetics ; Molecular Biology http://www.rowett.ac.uk/Rowett-INRA2010/scientific-prog.html

  18. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    International Nuclear Information System (INIS)

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated

  19. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lenly J. Weathers; Lynn E. Katz

    2002-05-29

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated.

  20. Isolation and identification of bacteria responsible for simultaneous anaerobic ammonium and sulfate removal

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Sulfate-dependent anaerobic ammonium oxidation is a novel biological reaction,in which ammonium is oxidized with sulfate as the electron acceptor under anoxic conditions.Ammonium and sulfate are cosmopolitan chemical species which are an integral part of the global nitrogen and sulfur cycles.A detailed exploration of sulfate-dependent anaerobic ammonium oxidation is quite practical.In this work,a bacterial strain named ASR has been isolated from an anaerobic ammonia and sulfate removing reactor working under steady-state.On the basis of electron microscopy,physiological tests and 16S rDNA phylogenetic sequence analysis,the strain ASR is found to be related to Bacillus benzoevorans.According to the biological carbon source utilization test,the strain ASR could use many carbon sources.Its optimum pH value and temperature were 8.5 and 30 °C,respectively.The test proves that the strain ASR is able to use sulfate to oxidize ammonia anaerobically.The maximum ammonia and sulfate removal rates were 44.4% and 40.0%,respectively.The present study provided biological evidence for the confirmation and development of sulfate-dependent anaerobic ammonium oxidation and brought new insights into the global nitrogen and sulfur cycles.

  1. Anaerobic nitrite-dependent methane-oxidizing bacteria - novel participants in methane cycling of drained peatlands ecosystems

    Science.gov (United States)

    Kravchenko, Irina; Sukhacheva, Marina; Menko, Ekaterina; Sirin, Andrey

    2014-05-01

    Northern peatlands are one of the key sources of atmospheric methane. Process-based studies of methane dynamic are based on the hypothesis of the balance between microbial methane production and oxidation, but this doesn't explain all variations in and constraints on peatland CH4 emissions. One of the reasons for this discrepancy could be anaerobic methane oxidation (AOM) - the process which is still poorly studied and remained controversial. Very little is known about AOM in peatlands, where it could work as an important 'internal' sink for CH4. This lack of knowledge primarily originated from researchers who generally consider AOM quantitatively insignificant or even non-existent in northern peatland ecosystems. But not far ago, Smemo and Yavitt (2007) presented evidence for AOM in freshwater peatlands used indirect techniques including isotope dilution assays and selective methanogenic inhibitors. Nitrite-dependent anaerobic methane oxidation NC10 group bacteria (n-damo) were detected in a minerotrophic peatland in the Netherlands that is infiltrated by nitrate-rich ground water (Zhu et al., 2012). Present study represents the first, to our knowledge, characterization of AOM in human disturbed peatlands, including hydrological elements of artificial drainage network. The experiments were conducted with samples of peat from drained peatlands, as well as of water and bottom sediments of ditches from drained Dubnensky mire massif, Moscow region (Chistotin et al., 2006; Sirin et al., 2012). This is the key testing area of our research group in European part of Russia for the long-term greenhouse gases fluxes measurements supported by testing physicochemical parameters, intensity and genomic diversity of CH4-cycling microbial communities. Only in sediments of drainage ditches the transition anaerobic zone was found, where methane and nitrate occurred, suggested the possible ecological niche for n-damo bacteria. The NC10 group methanotrophs were analyzed by PCR

  2. Immobilization of anaerobic thermophilic bacteria for the production of cell-free thermostable. alpha. -amylases and pullulanases

    Energy Technology Data Exchange (ETDEWEB)

    Klingeberg, M. (Goettingen Univ. (Germany, F.R.). Inst. fuer Mikrobiologie); Vorlop, K.D. (Technische Univ. Braunschweig (Germany, F.R.). Inst. fuer Technische Chemie); Antranikian, G. (Technische Univ. Hamburg-Harburg, Hamburg (Germany, F. R.). Arbeitsbereich Biotechnologie 1)

    1990-08-01

    For the production of cell-free thermostable {alpha}-amylases and pullulanases various anaerobic thermophilic bacteria that belong to the genera Clostridium and Thermoanaerobacter were immobilized in calcium alginate gel beads. The entrapment of bacteria was performed in full was well as in hollow spheres. An optimal limited medium, which avoided bacterial outgrowth, was developed for the cultivation of immobilized organisms at 60deg C using 0.4% starch as substrate. Compared to non-immobilized cells these techniques allowed a significant increase (up to 5.6-fold) in the specific activities of the extracellular enzymes formed. An increase in the productivity of extracellular enzymes was observed after immobilization of bacteria in full spheres. In the case of C. thermosaccharolyticum, for instance, the productivity was raised from 90 units (U)/10{sup 12} cells up to 700 U/10{sup 12} cells. Electrophoretic analysis of the secreted proteins showed that in all cases most of the amylolytic enzymes formed were released into the culture medium. Proteins that had a molecular mass of less than 450 000 daltons could easily diffuse through the gel matrix. Cultivation of immobilized bacteria in semi-continuous and fed-batch cultures was also accompanied by an elevation in the concentration of cell-free enzymes. (orig.).

  3. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea

    OpenAIRE

    Chistoserdova, Ludmila; Vorholt, Julia A.; Lidstrom, Mary E.

    2005-01-01

    Recent sequencing of the genome and proteomic analysis of a model aerobic methanotrophic bacterium, Methylococcus capsulatus (Bath) has revealed a highly versatile metabolic potential. In parallel, environmental genomics has provided glimpses into anaerobic methane oxidation by certain archaea, further supporting the hypothesis of reverse methanogenesis.

  4. [Sensitivity of clinical strains of facultatively anaerobic bacteria to antimicrobial drugs].

    Science.gov (United States)

    Bazhenov, L G; Iskhakova, Kh I

    1988-02-01

    Six hundred and sixty five samples of clinical materials from patients with various pyoinflammatory diseases were tested for obligatory anaerobes. Anaerobes were detected in 148 samples which amounted to 22.3 per cent of the total number of the samples and to 33.2 per cent of the samples with microbial growth. A total of 171 strains of obligatory anaerobes were isolated. Among them 58.5, 24.5, 16.4 and 0.6 per cent were nonsporulating gramnegative bacilli, grampositive cocci, grampositive bacilli and gramnegative cocci respectively. Sensitivity of the isolated anaerobes was tested with the disk diffusion method. The most active drugs against the tested strains were: nitroxoline, rifampicin, metronidasole, erythromycin, carbenicillin and cefotaxim (4.2, 4.5, 9.3, 10.6, 11.5 and 11.7 per cent of the resistant strains respectively). Gentamicin, polymyxin M, novobiocin and cefazoline were the least active drugs (94.6, 78.9, 65.4 and 50.0 per cent of the resistant strains respectively). Metronidasole, levomycetin, nitroxolin, rifampicin and furazolidone showed the highest activity against bacteroids of the fragilis group (0, 0, 0, 8 and 12.5 per cent of the resistant strains respectively) while gentamicin, polymyxin M, cefazolin, oxacillin, novobiocin and penicillin showed the lowest activity (100, 100, 100, 100, 87.0 and 66.7 per cent of the resistant strains respectively). PMID:3377601

  5. Inhibition of Salmonella Typhimurium by Anaerobic Cecal Bacteria in Media Supplemented with Lactate and Succinate

    Science.gov (United States)

    The ability of anaerobic cecal microflora of broilers to inhibit growth of Salmonella Typhimurium in media supplemented with lactate and succinate was examined. Cecal cultures were prepared by collecting ceca of processed broilers from a commercial processing facility, inoculating broth media with 1...

  6. Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Holm, Anette; Knudsen, Elisa;

    2011-01-01

    We compared two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Shimadzu/SARAMIS and Bruker) on a collection of consecutive clinically important anaerobic bacteria (n = 290). The Bruker system had more correct identifications to the species level...... (67.2% versus 49.0%), but also more incorrect identifications (7.9% versus 1.4%). The system databases need to be optimized to increase identification levels. However, MALDI-TOF MS in its present version seems to be a fast and inexpensive method for identification of most clinically important...... anaerobic bacteria....

  7. Changes in the size and composition of intracellular pools of nonesterified coenzyme A and coenzyme A thioesters in aerobic and facultatively anaerobic bacteria.

    OpenAIRE

    Chohnan, S; FURUKAWA, H.; Fujio, T; Nishihara, H.; Takamura, Y

    1997-01-01

    Intracellular levels of three coenzyme A (CoA) molecular species, i.e., nonesterified CoA (CoASH), acetyl-CoA, and malonyl-CoA, in a variety of aerobic and facultatively anaerobic bacteria were analyzed by the acyl-CoA cycling method developed by us. It was demonstrated that there was an intrinsic difference between aerobes and facultative anaerobes in the changes in the size and composition of CoA pools. The CoA pools in the aerobic bacteria hardly changed and were significantly smaller than...

  8. Detection, phylogeny and population dynamics of syntrophic propionate-oxidizing bacteria in anaerobic granular sludge.

    OpenAIRE

    Harmsen, H. J. M.

    1996-01-01

    The research described this thesis concerns the diversity and phylogeny of syntrophic propionate-oxidizing bacteria and their ecology in granular sludge, from which they were obtained. 16S rRNA was used as a molecular marker to study both the phylogeny and the ecology of these bacteria. Sequence analysis of the 16S rRNA gave information on the phylogeny of the syntrophic bacteria, while specific oligonucleotide probes based on these sequences enabled quantification and detection of these bact...

  9. Exploring Anaerobic Bacteria for Industrial Biotechnology - Diversity Studies, Screening and Biorefinery Applications

    OpenAIRE

    Aragão Börner, Rosa

    2013-01-01

    Depletion of easily accessible fossil energy resources, threat of climate change and political priority to achieve energy self-sufficiency and sustainable solutions prioritize a conscious and smart use of renewable resources to generate a bio-based economy. Bio-based compounds can replace chemicals and fuels that are now mainly produced from crude oil. Efficient processes for the conversion of plant biomass into compounds of interest to the biorefinery industry occur naturally in anaerobic en...

  10. Isolation of aerobic and anaerobic bacteria from suspected enterotoxaemia cases in lambs

    OpenAIRE

    N. S. Mechael

    2012-01-01

    Ninety cases of clinically diagnosed enterotoxemia infection in lambs at AL-Hamdaniya region where studied for isolation of aerobic and anaerobic bacterial causes, faecal samples were collected from all suspected cases during January- June 2008, the results show that 41.6% of the isolates were Cl. perfringens as pure single isolates, while mixed infection of Cl. perfringens with each of Enterococci and staphylococcus in percentage of 26.04%, 20.83% respectively, also mixed infection of Cl. se...

  11. Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Jensen, K.; Nielsen, P.;

    1996-01-01

    Wheat straw was pretreated by wet oxidation (oxygen pressure, alkaline conditions, elevated temperature) or hydrothermal processing (without oxygen) in order to solubilize the hemicellulose, facilitating bio-conversion. The effect of oxygen pressure and sodium carbonate addition on hemicellulose...... solubilization was investigated. The two process parameters had little effect on the solubilization of hemicellulose. However alkaline conditions affected the furfural formation whereas oxygen had no effect. After pretreatment, the filtrate was used as a fermentation medium for thermophilic anaerobic bacterin...

  12. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time.

    Science.gov (United States)

    Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe(3+)-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe(2+) to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe(2+) to total Fe ratio to <35 %, after four turnovers of operation. Prevailing existence of putative iron-reducing bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD. PMID:26428233

  13. Synthesis and Antimicrobial Evaluation of Amixicile-Based Inhibitors of the Pyruvate-Ferredoxin Oxidoreductases of Anaerobic Bacteria and Epsilonproteobacteria.

    Science.gov (United States)

    Kennedy, Andrew J; Bruce, Alexandra M; Gineste, Catherine; Ballard, T Eric; Olekhnovich, Igor N; Macdonald, Timothy L; Hoffman, Paul S

    2016-07-01

    Amixicile is a promising derivative of nitazoxanide (an antiparasitic therapeutic) developed to treat systemic infections caused by anaerobic bacteria, anaerobic parasites, and members of the Epsilonproteobacteria (Campylobacter and Helicobacter). Amixicile selectively inhibits pyruvate-ferredoxin oxidoreductase (PFOR) and related enzymes by inhibiting the function of the vitamin B1 cofactor (thiamine pyrophosphate) by a novel mechanism. Here, we interrogate the amixicile scaffold, guided by docking simulations, direct PFOR inhibition assays, and MIC tests against Clostridium difficile, Campylobacter jejuni, and Helicobacter pylori Docking simulations revealed that the nitro group present in nitazoxanide interacts with the protonated N4'-aminopyrimidine of thiamine pyrophosphate (TPP). The ortho-propylamine on the benzene ring formed an electrostatic interaction with an aspartic acid moiety (B456) of PFOR that correlated with improved PFOR-inhibitory activity and potency by MIC tests. Aryl substitution with electron-withdrawing groups and substitutions of the propylamine with other alkyl amines or nitrogen-containing heterocycles both improved PFOR inhibition and, in many cases, biological activity against C. difficile Docking simulation results correlate well with mechanistic enzymology and nuclear magnetic resonance (NMR) studies that show members of this class of antimicrobials to be specific inhibitors of vitamin B1 function by proton abstraction, which is both novel and likely to limit mutation-based drug resistance. PMID:27090174

  14. Organic carbon recovery and photosynthetic bacteria population in an anaerobic membrane photo-bioreactor treating food processing wastewater.

    Science.gov (United States)

    Chitapornpan, S; Chiemchaisri, C; Chiemchaisri, W; Honda, R; Yamamoto, K

    2013-08-01

    Purple non-sulfur bacteria (PNSB) were cultivated by food industry wastewater in the anaerobic membrane photo-bioreactor. Organic removal and biomass production and characteristics were accomplished via an explicit examination of the long term performance of the photo-bioreactor fed with real wastewater. With the support of infra-red light transmitting filter, PNSB could survive and maintain in the system even under the continual fluctuations of influent wastewater characteristics. The average BOD and COD removal efficiencies were found at the moderate range of 51% and 58%, respectively. Observed photosynthetic biomass yield was 0.6g dried solid/g BOD with crude protein content of 0.41 g/g dried solid. Denaturing gradient gel electrophoretic analysis (DGGE) and 16S rDNA sequencing revealed the presence of Rhodopseudomonas palustris and significant changes in the photosynthetic bacterial community within the system. PMID:23489563

  15. Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment.

    Science.gov (United States)

    Tong, Juan; Liu, Jibao; Zheng, Xiang; Zhang, Junya; Ni, Xiaotang; Chen, Meixue; Wei, Yuansong

    2016-10-01

    The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency. PMID:26970692

  16. In Vitro Activities of Cefminox against Anaerobic Bacteria Compared with Those of Nine Other Compounds

    OpenAIRE

    Hoellman, Dianne B.; Spangler, Sheila K.; Jacobs, Michael R.; Appelbaum, Peter C.

    1998-01-01

    The agar dilution MIC method was used to test the activity of cefminox, a β-lactamase-stable cephamycin, compared with those of cefoxitin, cefotetan, moxalactam, ceftizoxime, cefotiam, cefamandole, cefoperazone, clindamycin, and metronidazole against 357 anaerobes. Overall, cefminox was the most active β-lactam, with an MIC at which 50% of isolates are inhibited (MIC50) of 1.0 μg/ml and an MIC90 of 16.0 μg/ml. Other β-lactams were less active, with respective MIC50s and MIC90s of 2.0 and 64.0...

  17. Effect of the growth of anaerobic bacteria on the surface pH of solid media.

    OpenAIRE

    Watt, B; Brown, F V

    1985-01-01

    Changes in surface pH occurring after varying periods of anaerobic incubation were measured for a total of 23 test solid media. There was little change in the surface pH of uninoculated plates, but plates inoculated with Bacteriodes fragilis showed a striking fall in pH, to pH 5 in the case of some of the test media. The problems of controlling the surface pH of solid media are discussed and possible methods of control are considered.

  18. Microbiological studies of an anaerobic baffled reactor: microbial community characterisation and deactivation of health-related indicator bacteria.

    Science.gov (United States)

    Lalbahadur, T; Pillay, S; Rodda, N; Smith, M; Buckley, C; Holder, F; Bux, F; Foxon, K

    2005-01-01

    This WRC funded project has studied the appropriateness of the ABR (anaerobic baffled reactor) for on-site primary sanitation in low-income communities. A 3,000 L pilot reactor was located at the Kingsburgh wastewater treatment plant south of Durban, South Africa. Feed to the reactor was raw domestic wastewater containing a significant proportion of particulate organic matter. The compartments of the ABR were routinely monitored for pH, COD, and gas production, among other physical-chemical determinants. The microbial population in each compartment was analysed by fluorescent in situ hybridisation, using general oligonucleotide probes for eubacteria and archeae and a suite of 10 genera or family specific probes. Scanning electron microscopy was conducted on the sludge fraction of each compartment. Mixed fractions from each compartment were also analysed for health-related indicator bacteria (total coliforms and E. coli). Results indicated that methanogenesis was not occurring to the expected extent in the latter compartments, and that this was probably due to a hydraulic load limitation. This contrasted with earlier studies on industrial effluent, for which the organic load was exclusively in soluble form. Inactivation of health-related indicator bacteria was less than 1 log, indicating the need for an additional post-treatment of the effluent to protect community health. PMID:16104417

  19. Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: a perspective autotrophic nitrogen pollution control technology.

    Science.gov (United States)

    Zhang, Meng; Zheng, Ping; Wang, Ru; Li, Wei; Lu, Huifeng; Zhang, Jiqiang

    2014-12-01

    The nitrate-dependent anaerobic ferrous oxidation (NAFO) is an important discovery in the fields of microbiology and geology, which is a valuable biological reaction since it can convert nitrate into nitrogen gas, removing nitrogen from wastewater. The research on NAFO can promote the development of novel autotrophic biotechnologies for nitrogen pollution control and get a deep insight into the biogeochemical cycles. In this work, batch experiments were conducted with denitrifying bacteria as biocatalyst to investigate the performance of nitrogen removal by NAFO. The results showed that the denitrifying bacteria were capable of chemolithotrophic denitrification with ferrous salt as electron donor, namely NAFO. And the maximum nitrate conversion rates (qmax) reached 57.89 mg (g VSS d)−1, which was the rate-limiting step in NAFO. Fe/N ratio, temperature and initial pH had significant influences on nitrogen removal by NAFO process, and their optimal values were 2.0 °C, 30.15 °C and 8.0 °C, respectively. PMID:25461924

  20. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    Science.gov (United States)

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and

  1. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    Science.gov (United States)

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  2. An antibacterial assay of aqueous extract of garlic against anaerobic/microaerophilic and aerobic bacteria

    OpenAIRE

    Elsom, Giles K.; Hide, Denis; Salmon, David M.

    2011-01-01

    Both the minimum inhibitory and minimum bactericidal concentration (expressed in terms of thiosulphinate concentration) of an aqueous extract of garlic was determined against nine species of bacteria. Helicobacter pylori proved to be extremely sensitive to garlic extract, whilst Bacteroides fragilis, Clostridium perfringens, Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium and Staphylococcus aureus all were moderately sensitive to the garlic extract treat...

  3. Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina alterniflora.

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Yin, Guoyu; Gao, Juan; Jiang, Xiaofen; Lin, Xianbiao; Li, Xiaofei; Yu, Chendi; Wang, Rong

    2016-09-01

    Anaerobic ammonium oxidation (anammox) as an important nitrogen removal pathway has been investigated in intertidal marshes. However, the rhizosphere-driven anammox process in these ecosystems is largely overlooked so far. In this study, the community dynamics and activities of anammox bacteria in the rhizosphere and non-rhizosphere sediments of salt-marsh grass Spartina alterniflora (a widely distributed plant in estuaries and intertidal ecosystems) were investigated using clone library analysis, quantitative PCR assay, and isotope-tracing technique. Phylogenetic analysis showed that anammox bacterial diversity was higher in the non-rhizosphere sediments (Scalindua and Kuenenia) compared with the rhizosphere zone (only Scalindua genus). Higher abundance of anammox bacteria was detected in the rhizosphere (6.46 × 10(6)-1.56 × 10(7) copies g(-1)), which was about 1.5-fold higher in comparison with that in the non-rhizosphere zone (4.22 × 10(6)-1.12 × 10(7) copies g(-1)). Nitrogen isotope-tracing experiments indicated that the anammox process in the rhizosphere contributed to 12-14 % N2 generation with rates of 0.43-1.58 nmol N g(-1) h(-1), while anammox activity in the non-rhizosphere zone contributed to only 4-7 % N2 production with significantly lower activities (0.28-0.83 nmol N g(-1) h(-1)). Overall, we propose that the rhizosphere microenvironment in intertidal marshes might provide a favorable niche for anammox bacteria and thus plays an important role in nitrogen cycling. PMID:27225476

  4. In vitro activities of cefminox against anaerobic bacteria compared with those of nine other compounds.

    Science.gov (United States)

    Hoellman, D B; Spangler, S K; Jacobs, M R; Appelbaum, P C

    1998-03-01

    The agar dilution MIC method was used to test the activity of cefminox, a beta-lactamase-stable cephamycin, compared with those of cefoxitin, cefotetan, moxalactam, ceftizoxime, cefotiam, cefamandole, cefoperazone, clindamycin, and metronidazole against 357 anaerobes. Overall, cefminox was the most active beta-lactam, with an MIC at which 50% of isolates are inhibited (MIC50) of 1.0 microg/ml and an MIC90 of 16.0 microg/ml. Other beta-lactams were less active, with respective MIC50s and MIC90s of 2.0 and 64.0 microg/ml for cefoxitin, 2.0 and 128.0 microg/ml for cefotetan, 2.0 and 64.0 microg/ml for moxalactam, 4.0 and > 128.0 microg/ml for ceftizoxime, 16.0 and > 128.0 microg/ml for cefotiam, 8.0 and >128.0 microg/ml for cefamandole, and 4.0 and 128.0 microg/ml for cefoperazone. The clindamycin MIC50 and MIC90 were 0.5 and 8.0 microg/ml, respectively, and the metronidazole MIC50 and MIC90 were 1.0 and 4.0 microg/ml, respectively. Cefminox was especially active against Bacteroides fragilis (MIC90, 2.0 microg/ml), Bacteroides thetaiotaomicron (MIC90, 4.0 microg/ml), fusobacteria (MIC90, 1.0 microg/ml), peptostreptococci (MIC90, 2.0 microg/ml), and clostridia, including Clostridium difficile (MIC90, 2.0 microg/ml). Time-kill studies performed with six representative anaerobic species revealed that at the MIC all compounds except ceftizoxime were bactericidal (99.9% killing) against all strains after 48 h. At 24 h, only cefminox and cefoxitin at 4x the MIC and cefoperazone at 8x the MIC were bactericidal against all strains. After 12 h, at the MIC all compounds except moxalactam, ceftizoxime, cefotiam, cefamandole, clindamycin, and metronidazole gave 90% killing of all strains. After 3 h, cefminox at 2 x the MIC produced the most rapid effect, with 90% killing of all strains. PMID:9517922

  5. Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass.

    Science.gov (United States)

    Hernández, D; Riaño, B; Coca, M; García-González, M C

    2013-05-01

    Two combined processes were studied in order to produce second generation biofuels: microalgae biomass production and its further use to produce biogas. Two 5 L photobioreactors for treating wastewater from a potato processing industry (from now on RPP) and from a treated liquid fraction of pig manure (from now on RTE) were inoculated with Chlorella sorokiniana and aerobic bacteria at 24±2.7 °C and 6000 lux for 12 h per day of light supply. The maximum biomass growth was obtained for RTE wastewater, with 26.30 mg dry weight L(-1) d(-1). Regarding macromolecular composition of collected biomass, lipid concentration reached 30.20% in RPP and 4.30% in RTE. Anaerobic digestion results showed that methane yield was highly influenced by substrate/inoculum ratio and by lipids concentration of the biomass, with a maximum methane yield of 518 mL CH4 g COD(-1)added using biomass with a lipid content of 30% and a substrate/inoculum ratio of 0.5. PMID:23069610

  6. Anaerobic thermophilic bacteria isolated from a Venezuelan oil field and its potential use in microbial improved oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Trebbau, G.; Fernandez, B.; Marin, A. [INTEVEP S.A., Caracas (Venezuela)

    1995-12-31

    The objective of this work is to determine the ability of indigenous bacteria from a Venezuelan oil field to grow under reservoir conditions inside a porous media, and to produce metabolites capable of recovering residual crude oil. For this purpose, samples of formation waters from a central-eastern Venezuelan oil reservoir were enriched with different carbon sources and a mineral basal media. Formation water was used as a source of trace metals. The enrichments obtained were incubated at reservoir temperature (71{degrees}C), reservoir pressure (1,200 psi), and under anaerobic conditions for both outside and inside porous media (Berea core). Growth and metabolic activity was followed outside porous media by measuring absorbance at 660 nm, increases in pressure, and decreases in pH. Inside porous media bacterial activity was determined by visual examination of the produced waters (gas bubbles and bacterial cells). All the carbohydrates tested outside porous media showed good growth at reservoir conditions. The pH was lowered, gases such as CO{sub 2} and CH{sub 4} were identified by GC. Surface tension was lowered in some enrichments by 30% when compared to controls. Growth was decreased inside porous media, but gases were produced and helped displace oil. In addition, 10% residual oil was recovered from the Berea core. Mathematical modeling was applied to the laboratory coreflood experiment to evaluate the reproducibility of the results obtained.

  7. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms. PMID:25561057

  8. Study of the In Vitro Activities of Rifaximin and Comparator Agents against 536 Anaerobic Intestinal Bacteria from the Perspective of Potential Utility in Pathology Involving Bowel Flora▿

    OpenAIRE

    Finegold, S M; Molitoris, D.; Väisänen, M.-L.

    2008-01-01

    Rifaximin, ampicillin-sulbactam, neomycin, nitazoxanide, teicoplanin, and vancomycin were tested against 536 strains of anaerobic bacteria. The overall MIC of rifaximin at which 50% of strains were inhibited was 0.25 μg/ml. Ninety percent of the strains tested were inhibited by 256 μg/ml of rifaximin or less, an activity equivalent to those of teicoplanin and vancomycin but less than those of nitazoxanide and ampicillin-sulbactam.

  9. In vitro activity of cefmetazole, cefotetan, amoxicillin-clavulanic acid, and other antimicrobial agents against anaerobic bacteria from endometrial cultures of women with pelvic infections.

    OpenAIRE

    Ohm-Smith, M J; Sweet, R. L.

    1987-01-01

    The MICs of the new antimicrobial agents cefmetazole, cefotetan, and amoxicillin-clauvulanic acid were compared with the MICs of other antimicrobial agents against anaerobic bacteria from endometrial cultures from women with pelvic inflammatory disease or endometritis. The activity of cefmetazole was similar to that of cefoxitin and generally greater than that of cefotetan. Amoxicillin-clavulanic acid was generally more active than all cephamycins tested.

  10. Study of the In Vitro Activities of Rifaximin and Comparator Agents against 536 Anaerobic Intestinal Bacteria from the Perspective of Potential Utility in Pathology Involving Bowel Flora▿

    Science.gov (United States)

    Finegold, S. M.; Molitoris, D.; Väisänen, M.-L.

    2009-01-01

    Rifaximin, ampicillin-sulbactam, neomycin, nitazoxanide, teicoplanin, and vancomycin were tested against 536 strains of anaerobic bacteria. The overall MIC of rifaximin at which 50% of strains were inhibited was 0.25 μg/ml. Ninety percent of the strains tested were inhibited by 256 μg/ml of rifaximin or less, an activity equivalent to those of teicoplanin and vancomycin but less than those of nitazoxanide and ampicillin-sulbactam. PMID:18955526

  11. Fermentation of Rice Straw Uses Mix Inoculum of Anaerobe Facultative Bacteria Isolate from Buffalo Rumen

    International Nuclear Information System (INIS)

    Rice straw quality could be increased as feed by fermentation which has been mixed with bacteria inoculum from buffalo rumen. This experiment used rice straw from Atomita 4, four treatments and one control, i.e. A (rice straw, molasses 5 %, urea 5 %, and inoculum 10 %), B (rice straw, molasses 5 %, and urea 5 %), C (rice straw, molasses 5 %, and inoculum 10 %), D (rice straw and molasses 5 %), and K (control) have been used in this experiment. The parameters were digestibility of dry matter and organic matter, VFA, ammonia and in vitro gas production. The result, showed that the highest gas production, dry matter and organic matter digestibility occurred on A i.e. 17.48 ml/200 mg, 57.78%, and 52.39 %. The highest ammonia occurred on D (32.99 mg/100 ml) and the highest VFA occurred on C (12.36 mmol/100 ml). The concentration of ammonia and VFA of A significant to treatment of D and C). It may be concluded that the A treatment is the best and have potency to be develop. (author)

  12. Use of anaerobic green fluorescent protein versus green fluorescent protein as reporter in lactic acid bacteria.

    Science.gov (United States)

    Landete, José M; Langa, Susana; Revilla, Concepción; Margolles, Abelardo; Medina, Margarita; Arqués, Juan L

    2015-08-01

    Lactic acid bacteria (LAB) are commonly used in the production of fermented and probiotic foods. Development of molecular tools to discriminate the strains of interest from the endogenous microbiota in complex environments like food or gut is of high interest. Green fluorescent protein (GFP)-like chromophores strictly requires molecular oxygen for maturation of fluorescence, which restrict the study of microorganisms in low-oxygen environments. In this work, we have developed a noninvasive cyan-green fluorescent based reporter system for real-time tracking of LAB that is functional under anoxic conditions. The evoglow-Pp1 was cloned downstream from the promoters D-alanyl-D-alanine carboxypeptidase and elongation factor Tu of Lactobacillus reuteri CECT925 using pNZ8048 and downstream of the lactococcal P1 promoter using pT1NX. The classical gfp was also cloned in pT1NX. These recombinant expression vectors were electroporated into Lactococccus, Lactobacillus, and Enterococcus strains with biotechnological and/or probiotic interests to assess and compare their functionality under different conditions of oxygen and pH. The expression was analyzed by imaging and fluorometric methods as well as by flow cytometry. We demonstrate that reporter systems pNZ:TuR-aFP and pT1-aFP are two versatile molecular markers for monitoring LAB in food and fecal environments without the potential problems caused by oxygen and pH limitations, which could be exploited for in vivo studies. Production of the fluorescent protein did not disturb any important physiological properties of the parental strains, such as growth rate, reuterin, or bacteriocin production. PMID:26129953

  13. Anaerobic BTEX degradation in oil sands tailings ponds: Impact of labile organic carbon and sulfate-reducing bacteria.

    Science.gov (United States)

    Stasik, Sebastian; Wick, Lukas Y; Wendt-Potthoff, Katrin

    2015-11-01

    The extraction of bitumen from oil sands in Alberta (Canada) produces volumes of tailings that are pumped into large anaerobic settling-basins. Beside bitumen, tailings comprise fractions of benzene, toluene, ethylbenzene and xylenes (BTEX) that derive from the application of industrial solvents. Due to their toxicity and volatility, BTEX pose a strong concern for gas- and water-phase environments in the vicinity of the ponds. The examination of two pond profiles showed that concentrations of indigenous BTEX decreased with depth, pointing at BTEX transformation in situ. With depth, the relative contribution of ethylbenzene and xylenes to total BTEX significantly decreased, while benzene increased relatively from 44% to 69%, indicating preferential hydrocarbon degradation. To predict BTEX turnover and residence time, we determined BTEX degradation rates in tailings of different depths in a 180-days microcosm study. In addition, we evaluated the impact of labile organic substrates (e.g. acetate) generally considered to stimulate hydrocarbon degradation and the contribution of sulfate-reducing bacteria (SRB) to BTEX turnover. In all depths, BTEX concentrations significantly decreased due to microbial activity, with degradation rates ranging between 4 and 9 μg kg(-1) d(-1). BTEX biodegradation decreased linearly in correlation with initial concentrations, suggesting a concentration-dependent BTEX transformation. SRB were not significantly involved in BTEX consumption, indicating the importance of methanogenic degradation. BTEX removal decreased to 70-90% in presence of organic substrates presumptively due to an accumulation of acetate that lowered BTEX turnover due to product inhibition. In those assays SRB slightly stimulated BTEX transformation by reducing inhibitory acetate levels. PMID:26066083

  14. Comparison of two transport systems available in Japan (TERUMO kenkiporter II and BBL Port-A-Cul) for maintenance of aerobic and anaerobic bacteria.

    Science.gov (United States)

    Fujimoto, Daichi; Takegawa, Hiroshi; Doi, Asako; Sakizono, Kenji; Kotani, Yoko; Miki, Kanji; Naito, Takuya; Niki, Marie; Miyamoto, Junko; Tamai, Koji; Nagata, Kazuma; Nakagawa, Atsushi; Tachikawa, Ryo; Otsuka, Kojiro; Katakami, Nobuyuki; Tomii, Keisuke

    2014-01-01

    The kenkiporter II (KP II) transport system is commonly used in many hospitals in Japan for transporting bacterial specimens to microbiology laboratories. Recently, the BBL Port-A-Cul (PAC) fluid vial became available. However, no reports thus far have compared the effectiveness of these two transport systems. We chose 4 aerobic and facultative anaerobic bacteria as well as 8 anaerobic organisms, and prepared three strains of each bacterium in culture media for placement into PAC and KP II containers. We compared the effectiveness of each transport system for preserving each organism at 6, 24, and 48 h after inoculation at room temperature. Thirty-six strains out of 12 bacteria were used in this study. The PAC system yielded better recovery in quantity of organisms than the KP II system at 6, 24 and 48 h. More strains were significantly recovered with the PAC system than with the KP II at 24 h (36/36 vs. 23/36, P vs. 12/36, P < 0.001). The PAC system was better in the recovery of viable organisms counted at 24 and 48 h after inoculation compared with the KP II system. The PAC system may be recommended for the transfer of bacterial specimens in clinical settings. PMID:24462420

  15. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Elvert, M.; Boetius, A.; Knittel, K.; Jørgensen, BB

    2003-01-01

    Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon into...... bacterial biomass is indicated by carbon isotope values of specific fatty acids as low as -103parts per thousand. Specific fatty acids released from bacterial membranes include C(16:1omega5c) , C(17:1omega6c) , and cyC(17:0omega5,6) , all of which have been fully characterized by mass spectrometry. These...

  16. Evaluation by electron microscopy and anaerobic culture of types of rumen bacteria associated with digestion of forage cell walls.

    OpenAIRE

    Akin, D E

    1980-01-01

    Different morphological types of rumen bacteria which degraded cell walls of forage grasses with various in vitro digestibilities were evaluated with electron microscopy. The majority of these bacteria (i.e., about 70% or more) consisted of two distinct types: (i) encapsulated cocci and (ii) irregularly shaped bacteria, resembling major fiber digesters found in the rumen. Each type was capable of degrading structurally intact cell walls. Differences (P less than or equal to 0.02) in the perce...

  17. Aerobe and anaerobe facultative Gram-negative bacteria rod-shaped in the ruminal fluid of dairy cattle fed with different diets containing tropical forages

    Directory of Open Access Journals (Sweden)

    CES Freitas

    2014-01-01

    Full Text Available The aim of this work was to analyse the population of aerobe and anaerobe facultative Gram-negative rod-shaped in the ruminal fluid of dairy cattle and calves fed with different sources of tropical forage. Samples of ruminal fluid were collected from 30 cows fed with sorghum silage, 32 cows fed with Brachiaria brizantha pasture, 12 calves fed with sorghum silage, and 11 calves fed with sugarcane. Fifteen ml of ruminal fluid were collected by sterile catheter and syringe puncture to the rumen. After serial decimal dilutions, samples were inoculated in plates containing MacConkey agar and incubated at 37 °C for 72 h. Calves fed with sorghum silage showed higher detection rate and larger population of these bacteria (8.4 X 10(6 colony forming units CFU/ml when compared with adult cows fed with the same forage (1.4 X 10(5 CFU/ml. The most frequent genera identified in all groups were Enterobacter, Klebsiella, and Proteus. The most frequently identified bacteria in pasture-fed cows was Enterobacter spp., while Klebsiella spp. was the most frequently identified bacteria in cows fed with sorghum silage. Enterobacter spp. and Proteus spp. were more frequently observed in isolates from calves (P < 0.01. Future studies should clarify the differences between these populations.

  18. [Strict anaerobic bacteria: comparative study of various beta-lactam antibiotics in combination with tazobactam or sulbactam].

    Science.gov (United States)

    Dubreuil, L; Sedallian, A

    1991-05-01

    The minimal inhibitory concentrations of piperacillin (PIP) or cefotaxime (CTX) alone or in combination with tazobactam (TAZ) were determined against 168 anaerobes. All the strains were inhibited by PIP + TAZ, but certain strains resistant to CTX + TAZ were found among B. fragilis, Eubacterium and Peptostreptococcus. The second investigations included 30 strains of Bacteroides fragilis. Concentrations of 2, 4 and 8 mg/l of TAZ and sulbactam (SUL) were combined with piperacillin or cefotaxime. The two beta-lactamase-inhibitors had similar activities when used at 2 or 4 mg/l, but at 8 mg/l TAZ was more active than SUL. All B. fragilis strains were inhibited by PIP + TAZ or PIP + SUL, whereas resistance was observed with CTX + SUL or CTX + TAZ. On the same strains the activities of 6 beta-lactams (PIP, mezlocillin, ticarcillin (TIC), CTX, ceftriaxone and ceftazidime) were determined in combination with either SUL 4 mg/l or TAZ 8 mg/l. Only PIP or TIC + SUL or TAZ were able to inhibit at least 90% of tested strains. No resistance could be detected with PIP + TAZ combination. As conclusion, the two inhibitors when combined with PIP or TIC offered greater activity against both Gram positive or negative anaerobes and PIP + TAZ remained the more potent combination. PMID:1652729

  19. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-11-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.

  20. Molecular Fingerprint and Dominant Environmental Factors of Nitrite-Dependent Anaerobic Methane-Oxidizing Bacteria in Sediments from the Yellow River Estuary, China

    Science.gov (United States)

    Yan, Pengze; Li, Mingcong; Wei, Guangshan; Li, Han; Gao, Zheng

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is performed by “Candidatus Methylomirabilis oxyfera” (M. oxyfera), which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×103 to 2.10±0.13×105 copies g-1 (dry weight), and the pmoA gene abundance ranged from 8.63±0.50×103 to 1.83±0.18×105 copies g-1 (dry weight). A correlation analysis showed that the total organic carbon (TOC) and ammonium (NH4+) as well as the ratio of total phosphorus to total nitrogen (TP/TN) influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems. PMID:26368535

  1. Diverse anaerobic Cr(VI) tolerant bacteria from Cr(VI)-contaminated 100H site at Hanford

    Science.gov (United States)

    Chakraborty, R.; Phan, R.; Lam, S.; Leung, C.; Brodie, E. L.; Hazen, T. C.

    2007-12-01

    Hexavalent Chromium [Cr(VI)] is a widespread contaminant found in soil, sediment, and ground water. Cr(VI) is more soluble, toxic, carcinogenic, and mutagenic compared to its reduced form Cr(III). In order to stimulate microbially mediated reduction of Cr(VI), a poly-lactate compound HRC was injected into the chromium contaminated aquifers at site 100H at Hanford. Based on the results of the bacterial community composition using high-density DNA microarray analysis of 16S rRNA gene products, we recently investigated the diversity of the dominant anaerobic culturable microbial population present at this site and their role in Cr(VI) reduction. Positive enrichments set up at 30°C using specific defined anaerobic media resulted in the isolation of an iron reducing isolate strain HAF, a sulfate reducing isolate strain HBLS and a nitrate reducing isolate, strain HLN among several others. Preliminary 16S rDNA sequence analysis identifies strain HAF as Geobacter metallireducens, strain HLN as Pseudomonas stutzeri and strain HBLS as a member of Desulfovibrio species. Strain HAF isolated with acetate as the electron donor utilized propionate, glycerol and pyruvate as alternative carbon sources, and reduced metals like Mn(IV) and Cr(VI). Growth was optimal at 37°C, pH of 6.5 and 0% salinity. Strain HLN isolated with lactate as electron donor utilized acetate, glycerol and pyruvate as alternative carbon sources, and reduced metals like Mn(IV) and Cr(VI). Optimal growth was observed at 37°C, at a pH of 7.5 and 0.3% salinity. Anaerobic active washed cell suspension of strain HLN reduced almost 95 micromolar Cr(VI) within 4 hours relative to controls. Further, with 100 micromolar Cr(VI) as the sole electron acceptor, cells of strain HLN grew to cell numbers of 4.05X 107/ml over a period of 24hrs after an initial lag, demonstrating direct enzymatic Cr(VI) reduction by this species. 10mM lactate served as the sole electron donor. These results demonstrate that Cr

  2. The antimicrobial action of low molecular weight chitosan and chitooligosaccharides on anaerobic bacteria isolated from human faeces

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Jiří; Koppová, Ingrid; Tishchenko, Galina

    Venice : Universita Politechnica, 2009. s. 142-143. [EUCHIS 2009. 23.05.2009-26.05.2009, San Servolo Island] R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z40500505 Keywords : chitosan * anaerbic bacteria * human faeces Subject RIV: EB - Genetics ; Molecular Biology

  3. Anaerobes beyond anaerobic digestion

    OpenAIRE

    Sousa, D. Z.; Pereira, M A; Alves, M.M.

    2009-01-01

    Anaerobic microorganisms are widespread in nature. Sediments, gastrointestinal tracks, volcanic vents, geothermal sources are examples of habitats where anaerobic metabolism prevail, in some cases at extreme temperature, pH and pressure conditions. In such microbial ecosystems waste of some is food for others in a true integrated structure. Anaerobic microorganisms are able to use a wide variety of organic and inorganic compounds. Recalcitrant compounds, such as hydrocarbons, a...

  4. [Comparative study, using 3 methods, of the sensitivity to metronidazole and ornidazole of anaerobic or related bacteria].

    Science.gov (United States)

    Gallusser, A

    1983-01-01

    A comparative study of the sensitivity to metronidazole and ornidazole of 127 anaerobic or microaerophilic strains isolated from various clinical samples showed that the activity of both products was similar: the distribution of sensitive and resistant strains was identical. However, the in vitro activity level of metronidazole was slightly higher. This difference, though statistically significant, had no incidence on therapeutic indications. The determination of sensitivity towards the two nitroimidazoles was carried out by three methods: broth dilution and agar diffusion for metronidazole; and broth dilution and disk-broth for ornidazole. Two of these methods, broth dilution and disk-broth, gave concordant results. Conversely, the limits of the agar diffusion technique were shown to be related to independent biological factors such as bacterial motility and slow growth rate. The poor accuracy of this method limits its use in detecting total resistance. PMID:6651124

  5. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors

    Science.gov (United States)

    Baesman, S.M.; Bullen, T.D.; Dewald, J.; Zhang, Dongxiao; Curran, S.; Islam, F.S.; Beveridge, T.J.; Oremland, R.S.

    2007-01-01

    Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [??] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods (???10-nm diameter by 200-nm length), which cluster together, forming larger (???1,000-nm) rosettes composed of numerous individual shards (???100-nm width by 1,000-nm length). In contrast, Sulfurospirillium barnesii forms extremely small, irregularly shaped nanospheres (diameter electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  6. Fate of parasites and pathogenic bacteria in an anaerobic hybrid reactor followed by downflow hanging sponge system treating domestic wastewater.

    Science.gov (United States)

    Tawfik, A; El-Zamel, T; Herrawy, A; El-Taweel, G

    2015-08-01

    Treatment of domestic wastewater in a pilot-scale upflow anaerobic hybrid (AH) reactor (0.9 m(3)) in combination with downflow hanging sponge (DHS) system (1.3 m(3)) was investigated. The combined system was operated at a hydraulic retention time (HRT) of 6.0 h for AH and 3.2 h for DHS system. The total process achieved a substantial reduction of COD(total) resulting in an average effluent concentration of only 39 ± 12 mg/l. Moreover, 90 ± 7% of ammonia was eliminated in the DHS system. Nitrate and nitrite data revealed that 49 ± 3.2% of the ammonia removal occurred through nitrification process. The removal efficiency of total coliform (TC), fecal coliform (FC), and fecal streptococci (FS) was relatively low in the AH reactor. The major portion of TC, FC, and FS was removed in the DHS system resulting to an average count of 1.7 × 10(5) ± 1.1 × 10(2)/100 ml for TC, 7.1 × 10(4) ± 1.2 × 10(2)/100 ml for FC, and 7.5 × 10(4) ± 1.3 × 10(2)/100 ml for FS in the final effluent. Likely, the combined system was very efficient for the removal of protozoological species such as sarcodins (Entamoeba cysts), flagellates (Giardia cysts), and ciliates (Balantidium cysts). This was not the case for coccidia (Cryptosporidium oocysts), where 36.4 and 27.3% were detected in the effluent of AH and DHS system, respectively. Only 10% of intestinal nematode and cestode ova were recorded in the effluent of AH reactor and were completely removed in the DHS system. PMID:25893628

  7. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors.

    Science.gov (United States)

    Baesman, Shaun M; Bullen, Thomas D; Dewald, James; Zhang, Donghui; Curran, Seamus; Islam, Farhana S; Beveridge, Terry J; Oremland, Ronald S

    2007-04-01

    Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [epsilon] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods ( approximately 10-nm diameter by 200-nm length), which cluster together, forming larger ( approximately 1,000-nm) rosettes composed of numerous individual shards ( approximately 100-nm width by 1,000-nm length). In contrast, Sulfurospirillum barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. PMID:17277198

  8. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-05-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism, substrate affinity and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal was examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species causes the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, neither hydrogen nor formate is exchanged fast enough between the consortia partners to achieve measured rates of metabolic activity, but that acetate exchange might support rates that approach those observed.

  9. Mono- and dialkyl glycerol ether lipids in anaerobic bacteria: biosynthetic insights from the mesophilic sulfate reducer Desulfatibacillum alkenivorans PF2803T.

    Science.gov (United States)

    Grossi, Vincent; Mollex, Damien; Vinçon-Laugier, Arnauld; Hakil, Florence; Pacton, Muriel; Cravo-Laureau, Cristiana

    2015-05-01

    Bacterial glycerol ether lipids (alkylglycerols) have received increasing attention during the last decades, notably due to their potential role in cell resistance or adaptation to adverse environmental conditions. Major uncertainties remain, however, regarding the origin, biosynthesis, and modes of formation of these uncommon bacterial lipids. We report here the preponderance of monoalkyl- and dialkylglycerols (1-O-alkyl-, 2-O-alkyl-, and 1,2-O-dialkylglycerols) among the hydrolyzed lipids of the marine mesophilic sulfate-reducing proteobacterium Desulfatibacillum alkenivorans PF2803T grown on n-alkenes (pentadec-1-ene or hexadec-1-ene) as the sole carbon and energy source. Alkylglycerols account for one-third to two-thirds of the total cellular lipids (alkylglycerols plus acylglycerols), depending on the growth substrate, with dialkylglycerols contributing to one-fifth to two-fifths of the total ether lipids. The carbon chain distribution of the lipids of D. alkenivorans also depends on that of the substrate, but the chain length and methyl-branching patterns of fatty acids and monoalkyl- and dialkylglycerols are systematically congruent, supporting the idea of a biosynthetic link between the three classes of compounds. Vinyl ethers (1-alken-1'-yl-glycerols, known as plasmalogens) are not detected among the lipids of strain PF2803T. Cultures grown on different (per)deuterated n-alkene, n-alkanol, and n-fatty acid substrates further demonstrate that saturated alkylglycerols are not formed via the reduction of hypothetic alken-1'-yl intermediates. Our results support an unprecedented biosynthetic pathway to monoalkyl/monoacyl- and dialkylglycerols in anaerobic bacteria and suggest that n-alkyl compounds present in the environment can serve as the substrates for supplying the building blocks of ether phospholipids of heterotrophic bacteria. PMID:25724965

  10. One carbon metabolism in anaerobic bacteria: Regulation of carbon and electron flow during organic acid production: Progress report, February 1, 1987-February 1, 1988

    International Nuclear Information System (INIS)

    These studies concern the fundamental biochemical mechanisms that control carbon and electron flow in anaerobic bacteria that conserve energy when coupling hydrogen consumption to the production of acetic, propionic, or butyric acids. Two acidogens, Propionispira arboris and Butyribacterium methylotrophicum were chosen as model systems to understand the function of oxidoreductases and electron carriers in the regulation of hydrogen metabolism and single carbon metabolism. In P. arboris, H2 consumption was linked to the inhibition of CO2 production and an increase in the propionate/acetate rate; whereas, H2 consumption was linked to a stimulation of CO2 consumption and an increase in the butyrate/acetate ratio in B. methylotrophicum. We report studies on the enzymes involved in the regulation of singe carbon metabolism, the enzyme activities and pathways responsible for conversion of multicarbon components to acetate and propionate or butyrate, and how low pH inhibits H2 and acetic acid production in Sarcina ventriculi as a consequence of hydrogenase regulation. 9 refs

  11. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer.

    Science.gov (United States)

    Huang, Haining; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Wan, Rui; Yang, Shouye

    2016-10-01

    Although pH value has been widely regarded as an important factor that affects resource recovery of waste sludge, the potential influence of diverse pHs on the distribution of tetracycline resistance genes (TRGs) during sludge anaerobic treatment is largely unknown. Here we reported that in the range of pH 4-10, 0.58-1.18 log unit increase of target TRGs was observed at pH 4, compared with that at pH 7, while 0.70-1.31 log unit further removal were obtained at pH 10. Mechanism study revealed that varied pHs not only altered the community structures of tetracycline resistant bacteria (TRB), but also changed their relative abundances, benefitting the propagation (acidic pHs) or attenuation (alkaline pHs) of TRB. Further investigation indicated that the amount and gene-possessing abilities of key genetic vectors for horizontal TRGs transfer were greatly promoted at acidic pHs but restricted under alkaline conditions. PMID:27485281

  12. Metabolic characteristics of anaerobic ammonium oxidizing bacteria with organic matters%有机物作用的厌氧氨氧化菌代谢特性研究进展

    Institute of Scientific and Technical Information of China (English)

    孙佳晶; 张蕾; 张超; 陈晓波

    2012-01-01

    厌氧氨氧化(Anammox)工艺是近年来废水生物脱氮领域的新技术,非常适合于处理含有机物的废水。本文介绍了厌氧氨氧化工艺的特点,详细介绍了有机物对厌氧氨氧化菌的抑制和促进机制。有机物对厌氧氨氧化菌的抑制主要来自两个方面:一是有机物促进异养菌反硝化菌的大量繁殖形成基质竞争抑制;二是废水中的醇类、抗生素等有毒有害有机物会对厌氧氨氧化菌产生毒性抑制。有机物对厌氧氨氧化菌代谢的促进作用也有两种:一是特定的有机物可作为能源被厌氧氨氧化菌利用,促进厌氧氨氧化菌的代谢;二是通过控制废水处理系统中的碳氮比,使厌氧氨氧化菌和反硝化菌在废水处理系统中协同互生。最后指出开发有毒有机废水预处理、驯化厌氧氨氧化污泥、菌种流加等是解决问题的途径。%Anaerobic ammonium oxidation(Anammox),a new biological nitrogen removal process in wastewater treatment,is very suitable for the treatment of wastewater containing organic matters.This paper introduces the characteristics of anaerobic ammonium oxidation process,especially the inhibitive and stimulative mechanisms of organic matters to the bacteria.Two mechanisms are attributed to organic matters induced inhibition,one is heterotrophic denitrifying bacteria promoted by organic matters can compete with anammox bacteria for substrates;the other one is that alcohols,antibiotics and other toxic organics in wastewater leads to toxic inhibition to anaerobic ammonium oxidation bacteria.The stimulation of organic matters to anaerobic ammonium oxidation bacteria also can be explained in two aspects:one is that certain organic matters can be used by anaerobic ammonium oxidation bacteria as energy source,and thus enhance their metabolism;the other is anaerobic ammonium oxidation bacteria and denitrifying bacteria can form symbiote with proper C:N ratio.The pretreatment of

  13. Techniques for anaerobic susceptibility testing.

    Science.gov (United States)

    Thornsberry, C

    1977-03-01

    Minimal inhibitory concentrations (MICs) of antimicrobial agents for anaerobic bacteria can be determined by agar dilution and broth dilution (including microdilution) techniques. If MICs are not determined routinely, the disk broth or category methods are recommended for routine use. The Bauer-Kirby disk diffusion method and its interpretative standards should not be used for anaerobes. PMID:850089

  14. Denitrification by extremely halophilic bacteria

    Science.gov (United States)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  15. Anaerobic, solvent-producing bacteria

    OpenAIRE

    Montoya Castaño, Dolly

    2005-01-01

    This work’s main goal was to study strategies for the molecular and enzymatic characterisation of new solvent-producing mesophylic Clostridium isolates from Colombia and ascertain their solvent producing biotechnological potential by using a cheap agro-industrial waste as carbon source. Molecular characterisation of the native strains using 16S rRNA, PFGE and DNA- DNA hybridisation shown that the native strains are closely related to each other and not belong to Clostridium butyricum and sugg...

  16. Reductive dehalogenation by anaerobic bacteria.

    OpenAIRE

    Holliger, C.

    1992-01-01

    The understanding of the fate of synthetic halogenated hydrocarbons became a matter of major interest over the last two decades. Halogenated compounds may threaten ecosystems due to their biocide properties. The degradability of halocompounds determines whether they will accumulate in a certain environment or whether they will be transformed to harmless products. A whole range of anthropogenic organohalogen compounds was detected in soils, sediments, surface and subsurface waters, and the atm...

  17. Anaerobic thermophiles.

    Science.gov (United States)

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term "extremophile" was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of "extreme" environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally "hot environments" on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely

  18. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  19. Succession of lignocellulolytic bacterial consortia bred anaerobically from lake sediment

    NARCIS (Netherlands)

    Korenblum, Elisa; Jiménez Avella, Diego; van Elsas, Jan

    2016-01-01

    Anaerobic bacteria degrade lignocellulose in various anoxic and organically rich environments, often in a syntrophic process. Anaerobic enrichments of bacterial communities on a recalcitrant lignocellulose source were studied combining polymerase chain reaction–denaturing gradient gel electrophoresi

  20. The effect of tannic compounds on anaerobic wastewater treatment.

    OpenAIRE

    Field, J. A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensitivity of the anaerobic bacteria (ie. methanogenic bacteria) to toxic compounds. The anaerobic technologies were initially developed for the treatment of non-toxic organic wastewaters. As the techn...

  1. Screening of aspartate dehydrogenase of bacteria

    OpenAIRE

    Fukuda, Shoko; Okamura, Tokumitsu; Yasumasa, Izumi; Takeno, Tomomi; Ohsugi, Masahiro

    2001-01-01

    Fifty-two strains of bacteria cultured under aerobic conditions and 12 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NAD^+. Four strains of bacteria cultured under aerobic conditions and 7 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NADP^+. Seven strains of bacteria cultured under aerobic conditions and 4 strains of bacteria cultured und...

  2. RISK FACTORS IN NEONATAL ANAEROBIC INFECTIONS

    Directory of Open Access Journals (Sweden)

    M. S. Tabib

    2008-06-01

    Full Text Available Anaerobic bacteria are well known causes of sepsis in adults but there are few studies regarding their role in neonatal sepsis. In an attempt to define the incidence of neonatal anaerobic infections a prospective study was performed during one year period. A total number of 400 neonates under sepsis study were entered this investigation. Anaerobic as well as aerobic cultures were sent. The patients were subjected to comparison in two groups: anaerobic culture positive and anaerobic culture negative and this comparison were analyzed statistically. There were 7 neonates with positive anaerobic culture and 35 neonates with positive aerobic culture. A significant statistical relationship was found between anaerobic infections and abdominal distention and pneumonia. It is recommended for those neonates with abdominal distention and pneumonia refractory to antibiotic treatment to be started on antibiotics with anaerobic coverage.

  3. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  4. Predominance of anaerobic bacterial community over aerobic community contribute to intensify ‘oxygen minimum zone’ in the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Gonsalves, M.J.B.D.; Paropkari, A.L.; Fernandes, C.E.G.; LokaBharathi, P.A.; KrishnaKumari, L.; Fernando, V.; Nampoothiri, G.

    show that OMZ from these ‘oligotrophic’ regions is dominated by anaerobic bacteria. We believe that these bacteria contribute to intensify the OMZ in the EAS. Further, a higher abundance of viable anaerobic bacteria (TVC sub (anaero)) and other...

  5. Comparison of nitroethane, 2-nitro-1-propanol, lauric acid, Lauricidin and the Hawaiian marine algae, Chaetoceros, for potential broad-spectrum control of anaerobically grown lactic acid bacteria

    Science.gov (United States)

    The gastrointestinal tract of bovines often contains bacteria that contribute to disorders of the rumen and may also contain foodborne or opportunistic human pathogens as well as bacteria capable of causing mastitis in cows. Thus, there is a need to develop broad-spectrum therapies that are effecti...

  6. Comparative in vitro activity of ceftaroline, ceftaroline-avibactam, and other antimicrobial agents against aerobic and anaerobic bacteria cultured from infected diabetic foot wounds.

    Science.gov (United States)

    Goldstein, Ellie J C; Citron, Diane M; Merriam, C Vreni; Tyrrell, Kerin L

    2013-07-01

    Foot infections are the most common infectious complication of diabetes. Moderate to severe diabetic foot infections (DFI) are typically polymicrobial with both aerobic and anaerobic organisms. The role of MRSA in these wounds has become an increasing concern. To determine if the addition of avibactam, a novel non-beta-lactam beta-lactamase inhibitor, to ceftaroline would be more active than ceftaroline alone, we tested 316 aerobic pathogens and 154 anaerobic recovered from patients with moderate to severe DFI, and compared ceftaroline with and without avibactam to other agents. Testing on aerobes was done by broth microdilution and by agar dilution for anaerobes, according to CLSI M11-A8, and M7-A8 standards. Ceftaroline-avibactam MIC90 for all Staphylococcus spp. including MRSA was 0.5 μg/mL, and for enterococci was 1 μg/mL. The MIC90s for enteric Gram-negative rods was 0.125 μg/mL. The addition of avibactam to ceftaroline reduced the ceftaroline MICs for 2 strains of resistant Enterobacter spp. and for 1 strain of Morganella. Against anaerobic Gram-positive cocci ceftaroline-avibactam had an MIC90 0.125 μg/mL and for clostridia 1 μg/mL. Avibactam improved ceftaroline's MIC90s for Bacteroides fragilis from >32 to 2 μg/mL and for Prevotella spp. from >32 to 1 μg/mL. Ceftaroline alone demonstrates excellent in vitro activity against most of the aerobes found in moderate to severe DFI. The addition of avibactam provides an increased spectrum of activity including the beta-lactamase producing Prevotella, Bacteroides fragilis and ceftaroline resistant gram-negative enteric organisms. PMID:23623385

  7. In vitro anaerobic incubation of Salmonella enterica serotype Typhimurium and laying hen cecal bacteria in poultry feed substrates and a fructooligosaccharide prebiotic.

    Science.gov (United States)

    Donalson, L M; Kim, Woo-Kyun; Chalova, V I; Herrera, P; Woodward, C L; McReynolds, J L; Kubena, L F; Nisbet, D J; Ricke, S C

    2007-01-01

    The objective of this study was to investigate the effect of combining a prebiotic with poultry feeds on the growth of Salmonella enterica serotype Typhimurium (ST) in an in vitro cecal fermentation system. Cecal contents from three laying hens were pooled and diluted to a 1:3000 concentration in an anaerobic dilution solution. The cecal dilution was added to sterile test tubes filled with alfalfa and layer ration with and without fructooligosaccharide (FOS). Two controls containing cecal dilutions and anaerobic dilution solution were used. The samples were processed in the anaerobic hood and incubated at 37 degrees C. Samples were inoculated with Salmonella at 0 and 24h after in vitro cecal fermentation and plated at 0 and 24h after inoculation with ST. Plates were incubated for 24h and colony forming units (CFU) enumerated. The samples immediately inoculated with ST without prior cecal fermentation did not significantly lower ST counts 24h later. However, samples pre-incubated for 24h with cecal microflora prior to ST inoculation exhibited reduced ST CFU by approximately 2 logarithms, with the most dramatic decreases seen in alfalfa and layer ration combined with FOS. The addition of FOS to feed substrate diets in combination with cecal contents acted in a synergistic manner to decrease ST growth only after ST was introduced to 24h cecal incubations. PMID:17588782

  8. Anaerobic biological treatment

    International Nuclear Information System (INIS)

    The Enso-Fenox process has been very successfully used to remove chlorinated phenolic compounds from pulp bleaching effluents. It is a two-stage anaerobic/aerobic process consisting of a nonmethanogenic anaerobic fluidized bed followed by a trickling filter. Studies have been conducted on reductive dechlorination of chlorinated aromatic compounds under anaerobic conditions with chlorinated phenols as the sole carbon and energy source. Approximately 40% of the added chlorophenols was converted to CH4 and CO2. Substrate loading rates were 20 mg/L/d at hydraulic detention times of 2-4 days with 90% substrate conversion efficiency. Reductive dechlorination of mono, di-, tri-, and pentachlorophenols has been demonstrated in anaerobic sewage sludge. The following constituents were tested in the laboratory at their approximate concentrations in coal conversion wastewater (CCWW) and were anaerobically degraded in serum bottles: 1,000 mg/L phenol; 500 mg/L resorcinol; 1,000 mg/L benzoic acid; 500 mg/L p-cresol; 200 mg/L pyridine; 2,000 mg/L benzoic acid; 250 mg/L 40 methylcatechol; 500 mg/L 4-ethylpyridine; and 2,000 mg/L hexanoic acid. A petrochemical may initially exhibit toxicity to an unacclimated population of methane-fermenting bacteria, but with acclimation the toxicity may be greatly reduced or disappear. In addition, the microorganisms may develop the capacity to actually degrade compounds which showed initial toxicity. Since biomass digestion requires a complete consortium of bacteria, it is relevant to study the effect of a given process as well as to individual steps within the process. A toxicant can inhibit the rate-limiting step and/or change the step that is rate-limiting. Both manifestations of toxicity can severely affect the overall process

  9. Anaerobic Infections in Children with Neurological Impairments.

    Science.gov (United States)

    Brook, Itzhak

    1995-01-01

    Children with neurological impairments are prone to develop serious infection with anaerobic bacteria. The most common anaerobic infections are decubitus ulcers; gastrostomy site wound infections; pulmonary infections (aspiration pneumonia, lung abscesses, and tracheitis); and chronic suppurative otitis media. The unique microbiology of each of…

  10. Rumen bacteria

    International Nuclear Information System (INIS)

    The rumen is the most extensively studied gut community and is characterized by its high population density, wide diversity and complexity of interactions. This complex, mixed microbial culture is comprised of prokaryote organisms including methane-producing archaebacteria, eukaryote organisms, such as ciliate and flagellate protozoa, anaerobic phycomycete fungi and bacteriophage. Bacteria are predominant (up to 1011 viable cells per g comprising 200 species) but a variety of ciliate protozoa occur widely (104-106/g distributed over 25 genera). The anaerobic fungi are also widely distributed (zoospore population densities of 102-104/g distributed over 5 genera). The occurrence of bacteriophage is well documented (107-109 particles/g). This section focuses primarily on the widely used methods for the cultivation and the enumeration of rumen microbes, especially bacteria, which grow under anaerobic conditions. Methods that can be used to measure hydrolytic enzymes (cellulases, xylanases, amylases and proteinases) are also described, along with cell harvesting and fractionation procedures. Brief reference is also made to fungi and protozoa, but detailed explanations for culturing and enumerating these microbes is presented in Chapters 2.4 and 2.5

  11. Anaerobic Treatment of Methanolic Wastes

    NARCIS (Netherlands)

    Lettinga, G.; Geest, van der A.Th.; Hobma, S.W.; Laan, van der J.B.R.

    1979-01-01

    Although it is well known that methanol can be fermented directly by a specific species of methane bacteria, viz. Methanosarcina barkeri, until now little information was available about the effect of important environmental factors on the anaerobic fermentation of methanol. As methanol can be the m

  12. Evaluation of surface contamination of bacteria in various dental clinics with special reference to obligate and facultative anaerobic spore bearing bacilli

    Directory of Open Access Journals (Sweden)

    Kannan I, Jessica Yolanda Jeevitha, Sambandam Cecilia, Jayalakshmi M, Premavathy RK and Shantha S

    2014-07-01

    Full Text Available Introduction: The occupational health and safety is an important prerequisite in dental clinic setup for well being of both the doctor and patient. Both the patient and dentist are always at the risk of infections. Aim and objectives: There is no proper literature on the survey of bacterial spores, especially of Clostridium species in dental clinics. Hence an attempt has been made in the present pilot study to evaluate the surface contamination with special reference to bacterial spores. Materials and methods: Various dental clinics from Chennai city, India were selected for the present study. Samples were collected from two clinics each from endodontic, prosthodontic, orthodontic, and periodontic. In each clinic important places were selected for sampling. The samples were collected in the form of swabs. The swabs thus obtained were inoculated into Robertson Cooked Meat Medium and was incubated in anaerobic condition at 370C for 7 days. Each day the tubes were examined for turbidity and colour change and were noted. At the end of 7th day the smear was prepared from each tube and gram staining was performed. The gram stained slides were examined microscopically for the presence of spore bearing bacilli especially with special reference to terminal spore bearing bacilli. Results and conclusion: From the present study it is clear that the dental clinics invariably posses a lot of aerobic and anaerobic spores irrespective of stringent disinfection procedures. Hence it is mandatory for the dental clinics to undergo periodical microbiological surveillance and to take proper steps in the control of bacterial spores.

  13. Cultivable Anaerobic Microbiota of Infected Root Canals

    Directory of Open Access Journals (Sweden)

    Takuichi Sato

    2012-01-01

    Full Text Available Objective. Periapical periodontitis is an infectious and inflammatory disease of the periapical tissues caused by oral bacteria invading the root canal. In the present study, profiling of the microbiota in infected root canals was performed using anaerobic culture and molecular biological techniques for bacterial identification. Methods. Informed consent was obtained from all subjects (age ranges, 34–71 years. Nine infected root canals with periapical lesions from 7 subjects were included. Samples from infected root canals were collected, followed by anaerobic culture on CDC blood agar plates. After 7 days, colony forming units (CFU were counted and isolated bacteria were identified by 16S rRNA gene sequencing. Results. The mean bacterial count (CFU in root canals was (0.5±1.1×106 (range 8.0×101–3.1×106, and anaerobic bacteria were predominant (89.8%. The predominant isolates were Olsenella (25.4%, Mogibacterium (17.7%, Pseudoramibacter (17.7%, Propionibacterium (11.9% and Parvimonas (5.9%. Conclusion. The combination of anaerobic culture and molecular biological techniques makes it possible to analyze rapidly the microbiota in infected root canals. The overwhelming majority of the isolates from infected root canals were found to be anaerobic bacteria, suggesting that the environment in root canals is anaerobic and therefore support the growth of anaerobes.

  14. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  15. 血清IgG抗体含量与口腔厌氧菌致牙髓感染的关系%Relationship between contents of serum IgG antibody and pulp infections caused by oral anaerobic bacteria

    Institute of Scientific and Technical Information of China (English)

    吕朋君; 马珅; 刘晓斌

    2015-01-01

    OBJECTIVE To observe the relationship between the level of serum IgG antibody and the pulp infections caused by oral anaerobic bacteria by referring to the characteristics of specific response between antigen and anti‐body so as to reduce the infection rate .METHODS The patients with pulp diseases who were treated in the hospi‐tal from Jan 2013 to Jan 2014 were enrolled in the study and divided into the group B ,C ,and D ,with 10 cases in each ;meanwhile 10 healthy subjects were chosen as the group A .The IgG antibody contents in the 10 internation‐al standard anaerobic bacteria strains isolated from the serum of the patients with infections and the healthy sub‐jects were determined by using ELISA method ,the relationship between the pulp infections and the oral anaerobic bacteria was specifically analyzed ,and the statistical analysis of data was performed with the use of SPSS 17 .0 software .RESULTS The average level of serum antibody in Prevotella intermedia was significantly lower in the group A than in the group B ,C ,and D (P<0 .05) .As compared with the group A ,the OD values of other three groups were more than 2 .1 ,and all were positive .There was significant difference in the average level of serum antibody in Porphyromonas gingivalis among the healthy subjects ,the patients with pulp infections ,and the pa‐tients with pulp‐periodontal diseases (P<0 .05) ,as compared with the patients with periodontal disease ,howev‐er ,the difference was not significant .There was no significant difference in the OD value of serum antibody in the anaerobic bacteria among the four groups .CONCLUSION The ELISA ,as is applied for the analysis of the anaero‐bic bacteria causing the pulp infections ,may contribute to considerably higher isolation rate and accuracy than the traditional microbial culture ,and it can be used as a conventional method for the detection of pathogenic bacteria causing pulp infections .%目的:利用抗原与抗体特异反应的

  16. Anaerobic Metabolism and Bioremediation of Explosives-Contaminated Soil

    Science.gov (United States)

    Boopathy, Raj

    Nitroaromatic compounds pollute soil, water, and food via use of pesticides, plastics, pharmaceuticals, landfill dumping of industrial wastes, and the military use of explosives. Biotransformation of trinitrotoluene and other nitroaromatics by aerobic bacteria in the laboratory has been frequently reported, but the anaerobic bacterial metabolism of nitroaromatics has not been studied as extensively perhaps due to the difficulty in working with anaerobic cultures and the slow growth of anaerobes. Sulfate-reducing and methanogenic bacteria can metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment.

  17. Anaerobic workout

    OpenAIRE

    McAdam, Ewan J.

    2010-01-01

    Anaerobic technology cannot directly replace current wastewater treatment processes exclusively. The UASB reactor configuration removes slightly less organic carbon by comparison as the process relies on lamella separation for passive clarification rather than using fine pores like anMBR. By contrast, whilst anMBR can operate as a single unit process for organic carbon removal, the membrane surface has to be cleaned using gas sparging to limit surface deposition, which requires extra energy. ...

  18. 舟山群岛海域沉积物厌氧氨氧化细菌多样性%Diversity of anaerobic ammonium oxidizing bacteria in marine sediments from the Zhoushan Islands

    Institute of Scientific and Technical Information of China (English)

    张东声; 刘镇盛; 张海峰; 王小谷; 王春生

    2015-01-01

    Anaerobic ammonium oxidation ( anammox) is an important process regulating the balance of marine nitrogen and ecosystem health, particularly under anoxic conditions. The Zhoushan Islands are located east of the Changjiang river estuary, and collect a high load of anthropogenic nitrogen, which leads to severe eutrophication and seasonal hypoxia. Therefore, bacteria that mediate the anammox process are of major interest in this area. Although the importance of anammox-mediating bacteria is known, few studies on these bacteria have been conducted in the East China Sea. To the best of our knowledge, this study is the first to report the diversity, community composition, and distribution of anammox bacteria in the Zhoushan Islands. Field surveys were conducted in June 2012; triplicate surface sediment samples were collected at each site and stored in sterile plastic bags at-80℃ for subsequent DNA extraction and molecular analysis. Total genomic DNA was extracted using the Fast DNA SPIN Kit for soil. Environmental DNA extracted from sediment samples was used as the template for PCR amplification of anammox 16S rRNA genes using primers Amx368f—Amx820r. The purified fragments were cloned and sequenced for phylogenetic and statistical analyses. In total, 297 sequences belonging to 16 operational taxonomic units ( OTUs) were obtained from five 16S rRNA gene libraries. The biodiversity of anammox bacteria was examined using rarefaction analysis of the 16S rRNA genes, the Chao1 estimator, and Shannon index calculations. EZ3-1, EZ3-3, and EZ1-5 exhibited higher diversity than EZ1-3 and EZ3-5. A significant positive correlation between Shannon index and organic carbon content indicate that sediment organic carbon content plays an important role in modulating anammox bacterial diversity in the Zhoushan Island area. Weighted UniFrac PCoA analysis of the 16S rRNA genes demonstrated spatial heterogeneity in the community composition of anammox bacteria; the anammox bacteria in

  19. Methanol conversion in high-rate anaerobic reactors

    NARCIS (Netherlands)

    Weijma, J.; Stams, A.J.M.

    2001-01-01

    An overview on methanol conversion in high-rate anaerobic reactors is presented, with the focus on technological as well as microbiological aspects. The simple C1-compound methanol can be degraded anaerobically in a complex way, in which methanogens, sulfate reducing bacteria and homoacetogens inter

  20. Electron transport chains of lactic acid bacteria

    OpenAIRE

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic bacteria. Lactococcus lactis, and several other lactic acid bacteria, however respond to the addition of heme in aerobic growth conditions. This response includes increased biomass and robustness. In t...

  1. Production of Value-added Products by Lactic Acid Bacteria

    Science.gov (United States)

    Lactic acid bacteria (LAB) are a group of facultative anaerobic, catalase negative, nonmotile and nonsporeforming–Gram positive bacteria. Most LAB utilize high energy C sources including monomer sugars to produce energy to maintain cellular structure and function. This anaerobic fermentation proce...

  2. Evidence for PAH Removal Coupled to the First Steps of Anaerobic Digestion in Sewage Sludge

    OpenAIRE

    Glenda Cea-Barcia; Hélène Carrère; Jean Philippe Steyer; Dominique Patureau

    2013-01-01

    Anaerobic degradation of polycyclic aromatic hydrocarbons has been brought to the fore, but information on removal kinetics and anaerobic degrading bacteria is still lacking. In order to explore the organic micropollutants removal kinetics under anaerobic conditions in regard to the methane production kinetics, the removal rate of 12 polycyclic aromatic hydrocarbons was measured in two anaerobic batch reactors series fed with a highly loaded secondary sludge as growth substrate. The results u...

  3. The molecular biological characterization of a strain of biohydrogen-producing anaerobe in Clostridium Genus

    Institute of Scientific and Technical Information of China (English)

    LI Yong-feng; REN Nan-qi; ZHENG Guo-xiang; LIU Min; HU Li-jie; CHEN Ying; WANG Xiang-jing

    2005-01-01

    The anaerobic process of biohydrogen production was developed recently. The isolation and identification of biohydrogen producing anaerobic bacteria with high evolution rate and yield is an important foundation of the fermented biohydrogen production process through which anaerobic bacteria digest organic wastewater. By considering physiological and biochemical traits, morphological characteristics and a 16S rDNA sequence, the isolated Rennanqilyf33 is shown to be a new species.

  4. New Understanding on Metabolism of Anaerobic Ammonium Oxidation Bacteria Based on Metagenomics Technology%基于宏基因组技术获得的对厌氧氨氧化菌代谢的新理解

    Institute of Scientific and Technical Information of China (English)

    丁爽; 郑平; 陆慧锋; 唐崇俭

    2012-01-01

    厌氧氨氧化菌(Anaerobic ammonium oxidation bacteria,AAOB)是化能自养菌,由于其生理代谢的奇异性、细胞结构的特殊性以及对氮素循环的重要性,已成为环境工程、微生物以及海洋生物学等领域的研究热点.然而.AAOB未能实现纯培养的现状已成为AAOB代谢途径研究的巨大障碍近年来兴起的宏基因组技术(Metagenomics)为AAOB代谢途径的研究提供了新手段.采用宏基因组技术,可直接研究微生物群体中某特定微生物基因组的结构与功能,摆脱了传统微生物学研究对纯培养的依赖,使未培养微生物的认识和开发成为可能本文首先简述获取AAOB宏基因组信息的过程,然后通过比较由传统代谢研究方法和宏基因组技术获得的AAOB代谢途径的研究成果,论述基于宏基因组技术获得的对AAOB代谢的新理解,得出以下结果和结论:1)AAOB的碳素固定途径为乙酰辅酶A途径,碳素固定的还原力来自NADH或者QH2;2)AAOB氮素转化的重要中问产物是NO,而非NH2OH,并提出了以NO为核心的AAOB代谢的改进模型;3)AAOB的ATP合成途径为氧化磷酸化,推测的电子传递途径为N2H4-QH2-细胞色素bc1 复合体;细胞色素bc1复合体再将电子用于NO2还原和N2H4合成AAOB的宏基因组技术使AAOB代谢途径的研究更具方向性.随着分子生物学理论和技术的不断发展,宏基因组学的升级技术(如宏转录组学、宏蛋白质组学)将为AAOB代谢途径的研究提供新的方法与平台.%Anaerobic ammonium oxidation bacteria (AAOB) belong to chemolitho-autotrophs. AAOB have become one of the research hotspots in the field of environmental engineering, microbiology and oceanography because of their specificities in metabolism, cell structure and nitrogen cycle. However, AAOB can not been cultivated in pure culture, which has become a great obstacle to study their metabolic pathways in further. Nowadays, fast-developing metagenomics provides

  5. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    Organic waste may degrade anaerobically in nature as well as in engineered systems. The latter is called anaerobic digestion or biogasification. Anaerobic digestion produces two main outputs: An energy-rich gas called biogas and an effluent. The effluent, which may be a solid as well as liquid with...... very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9.......6 addresses the mass balances and environmental aspects of anaerobic digestion....

  6. How to make a living from anaerobic ammonium oxidation

    NARCIS (Netherlands)

    Kartal, B.; De Almeida, N.M.; Maalcke, W.J.; Op den Camp, H.J.M.; Jetten, M.S.M.; Keltjens, J.T.

    2013-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria primarily grow by the oxidation of ammonium coupled to nitrite reduction, using CO2 as the sole carbon source. Although they were neglected for a long time, anammox bacteria are encountered in an enormous species (micro)diversity in virtually any anoxi

  7. What are the differences between aerobic and anaerobic toxic effects of sulfonamides on Escherichia coli?

    Science.gov (United States)

    Qin, Mengnan; Lin, Zhifen; Wang, Dali; Long, Xi; Zheng, Min; Qiu, Yanling

    2016-01-01

    Bacteria in the environment face the threat of antibiotics. However, most studies investigating the toxicity and toxicity mechanisms of antibiotics have been conducted on microorganisms in aerobic conditions, while studies examining the anaerobic toxicity and toxicity mechanisms of antibiotics are still limited. In this study, we determined the aerobic and anaerobic toxicities of sulfonamides (SAs) on Escherichia coli. Next, a comparison of the aerobic and anaerobic toxicities indicated that the SAs could be divided into three groups: Group I: log(1/EC50-anaerobic)>log(1/EC50-aerobic) (EC50-anaerobic/EC50-aerobic, the median effective concentration under anaerobic/aerobic conditions), Group II: log(1/EC50-anaerobic)≈log(1/EC50-aerobic), and Group III: log(1/EC50-anaerobic)reference for the risk assessment of chemicals in the environment. PMID:26748048

  8. Evaluation of a metronidazole disk test for the presumptive identification of anaerobes.

    Science.gov (United States)

    Senne, J E; McCarthy, L R

    1982-07-01

    A total of 632 bacterial strains recovered under anaerobic conditions from clinical specimens were tested from their susceptibility to metronidazole by a disk diffusion test using 5 micrograms metronidazole disks. Three-hundred-fifty-five of the 632 bacterial strains exhibited susceptibility the metronidazole, and each was determined to be an obligate anaerobe. The remaining 277 isolates showed resistance to the 5 micrograms disk. Of these resistant strains, 257 were determined to be facultative anaerobes, while 20 (18 Propionibacterium acnes, one Peptostreptococcus sp., and one Peptococcus magnus) were identified as obligate anaerobes. Potential use of this disk diffusion test for identifying the anaerobic status of bacteria is discussed. PMID:7124785

  9. Evaluation of Fastidious Anaerobe Broth as a blood culture medium.

    OpenAIRE

    Ganguli, L. A.; Turton, L J; Tillotson, G S

    1982-01-01

    Three commercial blood culture media were compared with a freshly prepared cooked meat medium in tests to stimulate the recovery of small inocula of anaerobic and aerobic bacteria in routine blood cultures. The cooked meat medium gave the most reliable recovery and supported continued viability, whilst Fastidious Anaerobe Broth (LAB M) was a good alternative. Results with Southern Group thioglycollate and Difco Thiol were less satisfactory as delays in recovery and loss of viability occurred ...

  10. Research in anti- anaerobe mechanism of nanometer materials%纳米材料抗厌氧菌机制研究

    Institute of Scientific and Technical Information of China (English)

    熊德鑫; 梁明

    2003-01-01

    AIM:To investigate the antimicrobial spectrum of nanometer materials to 33 strains of ordinary anaerobic pathogenic bacteria isolated from 11 genera. METHODS:The anti anaerobic effects of nanometer materials were examined and measured by test tube dilution method.RESULTS:In most tubes, there were no bacteria growth in nanometer suspension.CONCLUSION: there is a wide antimicrobial spectrum of nanometer materials and it can effectively inhibit the growth of the anaerobic bacteria.

  11. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    OpenAIRE

    Amy V. Callaghan

    2013-01-01

    Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM). The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria via ‘reverse methanogenesis’ and is catalyzed by a homologue of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and sulfate-red...

  12. Gender comparisons in anaerobic power and anaerobic capacity tests.

    OpenAIRE

    Maud, P. J.; Shultz, B B

    1986-01-01

    The purpose of the study was to compare anaerobic power and anaerobic capacity test scores between young active men and women. Three performance measures of anaerobic power and two of anaerobic capacity were administered to a sample comprising 52 male and 50 female college students (means age = 21.4 yrs). Results indicated significant differences between men and women in body height, weight and per cent fat, in fat free mass (FFM), anaerobic power, and anaerobic capacity when recorded as gros...

  13. Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria RID B-8834-2011 RID B-5428-2008 RID C-3269-2011 RID D-1875-2009

    DEFF Research Database (Denmark)

    Jetten, MSM; Sliekers, O.; Kuypers, M.; Dalsgaard, T.; Niftrik, L. van; Cirpus, I.; Pas-Schoonen, K. van de; Lavik, G.; Thamdrup, B.; Paslier, D. Le; Camp, HJM Op den; Hulth, S.; Nielsen, LP; Abma, W.; Third, K.; Engstrom, P.; Kuenen, JG; Jørgensen, BB; Canfield, DE; Damste, JSS; Revsbech, NP; Fuerst, J.; Weissenbach, J.; Wagner, M.; Schmidt, I.; Schmid, M.; Strous, M.

    2003-01-01

    Recently, two fresh water species, 'Candidatus Brocadia anammoxidans' and 'Candidatus Kuenenia stuttgartiensis', and one marine species, 'Candidatus Scalindua sorokinii', of planctomycete anammox bacteria have been identified. 'Candidatus Scalindua sorokinii' was discovered in the Black Sea, and...

  14. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment

    OpenAIRE

    Meulepas, R.J.W.; Jagersma, C.G.; Khadem, A.F.; Buisman, C.J.N.; Stams, A.J.M.; Lens, P. N. L.

    2010-01-01

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is assumed to be a syntrophic process, in which methanotrophic archaea produce an interspecies electron carrier (IEC), which is subsequently utilized by sulfate-reducing bacteria. In this paper, six methanogenic substrates are tested as candidate-IECs by assessing their effect on AOM and SR by an anaerobic methanotrophic enrichment. The presence of acetate, formate or hydrogen enhanced SR, but did not inhibit AOM, nor did ...

  15. Clostridium difficile: the anaerobe that made the grade.

    Science.gov (United States)

    Brazier, Jon S

    2012-04-01

    Unlike other anaerobic bacteria of clinical importance, Clostridium difficile has managed to enter into the realm of public awareness. Following the trail blazed by methicillin-resistant Staphylococcus aureus (MRSA), C. difficile has made the transition from being an obscure anaerobic bacterium, mainly of interest to specialist anaerobic microbiologists, to that of an infamous "superbug" responsible for outbreaks of hospital-acquired infection that commonly result in serious disease and death. This report picks out key moments, particularly in the UK, which tracked the rise in both the public and political awareness of this organism. PMID:22293217

  16. Combined Anaerobic-Aerobic Bacterial Degradation of Dyes

    OpenAIRE

    R. Wilfred Sugumar; Sandhya Sadanandan

    2010-01-01

    Wastewaters from the dye baths of a non-formal textile-dyeing unit containing C.I. Acid Orange 7 and C.I. Reactive Red 2 were subjected to degradation in a sequential anaerobic-aerobic treatment process based on mixed culture of bacteria. The technical samples of the dyestuffs and the dye bath wastes were treated in an anaerobic reactor, using an adapted mixed culture of anaerobic microorganisms. The dyestuffs were biotransformed into colourless substituted amine metabolites in the reactor. T...

  17. Perspectives for anaerobic digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    2003-01-01

    to the soil. Anaerobic digestion (AD) is one way of achieving this goal and it will furthermore, reduce energy consumption or may even be net energy producing. This chapter aims at provide a basic understanding of the world in which anaerobic digestion is operating today. The newest process developments...

  18. Anaerobic sludge granulation

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.; Castro Lopes, de S.I.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades
    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades. The initial stage

  19. Molecular characterization and fermentative hydrogen production of a wild anaerobe in clostridium genus

    Institute of Scientific and Technical Information of China (English)

    LI Yongfeng; REN Nanqi; YANG Chuanping; LI Jianzheng; LI Peng

    2007-01-01

    Anaerobic process of biohydrogen production is developed in this paper.The isolation and identification of high efficient biohydrogen production anaerobic bacteria are the important foundations for the fermented biohydrogen production process by anaerobic digesting organic wastewater.Taking the physiological and biochemical traits,the morphological characteristics and 16S rDNA sequence into consideration,the isolate Rennanqilyf33 is a new species.

  20. EVALUATION OF A TWO-STAGE TREATMENT OF DOMESTIC SEWAGE WITH ANAEROBIC-AEROBIC MICROBIAL FILM

    OpenAIRE

    A.Mesdaghinia

    1986-01-01

    The objective of this research was to study the feasibility of a two stage continuous system employing anaerobic-aerobic microbial film for domestic wastewater treatment and the effect of iron on the behavior of sulfate reducing bacteria in anaerobic metabolism. A bench scale system with an anaerobic filter followed by aerobic fixed units used plastic media and was operated in up flow manner with hydraulic detention times of 6 hours, whereas the aerobic unit utilized diffused aeration. Raw do...

  1. Review of the Literature on the Economics of Central Anaerobic Digesters

    OpenAIRE

    Bachewe, Fantu; Lazarus, William F.; Goodrich, Philip; Drewitz, Matt; Balk, Becky

    2008-01-01

    Minnesota can improve the utilization of manure and organic wastes via the production of biogas that can be used to produce heat and electricity. Denmark serves as a role model for Minnesota in the number of central anaerobic digesters that it supports. During anaerobic digestion methane is produced when naturally occurring anaerobic bacteria decompose organic matter in the absence of oxygen. This process produces what is called biogas, which usually is a mixture of 55 – 65 percent methane pl...

  2. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  3. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER; TOPICAL

    International Nuclear Information System (INIS)

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  4. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m(3) of biogas per m(3) of POME which was utilized for electricity generation. PMID:26167485

  5. Overview of the anaerobic toxicity caused by organic forest industry wastewater pollutants.

    NARCIS (Netherlands)

    Sierra-Alvarez, R.; Field, J.A.; Kortekaas, S.; Lettinga, G.

    1994-01-01

    Numerous types of organic environmental pollutants are encountered in forest industry effluents which potentially could inhibit consortia of anaerobic bacteria. The purpose of this study was to collect anaerobic bioassay data from the literature to better estimate the impact of these pollutants on a

  6. Highly enriched Betaproteobacteria growing anaerobically with p-xylene and nitrate

    DEFF Research Database (Denmark)

    Rotaru, Amelia-Elena; Probian, Christina; Wilkes, Heinz;

    2010-01-01

    The identity of the microorganisms capable of anaerobic p-xylene degradation under denitrifying conditions is hitherto unknown. Here, we report highly enriched cultures of freshwater denitrifying bacteria that grow anaerobically with p-xylene as the sole organic carbon source and electron donor. ...

  7. Anaerobic incubation of membrane filter cultures for improved detection of fecal coliforms from recreational waters.

    OpenAIRE

    Doyle, J D; Tunnicliff, B; Brickler, S K; Kramer, R E; Sinclair, N. A.

    1984-01-01

    Anaerobic incubation of membrane filter cultures significantly enhanced detection of fecal coliforms in surface-water samples from recreational beaches. In contrast to standard aerobic incubation, anaerobic incubation suppressed overgrowth of masking, noncoliform bacteria but did not increase the frequency of fecal coliform recovery.

  8. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  9. Azoarcus sp. CIB, an Anaerobic Biodegrader of Aromatic Compounds Shows an Endophytic Lifestyle

    OpenAIRE

    Fernández, Helga; Prandoni, Nicolás; Fernández-Pascual, Mercedes; Fajardo, Susana; Morcillo, César; Díaz, Eduardo; Carmona, Manuel

    2014-01-01

    Background Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here. Methodology/Principal Findings Light, confocal and electron microscopy reveal that Azoarcus sp. C...

  10. An investigation of inhibition effect of metronidazole before and after using advanced oxidation process (UV254/H2O2 on specific methanogenic activity of anaerobic biomass

    Directory of Open Access Journals (Sweden)

    S. A. Mirzaee

    2014-07-01

    Conclusion: Different concentrations of metronidazole had an inhibition effect on anaerobic digestions and therefore the efficient pretreatment method is needed to reduce this inhibition effect. The UV254/H2O2 process is an effective method for degradation and conversion of metronidazole to more biodegradable compounds for anaerobic bacteria consumption and, in turn, to increase biogasproduction in anaerobic digestions.

  11. Reconstructing the mosaic glycolytic pathway of the anaerobic eukaryote Monocercomonoides.

    Science.gov (United States)

    Liapounova, Natalia A; Hampl, Vladimir; Gordon, Paul M K; Sensen, Christoph W; Gedamu, Lashitew; Dacks, Joel B

    2006-12-01

    All eukaryotes carry out glycolysis, interestingly, not all using the same enzymes. Anaerobic eukaryotes face the challenge of fewer molecules of ATP extracted per molecule of glucose due to their lack of a complete tricarboxylic acid cycle. This may have pressured anaerobic eukaryotes to acquire the more ATP-efficient alternative glycolytic enzymes, such as pyrophosphate-fructose 6-phosphate phosphotransferase and pyruvate orthophosphate dikinase, through lateral gene transfers from bacteria and other eukaryotes. Most studies of these enzymes in eukaryotes involve pathogenic anaerobes; Monocercomonoides, an oxymonad belonging to the eukaryotic supergroup Excavata, is a nonpathogenic anaerobe representing an evolutionarily and ecologically distinct sampling of an anaerobic glycolytic pathway. We sequenced cDNA encoding glycolytic enzymes from a previously established cDNA library of Monocercomonoides and analyzed the relationships of these enzymes to those from other organisms spanning the major groups of Eukaryota, Bacteria, and Archaea. We established that, firstly, Monocercomonoides possesses alternative versions of glycolytic enzymes: fructose-6-phosphate phosphotransferase, both pyruvate kinase and pyruvate orthophosphate dikinase, cofactor-independent phosphoglycerate mutase, and fructose-bisphosphate aldolase (class II, type B). Secondly, we found evidence for the monophyly of oxymonads, kinetoplastids, diplomonads, and parabasalids, the major representatives of the Excavata. We also found several prokaryote-to-eukaryote as well as eukaryote-to-eukaryote lateral gene transfers involving glycolytic enzymes from anaerobic eukaryotes, further suggesting that lateral gene transfer was an important factor in the evolution of this pathway for denizens of this environment. PMID:17071828

  12. Enumeration of Organohalide Respirers in Municipal Wastewater Anaerobic Digesters

    OpenAIRE

    Bryan J.K. Smith; Boothe, Melissa A; Brice A. Fiddler; Tania M. Lozano; Russel K. Rahi; Krzmarzick, Mark J

    2015-01-01

    Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccar...

  13. ISOLATION OF ANAEROBES IN DEEP SEATED PRESSURE ULCERS USING A NOVEL INNOVATIVE TECHNIQUE OF ANAEROBE ISOLATION

    Directory of Open Access Journals (Sweden)

    Lalbiaktluangi

    2015-12-01

    Full Text Available BACKGROUND Isolation of an anaerobe is usually neglected in hospitals with limited resources due to the expensive and complicated technique of anaerobic isolation methods, which is difficult to arrange in such resource poor settings. Conventionally adopted anaerobic culture methods such as Anaerobic jar, Gas-Pak, Anoxomat or Automated glove-box systems are extremely costly and cumbersome for single unit testing, but not suitable for small scale laboratories. However, anaerobic bacteria are not to be overlooked as they have made a comeback in clinical settings and are even showing resistance to Metronidazole, once thought to be the gold standard bullet against anaerobes. Deep seated pressure ulcers are usually the site where anaerobe causes an infection in synergy with aerobes. AIMS AND OBJECTIVES Isolation of anaerobes in deep seated pressure ulcers using a novel innovative technique and to study their antibiogram profile. MATERIALS AND METHODS Swabs taken from depth of deep seated pressure ulcers were immediately inoculated in Brucella blood agar at bedside and placed in polycarbonate airtight jar for anaerobic incubation using a novel innovative Modified Candle Jar technique. In this technique five grams of grease-free grade zero steel wool were dipped in 50ml freshly prepared acidified copper sulphate solution until the copper colour appeared. Excess solution was drained and the steel wool was moulded into a loose pad to fit on an open Petri plate placed on top of the inoculated Brucella blood agar plates. A white-wax candle was placed at the centre of this plate. A small test tube containing mixture of 0.5g sodium-bicarbonate and 0.5g magnesium carbonate was kept ready to be placed inside the jar, just after placing the inoculated plate and incubated for 48 hours. RESULTS Peptostreptococcus anaerobius and Bacteroides fragilis were successfully isolated from deep seated pressure ulcers by this method. Antibiogram studies were done using the

  14. Characteristics, Process Parameters, and Inner Components of Anaerobic Bioreactors

    Directory of Open Access Journals (Sweden)

    Awad Abdelgadir

    2014-01-01

    Full Text Available The anaerobic bioreactor applies the principles of biotechnology and microbiology, and nowadays it has been used widely in the wastewater treatment plants due to their high efficiency, low energy use, and green energy generation. Advantages and disadvantages of anaerobic process were shown, and three main characteristics of anaerobic bioreactor (AB, namely, inhomogeneous system, time instability, and space instability were also discussed in this work. For high efficiency of wastewater treatment, the process parameters of anaerobic digestion, such as temperature, pH, Hydraulic retention time (HRT, Organic Loading Rate (OLR, and sludge retention time (SRT were introduced to take into account the optimum conditions for living, growth, and multiplication of bacteria. The inner components, which can improve SRT, and even enhance mass transfer, were also explained and have been divided into transverse inner components, longitudinal inner components, and biofilm-packing material. At last, the newly developed special inner components were discussed and found more efficient and productive.

  15. Status on Science and Application of Thermophilic Anaerobic Digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1994-01-01

    Thermophilic anaerobic processes are often regarded as less stable than mesophilic processes. In the paper this postulate is examined and disproved based on real operational data from of full-scale mesophilic and thermophilic biogas plants. The start-up produce for the thermophilic plants was...... for thermophilic digestion along with the implications for the methanogenic bacteria active at these temperatures....

  16. ANAMMOX process start up and stabilization with an anaerobic seed in Anaerobic Membrane Bioreactor (AnMBR).

    Science.gov (United States)

    Suneethi, S; Joseph, Kurian

    2011-10-01

    ANaerobic AMMonium OXidation (ANAMMOX) process, an advanced biological nitrogen removal alternative to traditional nitrification--denitrification removes ammonia using nitrite as the electron acceptor without oxygen. The feasibility of enriching anammox bacteria from anaerobic seed culture to start up an Anaerobic Membrane Bioreactor (AnMBR) for N-removal is reported in this paper. The Anammox activity was established in the AnMBR with anaerobic digester seed culture from a Sewage Treatment Plant in batch mode with recirculation followed by semi continuous process and continuous modes of operation. The AnMBR performance under varying Nitrogen Loading Rates (NLR) and HRTs is reported for a year, in terms of nitrogen transformations to ammoniacal nitrogen, nitrite and nitrate along with hydrazine and hydroxylamine. Interestingly ANAMMOX process was evident from simultaneous Amm-N and nitrite reduction, consistent nitrate production, hydrazine and hydroxylamine presence, notable organic load reduction and bicarbonate consumption. PMID:21775136

  17. Investigations on the inactivation of selected bacteria and viruses during mesophilic and thermophilic anaerobic alkaline cofermentation of biological waste materials, food residues and other animal residues; Seuchenhygienische Untersuchungen zur Inaktivierung ausgewaehlter Bakterien und Viren bei der mesophilen und thermophilen anaeroben alkalischen Faulung von Bio- und Kuechenabfaellen sowie anderen Rest- und Abfallstoffen tierischer Herkunft

    Energy Technology Data Exchange (ETDEWEB)

    Hoferer, M. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Umwelt- und Tierhygiene sowie Tiermedizin mit Tierklinik

    2001-07-01

    The purpose of this study is to investigate the inactivation kinetics of a number of different bacteria (Salmonella Senftenberg, Escherichia coli O157, Enterococcus faecium) and viruses (Bovine Enterovirus (ECBO), Equine Rhinovirus (ERV), Poliovirus, Bovine Parvovirus (BPV)) during the process of anaerobic cofermentation. Experiments were conducted in a semi-technical biogas plant at the University of Hohenheim. The fermenter was fed with a mixture of slurry from pigs or cattle (75%) and leftovers (25%) and was run under mesophilic (30 C + 35 C) as well as under thermophilic temperature conditions (50 C + 55 C). Volume and filter-sandwich germ-carriers were specifically developed and/or optimised for these analyses. Parallel to the experiments at the University of Hohenheim and under almost identical process conditions, various viruses (African Swine Fever Virus, Pseudorabies Virus, Classical Swine Fever Virus, Foot and Mouth Disease Virus, Swine Vesicular Disease Virus) were examined at the Federal Research Centre for Virus Diseases of Animals in Tuebingen. The results obtained at each research institution are directly compared. (orig.)

  18. Potential Application of Anaerobic Extremophiles for Hydrogen Production

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    During substrate fermentation many anaerobes produce the hydrogen as a waste product, which often regulates the growth of the cultures as an inhibitor. In nature the hydrogen is usually removed from the ecosystem due to its physical properties or by consumption of hydrogen by secondary anaerobes, which sometimes behave as competitors for electron donors as is seen in the classical example in anaerobic microbial communities via the interaction between methanogens and sulfate- or sulfur- reducers. It was demonstrated previously on mixed cultures of anaerobes at neutral pH that bacterial hydrogen production could provide an alternative energy source. But at neutral pH the original cultures can easily be contaminated by methanogens, a most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and the cultivation of human pathogens on a global scale is very dangerous. In our laboratory, experiments with obligately alkaliphilic bacteria that excrete hydrogen as the end metabolic product were performed at different temperature regimes. Mesophilic and moderately thermophilic bacterial cultures have been studied and compared for the most effective hydrogen production. For high-mineralized media with pH 9.5-10.0 not many methanogens are known to exist. Furthermore, the development of pathogenic contaminant microorganisms is virtually impossible: carbonate-saturated solutions are used as antiseptics in medicine. Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as most safe process for global Scale industry in future. Here we present experimental data on the rates of hydrogen productivity for mesophilic, alkaliphilic, obligately anaerobic bacterium Spirocheta americana ASpG1 and moderately thermophilic, alkaliphilic, facultative anaerobe Anoxybacillus pushchinoensis K1 and

  19. FNR-mediated regulation of bioluminescence and anaerobic respiration in the light-organ symbiont Vibrio fischeri

    OpenAIRE

    Septer, Alecia N.; Bose, Jeffrey L.; Dunn, Anne K.; Stabb, Eric V.

    2010-01-01

    Vibrio fischeri induces both anaerobic respiration and bioluminescence during symbiotic infection. In many bacteria, the oxygen-sensitive regulator FNR activates anaerobic respiration, and a preliminary study using the light-generating lux genes from V. fischeri MJ1 cloned in Escherichia coli suggested that FNR stimulates bioluminescence. To test for FNR-mediated regulation of bioluminescence and anaerobic respiration in V. fischeri, we generated fnr mutants of V. fischeri strains MJ1 and ES1...

  20. Aerobic and Anaerobic Bacteriology of Hidradenitis Suppurativa: A Study of 22 Cases

    Science.gov (United States)

    Katoulis, Alexandros C.; Koumaki, Dimitra; Liakou, Aikaterini I.; Vrioni, Georgia; Koumaki, Vasiliki; Kontogiorgi, Dimitra; Tzima, Korina; Tsakris, Athanasios; Rigopoulos, Dimitris

    2015-01-01

    Introduction Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease of unclear etiology. The role of bacteria in the pathogenesis of disease remains controversial. Materials and Methods Specimens were obtained from 22 HS patients by direct percutaneous needle aspiration. The collected material was cultured in aerobic and anaerobic conditions, and sensitivity tests were performed. Results Of the 22 patients, 32% were culture negative and 68% were culture positive. A total of 16 isolates was obtained, 14 aerobic and 2 anaerobic. Aerobic bacteria were present in 86% of the specimens, whereas only anaerobic bacteria were isolated in 7%. The predominant aerobic species were Proteus mirabilis, Staphylococcus haemolyticus and Staphylococcus lugdunensis. The isolated anaerobic bacteria were Dermacoccus nishinomiyaensis and Propionibacterium granulosum. Conclusion A variety of aerobic and anaerobic bacteria was isolated from the HS lesions of our patients. In contrast to previous studies, fewer patients were found to be culture positive, and Staphylococcus aureus was isolated in only 1 of them. More studies are necessary to elucidate the controversial role of bacteria in the pathogenesis of HS. PMID:27170935

  1. SAR11 bacteria linked to ocean anoxia and nitrogen loss

    DEFF Research Database (Denmark)

    Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel;

    2016-01-01

    Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas....... Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world’s largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen...

  2. Anaerobic biotransformation of estrogens

    Energy Technology Data Exchange (ETDEWEB)

    Czajka, Cynthia P. [Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Londry, Kathleen L. [Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada)]. E-mail: londryk@cc.umanitoba.ca

    2006-08-31

    Estrogens are important environmental contaminants that disrupt endocrine systems and feminize male fish. We investigated the potential for anaerobic biodegradation of the estrogens 17-{alpha}-ethynylestradiol (EE2) and 17-{beta}-estradiol (E2) in order to understand their fate in aquatic and terrestrial environments. Cultures were established using lake water and sediment under methanogenic, sulfate-, iron-, and nitrate-reducing conditions. Anaerobic degradation of EE2 (added at 5 mg/L) was not observed in multiple trials over long incubation periods (over three years). E2 (added at 5 mg/L) was transformed to estrone (E1) under all four anaerobic conditions (99-176 {mu}g L{sup -1} day{sup -1}), but the extent of conversion was different for each electron acceptor. The oxidation of E2 to E1 was not inhibited by E1. Under some conditions, reversible inter-conversion of E2 and E1 was observed, and the final steady state concentration of E2 depended on the electron-accepting condition but was independent of the total amount of estrogens added. In addition, racemization occurred and E1 was also transformed to 17-{alpha}-estradiol under all but nitrate-reducing conditions. Although E2 could be readily transformed to E1 and in many cases 17-{alpha}-estradiol under anaerobic conditions, the complete degradation of estrogens under these conditions was minimal, suggesting that they would accumulate in anoxic environments.

  3. Physiologically anaerobic microorganisms of the deep subsurface

    International Nuclear Information System (INIS)

    Anaerobic bacteria were isolated from deep subsurface sediment samples taken at study sites in Idaho (INEL) and Washington (HR) by culturing on dilute and concentrated medium. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. Although the number of isolates was small (18 INEL, 27 HR) some general patterns could be determined. Most strains could utilize all the carbon sources, however the glycerol and melizitose utilization was positive for 50% or less of the HR isolates. Catalase activity (27.78% at INEL, 74.07% at HR) and tryptophan metabolism (11.12% at INEL, 40.74% at HR) were significantly different between the two study sites. MPN and viable counts indicate that sediments near the water table yield the greatest numbers of anaerobes. Deeper sediments also appear to be more selective with the greatest number of viable counts on low-nutrient mediums. Likewise, only strictly obligate anaerobes were found in the deepest sediment samples. Selective media indicated the presence of methanogens, acetogens, and sulfate reducers at only the HR site

  4. Methanotrophic bacteria.

    OpenAIRE

    Hanson, R S; Hanson, T. E.

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehy...

  5. Anaerobic Nitrogen Fixers on Mars

    Science.gov (United States)

    Lewis, B. G.

    2000-07-01

    The conversion of atmospheric nitrogen gas to the protein of living systems is an amazing process of nature. The first step in the process is biological nitrogen fixation, the transformation of N2 to NH3. The phenomenon is crucial for feeding the billions of our species on Earth. On Mars, the same process may allow us to discover how life can adapt to a hostile environment, and render it habitable. Hostile environments also exist on Earth. For example, nothing grows in coal refuse piles due to the oxidation of pyrite and marcasite to sulfuric acid. Yet, when the acidity is neutralized, alfalfa and soybean plants develop root nodules typical of symbiotic nitrogen fixation with Rhizobium species possibly living in the pyritic material. When split open, these nodules exhibited the pinkish color of leghemoglobin, a protein in the nodule protecting the active nitrogen-fixing enzyme nitrogenase against the toxic effects of oxygen. Although we have not yet obtained direct evidence of nitrogenase activity in these nodules (reduction of acetylene to ethylene, for example), these findings suggested the possibility that nitrogen fixation was taking place in this hostile, non-soil material. This immediately raises the possibility that freeliving anaerobic bacteria which fix atmospheric nitrogen on Earth, could do the same on Mars.

  6. Correlation of anaerobic ammonium oxidation and denitrification

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The feasibility of the nitrous organic wastewater treated was studied in seven anaerobic sequencing batch reactors(ASBRs)(0 #-6 #) which had been run under stable anaerobic ammonium oxidation (Anammox). By means of monitoring and data analysis of COD, NH4+-N, NO2--N, NO3--N and pH, and of microbial test, the results revealed that the optimal Anammox performance was achieved from 2# reactor in which COD/NH4+-N was 1.65, Anammox bacteria and denitrification bacteria could coexist, and Anammox reaction and denitrification reaction could occur simultaneously in the reactors. The ratio of NH4+-N consumed: NO2--N consumed: NO3--N produced was 1:1.38:0.19 in 0# reactor which was not added glucose in the wastewater. When different ratio of COD and NH4+-N was fed for the reactors, the ratio of NO2--N consumed: NH4+-N consumed was in the range of 1.51-2.29 and the ratio of NO3-N produced: NH4+-N consumed in the range of 0-0.05.

  7. [Changes in sensitivity of clinical strains of bacteria to dioxidine from 1984 to 1988].

    Science.gov (United States)

    Bol'shakov, L V

    1990-09-01

    Dioxidine sensitivity of 7291 strains of aerobic bacteria and 163 strains of anaerobic bacteria was assayed with the disk diffusion method. The sensitivity of the aerobes was studied in the time course from 1984 to 1988. It was shown that during the 5-year period, the sensitivity of gram-positive bacteria to dioxidine gradually decreased. At the same time no increase in resistance of gram-negative organisms to dioxidine was observed. A high dioxidine sensitivity of obligate anaerobes, i.e. Clostridium spp., Bacteroides spp., Fusobacterium spp., anaerobic cocci and others was demonstrated. PMID:2275583

  8. Clindamycin and gentamicin for aerobic and anaerobic sepsis.

    Science.gov (United States)

    Fass, R J; Ruiz, D E; Gardner, W G; Rotilie, C A

    1977-01-01

    Thirty-eight adult patients with serious pleuropulmonary, soft-tissue, bone, and intra-abdominal infections caused by combinations of aerobic, facultative, and anaerobic bacteria were treated with parenterally given clindamycin phosphate and gentamicin sulfate and surgery when appropriate. Nine had associated bacteremia. In 29, infections failed to respond to other therapeutic regimens, which included penicillins, cephalosporins, aminoglycosides, and chloramphenicol. Results with clindamycin and gentamicin were excellent and were attributed primarily to the activity of clindamycin against anaerobes, particularly Bacteroides fragilis. Serum concentrations of clindamycin surpassed by manyfold the minimal inhibitory concentrations (MICs) for anaerobes. Serum concentrations of gentamicin did not consistently surpass the MICs for Enterobacteriaceae and Pseudomonas aeruginosa, although those organisms were consistently gentamicinsusceptible by disk diffusion susceptibility tests. Persistent colonization with Enterobacteriaceae, P aeruginosa, enterococci, or Candida were common, and occasionally they were significant in prolonging the clinical courses of patients with extensive infections. PMID:318824

  9. Structure and activity of lacustrine sediment bacteria involved in nutrient and iron cycles

    DEFF Research Database (Denmark)

    da Silva Martins, Gilberto Jorge; Terada, Akihiko; Ribeiro, Daniel C; Corral, Anuska M; Brito, António G; Smets, Barth F.; Nogueira, Regina

    2011-01-01

    lakes with distinct trophic states (Verde, Azul, Furnas and Fogo). Inferred from quantitative PCR, bacteria performing anaerobic ammonia oxidation were the most abundant in the eutrophic lakes Verde, Azul and Furnas (4.5-16.6%), followed by nitrifying bacteria (0.8-13.0%), denitrifying bacteria (DNB) (0...

  10. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, KG Kristoffer

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dyes, followed by aerobic transfo...

  11. Comparative investigation on microbial community and electricity generation in aerobic and anaerobic enriched MFCs.

    Science.gov (United States)

    Quan, Xiang-chun; Quan, Yan-ping; Tao, Kun; Jiang, Xiao-man

    2013-01-01

    This study compared the difference in microbial community and power generation capacity of air-cathode MFCs enriched under anode aerobic and anaerobic conditions. Results showed that MFCs successfully started with continuous air inputting to anode chamber. The aerobic enriched MFC produced comparable and even more electricity with the fuels of acetate, glucose and ethanol compared to the anaerobic MFC when returning to anaerobic condition. The two MFCs showed a slightly different microbial community for anode biofilms (a similarity of 77%), but a highly similar microbial community (a similarity of 97%) for anolyte microbes. The anode biofilm of aerobic enriched MFC showed the presence of some specific bacteria closely related to Clostridium sticklandii, Leucobacter komagatae and Microbacterium laevaniformans. The anaerobic enriched MFC found the presence of a large number of yeast Trichosporon sp. This research demonstrates that it is possible to enrich oxygen-tolerant anode respiring bacteria through purposely aeration in anode chamber. PMID:23196248

  12. Evidence for PAH Removal Coupled to the First Steps of Anaerobic Digestion in Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Glenda Cea-Barcia

    2013-01-01

    Full Text Available Anaerobic degradation of polycyclic aromatic hydrocarbons has been brought to the fore, but information on removal kinetics and anaerobic degrading bacteria is still lacking. In order to explore the organic micropollutants removal kinetics under anaerobic conditions in regard to the methane production kinetics, the removal rate of 12 polycyclic aromatic hydrocarbons was measured in two anaerobic batch reactors series fed with a highly loaded secondary sludge as growth substrate. The results underscore that organic micropollutants removal is coupled to the initial stages of anaerobic digestion (acidogenesis and acetogenesis. In addition, the organic micropollutants kinetics suggest that the main removal mechanisms of these hydrophobic compounds are biodegradation and/or sequestration depending on the compounds.

  13. The influence of biofilm formation by Gardnerella vaginalis and other anaerobes on bacterial vaginosis

    OpenAIRE

    Machado, António; Cerca, Nuno

    2015-01-01

    Bacterial vaginosis (BV) is the worldwide leading vaginal disorder in women of reproductive age. BV is characterized by the replacement of beneficial lactobacilli and the augmentation of anaerobic bacteria. Gardnerella vaginalis is a predominant bacterial species, however, BV is also associated with other numerous anaerobes, such as Atopobium vaginae, Mobiluncus mulieris, Prevotella bivia, Fusobacterium nucleatum and Peptoniphilus sp.. Currently, the role of G. vaginalis in the etiology of BV...

  14. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane

    OpenAIRE

    Wegener, Gunter; Krukenberg, Viola; Ruff, S. Emil; Kellermann, Matthias Y.; Knittel, Katrin

    2016-01-01

    In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here w...

  15. Anaerobic Cultures from Preserved Tissues of Baby Mammoth

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Fisher, Daniel

    2011-01-01

    Microbiological analysis of several cold-preserved tissue samples from the Siberian baby mammoth known as Lyuba revealed a number of culturable bacterial strains that were grown on anaerobic media at 4 C. Lactic acid produced by LAB (lactic acid bacteria) group, usually by members of the genera Carnobacterium and Lactosphera, appears to be a wonderful preservative that prevents other bacteria from over-dominating a system. Permafrost and lactic acid preserved the body of this one-month old baby mammoth and kept it in exceptionally good condition, resulting in this mammoth being the most complete such specimen ever recovered. The diversity of novel anaerobic isolates was expressed on morphological, physiological and phylogenetic levels. Here we discuss the specifics of the isolation of new strains, differentiation from trivial contamination, and preliminary results for the characterization of cultures.

  16. Anaerobic cultures from preserved tissues of baby mammoth

    Science.gov (United States)

    Pikuta, Elena V.; Fisher, Daniel; Hoover, Richard B.

    2011-10-01

    Microbiological analysis of several cold-preserved tissue samples from the Siberian baby mammoth known as Lyuba revealed a number of culturable bacterial strains that were grown on anaerobic media at 3 oC. Lactic acid produced by LAB (lactic acid bacteria) group, usually by members of the genera Carnobacterium and Lactosphera, appears to be a wonderful preservative that keeps other bacteria from colonizing a system. Permafrost and lactic acid preserved the body of this one month-old baby mammoth and kept it in exceptionally good condition, resulting in this mammoth being the most complete sample of the species ever recovered. The diversity of novel psychrophilic anaerobic isolates was expressed on morphological, physiological and phylogenetic levels. Here, we discuss the specifics of the isolation of new psychrophilic strains, differentiation from trivial contamination, and preliminary results for characterization of the cultures.

  17. New perspectives in anaerobic digestion

    DEFF Research Database (Denmark)

    van Lier, J.B.; Tilche, A.; Ahring, Birgitte Kiær;

    2001-01-01

    requirements. In fact, most advances were achieved during the last three decades, when high-rate reactor systems were developed and a profound insight was obtained in the microbiology of the anaerobic communities. This insight led to a better understanding of anaerobic treatment and, subsequently, to a broader......The IWA specialised group on anaerobic digestion (AD) is one of the oldest working groups of the former IAWQ organisation. Despite the fact that anaerobic technology dates back more than 100 years, the technology is still under development, adapting novel treatment systems to the modern...

  18. Comparison of Two Methods for Enumeration of Anaerobe Numbers on Forages and Evaluation of Ethylene Oxide Treatment for Forage Sterilization †

    OpenAIRE

    Shockey, W. L.; Dehority, B. A.

    1989-01-01

    Experiments were conducted to (i) compare most-probable-number (MPN) procedures with roll tube procedures for enumeration of forage anaerobic bacteria and (ii) evaluate the efficacy of using ethylene oxide to sterilize wet herbage. Alfalfa, corn, and alfalfa-orchardgrass silages and alfalfa and orchardgrass herbages were analyzed for total anaerobic bacteria (medium pH, 6.8) and acid-tolerant anaerobic bacteria (medium pH, 4.5) by both roll tube and MPN procedures. No difference was found bet...

  19. Molecular characterization of anaerobic dehalogenation by Desulfitobacterium dehalogenans

    OpenAIRE

    Smidt, H.

    2001-01-01

    Haloorganics such as chlorophenols and chlorinated ethenes are among the most abundant pollutants in soil, sediments and groundwater, mainly caused by past and present industrial and agricultural activities. Due to bioaccumulation and toxicity, these compounds threaten the integrity of the environment, and human and animal health. A recently discovered, phylogenetically diverse, group of anaerobic so-called halorespiring bacteria is able to couple the reductive dehalogenation of various haloo...

  20. Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere

    OpenAIRE

    Nie, San'an; Li, Hu; Yang, Xiaoru; Zhang, Zhaoji; Weng, Bosen; Huang, Fuyi; Zhu, Gui-Bing; Zhu, Yong-Guan

    2015-01-01

    Anaerobic oxidation of ammonium (anammox) is recognized as an important process for nitrogen (N) cycling, yet its role in agricultural ecosystems, which are intensively fertilized, remains unclear. In this study, we investigated the presence, activity, functional gene abundance and role of anammox bacteria in rhizosphere and non-rhizosphere paddy soils using catalyzed reporter deposition–fluorescence in situ hybridization, isotope-tracing technique, quantitative PCR assay and 16S rRNA gene cl...

  1. Development of microorganisms in the chernozem under aerobic and anaerobic conditions

    Science.gov (United States)

    Polyanskaya, L. M.; Gorbacheva, M. A.; Milanovskii, E. Yu.; Zvyagintsev, D. G.

    2010-03-01

    A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in different horizons of a chernozem. It was revealed that, under aerobic conditions, all the microorganisms grow irrespective of the soil horizon; fungi and bacteria grow at the first succession stages, and actinomycetes grow at the last stages. It was shown that, in the case of a simulated anaerobiosis commonly used to study anaerobic populations of bacteria, the mycelium of micromycetes grows in the upper part of the chernozem’s A horizon. Under anaerobic conditions, the peak of the mycelium development is shifted from the 3rd to 7th days (typical for aerobic conditions) to the 7th to 15th days of incubation. The level of mycelium length’s stabilization under aerobic and anaerobic conditions also differs: it is higher or lower than the initial one, respectively. Under anaerobic conditions, the growth of fungal mycelium, bacteria, and actinomycetes in the lower part of the A horizon and in the B horizon is extremely weak. There was not any observed growth of actinomycetes in all the chernozem’s horizons under anaerobic conditions.

  2. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria......, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility and by...... actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria, the...

  3. Viable Bacteria Associated with Red Blood Cells and Plasma in Freshly Drawn Blood Donations

    DEFF Research Database (Denmark)

    Damgaard, Christian; Magnussen, Karin; Enevold, Christian;

    2015-01-01

    10-6, respectively). Propionibacterium acnes was found in 23% of the donations, and Staphylococcus epidermidis in 38%. The majority of bacteria identified in the present study were either facultative anaerobic (59.5%) or anaerobic (27.8%) species, which are not likely to be detected during current...

  4. Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem.

    Science.gov (United States)

    Lu, Xia; Liu, Yurong; Johs, Alexander; Zhao, Linduo; Wang, Tieshan; Yang, Ziming; Lin, Hui; Elias, Dwayne A; Pierce, Eric M; Liang, Liyuan; Barkay, Tamar; Gu, Baohua

    2016-04-19

    Microbial methylation and demethylation are two competing processes controlling the net production and bioaccumulation of neurotoxic methylmercury (MeHg) in natural ecosystems. Although mercury (Hg) methylation by anaerobic microorganisms and demethylation by aerobic Hg-resistant bacteria have both been extensively studied, little attention has been given to MeHg degradation by anaerobic bacteria, particularly the iron-reducing bacterium Geobacter bemidjiensis Bem. Here we report, for the first time, that the strain G. bemidjiensis Bem can mediate a suite of Hg transformations, including Hg(II) reduction, Hg(0) oxidation, MeHg production and degradation under anoxic conditions. Results suggest that G. bemidjiensis utilizes a reductive demethylation pathway to degrade MeHg, with elemental Hg(0) as the major reaction product, possibly due to the presence of genes encoding homologues of an organomercurial lyase (MerB) and a mercuric reductase (MerA). In addition, the cells can strongly sorb Hg(II) and MeHg, reduce or oxidize Hg, resulting in both time and concentration-dependent Hg species transformations. Moderate concentrations (10-500 μM) of Hg-binding ligands such as cysteine enhance Hg(II) methylation but inhibit MeHg degradation. These findings indicate a cycle of Hg methylation and demethylation among anaerobic bacteria, thereby influencing net MeHg production in anoxic water and sediments. PMID:27019098

  5. Effect of tourmaline on denitrification characteristics of hydrogenotrophic bacteria.

    Science.gov (United States)

    Wang, Wei; Jiang, Hongyan; Zhu, Guangquan; Song, Xueying; Liu, Xingyu; Qiao, Ya

    2016-03-01

    To improve the denitrification characteristics of anaerobic denitrifying bacteria and obviate the disadvantage of use of explosive hydrogen gas, tourmaline, a polar mineral, was added to the hydrogenotrophic denitrification system in this study. Microbial reduction of nitrate in the presence of tourmaline was evaluated to assess the promotion effect of tourmaline on nitrate biodegradation. The experiment results demonstrated that tourmaline speeded up the cultivation process of bacteria from 65 to 36 days. After domestication of the bacteria, nitrate (50 mg NO3 (-)-N L(-1)) was completely removed within 3 days in the combined tourmaline-bacteria system, and the generated nitrite was also removed within 8 days. The reduction rate in this system is higher relative to that in the bacteria system alone. Efficient removal of nitrate by tourmaline-supported anaerobic bacteria (without external hydrogen input) indicated that tourmaline might act as the sole hydrogen donor to sustain autotrophic denitrification. Besides the production of hydrogen, the promoted activity of anaerobic denitrifying bacteria might be caused by the change of water properties, e.g., the pH of aqueous solutions was altered to about 8.0 and the oxidation-reduction potential decreased by 62 % in the tourmaline system. The distinctive effects of tourmaline on bacteria were related to its electric properties. PMID:26545889

  6. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    Science.gov (United States)

    Hassan, Siti; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  7. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-01-01

    Full Text Available Large volumes of untreated palm oil mill effluent (POME pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF. The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m3 of biogas per m3 of POME which was utilized for electricity generation.

  8. [Detection of anaerobic processes and microorganisms in immobilized activated sludge of a wastewater treatment plant with intense aeration].

    Science.gov (United States)

    Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N

    2013-01-01

    Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation. PMID:25509405

  9. Microbial Diversity and Characteristics in Anaerobic Environments in KURT Groundwater

    International Nuclear Information System (INIS)

    The Underground Research Tunnel (URT) located in Korea Atomic Energy Research Institute (KAERI), Daejeon, South Korea was recently constructed as an experimental site to study radionuclide transport, biogeochemistry, radionuclide-mineral interactions for the geological disposal of high level nuclear waste. Groundwater sampled from URT was used to examine microbial diversity and to enrich metal reducing bacteria for studying microbe-metal interactions. Genomic analysis indicated that the groundwater contained diverse microorganisms such as metal reducers, metal oxidizers, anaerobic denitrifying bacteria, and bacteria for reductive dechlorination. Metal-reducing bacteria enriched from the groundwater was used to study metal reduction and biomineralization. The metal-reducing bacteria enriched with acetate or lactate as the electron donors showed the bacteria reduced Fe(III)-citrate, Fe(III) oxyhydroxide, Mn(IV) oxide, and Cr(VI) as the electron acceptors. Preliminary study indicated that the enriched bacteria were able to use glucose, lactate, acetate, and hydrogen as electron donors while reducing Fe(III)-citrate or Fe(III) oxyhydroxide as the electron acceptor. The bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite, siderite, and rhodochrosite. The results indicated that Fe(III)- and metal-reducing communities are present in URT at the KAERI

  10. Bacteria and the mucus blanket in experimental small bowel bacterial overgrowth.

    OpenAIRE

    Sherman, P; Fleming, N; Forstner, J.; Roomi, N.; Forstner, G

    1987-01-01

    Self-filling blind loops were created experimentally in jejunal segments of specific pathogen-free male Wistar rats, and the loop contents and mucosa were examined over an 8-week period for evaluation of the interaction between mucus and luminal bacteria. Corresponding jejunal segments from rats that did not undergo surgery were used as controls. Proliferation of anaerobic bacteria developed in the test animals by the first week after surgery. Despite anaerobic bacterial proliferation, no adh...

  11. Anaerobic Digestion of Piggery Waste

    NARCIS (Netherlands)

    Velsen, van A.F.M.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes an

  12. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  13. EVALUATION OF A TWO-STAGE TREATMENT OF DOMESTIC SEWAGE WITH ANAEROBIC-AEROBIC MICROBIAL FILM

    Directory of Open Access Journals (Sweden)

    A.Mesdaghinia

    1986-08-01

    Full Text Available The objective of this research was to study the feasibility of a two stage continuous system employing anaerobic-aerobic microbial film for domestic wastewater treatment and the effect of iron on the behavior of sulfate reducing bacteria in anaerobic metabolism. A bench scale system with an anaerobic filter followed by aerobic fixed units used plastic media and was operated in up flow manner with hydraulic detention times of 6 hours, whereas the aerobic unit utilized diffused aeration. Raw domestic sewage was fed to the anaerobic unit, and the aerobic unit was fed with the anaerobic unit was fed with the anaerobic effluent. Although, the anaerobic filter did not show a considerable organic removal with domestic sex age it was improved when glucose was added to the influent to increase influent soluble COD. When glucose was added the anaerobic filter removed about 290 mg/1 of influent soluble COD. The aerobic unit produced an excellent effluent with COD, BOD5 and TSS concentrations of 37 mg/1, 9 mg/1 and 10 mg/l respectively. Overall, the system removed 95 percent of influent COD, 97 percent of influent BOD5 and 96 percent of influent TSS.

  14. Degradation of BTEX by anaerobic bacteria: physiology and application

    NARCIS (Netherlands)

    Weelink, S.A.B.; Eekert, van M.H.A.; Stams, A.J.M.

    2010-01-01

    Pollution of the environment with aromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX) is often observed. The cleanup of these toxic compounds has gained much attention in the last decades. In situ bioremediation of aromatic hydrocarbons contaminated soils and gr

  15. Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria

    OpenAIRE

    Weelink, S.A.B.

    2008-01-01

    Accidental spills, industrial discharges and gasoline leakage from underground storage tanks have resulted in serious pollution of the environment with monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX). High concentrations of BTEX have been detected in soils, sediments and groundwater. The mobility and toxicity of the BTEX compounds are of major concern. In situ bioremediation of BTEX by using naturally occurring microorganisms or introduced microor...

  16. Degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria

    NARCIS (Netherlands)

    Weelink, S.A.B.

    2008-01-01

    Accidental spills, industrial discharges and gasoline leakage from underground storage tanks have resulted in serious pollution of the environment with monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX). High concentrations of BTEX have been detected in soi

  17. Production of Bioethanol From Lignocellulosic Biomass Using Thermophilic Anaerobic Bacteria

    DEFF Research Database (Denmark)

    Georgieva, Tania I.

    2006-01-01

    xylose conversion, effective glucose/xylose co-fermentation, and ethanol productivity of 1 g/l/h required for an economically viable bioethanol process. Furthermore, the fermentation of two undetoxified feed streams of industrial interest (acid hydrolyzed corn stover and wet-exploded wheat straw...... hydrolysates indicate the great potential of the tested strain as a realistic candidate for industrial scale bioethanol production from lignocellulose. The study shows that the use of fluidized bed reactor technology might be a viable approach in a commercial lignocellulose-based bioethanol process using......Bioethanol (ethanol produced from biomass) as a motor fuel is an attractive renewable fully sustainable energy sources as a means of lowering dependence on fossil fuels and air pollution towards greenhouse gasses, particularly CO2. Bioethanol, unlike gasoline, is an oxygenated fuel, which burns...

  18. Anaerobic fungal populations

    International Nuclear Information System (INIS)

    The development of molecular techniques has greatly broadened our view of microbial diversity and enabled a more complete detection and description of microbial communities. The application of these techniques provides a simple means of following community changes, for example, Ishii et al. described transient and more stable inhabitants in another dynamic microbial system, compost. Our present knowledge of anaerobic gut fungal population diversity within the gastrointestinal tract is based upon isolation, cultivation and observations in vivo. It is likely that there are many species yet to be described, some of which may be non-culturable. We have observed a distinct difference in the ease of cultivation between the different genera, for example, Caecomyes isolates are especially difficult to isolate and maintain in vitro, a feature that is likely to result in the under representation of this genera in culture-based enumerations. The anaerobic gut fungi are the only known obligately anaerobic fungi. For the majority of their life cycles, they are found tightly associated with solid digesta in the rumen and/or hindgut. They produce potent fibrolytic enzymes and grow invasively on and into the plant material they are digesting making them important contributors to fibre digestion. This close association with intestinal digesta has made it difficult to accurately determine the amount of fungal biomass present in the rumen, with Orpin suggesting 8% contribution to the total microbial biomass, whereas Rezaeian et al. more recently gave a value of approximately 20%. It is clear that the rumen microbial complement is affected by dietary changes, and that the fungi are more important in digestion in the rumens of animals fed with high-fibre diets. It seems likely that the gut fungi play an important role within the rumen as primary colonizers of plant fibre, and so we are particularly interested in being able to measure the appearance and diversity of fungi on the plant

  19. Metabolic Flexibility of Sulfate-Reducing Bacteria

    OpenAIRE

    Plugge, Caroline M.; Zhang, Weiwen; Scholten, Johannes C. M.; Stams, Alfons J. M.

    2011-01-01

    Dissimilatory sulfate-reducing prokaryotes (SRB) are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas me...

  20. Interactions between Periodontal Bacteria and Human Oral Epithelial Cells: Fusobacterium nucleatum Adheres to and Invades Epithelial Cells

    OpenAIRE

    Han, Yiping W.; Shi, Wenyuan; HUANG, GEORGE T.-J.; Kinder Haake, Susan; Park, No-Hee; Kuramitsu, Howard; Genco, Robert J.

    2000-01-01

    Bacteria are causative agents of periodontal diseases. Interactions between oral bacteria and gingival epithelial cells are essential aspects of periodontal infections. Using an in vitro tissue culture model, a selected group of gram-negative anaerobic bacteria frequently associated with periodontal diseases, including Bacteroides forsythus, Campylobacter curvus, Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, and Prevotella intermedia, were examined for their ability ...

  1. Biotransformation of nonylphenol ethoxylates during sewage treatment under anaerobic and aerobic conditions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Biotransformation of nonylphenol ethoxylates (NPEOs) during continuous anaerobic sewage treatment was compared with the aerobic treatment of sewage spiked with 23 μmol/L technical NPEOs over a period of 90 d. Immediate degradation of NPEOs was observed under both anaerobic and aerobic conditions, indicating that the enzymes and bacteria required for NPEO degradation existed abundantly in both aerobic and anaerobic sludge. Both treatments achieved high removal (>92%) of the spiked NPEO9 mixture.Liquid chromatography-mass spectrometry (LC-MS) analysis showed that short-chain NPEOs (NPEO1-NPEO3) accumulated in anaerobic (2.01-2.56 μmol/L) and aerobic (1.62-2.03 μmol/L) effluents, with nonylphenol (NP) (0.24-0.31 μmol/L) as another group of metabolites in the anaerobic effluent, and nonylphenoxy carboxylates (NPECs) (2.79-3.30 μmol/L) in the aerobic effluent. Significant accumulation of NP in the anaerobic sludge and NPEO1-3 in the sludge of two reactors was observed. These results indicated that it was difficult to control these harmful metabolites in the conventional treatment processes. Denaturing gradient gel electrophoresis profiles of sludge samples support the speculation that the NPEO degradation bacteria might be the dominant indigenous species.

  2. Enhanced biogas yield from energy crops with rumen anaerobic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Prochazka, Jindrich; Zabranska, Jana; Dohanyos, Michal [Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, Institute of Chemical Technology in Prague, Prague (Czech Republic); Mrazek, Jakub; Strosova, Lenka; Fliegerova, Katerina [Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, v.v.i., Prague (Czech Republic)

    2012-06-15

    Anaerobic fungi (AF) are able to degrade crop substrates with higher efficiency than commonly used anaerobic bacteria. The aim of this study was to investigate ways of use of rumen AF to improve biogas production from energy crops under laboratory conditions. In this study, strains of AF isolated from feces or rumen fluid of cows and deer were tested for their ability to integrate into the anaerobic bacterial ecosystem used for biogas production, in order to improve degradation of substrate polysaccharides and consequently the biogas yield. Batch culture, fed batch culture, and semicontinuous experiments have been performed using anaerobic sludge from pig slurry fermentation and different kinds of substrates (celluloses, maize, and grass silage) inoculated by different genera of AF. All experiments showed a positive effect of AF on the biogas yield and quality. AF improved the biogas production by 4-22%, depending on the substrate and AF species used. However, all the cultivation experiments indicated that rumen fungi do not show long-term survival in fermenters with digestate from pig slurry. The best results were achieved during fed batch experiment with fungal culture Anaeromyces (KF8), in which biogas production was enhanced during the whole experimental period of 140 days. This result has not been achieved in semicontinuous experiment, where increment in biogas production in fungal enriched reactor was only 4% after 42 days. (copyright 2012 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Assessment of hydrogen metabolism in commercial anaerobic digesters.

    Science.gov (United States)

    Kern, Tobias; Theiss, Juliane; Röske, Kerstin; Rother, Michael

    2016-05-01

    Degradation of biomass in the absence of exogenous electron acceptors via anaerobic digestion involves a syntrophic association of a plethora of anaerobic microorganisms. The commercial application of this process is the large-scale production of biogas from renewable feedstock as an alternative to fossil fuels. After hydrolysis of polymers, monomers are fermented to short-chain fatty acids and alcohols, which are further oxidized to acetate. Carbon dioxide, molecular hydrogen (H2), and acetate generated during the process are converted to methane by methanogenic archaea. Since many of the metabolic pathways as well as the syntrophic interactions and dependencies during anaerobic digestion involve formation, utilization, or transfer of H2, its metabolism and the methanogenic population were assessed in various samples from three commercial biogas plants. Addition of H2 significantly increased the rate of methane formation, which suggested that hydrogenotrophic methanogenesis is not a rate-limiting step during biogas formation. Methanoculleus and Methanosarcina appeared to numerically dominate the archaeal population of the three digesters, but their proportion and the Bacteria-to-Archaea ratio did not correlate with the methane productivity. Instead, hydrogenase activity in cell-free extracts from digester sludge correlated with methane productivity in a positive fashion. Since most microorganisms involved in biogas formation contain this activity, it approximates the overall anaerobic metabolic activity and may, thus, be suitable for monitoring biogas reactor performance. PMID:26995607

  4. A characterization of anaerobic colonization and associated mucosal adaptations in the undiseased ileal pouch.

    LENUS (Irish Health Repository)

    Smith, F M

    2012-02-03

    INTRODUCTION: The resolution of pouchitis with metronidazole points to an anaerobic aetiology. Pouchitis is mainly seen in patients with ulcerative colitis pouches (UCP). We have recently found that sulphate reducing bacteria (SRB), a species of strict anaerobe, colonize UCP exclusively. Herein, we aimed to correlate levels of different bacterial species (including SRB) with mucosal inflammation and morphology. METHODS: Following ethical approval, fresh faecal samples and mucosal biopsies were taken from 9 patients with UCP and 5 patients with familial adenomatous polyposis pouches (FAPP). For the purposes of comparison, faecal samples and mucosal biopsies were also taken from the stomas of 7 of the 9 patients with UC (UCS). Colonization by four types of strict anaerobes (SRB, Clostridium perfringens, Bifidobacteria and Bacteroides) as well as by three types of facultative anaerobes (Enterococci, Coliforms and Lactobacilli) was evaluated. Inflammatory scores and mucosal morphology were assessed histologically in a blinded fashion by a pathologist. RESULTS: In general, strict anaerobes predominated over facultative in the UCP (P = 0.041). SRB were present in UCP exclusively. Even after exclusion of SRB from total bacterial counts, strict anaerobes still predominated. In the UCS, facultative anaerobes predominated. Strict and facultative anaerobes were present at similar levels in the FAPP. Enterococci were present at significantly reduced levels in the UCP when compared with the UCS (P = 0.031). When levels of SRB and other anaerobic species were individually correlated with mucosal inflammation and morphology, no trends were observed. CONCLUSION: We have previously identified that SRB exclusively colonize UCP. In addition we have now identified a novel increase in the strict\\/facultative anaerobic ratio within the UCP compared to UCS. These stark differences in bacterial colonization, however, appear to have limited impact on mucosal inflammation or morphology.

  5. Upflow anaerobic sludge blanket reactor--a review.

    Science.gov (United States)

    Bal, A S; Dhagat, N N

    2001-04-01

    inorganic matter in the absence of molecular oxygen. Complex polymeric materials such as polysaccharides, proteins, and lipids (fat and grease) are first hydrolyzed to soluble products by extracellular enzymes, secreted by microorganisms, so as to facilitate their transport or diffusion across the cell membrane. These relatively simple, soluble compounds are fermented or anaerobically oxidized, further to short-chain fatty acids, alcohols, carbon dioxide, hydrogen, and ammonia. The short-chain fatty acids (other than acetate) are converted to acetate, hydrogen gas, and carbon dioxide. Methanogenesis finally occurs from the reduction of carbon dioxide and acetate by hydrogen. The initial stage of anaerobic degradation, i.e. acid fermentation is essentially a constant BOD stage because the organic molecules are only rearranged. The first stage does not stabilize the organics in the waste. However this step is essential for the initiation of second stage methane fermentation as it converts the organic material to a form, usable by the methane producing bacteria. The second reaction is initiated when anaerobic methane forming bacteria act upon the short chain organic acids produced in the 1st stage. Here these acids undergo methane fermentation with carbon dioxide acting as hydrogen acceptor and getting reduced to methane. The methane formed, being insoluble in water, escapes from the system and can be tapped and used as an energy source. The production and subsequent escape of methane causes the stabilization of the organic material. The methane-producing bacteria consist of several different groups. Each group has the ability to ferment only specific compounds. Therefore, the bacterial consortia in a methane producing system should include a number of different groups. When the rate of bacterial growth is considered, then the retention time of the solids becomes important parameter. The acid fermentation stage is faster as compared to the methane fermentation stage. This

  6. Effects of Oxytetracycline on Methane Production and the Microbial Communities During Anaerobic Digestion of Cow Manure

    Institute of Scientific and Technical Information of China (English)

    KE Xin; WANG Chun-yong; LI Run-dong; ZHANG Yun

    2014-01-01

    The effects of different concentrations of oxytetracycline (OTC) on the dynamics of bacterial and archaeal communities during the mesophilic anaerobic digestion (37°C) of cow manure were investigated. Before anaerobic digestion, OTC was added to digesters at concentrations of 20, 50, and 80 mg L-1, respectively. Compared with no-antibiotic control, all methane productions underwent different levels of inhibition at different concentrations of OTC. Changes in the bacterial and archaeal communities were discussed by using PCR-denaturing gradient gel electrophoresis (DGGE). Results showed that OTC affected the richness and diversity of bacterial and archaeal communities. The bacterial genus Flavobacterium and an uncultured bacterium (JN256083.1) were detected throughout the entire process of anaerobic digestion and seemed to be the functional bacteria. Methanobrevibacter boviskoreani and an uncultured archaeon (FJ230982.1) dominated the archaeal communities during anaerobic digestion. These microorganisms may have high resistance to OTC and may play vital roles in methane production.

  7. Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: A review.

    Science.gov (United States)

    Barca, Cristian; Soric, Audrey; Ranava, David; Giudici-Orticoni, Marie-Thérèse; Ferrasse, Jean-Henry

    2015-06-01

    Dark fermentation is a bioprocess driven by anaerobic bacteria that can produce hydrogen (H2) from organic waste and wastewater. This review analyses a relevant number of recent studies that have investigated dark fermentative H2 production from wastewater using two different types of anaerobic biofilm reactors: anaerobic packed bed reactor (APBR) and anaerobic fluidized bed reactor (AFBR). The effect of various parameters, including temperature, pH, carrier material, inoculum pretreatment, hydraulic retention time, substrate type and concentration, on reactor performances was investigated by a critical discussion of the results published in the literature. Also, this review presents an in-depth study on the influence of the main operating parameters on the metabolic pathways. The aim of this review is to provide to researchers and practitioners in the field of H2 production key elements for the best operation of the reactors. Finally, some perspectives and technical challenges to improve H2 production were proposed. PMID:25746594

  8. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction

    International Nuclear Information System (INIS)

    This study evaluated the anaerobic degradation of landfill leachate and sulfate reduction as a function of COD/(SO42-) ratio in an upflow anaerobic fixed-bed reactor. The reactor, which was inoculated with a mixed consortium, was operated under a constant hydraulic retention time (HRT) of 5 days. We investigated the effect of COD/(SO42-) ratio variation on the sulfate reduction efficiency, hydrogen sulfide production, chemical oxygen demand (COD) removal, conductivity, and pH variation. The best reactor performance, with significant sulfate reduction efficiency and COD removal efficiency of 91% and 87%, respectively, was reached under a COD/(SO42-) ratio of 1.17. Under these conditions, microscopic analysis showed the abundance of vibrios and rod-shaped bacterial cells. Two anaerobic bacteria were isolated from the reactor sludge. Phylogenetic studies performed on these strains identified strain A1 as affiliated to Clostridium genus and strain H1 as a new species of sulfate-reducing bacteria affiliated to the Desulfovibrio genus. The closest phylogenetic relative of strain H1 was Desulfovibrio desulfuricans, at 96% similarity for partial 16S RNA gene sequence data. Physiological and metabolic characterization was performed for this strain.

  9. Nitrifying and denitrifying bacteria in aerobic granules formed in sequencing batch airlift reactors

    Institute of Scientific and Technical Information of China (English)

    WANG Fang; YANG Fenglin; QI Aijiu

    2007-01-01

    The purpose of this study was to investigate nitrifying bacteria and denitrifying bacteria isolated from aerobic granules.Aerobic granules were formed in an internal-circulate sequencing batch airlift reactor(SBAR)and biodegradation of NH3 -N was analyzed in the reactor.Bacteria were isolated and determined from aerobic granules using selected media.The growth properties and morphology of bacteria colonies were observed by controlling aerobic or anaerobic conditions in the culture medium.It was found that bacteria in aerobic granules were diverse and some of them were facultative aerobes.The diversity of bacteria in aerobic granules was a premise of simultaneous nitrification and denitrification.

  10. The valuation of malnutrition in the mono-digestion of maize silage by anaerobic batch tests.

    Science.gov (United States)

    Hinken, L; Urban, I; Haun, E; Urban, I; Weichgrebe, D; Rosenwinkel, K-H

    2008-01-01

    Anaerobic digestion is a technology which is used to produce methane from organic solids and energy crops. Especially in recent years, the fermentation of energy crops has become more and more important because of increasing costs for energy and special benefits for renewable energy sources in Germany. Anaerobic bacteria require macro and micro nutrients to grow. Absence of these elements can inhibit the anaerobic process significantly. In particular mono-substrates like maize or certain industrial wastewater often cannot provide all required nutrients. For this reason this research investigates the influence of substrate and trace elements on anaerobic digestion in detail. Different agricultural anaerobic biomasses are analysed with special regard to their trace element content. Based on these results, the influence of three trace elements (iron, cobalt, and nickel) on anaerobic digestion was studied in anaerobic batch tests at different sludge loading rates and for different substrates (maize and acetate). Biogas production was found to be 35% for maize silage and up to 70% higher for acetate with trace element dosage than in the reference reactor. PMID:18957759

  11. Effect of metalloporphyrins on red autofluorescence from oral bacteria

    NARCIS (Netherlands)

    C.M.C. Volgenant; M.H. van der Veen; J.J. de Soet; J.M. ten Cate

    2013-01-01

    The aim of this study was to assess the red autofluorescence from bacterial species related to dental caries and periodontitis in the presence of different nutrients in the growth medium. Bacteria were grown anaerobically on tryptic soy agar (TSA) supplemented with nutrients, including magnesium-por

  12. Cellulolytic bacteria in human gut and irritable bowel syndrome

    Czech Academy of Sciences Publication Activity Database

    Kopečný, Jan; Šimůnek, Jiří

    2002-01-01

    Roč. 71, - (2002), s. 421-427. ISSN 0001-7213 R&D Projects: GA AV ČR KSK5020115; GA ČR GA525/02/0402; GA AV ČR KSK5052113 Keywords : anaerobic bacteria * colon * fibrolytic Subject RIV: ED - Physiology Impact factor: 0.370, year: 2002

  13. Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae?

    DEFF Research Database (Denmark)

    Albert, H. B.; Lambert, Peter; Rollason, Jess;

    2013-01-01

    the presence of low virulent anaerobic microorganisms, predominantly Propionibacterium acnes, in 7-53 % of patients. At the time of a herniation these low virulent anaerobic bacteria may enter the disc and give rise to an insidious infection. Local inflammation in the adjacent bone may be a secondary...

  14. Microbiology and physiology of anaerobic fermentations of cellulose. Progress report

    International Nuclear Information System (INIS)

    Investigations into the biochemistry and physiology of the four major groups of microorganisms (primary, ancillary, secondary and methane bacteria) involved in the anaerobic conversion of cellulose to methane and carbon dioxide are presented. The investigations of the ancillary bacteria emphasize the isolation of new strains and increasing ethanol production with T. ethanolicus. These studies involve genetic modifications, enzymological studies on the regulation of appropriate enzymes and a study of the effect of inorganic pyrophosphate on growth and fermentation patterns. The acetogenic bacteria forming acetate from carbon dioxide were studied from the aspects of the enzymology of acetate from the standpoint from one carbon compound, bioenergetics emphasizing hydrogen metabolism and energy coupling H2 cycling and the structure and function of electron transfer components. Research on secondary bacteria emphasizes the sulfate reducing bacteria from the aspects of H2 cycling, specificities of electron transfer proteins and enzymes, the mechanism of bisulfite reductase and the enzymology and physiology of new genera of sulfate reducing bacteria. The biochemistry and physiology of both H2-utilizing and acetate utilizing methanogenic are reported. The studies with H2-utilizing methanogens stress the hydrogenase and the effect of inorganic pyrophosphate on growth. The research on the acetate-utilizing methanogens involve the bioenergetics of sulfite reduction and the mechanism of acetate formation induced by pyrophosphate. 143 refs., 15 figs., 10 tabs

  15. Anaerobic treatment of sulfate-containing wastewater from distilleries

    International Nuclear Information System (INIS)

    Bioprocess evaluation of a staged arrangement of a Pulse Driven Loop Reaktor (PDLR) and a Pulsed Anaerobic Filter (PAF) using highly polluted cherry slops as industrial wastewater shows a COD removal efficiency of 80-90% at loading rates of 8-4 kg COD/(M3.d). Contamination of cherry slops by sulfate (2 g/l) and copper (150-200 mg/l) reduces COD degradation to 40-50 percent. A pulsed anaerobic baffled reactor was envisaged as a corrective tool to improve mineralisation in the presence of sulfate-rich substrates by confining sulfate reducing bacteria to the first 4 chambers of the reactor. Phasing slightly improves COD degradation yield, but is not sufficient for stable process performance. Consequently, the use of lactic acid in stead of sulfuric acid in cherry-fermentation was suggested as a preventive method to avoid sulphide-induced digester failure. (orig.)

  16. [Reductive Dechlorination of Trichloroethylene by Benzoate-Enriched Anaerobic Cultures].

    Science.gov (United States)

    Li, Jiang-wei; Yang, Xiao-yong; Hu, An-yi; Yu, Chang-ping

    2015-10-01

    Gas chromatography was used to monitor the reductive dechlorination of trichloroethylene (TCE) by anaerobic enrichment cultures with benzoate as the sole carbon source. The 454 pyrosequencing technique was used to investigate the microbial community and the real-time quantitative PCR was used to quantify the gene copies of Dehalococcoides spp. (DHC). The results showed that TCE was dechlorinated to vinyl chloride along with the formation of methane in 94 days. The anaerobic enrichment cultures exhibited a high diversity, which were classified into 16 phyla, 33 classes, 52 orders, 88 families and 129 genera, while 51.2% of them belonged to unclassified group, which inferred that there were a large portion of bacteria with unknown functional in this system. Degradation of TCE was accomplished by reductive dechlorinating and other functional populations, and the DHC which carried tceA gene could be the dominant reductive dechlorinating populations in the system. PMID:26841609

  17. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    Science.gov (United States)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    's surface area, they have a profound influence on the biogeochemistry of the planet. This is evident from the observation that the O2 and CH4 content of Earth's atmosphere are in extreme disequilibrium (Sagan et al., 1993). The combination of high aerobic primary production and anoxic sediments provided the large deposits of fossil fuels that have become vital and contentious sources of energy for modern industrialized societies. Anaerobic metabolism is responsible for the abundance of N2 in the atmosphere; otherwise N2-fixing bacteria would have consumed most of the N2 pool long ago (Schlesinger, 1997). Anaerobic microorganisms are common symbionts of termites, cattle, and many other animals, where they aid digestion. Nutrient and pollutant chemistry are strongly modified by the reduced conditions that prevail in wetland and aquatic ecosystems.This review of anaerobic metabolism emphasizes aerobic oxidation, because the two processes cannot be separated in a complete treatment of the topic. It is process oriented and highlights the fascinating microorganisms that mediate anaerobic biogeochemistry. We begin this review with a brief discussion of CO2 assimilation by autotrophs, the source of most of the reducing power on Earth, and then consider the biological processes that harness this potential energy. Energy liberation begins with the decomposition of organic macromolecules to relatively simple compounds, which are simplified further by fermentation. Methanogenesis is considered next because CH4 is a product of acetate fermentation, and thus completes the catabolism of organic matter, particularly in the absence of inorganic electron acceptors. Finally, the organisms that use nitrogen, manganese, iron, and sulfur for terminal electron acceptors are considered in order of decreasing free-energy yield of the reactions.

  18. Truce with oxygen - A naerobiosis outcompete aerobiosis in the Antarctic lacustrine bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; DeSouza, M.J.B.D.; Chandramohan, D.

    The total number of bacteria counted directly by epifluorescent microscopy showed that they ranged from 10 sup(8)-10 sup(-1) in Antarctic lake water samples. The percentages of retrievable viable counts (RVC) of anaerobic bacteria (AnB) was greater...

  19. Microbial aggregates in anaerobic wastewater treatment.

    Science.gov (United States)

    Kosaric, N; Blaszczyk, R

    1990-01-01

    The phenomenon aggregation of anaerobic bacteria gives an opportunity to speed up the digestion rate during methanogenesis. The aggregates are mainly composed of methanogenic bacteria which convert acetate and H2/CO2 into methane. Other bacteria are also included in the aggregates but their concentration is rather small. The aggregates may also be formed during acetogenesis or even hydrolysis but such aggregates are not stable and disrupt quickly when not fed. A two stage process seems to be suitable when high concentrated solid waste must be treated. Special conditions are necessary to promote aggregate formation from methanogenic bacteria but aggregates once formed are stable without feeding even for a few years. The structure, texture and activity of bacterial aggregates depend on several parameters: (1)--temperature and pH, (2)--wastewater composition and (3)--hydrodynamic conditions within the reactor. The common influence of all these parameters is still rather unknown but some recommendations may be given. Temperature and pH should be maintained in the range which is optimal for methanogenic bacteria e.g. a temperature between 32 and 50 degrees C and a value pH between 6.5 and 7.5. Wastewaters should contain soluble wastes and the specific loading rate should be around one kgCOD(kgVSS)-1 d-1. The concentration of the elements influences aggregate composition and probably structure and texture. At high calcium concentration a change in the colour of the granules has been observed. Research is necessary to investigate the influence of other elements and organic toxicants on maintenance of the aggregates. Hydrodynamic conditions seem to influence the stability of the granules over long time periods. At low liquid stream rates, aggregates may starve and lysis within the aggregates is possible which results in hollowing of aggregates and their floating. At high liquid stream rates the aggregates may be disrupted and washed out of the reactor as a flocculent

  20. Microbial degradation of 4-monobrominated diphenyl ether with anaerobic sludge

    International Nuclear Information System (INIS)

    Highlights: ► BDE-3 was degraded with two anaerobes in different rates. ► Glucose addition augment the debromination efficiencies. ► Hydrogen gas was detected and relative microbes were identified. ► Extra-carbon source enhanced degradation partial due to H2-generation bacteria. - Abstract: Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant additives for many plastic and electronic products. Owing to their ubiquitous distribution in the environment, multiple toxicity to humans, and increasing accumulation in the environment, the fate of PBDEs is of serious concern for public safety. In this study, the degradation of 4-monobrominated diphenyl ether (BDE-3) in anaerobic sludge and the effect of carbon source addition were investigated. BDE-3 can be degraded by two different anaerobic sludge samples. The by-products, diphenyl ether (DE) and bromide ions, were monitored, indicating the reaction of debromination within these anaerobic samples. Co-metabolism with glucose facilitated BDE-3 biodegradation in terms of kinetics and efficiency in the Jhongsing sludge. Through the pattern of amplified 16S rRNA gene fragments in denatured gradient gel electrophoresis (DGGE), the composition of the microbial community was analyzed. Most of the predominant microbes were novel species. The fragments enriched in BDE-3-degrading anaerobic sludge samples are presumably Clostridium sp. This enrichment coincides with the H2 gas generation and the facilitation of debromination during the degradation process. Findings of this study provide better understanding of the biodegradation of brominated DEs and can facilitate the prediction of the fate of PBDEs in the environment.

  1. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.;

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... improve the continuous flow reactor performance at the relatively low influent methanogenic biomass concentration. In the continuously stirred tank reactor (CSTR) there are two steady states with and without methane production at slightly different values of initial methanogenic biomass concentration....... In the system, the threshold methanogenic biomass concentration existed because of inhibition by high VFA concentration. High methanogenic biomass concentration is required for efficient anaerobic digestion of MSW in order to avoid possible inhibition due to high VFA build-up. Thus, CSTR configuration might...

  2. A marine microbial consortium apparently mediating anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Boetius, A.; Ravenschlag, K.; Schubert, CJ;

    2000-01-01

    A large fraction of globally produced methane is converted to CO2 by anaerobic oxidation in marine sediments(1). Strong geochemical evidence for net methane consumption in anoxic sediments is based on methane profiles(2), radiotracer experiments(3) and stable carbon isotope data(4). But the elusive...... evidence for a structured consortium of archaea and sulphate-reducing bacteria, which we identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes. In this example of a structured archaeal-bacterial symbiosis, the archaea grow in dense aggregates of about 100...

  3. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  4. Anaerobic Digestion of Piggery Waste

    OpenAIRE

    Velsen, van, L.S.

    1981-01-01

    Anaerobic digestion is a biological process by which organic matter is converted to methane and carbon dioxide by microbes in the absence of air (oxygen). In nature, anaerobic conversions occur at all places where organic material accumulates and the supply of oxygen is deficient, e.g. in marshes and lake sediments. Microbial formation of methane also plays a role in the ruminant digestion.In digestion units, the external conditions acting upon the process can be regulated to speed it up as c...

  5. Anaerobic membrane bioreactors for municipal wastewater treatment

    OpenAIRE

    Fawehinmi, Folasade

    2006-01-01

    Anaerobic treatment has historically been considered unsuitable for the treatment of domestic wastewaters. The work presented in this thesis focuses on the incorporation of membranes into the anaerobic bioreactor to uncouple solid retention time and hydraulic retention time. This in turn prevents biomass washout and allows sufficient acclimatisation periods for anaerobes. However, the exposure of membranes to anaerobic biomass comes with its own inherent problems namely fouling. Fouling w...

  6. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent vis

  7. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus...

  8. Methanethiol Removal from Biogas by Biological Conversion in an Anaerobic Biotrickling Filter

    Institute of Scientific and Technical Information of China (English)

    王佳佳; 张卫江; 徐姣

    2015-01-01

    In this study, methanethiol(MT)-degradation bacteria were cultivated by using MT, methanol and trimethylamine as carbon sources under anaerobic conditions. It was found that the batch bacteria used MT and metha-nol as carbon sources grew faster than those used trimethylamine. The enriched bacteria used MT and methanol as the carbon sources were respectively inoculated in different biotrickling filters. The biological conversion performance of MT under anaerobic conditions was investigated in biotrickling filters. The results showed that the performance of the biotrickling filter inoculated with the bacteria enriched using MT was better than that inoculated with the bacteria en-riched using methanol. When the inlet concentration of MT was 0.005vol%(50,ppm), the empty bed residence time was 50 s, pH value was 8.0, and the flow rate of the nutrient solution was 10 L/h, the removal efficiency of MT reached 95.3%. Adding methanol stimulated the growth of the biomass and the degradation of MT, but caused that some bacteria only degrading methanol outcompeted the bacteria only degrading MT. The concentration of sodium bicarbonate in the nutrient solution needed to be controlled lower than 30 g/L, otherwise, it would be harmful to the degradation of MT.

  9. Quantitative real-time PCR analyses of sulfate-reducing bacteria in swine manure and the inhibitory effects of condensed tannins

    Science.gov (United States)

    Odorous chemicals produced by anaerobic bacteria in stored swine manure are a nuisance and potential health hazard. One of the more odorous compounds is hydrogen sulfide (H2S), produced primarily by sulfate-reducing bacteria (SRB). However, little is known about these bacteria in stored swine manu...

  10. Anaerobically functioning mitochondria: evolutionary perspective on modulation of energy metabolism in Mytilus edulis

    Directory of Open Access Journals (Sweden)

    GB Stefano

    2015-01-01

    Full Text Available The mitochondrion represents a compelling biological model of complex organelle development driven by evolutionary modification of permanently enslaved primordial purple non-sulphur bacteria. As an evolutionary modification, the dynamic nature of the mitochondrion has been observed to exhibit biochemical and functional variation, including the capacity for energy production driven by anaerobic respiratory mechanisms. In invertebrates, mitochondrial anaerobic respiration allows the organism to survive at a lower energy state while yielding more ATP than can be achieved by glycolysis alone. Furthermore, a preferred physiological state of lower energy production operationally yields diminished free radical generation, thereby offering a protective existential advantage. It has been established that energy production by the blue mussel, Mytilus edulis, is functionally dependent on anaerobic respiratory mechanisms within the mitochondrion. Importantly, under hypoxic conditions metabolic pathways in M. edulis have been demonstrated to synthesize and utilize amino acid adducts termed opines as chemically defined energy reserves. In addition to the utilization of opines as anaerobic metabolic intermediates by invertebrate organisms, opines were also discovered and characterized as metabolic intermediates in plant parasites, specifically crown gall tumors. A careful review of the biomedical literature indicates mechanistic similarities between anaerobically functioning mitochondria in M. edulis and crown gall tissues and metabolic processes in human tumors. The anaerobically functioning mitochondrion in M. edulis tissues is a potentially valuable high resolution model system for development of novel anticancer therapeutic agents.

  11. Distribution characteristics of marine bacteria in the China seas

    Directory of Open Access Journals (Sweden)

    Cong MA

    2012-09-01

    Full Text Available Objective To investigate the main species of marine bacteria and their distribution characteristics in China seas. Methods Seawater samples were obtained from sea water about one meter below the sea level along the navigation course, and then the bacteria therein were enriched, cultured, identified and tested for drug sensitivity. Results A total of 528 seawater samples were collected from four seas of China, and 759 marine bacteria in 145 species were isolated. The isolates were mainly Vibro, Enterobacteriaceae, Nonfermenter, Fungi, Pasteurella, Gram positive cocci, Eikenella corrodens and Anaerobic bacteria. Vibrio accounted for 52.9% of the 759 strains of marine bacteria, among which Vibrio alginolyticus, Vibrio fluvialis and Vibrio parahaemolyticus accounted for 75%. There was no significant difference in the quantity of Vibrio alginolyticus, Escherichia coli and Vibrio parahaemolyticus between the 4 sea areas (P=0.071. Chi-square test showed that significant differences existed in the distribution of seven species of marine bacteria among the 4 China seas (P=0.0004. The Gram-positive cocci were isolated more often in Bohai than from other seas; Eikenella corrodens were detected mostly in Yellow Sea; Vibrio were the predominant bacteria in East China sea, up to 70.8%; more Fungi were found in South China sea. The main features of specific bacteria isolated from the four sea areas was higher number of species with less quantity. From North to South, Enterococcus faecalis, Flavobacterium, Vibrio carchariae and C. famata were found to constitute the highest number. Conclusions In China seas, Vibrios are the dominant bacteria, and the numbers of Anaerobic bacteria and Gram-positive cocci are extremely low. There is a significant difference in the distribution of marine bacteria among 4 China seas.

  12. Batch culture enrichment of ANAMMOX populations from anaerobic and aerobic seed cultures.

    Science.gov (United States)

    Suneethi, S; Joseph, Kurian

    2011-01-01

    Discharge of nitrate and ammonia rich wastewaters into the natural waters encourage eutrophication, and contribute to aquatic toxicity. Anaerobic ammonium oxidation process (ANAMMOX) is a novel biological nitrogen removal alternative to nitrification-denitrification, that removes ammonia using nitrite as the electron acceptor. The feasibility of enriching the ANAMMOX bacteria from the anaerobic digester sludge of a biomethanation plant treating vegetable waste and aerobic sludge from an activated sludge process treating domestic sewage is reported in this paper. ANAMMOX bacterial activity was monitored and established in terms of nitrogen transformations to ammonia, nitrite and nitrate along with formation of hydrazine and hydroxylamine. PMID:20729077

  13. Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2013-01-01

    in an anaerobic reactor was presented. Batch experiments showed that CO was inhibitory to methanogens, but not to bacteria, at CO partial pressure between 0.25 and 1 atm under thermophilic conditions. During anaerobic digestion of sewage sludge supplemented with CO added through a hollow fiber...... membrane (HFM) module in continuous thermophilic reactors, CO did not inhibit the process even at a pressure as high as 1.58 atm inside the HFM, due to the low dissolved CO concentration in the liquid. Complete consumption of CO was achieved with CO gas retention time of 0.2 d. Results from high...

  14. Oxygen Effects in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2009-10-01

    Full Text Available Interaction of free oxygen in bio-gasification is a sparsely studied area, apart from the common argument of oxygen being toxic and inhibitory for anaerobic micro-cultures. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen, has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

  15. Mechanism of uranium (VI) removal by two anaerobic bacterial communities

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Monica [Centro de Ciencias do Mar, Universidade do Algarve, FCT-DQF (edificio 8), Campus de Gambelas, 8005-139 Faro (Portugal); Faleiro, Maria Leonor [IBB - Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, FCT, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, Ana M. Rosa da [Centro de Investigacao em Quimica do Algarve, Universidade do Algarve, FCT, DQF, Campus de Gambelas, 8005-139 Faro (Portugal); Chaves, Sandra; Tenreiro, Rogerio [Universidade de Lisboa, Faculdade de Ciencias, Centro de Biodiversidade, Genomica Integrativa e Funcional (BioFIG), Campus de FCUL, Campo Grande, 1749-016 Lisboa (Portugal); Matos, Antonio Pedro [Servico de Anatomia Patologica, Hospital Curry Cabral, Lisboa (Portugal); Costa, Maria Clara, E-mail: mcorada@ualg.pt [Centro de Ciencias do Mar, Universidade do Algarve, FCT-DQF (edificio 8), Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-12-15

    The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family.

  16. Mechanism of uranium (VI) removal by two anaerobic bacterial communities

    International Nuclear Information System (INIS)

    The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family.

  17. Anaerobic ammonia oxidation in a fertilized paddy soil

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Yu;

    2011-01-01

    anammox 16S rRNA genes retrieved from the deeper soil were affiliated to ‘Brocadia’. The retrieval of mainly bacterial amoA sequences in the upper part of the paddy soil indicated that nitrifying bacteria may be the major source of nitrite for anammox bacteria in the cultivated horizon. In the deeper...... oxygen-limited parts, only archaeal amoA sequences were found, indicating that archaea may produce nitrite in this part of the soil. It is estimated that a total loss of 76 g N m−2 per year is linked to anammox in the paddy field.......Evidence for anaerobic ammonium oxidation in a paddy field was obtained in Southern China using an isotope-pairing technique, quantitative PCR assays and 16S rRNA gene clone libraries, along with nutrient profiles of soil cores. A paddy field with a high load of slurry manure as fertilizer was...

  18. Relating BTEX degradation to the biogeochemistry of an anaerobic aquifer

    International Nuclear Information System (INIS)

    Trends in chemical and microbiological parameters in a petroleum hydrocarbon plume within anaerobic groundwater have been studied. Previously, microbial degradation of the hydrocarbon compounds had been substantiated by the use of deuterated hydrocarbons to determine natural (intrinsic) degradation rates within the contaminant plume. Here, sulfate concentration decreases, Eh decreases, and hydrogen sulfide and bicarbonate concentration increases are shown to be associated with the contaminant plume. These trends indicate microbial degradation of the benzene, toluene, ethylbenzene, and xylene (BTEX) compounds by sulfate-reducing bacteria. Stoichiometry indicates that other consortia of bacteria play a role in the degradation of the hydrocarbons. Total microbial cell numbers were higher within the plume than in the uncontaminated groundwater. There is, however, no direct correlation between total microbial cell numbers, and BTEX, sulfate, bicarbonate, and hydrogen sulfide concentrations within the plume

  19. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    2015-01-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens...... to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic cultivated strains of SAOB and hydrogenotrophic methanogens was...... tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleus thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation, were...

  20. Aerobic and anaerobic growth of Paracoccus denitrificans on methanol.

    Science.gov (United States)

    Bamforth, C W; Quayle, J R

    1978-10-01

    1. The dye-linked methanol dehydrogenase from Paracoccus denitrificans grown aerobically on methanol has been purified and its properties compared with similar enzymes from other bacteria. It was shown to be specific and to have high affinity for primary alcohols and formaldehyde as substrate, ammonia was the best activator and the enzyme could be linked to reduction of phenazine methosulphate. 2. Paracoccus denitrificans could be grown anaerobically on methanol, using nitrate or nitrite as electron acceptor. The methanol dehydrogenase synthesized under these conditions could not be differentiated from the aerobically-synthesized enzyme. 3. Activities of methanol dehydrogenase, formaldehyde dehydrogenase, formate dehydrogenase, nitrate reductase and nitrite reductase were measured under aerobic and anaerobic growth conditions. 4. Difference spectra of reduced and oxidized cytochromes in membrane and supernatant fractions of methanol-grown P. denitrificans were measured. 5. From the results of the spectral and enzymatic analyses it has been suggested that anaerobic growth on methanol/nitrate is made possible by reduction of nitrate to nitrite using electrons derived from the pyridine nucleotide-linked dehydrogenations of formaldehyde and formate, the nitrite so produced then functioning as electron acceptor for methanol dehydrogenase via cytochrome c and nitrite reductase. PMID:718372

  1. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization.

    Science.gov (United States)

    Tiehm, A; Nickel, K; Zellhorn, M; Neis, U

    2001-06-01

    The pretreatment of waste activated sludge by ultrasonic disintegration was studied in order to improve the anaerobic sludge stabilization. The ultrasound frequency was varied within a range from 41 to 3217 kHz. The impact of different ultrasound intensities and treatment times was examined. Sludge disintegration was most significant at low frequencies. Low-frequency ultrasound creates large cavitation bubbles which upon collapse initiate powerful jet streams exerting strong shear forces in the liquid. The decreasing sludge disintegration efficiency observed at higher frequencies was attributed to smaller cavitation bubbles which do not allow the initiation of such strong shear forces. Short sonication times resulted in sludge floc deagglomeration without the destruction of bacteria cells. Longer sonication brought about the break-up of cell walls, the sludge solids were distintegrated and dissolved organic compounds were released. The anaerobic digestion of waste activated sludge following ultrasonic pretreatment causing microbial cell lysis was significantly improved. There was an increase in the volatile solids degradation as well as an increase in the biogas production. The increase in digestion efficiency was proportional to the degree of sludge disintegration. To a lesser degree the deagglomeration of sludge flocs also augmented the anaerobic volatile solids degradation. PMID:11337847

  2. Anaerobic oxidation of cholesterol by a denitrifying enrichment.

    Science.gov (United States)

    Barrandeguy, E; Tarlera, S

    2001-01-01

    Sterols (e.g. cholesterol) present in wool scouring effluent represent the most recalcitrant fraction in anaerobic treatment. This study was conducted to examine the feasibility of removal of this organic load through a denitrifying post-treatment stage. A stable cholesterol-denitrifying enrichment (CHOL-1) was obtained from sludge of a bench-scale upflow sludge bed (USB) denitrifying reactor integrated to a carbon and nitrogen removal system for sanitary landfill leachate. According to the amounts of cholesterol degraded and of nitrite and nitrogen gas formed, the capacity for complete cholesterol oxidation under anaerobic conditions by CHOL-1 can be assumed. Nitrite accumulation observed at a low C/N ratio outlines the importance of determining the optimal C/N ratio for adequate denitrifying reactor performance. The enrichment was partly identified with molecular analysis of cloned 16S rDNA sequences revealing the presence of two groups of bacteria belonging to the beta subclass of the Proteobacteria. According to analysis of sequences, it can be inferred that a yet uncultivated new bacterium is the one responsible for cholesterol oxidation. Results of this study suggest that sludge from a denitrifying reactor treating leachate is potentially useful in a combined anaerobic-anoxic system for degradation of cholesterol that remains after methanogenic treatment. PMID:11575077

  3. Microbial community analysis of ambient temperature anaerobic digesters

    Energy Technology Data Exchange (ETDEWEB)

    Ciotola, R. [Ohio State Univ., Columbus, OH (United States). Dept. of Food, Agriculture and Biological Engineering

    2010-07-01

    This paper reported on a study in which designs for Chinese and Indian fixed-dome anaerobic digesters were modified in an effort to produce smaller and more affordable digesters. While these types of systems are common in tropical regions of developing countries, they have not been used in colder climates because of the low biogas yield during the winter months. Although there is evidence that sufficient biogas production can be maintained in colder temperatures through design and operational changes, there is a lack of knowledge about the seasonal changes in the composition of the microbial communities in ambient temperature digesters. More knowledge is needed to design and operate systems for maximum biogas yield in temperate climates. The purpose of this study was to cultivate a microbial community that maximizes biogas production at psychrophilic temperatures. The study was conducted on a 300 gallon experimental anaerobic digester on the campus of Ohio State University. Culture-independent methods were used on weekly samples collected from the digester in order to examine microbial community response to changes in ambient temperature. Microbial community profiles were established using universal bacterial and archaeal primers that targeted the 16S rRNA gene. In addition to the methanogenic archaea, this analysis also targeted some of the other numerically and functionally important microbial taxa in anaerobic digesters, such as hydrolytic, fermentative, acetogenic and sulfate reducing bacteria. According to preliminary results, the composition of the microbial community shifts with changes in seasonal temperature.

  4. Modelling of Two-Stage Anaerobic Treating Wastewater from a Molasses-Based Ethanol Distillery with the IWA Anaerobic Digestion Model No.1

    Directory of Open Access Journals (Sweden)

    Kittikhun Taruyanon

    2010-03-01

    Full Text Available This paper presents the application of ADM1 model to simulate the dynamic behaviour of a two-stage anaerobic treatment process treating the wastewater generated from the ethanol distillery process. The laboratory-scale process comprised an anaerobic continuous stirred tank reactor (CSTR and an upflow anaerobic sludge blanket (UASB connecting in series, was used to treat wastewater from the ethanol distillery process. The CSTR and UASB hydraulic retention times (HRT were 12 and 70 hours, respectively. The model was developed based on ADM1 basic structure and implemented with the simulation software AQUASIM. The simulated results were compared with measured data obtained from using the laboratory-scale two-stage anaerobic treatment process to treat wastewater. The sensitivity analysis identified maximum specific uptake rate (km and half-saturation constant (Ks of acetate degrader and sulfate reducing bacteria as the kinetic parameters which highly affected the process behaviour, which were further estimated. The study concluded that the model could predict the dynamic behaviour of a two-stage anaerobic treatment process treating the ethanol distillery process wastewater with varying strength of influents with reasonable accuracy.

  5. Anaerobic Biotransformation and Mobility of Pu and of Pu-EDTA

    International Nuclear Information System (INIS)

    The enhanced mobility of radionuclides by co-disposed chelating agent, ethylenediaminetetraacetate (EDTA), is likely to occur only under anaerobic conditions. Our extensive effort to enrich and isolate anaerobic EDTA-degrading bacteria has failed. Others has tried and also failed. To explain the lack of anaerobic biodegradation of EDTA, we proposed that EDTA has to be transported into the cells for metabolism. A failure of uptake may contribute to the lack of EDTA degradation under anaerobic conditions. We demonstrated that an aerobic EDTA-degrading bacterium strain BNC1 uses an ABC-type transporter system to uptake EDTA. The system has a periplasmic binding protein that bind EDTA and then interacts with membrane proteins to transport EDTA into the cell at the expense of ATP. The bind protein EppA binds only free EDTA with a Kd of 25 nM. The low Kd value indicates high affinity. However, the Kd value of Ni-EDTA is 2.4 x 10-10 nM, indicating much stronger stability. Since Ni and other trace metals are essential for anaerobic respiration, we conclude that the added EDTA sequestrates all trace metals and making anaerobic respiration impossible. Thus, the data explain the lack of anaerobic enrichment cultures for EDTA degradation. Although we did not obtain an EDTA degrading culture under anaerobic conditions, our finding may promote the use of certain metals that forms more stable metal-EDTA complexes than Pu(III)-EDTA to prevent the enhanced mobility. Further, our data explain why EDTA is the most dominant organic pollutant in surface waters, due to the lack of degradation of certain metal-EDTA complexes.

  6. Effect of incubation conditions on anaerobic susceptibility testing results.

    OpenAIRE

    Murray, P R; Niles, A C

    1982-01-01

    We determined the effect of performing antimicrobial susceptibility tests in five different anaerobic incubation systems: GasPak jar, large GasPak jar, evacuated-gassed anaerobic jar, anaerobic chamber, and Bio-Bag. Growth of the anaerobes was equivalent in all five incubation systems. The results of testing 38 anaerobes against 11 antimicrobial agents were comparable for the anaerobic jars and anaerobic chamber. However, discordant results were observed for metronidazole and cefamandole test...

  7. Back To Bacteria.

    Science.gov (United States)

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  8. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor.

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  9. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-04-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously.

  10. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  11. Succession of lignocellulolytic bacterial consortia bred anaerobically from lake sediment.

    Science.gov (United States)

    Korenblum, Elisa; Jiménez, Diego Javier; van Elsas, Jan Dirk

    2016-03-01

    Anaerobic bacteria degrade lignocellulose in various anoxic and organically rich environments, often in a syntrophic process. Anaerobic enrichments of bacterial communities on a recalcitrant lignocellulose source were studied combining polymerase chain reaction-denaturing gradient gel electrophoresis, amplicon sequencing of the 16S rRNA gene and culturing. Three consortia were constructed using the microbiota of lake sediment as the starting inoculum and untreated switchgrass (Panicum virgatum) (acid or heat) or treated (with either acid or heat) as the sole source of carbonaceous compounds. Additionally, nitrate was used in order to limit sulfate reduction and methanogenesis. Bacterial growth took place, as evidenced from 3 to 4 log unit increases in the 16S rRNA gene copy numbers as well as direct cell counts through three transfers on cleaned and reused substrate placed in fresh mineral medium. After 2 days, Aeromonas bestiarum-like organisms dominated the enrichments, irrespective of the substrate type. One month later, each substrate revealed major enrichments of organisms affiliated with different species of Clostridium. Moreover, only the heat-treated substrate selected Dysgonomonas capnocytophagoides-affiliated bacteria (Bacteroidetes). Towards the end of the experiment, members of the Proteobacteria (Aeromonas, Rhizobium and/or Serratia) became dominant in all three types of substrates. A total of 160 strains was isolated from the enrichments. Most of the strains tested (78%) were able to grow anaerobically on carboxymethyl cellulose and xylan. The final consortia yield attractive biological tools for the depolymerization of recalcitrant lignocellulosic materials and are proposed for the production of precursors of biofuels. PMID:26875750

  12. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.; Angelidaki, Irini

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... improve the continuous flow reactor performance at the relatively low influent methanogenic biomass concentration. In the continuously stirred tank reactor (CSTR) there are two steady states with and without methane production at slightly different values of initial methanogenic biomass concentration. In...... failure. According to the distributed models a plug-flow reactor with non-uniform influent concentration distributions where methanogenic and hydrolytic microorganisms are separated has significant methane production and solids removal at the relatively low influent methanogenic biomass concentration...

  13. Anaerobic procedures of wastewater treatment

    OpenAIRE

    Zupančič, Tadeja

    2013-01-01

    Highly polluted wastewater is formed in dairies, pig farms and slaughterhouses. Before released into watercourses, wastewater should be properly processed with different treatment procedures in wastewater treatment plants. The thesis deals with the descriptions of mechanical, physical and chemical, and biological wastewater treatment procedures and the description of the factors which affect the reactions in wastewater treatment plants. I give special emphasis on anaerobic wastewater treatmen...

  14. Anaerobic digestion of aliphatic polyesters.

    Science.gov (United States)

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry. PMID:27191559

  15. Relationships between anaerobic consortia and removal efficiencies in an UASB reactor degrading 2,4 dichlorophenol (DCP).

    Science.gov (United States)

    Sponza, Delia Teresa; Cigal, Canan

    2008-04-01

    To gain more insight into the interactions between anaerobic bacteria and reactor performances (chemical oxygen demand-COD, 2,4 dichlorophenol-2,4 DCP removals, volatile fatty acid-VFA, and methane gas productions) and how they depended on operational conditions the microbial variations in the anaerobic granular sludge from an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 DCP was studied. The study was composed of two parts. In the first part, the numbers of methanogens and acedogens in the anaerobic granular sludge were counted at different COD removal efficiencies. The relationships between the numbers of methanogens, the methane gas production and VFA production were investigated. The COD removal efficiencies increased to 74% from 30% while the number of total acedogens decreased to 10 from 30 cfu ml(-1). The number of total methanogens and acedogens varied between 11 x 10(3) and 10 x 10(9)MPN g(-1) and 10 and 30 cfu ml(-1) as the 2,4 DCP removal efficiencies were obtained between 60% and 99%, respectively. It was seen that, as the number of total acedogens decreased, the COD removal efficiencies increased. However, the number of total methanogens increased as the COD removal efficiencies increased. Correlations between the bacterial number and with the removal efficiencies obtained in different operational conditions were investigated. From the results presented in this paper a high correlation between the number of bacteria, COD removals, methane gas percentage, 2,4 DCP removals and VFA was observed. In the second part, methanogen bacteria in the anaerobic granular sludge were identified. Microbial observations and biochemical tests were applied to identify the anaerobic microorganisms from the anaerobic granular sludge. In the reactor treating 2,4 DCP, Methanobacterium bryantii, Methanobacterium formicicum, Methanobrevibacter smithii, Methanococcus voltae, Methanosarcina mazei, Methanosarcina acetivorans, Methanogenium bourgense and

  16. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter; Ahring, Birgitte Kiær; Raskin, L.

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible for these ...... specific nucleic acid probes are discussed and exemplified by studies of anaerobic granular sludge, biofilm and digester systems...... malfunctions of anaerobic digesters occasionally experienced, leading to sub-optimal methane production and wastewater treatment. Using a variety of molecular techniques, we are able to determine which microorganisms are active, where they are active, and when they are active, but we still need to determine...... abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...

  17. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle.

    Directory of Open Access Journals (Sweden)

    Helga Fernández

    Full Text Available BACKGROUND: Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here. METHODOLOGY/PRINCIPAL FINDINGS: Light, confocal and electron microscopy reveal that Azoarcus sp. CIB, a facultative anaerobe β-proteobacterium able to degrade aromatic hydrocarbons under anoxic conditions, is also able to colonize the intercellular spaces of the rice roots. In addition, the strain CIB displays plant growth promoting traits such nitrogen fixation, uptake of insoluble phosphorus and production of indoleacetic acid. Therefore, this work demonstrates by the first time that a free-living bacterium able to degrade aromatic compounds under aerobic and anoxic conditions can share also an endophytic lifestyle. The phylogenetic analyses based on the 16S rDNA and nifH genes confirmed that obligate endophytes of the Azoarcus genus and facultative endophytes, such as Azoarcus sp. CIB, locate into different evolutionary branches. CONCLUSIONS/SIGNIFICANCE: This is the first report of a bacterium, Azoarcus sp. CIB, able to degrade anaerobically a significant number of aromatic compounds, some of them of great environmental concern, and to colonize the rice as a facultative endophyte. Thus, Azoarcus sp. CIB becomes a suitable candidate for a more sustainable agricultural practice and phytoremediation technology.

  18. Effect of thermal hydrolysis and ultrasounds pretreatments on foaming in anaerobic digesters.

    Science.gov (United States)

    Alfaro, N; Cano, R; Fdz-Polanco, F

    2014-10-01

    Foam appears regularly in anaerobic digesters producing operational and safety problems. In this research, based on the operational observation at semi-industrial pilot scale where sludge pretreatment mitigated foaming in anaerobic digesters, this study aimed at evaluating any potential relationship between foaming tools applied to activated sludge at lab-scale (foam potential, foam stability and Microthrix parvicella abundance) and the experimental behavior observed in pilot scale and full-scale anaerobic digesters. The potential of thermal hydrolysis and ultrasounds for reducing foaming capacity was also evaluated. Filamentous bacteria abundance was directly linked to foaming capacity in anaerobic processes. A maximum reduction of M.parvicella abundance (from 5 to 2) was reached using thermal hydrolysis with steam explosion at 170°C and ultrasounds at 66.7kWh/m(3), showing both good anti-foaming properties. On the other hand, foam potential and stability determinations showed a lack of consistency with the bacteria abundance results and experimental evidences. PMID:25168914

  19. Effects of anaerobic/aerobic incubation and storage temperature on preservation and deodorization of kitchen garbage.

    Science.gov (United States)

    Wang, Qunhui; Narita, Jun-ya; Xie, Weimin; Ohsumi, Yukihide; Kusano, Kohji; Shirai, Yoshihito; Ogawa, Hiroaki I

    2002-09-01

    To develop a garbage recycling system for the purpose of the production of lactic acid (LA) to use as raw material for producing biodegradable plastics, the preservation and deodorization of garbage during storage are very important. Anaerobic incubation (i.e., storage) was prove to be more suitable than aerobic incubation during the garbage storage in terms of concentration of LA and soluble sugar, pH value, viable bacteria counts and offensive odour substances. This difference is due to a fact that the growth of putrefactive bacteria such as coliforms and Clostridium spp. appeared to be inhibited by anaerobic fermentation during the storage, because the fermentation caused a drop of garbage pH and generated inhibitory substances, i.e., bacteriocins. Under anaerobic condition, LA concentration in the stored garbage was found to be higher in the order: 37 > 25 > 50 > 5 degrees C, and the concentration of sugar accumulated during the 50 degrees C-storage was the highest. Among the conditions employed, the optimum condition for the storage of kitchen garbage was anaerobic at 5 degrees C. PMID:12118696

  20. Mechanism of anaerobic (microbial) corrosion. Technical summary report No. 1, 1 Jun-31 Dec 82

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, W.P.; Olson, G.J.

    1982-12-01

    This report in the form of three papers describes research into the role of bacteria in anaerobic corrosion processes. During the year we have given more evidence for a novel mechanism of anaerobic corrosion in which a volatile, highly reactive phosporous compound is produced as a result of the activities of sulfate-reducing bacteria (Desulfovibio desuluricans). The corrosion product is an amorphous type of iron phosphide which can be detected by the formation of phosphine upon its acidification. Phosphine (in addition to H2S) has been detected from all the cases of suspected anaerobic corrosion (including tubercles from the inside of water pipes) examined so far. In examining the headspace over growing cultures of Desulfovibio to detect this volatile phosphorus containing compound, using a gas chromatograph (GC) with a flame photometric detector (FPD) specific for phosphorus and sulfur, two sulfur compounds, in addition to H2S, were detected and identified. These compounds, methylmercaptan, and dimethyldisulfide, were found to be relatively non-corrosive to iron under anaerobic conditions. No volatile phosphorus compounds were detected.

  1. Bacterial community composition and abundance in leachate of semi-aerobic and anaerobic landfills

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Bo Yue; Qi Wang; Zechun Huang; Qifei Huang; Zengqiang Zhang

    2011-01-01

    The abundance and phylogenetic composition of bacterial community in leachate of semi-aerobic and anaerobic landfill were compared through real-time polymerase chain reaction and denaturing gradient gel electrophoresis.In semi-aerobic landfill scenario,the bacterial 16S rRNA copy numbers in leachate had no significant reduction from initial stage to stable period.In the scenario of anaerobic landfill,the largest bacterial 16S rRNA gene copy number was found in leachate at initial stage,but it reduced significantly at stable period.Moreover,methane-oxidizing bacteria population in stable period was lower than that in initial period in both two landfill processes.However,semi-aerobic landfill leachate had more methanotrophic bacteria populations than that in the anaerobic one.Furthermore,according to the sequences and phylogenetic analysis,obvious difference could be detected in bacterial community composition in different scenarios.Proteobacteria and bacteroidetes took up a dominantly higher proportion in semi-aerobic landfill leachate.To summarize up,different landfill methods and its landfill ages had crucial impacts on bacterial abundance and composition in leachate of semi-aerobic and anaerobic landfills.

  2. In Vitro Activities of Daptomycin, Vancomycin, Quinupristin- Dalfopristin, Linezolid, and Five Other Antimicrobials against 307 Gram-Positive Anaerobic and 31 Corynebacterium Clinical Isolates

    OpenAIRE

    Goldstein, Ellie J. C.; Citron, Diane M.; Merriam, C. Vreni; Warren, Yumi A.; Tyrrell, Kerrin L.; Fernandez, Helen T.

    2003-01-01

    The activities of daptomycin, a cyclic lipopeptide, and eight other agents were determined against 338 strains of gram-positive anaerobic bacteria and corynebacteria by the NCCLS reference agar dilution method with supplemented brucella agar for the anaerobes and Mueller-Hinton agar for the corynebacteria. The daptomycin MICs determined on Ca2+-supplemented (50 mg/liter) brucella agar plates were one- to fourfold lower than those determined in unsupplemented media. Daptomycin was highly activ...

  3. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.

    Science.gov (United States)

    Zhao, Feng; Zhou, Jidong; Han, Siqin; Ma, Fang; Zhang, Ying; Zhang, Jie

    2016-04-01

    Aerobic production of rhamnolipid by Pseudomonas aeruginosa was extensively studied. But effect of medium composition on anaerobic production of rhamnolipid by P. aeruginosa was unknown. A simplifying medium facilitating anaerobic production of rhamnolipid is urgently needed for in situ microbial enhanced oil recovery (MEOR). Medium factors affecting anaerobic production of rhamnolipid were investigated using P. aeruginosa SG (Genbank accession number KJ995745). Medium composition for anaerobic production of rhamnolipid by P. aeruginosa is different from that for aerobic production of rhamnolipid. Both hydrophobic substrate and organic nitrogen inhibited rhamnolipid production under anaerobic conditions. Glycerol and nitrate were the best carbon and nitrogen source. The commonly used N limitation under aerobic conditions was not conducive to rhamnolipid production under anaerobic conditions because the initial cell growth demanded enough nitrate for anaerobic respiration. But rhamnolipid was also fast accumulated under nitrogen starvation conditions. Sufficient phosphate was needed for anaerobic production of rhamnolipid. SO4(2-) and Mg(2+) are required for anaerobic production of rhamnolipid. Results will contribute to isolation bacteria strains which can anaerobically produce rhamnolipid and medium optimization for anaerobic production of rhamnolipid. Based on medium optimization by response surface methodology and ions composition of reservoir formation water, a simplifying medium containing 70.3 g/l glycerol, 5.25 g/l NaNO3, 5.49 g/l KH2PO4, 6.9 g/l K2HPO4·3H2O and 0.40 g/l MgSO4 was designed. Using the simplifying medium, 630 mg/l of rhamnolipid was produced by SG, and the anaerobic culture emulsified crude oil to EI24 = 82.5 %. The simplifying medium was promising for in situ MEOR applications. PMID:26925616

  4. Integrated anaerobic-aerobic fixed-film reactor for slaughterhouse wastewater treatment.

    Science.gov (United States)

    Del Pozo, R; Diez, V

    2005-03-01

    An integrated anaerobic-aerobic fixed-film pilot-scale reactor with arranged media was fed during 166 days with slaughterhouse wastewater. Operation temperature was 25 degrees C and the anaerobic-aerobic volume ratio was decreased from 4:1 to 3:2 and finally to 2:3. Overall organic matter removal efficiencies of 93% were achieved for an average organic loading rate of 0.77 kg COD/m3 d, and nitrogen removal efficiencies of 67% were achieved for nitrogen loading rates of 0.084 kg N/m3 d. The high internal recirculation associated to the air-lift effect linked to the aeration of a part of the reactor section caused high mixing between the anaerobic and aerobic zones, so that most organic matter was removed aerobically. The nitrification process achieved an efficiency of 91% for nitrogen loads of 0.15 kg N/m3 d when the anaerobic-aerobic volume ratio was 2:3 and was limited by dissolved oxygen concentration below 3 mg/l. The influence of the heterotrophic biomass growing in the outer biofilm was checked. Denitrification only implied the 12-34% of the total nitrogen removal and was limited by dissolved oxygen concentration in the anaerobic zone above 0.5 mg/l caused by the mixing regime. Most removed nitrogen was employed in synthesis of heterotrophic bacteria. PMID:15766966

  5. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    Science.gov (United States)

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-06-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production. PMID:26698921

  6. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Science.gov (United States)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  7. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    Science.gov (United States)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  8. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    International Nuclear Information System (INIS)

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature

  9. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rahayu, Suparni Setyowati, E-mail: suparnirahayu@yahoo.co.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Mechanical Engineering, State Polytechnic of Semarang, Semarang Indonesia (Indonesia); Purwanto,, E-mail: p.purwanto@che.undip.ac.id; Budiyono, E-mail: budiyono@live.undip.ac.id [Doctoral Program in Environmental Science, University of Diponegoro, Semarang (Indonesia); Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang Indonesia (Indonesia)

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  10. The anaerobic degradation of gaseous, nonmethane alkanes — From in situ processes to microorganisms

    OpenAIRE

    Florin Musat

    2015-01-01

    The short chain, gaseous alkanes ethane, propane, n- and iso-butane are released in significant amounts into the atmosphere, where they contribute to tropospheric chemistry and ozone formation. Biodegradation of gaseous alkanes by aerobic microorganisms, mostly bacteria and fungi isolated from terrestrial environments, has been known for several decades. The first indications for short chain alkane anaerobic degradation were provided by geochemical studies of deep-sea environments around hydr...

  11. Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities

    OpenAIRE

    Kellermann, M. Y.; Wegener, G.; Elvert, M; Yoshinaga, M. Y.; Lin, Y.-S.; Holler, T.; Mollar, X. P.; Knittel, K; Hinrichs, K.-U.

    2012-01-01

    The methane-rich, hydrothermally heated sediments of the Guaymas Basin are inhabited by thermophilic microorganisms, including anaerobic methane-oxidizing archaea (mainly ANME-1) and sulfate-reducing bacteria (e.g., HotSeep-1 cluster). We studied the microbial carbon flow in ANME-1/ HotSeep-1 enrichments in stable-isotope–probing experiments with and without methane. The relative incorporation of 13C from either dissolved inorganic carbon or methane into lipids revealed that methane-oxidizing...

  12. The physicochemical characteristics and anaerobic degradability of desiccated coconut industry waste water.

    Science.gov (United States)

    Chanakya, H N; Khuntia, Himanshu Kumar; Mukherjee, Niranjan; Aniruddha, R; Mudakavi, J R; Thimmaraju, Preeti

    2015-12-01

    Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 264-6642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50% of the total volume and 50-60% of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of ≥350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria. PMID:26612563

  13. Microbial communities involved in anaerobic degradation of unsaturated or saturated long chain fatty acids

    OpenAIRE

    Sousa, D.Z.; Pereira, M.A.; Stams, A.J.M.; Alves, M. M.; Smidt, H.

    2007-01-01

    Anaerobic long-chain fatty acid (LCFA)-degrading bacteria were identified by combining selective enrichment studies with molecular approaches. Two distinct enrichment cultures growing on unsaturated and saturated LCFAs were obtained by successive transfers in medium containing oleate and palmitate, respectively, as the sole carbon and energy sources. Changes in the microbial composition during enrichment were analyzed by denaturing gradient gel electrophoresis (DGGE) profiling of PCR...

  14. Studies of the Extracellular Glycocalyx of the Anaerobic Cellulolytic Bacterium Ruminococcus albus 7▿

    OpenAIRE

    Weimer, Paul J.; Price, Neil P. J.; Kroukamp, Otini; Joubert, Lydia-Marie; Wolfaardt, Gideon M.; Van Zyl, Willem H

    2006-01-01

    Anaerobic cellulolytic bacteria are thought to adhere to cellulose via several mechanisms, including production of a glycocalyx containing extracellular polymeric substances (EPS). As the compositions and structures of these glycocalyces have not been elucidated, variable-pressure scanning electron microscopy (VP-SEM) and chemical analysis were used to characterize the glycocalyx of the ruminal bacterium Ruminococcus albus strain 7. VP-SEM revealed that growth of this strain was accompanied b...

  15. Studies on the pathogenicity of anaerobes, especially Prevotella bivia, in a rat pyometra model.

    OpenAIRE

    Mikamo, H; Kawazoe, K.; Izumi, K.; Watanabe, K.; Ueno, K.; Tamaya, T

    1998-01-01

    OBJECTIVE: Prevotella bivia is one of the anaerobic bacteria that resides in the flora of the female genital tract. We studied the pathogenicity of P. bivia in a rat pyometra model. METHODS: The experimental animal (rat) model of pyometra was developed to investigate the pathogenicity of P. bivia in a rat pyometra model. RESULTS: In the groups inoculated with aerobes alone, the infection rate was 10% (1/10) in the Staphylococcus aureus- or Staphylococcus agalactiae-inoculated group and 20% (2...

  16. Studies on the Pathogenicity of Anaerobes, Especially Prevotella bivia, in a Rat Pyometra Model

    OpenAIRE

    Mikamo, H; Kawazoe, K.; Izumi, K.; Watanabe, K.; Ueno, K.; Tamaya, T

    1998-01-01

    Objective: Prevotella bivia is one of the anaerobic bacteria that resides in the flora of the female genital tract. We studied the pathogenicity of P. bivia in a rat pyometra model.Methods: The experimental animial (rat) model of pyometra was developed to investigate the pathogenicity of P. bivia in a rat pyometra model.Results: In the groups inoculated with aerobes alone, the infection rate was 10% (1/10) in the Staphylococcus aureus- or Staphylococcus agalactiae -inoculated group and 20% (2...

  17. XoxF-Type Methanol Dehydrogenase from the Anaerobic Methanotroph “Candidatus Methylomirabilis oxyfera”

    OpenAIRE

    Wu, Ming L.; Wessels, Hans J. C. T.; Pol, Arjan; Op den Camp, Huub J. M.; Mike S.M. Jetten; van Niftrik, Laura; Keltjens, Jan T.

    2014-01-01

    “Candidatus Methylomirabilis oxyfera” is a newly discovered anaerobic methanotroph that, surprisingly, oxidizes methane through an aerobic methane oxidation pathway. The second step in this aerobic pathway is the oxidation of methanol. In Gram-negative bacteria, the reaction is catalyzed by pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH). The genome of “Ca. Methylomirabilis oxyfera” putatively encodes three different MDHs that are localized in one large gene cluster: one...

  18. Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish

    OpenAIRE

    Wenyan Chen; Qiang Cai; Yuan Zhao; Guojuan Zheng; Yuting Liang

    2014-01-01

    Biogas slurry has become a serious pollution problem and anaerobic digestion is widely applied to pig manure treatment for environmental protection and energy recovery. To evaluate environmental risk of the emission of biogas slurry, luminescent bacteria (Vibrio fischeri), larvae and embryos of zebrafish (Danio rerio) were used to detect the acute and development toxicity of digested and post-treated slurry. Then the ability of treatment process was evaluated. The results showed that digested...

  19. Environental assessment of methane oxidizers nitrite driven bacteria

    OpenAIRE

    VAELLO LÓPEZ, MARIA TERESA

    2013-01-01

    The nitrite-dependent anaerobic methane oxidation (N-DAMO) bacteria has been discovered in the last decade and there is little known about its environmental distribution and contribution to the oxidation of methane (CH4). Because CH4 is of environmental concern due to its contribution to global warming, it has become very important to look for ways to reduce it. The purpose of this thesis is the acquisition of established molecular tools and their application in microbial ecology investiga...

  20. Antibiogram pattern of bacteria causing endometritis in cows

    OpenAIRE

    S. Udhayavel; S. Malmarugan; Palanisamy, K; Johnson Rajeswar

    2013-01-01

    Aim : To find out the organisms causing endometritis in cattle and to determine their in vitro sensitivity to various antibiotics Materials and methods: Thirty uterine secretion samples, 9 from Holstein Friesian and 21 from Jersey cows were collected in and around Namakkal district of Tamil Nadu from clinical cases of endometritis. The bacteria isolated both aerobically and anaerobically from endometritis showed the characteristic colony, were gram stained and confirmed by standard biochemica...

  1. Increase of the efficiency of anaerobic digestion by various pre-treatment processes of sewage sludge

    OpenAIRE

    Łukasz Krawczyk; Małgorzata Budych; Łukasz Chrzanowski; Agnieszka Drożdżyńska; Roman Marecik; Agnieszka Piotrowska-Cyplik; Artur Szwengiel; Katarzyna Czaczyk; Paweł Cyplik

    2011-01-01

    The aim of this paper is to demonstrate the effects of pre-treatment increase of the efficiency of anaerobic digestion on waste activated sludge. There were four methods for pre-treatment of the waste activated sludge: A – thermally treated at 121°C for 30 min, homogenized and hydrolysed by Bacillus subtilis bacteria, B – thermally treated at 121°C for 30 min and homogenized, C – thermally treated at 121°C for 30 min and hydrolysed by B. subtilis bacteria, D &nda...

  2. Performance of mesophilic anaerobic granules for removal of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from aqueous solution

    International Nuclear Information System (INIS)

    The performance of mesophilic anaerobic granules to degrade octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) was investigated under various conditions. The results of batch experiments showed that anaerobic granules were capable of removing HMX from aqueous solution with high efficiency. Both biotic and abiotic mechanisms contributed to the removal of HMX by anaerobic granules under mesophilic conditions. Adsorption appeared to play a significant role in the abiotic process. Furthermore, HMX could be biodegraded by anaerobic granules as the sole substrate. After 16 days of incubation, 99.04% and 96.42% of total HMX could be removed by 1 g VSS/L acclimated and unacclimated granules, respectively. Vancomycin, an inhibitor of acetogenic bacteria, caused a significant inhibition of HMX biotransformation, while 2-bromoethanesulfonic acid, an inhibitor of methanogenic bacteria, only resulted in a slight decrease of metabolic activity. The presence of the glucose, as a suitable electron donor and carbon source, was found to enhance the degradation of HMX by anaerobic granules. Our study showed that sulfate had little adverse effects on biotransformation of HMX by anaerobic granules. However, nitrate had significant inhibitory effect on the extent of HMX removal especially in the initial period. This study offered good prospects of using high-rate anaerobic technology in the treatment of munition wastewater.

  3. Towards a Mechanistic Understanding of Anaerobic Nitrate Dependent Iron Oxidation: Balancing Electron Uptake and Detoxification

    Directory of Open Access Journals (Sweden)

    JohnDCoates

    2012-02-01

    Full Text Available The anaerobic oxidation of Fe(II by subsurface microorganisms is an important part of biogeochemical cycling in the environment, but the biochemical mechanisms used to couple iron oxidation to nitrate respiration are not well understood. Based on our own work and the evidence available in the literature, we propose a mechanistic model for anaerobic nitrate dependent iron oxidation. We suggest that anaerobic iron oxidizing microorganisms likely exist along a continuum including: 1 bacteria that inadvertently oxidize Fe(II by abiotic or biotic reactions with enzymes or chemical intermediates in their metabolic pathways (e.g. denitrification and suffer from toxicity or energetic penalty, 2 Fe(II tolerant bacteria that gain little or no growth benefit from iron oxidation but can manage the toxic reactions, and 3 bacteria that efficiently accept electrons from Fe(II to gain a growth advantage while preventing or mitigating the toxic reactions. Predictions of the proposed model are highlighted and experimental approaches are discussed.

  4. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox Biofilms from Digestate in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Enea Gino Di Domenico

    2015-01-01

    Full Text Available Microbial Fuel cells (MFCs have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.

  5. In vitro effect of intracanal medicaments on strict anaerobes by means of the broth dilution method

    Directory of Open Access Journals (Sweden)

    ROSA Odila Pereira da Silva

    2002-01-01

    Full Text Available The determination of bacterial susceptibility to intracanal medicaments is a necessity. Nevertheless, few studies utilize the proper methodology to carry out that evaluation with anaerobes. In this study, the steps of a broth dilution method, carried out in microplates (microdilution and tubes (macrodilution, to test the effect of traditional intracanal medicaments on anaerobic bacteria are described. The results are presented as values of minimal inhibitory and bactericidal concentrations (MIC and MBC. Standardized inocula of the anaerobic bacteria Prevotella nigrescens (ATCC 33563, Fusobacterium nucleatum (ATCC 25586 and Clostridium perfringens (ATCC 13124, in reinforced Clostridium medium (RCM and supplemented Brucella broth, were submitted to different concentrations of calcium hydroxide, chlorhexidine digluconate, camphorated paramonochlorophenol and formocresol solutions. The drugs were diluted in the same culture broths, in microplates and tubes, and were then incubated in anaerobiosis jars at 37ºC for 48 or 96 hours. The determination of MICs was carried out through visual and spectrophotometric readings, and the determination of MBCs, through the plating of aliquots on RCM-blood agar. For that kind of study, the macromethod with spectrophotometric reading should be the natural choice. MICs and MBCs obtained with the macromethod were compatible with the known clinical performance of the studied medications, and the values varied according to the bacteria and culture media employed. RCM was the most effective medium and C. perfringens, the most resistant microorganism.

  6. Anaerobic Capacities of Leaf Litter

    OpenAIRE

    Kusel, K.; Drake, H L

    1996-01-01

    Leaf litter displayed a capacity to spontaneously form organic acids, alcohols, phenolic compounds, H(inf2), and CO(inf2) when incubated anaerobically at 20(deg)C either as buffered suspensions or in a moistened condition in microcosms. Acetate was the predominant organic product formed regardless of the degree of litter decomposition. Initial rates of acetate formation in litter suspensions and microcosms approximated 2.6 and 0.53 (mu)mol of acetate per g (dry weight) of litter per h, respec...

  7. Anaerobic digestion of coffee waste

    OpenAIRE

    L. Neves; Ribeiro, R.; Oliveira, Rosário; Alves, M. M.

    2005-01-01

    The anaerobic co-digestion of five different by-products from instant coffee substitutes production was studied in mesophilic conditions. The co-substrate was the excess of sewage sludge from the wastewater treatment plant located in the same coffee factory. Four of the tested wastes produced methane in the range of 0.24-0.28 m³CH4(STP)/kgVSinitial . Reduction of 50-73% in total solids and 75-80% in volatile solids were obtained and the hydrolysis rate constants were in the ran...

  8. Bacteria isolated from amoebae/bacteria consortium

    Science.gov (United States)

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  9. Arsenic biotransformation and release by bacteria indigenous to arsenic contaminated groundwater.

    Science.gov (United States)

    Paul, Dhiraj; Kazy, Sufia K; Banerjee, Tirtha Das; Gupta, Ashok K; Pal, Taraknath; Sar, Pinaki

    2015-01-01

    Arsenic (As) biotransformation and release by indigenous bacteria from As rich groundwater was investigated. Metabolic landscape of 173 bacterial isolates indicated broad catabolic repertoire including abundance of As(5+) reductase activity and abilities in utilizing wide ranges of organic and inorganic respiratory substrates. Abundance of As homeostasis genes and utilization of hydrocarbon as carbon/electron donor and As(5+) as electron acceptor were noted within the isolates. Sediment microcosm study (for 300 days) showed a pivotal role of metal reducing facultative anaerobic bacteria in toxic As(3+) release in aqueous phase. Inhabitant bacteria catalyze As transformation and facilitate its release through a cascade of reactions including mineral bioweathering and As(5+) and/or Fe(3+) reduction activities. Compared to anaerobic incubation with As(5+) reducing strains, oxic state and/or incubation with As(3+) oxidizing bacteria resulted in reduced As release, thus indicating a strong role of such condition or biocatalytic mechanism in controlling in situ As contamination. PMID:25782634

  10. Potential effects of bacteria on radionuclide transport from a Swedish high level nuclear waste repository

    International Nuclear Information System (INIS)

    Microorganisms can influence radionuclide migration if their concentration are high in comparison with other organic particles. Data on the numbers of microorganisms in undisturbed ground-water have been collected. The average number of cells in the samples from 17 levels in 5 boreholes was 3.0 x 105 cells ml-1. A biofilm experiment indicated an active microbial rock surface population. Radiographic uptake experiments suggest inactive bulk water populations. The bulk water microbial cells in deep ground water might then be inactive cells detached from active biofilms. Enrichment cultures for anaerobic bacteria demonstrated the presence of anaerobic bacteria capable of growth on C-1 compounds with hydrogen and carbon dioxide, presumably methanogenic bacteria. Further, growth in enrichment cultures with sulphate as electron-acceptor and lactate as carbon source proved dissimilatory sulphate reducing bacteria to be present. (author)

  11. Taxonomic composition and physiological and biochemical properties of bacteria in the digestive tracts of earthworms

    Science.gov (United States)

    Byzov, B. A.; Tikhonov, V. V.; Nechitailo, T. Yu.; Demin, V. V.; Zvyagintsev, D. G.

    2015-03-01

    Several hundred bacterial strains belonging to different taxa were isolated and identified from the digestive tracts of soil and compost earthworms. Some physiological and biochemical properties of the bacteria were characterized. The majority of intestinal bacteria in the earthworms were found to be facultative anaerobes. The intestinal isolates as compared to the soil ones had elevated activity of proteases and dehydrogenases. In addition, bacteria associated with earthworms' intestines are capable of growth on humic acids as a sole carbon source. Humic acid stimulated the growth of the intestinal bacteria to a greater extent than those of the soil ones. In the digestive tracts, polyphenol oxidase activity was found. Along with the data on the taxonomic separation of the intestinal bacteria, the features described testified to the presence of a group of bacteria in the earthworms intestines that is functionally characteristic and is different from the soil bacteria.

  12. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    2003-01-01

    role of the anaerobic digestion in the wastewater treatment plants from a pre-treatment method to the main biological treatment method. The application of staged high-rate anaerobic digesters has shown the larger potential among the recent developments in this direction. The most common high...

  13. Instrumentation in anaerobic treatment - research and practice

    NARCIS (Netherlands)

    Spanjers, H.; Lier, van J.B.

    2006-01-01

    High rate anaerobic treatment reactors are able to uncouple solids and liquid retention time, resulting in high biomass concentrations. Principal advantages of anaerobic treatment include: energy efficiency, low biomass yield, low nutrient requirement and high volumetric organic loadings. In order t

  14. Atrazine removal in Danish anaerobic aquifers

    DEFF Research Database (Denmark)

    Pedersen, Philip Grinder; Arildskov, N.P.; Albrechtsen, Hans-Jørgen

    2002-01-01

    The pesticide atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine -2,4-diamine) was removed from the water phase in anaerobic laboratory batch incubations with sediment and groundwater from a number of Danish anaerobic aquifers, but not in incubations from aerobic aquifers. The removal...

  15. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  16. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    Directory of Open Access Journals (Sweden)

    Amy V. Callaghan

    2013-05-01

    Full Text Available Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM. The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria via ‘reverse methanogenesis’ and is catalyzed by a homologue of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and sulfate-reducing bacteria, wherein the archaeal members catalyze both methane oxidation and sulfate reduction and zero-valent sulfur is a key intermediate. The third AOM mechanism is a nitrite-dependent, intra-aerobic pathway described for the denitrifying bacterium, ‘Candidatus Methylomirabilis oxyfera.’ It is hypothesized that AOM proceeds via reduction of nitrite to nitric oxide, followed by the conversion of two nitric oxide molecules to dinitrogen and molecular oxygen. The latter can be used to functionalize the methane via a particulate methane monooxygenase. With respect to non-methane alkanes, there also appears to be novel mechanisms of activation. The most well-described pathway is the addition of non-methane alkanes across the double bond of fumarate to form alkyl-substituted succinates via the putative glycyl radical enzyme, alkylsuccinate synthase (also known as methylalkylsuccinate synthase. Other proposed mechanisms include anaerobic hydroxylation via ethylbenzene dehydrogenase-like enzymes and an ‘intra-aerobic’ denitrification pathway similar to that described for ‘M. oxyfera.’

  17. Prospects of Anaerobic Digestion Technology in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As the world's largest developing country, China must face the problem of managing municipal solid waste, and the challenge of organic waste disposal is even more serious. Considering the characteristics of traditional waste disposal technologies and the subsequent secondary pollution, anaerobic digestion has various advantages such as reduction in the land needed for disposal and preservation of environmental quality. In light of the energy crisis, this paper focuses on the potential production of biogas from biowaste through anaerobic digestion processes, the problems incurred by the waste collection system, and the efficiency of the anaerobic digestion process. Use of biogas in a combined heat and power cogeneration system is also discussed. Finally, the advantages of anaerobic digestion technology for the Chinese market are summarized. The anaerobic digestion is suggested to be a promising treating technology for the organic wastes in China.

  18. Anaerobic biorefinery: Current status, challenges, and opportunities.

    Science.gov (United States)

    Sawatdeenarunat, Chayanon; Nguyen, Duc; Surendra, K C; Shrestha, Shilva; Rajendran, Karthik; Oechsner, Hans; Xie, Li; Khanal, Samir Kumar

    2016-09-01

    Anaerobic digestion (AD) has been in use for many decades. To date, it has been primarily aimed at treating organic wastes, mainly manures and wastewater sludge, and industrial wastewaters. However, with the current advancements, a more open mind is required to look beyond these somewhat restricted original applications of AD. Biorefineries are such concepts, where multiple products including chemicals, fuels, polymers etc. are produced from organic feedstocks. The anaerobic biorefinery concept is now gaining increased attention, utilizing AD as the final disposal step. This review aims at evaluating the potential significance of anaerobic biorefineries, including types of feedstocks, uses for the produced energy, as well as sustainable applications of the generated residual digestate. A comprehensive analysis of various types of anaerobic biorefineries has been developed, including both large-scale and household level applications. Finally, future directives are highlighted showing how anaerobic biorefinery concept could impact the bioeconomy in the near future. PMID:27005786

  19. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye;

    2003-01-01

    The long retention time of the active biomass in the high-rate anaerobic digesters is the key factor for the successful application of the high rate anaerobic wastewater treatment. The long solids retention time is achieved due to the specific reactor configuration and it is enhanced...... by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change...... of the role of the anaerobic digestion in the wastewater treatment plants from a pre-treatment method to the main biological treatment method. The application of staged high-rate anaerobic digesters has shown the larger potential among the recent developments in this direction. The most common high...

  20. Molecular ecology of anaerobic reactor systems

    DEFF Research Database (Denmark)

    Hofman-Bang, H. Jacob Peider; Zheng, D.; Westermann, Peter;

    2003-01-01

    Anaerobic reactor systems are essential for the treatment of solid and liquid wastes and constitute a core facility in many waste treatment plants. Although much is known about the basic metabolism in different types of anaerobic reactors, little is known about the microbes responsible...... to the abundance of each microbe in anaerobic reactor systems by rRNA probing. This chapter focuses on various molecular techniques employed and problems encountered when elucidating the microbial ecology of anaerobic reactor systems. Methods such as quantitative dot blot/fluorescence in-situ probing using various...... and malfunctions of anaerobic digesters occasionally experienced, leading to sub-optimal methane production and wastewater treatment. Using a variety of molecular techniques, we are able to determine which microorganisms are active, where they are active, and when they are active, but we still need to determine...

  1. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  2. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms.

    OpenAIRE

    Amann, R I; Stromley, J; R. Devereux; KEY, R.; Stahl, D A

    1992-01-01

    The population architecture of sulfidogenic biofilms established in anaerobic fixed-bed bioreactors was characterized by selective polymerase chain reaction amplification and fluorescence microscopy. A region of the 16S rRNA common to resident sulfate-reducing bacteria was selectively amplified by the polymerase chain reaction. Sequences of amplification products, with reference to a collection of 16S rRNA sequences representing most characterized sulfate-reducing bacteria, were used to desig...

  3. Occurrence and activity of anammox bacteria in surface sediments of the southern North Sea

    OpenAIRE

    Bale, N.; de Villanueva, L.; Fan, H.; Hopmans, E. C.; Schouten, S.; Sinninghe Damsté, J. S.; Stal, L.J.

    2014-01-01

    We investigated the occurrence and activity of anaerobic ammonia oxidation (anammox) bacteria in sandy and muddy sand sediments of the southern North Sea. The presence of anammox bacteria was established through the detection of specific phosphocholine-monoether ladderane lipids, 16S rRNA gene, and hydrazine synthase (hzsA) genes. Anammox activity was measured in intact sediment cores (in situ rate) and in sediment slurries (potential rate) as the rate of N2 evolution from 15N-labeled substra...

  4. Characteristics and performance of anaerobic wastewater treatment (a review)

    International Nuclear Information System (INIS)

    Summary: Pakistan's current population of 180 million is expected to grow to about 221 million by the year 2025. In developing countries such as Pakistan water pollution is a major threat to the livelihood of people. Pakistan is also currently experiencing profound demographic, economic changes and energy crisis that have major implications for water management. The contamination of aquatic and terrestrial ecosystems with heavy metals is a major environmental problem. Each pollution problem calls for specific optimal and cost effective solution so if one technology proves less or ineffective other takes its place. Every day the vast amounts of the municipal, industrial and agricultural wastes are released in to the environment and create serious problems. Anaerobic digestion is very attractive and cost-effective option and technology for the highly loaded waste water treatment and energy conversion. The anaerobic process is in many ways ideal for waste treatment. It has several significant advantages over other available methods. In this process organic matter is utilized as source of electron donor to reduce carbon dioxide to produce methane gas. It involves three bacterial groups namely: hydrolytic, acetogenic and methanogenic bacteria that work optimally at pH and temperature ranges of 6.8 to 7.5 and 30-35 degree C, respectively. The residence time in a digester varies with the amount and type of feed material, the configuration of the digestion system, and whether it be one-stage or two-stage. It is ideal for all kinds of wastewaters. Currently anaerobic technology is being operated at full scale in many industrialized nations. (author)

  5. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  6. A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology.

    Science.gov (United States)

    Dione, N; Khelaifia, S; La Scola, B; Lagier, J C; Raoult, D

    2016-01-01

    In the mid-19th century, the dichotomy between aerobic and anaerobic bacteria was introduced. Nevertheless, the aerobic growth of strictly anaerobic bacterial species such as Ruminococcus gnavus and Fusobacterium necrophorum, in a culture medium containing antioxidants, was recently demonstrated. We tested aerobically the culture of 623 bacterial strains from 276 bacterial species including 82 strictly anaerobic, 154 facultative anaerobic, 31 aerobic and nine microaerophilic bacterial species as well as ten fungi. The basic culture medium was based on Schaedler agar supplemented with 1 g/L ascorbic acid and 0.1 g/L glutathione (R-medium). We successively optimized this media, adding 0.4 g/L uric acid, using separate autoclaving of the component, or adding haemin 0.1 g/L or α-ketoglutarate 2 g/L. In the basic medium, 237 bacterial species and ten fungal species grew but with no growth of 36 bacterial species, including 22 strict anaerobes. Adding uric acid allowed the growth of 14 further species including eight strict anaerobes, while separate autoclaving allowed the growth of all tested bacterial strains. To extend its potential use for fastidious bacteria, we added haemin for Haemophilus influenzae, Haemophilus parainfluenzae and Eikenella corrodens and α-ketoglutarate for Legionella pneumophila. This medium allowed the growth of all tested strains with the exception of Mycobacterium tuberculosis and Mycobacterium bovis. Testing primoculture and more fastidious species will constitute the main work to be done, but R-medium coupled with a rapid identification method (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) will facilitate the anaerobic culture in clinical microbiology laboratories. PMID:26577141

  7. Hygiene tests in the anaerobic digestion of household refuse

    Energy Technology Data Exchange (ETDEWEB)

    Maier, H.; Philipp, W.; Wekerle, J.; Strauch, D.

    In a pilot plant the disinfecting effect of composting the effluent of an anaerobic mesophilic digestion process of the organic fraction of household refuse was investigated. The dewatered effluent was mixed with straw as bulking material, put in not aerated windrows and aerobically composted. It was further investigated whether the influent of the digester could be disinfected with lime milk prior to the anaerobic mesophilic digestion process. For the evaluation of the disinfection salmonellas, enterococci, klebsiellas, parvo-, polio- and rotavirus were used as test agents. Temperature, total aerobic germ count, enterobacteriaceae and coliforms were also considered. The effect of lime milk in the influent on the digestion process, survival of the test bacteria and gas production was also studied. Both treatments can result in a hygienically safe product. But composting under the conditions given should not be operated during the winter period. Lime treatment of the influent results in a disinfection of the effluent which immediately can be utilized as liquid sludge in agriculture. (orig.)

  8. Adaptation of anaerobically grown Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans to organic solvents on the level of membrane fatty acid composition.

    Science.gov (United States)

    Duldhardt, Ilka; Gaebel, Julia; Chrzanowski, Lukasz; Nijenhuis, Ivonne; Härtig, Claus; Schauer, Frieder; Heipieper, Hermann J

    2010-03-01

    The effect of different solvents and pollutants on the cellular fatty acid composition of three bacterial strains: Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans, representatives of diverse predominant anaerobic metabolisms was investigated. As the prevailing adaptive mechanism in cells of T. aromatica and G. sulfurreducens whose cellular fatty acids patterns were dominated by palmitic acid (C16:0) and palmitoleic acid (C16:1cis), the cells reacted by an increase in the degree of saturation of their membrane fatty acids when grown in the presence of sublethal concentrations of the chemicals. Next to palmitic acid C16:0, the fatty acid pattern of D. multivorans was dominated by anteiso-branched fatty acids which are characteristic for several sulfate-reducing bacteria. The cells responded to the solvents with an increase in the ratio of straight-chain saturated (C14:0, C16:0, C18:0) to anteiso-branched fatty acids (C15:0anteiso, C17:0anteiso, C17:1anteisoΔ9cis). The results show that anaerobic bacteria react with similar mechanisms like aerobic bacteria in order to adapt their membrane to toxic organic solvents. The observed adaptive modifications on the level of membrane fatty acid composition can only be carried out with de novo synthesis of the fatty acids which is strictly related to cell growth. As the growth rates of anaerobic bacteria are generally much lower than in the so far investigated aerobic bacteria, this adaptive response needs more time in anaerobic bacteria. This might be one explanation for the previously observed higher sensitivity of anaerobic bacteria when compared with aerobic ones. PMID:21255320

  9. Anaerobic ammonium oxidation in a bioreactor treating slaughterhouse wastewater

    Directory of Open Access Journals (Sweden)

    V. Reginatto

    2005-12-01

    Full Text Available Ammonium oxidation was thought to be an exclusively aerobic process; however, as recently described in the literature, it is also possible under anaerobic conditions and this process was named ANAMMOX. This work describes the operation of a system consisting of a denitrifying reactor coupled to a nitrifying reactor used for removal of nitrogen from slaughterhouse wastewater. During operation of the denitrifying reactor an average nitrogen ammonium removal rate of 50 mg/Ld was observed. This biomass was used to seed a second reactor, operated in repeated fed batch mode, fed with synthetic medium specific to the growth of bacteria responsible for the ANAMMOX process. The nitrogen loading rate varied between 33 and 67 mgN/Ld and average nitrogen removal was 95% and 40%, respectively. Results of fluorescence in situ hybridization (FISH confirmed the presence of anammox-like microorganisms in the enriched biomass.

  10. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis.

    Directory of Open Access Journals (Sweden)

    Jing Yi

    Full Text Available The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.

  11. Vertical distribution and anaerobic biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments in Hong Kong, South China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Hua [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Zhou, Hong-Wei [Department of Environmental Health Science, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Wong, Yuk-Shan [Department of Biology, The Hong Kong University of Science and Technology (Hong Kong); Tam, Nora Fung-Yee, E-mail: bhntam@cityu.edu.hk [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2009-10-15

    The vertical distribution of polycyclic aromatic hydrocarbons (PAHs) at different sediment depths, namely 0-2 cm, 2-4 cm, 4-6 cm, 6-10 cm, 10-15 cm and 15-20 cm, in one of the most contaminated mangrove swamps, Ma Wan, Hong Kong was investigated. It was the first time to study the intrinsic potential of deep sediment to biodegrade PAHs under anaerobic conditions and the abundance of electron acceptors in sediment for anaerobic degradation. Results showed that the total PAHs concentrations (summation of 16 US EPA priority PAHs) increased with sediment depth. The lowest concentration (about 1300 ng g{sup -1} freeze-dried sediment) and the highest value (around 5000 ng g{sup -1} freeze-dried sediment) were found in the surface layer (0-2 cm) and deeper layer (10-15 cm), respectively. The percentage of high molecular weight (HMW) PAHs (4 to 6 rings) to total PAHs was more than 89% at all sediment depths. The ratio of phenanthrene to anthracene was less than 10 while fluoranthene to pyrene was around 1. Negative redox potentials (Eh) were recorded in all of the sediment samples, ranging from - 170 to - 200 mv, with a sharp decrease at a depth of 6 cm then declined slowly to 20 cm. The results suggested that HMW PAHs originated from diesel-powered fishing vessels and were mainly accumulated in deep anaerobic sediments. Among the electron acceptors commonly used by anaerobic bacteria, sulfate was the most dominant, followed by iron(III), nitrate and manganese(IV) was the least. Their concentrations also decreased with sediment depth. The population size of total anaerobic heterotrophic bacteria increased with sediment depth, reaching the peak number in the middle layer (4-6 cm). In contrast, the aerobic heterotrophic bacterial count decreased with sediment depth. It was the first time to apply a modified electron transport system (ETS) method to evaluate the bacterial activities in the fresh sediment under PAH stress. The vertical drop of the ETS activity suggested that

  12. Acetate biodegradation by anaerobic microorganisms at high pH and high calcium concentration

    International Nuclear Information System (INIS)

    Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14C compounds in cementitious repositories. Tamagawa river sediment or Teganuma pond sediment was anaerobically cultured with 5 mM acetate and 10 mM nitrate at pH 9.5-12 at 30 oC. After 20 and 90 days, the acetate concentration of the culture medium was analyzed and found to have decreased below 5 mM at pH ≤ 11. On the other hand, it did not decrease when either sediment was incubated in the absence of nitrate. These results suggest that nitrate-reducing bacteria can biodegrade acetate under more alkaline conditions than the reported pH range in which nitrate-reducing bacteria can exhibit activity. Acetate biodegradation was also examined at a high calcium concentration. Sediments were anaerobically cultured at pH 9.5 with 5 mM acetate and 10 mM nitrate in solution, equilibrated with ordinary Portland cement hydrate, in which the Ca concentration was 14.6 mM. No decrease in acetate concentration after incubation of the sediments was observed, nor was it lower than in the absence of cementitious composition, suggesting that kinetics of acetate biodegradation by anaerobic microorganisms is lowered by a high Ca concentration. - Research highlights: → Acetate biodegradation at a high pH and a high calcium concentration was examined to clarify the effect of bacterial activity on the migration of organic 14C compounds in cementitious repositories. → Nitrate-reducing bacteria can biodegrade acetate at pH ≤ 11. → Kinetics of acetate biodegradation by anaerobic microorganisms might be lowered by a high Ca concentration.

  13. Biophysical properties of membrane lipids of anammox bacteria : I. Ladderane phospholipids form highly organized fluid membranes

    NARCIS (Netherlands)

    Boumann, Henry A.; Longo, Marjorie L.; Stroeve, Pieter; Poolman, Bert; Hopmans, Ellen C.; Stuart, Marc C. A.; Damste, Jaap S. Sinninghe; Schouten, Stefan

    2009-01-01

    Anammox bacteria that are capable of anaerobically oxidizing ammonium (anammox) with nitrite to nitrogen gas produce unique membrane phospholipids that comprise hydrocarbon chains with three or five linearly condensed cyclobutane rings. To gain insight into the biophysical properties of these 'ladde

  14. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment.

    KAUST Repository

    Meulepas, Roel J W

    2010-05-06

    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is assumed to be a syntrophic process, in which methanotrophic archaea produce an interspecies electron carrier (IEC), which is subsequently utilized by sulfate-reducing bacteria. In this paper, six methanogenic substrates are tested as candidate-IECs by assessing their effect on AOM and SR by an anaerobic methanotrophic enrichment. The presence of acetate, formate or hydrogen enhanced SR, but did not inhibit AOM, nor did these substrates trigger methanogenesis. Carbon monoxide also enhanced SR but slightly inhibited AOM. Methanol did not enhance SR nor did it inhibit AOM, and methanethiol inhibited both SR and AOM completely. Subsequently, it was calculated at which candidate-IEC concentrations no more Gibbs free energy can be conserved from their production from methane at the applied conditions. These concentrations were at least 1,000 times lower can the final candidate-IEC concentration in the bulk liquid. Therefore, the tested candidate-IECs could not have been produced from methane during the incubations. Hence, acetate, formate, methanol, carbon monoxide, and hydrogen can be excluded as sole IEC in AOM coupled to SR. Methanethiol did inhibit AOM and can therefore not be excluded as IEC by this study.

  15. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    International Nuclear Information System (INIS)

    Highlights: ► Compared methane production of solid AD inoculated with different effluents. ► Food waste effluent (FWE) had the largest population of acetoclastic methanogens. ► Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. ► Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. ► Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVSfeed, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVSfeed. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO3/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  16. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Xu Fuqing; Shi Jian [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States); Lv Wen; Yu Zhongtang [Department of Animal Sciences, Ohio State University, Columbus, OH 43210 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  17. A new model for anaerobic processes of up-flow anaerobic sludge blanket reactors based on cellular automata

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2002-01-01

    characteristics and lead to different reactor behaviour. A dynamic mathematical model has been developed for the anaerobic digestion of a glucose based synthetic wastewater in UASB reactors. Cellular automata (CA) theory has been applied to simulate the granule development process. The model takes......The advantageous performance of the UASB reactors is due to the immobilisation of the active biomass, since bacteria coagulate forming aggregates usually called granules. Changes in organic loading rate, hydraulic loading rate or influent substrate composition usually result in changes in granule...... into consideration that granule diameter and granule microbial composition are functions of the reactor operational parameters and is capable of predicting the UASB performance and the layer structure of the granules....

  18. The role of acidification in the inhibition of Neisseria gonorrhoeae by vaginal lactobacilli during anaerobic growth

    Directory of Open Access Journals (Sweden)

    Wade Jeremy J

    2011-02-01

    Full Text Available Abstract Background Vaginal lactobacilli protect the female genital tract by producing lactic acid, bacteriocins, hydrogen peroxide or a local immune response. In bacterial vaginosis, normal lactobacilli are replaced by an anaerobic flora and this may increase susceptibility to Neisseria gonorrhoeae, a facultative anaerobe. Bacterial interference between vaginal lactobacilli and N. gonorrhoeae has not been studied in liquid medium under anaerobic conditions. By co-cultivating N. gonorrhoeae in the presence of lactobacilli we sought to identify the relative contributions of acidification and hydrogen peroxide production to any growth inhibition of N. gonorrhoeae. Methods Three strains of N. gonorrhoeae distinguishable by auxotyping were grown in the presence of high concentrations (107-108 cfu/mL of three vaginal lactobacilli (L. crispatus, L. gasseri and L. jensenii in an anerobic liquid medium with and without 2-(N-morpholino-ethanesulfonic (MES buffer. Fusobacterium nucleatum was used as an indicator of anaerobiosis. Bacterial counts were performed at 15, 20 and 25 h; at 25 h pH and hydrogen peroxide concentrations were measured. Results Growth of F. nucleatum to >108 cfu/mL at 25 h confirmed anaerobiosis. All bacteria grew in the anaerobic liquid medium and the addition of MES buffer had negligible effect on growth. L. crispatus and L. gasseri produced significant acidification and a corresponding reduction in growth of N. gonorrhoeae. This inhibition was abrogated by the addition of MES. L. jensenii produced less acidification and did not inhibit N. gonorrhoeae. Hydrogen peroxide was not detected in any experiment. Conclusions During anaerobic growth, inhibition of N. gonorrhoeae by the vaginal lactobacilli tested was primarily due to acidification and abrogated by the presence of a buffer. There was no evidence of a specific mechanism of inhibition other than acid production under these conditions and, in particular, hydrogen peroxide was

  19. Biomarkers of Microbial Metabolism for Monitoring in-situ Anaerobic PAH Degradation

    Science.gov (United States)

    Young, L.; Phelps, C.; Battistelli, J.

    2002-12-01

    Monoaromatic and polycyclic aromatic compounds found in petroleum and its products are subject to biodegradation in the absence of oxygen. These anaerobic pathways reveal novel mechanism of microbial transformation through a series of metabolites and intermediates which are unique to the anaerobic degradation process. The presence of these compounds in-situ, then conceptually can serve as indicators that anaerobic degradation is taking place. We have laboratory studies and field samples which support this concept for BTX and PAH compounds. Environments in which these anaerobic degradation processes have been observed include freshwater and estuarine sediments, groundwater from impacted aquifers at a former manufactured gas plant and gasoline station, and a creosote-contaminated aquifer. Analytical protocols were developed to detect nanomolar concentrations from soil slurries and groundwater samples and microcosm studies verified their formation from field samples and use as biomarkers of activity. Recent studies on the mechanisms of anaerobic naphthalene and methylnaphthalene metabolism have identified several unusual compounds that can serve as biomarkers for monitoring in situ PAH biodegradation. For naphthalene these include 2-naphthoic acid (2-NA), tetrahydro-2-naphthoic acid (TH-2-NA), hexahydro-2-naphthoic acid (HH-2-NA) and methylnaphthoic acid (MNA) generated by sulfate-reducing bacteria degrading naphthalene or methylnaphthalene. Groundwater samples were analyzed from wells distributed throughout an anaerobic, creosote-contaminated aquifer and also from a leaking underground storage site. Samples were extracted, derivatized and analyzed by GC/MS. The concentration of 2-NA at each monitoring well was quantified and correlated to the zones of naphthalene contamination. Taken together with measurements of the aquifer's physical characteristics, these biomarker data can be used to describe the extent of naphthalene biodegradation at these site.

  20. Energy balance of a two-phase anaerobic digestion process for energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Zielonka, Simon; Lemmer, Andreas; Oechsner, Hans; Jungbluth, Thomas [University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy, Stuttgart (Germany)

    2010-12-15

    This article deals with the digestion of energy crops in a two-phase biogas process based on an anaerobic leach-bed reactor combined with an anaerobic filter. The biogas process is a microbiological conversion of biomass into methane and carbon dioxide. This process is carried out by different microorganisms and can be divided into four steps which normally take place in only one digester. To be able to digest difficult energy crops by mono-digestion and to meet the different needs of the several bacteria, which take part in the four-step process of the methane production, the process was divided into two phases: (i) an anaerobic batch leach-bed phase, where the leachate was produced and (ii) an anaerobic filter, where the organic fraction of the leachate was converted into biogas. Considering the results of the experiments, the two-phase digestion of energy crops exhibited stable digestion behavior. No biological imbalance of the process, e.g. due to a sudden change of substrate, was detected either in the leach bed or in the anaerobic filter. Variation in suitability for two-phase fermentation with an anaerobic batch leach-bed reactor was observed for various substrates. The different substrates varied in their influence on acid formation and concentration as well as an influence on the course of the pH value. Therefore, an effect on the distribution of energy to the phases could be observed. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Host-Bacteria Crosstalk at the Dentogingival Junction

    Directory of Open Access Journals (Sweden)

    M. T. Pöllänen

    2012-01-01

    Full Text Available The dentogingival junction is of crucial importance in periodontal host defense both structurally and functionally. Oral bacteria exert a constant challenge to the host cells and tissues at the dentogingival junction. The host response is set up to eliminate the pathogens by the innate and adaptive defense mechanisms. In health, the commensal bacteria and the host defense mechanisms are in a dynamic steady state. During periodontal disease progression, the dental bacterial plaque, junctional epithelium (JE, inflammatory cells, connective tissue, and bone all go through a series of changes. The tissue homeostasis is turned into tissue destruction and progression of periodontitis. The classical study of Slots showed that in the bacterial plaque, the most remarkable change is the shift from gram-positive aerobic and facultatively anaerobic flora to a predominantly gram-negative and anaerobic flora. This has been later confirmed by several other studies. Furthermore, not only the shift of the bacterial flora to a more pathogenic one, but also bacterial growth as a biofilm on the tooth surface, allows the bacteria to communicate with each other and exert their virulence aimed at favoring their growth. This paper focuses on host-bacteria crosstalk at the dentogingival junction and the models studying it in vitro.

  2. Anaerobic xylose fermentation by Spathaspora passalidarum

    DEFF Research Database (Denmark)

    Hou, Xiaoru

    2012-01-01

    reductase (XR) and NAD+-dependent xylitol dehydrogenase (XDH). Thus, the capacity of S. passalidarum to utilize xylose under anaerobic conditions is possibly due to the balance between the cofactor’s supply and demand through this XR–XDH pathway. Only few XRs with NADH preference have been reported so far....... 2-Deoxy glucose completely inhibited the conversion of xylose by S. passalidarum under anaerobic conditions, but only partially did that under aerobic conditions. Thus, xylose uptake by S. passalidarum may be carried out by different xylose transport systems under anaerobic and aerobic conditions...

  3. Potential for anaerobic conversion of xenobiotics

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Dolfing, J.; Haagensen, Frank;

    2003-01-01

    This review covers the latest research on the anaerobic biodegradation of aromatic xenobiotic compounds, with emphasis on surfactants, polycyclic aromatic hydrocarbons, phthalate esters, polychlorinated biphenyls, halogenated phenols, and pesticides. The versatility of anaerobic reactor systems...... regarding the treatment of xenobiotics is shown with the focus on the UASB reactor, but the applicability of other reactor designs for treatment of hazardous waste is also included. Bioaugmentation has proved to be a viable technique to enhance a specific activity in anaerobic reactors and recent research...... on reactor and in situ bioaugmentation is reported....

  4. Anaerobic Nitrate-Dependent Metal Bio-Oxidation

    Science.gov (United States)

    Weber, K.; Knox, T.; Achenbach, L. A.; Coates, J. D.

    2007-12-01

    Direct biological oxidation of reduced metals (Fe(II) and U(IV)) coupled to nitrate reduction at circumneutral pH under anaerobic conditions has been recognized in several environments as well as pure culture. Several phylogentically diverse mesophilic bacteria have been described as capable of anaerobic, nitrate-dependent Fe(II) oxidation (NFOx). Our recent identification of a freshwater mesophilic, lithoautotroph, Ferrutens nitratireducens strain 2002, capable of growth through NFOx presents an opportunity to further study metal bio- oxidation. Continuing physiological studies revealed that in addition to Fe(II) oxidation, strain 2002 is capable of oxidizing U(IV) (4 μM) in washed cell suspensions with nitrate serving as the electron acceptor. Pasteurized cultures exhibited abiotic oxidation of 2 μM U(IV). Under growth conditions, strain 2002 catalyzed the oxidation of 12 μM U(IV) within a two week period. Cultures amended with sodium azide, an electron transport inhibitor, demonstrated limited oxidation (7 μM) similar to pasteurized cultures, supporting the direct role of electron transport in U(IV) bio-oxidation. The oxidation of U(IV) coupled denitrification at circumneutral pH would yield enough energy to support anaerobic microbial growth (ΔG°'= -460.36 kJ/mole). It is currently unknown whether or not strain 2002 can couple this metabolism to growth. The growth of F. nitratireducens strain 2002 utilizing Fe(II) as the sole electron donor was previously demonstrated. The amount of U(IV) (~12 μM) that strain 2002 oxidized under similar autotrophic growth conditions yields 0.0019 kJ, enough energy for the generation of ATP (5.3 x 10-20 kJ ATP-1), but not enough energy for cell replication as calculated for nitrate-dependent Fe(II) oxidizing conditions (0.096 kJ) assuming a similar metabolism. In addition to F. nitratireducens strain 2002, a nitrate-dependent Fe(II) oxidizing bacterium isolated from U contaminated groundwater, Diaphorobacter sp. strain

  5. Anaerobic respirometry as a tool for substrate characterisation aiming at modelling of manures anaerobic modelling of manures anaerobic digestion

    OpenAIRE

    Girault, R.; Sadowski, A.G.; Béline, F.

    2010-01-01

    Modelling of anaerobic digestion is more and more used as a tool for process optimization or interpreting observed phenomena within research projects. The most used model is the Anaerobic Digestion Model n°1 (ADM1) but some other models are also available (either simpler or more complex). Whatever the model, one of the major key issue is the fractionation and characterisation of the influent. For substrates like activated sludge from wastewater treatment plants, detailed influent characterisa...

  6. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    OpenAIRE

    1997-01-01

    The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen deman...

  7. Diversity and ecology of oxalotrophic bacteria.

    Science.gov (United States)

    Hervé, Vincent; Junier, Thomas; Bindschedler, Saskia; Verrecchia, Eric; Junier, Pilar

    2016-02-01

    Oxalate is present in environments as diverse as soils or gastrointestinal tracts. This organic acid can be found as free acid or forming metal salts (e.g. calcium, magnesium). Oxalotrophy, the ability to use oxalate as carbon and energy sources, is mainly the result of bacterial catabolism, which can be either aerobic or anaerobic. Although some oxalotrophic bacterial strains are commonly used as probiotics, little is known about the diversity and ecology of this functional group. This review aims at exploring the taxonomic distribution and the phylogenetic diversity of oxalotrophic bacteria across biomes. In silico analyses were conducted using the two key enzymes involved in oxalotrophy: formyl-coenzyme A (CoA) transferase (EC 2.8.3.16) and oxalyl-CoA decarboxylase (EC 4.1.1.8), encoded by the frc and oxc genes, respectively. Our analyses revealed that oxalate-degrading bacteria are restricted to three phyla, namely Actinobacteria, Firmicutes and Proteobacteria and originated from terrestrial, aquatic and clinical environments. Diversity analyses at the protein level suggest that total Oxc diversity is more constrained than Frc diversity and that bacterial oxalotrophic diversity is not yet fully described. Finally, the contribution of oxalotrophic bacteria to ecosystem functioning as well as to the carbon cycle is discussed. PMID:26748805

  8. Characterizing the Anaerobic Response of Chlamydomonas reinhardtii by Quantitative Proteomics

    OpenAIRE

    Terashima, Mia; Specht, Michael; Naumann, Bianca; Hippler, Michael

    2010-01-01

    The versatile metabolism of the green alga Chlamydomonas reinhardtii is reflected in its complex response to anaerobic conditions. The anaerobic response is also remarkable in the context of renewable energy because C. reinhardtii is able to produce hydrogen under anaerobic conditions. To identify proteins involved during anaerobic acclimation as well as to localize proteins and pathways to the powerhouses of the cell, chloroplasts and mitochondria from C. reinhardtii in aerobic and anaerobic...

  9. Characterization and Adaptation of Anaerobic Sludge Microbial Communities Exposed to Tetrabromobisphenol A

    Science.gov (United States)

    Lefevre, Emilie; Cooper, Ellen; Stapleton, Heather M.

    2016-01-01

    The increasing occurrence of tetrabromobisphenol A (TBBPA) in the environment is raising questions about its potential ecological and human health impacts. TBBPA is microbially transformed under anaerobic conditions to bisphenol A (BPA). However, little is known about which taxa degrade TBBPA and the adaptation of microbial communities exposed to TBBPA. The objectives of this study were to characterize the effect of TBBPA on microbial community structure during the start-up phase of a bench-scale anaerobic sludge reactor, and identify taxa that may be associated with TBBPA degradation. TBBPA degradation was monitored using LC/MS-MS, and the microbial community was characterized using Ion Torrent sequencing and qPCR. TBBPA was nearly completely transformed to BPA via reductive debromination in 55 days. Anaerobic reactor performance was not negatively affected by the presence of TBBPA and the bulk of the microbial community did not experience significant shifts. Several taxa showed a positive response to TBBPA, suggesting they may be associated with TBBPA degradation. Some of these taxa had been previously identified as dehalogenating bacteria including Dehalococcoides, Desulfovibrio, Propionibacterium, and Methylosinus species, but most had not previously been identified as having dehalogenating capacities. This study is the first to provide in-depth information on the microbial dynamics of anaerobic microbial communities exposed to TBBPA. PMID:27463972

  10. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    Science.gov (United States)

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L. PMID:24520716

  11. Progress in Anaerobic Digestion Models%国内外厌氧消化模型研究进展

    Institute of Scientific and Technical Information of China (English)

    杨双春; 邓丹; 梁丹丹; 潘一

    2012-01-01

    The anaerobic biological method is a process of low energy consumption and high efficiency to deal with high concentration organic wastewater. An anaerobic digestion model describes how the bacteria and the facultative anaerobic bacteria decompose the biodegradable organic in the sludge into carbon dioxide, methane and water under anaerobic conditions. As a structure model, it contains all procedures, including the production processes of decomposition and hydrolysis, acid, acetic acid and methane. In this paper, some sludge anaerobic digestion models are reviewed, such as the single-phase anaerobic digestion model (SP- ADM1), the Two-Phase Anaerobic Digestion Model (TP-ADM1), the combination of the Anaerobic Digestion and the Activated Sludge (ADM1-ASMs), the Sulfate Reduction of Anaerobic Digestion Model (SR-ADM1), the Nitrate Reduction of Anaerobic Digestion Expansion Model (NR-ADEM1), the Gas Production and its Expansion of the Anaerobic Digestion Model (GPAE-ADM1), the Sedimentation Tank of Anaerobic Digestion Model (ST-ADM1), and the Inhibition Kinetics of Anaerobic Digestion Model (IK-ADM1). In addition, the anaerobic digestion models are evaluated in comparison with the anaerobic digestion model 1, and some suggestions are made for future researches .%厌氧生物法是一种适用于处理高浓度有机废水的高效低能耗的处理工艺,厌氧消化模型是表述兼性细菌和厌氧细菌将可生物降解的有机物分解成二氧化碳、甲烷和水的过程模型.它是一个具有分解和水解、产酸、产乙酸和产甲烷等过程的复杂的结构化模型.本文主要介绍了国内外污泥厌氧消化模型的研究现状及其进展,模型包括厌氧消化1号模型(ADM1)、好氧活性污泥-厌氧消化模型(ASM1-ADM1)、单相中温-厌氧消化模型(SPMT-ADM1)、单相高温-厌氧消化模型(SPHT-ADM1)、两相-厌氧消化模型(TP-ADM1)、厌氧消化-活性污泥复合模型(ADM1 -ASMs)、硫酸盐

  12. Leaching of Mn, Co, and Ni from manganese nodules using an anaerobic bioleaching method.

    Science.gov (United States)

    Lee, E Y; Noh, S; Cho, K; Ryu, H W

    2001-01-01

    An anaerobic bioleaching of a manganese nodule by anaerobic Mn-reducing bacteria was evaluated for the leaching of metals, Mn, Co, and Ni. Insoluble Mn4+ in the nodule could be reduced to soluble Mn2+ by dissimilatory Mn-reducing bacteria that use a carbon source and Mn4+ as an electron donor and acceptor, respectively. As a result of the Mn reduction, Co and Ni could be leached from the loosed Mn matrix. Leaching experiments were carried out to optimize various process parameters, such as inoculation, pH, temperature, mineral salts, and particle size of the nodule used. The leaching efficiencies of Mn, Co, and Ni increased from 18, 7, and 10% to 77, 70, and 75%, respectively by the inoculation of the Mn-reducing enrichment culture broth. Metals could be efficiently recovered from the nodule in the ranges of pH from 5.0 to 6.5 and temperature from 30 to 45 degrees C by anaerobic bioleaching. External addition of mineral salts was not necessary for Mn, Co, and Ni leaching from the nodule. The optimum ratio of nodule to glucose was 0.1 (w/w). To obtain a leaching efficiency above 70%, the particle size of the nodules must be less than 0.6 mm. PMID:16233110

  13. Pyrosequencing reveals microbial community profile in anaerobic bio-entrapped membrane reactor for pharmaceutical wastewater treatment.

    Science.gov (United States)

    Ng, Kok Kwang; Shi, Xueqing; Ong, Say Leong; Ng, How Yong

    2016-01-01

    In this study, pharmaceutical wastewater with high salinity and total chemical oxygen demand (TCOD) was treated by an anaerobic membrane bioreactor (AnMBR) and an anaerobic bio-entrapped membrane reactor (AnBEMR). The microbial populations and communities were analyzed using the 454 pyrosequencing method. The hydraulic retention time (HRT), membrane flux and mean cell residence time (MCRT) were controlled at 30.6h, 6L/m(2)h and 100d, respectively. The results showed that the AnBEMR achieved higher TCOD removal efficiency and greater biogas production compared to the AnMBR. Through DNA pyrosequencing analysis, both the anaerobic MBRs showed similar dominant groups of bacteria and archaea. However, phylum Elusimicrobia of bacteria was only detected in the AnBEMR; the higher abundance of dominant archaeal genus Methanimicrococcus found in the AnBEMR could play an important role in degradation of the major organic pollutant (i.e., trimethylamine) present in the pharmaceutical wastewater. PMID:26577579

  14. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C......% of the added C-12 LAS was bioavailable and 20% was biotransformed when spiking with 100 mg/L of C-12 LAS and a TS concentration of 14.2 mg/L. Enhanced bioavailability of C-12 LAS was obtained in an upflow anaerobic sludge blanket (UASB) reactor inoculated with granular sludge and sewage sludge. Biodegradation......Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically...

  15. Anaerobic membrane bioreactor under extreme conditions (poster)

    OpenAIRE

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; van Lier, J B

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating wastewaters from different industries such as coke, textile, food, and chemical. However, few research has been found into the use of membrane bioreactors for anaerobic treatment of wastewater under extreme ...

  16. Anaerobic Biodegradability of Agricultural Renewable Fibers

    OpenAIRE

    Shi, Bo; Lortscher, Peter; Palfery, Doris

    2013-01-01

    Natural fiber-based paper and paperboard products are likely disposed of in municipal wastewater, composting, or landfill after an intended usage. However, there are few studies reporting anaerobic sludge digestion and biodegradability of agricultural fibers although the soiled sanitary products, containing agricultural fibers, are increasingly disposed of in municipal wastewater or conventional landfill treatment systems, in which one or more unit operations are anaerobic digestion. We condu...

  17. Psychrophilic anaerobic treatment of low strength wastewaters.

    OpenAIRE

    Rebac, S.

    1998-01-01

    The main objective of this thesis was to design a high-rate anaerobic system for the treatment low strength wastewaters under psychrophilic conditions.Psychrophilic (3 to 20 °C) anaerobic treatment of low strength synthetic and malting wastewater was investigated using a single and two stage expanded granular sludge bed (EGSB) reactor system. The chemical oxygen demand (COD) removal efficiencies found in the experiments with synthetic wastewater exceeded 90 % in the single stage reactor at im...

  18. Anaerober Abbau von Kresolen und Monohydroxybenzoaten

    OpenAIRE

    Müller, Jochen A.

    2000-01-01

    All aromatic compounds are potential substrates for microorganisms. Hence, microorganisms play an eminent role in the global carbon cycle. The present work describes the anaerobic degradation of cresols and toluene, both bulk chemicals of the petroleum industry, and the anaerobic degradation of 3-hydroxybenzoate, a model compound for degradation of lignin-monomers. Degradation pathways for these aromatic substrates are postulated on the basis of in vitro measurements of key enzymes in various...

  19. Anaerobic digester for treatment of organic waste

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V. K. [Indian Insitute of Technology, Delhi (India)]|[ENEA, Centro Ricerche Trisaia, Matera (Italy); Fortuna, F.; Canditelli, M.; Cornacchia, G. [ENEA, Centro Ricerche Trisaia, Matera (Italy). Dipt. Ambiente; Farina, R. [ENEA, centro Ricerche ``Ezio Clementel``, Bologna (Italy). Dipt. Ambiente

    1997-09-01

    The essential features of both new and more efficient reactor systems and their appropriate applications for various organic waste management situations, description of several working plants are discussed in the present communication. It is hoped that significant development reported here would be useful in opening a new vista to the application of anaerobic biotechnology for the waste treatment of both low/high organic strength and specialized treatment for toxic substances, using appropriate anaerobic methods.

  20. Anaerobic Digestion of Paper Mill Wastewater

    OpenAIRE

    Shreeshivadasan Chelliapan; Siti Baizura Mahat; Md. Fadjil Md. Din; A. Yuzir; Othman, N.

    2012-01-01

    In general, paper mill wastewater contains complex organic substances which could not be treated completely using conventional treatment processes, e.g. aerobic processes. As a result, anaerobic technology is a promising alternative for paper mill wastewater treatment due to its ability to degrade hard organic compounds. In the present study, treatment of paper mill wastewater using a stage anaerobic reactor was investigated. The more specific objectives of this study were to confirm whether ...

  1. Sleep Deprivation Induced Anxiety and Anaerobic Performance

    OpenAIRE

    Selma Arzu Vardar; Levent Öztürk; Cem Kurt; Erdogan Bulut; Necdet Sut; Erdal Vardar

    2007-01-01

    The aim of this study was to investigate the effects of sleep deprivation induced anxiety on anaerobic performance. Thirteen volunteer male physical education students completed the Turkish version of State Anxiety Inventory and performed Wingate anaerobic test for three times: (1) following a full-night of habitual sleep (baseline measurements), (2) following 30 hours of sleep deprivation, and (3) following partial-night sleep deprivation. Baseline measurements were performed the day before ...

  2. EFFECT OF MUSIC ON ANAEROBIC EXERCISE PERFORMANCE

    OpenAIRE

    Atan, T.

    2013-01-01

    For years, mostly the effects of music on cardiorespiratory exercise performance have been studied, but a few studies have examined the effect of music on anaerobic exercise. The purpose of this study was to assess the effect of listening to music and its rhythm on anaerobic exercise: on power output, heart rate and the concentration of blood lactate. 28 male subjects were required to visit the laboratory on 6 occasions, each separated by 48 hours. Firstly, each subject performed the Running-...

  3. Comparative Studies of Alternative Anaerobic Digestion Technologies

    OpenAIRE

    Inman, David C.

    2004-01-01

    Washington D.C. Water and Sewage Authority is planning to construct a new anaerobic digestion facility at its Blue Plains WWTP by 2008. The research conducted in this study is to aid the designers of this facility by evaluating alternative digestion technologies. Alternative anaerobic digestion technologies include thermophilic, acid/gas phased, and temperature phased digestion. In order to evaluate the relative merits of each, a year long study evaluated the performance of bench scale dig...

  4. Microbial community structure reveals how microaeration improves fermentation during anaerobic co-digestion of brown water and food waste.

    Science.gov (United States)

    Lim, Jun Wei; Chiam, Jun An; Wang, Jing-Yuan

    2014-11-01

    The purpose of this study was to investigate the impact of microaeration on the fermentation process during anaerobic co-digestion of brown water (BW) and food waste (FW). This was achieved by daily monitoring of reactor performance and the determination of its bacterial consortium towards the end of the study. Molecular cloning and sequencing results revealed that bacteria within phyla Firmicutes and Bacteriodetes represented the dominant phylogenetic group. As compared to anaerobic conditions, the fermentation of BW and FW under microaeration conditions gave rise to a significantly more diverse bacterial population and higher proportion of bacterial clones affiliated to the phylum Firmicutes. The acidogenic reactor was therefore able to metabolize a greater variety of substrates leading to higher hydrolysis rates as compared to the anaerobic reactor. Other than enhanced fermentation, microaeration also led to a shift in fermentation production pattern where acetic acid was metabolized for the synthesis of butyric acid. PMID:25194261

  5. Numerically dominant denitrifying bacteria from world soils.

    Science.gov (United States)

    Gamble, T N; Betlach, M R; Tiedje, J M

    1977-04-01

    Nineteen soils, three freshwater lake sediments, and oxidized poultry manure were examined to determine the dominant denitrifier populations. The samples, most shown or expected to support active denitrification, were from eight countries and included rice paddy, temperate agricultural, rain forest, organic, and waste-treated soils. Over 1,500 organisms that could grow anaerobically on nitrate agar were isolated. After purification, 146 denitrifiers were obtained, as verified by production of N(2) from NO(3) (-). These isolates were characterized by 52 properties appropriate for the Pseudomonas-Alcaligenes group. Numerical taxonomic procedures were used to group the isolates and compare them with nine known denitrifier species. The major group isolated was representative of Pseudonomas fluorescens biotype II. The second most prevalent group was representative of Alcaligenes. Other Pseudomonas species as well as members of the genus Flavobacterium, the latter previously not known to denitrify, also were identified. One-third of the isolates could not utilize glucose or other carbohydrates as sole carbon sources. Significantly, none of the numerically dominant denitrifiers we isolated resembled the most studied species: Pseudomonas denitrificans, Pseudomonas perfectomarinus, and Paracoccus denitrificans. Denitrification appears to be a property of a very diverse group of gram-negative, motile bacteria, as shown by the large number (22.6%) of ungrouped organisms. The diversity of denitrifiers from a given sample was usually high, with at least two groups present. Denitrifiers, nitrite accumulators, and organisms capable of anaerobic growth were present in the ratio of 0.20+/-0.23:0.81+/-0.23:1. There were few correlations between their numbers and the sample characteristics measured. However, the temperatures at which isolates could grow were significantly related to the temperatures of the environments from which they were isolated. Regression analysis revealed few

  6. Genomics of Probiotic Bacteria

    Science.gov (United States)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  7. Learning Chemistry from Bacteria

    OpenAIRE

    Clardy, Jon

    2013-01-01

    Dr. Jon Clardy Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University All animals, including humans, originated and evolved on a planet already teeming with bacteria, and the two kingdoms of life have been competing and cooperating through their joint history. Although bacteria are most familiar as pathogens, some bacteria produce small molecules that are essential for the biology of animals and other eukaryotes. This lecture explores some of...

  8. SLEEP DEPRIVATION INDUCED ANXIETY AND ANAEROBIC PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Selma Arzu Vardar

    2007-12-01

    Full Text Available The aim of this study was to investigate the effects of sleep deprivation induced anxiety on anaerobic performance. Thirteen volunteer male physical education students completed the Turkish version of State Anxiety Inventory and performed Wingate anaerobic test for three times: (1 following a full-night of habitual sleep (baseline measurements, (2 following 30 hours of sleep deprivation, and (3 following partial-night sleep deprivation. Baseline measurements were performed the day before total sleep deprivation. Measurements following partial sleep deprivation were made 2 weeks later than total sleep deprivation measurements. State anxiety was measured prior to each Wingate test. The mean state anxiety following total sleep deprivation was higher than the baseline measurement (44.9 ± 12.9 vs. 27.6 ± 4.2, respectively, p = 0.02 whereas anaerobic performance parameters remained unchanged. Neither anaerobic parameters nor state anxiety levels were affected by one night partial sleep deprivation. Our results suggest that 30 hours continuous wakefulness may increase anxiety level without impairing anaerobic performance, whereas one night of partial sleep deprivation was ineffective on both state anxiety and anaerobic performance

  9. D/H fractionation in lipids of facultative and obligate denitrifying and sulfate reducing bacteria

    Science.gov (United States)

    Osburn, M. R.; Sessions, A. L.

    2012-12-01

    The hydrogen isotopic composition of lipids has been shown to vary broadly in both cultured bacteria and in environmental samples. Culturing studies have indicated that this variability may primarily reflect metabolism; however, the limited number of organisms studied thus far prevents application of these trends to interpretation of environmental samples. Here we report D/H fractionations in anaerobic bacteria, including both facultative and obligate anaerobic organisms with a range of electron donors, acceptors, and metabolic pathways. Experiments using the metabolically flexible alphaproteobacterium Paracoccus denitrificans probe particular central metabolic pathways using a range of terminal electron acceptors. While a large range of δD values has been observed during aerobic metabolism, denitrifying cultures produce a more limited range in δD values that are more similar to each other than the corresponding aerobic culture. Data from the sulfate reducing bacteria Desulfobacterium autotrophicum and Desulfobacter hydrogenophilus indicate that chemolithoautotrophy and anaerobic heterotrophy can produce similar δD values, and are similar between bacteria despite differing metabolic pathways. These results suggest that the fractionation of D/H depends both on the specific metabolic pathway and the electron acceptor. While this is not inconsistent with previous studies, it suggests the simple correspondence between δD and metabolism previously understood from aerobic bacteria is not universally applicable.

  10. Enrichment of denitrifying methanotrophic bacteria from Taihu sediments by a membrane biofilm bioreactor at ambient temperature.

    Science.gov (United States)

    Wang, Shenghui; Wu, Qing; Lei, Ting; Liang, Peng; Huang, Xia

    2016-03-01

    Denitrification coupled to anaerobic methane oxidation is a recently discovered process performed by bacteria affiliated to the NC10 phylum. These microorganisms could play important roles in the energy-efficient way of anaerobic wastewater treatment where residual dissolved methane might be removed at the expense of nitrate or nitrite. The difficulty to enrich these microorganisms due to a slow growth rate, especially at low temperatures, limited its application in engineering field. In this study, an NC10 bacteria community was enriched from Taihu sediments by a membrane biofilm bioreactor at ambient temperature of 10-25 °C. After 13 months enrichment, the maximum denitrification rate of the enriched culture reached 0.54 mM day(-1) for nitrate and 1.06 mM day(-1) for nitrite. Anaerobic methane oxidation coupled denitrification was estimated from the (13)C-labeled CO2 ((13)CO2) production during batch incubations with (13)CH4. Furthermore, analysis of 16S rRNA genes clone library confirmed the presence of NC10 phylum bacteria and fluorescence in situ hybridization showed that NC10 bacteria dominated the reactor. All of the results indicated the NC10 bacteria community was competitive in terms of treating nitrate-contaminated water or wastewater under natural conditions. PMID:26578374

  11. Enumeration of Organohalide Respirers in Municipal Wastewater Anaerobic Digesters.

    Science.gov (United States)

    Smith, Bryan Jk; Boothe, Melissa A; Fiddler, Brice A; Lozano, Tania M; Rahi, Russel K; Krzmarzick, Mark J

    2015-01-01

    Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccartyi was the most abundant and averaged 3.3 × 10(7) copies of 16S rRNA genes per gram, while the Dehalobacter was much lower at 2.6 × 10(4) copies of 16S rRNA genes per gram. The genus Sulfurospirillum spp. was also detected at 1.0 × 10(7) copies of 16S rRNA genes per gram. No other known or putatively organohalide-respiring strains in the Dehalococcoidaceae family were found to be present nor were the genera Desulfitobacterium or Desulfomonile. PMID:26508873

  12. Optimizing substrate for sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Microbial sulfate reduction followed by sulfide precipitation effectively removes heavy metals from wastewaters. The substrate in the anaerobic zone in a constructed wetland can be designed to emphasize this removal process. This group of bacteria requires CH2O, P, N, and SO4=, reducing conditions, and pH range of 5-9 (pH=7 is optimum). The objective of this study was to find an inexpensive source of nutrients that would give the best initial production of sulfide and make a good wetland substrate. All tested materials contain sufficient P and N; mine drainage provides sulfate. Thus, tests focused on finding organic material that provides the proper nutrients and does not cause the culture to fall below pH of 5. Among chemical nutrients, sodium lactate combined with (NH4)2HPO4 were the only compounds that produced sulfide after 11 days. Among complex nutrients, only cow manure produced sulfide after 26 days. Among complex carbohydrates, cracked corn and raw rice produced sulfide after 10 days. Most substrates failed to produce sulfide because anaerobic fermentation reduced the pH below 5. Presently, cracked corn is the best candidate for a substrate. Five grams of cow manure produced 0.14 millimole of sulfide whereas 0.1 g of cracked corn produced 0.22 millimole

  13. Comparison of multi-enzyme and thermophilic bacteria on the hydrolysis of mariculture organic waste (MOW).

    Science.gov (United States)

    Guo, Liang; Sun, Mei; Zong, Yan; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2016-01-01

    Mariculture organic waste (MOW) is rich in organic matter, which is a potential energy resource for anaerobic digestion. In order to enhance the anaerobic fermentation, the MOW was hydrolyzed by multi-enzyme and thermophilic bacteria. It was advantageous for soluble chemical oxygen demand (SCOD) release at MOW concentrations of 6 and 10 g/L with multi-enzyme and thermophilic bacteria pretreatments. For multi-enzyme, the hydrolysis was not obvious at substrate concentrations of 1 and 3 g/L, and the protein and carbohydrate increased with hydrolysis time at substrate concentrations of 6 and 10 g/L. For thermophilic bacteria, the carbohydrate was first released at 2-4 h and then consumed, and the protein increased with hydrolysis time. The optimal enzyme hydrolysis for MOW was determined by measuring the changes of SCOD, protein, carbohydrate, ammonia and total phosphorus, and comparing with acid and alkaline pretreatments. PMID:27120653

  14. Bioaugmentation of a Two-Stage Thermophilic (68°C/55°C) Anaerobic Digestion Concept for Improvement of the Methane Yield From Cattle Manure

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Mladenovska, Zuzana; Ahring, Birgitte Kiær

    2007-01-01

    The possibility of improving a two-stage (68°C/55°C) anaerobic digestion concept for treatment of cattle manure was studied. In batch experiments, a 10-24% increase of the specific methane yield from cattle manure and its fractions was obtained, when the substrates were inoculated with bacteria of...... of the two-stage setup....

  15. Genome sequence of Victivallis vadensis ATCC BAA-548, an anaerobic bacterium from the phylum Lentisphaerae, isolated from the human gastro-intestinal tract

    Energy Technology Data Exchange (ETDEWEB)

    Van Passel, Mark W.J. [Wageningen University and Research Centre, The Netherlands; Kant, Ravi [University of Helsinki; Palva, Airi [University of Helsinki; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Davenport, Karen W. [Los Alamos National Laboratory (LANL); Sims, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Larimer, Frank W [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Richardson, Paul [U.S. Department of Energy, Joint Genome Institute; De Vos, Willem M. [Wageningen University and Research Centre, The Netherlands; Smidt, Hauke [Wageningen University and Research Centre, The Netherlands; Zoetendal, Erwin G. [Wageningen University and Research Centre, The Netherlands

    2011-01-01

    Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastro-intestinal tract.

  16. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs using batch and fed-batch conditions were made lasting 36, 90, and 423 d. Solids solubilization rates and gas production rates averaged approximately 1.8 g cellulose per L of reactor per d and 1.2 L of off-gas per L reactor per d. Greater than 80% destruction of the volatile suspended solids was obtained. A simple dynamic process model was constructed to aid in process design and for use in process monitoring and control of a large-scale digester

  17. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table

  18. Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils.

    Science.gov (United States)

    Meng, Han; Wang, Yong-Feng; Chan, Ho-Wang; Wu, Ruo-Nan; Gu, Ji-Dong

    2016-09-01

    Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two new processes of recent discoveries linking the microbial nitrogen and carbon cycles. In this study, 16S ribosomal RNA (rRNA) gene of anammox bacteria and pmoA gene of n-damo bacteria were used to investigate their distribution and diversity in natural acidic and re-vegetated forest soils. The 16S rRNA gene sequences retrieved featured at least three species in two genera known anammox bacteria, namely Candidatus Brocadia anammoxidans, Candidatus Brocadia fulgida, and Candidatus Kuenenia stuttgartiensis while the pmoA gene amplified was affiliated with two species of known n-damo bacteria Candidatus Methylomirabilis oxyfera and a newly established Candidatus Methylomirabilis sp. According to the results, the diversity of anammox bacteria in natural forests was lower than in re-vegetated forests, but no significant difference was observed in n-damo community between them. Quantitative real-time PCR showed that both anammox and n-damo bacteria were more abundant in the lower layer (10-20 cm) than the surface layer (0-5 cm). The abundance of anammox bacteria varied from 2.21 × 10(5) to 3.90 × 10(6) gene copies per gram dry soil, and n-damo bacteria quantities were between 1.69 × 10(5) and 5.07 × 10(6) gene copies per gram dry soil in the two different layers. Both anammox and n-damo bacteria are reported for the first time to co-occur in acidic forest soil in this study, providing a more comprehensive information on more defined microbial processes contributing to C and N cycles in the ecosystems. PMID:27178181

  19. Microbiological Diversity of the Anaerobic Sludge During Treatment of Venezuelan Oilfield Produced Waters

    Directory of Open Access Journals (Sweden)

    Cajacuri María Patricia

    2013-06-01

    Full Text Available In the present investigation the microbial abundances in the granular sludge of two upflow anaerobic sludge blanket reactors (UASB were compared: the first one fed with production waters of light oil (31.1-39.0° API, from the zuliana region (Venezuela (APP and the second one with glucose. To this respect, the populations of glucose fermenting bacteria (BFG, acetogenic bacteria (BAC, metanogens (MET, sulfatereducing bacteria (BSR, nitrate-reducing bacteria (BNRand heterotrophic bacteria were monitored, using selective culture media. The microbial density was correlated with physicochemical parameters: pH, total alkalinity, COD, SO4 =, NO3-, as well as with the percentages of CH4, CO2 and N2in the biogas. The results exhibit significant differences between the microbial diversity of both reactors, with a proportion of BFG > BSR > MET > BAC > BNR for the glucose reactor and of MET > BNR > BAC > BSR > BFG for the APP. The abundance of bacteria in the glucose reactor was in the order of 108, whereas in the APP reactor was of 105, which ensues from the organic and mineral composition of effluents. The results presented in this study reach evidences on the population dynamics in sludge of UASB reactors, during the treatment of oilfield produced waters.

  20. Hydrogen and methane production from desugared molasses using a two‐stage thermophilic anaerobic process

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2013-01-01

    3380 mL CH4/day/L, corresponding to a yield of 239 mL CH4/g VS. Aceticlastic Methanosarcina mazei was the dominant methanogen in the methanogenesis stage. This work demonstrates that biohydrogen production can be very efficiently coupled with a subsequent step of methane production using desugared......Hydrogen and methane production from desugared molasses by a two‐stage thermophilic anaerobic process was investigated in a series of two up‐flow anaerobic sludge blanket (UASB) reactors. The first reactor that was dominated with hydrogen‐producing bacteria of Thermoanaerobacterium...... thermosaccharolyticum and Thermoanaerobacterium aciditolerans could generate a high hydrogen production rate of 5600 mL H2/day/L, corresponding to a yield of 132 mL H2/g volatile solid (VS). The effluent from the hydrogen reactor was further converted to methane in the second reactor with the optimal production rate of...

  1. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    DEFF Research Database (Denmark)

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin;

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments......, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular...... techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral...

  2. Influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A laboratory-scale experiment was carried out to assess the influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste (MOSW). Heating failure was simulated by decreasing temperature suddenly from 55 ℃ to 20 ℃ suddenly; 2 h time is needed for temperature decrease and recovery. Under the conditions ofS.0 g/(L·d) and 15 d respectively for MOSW load and retention time, following results were noted: (1) biogas production almost stopped and VFA (volatile fatty acid) accumulated rapidly, accompanied by pH decrease; (2) with low temperature (20 ℃) duration of 1, 5, 12 and 24 h, it took 3, 11, 56 and 72 h for the thermophilic anaerobic digestion system to reproduce methane after temperature fluctuation;(3) the longer the low temperature interval lasted, the more the methanogenic bacteria would decay; hydrolysis, acidification and methanogenesis were all influenced by temperature fluctuation; (4) the thermophilic microorganisms were highly resilient to temperature fluctuation.

  3. Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate.

    Science.gov (United States)

    Sheets, Johnathon P; Ge, Xumeng; Li, Yueh-Fen; Yu, Zhongtang; Li, Yebo

    2016-02-01

    The aim of this work was to isolate methanotrophs (methane oxidizing bacteria) that can directly convert biogas produced at a commercial anaerobic digestion (AD) facility to methanol. A methanotrophic bacterium was isolated from solid-state anaerobic digestate. The isolate had characteristics comparable to obligate methanotrophs from the genus Methylocaldum. This newly isolated methanotroph grew on biogas or purified CH4 and successfully converted biogas from AD to methanol. Methanol production was achieved using several methanol dehydrogenase (MDH) inhibitors and formate as an electron donor. The isolate also produced methanol using phosphate with no electron donor or using formate with no MDH inhibitor. The maximum methanol concentration (0.43±0.00gL(-1)) and 48-h CH4 to methanol conversion (25.5±1.1%) were achieved using biogas as substrate and a growth medium containing 50mM phosphate and 80mM formate. PMID:26630583

  4. High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2007-01-01

    The low ethanol tolerance of thermophilic anaerobic bacteria, generally less than 2% (v/v) ethanol, is one of the main limiting factors for their potential use for second generation fuel ethanol production. In this work, the tolerance of thermophilic anaerobic bacterium Thermoanaerobacter BG 1L1 to...... exogenously added ethanol was studied in a continuous immobilized reactor system at a growth temperature of 70 degrees C. Ethanol tolerance was evaluated based on inhibition of fermentative performance e.g.. inhibition of substrate conversion. At the highest ethanol concentration tested (8.3% v/v), the strain...... was able to convert 42% of the xylose initially present, indicating that this ethanol concentration is not the upper limit tolerated by the strain. Long-term strain adaptation to high ethanol concentrations (6 - 8.3%) resulted in an improvement of xylose conversion by 25% at an ethanol concentration...

  5. Anaerobic survival of Pseudomonas aeruginosa by pyruvate fermentation requires an Usp-type stress protein

    DEFF Research Database (Denmark)

    Schreiber, K; Boes, N; Escbach, M;

    2006-01-01

    activity was detected in the deeper layers of a P. aeruginosa biofilm using a PPA3309-gfp (green fluorescent protein gene) fusion and confocal laser-scanning microscopy. This is the first description of an Anr-dependent, anaerobically induced, and functional Usp-like protein in bacteria....... the induced synthesis of three enzymes involved in arginine fermentation, ArcA, ArcB, and ArcC, and the outer membrane protein OprL. Moreover, formation of two proteins of unknown function, PA3309 and PA4352, increased by factors of 72- and 22-fold, respectively. Both belong to the group of universal stress...... proteins (Usp). Long-term survival of a PA3309 knockout mutant by pyruvate fermentation was found drastically reduced. The oxygen-sensing regulator Anr controls expression of the PPA3309-lacZ reporter gene fusion after a shift to anaerobic conditions and further pyruvate fermentation. PA3309 expression...

  6. Real-Time Molecular Monitoring of Chemical Environment in ObligateAnaerobes during Oxygen Adaptive Response

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David. A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.

    2009-02-25

    Determining the transient chemical properties of the intracellular environment canelucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms which enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier Transform Infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bonding in their cellular water. We observed a sequence of wellorchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.

  7. Anaerobic Halo-Alkaliphilic Baterial Community of Athalassic, Hypersaline Mono Lake in California

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Marsic, Damien; Ng, Joseph D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The microorganisms of soda Mono Lake and other similar athalassic hypersaline alkaline soda lakes are of significance to Astrobiology. The microorganisms of these regimes represent the best known terrestrial analogs for microbial life that might have inhabited the hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters during the late Noachian and early Hesperian epochs (3.6 - 4.2 Gya) of ancient Mars. We have investigated the anaerobic microbiota of soda Mono Lake in northern California. In this paper we discuss the astrobiological significance of these ecosystems and describe several interesting features of two novel new species of anaerobic halo-alkaliphilic bacteria (Spirochaeta americana, sp. nov. and Desulfonatronum paiuteum, sp. nov) that we have isolated from Mono Lake.

  8. Changes in microbial community structures due to varying operational conditions in the anaerobic digestion of oxytetracycline-medicated cow manure.

    Science.gov (United States)

    Turker, Gokhan; Aydin, Sevcan; Akyol, Çağrı; Yenigun, Orhan; Ince, Orhan; Ince, Bahar

    2016-07-01

    Management of manure containing veterinary antibiotics is a major concern in anaerobic treatment systems because of their possible adverse effects on microbial communities. Therefore, the aim of study was to investigate how oxytetracycline (OTC) influences bacteria and acetoclastic and hydrogenotrophic methanogens under varying operational conditions in OTC-medicated and non-medicated anaerobic cow manure digesters. Concentrations of OTC and its metabolites throughout the anaerobic digestion were determined using ultraviolet-high-performance liquid chromatography (UV-HPLC) and tandem liquid chromatography-mass spectrometry (LC/MS/MS), respectively. Fluorescent in situ hybridization, denaturing gradient gel electrophoresis, cloning, and sequencing analyses were used to monitor changes in microbial community structures. According to the results of analytical and molecular approaches, operating conditions highly influence active microbial community dynamics and associate with biogas production and elimination of OTC and its metabolites during anaerobic digestion of cow manure in the presence of an average initial concentration of 2.2 mg OTC/L. The impact of operating conditions has a drastic effect on acetoclastic methanogens than hydrogenotrophic methanogens and bacteria. PMID:27026176

  9. Aerobic Anoxygenic Phototrophic Bacteria

    OpenAIRE

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynt...

  10. Rapid isolation of a facultative anaerobic electrochemically active bacterium capable of oxidizing acetate for electrogenesis and azo dyes reduction.

    Science.gov (United States)

    Shen, Nan; Yuan, Shi-Jie; Wu, Chao; Cheng, Yuan-Yuan; Song, Xiang-Ning; Li, Wen-Wei; Tong, Zhong-Hua; Yu, Han-Qing

    2014-05-01

    In this study, 27 strains of electrochemically active bacteria (EAB) were rapidly isolated and their capabilities of extracellular electron transfer were identified using a photometric method based on WO3 nanoclusters. These strains caused color change of WO3 from white to blue in a 24-well agar plate within 40 h. Most of the isolated EAB strains belonged to the genera of Aeromonas and Shewanella. One isolate, Pantoea agglomerans S5-44, was identified as an EAB that can utilize acetate as the carbon source to produce electricity and reduce azo dyes under anaerobic conditions. The results confirmed the capability of P. agglomerans S5-44 for extracellular electron transfer. The isolation of this acetate-utilizing, facultative EBA reveals the metabolic diversity of environmental bacteria. Such strains have great potential for environmental applications, especially at interfaces of aerobic and anaerobic environments, where acetate is the main available carbon source. PMID:24648142

  11. Metallization of bacteria cells

    Institute of Scientific and Technical Information of China (English)

    LI; Xiangfeng; (黎向锋); LI; Yaqin; (李雅芹); CAI; Jun; (蔡军); ZHANG; Deyuan; (张德远)

    2003-01-01

    Bacteria cells with different standard shapes are well suited for use as templates for the fabrication of magnetic and electrically conductive microstructures. In this paper, metallization of bacteria cells is demonstrated by an electroless deposition technique of nickel-phosphorus initiated by colloid palladium-tin catalyst on the surfaces of Citeromyces matritensis and Bacillus cereus. The activated and metallized bacteria cells have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). Results showed that both Citeromyces matritensis and Bacillus cereus had no deformation in shape after metallization; the metallized films deposited on the surfaces of bacteria cells are homogeneous in thickness and noncrystalline in phase structure. The kinetics of colloid palladium-tin solution and electroless plating on bacteria cells is discussed.

  12. Occurrence of Anaerobic Ammonium Oxidation in the Yangtze Estuary

    Science.gov (United States)

    Hou, L.

    2013-12-01

    Over the past several decades, a large quantity of reactive nitrogen has been transported into the Yangtze estuarine and coastal water, due to intense human activities in the Yangtze River Basin. At present, it annually receives a high load of anthropogenic inorganic nitrogen (about 1.1 × 1011 mol N) from increased agricultural activities, fish farming, and domestic and industrial wastewater discharge in the Yangtze River Basin, consequently leading to severe eutrophication and frequent occurrences of harmful algal blooms in the estuary and adjacent coastal areas. Hence, the microbial nitrogen transformations are of major concern in the Yangtze Estuary. Anaerobic ammonium oxidation (anammox) has been reported to play a significant role in the removal of reactive nitrogen in aquatic ecosystems. In this study, the occurrences of anammox bacteria and associated activity in the Yangtze Estuary were evidenced with molecular and isotope-tracing techniques. It is observed that the anammox bacteria at the study area mainly consisted of Candidatus Scalindua, Brocadia, Kuenenia. Salinity was found to be a key environmental factor controlling distribution and diversity of the anammox bacterial community at the estuarine ecosystem. Also, temperature and organic carbon had significant influences on anammox bacterial biodiversity. Q-PCR assays of anammox bacteria indicated that their abundance had a range of 2.63 ×106 - 9.48 ×107 copies g-1 dry sediment, with high spatiotemporal heterogeneity. The potential anammox activities measured in the present work varied between 0.94 - 6.61nmol N g-1 dry sediment h-1, which were related to temperature, nitrite and anammox bacterial abundance. On the basis of the 15N tracing experiments, the anammox process was estimated to contribute 6.6 - 12.9 % to the total nitrogen loss whereas the remainder was attributed to denitrification.

  13. Tumour targeting with systemically administered bacteria.

    LENUS (Irish Health Repository)

    Morrissey, David

    2012-01-31

    Challenges for oncology practitioners and researchers include specific treatment and detection of tumours. The ideal anti-cancer therapy would selectively eradicate tumour cells, whilst minimising side effects to normal tissue. Bacteria have emerged as biological gene vectors with natural tumour specificity, capable of homing to tumours and replicating locally to high levels when systemically administered. This property enables targeting of both the primary tumour and secondary metastases. In the case of invasive pathogenic species, this targeting strategy can be used to deliver genes intracellularly for tumour cell expression, while non-invasive species transformed with plasmids suitable for bacterial expression of heterologous genes can secrete therapeutic proteins locally within the tumour environment (cell therapy approach). Many bacterial genera have been demonstrated to localise to and replicate to high levels within tumour tissue when intravenously (IV) administered in rodent models and reporter gene tagging of bacteria has permitted real-time visualisation of this phenomenon. Live imaging of tumour colonising bacteria also presents diagnostic potential for this approach. The nature of tumour selective bacterial colonisation appears to be tumour origin- and bacterial species- independent. While originally a correlation was drawn between anaerobic bacterial colonisation and the hypoxic nature of solid tumours, it is recently becoming apparent that other elements of the unique microenvironment within solid tumours, including aberrant neovasculature and local immune suppression, may be responsible. Here, we consider the pre-clinical data supporting the use of bacteria as a tumour-targeting tool, recent advances in the area, and future work required to develop it into a beneficial clinical tool.

  14. The effect of outside conditions on anaerobic ammonia oxidation reaction

    Institute of Scientific and Technical Information of China (English)

    YANG Min; WANG Shu-bo

    2016-01-01

    Organic carbon, inorganic carbon, temperature, pH and ORP are all to have a certain influence on the anaerobic ammonia oxidation reaction. We can draw some conclusions on the optimum conditions of anaerobic ammonia oxidation reaction. The optimum temperature of the anaerobic ammonia oxidation reaction is 30-35℃. And the optimum pH of the anaerobic ammonia reaction is 7.5-8.3. The presence of organic matters can affect the anaerobic ammonia reaction, and different organic matters have different influence on it. The concentration of the inorganic carbon also exist great influence on the reaction. High inorganic carbon concentration also can inhibit anaerobic ammonia oxidation reaction.

  15. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor.

    Science.gov (United States)

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of 'fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10-17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids - SS, BOD, nitrogen - N and phosphorus - P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  16. Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach.

    Science.gov (United States)

    Zhang, Tong; Yang, Ying; Pruden, Amy

    2015-09-01

    As antibiotic resistance continues to spread globally, there is growing interest in the potential to limit the spread of antibiotic resistance genes (ARGs) from wastewater sources. In particular, operational conditions during sludge digestion may serve to discourage selection of resistant bacteria, reduce horizontal transfer of ARGs, and aid in hydrolysis of DNA. This study applied metagenomic analysis to examine the removal efficiency of ARGs through thermophilic and mesophilic anaerobic digestion using bench-scale reactors. Although the relative abundance of various ARGs shifted from influent to effluent sludge, there was no measureable change in the abundance of total ARGs or their diversity in either the thermophilic or mesophilic treatment. Among the 35 major ARG subtypes detected in feed sludge, substantial reductions (removal efficiency >90%) of 8 and 13 ARGs were achieved by thermophilic and mesophilic digestion, respectively. However, resistance genes of aadA, macB, and sul1 were enriched during the thermophilic anaerobic digestion, while resistance genes of erythromycin esterase type I, sul1, and tetM were enriched during the mesophilic anaerobic digestion. Efflux pump remained to be the major antibiotic resistance mechanism in sludge samples, but the portion of ARGs encoding resistance via target modification increased in the anaerobically digested sludge relative to the feed. Metagenomic analysis provided insight into the potential for anaerobic digestion to mitigate a broad array of ARGs. PMID:25994259

  17. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  18. Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang, E-mail: felix79cn@hotmail.com [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China); Jin, Jie [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Lin, Haizhuan [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Wenzhou Environmental Protection Design Scientific Institute, Wenzhou 325000 (China); Gao, Kaituo [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Xu, Xiangyang, E-mail: xuxy@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China)

    2015-03-21

    Highlights: • The combined ZVI–UASB process was established for the degradation of chloronitrobenzenes. • There were the better shock resistance and buffering capacity for anaerobic acidification in the combined process. • Novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed. • Adaptive shift of microbial community was significant in ZVI-based anaerobic granular sludge system. - Abstract: The combined zero-valent iron (ZVI) and upflow anaerobic sludge blanket (UASB) process is established for the treatment of chloronitrobenzenes (ClNBs) wastewater, and the succession of microbial community and its enhanced mechanism are investigated in the study. Results showed that compared with the control UASB (R1), the stable COD removal, ClNBs transformation, and dechlorination occurred in the combined system (R2) when operated at influent COD and 3,4-Dichloronitrobenzene (3,4-DClNB) loading rates of 4200–7700 g m{sup −3} d{sup −1} and 6.0–70.0 g m{sup −3} d{sup −1}, and R2 had the better shock resistance and buffering capacity for the anaerobic acidification. The dechlorination for the intermediate products of p-chloroanaline (p-ClAn) to analine (AN) occurred in R2 reactor after 45 days, whereas it did not occur in R1 after a long-term operation. The novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed in the combined system, and higher microbial activities including ClNB transformation and H{sub 2}/CH{sub 4} production were achieved simultaneously. The dominant bacteria were closely related to the groups of Megasphaera, Chloroflexi, and Clostridium, and the majority of archaea were correlated with the groups of Methanosarcinalesarchaeon, Methanosaetaconcilii, and Methanothrixsoehngenii, which are capable of reductively dechlorinating PCB, HCB, and TCE in anaerobic niche and EPS secretion.

  19. Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater

    International Nuclear Information System (INIS)

    Highlights: • The combined ZVI–UASB process was established for the degradation of chloronitrobenzenes. • There were the better shock resistance and buffering capacity for anaerobic acidification in the combined process. • Novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed. • Adaptive shift of microbial community was significant in ZVI-based anaerobic granular sludge system. - Abstract: The combined zero-valent iron (ZVI) and upflow anaerobic sludge blanket (UASB) process is established for the treatment of chloronitrobenzenes (ClNBs) wastewater, and the succession of microbial community and its enhanced mechanism are investigated in the study. Results showed that compared with the control UASB (R1), the stable COD removal, ClNBs transformation, and dechlorination occurred in the combined system (R2) when operated at influent COD and 3,4-Dichloronitrobenzene (3,4-DClNB) loading rates of 4200–7700 g m−3 d−1 and 6.0–70.0 g m−3 d−1, and R2 had the better shock resistance and buffering capacity for the anaerobic acidification. The dechlorination for the intermediate products of p-chloroanaline (p-ClAn) to analine (AN) occurred in R2 reactor after 45 days, whereas it did not occur in R1 after a long-term operation. The novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed in the combined system, and higher microbial activities including ClNB transformation and H2/CH4 production were achieved simultaneously. The dominant bacteria were closely related to the groups of Megasphaera, Chloroflexi, and Clostridium, and the majority of archaea were correlated with the groups of Methanosarcinalesarchaeon, Methanosaetaconcilii, and Methanothrixsoehngenii, which are capable of reductively dechlorinating PCB, HCB, and TCE in anaerobic niche and EPS secretion

  20. Anaerobic Methyl tert-Butyl Ether-Degrading Microorganisms Identified in Wastewater Treatment Plant Samples by Stable Isotope Probing

    OpenAIRE

    Sun, Weimin; Sun, Xiaoxu; Cupples, Alison M.

    2012-01-01

    Anaerobic methyl tert-butyl ether (MTBE) degradation potential was investigated in samples from a range of sources. From these 22 experimental variations, only one source (from wastewater treatment plant samples) exhibited MTBE degradation. These microcosms were methanogenic and were subjected to DNA-based stable isotope probing (SIP) targeted to both bacteria and archaea to identify the putative MTBE degraders. For this purpose, DNA was extracted at two time points, subjected to ultracentrif...

  1. Isolation of a tannic acid-degrading Streptococcus sp. from an anaerobic shea cake digester.

    Science.gov (United States)

    Nitiema, L W; Dianou, D; Simpore, J; Karou, S D; Savadogo, P W; Traore, A S

    2010-01-01

    An anaerobic digester fed with shea cake rich in tannins and phenolic compounds rich-shea cake and previously inoculated with anaerobic sludge from the pit of a slaughterhouse, enabled six months acclimatization of the bacteria to aromatic compounds. Afterwards, digester waste water samples were subject to successive culture on media with 1 g L(-1) tannic acid allowing the isolation of a bacterial strain coded AB. Strain AB was facultatively anaerobic, mesophilic, non-motile, non-sporulating, catalase and oxidase negative bacterium, namely strain AB, was isolated from an anaerobic digester fed with shea cake rich in tannins and phenolic compounds, after inoculation with anaerobic sludge from the pit of a slaughterhouse and enrichment on tannic acid. The coccoid cells occurred in pair, short or long chains and stained Gram-positive. Strain AB fermented a wide range of carbohydrates including glucose, fructose, galactose, raffinose, arabinose, sucrose, maltose, lactose, starch and cellulose. Optimum growth occurred with glucose and tannic acid at 37 degrees C and pH 8. The pH, temperature and salt concentration for growth ranged from 5 to 9, 20 to 45 degrees C and 0 to 15 g L(-1), respectively. Strain AB converted tannic acid to gallic acid. These features were similar to those of the Streptococcus genus. The determination of tannic acid hydrolysis end products, ability to utilize various organic acids, alcohols and peptides, GC% of the DNA, the sequencing of 16S rRNA gene and DNA-DNA hybridization will permit to confirm this affiliation and to determine the species. PMID:20415153

  2. Molecular analysis of the anaerobic rumen fungus Orpinomyces - insights into an AT-rich genome.

    Science.gov (United States)

    Nicholson, Matthew J; Theodorou, Michael K; Brookman, Jayne L

    2005-01-01

    The anaerobic gut fungi occupy a unique niche in the intestinal tract of large herbivorous animals and are thought to act as primary colonizers of plant material during digestion. They are the only known obligately anaerobic fungi but molecular analysis of this group has been hampered by difficulties in their culture and manipulation, and by their extremely high A+T nucleotide content. This study begins to answer some of the fundamental questions about the structure and organization of the anaerobic gut fungal genome. Directed plasmid libraries using genomic DNA digested with highly or moderately rich AT-specific restriction enzymes (VspI and EcoRI) were prepared from a polycentric Orpinomyces isolate. Clones were sequenced from these libraries and the breadth of genomic inserts, both genic and intergenic, was characterized. Genes encoding numerous functions not previously characterized for these fungi were identified, including cytoskeletal, secretory pathway and transporter genes. A peptidase gene with no introns and having sequence similarity to a gene encoding a bacterial peptidase was also identified, extending the range of metabolic enzymes resulting from apparent trans-kingdom transfer from bacteria to fungi, as previously characterized largely for genes encoding plant-degrading enzymes. This paper presents the first thorough analysis of the genic, intergenic and rDNA regions of a variety of genomic segments from an anaerobic gut fungus and provides observations on rules governing intron boundaries, the codon biases observed with different types of genes, and the sequence of only the second anaerobic gut fungal promoter reported. Large numbers of retrotransposon sequences of different types were found and the authors speculate on the possible consequences of any such transposon activity in the genome. The coding sequences identified included several orphan gene sequences, including one with regions strongly suggestive of structural proteins such as collagens

  3. Ecophysiology of terminal carbon metabolizing bacteria in anoxic sedimentary environments

    International Nuclear Information System (INIS)

    Chemical, radiotracer, and microbiological experiments were used to understand the transformation of simple carbon compounds by anaerobic bacteria in diverse aquatic sediments and laboratory cultures. The mildly acidic sediments of Knack Lake (pH 6.2), displayed low rates of organic decomposition, and methane formation occurred almost exclusively from acetate. Low pH inhibited methanogenesis and organic decomposition. Fall turnover in Lake Mendota sediments was associated with dramatic changes in environmental parameters including: elevated concentrations of sulfate and carbon metabolites, increased rates of sulfate reduction, decreased levels of methanogenesis, increased ratio (by viable counts) of sulfate reducing to methanogenic bacteria, and higher 14CO2/14C4 + 14CO2 gas ratios produced during the biodegradation of 14C-carbon substrates (e.g., acetate and methanol). Hydrogen consumption by sulfate reducers in Lake Mendota sediments and in co-cultures of Desulfovibrio vulgaris and Methanosarcina barkeri led to an alteration in the carbon and electron flow pathway resulting in increased CO2, sulfide production, and decreased methanogenesis. These data agreed with the environmental observations in Lake Mendota that high sulfate concentrations resulted in higher ratios of CO2/CH4 produced from the degradation of organic matter. A new glycine-metabolizing acetogenic species was isolated and characterized from Knaack Lake which further extended the known diversity of anaerobic bacteria in nature

  4. Evolution of Coenzyme B(12) Synthesis among Enteric Bacteria: Evidence for Loss and Reacquisition of a Multigene Complex

    OpenAIRE

    Lawrence, J. G.; Roth, J R

    1996-01-01

    We have examined the distribution of cobalamin (coenzyme B(12)) synthetic ability and cobalamin-dependent metabolism among enteric bacteria. Most species of enteric bacteria tested synthesize cobalamin under both aerobic and anaerobic conditions and ferment glycerol in a cobalamin-dependent fashion. The group of species including Escherichia coli and Salmonella typhimurium cannot ferment glycerol. E. coli strains cannot synthesize cobalamin de novo, and Salmonella spp. synthesize cobalamin on...

  5. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone

    OpenAIRE

    Pitcher, A.; Villanueva, L; Hopmans, E.C.; Schouten, S.; G. J. Reichart; Sinninghe Damsté, J.S.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists; however, their distributions are rarely determined in tandem. Here we have examined the vertical distribution of AOA and anammox bacteria through the Arabian Sea oxygen minimum zone (OMZ), one of ...

  6. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yifei, E-mail: sunif@buaa.edu.cn [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Wang, Dian; Yan, Jiao [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Qiao, Wei [College of Chemical Science and Engineering, China University of Petroleum, Beijing 102249 (China); Wang, Wei [School of Environment, Tsinghua University, Beijing 100084 (China); Zhu, Tianle [School of Chemistry and Environment, Beihang University, Beijing 100191 (China)

    2014-06-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.

  7. Characteristics of high-sulfate wastewater treatment by two-phase anaerobic digestion process with Jet-loop anaerobic fluidized bed

    Institute of Scientific and Technical Information of China (English)

    WEI Chao-hai; WANG Wen-xiang; DENG Zhi-yi; WU Chao-fei

    2007-01-01

    A new anaerobic reactor,Jet-loop anaerobic fluidized bed(JLAFB),was designed for treating high-sulfate wastewater.The treatment characteristics,including the effect of influent COD/SO42- ratio and alkalinity and sulfide inhibition in reactors,were discussed for a JLAFB and a general anaerobic fluidized bed(AFB)reactor used as sulfate-reducing phase and methane-producing phase,respectively,in two-phase anaerobic digestion process.The formation of granules in the two reactors was also examined.The results indicated that COD and sulfate removal had different demand of influent COD/S042- ratios.When total COD removal Was up to 85%,the ratio was only required up to 1.2,whereas,total sulfate removal up to 95%required it exceeding 3.0.The alkalinity in the two reactors increased linearly with the growth of influent alkalinity.Moreover,the change of influent alkalinity had no significant effect on pH and volatile fatty acids(VFA)in the two reactors.Influent alkalinity kept at 400-500 mg/t,could meet the requirement of the treating process.The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms.When sulfate loading rate was up to 8.1 kg/(m3·d),the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L,respectively.Furthermore,the granules,with offwhite color,ellipse shape and diameters of 1.0-3.0 mm,could be developed in JLAFB reactor.In granules,different groups of bacteria were distributed in different layers,and some inorganic metal compounds such as Fe,Ca,Mg etc.were found.

  8. EMERGING METRONIDAZOLE RESISTANCE IN ANAEROBES AND MAPPING THEIR SUSCEPTIBILITY BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Manu Chaudhary

    2014-01-01

    Full Text Available In the present study, anaerobic clinical isolates of Bacteroides fragilis, Escherichia coli, Staphylococcus aureus and Yersinia enterocolitica were obtained from different clinical specimens and were subjected to molecular typing to detect the gene encoding metronidazole resistance in these isolates. Subsequently, antibacterial activity of drugs was tested against the selected clinical isolates. A total of 53 clinical isolates involving 18 obligate and 35 facultative anaerobic bacteria were recovered from clinical samples of 67 patients who were suspected to have anaerobic infection. A disk diffusion method was employed to screen for metronidazole-resistance among these isolates. PCR assay was used to detect the metronidazole resistant gene (nim. Susceptibility studies in metronidazole resistant clinical isolates as well as positive controls were performed according to Clinical and Laboratory Standards Institute (CLSI guidelines. According to disc diffusion method, of 53 isolates, 21 isolates (39.6% were found to be metronidazole resistant. Further screening of these isolates with PCR revealed only 13 isolates (24.5% carry nim gene. Out of which 7 were of B. fragilis, 3 were of Y. enterocolitica, 2 were of E. coli and 1 was of S. aureus. The highest number of metronidazole resistant isolates were found in abscess (7 followed by intra-abdominal infection (5 and bone and joint infection (1. When metronidazole resistant isolates were subjected to screen for the presence of nim gene, all isolates were found to carry nim gene. According to minimum inhibitory concentration (MIC data, among the tested antibacterial agents, Mebatic emerged as the most active antibacterial against metronidazole resistant isolates of B. fragilis, E. coli, S. aureus and Y. enterocolitica with MIC values 0.125 to 1.0 µg mL-1. Similarly, Antimicrobial Susceptibility

  9. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus, the...... first models were very simple and consisted of a limited number of equations. During the past thirty years much research has been conducted on the peculiarities of the process and on the factors that influence it on the one hand while an enormous progress took place in computer science on the other. The...... combination of both parameters resulted in the development of more and more concise and complex models. In this chapter the most important models found in the literature are described starting from the simplest and oldest to the more recent and complex ones....

  10. [Anaerobic-aerobic infection in acute appendicitis].

    Science.gov (United States)

    Mamchich, V I; Ulitovskiĭ, I V; Savich, E I; Znamenskiĭ, V A; Beliaeva, O A

    1998-01-01

    362 patients with acute appendicitis (AA) were examined. For microbiological diagnosis of aerobic and anaerobic nonclostridial microflora we used complex accelerated methods (including evaluation of gram-negative microorganisms in comparison with tinctorial-fermentative method of differential staining according to oxygen sensitivity of catalasopositive together with aerobic and cathalasonegative anaerobic microorganisms) as well as complete bacteriologic examination with determination of sensitivity of the above microorganism to antimicrobial remedies. High rate of aerobic-anaerobic microbial associations and substantial identity of microflora from appendicis and exudate from abdominal cavity was revealed, which evidenced the leading role of endogenous microorganisms in etiology and pathogenesis of AA and peritonitis i. e. autoinfection. In patients with destructive forms of AA, complicated by peritonitis it is recommended to use the accelerated method of examination of pathologic material as well as the complete scheme of examination with the identification of the isolated microorganisms and the correction of antibiotic treatment. PMID:9511291

  11. Anaerobic lipid degradation through acidification and methanization.

    Science.gov (United States)

    Kim, Ijung; Kim, Sang-Hyoun; Shin, Hang-Sik; Jung, Jin-Young

    2010-01-01

    In biological wastewater treatment high lipid concentration is known to inhibit microorganisms and cause active biomass flotation. To reduce lipid inhibition, a two-phase anaerobic system, consisting of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic sludge blanket (UASB) reactor, was applied to synthetic dairy wastewater. During 153 days of operation, the two-phase system showed stable performance in lipid degradation. In the ASBR, a 13% lipid removal efficiency and 10% double bond removal efficiency were maintained. In the UASB, the chemical oxygen demand (COD), lipid and volatile fatty acid (VFA) removal efficiencies were more than 80%, 70% and 95%, respectively, up to organic loading rate 6.5 g COD/L/day. There were no operational problems such as serious scum formation or sludge washout. Protein degradation occurred prior to degradation during acidogenesis. PMID:20134250

  12. Biochar from anaerobically digested sugarcane bagasse.

    Science.gov (United States)

    Inyang, Mandu; Gao, Bin; Pullammanappallil, Pratap; Ding, Wenchuan; Zimmerman, Andrew R

    2010-11-01

    This study was designed to investigate the effect of anaerobic digestion on biochar produced from sugarcane bagasse. Sugarcane bagasse was anaerobically digested to produce methane. The digested residue and fresh bagasse was pyrolyzed separately into biochar at 600 degrees C in nitrogen environment. The digested bagasse biochar (DBC) and undigested bagasse biochar (BC) were characterized to determine their physicochemical properties. Although biochar was produced from the digested residue (18% by weight) and the raw bagasse (23%) at a similar rate, there were many physiochemical differences between them. Compared to BC, DBC had higher pH, surface area, cation exchange capacity (CEC), anion exchange capacity (AEC), hydrophobicity and more negative surface charge, all properties that are generally desirable for soil amelioration, contaminant remediation or wastewater treatment. Thus, these results suggest that the pyrolysis of anaerobic digestion residues to produce biochar may be an economically and environmentally beneficial use of agricultural wastes. PMID:20634061

  13. Effect of Different Filling Materials in Anammox Bacteria Enrichment

    Directory of Open Access Journals (Sweden)

    Dilek ÖZGÜN

    2012-12-01

    Full Text Available Purpose: Anaerobic ammonium oxidation (Anammox is a process that ammonium as electron donor is oxidized to nitrogen gas using nitrite as electron acceptor. Compared to conventional nitrification-denitrification processes, this process is used less oxygen and no organic material (methanol, glucose. However, the slow growth rate of Anammox bacteria (11-30 days is disadvantages. Therefore, batch reactors have been carried out in these bacteria enrichment. In this study continuously operated upflow anaerobic sludge reactor (UASB using different filling materials disposing of sensitive and slow-growing Anammox bacteria out of the system is purposed. Design and Methods: System is operated up-flow column reactor at 2 days hydraulic retention time (HRT in 45 days. In this study, ceramic stones and Linpor filling material are used. Using synthetic wastewater containing ammonium and nitrite, Ar/CO2 anaerobic conditions (95/5% supplied with gas. System is operated at a temperature 253 C in UASB. Temperature, pH, ammonia-nitrogen and nitrite nitrogen are measured. Results: Both filling material reactors are operated in 45 days. Ceramic stones filling reactor is observed quickly reaches 90% were used reactor ammonium removal. The ammonium nitrogen removal was slower in Linpor filling materials reactor. Nitrite removal is reached up to 90% in both the reactor. When compared to the stoichiometric equation in Linpor was composed of large amounts of nitrate. At the end of 25 days the results were similar to ceramic stone filling reactor with Linpor filling material reactors. Conclusions and Original Value: Anammox process as from nitrogen removal processes was discovered in 1995. Anammox bacteria that make up this process due to very low growth rates of microbial bacteria in the system must be kept in the system. Most of the studies in the literature, these bacteria enrichment stage is started instead of a continuous batch reactor system. In this study

  14. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    Science.gov (United States)

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. PMID:27071053

  15. The effect of tannic compounds on anaerobic wastewater treatment.

    NARCIS (Netherlands)

    Field, J.A.

    1989-01-01

    Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment processes for the removal of easily biodegradable organic matter in medium to high strength industrial wastestreams. Anaerobic treatment has several advantages, however one important disadvantage is the high sensi

  16. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    Science.gov (United States)

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  17. Helicobacter ganmani sp nov., a urease-negative anaerobe isolated from the intestines of laboratory mice

    DEFF Research Database (Denmark)

    Robertson, B.R.; O'Rourke, J.L.; Vandamme, P.;

    2001-01-01

    Spiral bacteria were isolated from the intestines of laboratory mice during a study examining the presence of Helicobacter species and other spiral organisms naturally infecting mice maintained at four different animal facilities in Sydney, Australia. One group of 17 isolates, cultured from mice...... from three of the four facilities, were found to be helicobacters but did not fall within any of the 18 currently recognized species. These isolates were unusual in that they only grew anaerobically at 37 degreesC and were incapable of growth under microaerobic conditions. Like Helicobacter rodentium...

  18. Review:Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters

    Institute of Scientific and Technical Information of China (English)

    Lei ZHANG; Ping ZHENG; Chongojian TANG; Ren-cun JIN

    2008-01-01

    The concept of anaerobic ammonium oxidation (ANAMMOX) is presently of great interest.The functional bacteria belonging to the Planctomycete phylum and their metabolism are investigated by microbiologists.Meanwhile,the ANAMMOX is equally valuable in treatment of ammonium-rich wastewaters.Related processes including partial nitritation-ANAMMOX and completely autotrophic nitrogen removal over nitrite (CANON) have been developed,and lab-scale experiments proved that both processes were quite feasible in engineering with appropriate control.Successful full-scale practice in the Netherlands will ac-celerate application of the process in future.This review introduces the microbiology and more focuses on application of the ANAMMOX process.

  19. Impairment of cellulose- and cellobiose-degrading soil Bacteria by two acidic herbicides.

    Science.gov (United States)

    Schellenberger, Stefanie; Drake, Harold L; Kolb, Steffen

    2012-02-01

    Herbicides have the potential to impair the metabolism of soil microorganisms. The current study addressed the toxic effect of bentazon and 4-chloro-2-methylphenoxyacetic acid on aerobic and anaerobic Bacteria that are involved in cellulose and cellobiose degradation in an agricultural soil. Aerobic saccharide degradation was reduced at concentrations of herbicides above environmental values. Microbial processes (e.g. fermentations, ferric iron reduction) that were linked to anaerobic cellulose and cellobiose degradation were reduced in the presence of both herbicides at concentrations above and at those that occur in crop field soil. 16S rRNA gene transcript numbers of total Bacteria, and selected bacterial taxa (Clostridia [Group I], Planctomycetaceae, and two uncultivated taxa of Bacteroidetes) decreased more in anoxic than in oxic cellulose-supplemented soil microcosms in the presence of both herbicides. Collectively, the results suggested that the metabolism of anaerobic cellulose-degrading Bacteria was impaired by typical in situ herbicide concentrations, whereas in situ concentrations did not impair metabolism of aerobic cellulose- and cellobiose-degrading soil Bacteria. PMID:22098368

  20. Indicator For Pseudomonas Bacteria

    Science.gov (United States)

    Margalit, Ruth

    1990-01-01

    Characteristic protein extracted and detected. Natural protein marker found in Pseudomonas bacteria. Azurin, protein containing copper readily extracted, purified, and used to prepare antibodies. Possible to develop simple, fast, and accurate test for marker carried out in doctor's office.

  1. Multivariate monitoring of anaerobic co-digestion

    DEFF Research Database (Denmark)

    Madsen, Michael; Holm-Nielsen, Jens Bo

    warming and environmental concerns. Anaerobic digestion applied in agriculture can simultaneously convert heterogeneous biomasses and wastes from the primary agricultural sector and from the bio processing industries, for instance food processing, pharma, and biofuel production, into valuable organic...... fertiliser and renewable energy. Meanwhile, in order for the biogas sector to become a significant player in the energy supply chain, the anaerobic digestion process has to be controlled to a greater extent than what is implemented as state-of-the-art today. Through application of the philosophy behind...

  2. Startup and stabilization of anaerobic membrane bioreactors at ambient temperature

    OpenAIRE

    Benito Peña, Carlos

    2015-01-01

    There has been an increasing interest in wastewater treatment in last decades to reduce human footprint. Primarily, anaerobic technology focused on treatment and stabilization of sludge, but now the tendency is to give it a major role in low cost treatment of high/low strength wastewaters, since anaerobic digestion offers energy generation through gas production. Anaerobic membrane bioreactors (AnMBR) combine anaerobic digestion with membrane filtration. They are becoming a feasible opti...

  3. The Financial Feasibility of Anaerobic Digestion for Ontario's Livestock Industries

    OpenAIRE

    Weersink, Alfons; Mallon, Shawn

    2007-01-01

    This report is an investigation of the financial feasibility of farm based anaerobic digestion investments under Ontario's Standard Offer Contract electricity prices. Using Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) Agricultural Anaerobic Digestion Calculation Spreadsheet (AADCS) anaerobic digestion inputs, outputs, cost and revenues were estimated and used to conduct a financial analysis on the feasibility of four sized farm base anaerobic digestion investments. The res...

  4. In vitro fermentation response of laying hen cecal bacteria to combinations of fructooligosaccharide (FOS) prebiotic with alfalfa and layer ration

    Science.gov (United States)

    The objective of this in vitro study was to evaluate the effects of combining a prebiotic with an alfalfa molting diet on fermentation by laying hen cecal bacteria. Cecal contents from laying hens were diluted to a 1:3000 concentration with an anaerobic dilution solution and added to serum tubes fi...

  5. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone

    NARCIS (Netherlands)

    Pitcher, A.; Villanueva, L.; Hopmans, E.C.; Schouten, S.; Reichart, G.J.; Sinninghe Damsté, J.S.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists;

  6. Treatment of domestic sewage in a two-step system anaerobic filter/anaerobic hybrid reactor at low temperature

    NARCIS (Netherlands)

    Elmitwalli, T.A.; Zeeman, G.; Oahn, K.L.T.; Lettinga, G.

    2002-01-01

    The treatment of domestic sewage at low temperature of 13 degrees Celsius was investigated in a two-step system consisting of an anaerobic filter (AF) + an anaerobic hybrid (AH) reactor operated at different hydraulic retention times (HRTs)

  7. The IWA Anaerobic digestion model no 1. (ADM1)

    DEFF Research Database (Denmark)

    Batstone, Damien J.; Keller, J.; Angelidaki, Irini;

    2002-01-01

    The IWA Anaerobic Digestion Modelling Task Group was established in 1997 at the 8th World Congress on Anaerobic Digestion (Sendai, Japan) with the goal of developing a generalised anaerobic digestion model. The structured model includes multiple steps describing biochemical as well...

  8. Stability of anaerobic reactors under micro-aeration conditions

    International Nuclear Information System (INIS)

    Oxidation of sulphide in anaerobic bioreactors by introducing limited amounts of oxygen provides a relatively simple strategy for reducing the levels of sulphite in anaerobic digesters (biogas and effluent). The introduction of limited amounts of air is a general practice in agricultural anaerobic digesters, it is estimated that worldwide over 3.000 units are operated under such conditions. (Author)

  9. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  10. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane.

    Science.gov (United States)

    Wegener, Gunter; Krukenberg, Viola; Ruff, S Emil; Kellermann, Matthias Y; Knittel, Katrin

    2016-01-01

    In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM) is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here we study sediment-free long-term AOM enrichments that were cultivated from seep sediments sampled off the Italian Island Elba (20°C; hereon called E20) and from hot vents of the Guaymas Basin, Gulf of California, cultivated at 37°C (G37) or at 50°C (G50). These enrichments were dominated by consortia of ANME-2 archaea and Seep-SRB2 partner bacteria (E20) or by ANME-1, forming consortia with Seep-SRB2 bacteria (G37) or with bacteria of the HotSeep-1 cluster (G50). We investigate lipid membrane compositions as possible factors for the different temperature affinities of the different ANME clades and show autotrophy as characteristic feature for both ANME clades and their partner bacteria. Although in the absence of additional substrates methane formation was not observed, methanogenesis from methylated substrates (methanol and methylamine) could be quickly stimulated in the E20 and the G37 enrichment. Responsible for methanogenesis are archaea from the genus Methanohalophilus and Methanococcoides, which are minor community members during AOM (1-7‰ of archaeal 16S rRNA gene amplicons). In the same two cultures also sulfur disproportionation could be quickly stimulated by addition of zero-valent colloidal sulfur. The isolated partner bacteria are likewise minor community members (1-9‰ of bacterial 16S rRNA gene amplicons), whereas the dominant partner bacteria (Seep-SRB1a, Seep-SRB2, or HotSeep-1) did not grow on elemental sulfur. Our results support a functioning of AOM as

  11. Metabolic capabilities of microorganisms involved in and associated with the anaerobic oxidation of methane

    Directory of Open Access Journals (Sweden)

    Gunter eWegener

    2016-02-01

    Full Text Available In marine sediments the anaerobic oxidation of methane with sulfate as electron acceptor (AOM is responsible for the removal of a major part of the greenhouse gas methane. AOM is performed by consortia of anaerobic methane-oxidizing archaea (ANME and their specific partner bacteria. The physiology of these organisms is poorly understood, which is due to their slow growth with doubling times in the order of months and the phylogenetic diversity in natural and in vitro AOM enrichments. Here we study sediment-free long-term AOM enrichments that were cultivated from seep sediments sampled off the Italian Island Elba (20°C; hereon called E20 and from hot vents of the Guaymas Basin, Gulf of California, cultivated at 37°C (G37 or at 50°C (G50. These enrichments were dominated by consortia of ANME-2 archaea and Seep-SRB2 partner bacteria (E20 or by ANME-1, forming consortia with Seep-SRB2 bacteria (G37 or with bacteria of the HotSeep-1 cluster (G50. We investigate lipid membrane compositions as possible factors for the different temperature affinities of the different ANME clades and show autotrophy as characteristic feature for both ANME clades and their partner bacteria. Although in the absence of additional substrates methane formation was not observed, methanogenesis from methylated substrates (methanol and methylamine could be quickly stimulated in the E20 and the G37 enrichment. Responsible for methanogenesis are archaea from the genus Methanohalophilus and Methanococcoides, which are minor community members during AOM (1 to 7‰ of archaeal 16S rRNA gene amplicons. In the same two cultures also sulfur disproportionation could be quickly stimulated by addition of zero-valent colloidal sulfur. The isolated partner bacteria are likewise minor community members (1 to 9‰ of bacterial 16S rRNA gene amplicons, whereas the dominant partner bacteria (Seep-SRB1a, Seep-SRB2 or HotSeep-1 did not grow on elemental sulfur. Our results support a

  12. Use of Response Surface Methodology to Optimize Culture Conditions for Hydrogen Production by an Anaerobic Bacterial Strain from Soluble Starch

    Science.gov (United States)

    Kieu, Hoa Thi Quynh; Nguyen, Yen Thi; Dang, Yen Thi; Nguyen, Binh Thanh

    2016-05-01

    Biohydrogen is a clean source of energy that produces no harmful byproducts during combustion, being a potential sustainable energy carrier for the future. Therefore, biohydrogen produced by anaerobic bacteria via dark fermentation has attracted attention worldwide as a renewable energy source. However, the hydrogen production capability of these bacteria depends on major factors such as substrate, iron-containing hydrogenase, reduction agent, pH, and temperature. In this study, the response surface methodology (RSM) with central composite design (CCD) was employed to improve the hydrogen production by an anaerobic bacterial strain isolated from animal waste in Phu Linh, Soc Son, Vietnam (PL strain). The hydrogen production process was investigated as a function of three critical factors: soluble starch concentration (8 g L-1 to 12 g L-1), ferrous iron concentration (100 mg L-1 to 200 mg L-1), and l-cysteine concentration (300 mg L-1 to 500 mg L-1). RSM analysis showed that all three factors significantly influenced hydrogen production. Among them, the ferrous iron concentration presented the greatest influence. The optimum hydrogen concentration of 1030 mL L-1 medium was obtained with 10 g L-1 soluble starch, 150 mg L-1 ferrous iron, and 400 mg L-1 l-cysteine after 48 h of anaerobic fermentation. The hydrogen concentration produced by the PL strain was doubled after using RSM. The obtained results indicate that RSM with CCD can be used as a technique to optimize culture conditions for enhancement of hydrogen production by the selected anaerobic bacterial strain. Hydrogen production from low-cost organic substrates such as soluble starch using anaerobic fermentation methods may be one of the most promising approaches.

  13. Proceedings of the 10. world congress on anaerobic digestion 2004 : anaerobic bioconversion, answer for sustainability

    International Nuclear Information System (INIS)

    This conference reviewed the broad scope of anaerobic process-related activities taking place globally and confirmed the possibilities of using anaerobic processes to add value to industrial wastewaters, municipal solid wastes and organic wastes while minimizing pollution and greenhouse gases. It focused on biomolecular tools, instrumentation of anaerobic digestion processes, anaerobic bioremediation of chlorinated organics, and thermophilic and mesophilic digestion. Several papers focused on the feasibility of using waste products to produce hydrogen and methane for electricity generation. The sessions of the conference were entitled acidogenesis; microbial ecology; process control; sulfur content; technical development; domestic wastewater; agricultural waste; organic municipal solid wastes; instrumentation; molecular biology; sludges; agricultural feedstock; bioremediation; industrial wastewater; hydrogen production; pretreatments; sustainability; and integrated systems. The conference featured 387 posters and 192 oral presentations, of which 111 have been indexed separately for inclusion in this database. refs., tabs., figs

  14. Environmental impacts of anaerobic digestion and the use of anaerobic residues as soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, F.E. [VFA Services Ltd., Herts (United Kingdom)

    1996-01-01

    This paper defines the environmental role of anaerobic digestion within the overall objective of recovering energy from renewable biomass resources. Examples and opportunities for incorporating anaerobic digestion into biomass-to-energy schemes are discussed, together with environmental aspects of anaerobic digestion plants. These include visual, public amenity, pathogens and public health, odor control, and gaseous emissions. Digestate disposal and the benefits of restrictions on recycling organic wastes and biomass residues back to the land are discussed, particularly as they relate to American and European codes of practice and environmental legislation. The paper concludes that anaerobic digestion, if performed in purpose-designed reactors that efficiently recover and use biogas, is an environmentally benign process that can enhance energy recovery and aid the beneficial land use of plant residues in many biomass-to-energy schemes.

  15. Colostrum silage: fermentative, microbiological and nutritional dynamics of colostrum fermented under anaerobic conditions at different temperatures - doi: 10.4025/actascianimsci.v35i4.19870

    Directory of Open Access Journals (Sweden)

    Lucas Silveira Ferreira

    2013-10-01

    Full Text Available The fermentative, microbiological and nutritional dynamics of bovine colostrum fermented under anaerobic conditions at different temperatures is provided. Colostrum was homogenized and stored in PET bottles in anaerobic conditions and incubated at controlled temperature (32.5 ± 1°C or 22.5 ± 1°C or at room temperature (17.4 - 21.5ºC and opened after 0, 1, 7, 14, 21, 28 and 35 days to determine fermentative and nutritional parameters and bacteria, yeast and mold counts. Further, pH rates showed significant variations during the fermentation period (p  

  16. Colostrum silage: fermentative, microbiological and nutritional dynamics of colostrum fermented under anaerobic conditions at different temperatures - doi: 10.4025/actascianimsci.v35i4.19870

    OpenAIRE

    Lucas Silveira Ferreira; Jackeline Thais Silva; Marília Ribeiro de Paula; Marcelo Cesar Soares; Carla Maris Machado Bittar

    2013-01-01

    The fermentative, microbiological and nutritional dynamics of bovine colostrum fermented under anaerobic conditions at different temperatures is provided. Colostrum was homogenized and stored in PET bottles in anaerobic conditions and incubated at controlled temperature (32.5 ± 1°C or 22.5 ± 1°C) or at room temperature (17.4 - 21.5ºC) and opened after 0, 1, 7, 14, 21, 28 and 35 days to determine fermentative and nutritional parameters and bacteria, yeast and mold counts. Further, pH rates sho...

  17. Anaerobic membrane bioreactors: Are membranes really necessary?

    NARCIS (Netherlands)

    Davila, M.; Kassab, G.; Klapwijk, A.; Lier, van J.B.

    2008-01-01

    Membranes themselves represent a significant cost for the full scale application of anaerobic membrane bioreactors (AnMBR). The possibility of operating an AnMBR with a self-forming dynamic membrane generated by the substances present in the reactor liquor would translate into an important saving. A

  18. Applications of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ellegaard, L.; Ahring, Birgitte Kiær

    2003-01-01

    and resource/energy recovery have been developed. Treatment of biowastes by anaerobic digestion processes is in many cases the optimal way to convert organic waste into useful products such as energy (in the form of biogas) and a fertilizer product. Other waste management options, such as land filling...

  19. Analysis of denitrification in swine anaerobic lagoons

    Science.gov (United States)

    Anaerobic lagoons are a common management practice for the treatment of swine wastewater. Although these lagoons were once thought to be relatively simple; their physical, chemical, and biological processes are actually very sophisticated. To get a better understanding of the processes which occur i...

  20. Anaerobic work capacity in elite wheelchair athletes

    NARCIS (Netherlands)

    van der Woude, L H; Bakker, W H; Elkhuizen, J W; Veeger, DirkJan (H. E. J.); Gwinn, T

    1997-01-01

    To study the anaerobic work capacity in wheelchair athletes, 67 elite wheelchair athletes (50 male) were studied in a 30-second sprint test on a computer-controlled wheelchair ergometer during the World Championships and Games for the Disabled in Assen (1990). The experimental set-up (ergometer, pro