WorldWideScience

Sample records for background magnetic field

  1. CMB with the background primordial magnetic field

    CERN Document Server

    Yamazaki, Dai G

    2014-01-01

    We investigate the effects of the background primordial magnetic field (PMF) on the cosmic microwave background (CMB). The sound speed of the tightly coupled photon-baryon fluid is increased by the background PMF. The increased sound speed causes the odd peaks of the CMB temperature fluctuations to be suppressed and the CMB peak positions to be shifted to a larger scale. The background PMF causes a stronger decaying potential and increases the amplitude of the CMB. These two effects of the background PMF on a smaller scale cancel out, and the overall effects of the background PMF are the suppression of the CMB around the first peak and the shifting of peaks to a large scale. We also discuss obtaining information about the PMF generation mechanisms, and we examine the nonlinear evolution of the PMF by the constraint on the maximum scale for the PMF distributions. Finally, we discuss degeneracies between the PMF parameters and the standard cosmological parameters.

  2. Outdoor Background ELF Magnetic Fields in an Urban Environment

    International Nuclear Information System (INIS)

    Classification of 'exposed/non-exposed' subjects in epidemiological studies concerning the possible cancer risk associated with ELF magnetic field exposure is based on the a priori assumption of magnetic field value cut-off points that, often, are defined equal to minimum exposure levels typical of a population residing near high voltage facilities (0.1-0.2 μT), but in some cases an environmental magnetic field level not associated with transmission lines can exist. The results of an ELF magnetic field survey in an Italian urban area (about 1 million inhabitants) are presented: average field levels are correlated with population density of different districts. Exposure indexes are obtained, which are compared with those evaluated in studies regarding domestic exposure: background average levels result in comparable to cut-off points in epidemiological studies, but in some districts with high population density, they are much higher. This shows that knowledge of background magnetic field level in urban areas can assume a significant role in exposure assessment. (author)

  3. Holographic non-Fermi liquid in a background magnetic field

    International Nuclear Information System (INIS)

    We study the effects of a nonzero magnetic field on a class of 2+1 dimensional non-Fermi liquids, recently found in [Hong Liu, John McGreevy, and David Vegh, arXiv:0903.2477.] by considering properties of a Fermionic probe in an extremal AdS4 black hole background. Introducing a similar fermionic probe in a dyonic AdS4 black hole geometry, we find that the effect of a magnetic field could be incorporated in a rescaling of the probe fermion's charge. From this simple fact, we observe interesting effects like gradual disappearance of the Fermi surface and quasiparticle peaks at large magnetic fields and changes in other properties of the system. We also find Landau level like structures and oscillatory phenomena similar to the de-Haas-van Alphen effect.

  4. On possible light-torsion mixing in background magnetic field

    International Nuclear Information System (INIS)

    The interaction of the light with propagating axial torsion fields in the presence of an external magnetic field has been investigated. Axial torsion fields appearing in higher derivative quantum gravity possess two states, with spin one and zero, with different masses. The torsion field with spin-0 state is a ghost that can be removed if its mass is infinite. We investigate the possibility when the light mixes with the torsion fields resulting in the effect of vacuum birefringence and dichroism. The expressions for ellipticity and the rotation of light polarization axis depending on the coupling constant and the external magnetic field have been obtained. (orig.)

  5. Magnetic Moment of Vector Mesons in the Background Field Method

    CERN Document Server

    Lee, F X; Wilcox, Walter

    2007-01-01

    We report some results for the magnetic moments of vector mesons extracted from mass shifts in the presence of static external magnetic fields. The calculations are done on $24^4$ quenched lattices using standard Wilson actions, with $\\beta$=6.0 and pion mass down to 500 MeV. The results are compared to those from the form factor method.

  6. Duality in superstring compactifications with magnetic field backgrounds

    International Nuclear Information System (INIS)

    Motivated by the work of Polchinski and Strominger on type IIA theory, where the effect of non-trivial field strengths for p-form potentials on a Calabi-Yau space was discussed, we study four-dimensional heterotic string theory in the presence of magnetic field on a 2-cycle in the internal manifold, for both N = 4 and N = 2 cases. We show that at special points in the moduli space, certain perturbative charged states become tachyonic and stabilize the vacuum by acquiring vacuum expectation values, thereby restoring supersymmetry. We discuss both the cases where the tachyons appear with a tower of Landau levels, which become light in the limit of large volume of the 2-cycle, and the case where such Landau levels are not present. In the latter case it is sufficient to restrict the analysis to the quartic potential for the tachyon. On the other hand, in the former case it is necessary to include the Landau levels in the analysis of the potential; for toroidal and orbifold examples, we give an explicit CFT description of the new supersymmetric vacuum. The resulting new vacuum turns out to be in the same class as the original supersymmetric one. Finally, using duality, we discuss the role of the Landau levels on the type IIA side. (author). 20 refs, 1 fig

  7. Relativistic field theories in a magnetic background as noncommutative field theories

    International Nuclear Information System (INIS)

    We study the connection of the dynamics in relativistic field theories in a strong magnetic field with the dynamics of noncommutative field theories (NCFT). As an example, the Nambu-Jona-Lasinio models in spatial dimensions d≥2 are considered. We show that this connection is rather sophisticated. In fact, the corresponding NCFT are different from the conventional ones considered in the literature. In particular, the UV/IR mixing is absent in these theories. The reason for that is an inner structure (i.e., dynamical form factors) of neutral composites which plays an important role in providing consistency of the NCFT. An especially interesting case is that of a magnetic field configuration with the maximal number of independent nonzero tensor components. In that case, we show that the NCFT are finite for even d and their dynamics is quasi-(1+1)-dimensional for odd d. For even d, the NCFT describe a confinement dynamics of charged particles. The difference between the dynamics in strong magnetic backgrounds in field theories and that in string theories is briefly discussed

  8. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    Science.gov (United States)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  9. Measurement of magnetic field with background using a low-field NMR scanner

    International Nuclear Information System (INIS)

    A new method was developed using nuclear magnetic resonance (NMR) to measure a magnetic field that has several causes, of which only one is studied. The novelty is in the way of processing the measured data using an optimization procedure. The method is verified using the measurement of the magnetic field of a small spiral (helical) coil. The measurements were carried out using a low-field NMR scanner with a permanent magnet. Due to the low static magnetic field the signal from the experiment is rather weak and its successful processing is harder. The coil magnetic field was calculated from the double measurement and subsequent ratio processing. The unwrapping phase was performed in this manner and distortions due to the gradient pulses were corrected. The optimization procedure helps to move the unwrapped phase data in a suitable interval. The result is a map of relative magnetic field values. They can be changed to absolute results using reference values at some points, or comparing the shape of the measured magnetic field to that calculated, or the quantities calculated from the magnetic field can be compared to the quantity values calculated or measured in a different way. (paper)

  10. Small-scale primordial magnetic fields and anisotropies in the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    It is shown that small-scale magnetic fields present before recombination induce baryonic density inhomogeneities of appreciable magnitude. The presence of such inhomogeneities changes the ionization history of the Universe, which in turn decreases the angular scale of the Doppler peaks and increases Silk damping by photon diffusion. This unique signature could be used to (dis)prove the existence of primordial magnetic fields of strength as small as B ≅ 10−11 Gauss by cosmic microwave background observations

  11. Small-scale primordial magnetic fields and anisotropies in the cosmic microwave background radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jedamzik, Karsten [Laboratoire de Univers et Particules, UMR5299-CNRS, Université de Montpellier II, F-34095 Montpellier (France); Abel, Tom, E-mail: karsten.jedamzik@um2.fr, E-mail: tabel@slac.stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology, SLAC/Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2013-10-01

    It is shown that small-scale magnetic fields present before recombination induce baryonic density inhomogeneities of appreciable magnitude. The presence of such inhomogeneities changes the ionization history of the Universe, which in turn decreases the angular scale of the Doppler peaks and increases Silk damping by photon diffusion. This unique signature could be used to (dis)prove the existence of primordial magnetic fields of strength as small as B ≅ 10{sup −11} Gauss by cosmic microwave background observations.

  12. Induced vacuum current and magnetic field in the background of a vortex

    Science.gov (United States)

    Gorkavenko, Volodymyr M.; Ivanchenko, Iryna V.; Sitenko, Yurii A.

    2016-02-01

    A topological defect in the form of the Abrikosov-Nielsen-Olesen vortex is considered as a gauge-flux-carrying tube that is impenetrable for quantum matter. Charged scalar matter field is quantized in the vortex background with the perfectly reflecting (Dirichlet) boundary condition imposed at the side surface of the vortex. We show that a current circulating around the vortex and a magnetic field directed along the vortex are induced in the vacuum, if the Compton wavelength of the matter field exceeds considerably the transverse size of the vortex. The vacuum current and magnetic field are periodic in the value of the gauge flux of the vortex, providing a quantum-field-theoretical manifestation of the Aharonov-Bohm effect. The total flux of the induced vacuum magnetic field attains notable finite values even for the Compton wavelength of the matter field exceeding the transverse size of the vortex by just three orders of magnitude.

  13. Decay of massive scalar field in a black hole background immersed in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chen [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); Xu, Renli [Nanjing University, Key Laboratory of Modern Acoustics, Department of Physics, Nanjing (China)

    2015-08-15

    We evaluate quasinormal modes of a massive scalar field of the Ernst spacetime, an exact solution of the Einstein-Maxwell equations, describing a black hole immersed in a uniform magnetic field B. It is well known that the quasinormal spectrum for a massive scalar field in the vicinity of the magnetized black holes acquires an effective mass μ{sub eff} = √(4B{sup 2}m{sup 2}+μ{sup 2}), where m is the azimuthal number and μ is the mass of scalar field. The numerical result shows that increasing of the field effective mass and the magnetic field B gives rise to decreasing of the imaginary part of the quasinormal modes until reaching a vanishing damping rate. (orig.)

  14. Induced vacuum current and magnetic field in the background of a cosmic string

    International Nuclear Information System (INIS)

    Vacuum polarization effects in the cosmic string background are considered. We find that a current is induced in the vacuum of the quantized massive scalar field and that the current circulates around the string which is generalized to a (d - 2)-brane in locally flat (d + 1)-dimensional spacetime. As a consequence of the Maxwell equation, a magnetic field strength is also induced in the vacuum and is directed along the cosmic string. The dependence of the current and the field strength on the string flux and tension is comprehensively analysed. Both the current and the field strength are holomorphic functions of the space dimension, decreasing exponentially with the distance from the string. In the case of d = 3 we show that, due to the vacuum polarization, the cosmic string is enclosed in a tube of the magnetic flux lines if the mass of the quantized field is less than the inverse of the transverse size of the string core.

  15. Cosmic microwave background bispectrum of tensor passive modes induced from primordial magnetic fields

    CERN Document Server

    Shiraishi, Maresuke; Yokoyama, Shuichiro; Ichiki, Kiyotomo; Takahashi, Keitaro

    2011-01-01

    If the seed magnetic fields exist in the early Universe, tensor components of their anisotropic stresses are not compensated prior to neutrino decoupling and the tensor metric perturbations generated from them survive passively. Consequently, due to the decay of these metric perturbations after recombination, so-called, integrated Sachs-Wolfe effect, the large-scale fluctuations of the cosmic microwave background (CMB) radiation are significantly boosted. This kind of the CMB anisotropy is called "tensor passive mode". Because these fluctuations deviate largely from the Gaussian statistics due to the quadratic dependence on the strength of the Gaussian magnetic field, not only the power spectrum but also the higher-order correlations have reasonable signals. With these motives, we compute the CMB bispectrum induced by this mode. When the magnetic spectrum obeys a nearly scale-invariant shape, we obtain an estimation of a typical value of the normalized reduced bispectrum as $\\ell_1(\\ell_1 + 1)\\ell_3(\\ell_3+1)...

  16. Effective perihelion advance and potentials in a conformastatic background with magnetic field

    CERN Document Server

    Capistrano, Abraão J S

    2016-01-01

    An Exact solution of the Einstein-Maxwell field equations for a conformastatic metric with magnetized sources is study. In this context, effective potential are studied in order to understand the dynamics of the magnetic field in galaxies. We derive the equations of motion for neutral and charged particles in a spacetime background characterized by this class of solutions. In this particular case, we investigate the main physical properties of equatorial circular orbits and related effective potentials. In addition, we obtain an effective analytic expression for the perihelion advance of test particles. Our theoretical predictions are compared with the observational data calibrated with the ephemerides of the planets of the Solar system and the Moon (EPM2011). We show that, in general, the magnetic punctual mass predicts values that are in better agreement with observations than the values predicted in Einstein gravity alone.

  17. Critical point in the QCD phase diagram for extremely strong background magnetic fields

    Science.gov (United States)

    Endrödi, Gergely

    2015-07-01

    Lattice simulations have demonstrated that a background (electro)magnetic field reduces the chiral/deconfinement transition temperature of quantum chromodynamics for eB Polyakov loop and in a suppression of the light quark condensates (inverse magnetic catalysis) in the transition region. In this paper, we report on lattice simulations of 1 + 1 + 1-flavor QCD at an unprecedentedly high value of the magnetic field eB = 3 .25 GeV2. Based on the behavior of various observables, it is shown that even at this extremely strong field, inverse magnetic catalysis prevails and the transition, albeit becoming sharper, remains an analytic crossover. In addition, we develop an algorithm to directly simulate the asymptotically strong magnetic field limit of QCD. We find strong evidence for a first-order deconfinement phase transition in this limiting theory, implying the presence of a critical point in the QCD phase diagram. Based on the available lattice data, we estimate the location of the critical point.

  18. Critical endpoint in the QCD phase diagram for extremely strong background magnetic fields

    CERN Document Server

    Endrodi, Gergely

    2015-01-01

    Lattice simulations have demonstrated that a background (electro)magnetic field reduces the chiral/deconfinement transition temperature of quantum chromodynamics for eB < 1 GeV^2. On the level of observables, this reduction manifests itself in an enhancement of the Polyakov loop and in a suppression of the light quark condensates (inverse magnetic catalysis) in the transition region. In this paper, we report on lattice simulations of 1+1+1-flavor QCD at an unprecedentedly high value of the magnetic field eB = 3.25 GeV^2. Based on the behavior of various observables, it is shown that even at this extremely strong field, inverse magnetic catalysis prevails and the transition, albeit becoming sharper, remains an analytic crossover. In addition, we develop an algorithm to directly simulate the asymptotically strong magnetic field limit of QCD. We find strong evidence for a first-order deconfinement phase transition in this limiting theory, implying the presence of a critical endpoint in the QCD phase diagram. ...

  19. Parametric Instability of Classical Yang-Mills Fields under Color Magnetic Background

    CERN Document Server

    Tsutsui, Shoichiro; Kunihiro, Teiji; Ohnishi, Akira

    2014-01-01

    We investigate instabilities of classical Yang-Mills fields in a time-dependent spatially homogeneous color magnetic background field in a non-expanding geometry for elucidating the earliest stage dynamics of ultra-relativistic heavy-ion collisions. The background gauge field configuration considered in this article is spatially homogeneous and temporally periodic, and is alluded by Berges-Scheffler-Schlichting-Sexty (BSSS). We discuss the whole structure of instability bands of fluctuations around the BSSS background gauge field on the basis of Floquet theory, which enables us to discuss the stability in a systematic way. We find various instability bands on the $(p_z, p_T)$-plane. These instability bands are caused by parametric resonance despite the fact that the momentum dependence of the growth rate for $|\\mathbf{p}| \\leq \\sqrt{B}$ is similar to a Nielsen-Olesen instability. Moreover, some of instability bands are found to emerge not only in the low momentum but also in the high momentum region; typicall...

  20. Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Solenoidal Magnetic Field I: Weak Magnetic Field Limit

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I. D., Startsev, E. A., Sefkow, A. B., Davidson, R. C.

    2008-10-10

    Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self- electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytic model is developed to describe the self-magnetic field of a finite- length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytic studies show that the solenoidal magnetic field starts to infuence the self-electric and self-magnetic fields when ωce > ωpeβb, where ωce = eβ/mec is the electron gyrofrequency, ωpe is the electron plasma frequency, and βb = Vb/c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytic theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement.

  1. Synchronous Variations of the Magnetic Field of the Earth and Seismic Background

    Science.gov (United States)

    Loktev, D.; Spivak, A. A.

    2013-12-01

    Unity and interaction of the Earth's geospheres are determined by interaction between geophysical fields and their transformation. It is necessary to note that all well-known geophysical fields are present at any volume of geophysical medium in common both in atmosphere and solid substance. Since any geophysical medium is characterized by quite definite electromagnetic, mechanoelectric and other properties, the medium could be play the role of active mediator between geophysical fields of different origin. In other words: just in a medium assistance geophysical fields to be permitted to realize interaction, which would be offered by energy transformation between these fields. Also it could be supposed that intensity of such transformation is determined by medium properties. That is, it is possible to estimate interesting us medium properties on basis of the known parameters characterized energy exchange processes between geophysical fields. The data of instrumental observations for local variations of geomagnetic field and seismic vibrations at the earth surface at the middle latitude Geophysical observatory "Mikhnevo" of the Institute of Geospheres Dynamics (54.959N; 37.766E) are analyzed. Statistics of a strong magnetic phenomena such as storm sudden commencement (SSC) and suddenly impulse (SI) over a period of time 2008-2012 are considered. Also it is shown that seismic background amplitude variations in the frequency band of 0.01-0.1 Hz increase in most cases during SSC and SI events. Different types of the response of seismic background on the geomagnetic variations are considered. Quantitative dependence between maximum of amplitude of variation of mean-square velocity oscillations in seismic background and amplitude of geomagnetic variation was determined.

  2. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, Simon J. [School of Engineering, University of Bradford, Bradford, BD7 1DP (United Kingdom); Zharkov, Sergei I. [Department of Physics and Mathematics, University of Hull, Kingston upon Tyne, HU6 7RS (United Kingdom); Zharkova, Valentina V., E-mail: s.j.shepherd@brad.ac.uk, E-mail: s.zharkov@hull.ac.uk, E-mail: valentina.zharkova@northumbria.ac.uk [Department of Mathematics and Information Systems, University of Northumbria, Newcastle upon Tyne, NE2 8ST (United Kingdom)

    2014-11-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  3. Anomalous character of the axion–photon coupling in a magnetic field distorted by a pp-wave gravitational background

    International Nuclear Information System (INIS)

    We study the problem of axion–photon coupling in the magnetic field influenced by gravitational radiation. We focus on exact solutions to the equations for axion electrodynamics in the pp-wave gravitational background for two models with initially constant magnetic field. The first model describes the response of an initially constant magnetic field in a gravitational-wave vacuum with unit refraction index; the second model is characterized by a non-unit refraction index prescribed to the presence of ordinary and/or dark matter. We show that both models demonstrate anomalous behavior of the electromagnetic field generated by the axion–photon coupling in the presence of magnetic field, evolving in the gravitational wave background. The role of axionic dark matter in the formation of the anomalous response of this electrodynamic system is discussed. (paper)

  4. The Magnetic Sun from Different Views: A Comparison of the Mean and Background Magnetic Field Observations made in Different Observatories and in Different Spectral Lines

    Indian Academy of Sciences (India)

    M. L. Demidov

    2000-09-01

    A comparison is made of observational data on the mean magnetic field of the Sun from several observatories (a selection of published information and new measurements). Results of correlation and regression analyses of observations of background magnetic fields at the STOP telescope of the Sayan solar observatory in different spectral lines are also presented. Results obtained furnish an opportunity to obtain more unbiased information about large-scale magnetic fields of the Sun and, in particular, about manifestations of strong (kilogauss) magnetic fields in them.

  5. Small-scale microwave background anisotropies due to tangled primordial magnetic fields

    CERN Document Server

    Subramanian, K; Subramanian, Kandaswamy; Barrow, John D.

    2002-01-01

    An inhomogeneous cosmological magnetic field creates vortical perturbations that survive Silk damping on much smaller scales than compressional modes. This ensures that there is no sharp cut-off in anisotropy on arc-minute scales. As we had pointed out earlier, tangled magnetic fields, if they exist, will then be a potentially important contributor to small-angular scale CMBR anisotropies. Several ongoing and new experiments, are expected to probe the very small angular scales, corresponding to multipoles with l>1000. In view of this observational focus, we revisit the predicted signals due to primordial tangled magnetic fields, for different spectra and different cosmological parameters. We also identify a new regime, where the photon mean-free path exceeds the scale of the perturbation, which dominates the predicted signal at very high l. A scale-invariant spectrum of tangled fields which redshifts to a present value B_{0}=3\\times 10^{-9} Gauss, produces temperature anisotropies at the 10 micro Kelvin level...

  6. Chiral dynamics in QED and QCD in a magnetic background and nonlocal noncommutative field theories

    International Nuclear Information System (INIS)

    We study the connection of the chiral dynamics in QED and QCD in a strong magnetic field with noncommutative field theories (NCFT). It is shown that these dynamics determine complicated nonlocal NCFT. In particular, although the interaction vertices for electrically neutral composites in these gauge models can be represented in the space with noncommutative spatial coordinates, there is no field transformation that could put the vertices in the conventional form considered in the literature. It is unlike the Nambu-Jona-Lasinio (NJL) model in a magnetic field where such a field transformation can be found, with a cost of introducing an exponentially damping form factor in field propagators. The crucial distinction between these two types of models is in the characters of their interactions, being short-range in the NJL-like models and long-range in gauge theories. The relevance of the NCFT connected with the gauge models for the description of the quantum Hall effect in condensed matter systems with long-range interactions is briefly discussed

  7. Analysis on background magnetic field to generate eddy current by pulsed gradient of permanent-magnet MRI

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper the analytical expressions for the magnetic field H and induction B in iron-pole plates generated by MRI gradient coil are given using line-current and the multilayer dielectric plate model with the mirror-image method.Eddy current emanates from the magnetic flux in the iron-pole plates.In order to fully suppress the eddy current,this magnetic flux should be fully eliminated.The research results indicate the magnetic permeability of the resist-eddy plate must be bigger than that of magnetic pole material,i.e.pure iron,and that the resist-eddy plate should be thick enough to be far away from its magnetic saturation.

  8. On the stability of ion beam in a layer with crossed electric and magnetic fields and magnetized electron background

    International Nuclear Information System (INIS)

    Dissipation instability of stationary states of space heterogeneous compensated ion beam in a layer with crossed electric and magnetic fields is considered within the framework of linear hydrodynamic description at random ΔV/V0 ratio, where ΔV-change of V0 initial beam velocity at layer length. The apparent form of space change of amplitude of initial perturbations of short-wave oscillations, propagating along the beam, was determined. It is shown, that stabilizing effect of accelerating field is manifested by the fact, that oscillations at the given length of diode gap have no time to develop. The obtained results can be used for study of stability of stationary states of accelerating magnetically insulated diode systems and recuperators

  9. Spectroscopic measurement of high-frequency electric fields in the interaction of explosive debris plasma with magnetized background plasma

    International Nuclear Information System (INIS)

    The collision-less transfer of momentum and energy from explosive debris plasma to magnetized background plasma is a salient feature of various astrophysical and space environments. While much theoretical and computational work has investigated collision-less coupling mechanisms and relevant parameters, an experimental validation of the results demands the measurement of the complex, collective electric fields associated with debris-background plasma interaction. Emission spectroscopy offers a non-interfering diagnostic of electric fields via the Stark effect. A unique experiment at the University of California, Los Angeles, that combines the Large Plasma Device (LAPD) and the Phoenix laser facility has investigated the marginally super-Alfvénic, quasi-perpendicular expansion of a laser-produced carbon (C) debris plasma through a preformed, magnetized helium (He) background plasma via emission spectroscopy. Spectral profiles of the He II 468.6 nm line measured at the maximum extent of the diamagnetic cavity are observed to intensify, broaden, and develop equally spaced modulations in response to the explosive C debris, indicative of an energetic electron population and strong oscillatory electric fields. The profiles are analyzed via time-dependent Stark effect models corresponding to single-mode and multi-mode monochromatic (single frequency) electric fields, yielding temporally resolved magnitudes and frequencies. The proximity of the measured frequencies to the expected electron plasma frequency suggests the development of the electron beam-plasma instability, and a simple saturation model demonstrates that the measured magnitudes are feasible provided that a sufficiently fast electron population is generated during C debris–He background interaction. Potential sources of the fast electrons, which likely correspond to collision-less coupling mechanisms, are briefly considered

  10. Improved background rejection in neutrinoless double beta decay experiments using a magnetic field in a high pressure xenon TPC

    CERN Document Server

    Renner, J; Hernando, J A; Imzaylov, A; Monrabal, F; Muñoz, J; Nygren, D; Gomez-Cadenas, J J

    2015-01-01

    We demonstrate that the application of an external magnetic field could lead to an improved background rejection in neutrinoless double-beta (0nbb) decay experiments using a high pressure xenon (HPXe) TPC. HPXe chambers are capable of imaging electron tracks, a feature that enhances the separation between signal events (the two electrons emitted in the 0nbb decay of 136Xe) and background events, arising chiefly from single electrons of kinetic energy compatible with the end-point of the 0nbb decay (Qbb ). Applying an external magnetic field of sufficiently high intensity (in the range of 0.5-1 Tesla for operating pressures in the range of 5-15 atmospheres) causes the electrons to produce helical tracks. Assuming the tracks can be properly reconstructed, the sign (direction) of curvature can be determined at several points along these tracks, and such information can be used to separate signal (0nbb) events containing two electrons producing a track with two different directions of curvature from background (s...

  11. Quark Matter in a Parallel Electric and Magnetic Field Background: Equilibrated Chiral Density Effect on Chiral Phase Transition

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study spontaneous chiral symmetry breaking for quark matter in the background of an electric-magnetic flux tube with static, homogeneous and parallel electric field $\\bm E$ and magnetic field $\\bm B$. We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at finite temperature for a wide range of $E$ and $B$. We study the effect of the flux tube background on inverse catalysis of chiral symmetry breaking for $E$ and $B$ of the same order of magnitude. We then focus on the effect of equilibration of chiral density, $n_5$, produced dynamically by axial anomaly on the critical temperature. The equilibration of $n_5$, a consequence of chirality flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential, $\\mu_5$, which is computed self-consistently as a function of temperature and field strength by coupling the number equation to the gap equation. We find that even if chir...

  12. ELMAG: A Monte Carlo simulation of electromagnetic cascades on the extragalactic background light and in magnetic fields

    CERN Document Server

    Kachelriess, M; Tomas, R

    2011-01-01

    A Monte Carlo program for the simulation of electromagnetic cascades initiated by high-energy photons and electrons interacting with extragalactic background light (EBL) is presented. Pair production and inverse Compton scattering on EBL photons as well as synchrotron losses and deflections of the charged component in extragalactic magnetic fields (EGMF) are included in the simulation. Weighted sampling of the cascade development is applied to reduce the number of secondary particles and to speed up computations. As final result, the simulation procedure provides the energy, the observation angle, and the time delay of secondary cascade particles at the present epoch. Possible applications are the study of TeV blazars and the influence of the EGMF on their spectra or the calculation of the contribution from ultrahigh energy cosmic rays or dark matter to the diffuse extragalactic gamma-ray background. As an illustration, we present results for deflections and time-delays relevant for the derivation of limits o...

  13. Cox's particle in magnetic and electric fields against the background of euclidean and spherical geometries

    International Nuclear Information System (INIS)

    The generalized relativistic Klein-Fock-Gordon equation for Cox's non-point scalar particle with intrinsic structure is solved in the presence of external uniform magnetic and electric fields in the Minkowski space. Similar problems in the non-relativistic approximation in a closed spherical Riemann 3-space are examined. The complete separation of the variables in the system of special cylindric coordinates in a curved model is performed. In the presence of a magnetic field, the quantum problem in the radial variable is solved exactly, and the wave functions and the corresponding energy levels are found: the quantum motion in the z-direction is described by a one-dimensional Schrodinger-like equation in an effective potential, which turns out to be too di?cult for the analytical treatment. In the presence of an electric field against the background of the curved model, the situation is similar: the radial equation is solved exactly in hypergeometric functions, but the equation in the z-variable can be examined only qualitatively

  14. Global existence and uniqueness theorem to 2-D incompressible non-resistive MHD system with non-equilibrium background magnetic field

    Science.gov (United States)

    Zhai, Cuili; Zhang, Ting

    2016-09-01

    In this article, we consider the global existence and uniqueness of the solution to the 2D incompressible non-resistive MHD system with non-equilibrium background magnetic field. Our result implies that a strong enough non-equilibrium background magnetic field will guarantee the stability of the nonlinear MHD system. Beside the classical energy method, the interpolation inequalities and the algebraic structure of the equations coming from the incompressibility of the fluid are crucial in our arguments.

  15. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced......he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  16. The latitudinal distributions of sunspot areas and magnetic fields and their correlation with the background solar magnetic field in the cycle 23

    Science.gov (United States)

    Zharkov, S. I.; Gavryuseva, E. V.; Zharkova, V. V.

    The quasi 3D latitudinal distributions (butterfly diagrams) of sunspot areas and magnetic fields obtained within the whole μ-hemispheres in longitudes from the Solar Feature Catalogues for 9 years (1996-2005) of the cycle 23 are correlated with those of the low-resolution solar magnetic fields (SMF) obtained from Wilcox Solar Observatory. During the whole period of observations the sunspot areas reveal a strong positive correlation with SMF appearing at zero timelag and repeating at the 2-2.5 year time lags after or before the cycle start. The high positive correlation coefficients are also distributed into the four zones reflecting the sunspot migration directions: the two pre-polar zones above ±45° with the positive correlation increasing towards the poles (the sunspot migration towards the poles) and the two pre-equatorial zones from -40° to +40° (the 'royal zone') with the positive correlation increasing toward the equator as seen in the butterfly diagrams. This correlation suggests a modulating effect of the symmetric component of SMF on the magnitude of magnetic field in flux tubes emerging as sunspots. The symmetric SMF components have the same signs in each hemisphere and they are changed to opposite over the period 2-2.5 year. Then, if the signs of the symmetric SMF coincides with the leading polarity signs in a one hemisphere and opposite in the other one, the flux tube emergence (and sunspot appearance) is supported by SMF in the first one and suppressed in the other. While in 2.5 years when the SMF sign is changed to the opposite, the flux emergence is supported in the other hemisphere but suppressed in the first one.

  17. Performance of the ATLAS Muon Drift-Tube Chambers at High Background Rates and in Magnetic Fields

    CERN Document Server

    Dubbert, J; Legger, F; Kortner, O; Kroha, H; Richter, R; Valderanis, Ch; Rauscher, F; Staude, A

    2016-01-01

    The ATLAS muon spectrometer uses drift-tube chambers for precision tracking. The performance of these chambers in the presence of magnetic field and high radiation fluxes is studied in this article using test-beam data recorded in the Gamma Irradiation Facility at CERN. The measurements are compared to detailed predictions provided by the Garfield drift-chamber simulation programme.

  18. Solar global background magnetic field changes accompanying the development of the white-light flare region of April 1984 (NOAA 4474)

    International Nuclear Information System (INIS)

    In investigating large-scale distribution changes in the solar background magnetic field during a broad time interval around the formation of this very complex region, it was demonstrated that this development had to be taken as part of a global process in the solar atmosphere. A complete reorganization was found of the Magnetic Active Longitude patterns and, of course, of the solar magnetic field sector structure clearly related to its maximum stage. A restructuring of coronal holes was also shown to have taken place. The relation of large-scale cellular-like structures to this development was also studied. It is concluded that the formation of this mighty white-light flare region is causally related to the rebuilding of the global solar magnetic field. (author). 4 figs., 9 refs

  19. Generalized Background-Field Method

    CERN Document Server

    Feng, Y J

    1997-01-01

    The graphical method discussed previously can be used to create new gauges not reachable by the path-integral formalism. By this means a new gauge is designed for more efficient two-loop QCD calculations. It is related to but simpler than the ordinary background-field gauge, in that even the triple-gluon vertices for internal lines contain only four terms, not the usual six. This reduction simplifies the calculation inspite of the necessity to include other vertices for compensation. Like the ordinary background-field gauge, this generalized background-field gauge also preserves gauge invariance of the external particles. As a check of the result and an illustration for the reduction in labour, an explicit calculation of the two-loop QCD 45% of computation compared to the ordinary background-field gauge.

  20. Does the exposure of children in the UK to background residential power-frequency magnetic fields differ from that of the whole population?

    International Nuclear Information System (INIS)

    Background power-frequency magnetic fields in homes in the UK vary with the category of accommodation. The categories considered, in ascending order of average field, are detached, semidetached and terraced houses and flats. Because children occupy a different distribution of accommodation compared with the population as a whole, they will on average be exposed to a different background field. Using data on fields from a survey of two hundred people and on distribution of accommodation types from national statistics, it is estimated that this effect leads to children being exposed to background fields which are lower than those experienced by the population as a whole, 54.2 nT, by an average of 0.7 ± 0.6 nT, a difference which is barely significant. (Author)

  1. The Magnetic Field of the L1544 Starless Dark Cloud, Traced Using Near-Infrared Background Starlight

    Science.gov (United States)

    Clemens, Dan P.; Goldsmith, Paul; Tassis, Konstantinos

    2016-06-01

    What roles do interstellar magnetic fields play in star formation processes? We have studied the B-field of L1544, a dark cloud with a starless dense core showing active gas infall, and located only 140 pc away in Taurus, via deep near-infrared (NIR) imaging polarimetry with the Mimir instrument. We find the B-field orientations in the plane of the sky change significantly at L1544, mimicking its shape and extent. The elongated spine of L1544 is also where the dispersion of NIR linear polarization position angles is smallest, suggesting strengthening of the B-field. Archival WISE, SCUPOL, Herschel, and Planck data were analyzed to characterize dust extinction and emission across L1544 and the field around it. Three-dimensional modeling, constrained through matching two-dimensional integrated model properties to observed dust distributions, led us to develop maps of effective gas mass densities and non-thermal gas velocity dispersions. These were combined with the NIR polarimetry, under the Chandrasekhar & Fermi (1953) approach, to yield a map of B-field strength across the entire 400 sq-arcmin region surveyed. The trends of B-field strength with gas volume density, mass-to-flux ratio with radius, and plane-of-sky B-field strengths with Zeeman-traced line-of-sight B-field strengths were found and compared to previous published work to establish the role of B-fields in L1544. We find field strengths in the 3 - 30 uG range, quite similar to the OH Zeeman values found by Crutcher et al. (2009) for L1544.This work was partially supported by grants to Boston University from NSF (AST-0907790, 1412269) and NASA (NNX15AE51G).

  2. Electromagnetic Polarizabilities: Lattice QCD in Background Fields

    CERN Document Server

    Detmold, W; Walker-Loud, A

    2011-01-01

    Chiral perturbation theory makes definitive predictions for the extrinsic behavior of hadrons in external electric and magnetic fields. Near the chiral limit, the electric and magnetic polarizabilities of pions, kaons, and nucleons are determined in terms of a few well-known parameters. In this limit, hadrons become quantum mechanically diffuse as polarizabilities scale with the inverse square-root of the quark mass. In some cases, however, such predictions from chiral perturbation theory have not compared well with experimental data. Ultimately we must turn to first principles numerical simulations of QCD to determine properties of hadrons, and confront the predictions of chiral perturbation theory. To address the electromagnetic polarizabilities, we utilize the background field technique. Restricting our attention to calculations in background electric fields, we demonstrate new techniques to determine electric polarizabilities and baryon magnetic moments for both charged and neutral states. As we can study...

  3. Chiral pions in a magnetic background

    CERN Document Server

    Colucci, Giuseppe; Sedrakian, Armen

    2013-01-01

    We investigate the modification of the pion self-energy at finite temperature due to its interaction with a low-density, isospin-symmetric nuclear medium embedded in a constant magnetic background. To one loop, for fixed temperature and density, we find that the pion effective mass increases with the magnetic field. For the $\\pi^{-}$, interestingly, this happens solely due to the trivial Landau quantization shift $\\sim |eB|$, since the real part of the self-energy is negative in this case. In a scenario in which other charged particle species are present and undergo an analogous trivial shift, the relevant behavior of the effective mass might be determined essentially by the real part of the self-energy. In this case, we find that the pion mass decreases by $\\sim 10%$ for a magnetic field $|eB|\\sim m_\\pi^2$, which favors pion condensation at high density and low temperatures.

  4. Coulomb field in a constant electromagnetic background

    CERN Document Server

    Adorno, T C; Shabad, A E

    2016-01-01

    Nonlinear Maxwell equations are written up to the third-power deviations from a constant-field background, valid within any local nonlinear electrodynamics including QED with Euler-Heisenberg effective Lagrangian. Linear electric response to imposed static finite-sized charge is found in the vacuum filled by an arbitrary combination of constant and homogeneous electric and magnetic fields. The modified Coulomb field, corrections to the total charge and to the charge density are given in terms of derivatives of the effective Lagrangian with respect to the field invariants.

  5. Whistler Wave Excitation and Effects of Self-Focusing on Ion Beam Propagation through a Background Plasma along a Solenoidal Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail, Dorf A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2010-02-02

    This paper extends studies of ion beam transport through a background plasma along a solenoidal magnetic field [I. Kaganovich et al., Phys. Plasmas 15, 103108 (2008)] to the important regime of moderate magnetic field strength satisfying ωce > 2βbωpe . Here, ωce and ω pe are the electron cyclotron frequency and electron plasma frequency, respectively, and βb = vb/ c is the directed ion beam velocity normalized to the speed of light. The electromagnetic field perturbations excited by the ion beam pulse in this regime are calculated analytically, and verified by comparison with the numerical simulations. The degrees of beam charge neutralization and current neutralization are estimated, and the transverse component of the Lorentz force associated with the excited electromagnetic field is calculated. It is found that the plasma response to the ion beam pulse is significantly different depending on whether the value of the solenoidal magnetic field is below or above the threshold value specified by ω cr ce = 2βbωpe, and corresponding to the resonant excitation of large-amplitude whistler waves. The use of intense whistler wave excitations for diagnostic purposes is also discussed.

  6. Whistler Wave Excitation and Effects of Self-Focusing on Ion Beam Propagation through a Background Plasma along a Solenoidal Magnetic Field

    International Nuclear Information System (INIS)

    This paper extends studies of ion beam transport through a background plasma along a solenoidal magnetic field (I. Kaganovich et al., Phys. Plasmas 15, 103108 (2008)) to the important regime of moderate magnetic field strength satisfying ωce > 2βbωpe. Here, ωce and ωpe are the electron cyclotron frequency and electron plasma frequency, respectively, and βb = vb/c is the directed ion beam velocity normalized to the speed of light. The electromagnetic field perturbations excited by the ion beam pulse in this regime are calculated analytically, and verified by comparison with the numerical simulations. The degrees of beam charge neutralization and current neutralization are estimated, and the transverse component of the Lorentz force associated with the excited electromagnetic field is calculated. It is found that the plasma response to the ion beam pulse is significantly different depending on whether the value of the solenoidal magnetic field is below or above the threshold value specified by ωcecr = 2βbωpe, and corresponding to the resonant excitation of large-amplitude whistler waves. The use of intense whistler wave excitations for diagnostic purposes is also discussed.

  7. Cosmological magnetic field survival

    CERN Document Server

    Barrow, John D

    2011-01-01

    It is widely believed that primordial magnetic fields are dramatically diluted by the expansion of the universe. As a result, cosmological magnetic fields with residual strengths of astrophysical relevance are generally sought by going outside standard cosmology, or by extending conventional electromagnetic theory. Nevertheless, the survival of strong B-fields of primordial origin is possible in spatially open Friedmann universes without changing conventional electromagnetism. The reason is the hyperbolic geometry of these spacetimes, which slows down the adiabatic magnetic decay-rate and leads to their superadiabatic amplification on large scales. So far, the effect has been found to operate on Friedmannian backgrounds containing either radiation or a slow-rolling scalar field. We show here that the superadiabatic amplification of large-scale magnetic fields, generated by quantum fluctuations during inflation, is essentially independent of the type of matter that fills the universe and appears to be a generi...

  8. Electromagnetic polarizabilities: Lattice QCD in background fields

    Energy Technology Data Exchange (ETDEWEB)

    W. Detmold, B.C. Tiburzi, A. Walker-Loud

    2012-04-01

    Chiral perturbation theory makes definitive predictions for the extrinsic behavior of hadrons in external electric and magnetic fields. Near the chiral limit, the electric and magnetic polarizabilities of pions, kaons, and nucleons are determined in terms of a few well-known parameters. In this limit, hadrons become quantum mechanically diffuse as polarizabilities scale with the inverse square-root of the quark mass. In some cases, however, such predictions from chiral perturbation theory have not compared well with experimental data. Ultimately we must turn to first principles numerical simulations of QCD to determine properties of hadrons, and confront the predictions of chiral perturbation theory. To address the electromagnetic polarizabilities, we utilize the background field technique. Restricting our attention to calculations in background electric fields, we demonstrate new techniques to determine electric polarizabilities and baryon magnetic moments for both charged and neutral states. As we can study the quark mass dependence of observables with lattice QCD, the lattice will provide a crucial test of our understanding of low-energy QCD, which will be timely in light of ongoing experiments, such as at COMPASS and HI gamma S.

  9. Evolution of the Coronal Magnetic Configurations Including a Current-Carrying Flux Rope in Response to the Change in the Background Field

    CERN Document Server

    Wang, Hong-Juan; Gong, Jian-Cun; Lin, Jun

    2014-01-01

    We investigate equilibrium height of the flux rope, and its internal equilibrium in a realistic plasma environment by carrying out numerical simulations of the evolution of systems including a current-carrying flux rope. We find that the equilibrium height of the flux rope is approximately a power-law function of the relative strength of the background field. Our simulations indicate that the flux rope can escape more easily from a weaker background field. This further confirms the catastrophe in the magnetic configuration of interest can be triggered by decrease of strength of the background field. Our results show that it takes some time to reach internal equilibrium depending on the initial state of the flux rope. The plasma flow inside the flux rope due to the adjustment for the internal equilibrium of the flux rope remains small and does not last very long when the initial state of the flux rope commences from the stable branch of the theoretical equilibrium curve. This work also confirms the influence o...

  10. Quark Matter in a Strong Magnetic Background

    CERN Document Server

    Gatto, Raoul

    2012-01-01

    In this chapter, we discuss several aspects of the theory of strong interactions in presence of a strong magnetic background. In particular, we summarize our results on the effect of the magnetic background on chiral symmetry restoration and deconfinement at finite temperature. Moreover, we compute the magnetic susceptibility of the chiral condensate and the quark polarization at zero temperature. Our theoretical framework is given by chiral models: the Nambu-Jona-Lasinio (NJL), the Polyakov improved NJL (or PNJL) and the Quark-Meson (QM) models. We also compare our results with the ones obtained by other groups.

  11. The Cosmological Impact of Luminous TeV Blazars I: Implications of Plasma Instabilities for the Intergalactic Magnetic Field and Extragalactic Gamma-Ray Background

    CERN Document Server

    ,

    2011-01-01

    Inverse-Compton cascades initiated by energetic gamma rays (E>100 GeV) enhance the GeV emission from bright, extragalactic TeV sources. The absence of this emission from bright TeV blazars has been used to constrain the intergalactic magnetic field (IGMF), and the stringent limits placed upon the unresolved extragalactic gamma-ray background (EGRB) by Fermi has been used to argue against a large number of such objects at high redshifts. However, these are predicated upon the assumption that inverse-Compton scattering is the primary energy-loss mechanism for the ultra-relativistic pairs produced by the annihilation of the energetic gamma rays on extragalactic background light photons. Here we show that for sufficiently bright TeV sources (isotropic-equivalent luminosities >10^{42} erg/s) plasma beam instabilities, specifically the "oblique" instability, present a plausible mechanism by which the energy of these pairs can be dissipated locally, heating the intergalactic medium. Since these instabilities typical...

  12. Magnetic field line Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined.

  13. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  14. Perturbative Double Field Theory on General Backgrounds

    CERN Document Server

    Hohm, Olaf

    2015-01-01

    We develop the perturbation theory of double field theory around arbitrary solutions of its field equations. The exact gauge transformations are written in a manifestly background covariant way and contain at most quadratic terms in the field fluctuations. We expand the generalized curvature scalar to cubic order in fluctuations and thereby determine the cubic action in a manifestly background covariant form. As a first application we specialize this theory to group manifold backgrounds, such as $SU(2) \\simeq S^3$ with $H$-flux. In the full string theory this corresponds to a WZW background CFT. Starting from closed string field theory, the cubic action around such backgrounds has been computed before by Blumenhagen, Hassler and L\\"ust. We establish precise agreement with the cubic action derived from double field theory. This result confirms that double field theory is applicable to arbitrary curved background solutions, disproving assertions in the literature to the contrary.

  15. The Cosmological Impact of Luminous TeV Blazars. I. Implications of Plasma Instabilities for the Intergalactic Magnetic Field and Extragalactic Gamma-Ray Background

    Science.gov (United States)

    Broderick, Avery E.; Chang, Philip; Pfrommer, Christoph

    2012-06-01

    Inverse Compton cascades (ICCs) initiated by energetic gamma rays (E >~ 100 GeV) enhance the GeV emission from bright, extragalactic TeV sources. The absence of this emission from bright TeV blazars has been used to constrain the intergalactic magnetic field (IGMF), and the stringent limits placed on the unresolved extragalactic gamma-ray background (EGRB) by Fermi have been used to argue against a large number of such objects at high redshifts. However, these are predicated on the assumption that inverse Compton scattering is the primary energy-loss mechanism for the ultrarelativistic pairs produced by the annihilation of the energetic gamma rays on extragalactic background light photons. Here, we show that for sufficiently bright TeV sources (isotropic-equivalent luminosities >~ 1042 erg s-1) plasma beam instabilities, specifically the "oblique" instability, present a plausible mechanism by which the energy of these pairs can be dissipated locally, heating the intergalactic medium. Since these instabilities typically grow on timescales short in comparison to the inverse Compton cooling rate, they necessarily suppress the ICCs. As a consequence, this places a severe constraint on efforts to limit the IGMF from the lack of a discernible GeV bump in TeV sources. Similarly, it considerably weakens the Fermi limits on the evolution of blazar populations. Specifically, we construct a TeV-blazar luminosity function from those objects currently observed and find that it is very well described by the quasar luminosity function at z ~ 0.1, shifted to lower luminosities and number densities, suggesting that both classes of sources are regulated by similar processes. Extending this relationship to higher redshifts, we show that the magnitude and shape of the EGRB above ~10 GeV are naturally reproduced with this particular example of a rapidly evolving TeV-blazar luminosity function.

  16. Rotation of individual background magnetic field components during the formation of the white-light flare region of April 1984 (NOAA 4474)

    International Nuclear Information System (INIS)

    Comprehensive investigation is reported of circumstances leading to the formation of the white-light flare region of April 1984 (L∼340deg, φ∼-10deg). From the distribution of chromospheric filaments the diference was seen in the activity and in the rotation rates of strong and weak magnetic fields. The wavy form was also observed of the magnetic boundary surface dividing, during the time of the maximum evolutionary stage of the region, the negative northern hemisphere fields from the positive polarity southern fields in the interplanetary space. The rigid body rotation was observed of ''pivot points'' and of the strongest magnetic fields in the studied time interval, summarizing the results into the requirement of yet another study of the global and local activity development in this last part of the 21st solar activity cycle. (author). 5 figs., 1 tab., 10 refs

  17. Gravity with background fields and diffeomorphism breaking

    CERN Document Server

    Bluhm, Robert

    2016-01-01

    Effective gravitational field theories with background fields break local Lorentz symmetry and diffeomorphism invariance. Examples include Chern-Simons gravity, massive gravity, and the Standard-Model Extension (SME). The physical properties and behavior of these theories depend greatly on whether the spacetime symmetry breaking is explicit or spontaneous. With explicit breaking, the background fields are fixed and nondynamical, and the resulting theories are fundamentally different from Einstein's General Relativity (GR). However, when the symmetry breaking is spontaneous, the background fields are dynamical in origin, and many of the usual features of Einstein's GR still apply.

  18. Background field coils for the High Field Test Facility

    International Nuclear Information System (INIS)

    The High Field Test Facility (HFTF), presently under construction at LLNL, is a set of superconducting coils that will be used to test 1-m-o.d. coils of prototype conductors for fusion magnets in fields up to 12 T. The facility consists of two concentric sets of coils; the outer set is a stack of Nb-Ti solenoids, and the inner set is a pair of solenoids made of cryogenically-stabilized, multifilamentary Nb3Sn superconductor, developed for use in mirror-fusion magnets. The HFTF system is designed to be parted along the midplane to allow high-field conductors, under development for Tokamak fusion machines, to be inserted and tested. The background field coils were wound pancake-fashion, with cold-welded joints at both the inner and outer diameters. Turn-to-turn insulation was fabricated at LLNL from epoxy-fiberglass strip. The coils were assembled and tested in our 2-m-diam cryostat to verify their operation

  19. Transformer generated magnetic fields

    International Nuclear Information System (INIS)

    Magnetic fields produced by both small and large apparatus are being investigated for their possible relation to human health effects. A number of studies have been done in characterizing the magnetic field generated by transmission lines, household wiring and appliances. Two other major sources of magnetic fields are motors and transformers. The magnetic field generated by power transformers has not been studied extensively. The purpose of this paper is to experimentally quantify the magnetic field of a power transformer and compare it with calculated results obtained using one of the numerical techniques

  20. Non-perturbative background field calculations

    International Nuclear Information System (INIS)

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation: perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation. copyright 1988 Academic Press, Inc

  1. Superconformal invariance and superstring in background fields

    International Nuclear Information System (INIS)

    We consider the propagation of the superstring on a general classical background containing the effects of the metric, the antisymmetric tensor and the dilaton fields. Using the operator product expansion method for two dimensional superconformal field theories we derive the equations for these fields as a consequence of the superconformal invariance of the theory. (author)

  2. The First Magnetic Fields

    CERN Document Server

    Widrow, Lawrence M; Schleicher, Dominik; Subramanian, Kandaswamy; Tsagas, Christos G; Treumann, Rudolf A

    2011-01-01

    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early genera...

  3. Primordial Magnetic Fields

    CERN Document Server

    Enqvist, Kari

    1998-01-01

    The explanation of the observed galactic magnetic fields may require the existence of a primordial magnetic field. Such a field may arise during the early cosmological phase transitions, or because of other particle physics related phenomena in the very early universe reviewed here. The turbulent evolution of the initial, randomly fluctuating microscopic field to a large-scale macroscopic field can be described in terms of a shell model, which provides an approximation to the complete magnetohydrodynamics. The results indicate that there is an inverse cascade of magnetic energy whereby the coherence of the magnetic field is increased by many orders of magnitude. Cosmological seed fields roughly of the order of $10^{-20}$ G at the scale of protogalaxy, as required by the dynamo explanation of galactic magnetic fields, thus seem plausible.

  4. Primordial magnetic field limits from cosmological data

    International Nuclear Information System (INIS)

    We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

  5. Evaluating the effectiveness of the treatment of inflammatory periodontal disease on a background of chronic cholecystitis with the combined effect of the running of the alternating magnetic fields and low-intensity laser radiation

    Directory of Open Access Journals (Sweden)

    Dyakova E.S.

    2011-03-01

    Full Text Available The aim of the study was to determine the characteristic clinical, instrumental and diagnostic criteria of inflammatory periodontal diseases on the background of chronic cholecystitis with subsequent evaluation of the effectiveness of therapeutic measures using the combined action of the running of an alternating magnetic field and low-intensity helium-neon laser. Application low-intensiti laser radiation and a running variable magnetic field in complex treatment of patients periodontitis with cholecystitis expressed anti-inflammatory action allows to stop quickly inflammatory process in periodontium and to reduce treatment terms

  6. Algebraic aspects of the background field method

    International Nuclear Information System (INIS)

    The background field method allows the evaluation of the effective action by exploiting the (background) gauge invariance, which in general yields Ward identities, i.e., linear relations among the vertex functions. In the present approach an extra gauge fixing term is introduced right at the beginning in the action and it is chosen in such a way that BRST invariance is preserved. The background effective action is considered and it is shown to satisfy both the Slavnov-Taylor (ST) identities and the Ward identities. This allows the proof of the background equivalence theorem with the standard techniques. In particular we consider a BRST doublet where the background field enters with a non-zero BRST transformation. The rationale behind the introduction of an extra gauge fixing term is that of removing the singularity of the Legendre transform of the background effective action, thus allowing the construction of the connected amplitudes generating functional Wbg. By using the relevant ST identities we show that the functional Wbg gives the same physical amplitudes as the original one we started with. Moreover we show that Wbg cannot in general be derived from a classical action by the Gell-Mann-Low formula. As a final point of the paper we show that the BRST doublet generated from the background field does not modify the anomaly of the original underlying gauge theory. The proof is algebraic and makes no use of arguments based on power-counting

  7. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained

  8. The cosmic mult-messenger background field

    Science.gov (United States)

    Hartmann, Dieter

    2016-04-01

    The cosmic star formation history associated with baryon flows within the large scale structure of the expanding Universe has many important consequences, such as cosmic chemical- and galaxy evolution. Stars and accreting compact objects subsequently produce light, from the radio band to the highest photon energies, and dust within galaxies reprocesses a significant fraction of this light into the IR region. The Universe creates a radiation background that adds to the relic field from the big bang, the CMB. In addition, Cosmic Rays are created on variouys scales, and interact with this diffuse radiation field, and neutrinos are added as well. A multi-messenger field is created whose evolution with redshift contains a tremendous amount of cosmological information. We discuss several aspects of this story, emphasizing the background in the HE regime and the neutrino sector, and disccus the use of gamma-ray sources as probes.

  9. Background formalism for superstring field theory

    International Nuclear Information System (INIS)

    In the framework of the background formalism we analyse possible versions of the Witten-type NSR superstring field theory. We find the picture for string fields to be uniquely fixed by the requirement that the perturbative classical solutions are well-defined. This uniquely defined picture and the corresponding action are different from the ones in Witten's theory and coincide with the ones proposed from different reasons in our previous paper. Following the same background method we calculate the tree-level scattering amplitudes for the new action and argue that in contrast to the ones in Witten's original theory, the amplitudes are singularity-free and hence there is no need to add any tree-level counterterms. We also prove the amplitudes to reproduce correctly the first quantized results. (orig.)

  10. Ground state energy in smooth background fields

    International Nuclear Information System (INIS)

    We consider the backreaction problem for a smooth background field depending on one coordinate. We give a reformulation so that the scattering data of the corresponding Schroedinger equation become the independent variables. Using knowledge from the inverse scattering method it is shown that the problem can be reduced to an algebraic one within an arbitrary good approximation. For the simplest case an explicit example is given. (orig.)

  11. Magnetic Propeller for Uniform Magnetic Field Levitation

    OpenAIRE

    Krinker, Mark; Bolonkin, Alexander

    2008-01-01

    Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symm...

  12. Eruptive solar magnetic fields

    International Nuclear Information System (INIS)

    This paper considers the quasi-steady evolution of solar magnetic fields in response to gradual photospheric changes. Special interest is taken in the threshold of a sudden eruption in the solar atmosphere. The formal model of an evolving, force-free field dependent on two Cartesian coordinates has been treated previously, and we extend it to a field which is not force free but in static equilibrium with plasma pressure and gravity. The basic physics is illustrated by the evolution of a loop-shaped electric current sheet enclosing a potential bipolar field with footpoints rooted in the photosphere. A free-boundary problem is posed and solved for the equilibrium configuration of the current sheet in a hydrostatically supported isothermal atmosphere. As the footpoints move appart to spread a constant photospheric magnetic flux over a larger region, the equilibria available extend the field to increasingly great heights. Two basic behaviors are possible, depending on the ratio of the total magnetic flux to an equivalent flux constructed dimensionally from the pressure difference across the current sheet and the density scale height. For a small, total magnetic flux, nonequilibrium can set in with the appearance of a marginally stable equilibriu, as demonstrated previously for the frece-free fields. For a total magnetic flux exceeding a certain critical value, the field lines rise high enough for gravity to play a significant role. The sequence of equilibria in this case suggests that nonequilibrium can set in with the opening of the field lines by magnetic buoyancy. This eruption can also take place with a prominence filament and may be the origin of the white light coronal transient

  13. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  14. Solar Magnetic Fields

    Indian Academy of Sciences (India)

    J. O. Stenflo

    2008-03-01

    Since the structuring and variability of the Sun and other stars are governed by magnetic fields, much of present-day stellar physics centers around the measurement and understanding of the magnetic fields and their interactions. The Sun, being a prototypical star, plays a unique role in astrophysics, since its proximity allows the fundamental processes to be explored in detail. The PRL anniversary gives us an opportunity to look back at past milestones and try to identify the main unsolved issues that will be addressed in the future.

  15. Magnetic field of Mercury

    International Nuclear Information System (INIS)

    The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 1022G cm3 in the same direction as the earth's dipole), approx.-113 γR/sub M/4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ

  16. Deconfinement and Chiral Symmetry Restoration in a Strong Magnetic Background

    CERN Document Server

    Gatto, Raoul

    2010-01-01

    We perform a model study of deconfinement and chiral symmetry restoration in a strong magnetic background. We use a Nambu-Jona Lasinio model with the Polyakov loop, taking into account a possible dependence of the coupling on the Polyakov loop expectation value, as suggested by the recent literature. Our main result is that, within this model, the deconfinement and chiral crossovers of QCD in strong magnetic field are entangled even at the largest value of $eB$ considered here, namely $eB=30 m_\\pi^2$ (that is, $B \\approx 6\\times 10^{15}$ Tesla). The amount of split that we measure is, at this value of $eB$, of the order of 2%. We also study briefly the role of the 8-quark term on the entanglement of the two crossovers. We then compare the phase diagram of this model with previous results, as well as with available Lattice data.

  17. Deconfinement and chiral symmetry restoration in a strong magnetic background

    International Nuclear Information System (INIS)

    We perform a model study of deconfinement and chiral symmetry restoration in a strong magnetic background. We use a Nambu-Jona-Lasinio model with the Polyakov loop, taking into account a possible dependence of the coupling on the Polyakov-loop expectation value, as suggested by the recent literature. Our main result is that, within this model, the deconfinement and chiral crossovers of QCD in strong magnetic field are entangled even at the largest value of eB considered here, namely eB=30mπ2 (that is, B≅6x1015 T). The amount of split that we measure is, at this value of eB, of the order of 2%. We also study briefly the role of the 8-quark term on the entanglement of the two crossovers. We then compare the phase diagram of this model with previous results, as well as with available lattice data.

  18. Magnetic fields from inflation?

    CERN Document Server

    Demozzi, Vittoria; Rubinstein, Hector

    2009-01-01

    We consider the possibility of generation of the seeds of primordial magnetic field on inflation and show that the effect of the back reaction of this field can be very important. Assuming that back reaction does not spoil inflation we find a rather strong restriction on the amplitude of the primordial seeds which could be generated on inflation. Namely, this amplitude recalculated to the present epoch cannot exceed $10^{-32}G$ in $Mpc$ scales. This field seems to be too small to be amplified to the observable values by galactic dynamo mechanism.

  19. Wide field polarimetry and cosmic magnetism

    CERN Document Server

    Beck, Rainer

    2009-01-01

    The SKA and its precursors will open a new era in the observation of cosmic magnetic fields and help to understand their origin. In the SKADS polarization simulation project, maps of polarized intensity and RM of the Milky Way, galaxies and halos of galaxy clusters were constructed, and the possibilities to measure the evolution of magnetic fields in these objects were investigated. The SKA will map interstellar magnetic fields in nearby galaxies and intracluster fields in nearby clusters in unprecedented detail. All-sky surveys of Faraday rotation measures (RM) towards a dense grid of polarized background sources with the SKA and ASKAP (POSSUM) are dedicated to measure magnetic fields in distant intervening galaxies, cluster halos and intergalactic filaments, and will be used to model the overall structure and strength of the magnetic fields in the Milky Way and beyond. Simple patterns of regular fields in galaxies or cluster relics can be recognized to about 100 Mpc distance, ordered fields in unresolved ga...

  20. The Heliospheric Magnetic Field

    Science.gov (United States)

    Balogh, André; Erdõs, Géza

    2013-06-01

    The Heliospheric Magnetic Field (HMF) is the physical framework in which energetic particles and cosmic rays propagate. Changes in the large scale structure of the magnetic field lead to short- and long term changes in cosmic ray intensities, in particular in anti-phase with solar activity. The origin of the HMF in the corona is well understood and inner heliospheric observations can generally be linked to their coronal sources. The structure of heliospheric magnetic polarities and the heliospheric current sheet separating the dominant solar polarities are reviewed here over longer than a solar cycle, using the three dimensional heliospheric observations by Ulysses. The dynamics of the HMF around solar minimum activity is reviewed and the development of stream interaction regions following the stable flow patterns of fast and slow solar wind in the inner heliosphere is described. The complex dynamics that affects the evolution of the stream interaction regions leads to a more chaotic structure of the HMF in the outer heliosphere is described and discussed on the basis of the Voyager observations. Around solar maximum, solar activity is dominated by frequent transients, resulting in the interplanetary counterparts of Coronal Mass Ejections (ICMEs). These produce a complex aperiodic pattern of structures in the inner heliosphere, at all heliolatitudes. These structures continue to interact and evolve as they travel to the outer heliosphere. However, linking the observations in the inner and outer heliospheres is possible in the case of the largest solar transients that, despite their evolutions, remain recognizably large structures and lead to the formation of Merged Interaction Regions (MIRs) that may well form a quasi-spherical, "global" shell of enhanced magnetic fields around the Sun at large distances. For the transport of energetic particles and cosmic rays, the fluctuations in the magnetic field and their description in alternative turbulent models remains a

  1. Magnetic helicity and cosmological magnetic field

    OpenAIRE

    Semikoz, V. B.; Sokoloff, D. D.

    2004-01-01

    The magnetic helicity has paramount significance in nonlinear saturation of galactic dynamo. We argue that the magnetic helicity conservation is violated at the lepton stage in the evolution of early Universe. As a result, a cosmological magnetic field which can be a seed for the galactic dynamo obtains from the beginning a substantial magnetic helicity which has to be taken into account in the magnetic helicity balance at the later stage of galactic dynamo.

  2. Magnetic nanoparticle motion in external magnetic field

    International Nuclear Information System (INIS)

    A set of equations describing the motion of a free magnetic nanoparticle in an external magnetic field in a vacuum, or in a medium with negligibly small friction forces is postulated. The conservation of the total particle momentum, i.e. the sum of the mechanical and the total spin momentum of the nanoparticle is taken into account explicitly. It is shown that for the motion of a nanoparticle in uniform magnetic field there are three different modes of precession of the unit magnetization vector and the director that is parallel the particle easy anisotropy axis. These modes differ significantly in the precession frequency. For the high-frequency mode the director points approximately along the external magnetic field, whereas the frequency and the characteristic relaxation time of the precession of the unit magnetization vector are close to the corresponding values for conventional ferromagnetic resonance. On the other hand, for the low-frequency modes the unit magnetization vector and the director are nearly parallel and rotate in unison around the external magnetic field. The characteristic relaxation time for the low-frequency modes is remarkably long. This means that in a rare assembly of magnetic nanoparticles there is a possibility of additional resonant absorption of the energy of alternating magnetic field at a frequency that is much smaller compared to conventional ferromagnetic resonance frequency. The scattering of a beam of magnetic nanoparticles in a vacuum in a non-uniform external magnetic field is also considered taking into account the precession of the unit magnetization vector and director. - Highlights: • There are three different modes of the unit magnetization vector precession for a free magnetic nanoparticle in uniform external magnetic field. • The high-frequency mode is similar to the conventional ferromagnetic resonance. The frequencies of the low-frequency modes can be two orders of magnitude lower. • The characteristic relaxation

  3. Stochastic gravitational wave background from magnetic deformation of newly born magnetars

    OpenAIRE

    Cheng, Quan; Yu, Yun-Wei; Zheng, Xiao-Ping

    2015-01-01

    Newly born magnetars are promising sources for gravitational wave (GW) detection due to their ultra-strong magnetic fields and high spin frequencies. Within the scenario of a growing tilt angle between the star's spin and magnetic axis, due to the effect of internal viscosity, we obtain improved estimates of the stochastic gravitational wave backgrounds (SGWBs) from magnetic deformation of newly born magnetars. We find that the GW background spectra contributed by the magnetars with ultra-str...

  4. Cosmological Magnetic Fields vs. CMB

    OpenAIRE

    Kahniashvili, Tina

    2004-01-01

    I present a short review of the effects of a cosmological magnetic field on the CMB temperature and polarization anisotropies. Various possibilities for constraining the magnetic field amplitude are discussed.

  5. The LHC Magnetic Field Model

    CERN Document Server

    Sammut, Nicholas J; Micallef, Joseph

    2005-01-01

    The compensation of the field changes during the beam injection and acceleration in the LHC requires an accurate forecast and an active control of the magnetic field in the accelerator. The LHC Magnetic Field Model is the core of this magnetic prediction system. The model will provide the desired field components at a given time, magnet operating current, magnet ramp rate, magnet temperature and magnet powering history to the required precision. The model is based on the identification and physical decomposition of the effects that contribute to the total field in the magnet aperture of the LHC dipoles. Each effect is quantified using data obtained from series measurements, and modeled theoretically or empirically depending on the complexity of the physical phenomena involved. This paper presents the developments of the new finely tuned magnetic field model and evaluates its accuracy and predictive capabilities over a sector of the machine.

  6. String theory in magnetic monopole backgrounds

    International Nuclear Information System (INIS)

    We discuss string propagation in the near-horizon geometry generated by Neveu-Schwarz fivebranes, Kaluza-Klein monopoles and fundamental strings. When the fivebranes and KK monopoles are wrapped around a compact four-manifold M, the geometry is AdS3 x S3/ZN x M and the space-time dynamics is expected to correspond to a local two-dimensional conformal field theory. We determine the moduli space of space-time CFT's, study the spectrum of the theory and compare the chiral primary operators obtained in string theory to supergravity expectations

  7. Motion of test particles in a magnetized conformastatic background

    CERN Document Server

    Gutiérrez-Piñeres, Antonio C

    2015-01-01

    A class of exact conformastatic solutions of the Einstein-Maxwell field equations is presented in which the gravitational and electromagnetic potentials are completely determined by a harmonic function only. The motion of test particles is investigated in the background of a space-time characterized by this class of solutions. We focus on the study of circular stable and unstable orbits obtained by taking account particular harmonic functions defining the gravitational potential. We show that is possible to have repulsive force generated by the charge distribution of the source. As the space-time here considered is singularity free we conclude that this phenomena is not exclusive to the case of naked singularities. Additionally, we obtain an expression for the perihelion advance of the test particles in a general magnetized conformastatic space-time.

  8. Entanglement generation by electric field background

    Energy Technology Data Exchange (ETDEWEB)

    Ebadi, Zahra, E-mail: z.ebadi@ph.iut.ac.ir; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir

    2014-12-15

    The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

  9. Superhorizon magnetic fields

    CERN Document Server

    Campanelli, Leonardo

    2015-01-01

    [Abridged] We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wavenumber $k$ evolves, after inflation, according to the values of $k\\eta_e$, $n_{\\mathbf{k}}$, and $\\Omega_k$, where $\\eta_e$ is the conformal time at the end of inflation, $n_{\\mathbf{k}}$ is the number density spectrum of inflation-produced photons, and $\\Omega_k$ is the phase difference between the two Bogolubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that $n_{\\mathbf{k}}^{-1} \\ll |k\\eta_e| \\ll 1$, and three evolutionary scenarios are possible: ($i$) $|\\Omega_k \\mp \\pi| = \\mathcal{O}(1)$, in which case the evolution of the magnetic spectrum $B_k(\\eta)$ is adiabatic, $a^2B_k(\\eta) = \\mbox{const}$, with $a$ being the expansion parameter; ($ii$) $|\\Omega_k \\mp \\pi| \\ll |k\\eta_e|$,...

  10. The Heliospheric Magnetic Field

    Directory of Open Access Journals (Sweden)

    Mathew J. Owens

    2013-11-01

    Full Text Available The heliospheric magnetic field (HMF is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.

  11. Integral magnetic field measurement of dipole magnets

    International Nuclear Information System (INIS)

    This article presents the basic principle of dipole integral magnetic field measurement. The integral coil which has the same radius with the dipole magnets was used to measure the integral magnetic field of different magnets in Cooler Storage Ring (HIRFL-CSR). The article also generally introduced the software and hardware systems of the automatic measurement device. According to the repetitive experiments, a suit of better measurement got to be summarized. On the other hand, the article recommends the way of the data processing which were decided by the measuring instrument and environment influence. The practical measured results proved the measurement system is reliable and stable

  12. Higgs boson decay into two photons in an electromagnetic background field

    DEFF Research Database (Denmark)

    Nielsen, N. K.

    2014-01-01

    The amplitude for Higgs boson decay into two photons in a homogeneous and time-independent magnetic field is investigated by proper-time regularization in a gauge-invariant manner and is found to be singular at large field values. The singularity is caused by the component of the charged vector...... boson field that is tachyonic in a strong magnetic field. Also, tools for the computation of the amplitude in a more general electromagnetic background are developed....

  13. On quantum field theory in gravitational background

    International Nuclear Information System (INIS)

    We discuss Quantum Fields on Riemannian space-time. A principle of local definitness is introduced which is needed beyond equations of motion and commutation relations to fix the theory uniquely. It also allows to formulate local stability. In application to a region with a time-like Killing vector field and horizons it yields the value of the Hawking temperature. The concept of vacuum and particles in a non stationary metric is treated in the example of the Robertson-Walker metric and some remarks on detectors in non inertial motion are added. (orig.)

  14. Magnetic Propeller for Uniform Magnetic Field Levitation

    CERN Document Server

    Krinker, Mark

    2008-01-01

    Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symmetry causing origination of a net force. Unlike a wire with current, having radial energetic symmetry, the symmetry of the Virtual Wire System is closer to an axial wire. The third approach refers to the first two. It is based on creation of developed surface system, comprising the elements of the first two types. The developed surface approach is a way to drastically increase a thrust-to-weight ratio. The conducted experiments have confirmed feasibility of the proposed approaches.

  15. Evolution of twisted magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, E.G.; Boozer, A.H.

    1985-02-01

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

  16. Evolution of twisted magnetic fields

    International Nuclear Information System (INIS)

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length

  17. Exposure guidelines for magnetic fields.

    Science.gov (United States)

    Miller, G

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields. PMID:3434538

  18. Exposure guidelines for magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  19. Mercury's magnetic field and interior

    International Nuclear Information System (INIS)

    The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain

  20. Stochastic gravitational wave background from magnetic deformation of newly born magnetars

    CERN Document Server

    Cheng, Quan; Zheng, Xiao-Ping

    2015-01-01

    Newly born magnetars are promising sources for gravitational wave (GW) detection due to their ultra-strong magnetic fields and high spin frequencies. Within the scenario of a growing tilt angle between the star's spin and magnetic axis, due to the effect of internal viscosity, we obtain improved estimates of the stochastic gravitational wave backgrounds (SGWBs) from magnetic deformation of newly born magnetars. We find that the GW background spectra contributed by the magnetars with ultra-strong toroidal magnetic fields of 10^{17} G could roughly be divided into four segments. Most notably, in contrast to the background spectra calculated by assuming constant tilt angles \\chi=\\pi/2, the background radiation above 1000 Hz are seriously suppressed. However, the background radiation at the frequency band \\sim100-1000 Hz are moderately enhanced, depending on the strengths of the dipole magnetic fields. We suggest that if all newly born magnetars indeed have toroidal magnetic fields of 10^{17} G, the produced SGWB...

  1. Non-spot magnetic fields

    International Nuclear Information System (INIS)

    The Glossary is designed to be a technical dictionary that will provide solar workers of various specialties, students, other astronomers and theoreticians with concise information on the nature and the properties of phenomena of solar and solar-terrestrial physics. Each term, or group of related terms, is given a concise phenomenological and quantitative description, including the relationship to other phenomena and an interpretation in terms of physical processes. The references are intended to lead the non-specialist reader into the literature. This section deals with: general, polar and large-scale magnetic fields; sector structure; unipolar magnetic region; magnetic puka; network field; magnetic hills; magnetic element or fluxule; magnetic rope; magnetic filament; magnetic microturbulence; crossover effect; magnetograph; Stokesmeter; and lambdameter or recording Doppler comparator. (B.R.H.)

  2. Measurements of magnetic field alignment

    International Nuclear Information System (INIS)

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs

  3. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  4. Magnetic fields during galaxy mergers

    OpenAIRE

    Rodenbeck, Kai; Schleicher, Dominik R. G.

    2016-01-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies, and may have a strong impact on their magnetic fields. We present the first grid-based 3D magneto-hydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employ a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally l...

  5. The MAVEN Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  6. Magnetic Field Measurements in Beam Guiding Magnets

    CERN Document Server

    Henrichsen, K N

    1998-01-01

    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

  7. Consistency relation for cosmic magnetic fields

    DEFF Research Database (Denmark)

    Jain, R. K.; Sloth, M. S.

    2012-01-01

    If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we show...

  8. Magnetic field synthesis for microwave magnetics

    Science.gov (United States)

    Morgenthaler, F. R.

    1982-04-01

    The Microwave and Quantum Magnetics Group of the M.I.T. Department of Electrical Engineering and Computer Science undertook a two-year research program directed at developing synthesis procedures that allow magnetostatic and/or magnetoelastic modes to be specially tailored for microwave signal processing applications that include magnetically tunable filters and limiters as well as delay lines that are either linearly dispersive or nondispersive over prescribed bandwidths. Special emphasis was given to devices employing thin films of yttrium iron garnet (YIG) that are blessed with spatially nonuniform dc magnetic fields.

  9. Magnetic fields in ring galaxies

    CERN Document Server

    Moss, D; Silchenko, O; Sokoloff, D; Horellou, C; Beck, R

    2016-01-01

    Many galaxies contain magnetic fields supported by galactic dynamo action. However, nothing definitive is known about magnetic fields in ring galaxies. Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. We use tested methods for modelling $\\alpha-\\Omega$ galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513 where th...

  10. Critical endpoint and inverse magnetic catalysis for finite temperature and density quark matter in a magnetic background

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, M., E-mail: marco.ruggieri@lns.infn.it [Department of Physics and Astronomy, University of Catania, Via S. Sofia 64, I-95125 Catania (Italy); Oliva, L. [Department of Physics and Astronomy, University of Catania, Via S. Sofia 64, I-95125 Catania (Italy); INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Castorina, P. [Department of Physics and Astronomy, University of Catania, Via S. Sofia 64, I-95125 Catania (Italy); INFN-CT, Via S. Sofia 62, I-95123 Catania (Italy); Gatto, R. [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneve 4 (Switzerland); Greco, V. [Department of Physics and Astronomy, University of Catania, Via S. Sofia 64, I-95125 Catania (Italy); INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy)

    2014-06-27

    In this article we study chiral symmetry breaking for quark matter in a magnetic background, B, at finite temperature and quark chemical potential, μ, making use of the Ginzburg–Landau effective action formalism. As a microscopic model to compute the effective action we use the renormalized quark–meson model in the chiral limit. Our main goal is to study the evolution of the critical endpoint, CP, as a function of the magnetic field strength, and investigate the realization of inverse magnetic catalysis at finite chemical potential. We find that the phase transition at zero chemical potential is always of the second order; for small and intermediate values of B, CP moves towards small μ, while for larger B it moves towards moderately larger values of μ. Our results are in agreement with the inverse magnetic catalysis scenario at finite chemical potential and not too large values of the magnetic field, while at larger B direct magnetic catalysis sets in.

  11. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    International Nuclear Information System (INIS)

    A rotating superconductor magnet is described for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet

  12. 高旋弹丸背景涡流磁场建模与补偿%Modeling and compensation of the background eddy-current magnetic field of a high-spin projectile

    Institute of Scientific and Technical Information of China (English)

    向超; 卜雄洙; 祁克玉; 于靖

    2014-01-01

    为了实现高旋弹体姿态的高精度测量,对弹丸背景涡流磁场进行了理论研究和数学建模。基于等效线圈的思想推导了涡流磁场的单轴感应模型和三轴等效磁偶极子物理模型。利用磁矩在空间中的磁感应强度分布理论,建立了三轴耦合涡流磁场的数学模型,给出了涡流参数的表达式。结合误差传递的思想分析了涡流磁场引起的姿态测量误差,进行了数值仿真与半实物实验研究。结果表明:利用提出的涡流磁场模型进行补偿后的地磁分量测量误差小于0.01 A/m,补偿后的姿态角解算误差在±1°以内。为了满足高精度弹丸姿态测量的要求,必须要对涡流干扰磁场进行补偿。%In order to realize the high-precision measurement of the attitude of a high-spin projectile, theoretical re-search and a mathematical modeling were carried out for the eddy-current magnetic field ( ECM) of a spinning pro-jectile. A single-axis induction model and a three-axis equivalent magnetic dipole physical model of the ECM were deduced on the basis of the idea of the equivalent coil. Based on the magnetic induction intensity distribution theory of a magnetic moment in space, the mathematical model of a three-axis coupling ECM was established. In addition, an expression of the eddy-current parameters was given. In combination with the idea of error transfer, the attitude measurement errors caused by the background ECM field were analyzed. Additionally, a numerical simulation and a hardware-in-the-loop experiment were conducted. The results show that after compensation is realized through the proposed ECM model, the geomagnetic measurement error rate is less than 0.01A/m;the error rate of the attitude angle lies within ±1°. In order to meet the requirements of a high-precision attitude measurement of a projectile, the compensation must be provided to the ECM.

  13. Heat kernel expansion in the background field formalism

    CERN Document Server

    Barvinsky, Andrei

    2015-01-01

    Heat kernel expansion and background field formalism represent the combination of two calculational methods within the functional approach to quantum field theory. This approach implies construction of generating functionals for matrix elements and expectation values of physical observables. These are functionals of arbitrary external sources or the mean field of a generic configuration -- the background field. Exact calculation of quantum effects on a generic background is impossible. However, a special integral (proper time) representation for the Green's function of the wave operator -- the propagator of the theory -- and its expansion in the ultraviolet and infrared limits of respectively short and late proper time parameter allow one to construct approximations which are valid on generic background fields. Current progress of quantum field theory, its renormalization properties, model building in unification of fundamental physical interactions and QFT applications in high energy physics, gravitation and...

  14. Resonant magnetic fields from inflation

    International Nuclear Information System (INIS)

    We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of O(10−15 Gauss) today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing

  15. Preflare magnetic and velocity fields

    Science.gov (United States)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  16. Low-magnetic-field magnetars

    CERN Document Server

    Turolla, R

    2013-01-01

    It is now widely accepted that soft gamma repeaters and anomalous X-ray pulsars are the observational manifestations of magnetars, i.e. sources powered by their own magnetic energy. This view was supported by the fact that these `magnetar candidates' exhibited, without exception, a surface dipole magnetic field (as inferred from the spin-down rate) in excess of the electron critical field (~4.4E+13 G). The recent discovery of fully-qualified magnetars, SGR 0418+5729 and Swift J1822.3-1606, with dipole magnetic field well in the range of ordinary radio pulsars posed a challenge to the standard picture, showing that a very strong field is not necessary for the onset of magnetar activity (chiefly bursts and outbursts). Here we summarize the observational status of the low-magnetic-field magnetars and discuss their properties in the context of the mainstream magnetar model and its main alternatives.

  17. Preflare magnetic and velocity fields

    International Nuclear Information System (INIS)

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  18. Static magnetic fields enhance turbulence

    CERN Document Server

    Pothérat, Alban

    2015-01-01

    More often than not, turbulence occurs under the influence of external fields, mostly rotation and magnetic fields generated either by planets, stellar objects or by an industrial environment. Their effect on the anisotropy and the dissipative behaviour of turbulence is recognised but complex, and it is still difficult to even tell whether they enhance or dampen turbulence. For example, externally imposed magnetic fields suppress free turbulence in electrically conducting fluids (Moffatt 1967), and make it two-dimensional (2D) (Sommeria & Moreau 1982); but their effect on the intensity of forced turbulence, as in pipes, convective flows or otherwise, is not clear. We shall prove that since two-dimensionalisation preferentially affects larger scales, these undergo much less dissipation and sustain intense turbulent fluctuations. When higher magnetic fields are imposed, quasi-2D structures retain more kinetic energy, so that rather than suppressing forced turbulence, external magnetic fields indirectly enha...

  19. Magnetic fields and scintillator performance

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.; Ronzhin, A. [Fermi National Accelerator Lab., Batavia, IL (United States); Hagopian, V. [Florida State Univ., Tallahasse, FL (United States)

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.

  20. Magnetic fields and scintillator performance

    International Nuclear Information System (INIS)

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University

  1. Magnetohydrodynamic experiments on cosmic magnetic fields

    CERN Document Server

    Stefani, Frank; Gerbeth, Gunter

    2008-01-01

    It is widely known that cosmic magnetic fields, including the fields of planets, stars, and galaxies, are produced by the hydromagnetic dynamo effect in moving electrically conducting fluids. It is less well known that cosmic magnetic fields play also an active role in cosmic structure formation by enabling outward transport of angular momentum in accretion disks via the magnetorotational instability (MRI). Considerable theoretical and computational progress has been made in understanding both processes. In addition to this, the last ten years have seen tremendous efforts in studying both effects in liquid metal experiments. In 1999, magnetic field self-excitation was observed in the large scale liquid sodium facilities in Riga and Karlsruhe. Recently, self-excitation was also obtained in the French "von Karman sodium" (VKS) experiment. An MRI-like mode was found on the background of a turbulent spherical Couette flow at the University of Maryland. Evidence for MRI as the first instability of an hydrodynamica...

  2. Magnetic field characteristics analysis of a single assembled magnetic medium using ANSYS software

    Institute of Scientific and Technical Information of China (English)

    Ren Liuyi; Zeng Shanglin; Zhang Yimin

    2015-01-01

    The section shape of an assembled magnetic medium is the most important structural parameter of a high gradient magnetic separator, which directly affects the induction distribution and magnetic field gradient of the magnetic separator. In this study, equilateral triangle, square, hexagonal, octagon, dode-cagon, and round shape sections of the assembled magnetic medium are chosen to study their influence on magnetic field distribution characteristics using the ANSYS analysis. This paper utilizes a single assem-bled magnetic medium to understand the relationship between the geometry of the assembled magnetic medium and its magnetic field distribution characteristics. The results show that high magnetic field, regional field, magnetic field gradient, and magnetic force formed by the different sections of the assem-bled magnetic medium in the same background magnetic field reduce in turn based on the triangle, square, hexagonal, octagon, dodecagon, and round. Based on the magnetic field characteristics analytic results, the magnetic separation tests of the ilmenite are carried out. The results indicate that the section shape of the toothed plate compared with the section shape of cylinder can improve the recovery of ilme-nite up to 45%in the same magnetizing current condition of 2 A, which is consistent with magnetic field characteristics analysis of different assembled magnetic medium section shapes.

  3. Neutron scattering in magnetic fields

    International Nuclear Information System (INIS)

    The use of magnetic fields in neutron scattering experimentation is reviewed briefly. Two general areas of application can be distinguished. In one the field acts to change the properties of the scattering sample; in the second the field acts on the neutron itself. Several examples are discussed. Precautions necessary for high precision polarized beam measurements are reviewed. 33 references

  4. Neutron scattering in magnetic fields

    OpenAIRE

    Koehler, W.C.

    1984-01-01

    The use of magnetic fields in neutron scattering experimentation is reviewed briefly. Two general areas of application can be distinguished. In one the field acts to change the properties of the scattering sample ; in the second the field acts on the neutron itself. Several examples are discussed. Precautions necessary for high precision polarized beam measurements are reviewed.

  5. Cosmology with inhomogeneous magnetic fields

    International Nuclear Information System (INIS)

    We review spacetime dynamics in the presence of large-scale electromagnetic fields and then consider the effects of the magnetic component on perturbations to a spatially homogeneous and isotropic universe. Using covariant techniques, we refine and extend earlier work and provide the magnetohydrodynamic equations that describe inhomogeneous magnetic cosmologies in full general relativity. Specialising this system to perturbed Friedmann-Robertson-Walker models, we examine the effects of the field on the expansion dynamics and on the growth of density inhomogeneities, including non-adiabatic modes. We look at scalar perturbations and obtain analytic solutions for their linear evolution in the radiation, dust and inflationary eras. In the dust case we also calculate the magnetic analogue of the Jeans length. We then consider the evolution of vector perturbations and find that the magnetic presence generally reduces the decay rate of these distortions. Finally, we examine the implications of magnetic fields for the evolution of cosmological gravitational waves

  6. Vacuum polarization tensor in inhomogeneous magnetic fields

    International Nuclear Information System (INIS)

    We develop worldline numerical methods, which combine string-inspired with Monte Carlo techniques, for the computation of the vacuum polarization tensor in inhomogeneous background fields for scalar QED. The algorithm satisfies the Ward identity exactly and operates on the level of renormalized quantities. We use the algorithm to study for the first time light propagation in a spatially varying magnetic field. Whereas a local derivative expansion applies to the limit of small variations compared to the Compton wavelength, the case of a strongly varying field can be approximated by a derivative expansion for the averaged field. For rapidly varying fields, the vacuum-magnetic refractive indices can exhibit a nonmonotonic dependence on the local field strength. This behavior can provide a natural limit on the self-focussing property of the quantum vacuum.

  7. ISR split-field magnet

    CERN Multimedia

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  8. Neutron in Strong Magnetic Fields

    CERN Document Server

    Andreichikov, M A; Orlovsky, V D; Simonov, Yu A

    2013-01-01

    Relativistic world-line Hamiltonian for strongly interacting 3q systems in magnetic field is derived from the path integral for the corresponding Green's function. The neutral baryon Hamiltonian in magnetic field obeys the pseudomomentum conservation and allows a factorization of the c.m. and internal motion. The resulting expression for the baryon mass in magnetic field is written explicitly with the account of hyperfine, OPE and OGE (color Coulomb) interaction. The neutron mass is fast decreasing with magnetic field, losing 1/2 of its value at eB~0.25 GeV^2 and is nearly zero at eB~0.5 GeV^2. Possible physical consequences of the calculated mass trajectory of the neutron, M_n(B), are presented and discussed.

  9. Mercury: magnetic field and interior

    International Nuclear Information System (INIS)

    Between 1965 and 1975, knowledge of Mercury and its physical characteristics improved dramatically. Radar studies of the planetary orbit and rotation rate and Mariner 10 spacecraft studies of its surface, atmosphere, magnetic field and plasma environment provided startling new results on what had been the least understood member of the terrestrial planets. With a highly cratered surface and a modest magnetic field, Mercury is a differentiated planet with fractionally the largest iron core of all. (Auth.)

  10. Ground state energy of an interacting electron system in the background of two opposite magnetic strings

    OpenAIRE

    Dietel, J.

    2004-01-01

    Motivated by our earlier work, we show in this paper rigorously that the ground state energy and degeneracy of an infinitely extended system of interacting electrons in the background of a homogeneous magnetic field and two separated magnetic strings of opposite strength is the same as for the system without strings. By using symmetry considerations we obtain further that the energy spectrum does not depend on the string separation distance for strictly positive distances. As a side effect of...

  11. Theorem on magnet fringe field

    International Nuclear Information System (INIS)

    Transverse particle motion in particle accelerators is governed almost totally by non-solenoidal magnets for which the body magnetic field can be expressed as a series expansion of the normal (bn) and skew (an) multipoles, By + iBx = summation(bn + ian)(x + iy)n, where x, y, and z denote horizontal, vertical, and longitudinal (along the magnet) coordinates. Since the magnet length L is necessarily finite, deflections are actually proportional to ''field integrals'' such as bar BL ≡ ∫ B(x,y,z)dz where the integration range starts well before the magnet and ends well after it. For bar an, bar bn, bar Bx, and bar By defined this way, the same expansion Eq. 1 is valid and the ''standard'' approximation is to neglect any deflections not described by this expansion, in spite of the fact that Maxwell's equations demand the presence of longitudinal field components at the magnet ends. The purpose of this note is to provide a semi-quantitative estimate of the importance of |Δp∝|, the transverse deflection produced by the ion-gitudinal component of the fringe field at one magnet end relative to |Δp0|, the total deflection produced by passage through the whole magnet. To emphasize the generality and simplicity of the result it is given in the form of a theorem. The essence of the proof is an evaluation of the contribution of the longitudinal field Bx from the vicinity of one magnet end since, along a path parallel to the magnet axis such as path BC

  12. The magnetic field of Mercury

    International Nuclear Information System (INIS)

    The USA Mariner 10 spacecraft encountered Mercury three times in 1974-1975. The 1st and 3rd encounters provided detailed observations of a well developed, detached bow shock wave which results from the interaction of the solar wind. The planet possesses a global magnetic field, and modest magnetosphere, which deflects the solar wind. The field is approximately dipolar, with orientation in the same sense as Earth, tilted 120 from the rotation axis. The magnetic moment, 5x1022 Gauss-cm3, corresponds to an undistorted equatorial field intensity of 350γ, approximately 1% of Earth's. The origin of the field, while unequivocally intrinsic to the planet, is uncertain. It may be due to remanent magnetization acquired from an extinct dynamo or a primordial magnetic field or due to a presently active dynamo. Among these possibilities, the latter appears more plausible at present. In any case, the existence of the magnetic field provides very strong evidence of a mature, differentiated planetary interior with a large core, Rsub(c) approximately 0.7Rsub(M), and a record of the history of planetary formation in the magnetization of the crustal rocks. (Auth.)

  13. Luminosity distance for Born–Infeld electromagnetic waves propagating in a cosmological magnetic background

    International Nuclear Information System (INIS)

    Born–Infeld electromagnetic waves interacting with a static magnetic background in an expanding universe are studied. The non-linear character of Born–Infeld electrodynamics modifies the relation between the energy flux and the distance to the source, which gains a new dependence on the redshift that is governed by the background field. We compute the luminosity distance as a function of the redshift and compare with Maxwellian curves for supernovae type Ia

  14. Matter in Strong Magnetic Fields

    CERN Document Server

    Lai, D

    2001-01-01

    The properties of matter are significantly modified by strong magnetic fields, $B>>2.35\\times 10^9$ Gauss ($1 G =10^{-4} Tesla$), as are typically found on the surfaces of neutron stars. In such strong magnetic fields, the Coulomb force on an electron acts as a small perturbation compared to the magnetic force. The strong field condition can also be mimicked in laboratory semiconductors. Because of the strong magnetic confinement of electrons perpendicular to the field, atoms attain a much greater binding energy compared to the zero-field case, and various other bound states become possible, including molecular chains and three-dimensional condensed matter. This article reviews the electronic structure of atoms, molecules and bulk matter, as well as the thermodynamic properties of dense plasma, in strong magnetic fields, with $10^9G << B < 10^{16}G$. The focus is on the basic physical pictures and approximate scaling relations, although various theoretical approaches and numerical results are also di...

  15. The origin, evolution and signatures of primordial magnetic fields

    CERN Document Server

    Subramanian, Kandaswamy

    2015-01-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak $\\sim 10^{-16}$ Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and other phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, ...

  16. Lasers plasmas and magnetic field

    International Nuclear Information System (INIS)

    We studied the coupling between a laser produced plasmas and a magnetic field in two cases: 1) in the context of Inertial Fusion Confinement (ICF), we first studied how magnetic fields are self generated during the interaction between a target and a laser, then 2) to progress in the understanding of the large-scale shaping of astrophysical jets, we studied the influence of an externally applied magnetic field on the dynamics of a laser-produced plasma expanding into vacuum. The first part of this thesis is thus dedicated to a numerical and experimental study of the self generated magnetic fields that are produced following the irradiation of a solid target by a high power laser (having pulse duration in the nanosecond and picosecond regimes). These fields play an important role in the frame of ICF since they influence the dynamics of the electrons produced during the laser-matter interaction, and thus condition the success of ICF experiments. The second part of this thesis is a numerical and experimental study of the influence of an externally applied magnetic field on the morphology of a laser produced plasma freely otherwise expanding into vacuum. This work aims at better understanding the observed large-scale collimation of astrophysical jets which cannot be understood in the frame of existing models. We notably show that a purely axial magnetic field can force an initially isotropic laboratory flow, scaled to be representative of a flow emerging from a Young Star Object, in a re-collimation shock, from which emerges a narrow, well collimated jet. We also show that the plasma heating induced at the re-collimation point could explain the 'puzzling' observations of stationary X ray emission zones embedded within astrophysical jets. (author)

  17. The inhomogeneity expansion for planar QED in a magnetic background

    CERN Document Server

    Gat, G; Ray, R; Gat, Gil; Raval, Alpan; Ray, Rashmi

    1994-01-01

    The effective action for Q.E.D in external magnetic field is constructed using the method of inhomogeneity expansion. We first treat the non-relativistic case where a Chern-Simons like term is generated. We then consider the full relativistic theory and derive the effective action for the A_{\\mu} fields. In the non-relativistic case we also add a 4-fermi type interaction and show that under certain circumstances, it corresponds to a Zeeman type term in the effective action.

  18. Indoor localization using magnetic fields

    Science.gov (United States)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  19. Magnetic Fields in Spiral Galaxies

    CERN Document Server

    Beck, Rainer

    2015-01-01

    Radio synchrotron emission is a powerful tool to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30\\mu G) and in central starburst regions (50-100\\mu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15\\mu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the interg...

  20. Gauge Fields and Scalars in Rolling Tachyon Backgrounds

    OpenAIRE

    Mehen, Thomas; Wecht, Brian

    2002-01-01

    We investigate the dynamics of gauge and scalar fields on unstable D-branes with rolling tachyons. Assuming an FRW metric on the brane, we find a solution of the tachyon equation of motion which is valid for arbitrary tachyon potentials and scale factors. The equations of motion for a U(1) gauge field and a scalar field in this background are derived. These fields see an effective metric which differs from the original FRW metric. The field equations receive large corrections due to the curva...

  1. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  2. Background estimation in a wide-field background-limited instrument such as Fermi GBM

    CERN Document Server

    Fitzpatrick, Gerard; Connaughton, Valerie; Briggs, Michael

    2012-01-01

    The supporting instrument on board the Fermi Gamma-ray Space Telescope, the Gamma-ray Burst Monitor (GBM) is a wide-field gamma-ray monitor composed of 14 individual scintillation detectors, with a field of view which encompasses the entire unocculted sky. Primarily designed as transient monitors, the conventional method for background determination with GBM-like instruments is to time interpolate intervals before and after the source as a polynomial. This is generally sufficient for sharp impulsive phenomena such as Gamma-Ray Bursts (GRBs) which are characterised by impulsive peaks with sharp rises, often highly structured, and easily distinguishable against instrumental backgrounds. However, smoother long lived emission, such as observed in solar flares and some GRBs, would be difficult to detect in a background-limited instrument using this method. We present here a description of a technique which uses the rates from adjacent days when the satellite has approximately the same geographical footprint to dis...

  3. Effect of Guiding Magnetic Field on Weibel Instability

    Institute of Scientific and Technical Information of China (English)

    LI Ji-Wei; PEI Wen-Bing

    2005-01-01

    @@ We derive a linear dispersion relation in the presence of a constant uniform guiding magnetic field parallel to the beam velocity direction, which shows a strong background magnetic field suppresses or even stabilizes the Weibel instability produced by two counter streams in electron-ion plasmas. The simulation results are in good agreement with the analytical ones. Also observed in the simulations are the suppression of electrostatic field, a higher level of saturation of self-generated magnetic field, and the apparent difference in phase space compared with those in the absence of guiding magnetic field.

  4. Observations of Mercury's magnetic field

    Science.gov (United States)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1975-01-01

    Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

  5. What Are Electric and Magnetic Fields? (EMF)

    Science.gov (United States)

    ... Experiments Stories Lessons Topics Games Activities Lessons MENU What are Electric and Magnetic Fields? (EMF) Kids Homepage ... electric power is something we take for granted. What are electric and magnetic fields? Electric and magnetic ...

  6. Magnetic fields during galaxy mergers

    CERN Document Server

    Rodenbeck, Kai

    2016-01-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies, and may have a strong impact on their magnetic fields. We present the first grid-based 3D magneto-hydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employ a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally leads to the production of two peaks in the evolution of the average magnetic field strength within 5 kpc, within 25 kpc and on scales in between 5 and 25 kpc. The latter is consistent with the peak in the magnetic field strength reported by Drzazga et al. (2011) in a merger sequence of observed galaxies. We show that the peak on the galactic scale and in the outer regions is likely due to geometrical effects, as the core of one galaxy enters the outskirts of the other one. In addition, there is a physical enhancement of t...

  7. Comments on Higher-Spin Fields in Nontrivial Backgrounds

    CERN Document Server

    Rahman, Rakibur

    2016-01-01

    We consider the free propagation of totally symmetric massive bosonic fields in nontrivial backgrounds. The mutual compatibility of the dynamical equations and constraints in flat space amounts to the existence of an Abelian algebra formed by the d'Alembertian, divergence and trace operators. The latter, along with the symmetrized gradient, symmetrized metric and spin operators, actually generate a bigger non-Abelian algebra, which we refer to as the "consistency" algebra. We argue that in nontrivial backgrounds, it is some deformed version of this algebra that governs the consistency of the system. This can be motivated, for example, from the theory of charged open strings in a background gauge field, where the Virasoro algebra ensures consistent propagation. For a gravitational background, we outline a systematic procedure of deforming the generators of the consistency algebra in order that their commutators close. We find that equal-radii AdSp X Sq manifolds, for arbitrary p and q, admit consistent propaga...

  8. Low-magnetic-field magnetars

    OpenAIRE

    Turolla, R.; Esposito, P.

    2013-01-01

    It is now widely accepted that soft gamma repeaters and anomalous X-ray pulsars are the observational manifestations of magnetars, i.e. sources powered by their own magnetic energy. This view was supported by the fact that these `magnetar candidates' exhibited, without exception, a surface dipole magnetic field (as inferred from the spin-down rate) in excess of the electron critical field (~4.4E+13 G). The recent discovery of fully-qualified magnetars, SGR 0418+5729 and Swift J1822.3-1606, wi...

  9. Milestones in the Observations of Cosmic Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Magnetic fields are observed everywhere in the universe. In this review,we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields,namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs,hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities.The magnetic field of the Galaxy was first discovered in 1949 by optical polarization observations. The local magnetic fields within one or two kpc have been well delineated by starlight polarization data. The polarization observations of diffuse Galactic radio background emission in 1962 confirmed unequivocally the existence of a Galactic magnetic field. The bulk of the present information about the magnetic fields in the Galaxy comes from analysis of rotation measures of extragalactic radio sources and pulsars, which can be used to construct the 3-D magnetic field structure in the Galactic halo and Galactic disk. Radio synchrotron spurs in the Galactic center show a poloidal field, and the polarization mapping of dust emission and Zeeman observation in the central molecular zone reveal a toroidal magnetic field parallel to the Galactic plane. For nearby galaxies, both optical polarization and multifrequency radio polarization data clearly show the large-scale magnetic field following the spiral arms or dust lanes. For more distant objects, radio polarization is the only approach available to show the magnetic fields in the jets or lobes of radio galaxies or quasars. Clusters of galaxies also contain widely distributed magnetic fields, which are reflected by radio halos or the RM distribution of background objects. The intergalactic space could have been magnetized by outflows or galactic superwinds even in

  10. Logarithmic Conformal Field Theories and Strings in Changing Backgrounds

    OpenAIRE

    Mavromatos, Nick E.(Theoretical Particle Physics and Cosmology Group, Department of Physics, King's College London, London, WC2R 2LS, United Kingdom)

    2004-01-01

    I review a particular class of physical applications of Logarithmic Conformal Field Theory in strings propagating in changing (not necessarily conformal) backgrounds, namely D-brane recoil in flat or time-dependent cosmological backgrounds. The role of recoil logarithmic vertex operators as non-conformal deformations, requiring in some cases Liouville dressing, is pointed out. It is also argued that, although in the case of non-supersymmetric recoil deformations the representation of target t...

  11. First law of black hole mechanics in variable background fields

    CERN Document Server

    Wu, Shao-Feng; Liu, Yu-Xiao

    2016-01-01

    We show that, by tracing the difference between the diffeomorphism invariance and general coordinate invariance on the first law of black hole mechanics, the local expression of horizon entropy built upon any diffeomorphism-invariant gravity theories is still applicable in the presence of background fields. The variable cosmological constant has been uniformly taken into account as one of variable background fields. As an illustration of this general formalism, we study a generic static black brane in massive gravity. By deriving two Smarr formulas using different ways, we find that either the cosmological constant or the reference metric must be a thermodynamic variable. This work provides a rare case that the general coordinate invariance would induce nontrivial physics although the diffeomorphism symmetry may be broken. It also suggests a potential relation between the cosmological constant and the background fields.

  12. Anisotropy of magnetic emulsions induced by magnetic and electric fields

    OpenAIRE

    Dikansky, Yury I.; Tyatyushkin, Alexander N.; Zakinyan, Arthur R.

    2011-01-01

    The anisotropy of magnetic emulsions induced by simultaneously acting electric and magnetic fields is theoretically and experimentally investigated. Due to the anisotropy, the electric conductivity and magnetic permeability of a magnetic emulsion are no longer scalar coefficients, but are tensors. The electric conductivity and magnetic permeability tensors of sufficiently diluted emulsions in sufficiently weak electric and magnetic fields are found as functions of the electric and magnetic in...

  13. Generation of helical magnetic fields from inflation

    CERN Document Server

    Jain, Rajeev Kumar; Hollenstein, Lukas

    2012-01-01

    The generation of helical magnetic fields during single field inflation due to an axial coupling of the electromagnetic field to the inflaton is discussed. We find that such a coupling always leads to a blue spectrum of magnetic fields during slow roll inflation. Though the helical magnetic fields further evolve during the inverse cascade in the radiation era after inflation, we conclude that the magnetic fields generated by such an axial coupling can not lead to observed field strength on cosmologically relevant scales.

  14. Partition function of massless scalar field in Schwarzschild background

    CERN Document Server

    Sanyal, Abhik Kumar

    2014-01-01

    Using thermal value of zeta function instead of zero temperature, the partition function of quantized fields in arbitrary stationary backgrounds was found to be independent of undetermined regularization constant in even-dimension and the long drawn problem associated with the trace anomaly effect had been removed. Here, we explicitly calculate the expression for the coincidence limit so that the technique may be applied in some specific problems. A particular problem dealt with here is to calculate the partition function of massless scalar field in Schwarzschild background.

  15. Very Special Relativity as a background field theory

    CERN Document Server

    Ilderton, Anton

    2016-01-01

    We consider violation of Lorentz invariance in QED induced by a very high frequency background wave. An effective theory is obtained by averaging observables over the rapid field oscillations. This preserves Ward identities and restores translation invariance below the high frequency scale, but only partial Lorentz invariance: we show that the effective theory is C-invariant SIM(2)-QED in Very Special Relativity. Averaging generates the nonlocal terms familiar from SIM(2) theories, while the short-distance behaviour of the background field fermion propagator generates the infinite number of higher-order vertices of SIM(2)-QED.

  16. Holographic Flavor Transport in Arbitrary Constant Background Fields

    CERN Document Server

    Ammon, Martin; O'Bannon, Andy

    2009-01-01

    We use gauge-gravity duality to compute a new transport coefficient associated with a number Nf of massive N=2 supersymmetric hypermultiplet fields propagating through an N=4 SU(Nc) super-Yang-Mills theory plasma in the limits of large Nc and large 't Hooft coupling, with Nf << Nc. We introduce a baryon number density as well as arbitrary constant electric and magnetic fields, generalizing previous calculations by including a magnetic field with a component parallel to the electric field. We can thus compute all components of the conductivity tensor associated with transport of baryon number charge, including a component never before calculated in gauge-gravity duality. We also compute the contribution that the flavor degrees of freedom make to the stress-energy tensor, which exhibits divergences associated with the rates of energy and momentum loss of the flavor degrees of freedom. We discuss two currents that are free from these divergences, one of which becomes anomalous when the magnetic field has a...

  17. Leader propagation in uniform background fields in SF6

    International Nuclear Information System (INIS)

    The breakdown mechanism of compressed SF6 in gas insulation is known to be controlled by stepped leader propagation. This process is still not well understood in uniform and weakly non-uniform background fields with small electrode protrusions, such as particles or surface roughness. In a previous publication an investigation of partial discharges and breakdown in uniform background fields that focused on streamer and leader inception mechanisms was presented (Seeger et al 2008 J. Phys. D: Appl. Phys. 41 185204). In this paper we present for the first time a physical leader propagation model that consistently describes the observed phenomena in uniform background fields in SF6. The model explains two different types of leader breakdown; these can be associated with the precursor and the stem mechanisms. It also yields the parameters of stepped leader propagation, which include step lengths, associated step charges, step times and fields and temperatures in the leader channel. Further, it explains the features of arrested leaders in uniform background fields. The model predicts the range of parameters under which arrested and breakdown leaders occur in good agreement with the experimental data.

  18. ATLAS cavern magnetic field calculations

    International Nuclear Information System (INIS)

    A new approach has been adopted in an attempt to produce a complete ATLAS cavern B-field map using a more precise methodological approach (variable magnetisation, depending on the external field) and the latest design taking into account of the structural elements. The basic idea was to produce a dedicated basic TOSCA model and then to insert a series of ferromagnetic structure elements to monitor the perturbative effect on the basic field map. Eventually, it was found: the bedplate field perturbation is an order of magnitude above the permissible level; manufacturing of the bedplates from nonmagnetic material or careful evaluation of their field contribution in the event reconstruction codes is required; the field value at the rack positions is higher than the permissible one; the final position of racks should be chosen taking into account the detailed magnetic field distribution

  19. Background field method and the cohomology of renormalization

    Science.gov (United States)

    Anselmi, Damiano

    2016-03-01

    Using the background field method and the Batalin-Vilkovisky formalism, we prove a key theorem on the cohomology of perturbatively local functionals of arbitrary ghost numbers in renormalizable and nonrenormalizable quantum field theories whose gauge symmetries are general covariance, local Lorentz symmetry, non-Abelian Yang-Mills symmetries and Abelian gauge symmetries. Interpolating between the background field approach and the usual, nonbackground approach by means of a canonical transformation, we take advantage of the properties of both approaches and prove that a closed functional is the sum of an exact functional plus a functional that depends only on the physical fields and possibly the ghosts. The assumptions of the theorem are the mathematical versions of general properties that characterize the counterterms and the local contributions to the potential anomalies. This makes the outcome a theorem on the cohomology of renormalization, rather than the whole local cohomology. The result supersedes numerous involved arguments that are available in the literature.

  20. Background field method and the cohomology of renormalization

    CERN Document Server

    Anselmi, Damiano

    2015-01-01

    Using the background field method and the Batalin-Vilkovisky formalism, we prove a key theorem on the cohomology of perturbatively local functionals of arbitrary ghost numbers, in renormalizable and nonrenormalizable quantum field theories whose gauge symmetries are general covariance, local Lorentz symmetry, non-Abelian Yang-Mills symmetries and Abelian symmetries. Interpolating between the background field approach and the usual, nonbackground approach by means of a canonical transformation, we take advantage of the properties of both approaches and prove that a closed functional is the sum of an exact functional plus a functional that depends only on the physical fields and possibly the ghosts. The assumptions are the mathematical versions of general properties that characterize the counterterms and the local contributions to the potential anomalies. This makes the outcome a theorem on the cohomology of renormalization, rather than the whole local cohomology. The result supersedes numerous involved argumen...

  1. Chiral transition with magnetic fields

    CERN Document Server

    Ayala, Alejandro; Mizher, Ana Julia; Rojas, Juan Cristobal; Villavicencio, Cristian

    2014-01-01

    We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling const...

  2. Adaptive cancellation of geomagnetic background noise for magnetic anomaly detection using coherence

    International Nuclear Information System (INIS)

    Magnetic anomaly detection (MAD) is an effective method for the detection of ferromagnetic targets against background magnetic fields. Currently, the performance of MAD systems is mainly limited by the background geomagnetic noise. Several techniques have been developed to detect target signatures, such as the synchronous reference subtraction (SRS) method. In this paper, we propose an adaptive coherent noise suppression (ACNS) method. The proposed method is capable of evaluating and detecting weak anomaly signals buried in background geomagnetic noise. Tests with real-world recorded magnetic signals show that the ACNS method can excellently remove the background geomagnetic noise by about 21 dB or more in high background geomagnetic field environments. Additionally, as a general form of the SRS method, the ACNS method offers appreciable advantages over the existing algorithms. Compared to the SRS method, the ACNS algorithm can eliminate the false target signals and represents a noise suppressing capability improvement of 6.4 dB. The positive outcomes in terms of intelligibility make this method a potential candidate for application in MAD systems. (paper)

  3. Nonlinear lepton-photon interactions in external background fields

    CERN Document Server

    Akal, Ibrahim

    2016-01-01

    Nonlinear phenomena of lepton-photon interactions in external backgrounds with a generalised periodic plane-wave geometry are studied. We discuss nonlinear Compton scattering in head-on lepton-photon collisions extended properly to beyond the soft-photon regime. In addition, our results are applied to stimulated lepton-antilepton pair production in photon collisions with unrestricted energies. Derivations are considered semi-classically based on unperturbed fermionic Volkov representations encoding the full interaction with the background field. Closed expressions for total probabilities considering S-matrix elements have been derived. The general formula is applied to Compton scattering by an electron propagating in an external laser-like background. We obtain additive contributions in the extended unconstrained result which turns out to be stringently required in the highly nonlinear regime. A detailed comparison of contributing harmonics is discussed for various field parameters.

  4. Primordial Generation of Magnetic Fields

    CERN Document Server

    Pandey, Arun Kumar

    2015-01-01

    We reexamine generation of the primordial magnetic fields, at temperature $T>80$TeV, by applying a consistent kinetic theory framework which is suitably modified to take the quantum anomaly into account. The modified kinetic equation can reproduce the known quantum field theoretic results upto the leading orders. We show that our results qualitatively matches with the earlier results obtained using heuristic arguments. The modified kinetic theory can give the instabilities responsible for generation of the magnetic field due to chiral imbalance in two distinct regimes: a) when the collisions play a dominant role and b) when the primordial plasma can be regarded as collisionless. We argue that the instability developing in the collisional regime can dominate over the instability in the collisionless regime.

  5. Magnetic Properties of Erbium Gallium Gallate under High Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Zhang Xijuan; Cheng Haiying; Yang Cuihong; Wang Wei

    2004-01-01

    A theoretical investigation on the magnetic properties of rare-earth Er3+ in Er3 Ga5 O12 was reported. The average magnetic moments(M) for applied magnetic field H parallel to the [001 ], [ 100], [ 110], [ 111 ] direction was studied based on the quantum theory. Temperature dependence of the magnetic properties is analyzed for H applied parallel to the [ 100] and [ 111 ] crystallographic directions. The magnetization decreases with increasing temperature,showing good agreement with thermal effect. A strong anisotropy of the magnetization is found under high magnetic field, but when the magnetic field is small, M and H are proportional.

  6. Particles in Singular Magnetic Field

    CERN Document Server

    Marcinek, W

    1997-01-01

    An algebraic formalism for description of quantum states of charged particle with spin moving in two-dimensional space under influence of singular magnetic field is developed in terms of graded algebras. The fundamental assumption is that the particle is transformed into a composite system which consists quasiparticles, quasiholes and magnetic fluxes. Such system is endowed with generalized statistics determined by a grading group and a commutation factor on it. Composite systems corresponding to the quantum Hall effect and the electronic magnetotransport anomaly are described. The Fock space representation are also given.

  7. Galactic and intergalactic magnetic fields

    CERN Document Server

    Klein, Ulrich

    2014-01-01

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible.In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later c

  8. Tensorial spacetime geometries and background-independent quantum field theory

    International Nuclear Information System (INIS)

    Famously, Einstein read off the geometry of spacetime from Maxwell's equations. Today, we take this geometry that serious that our fundamental theory of matter, the standard model of particle physics, is based on it. However, it seems that there is a gap in our understanding if it comes to the physics outside of the solar system. Independent surveys show that we need concepts like dark matter and dark energy to make our models fit with the observations. But these concepts do not fit in the standard model of particle physics. To overcome this problem, at least, we have to be open to matter fields with kinematics and dynamics beyond the standard model. But these matter fields might then very well correspond to different spacetime geometries. This is the basis of this thesis: it studies the underlying spacetime geometries and ventures into the quantization of those matter fields independently of any background geometry. In the first part of this thesis, conditions are identified that a general tensorial geometry must fulfill to serve as a viable spacetime structure. Kinematics of massless and massive point particles on such geometries are introduced and the physical implications are investigated. Additionally, field equations for massive matter fields are constructed like for example a modified Dirac equation. In the second part, a background independent formulation of quantum field theory, the general boundary formulation, is reviewed. The general boundary formulation is then applied to the Unruh effect as a testing ground and first attempts are made to quantize massive matter fields on tensorial spacetimes.

  9. Modeling and analysis of magnetic dipoles in weak magnetic field

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The magnetic leakage field distribution resulting from linear defects of a tube sample in the geomagnetic field is modeled according to the magnetic dipole theory.The formula to compute the normal component of the weak magnetic field is deduced based on the spatial distribution of the magnetic dipole.The shape and characteristics of the zero line (an important criterion for magnetic memory testing) of the normal field is analyzed under different longitudinal magnetizations.Results show that the characteristics of the zero line should be considered when the metal magnetic memory testing method is used to find and locate the defect.

  10. Instability of ferrofluid magnetic drops under magnetic field

    OpenAIRE

    Bacri, J.C.; Salin, D.

    1982-01-01

    We have followed the evolution of the shape of ferrofluid magnetic drops in presence of a magnetic field. The prolate ellipsoid shape of the drop becomes unstable for a certain magnetic field threshold : the drop jumps from a slightly elongated shape to a much more elongated shape. When decreasing the magnetic field the same feature occurs for a smaller threshold. This instability is simply understood from a balance between magnetic energy and interfacial tension energy.

  11. RESICALC: Magnetic field modeling program

    International Nuclear Information System (INIS)

    RESICALC, Version 1.0, is a Microsoft Windows application that describes the magnetic field environment produced by user-defined arrays of transmission lines, distribution lines, and custom conductors. These arrays simulate specific situations that may be encountered in real-world community settings. RESICALC allows the user to define an area or ''world'' that contains the transmission and/or distribution lines, user-defined conductors, and locations of residences. The world contains a ''reference grid'' within which RESICALC analyzes the magnetic field environment due to all conductors within the world. Unique physical parameters (e.g., conductor height and spacing) and operating characteristics can be assigned to all electrical conductors. RESICALC's output is available for the x, y, z axis separately, the resultant (the three axes added in quadrature), and the major axis, each in three possible formats: a three-dimensional map of the magnetic field, two dimensional-contours, and as a table with statistical values. All formats may be printed, accompanied by a three-dimensional view of the world the user has drawn. The view of the world and the corresponding three-dimensional field map may be adjusted to the elevation and rotation angle of the user's preference

  12. Nature of the Background Ultraviolet Radiation Field at High Redshifts

    Indian Academy of Sciences (India)

    Archana Samantaray; Pushpa Khare

    2000-06-01

    We have tried to determine the flux of the ultraviolet background radiation field from the column density ratios of various ions in several absorption systems observed in the spectra of QSOs. We find that in most cases the flux is considerably higher than what has been estimated to be contributed by the AGNs. The excess flux could originate locally in hot stars. In a few cases we have been able to show that such galactic flux can only contribute a part of the total required flux. The results suggest that the background gets a significant contribution from an unseen QSO population.

  13. THOR tokamak magnetic field system

    International Nuclear Information System (INIS)

    The THOR Machine is an iron cored Tokamak having a major radius of 0.52 m and a minor radius of 0.17 m giving an aspect ratio of 3:1. It has a low ripple toroidal field of 1 T and an iron core giving 0.24 Vs. The maximum plasma current is expected to be in the region of 80x103 A. The maximum toroidal field ripple on axis is of the order of 0.01% and 2.5% at the plasma edge. The equilibrium of the plasma is achieved by means of a D.C. vertical field and a 1 cm thick copper shell. The D.C. field is cancelled during the rise time of the plasma current by means of pulsed reverse vertical field windings placed between the copper shell and the vacuum vessel. The design of this field system represents a compromise between obtaining adequate field penetration through the relatively thin vacuum vessel and maintaining the mechanical strength necessary to withstand the transient magnetic forces. Energy for the toroidal field system is supplied by a 15 kV 600 kJ capacitor bank and for the ohmic heating and reverse vertical fields by 5 kV 25 kJ and 50 kJ banks respectively. The problems encountered in the design, development and manufacture of these field systems are discussed. (author)

  14. Establishment of magnetic coordinates for a given magnetic field

    International Nuclear Information System (INIS)

    A method is given for expressing the magnetic field strength in magnetic coordinates for a given field. This expression is central to the study of equilibrium, stability, and transport in asymmetric plasmas

  15. Bound electrons in critical magnetic fields

    International Nuclear Information System (INIS)

    We determined the threshold for spontaneous electron-positron pair creation for various combinations of a nuclear Coulomb field and an external homogeneous magnetic field. The dependence of electron binding energies of the nuclear charge and the magnetic field strength is investigated. Our exact solutions of the Dirac equation are compared with approximative methods valid for weak and rather strong magnetic fields. (orig.)

  16. Field errors in superconducting magnets

    International Nuclear Information System (INIS)

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence

  17. ANALYTIC EXPRESSION OF MAGNETIC FIELD DISTRIBUTION OF RECTANGULAR PERMANENT MAGNETS

    Institute of Scientific and Technical Information of China (English)

    苟晓凡; 杨勇; 郑晓静

    2004-01-01

    From the molecular current viewpoint,an analytic expression exactly describing magnetic field distribution of rectangular permanent magnets magnetized sufficiently in one direction was derived from the Biot-Savart's law. This expression is useful not only for the case of one rectangular permanent magnet bulk, but also for that of several rectangular permanent magnet bulks. By using this expression,the relations between magnetic field distribution and the size of rectangular permanent magnets as well as the magnitude of magnetic field and the distance from the point in the space to the top (or bottom) surface of rectangular permanent magnets were discussed in detail. All the calculating results are consistent with experimental ones. For transverse magnetic field which is a main magnetic field of rectangular permanent magnets,in order to describe its distribution,two quantities,one is the uniformity in magnitude and the other is the uniformity in distribution of magnetic field,were defined. Furthermore, the relations between them and the geometric size of the magnet as well as the distance from the surface of permanent magnets were investigated by these formulas. The numerical results show that the geometric size and the distance have a visible influence on the uniformity in magnitude and the uniformity in distribution of the magnetic field.

  18. Kinetic simulations of magnetic reconnection in presence of a background O+ population

    CERN Document Server

    Markidis, Stefano; Bettarini, Lapo; Goldman, Martin V; Newman, David; Andersson, Laila

    2011-01-01

    Particle-in-Cell simulations of magnetic reconnection with an H+ current sheet and a mixed background plasma of H+ and O+ ions are completed using physical mass ratios. Four main results are shown. First, the O+ presence slightly decreases the reconnection rate and the magnetic reconnection evolution depends mainly on the lighter H+ ion species in the presented simulations. Second, the Hall magnetic field is characterized by a two-scale structure in presence of O+ ions: it reaches sharp peak values in a small area in proximity of the neutral line, and then decreases slowly over a large region. Third, the two background species initially separate in the outflow region because H+ and O+ ions are accelerated by different mechanisms occurring on different time scales and with different strengths. Fourth, the effect of a guide field on the O+ dynamics is studied: the O+ presence does not change the reconnected flux and all the characteristic features of guide field magnetic reconnection are still present. Moreover...

  19. Field and Thermal Characteristics of Magnetizing Fixture

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper describes field modeling and thermal modeling for magnetizing fixture. As the detailed characteristics of magnetizing fixture can be obtained, the efficient design of magnetizer which produce desired magnet will be possible using our modeling. For field modeling finite-element analysis is used as part of the design and analysis process for magnetizing fixture. The thermal modeling method of magnetizing fixture resistor uses multi-lumped model with equivalent thermal resistance and thermal capacitance.

  20. Spline techniques for magnetic fields

    International Nuclear Information System (INIS)

    This report is an overview of B-spline techniques, oriented toward magnetic field computation. These techniques form a powerful mathematical approximating method for many physics and engineering calculations. In section 1, the concept of a polynomial spline is introduced. Section 2 shows how a particular spline with well chosen properties, the B-spline, can be used to build any spline. In section 3, the description of how to solve a simple spline approximation problem is completed, and some practical examples of using splines are shown. All these sections deal exclusively in scalar functions of one variable for simplicity. Section 4 is partly digression. Techniques that are not B-spline techniques, but are closely related, are covered. These methods are not needed for what follows, until the last section on errors. Sections 5, 6, and 7 form a second group which work toward the final goal of using B-splines to approximate a magnetic field. Section 5 demonstrates how to approximate a scalar function of many variables. The necessary mathematics is completed in section 6, where the problems of approximating a vector function in general, and a magnetic field in particular, are examined. Finally some algorithms and data organization are shown in section 7. Section 8 deals with error analysis

  1. Weak magnetic fields injurious to health, strong magnetic fields harmless? Radiation protection by the present of magnetic fields

    International Nuclear Information System (INIS)

    Usually magnetic fields are part of the environment without making injuries to health. Only when limits in standards were fixed the certainty become conscious that electromagnetic fields in their various forms must be hazardous. The effects of the pure magnetic fields cannot be found out easy because it is difficult to screen the magnetic fields, especially the magnetic field of the earth. This analyzis shall also find out how to hold limits by using extremely high magnetic fields in medicine and research. The results show that screening is no the only method when the practice requires behaviour where screening is not possible. (author)

  2. Magnetic Fields in the Early Universe

    CERN Document Server

    Enqvist, Kari

    1997-01-01

    The observed galactic magnetic fields may have a primordial origin. I briefly review the observations, their interpretation in terms of the dynamo theory, and the current limits on cosmological magnetic fields. Several possible mechanisms for generating a primordial magnetic field are then discussed. Turbulence and the evolution of the microscopic fields to macroscopic fields is described in terms of a shell model, which provides an approximation to the full magnetohydrodynamics and indicates the existence of an inverse cascade of magnetic energy. Cosmological seed fields roughly of the order of $10^{-20}$ G at the scale of protogalaxy, as required by the dynamo explanation of galactic magnetic fields, seem rather plausible.

  3. Open string in the constant B-field background

    International Nuclear Information System (INIS)

    A new method is proposed to quantize open strings in this paper. To illustrate our method, we analyze free open string as well as open string in the D-brane background with a nonvanishing B-field, respectively. The Poisson brackets among Fourier components are obtained firstly then we get the Poisson brackets among open string's coordinates. The noncommutativity of coordinates along the D-brane is reproduced. Some ambiguities in the previous discussions can be avoided

  4. The magnetic field of $\\zeta$ Ori A

    OpenAIRE

    Blazère, A.; Neiner, C.; Bouret, J-C.; Tkachenko, A.; MiMeS collaboration

    2014-01-01

    Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of...

  5. Critical Endpoint and Inverse Magnetic Catalysis for Finite Temperature and Density Quark Matter in a Magnetic Background

    CERN Document Server

    Ruggieri, M; Castorina, P; Gatto, R; Greco, V

    2014-01-01

    In this article we study chiral symmetry breaking for quark matter in a magnetic background, $\\bm B$, at finite temperature and quark chemical potential, $\\mu$, making use of the Ginzburg-Landau effective action formalism. As a microscopic model to compute the effective action we use the renormalized quark-meson model. Our main goal is to study the evolution of the critical endpoint, ${\\cal CP}$, as a function of the magnetic field strength, and investigate on the realization of inverse magnetic catalysis at finite chemical potential. We find that the phase transition at zero chemical potential is always of the second order; for small and intermediate values of $\\bm B$, ${\\cal CP}$ moves towards small $\\mu$, while for larger $\\bm B$ it moves towards moderately larger values of $\\mu$. Our results are in agreement with the inverse magnetic catalysis scenario at finite chemical potential and not too large values of the magnetic field, while at larger $\\bm B$ direct magnetic catalysis sets in.

  6. Anisotropic magnetism in field-structured composites

    International Nuclear Information System (INIS)

    Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society

  7. Passive Magnetic Shielding in Gradient Fields

    CERN Document Server

    Bidinosti, C P

    2013-01-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied. It is found that for concentric cylindrical or spherical shells of high permeability material, higher order multipoles in the magnetic field are shielded progressively better, by a factor related to the order of the multipole. In regard to the design of internal coil systems for the generation of uniform internal fields, we show how one can take advantage of the coupling of the coils to the innermost magnetic shield to further optimize the uniformity of the field. These results demonstrate quantitatively a phenomenon that was previously well-known qualitatively: that the resultant magnetic field within a passively magnetically shielded region can be much more uniform than the applied magnetic field itself. Furthermore we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields clos...

  8. The origin, evolution and signatures of primordial magnetic fields

    Science.gov (United States)

    Subramanian, Kandaswamy

    2016-07-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak  ∼  10‑16 Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.

  9. Pulsed magnetic field distribution near conducting rings

    International Nuclear Information System (INIS)

    Measurements and calculations of the magnetic field distribution in the vicinity of stainless steel rings immersed in a pulsed magnetic field are compared. The computer code TRIDIF is found to produce results in good agreement with the measurements. The perturbations in magnetic field due to the rings are found to be considerably less than one would expect from one-dimensional skin depth considerations

  10. Extending the radial diffusion model of Falthammar to non-dipole background field

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Gregory Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-26

    A model for radial diffusion caused by electromagnetic disturbances was published by Falthammar (1965) using a two-parameter model of the disturbance perturbing a background dipole magnetic field. Schulz and Lanzerotti (1974) extended this model by recognizing the two parameter perturbation as the leading (non--dipole) terms of the Mead Williams magnetic field model. They emphasized that the magnetic perturbation in such a model induces an electric ield that can be calculated from the motion of field lines on which the particles are ‘frozen’. Roederer and Zhang (2014) describe how the field lines on which the particles are frozen can be calculated by tracing the unperturbed field lines from the minimum-B location to the ionospheric footpoint, and then tracing the perturbed field (which shares the same ionospheric footpoint due to the frozen -in condition) from the ionospheric footpoint back to a perturbed minimum B location. The instantaneous change n Roederer L*, dL*/dt, can then be computed as the product (dL*/dphi)*(dphi/dt). dL*/Dphi is linearly dependent on the perturbation parameters (to first order) and is obtained by computing the drift across L*-labeled perturbed field lines, while dphi/dt is related to the bounce-averaged gradient-curvature drift velocity. The advantage of assuming a dipole background magnetic field, as in these previous studies, is that the instantaneous dL*/dt can be computed analytically (with some approximations), as can the DLL that results from integrating dL*/dt over time and computing the expected value of (dL*)^2. The approach can also be applied to complex background magnetic field models like T89 or TS04, on top of which the small perturbations are added, but an analytical solution is not possible and so a numerical solution must be implemented. In this talk, I discuss our progress in implementing a numerical solution to the calculation of DL*L* using arbitrary background field models with simple electromagnetic

  11. Manifestations of Magnetic Field Inhomogeneities

    Indian Academy of Sciences (India)

    Lawrence Rudnick

    2011-12-01

    Both observations and simulations reveal large inhomogeneities in magnetic field distributions in diffuse plasmas. Incorporating these inhomogeneities into various calculations can significantly change the inferred physical conditions. In extragalactic sources, e.g., these can compromise analyses of spectral ageing, which I will illustrate with some current work on cluster relics. I also briefly re-examine the old issue of how inhomogeneous fields affect particle lifetimes; perhaps not surprisingly, the next generation of radio telescopes are unlikely to find many sources that can extend their lifetimes from putting relativistic electrons into a low-field ‘freezer’. Finally, I preview some new EVLA results on the complex relic in Abell 2256, with implications for the interspersing of its relativistic and thermal plasmas.

  12. Bats respond to very weak magnetic fields.

    Directory of Open Access Journals (Sweden)

    Lan-Xiang Tian

    Full Text Available How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here, the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT, despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05. Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  13. Are there background fields that can induce QED phase transitions at weak coupling?

    International Nuclear Information System (INIS)

    The existence of a new, non-perturbative phase of QED as indicated by studies of Schwinger-Dyson equations and lattice calculations. The crucial question is whether the phase transition point can be driven down to α ∼ 1/137 presumably by appropriate background fields. It appears that magnetic fields potentially can induce such a phase transition. Our investigation is related to our original conjecture that the anomalous e+e- events at GSI are due to the decay of a new positronium system formed in the new QED phase which is induced by the electromagnetic fields of the heavy-ions. 25 refs

  14. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  15. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed to be...... is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is...

  16. Effects of magnetic field on fluidization properties of magnetic pearls

    Institute of Scientific and Technical Information of China (English)

    Maoming; Fan; Zhenfu; Luo; Yuemin; Zhao; Qingru; Chen; Daniel; Tao; Xiuxiang; Tao; Zhenqiang; Chen

    2007-01-01

    An experimental study of the influence of external magnetic field on the fluidization behavior of magnetic pearls was carried out. Magnetic pearls are a magnetic form of iron oxide that mainly consists of Fe2O3 which are recovered from a high-volume power plant fly ash from pulverized coal combustion. Due to its abundance, low price and particular physical and chemical properties, magnetic pearls can be used as a heavy medium for minerals or solid waste dry separation based on density difference. This paper introduces the properties of magnetic pearls and compares the performance of magnetic pearls fluidised bed operation with or without an external magnetic field. Experimental results show that an external magnetic field significantly improves the fluidization performance of magnetic pearls such as uniformity and stability.

  17. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    CERN Document Server

    Blackman, Eric G

    2014-01-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. H...

  18. Interaction between two magnetic dipoles in a uniform magnetic field

    Directory of Open Access Journals (Sweden)

    J. G. Ku

    2016-02-01

    Full Text Available A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.

  19. Open-Closed String Field Theory in the Background B-Field

    OpenAIRE

    Kawano, Teruhiko; Takahashi, Tomohiko

    2000-01-01

    In this paper, we study open-closed string field theory in the background B-field in the so-called alpha=p^{+} formulation. The string field theory in the infrared gives noncommutative gauge theory in the open string sector. Since this theory includes closed string fields as dynamical variables, we can obtain another string field theory in the same background through the condensation of closed string fields, whose low-energy effective action does not show the noncommutativity of spacetime. Al...

  20. The Dirac field in Taub-NUT background

    OpenAIRE

    Cotăescu, Ion I.; Visinescu, Mihai

    2000-01-01

    We investigate the SO(4,1) gauge-invariant theory of the Dirac fermions in the external field of the Kaluza-Klein monopole, pointing out that the quantum modes can be recovered from a Klein-Gordon equation analogous to the Schr\\" odinger equation in the Taub-NUT background. Moreover, we show that there is a large collection of observables that can be directly derived from those of the scalar theory. These offer many possibilities of choosing complete sets of commuting operators which determin...

  1. Strings in pp-wave background and background B-field from membrane and its symplectic quantization

    International Nuclear Information System (INIS)

    The symplectic quantization technique is applied to open free membrane and strings in pp-wave background and background gauge field obtained by compactifying the open membrane in the presence of a background anti-symmetric 3-form field. In both cases, first the Poisson brackets among the Fourier modes are obtained and then the Poisson brackets among the membrane (string) coordinates are computed. The full non-commutative phase-space structure is reproduced in case of strings in pp-wave background and background gauge field. We feel that this method of obtaining the Poisson algebra is more elegant than previous approaches discussed in the literature

  2. Quantization of massive scalar fields over static black string backgrounds

    CERN Document Server

    Piedra, Owen Pavel Fernandez

    2007-01-01

    The renormalized mean value of the corresponding components of the Energy-Momentum tensor for massive scalar fields coupled to an arbitrary gravitational field configuration having cylindrical symmetry are analytically evaluated using the Schwinger-DeWitt approximation, up to second order in the inverse mass value. The general results are employed to explicitly derive compact analytical expressions for the Energy-Momentum tensor in the particular background of the Black-String spacetime. In the case of the Black String considered in this work, we proof that a violation of the weak energy condition occur at the horizon of the space-time for values of the coupling constant, that include as particular cases the most interesting of minimal and conformal coupling.

  3. Hypernuclear matter in strong magnetic field

    CERN Document Server

    Sinha, Monika; Sedrakian, Armen

    2012-01-01

    Compact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10^{14}-10^{15} G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta-Bodmer-Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B \\ge 10^{17} G, in particular the matter properties become anisotropic. Moreover, for the central fields B_{\\rm cr} \\ge 10^{19} G, the magnetized hypernuclear matter becomes unstable, which limits the range of admissible fields in magnetars to fields below the critical value B_{\\rm cr}.

  4. PROCESS OF PLANETS’ MAGNETIC FIELDS FORMATION

    Directory of Open Access Journals (Sweden)

    E.V. Savich

    2013-06-01

    Full Text Available Heated melt of the cores of the Sun and the planets is the basis of their permanent magnetic fields that, in interaction with the large-scale magnetic field of the Galaxy, condition on the action of their dynamo mechanisms which, on the basis of the speed of the Sun and the planets axial rotation in the galactic magnetic space, provide formation of variable magnetic fields of the Solar System planets.

  5. PROCESS OF PLANETS’ MAGNETIC FIELDS FORMATION

    OpenAIRE

    E.V. Savich

    2013-01-01

    Heated melt of the cores of the Sun and the planets is the basis of their permanent magnetic fields that, in interaction with the large-scale magnetic field of the Galaxy, condition on the action of their dynamo mechanisms which, on the basis of the speed of the Sun and the planets axial rotation in the galactic magnetic space, provide formation of variable magnetic fields of the Solar System planets.

  6. Nonlinear diffusion regimes in stochastic magnetic fields

    International Nuclear Information System (INIS)

    The transport of collisional particles in stochastic magnetic fields is studied using the decorrelation trajectory method. The nonlinear effect of magnetic line trapping is considered together with particle collisions. The running diffusion coefficient is determined for arbitrary values of the statistical parameters of the stochastic magnetic field and of the collisional velocity. New diffusion regimes are found in the conditions for which the trapping of magnetic field lines is effective. (author)

  7. Near-Field Magnetic Dipole Moment Analysis

    Science.gov (United States)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  8. Rydberg atoms in magnetic and electric fields

    International Nuclear Information System (INIS)

    This chapter examines highly excited atoms in the presence of a uniform field, magnetic or electric. It discusses Rydberg atoms in magnetic fields; Rydberg atoms in electric fields; and Rydberg atoms in crossed fields. It reviews present knowledge of this subject which is of great theoretical interest and which has recently benefited from laser spectroscopy

  9. Pulsed field magnets at the US NHMFL

    International Nuclear Information System (INIS)

    The pulsed field facility of the National High Magnetic Field Laboratory (NHMFL) consists of four components. Now available are (1) explosive flux compression, (2) capacitor-driven magnets, and (3) a 20 T superconducting magnet. The fourth component, a 60 T quasi-continuous magnet, has been designed and is scheduled for installation in early 1995. All magnets have He-4 cryostats giving temperatures from room temperature (RT) to 2.2-1.5 K. Dilution refrigerators for the superconducting 20 T magnet and the 50 T pulsed magnet will be installed by early 1994. A wide range of experiments have been completed within the past year. ((orig.))

  10. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  11. Interactions of cosmological gravity waves and magnetic fields

    CERN Document Server

    Fenu, Elisa

    2008-01-01

    The energy momentum tensor of a magnetic field always contains a spin-2 component in its anisotropic stress and therefore generates gravity waves. It has been argued in the literature (Caprini & Durrer \\cite{CD}) that this gravity wave production can be very strong and that back-reaction cannot be neglected. On the other hand, a gravity wave background does affect the evolution of magnetic fields. It has also been argued (Tsagas \\cite{Tsagas:2005ki}, \\cite{Tsagas:2001ak}) that this can lead to very strong amplification of a primordial magnetic field. In this paper we revisit these claims and study back reaction to second order.

  12. Magnetic Fields in Massive Stars: New Insights

    CERN Document Server

    Hubrig, S; Kholtygin, A F; Oskinova, L M; Ilyin, I

    2016-01-01

    Substantial progress has been achieved over the last decade in studies of stellar magnetism due to the improvement of magnetic field measurement methods. We review recent results on the magnetic field characteristics of early B- and O-type stars obtained by various teams using different measurement techniques.

  13. Biological Effect of Magnetic Field in Mice

    Institute of Scientific and Technical Information of China (English)

    Zhao-Wei ZENG

    2005-01-01

    Objective: To study the biological effect of magnetic field in mice bodies. Method: With a piece of permanent magnet embeded in mice bodies beside the femoral artery and vein to measure the electrophoretic velocity(um/s). Result: The magnetic field in mice bodies on the experiment group that the electrophoretic velocity is faster more than control and free group.Conclusion:The magnetic field in animal's body can raise the negative electric charges on the surface of erythrocyte to improve the microcirculation, this is the biological effect of magnetic field.

  14. Inertial fusion reactors and magnetic fields

    International Nuclear Information System (INIS)

    The application of magnetic fields of simple configurations and modest strengths to direct target debris ions out of cavities can alleviate recognized shortcomings of several classes of inertial confinement fusion (ICF) reactors. Complex fringes of the strong magnetic fields of heavy-ion fusion (HIF) focusing magnets may intrude into reactor cavities and significantly affect the trajectories of target debris ions. The results of an assessment of potential benefits from the use of magnetic fields in ICF reactors and of potential problems with focusing-magnet fields in HIF reactors conducted to set priorities for continuing studies are reported. Computational tools are described and some preliminary results are presented

  15. Magnetic Trapping of Bacteria at Low Magnetic Fields

    Science.gov (United States)

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-06-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.

  16. Magnetic Trapping of Bacteria at Low Magnetic Fields.

    Science.gov (United States)

    Wang, Z M; Wu, R G; Wang, Z P; Ramanujan, R V

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  17. Evolution of Magnetic Fields in Intra Cluster Media

    CERN Document Server

    Park, Kiwan; Cho, Jungyeon; Park, Dongho

    2015-01-01

    Intra Cluster Media (ICMs) located at galaxy clusters is in the state of hot, tenuous, magnetized, and highly ionized X-ray emitting plasmas. This overall collisionless, viscous, and conductive magnetohydrodynamic (MHD) turbulence in ICM is simulated using hyper magnetic diffusivity with weak background magnetic field. The result shows that fluctuating random plasma motion amplifies the magnetic field, which cascades toward the diffusivity scale passing through the viscous scale. The kinetic eddies in the subviscous scale are driven and constrained by the magnetic tension which is eventually balanced with the highly damping effect of the kinetic eddies. Simulation results show the saturated kinetic energy spectrum is $\\sim k^{-3}$, deeper than that of the incompressible or compressible fluid. To explain this unusual field profile we set up two simultaneous differential equations for the kinetic and magnetic energy spectrum using an Eddy Damped Quasi Normal Markovianized (EDQNM) approximation. The analytic sol...

  18. Can slow roll inflation induce relevant helical magnetic fields?

    CERN Document Server

    Durrer, Ruth; Jain, Rajeev Kumar

    2010-01-01

    We study the generation of helical magnetic fields during inflation induced by an axial coupling of the electromagnetic field to the inflaton. During slow roll inflation, we find that such a coupling always leads to a blue spectrum with $B^2 \\propto k$. We also show that a short deviation from slow roll does not result in strong modifications to the shape of the spectrum. The magnetic energy density at the end of inflation is too small to back-react on the background dynamics of the inflaton. We calculate the evolution of the correlation length and the field amplitude during the inverse cascade and viscous damping of the helical magnetic field in the radiation era after inflation. The final magnetic fields turn out to be far too weak to provide the seeds for the observed fields in galaxies and clusters.

  19. Electrolytic tiltmeters inside magnetic fields: Some observations

    International Nuclear Information System (INIS)

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths

  20. From Inverse to Delayed Magnetic Catalysis in Strong Magnetic Field

    CERN Document Server

    Mao, Shijun

    2016-01-01

    We study magnetic field effect on chiral phase transition in a Nambu--Jona-Lasinio model. In comparison with mean field approximation containing quarks only, including mesons as quantum fluctuations in the model leads to a transition from inverse to delayed magnetic catalysis at finite temperature and delays the transition at finite baryon chemical potential. The location of the critical end point depends on the the magnetic field non-monotonously.

  1. MR imaging at high magnetic fields

    International Nuclear Information System (INIS)

    Recently, more investigators have been applying higher magnetic field strengths (3-4 Tesla) in research and clinical settings. Higher magnetic field strength is expected to afford higher spatial resolution and/or a decrease in the length of total scan time due to its higher signal intensity. Besides MR signal intensity, however, there are several factors which are magnetic field dependent, thus the same set of imaging parameters at lower magnetic field strengths would provide differences in signal or contrast to noise ratios at 3 T or higher. Therefore, an outcome of the combined effect of all these factors should be considered to estimate the change in usefulness at different magnetic fields. The objective of this article is to illustrate the practical scientific applications, focusing on MR imaging, of higher magnetic field strength. First, we will discuss previous literature and our experiments to demonstrate several changes that lead to a number of practical applications in MR imaging, e.g. in relaxation times, effects of contrast agent, design of RF coils, maintaining a safety profile and in switching magnetic field strength. Second, we discuss what will be required to gain the maximum benefit of high magnetic field when the current magnetic field (≤1.5 T) is switched to 3 or 4 T. In addition, we discuss MR microscopy, which is one of the anticipated applications of high magnetic field strength to understand the quantitative estimation of the gain benefit and other considerations to help establish a practically available imaging protocol

  2. Dynamic shielding of the magnetic fields

    Directory of Open Access Journals (Sweden)

    RAU, M.

    2010-11-01

    Full Text Available The paper presents a comparative study of the methods used to control and compensate the direct and alternative magnetic fields. Two frequently used methods in the electromagnetic compatibility of the complex biomagnetism installations were analyzed. The two methods refer to the use of inductive magnetic field sensors (only for alternative fields and of fluxgate magnetometers as active transducers which measures both the direct and alternative components of the magnetic field. The applications of the dynamic control of the magnetic field are: control of the magnetic field of the military ships, control of parasite magnetic field produced by power transformers and the electrical networks, protection of the mass spectrometers, electronic microscopes, SQUID and optical pumping magnetometers for applications in biomagnetism.

  3. Field free line magnetic particle imaging

    CERN Document Server

    Erbe, Marlitt

    2014-01-01

    Marlitt Erbe provides a detailed introduction into the young research field of Magnetic Particle Imaging (MPI) and field free line (FFL) imaging in particular. She derives a mathematical description of magnetic field generation for FFL imaging in MPI. To substantiate the simulation studies on magnetic FFL generation with a proof-of-concept, the author introduces the FFL field demonstrator, which provides the world's first experimentally generated rotated and translated magnetic FFL field complying with the requirements for FFL reconstruction. Furthermore, she proposes a scanner design of consi

  4. Quarks and gluons in a magnetic field

    CERN Document Server

    Watson, Peter

    2013-01-01

    The quark gap equation under the rainbow truncation, with two versions of a phenomenological one-gluon exchange interaction and in the presence of a uniform magnetic field is considered. It is argued that in order to describe the quark condensate in the limit of vanishing magnetic fields, one must sum over the Landau levels. The resulting chiral quark condensate rises quadratically for small magnetic fields and linearly for large fields, in qualitative agreement with various recent lattice results. It is observed that when discussing quarks, the magnitude of the magnetic field must be considered relative to the scale of the strong interaction.

  5. Magnetic fields of Sun-like stars

    CERN Document Server

    Fares, R

    2013-01-01

    Magnetic fields play an important role at all stages of stellar evolution. In Sun-like stars, they are generated in the outer convective layers. Studying the large-scale magnetic fields of these stars enlightens our understanding of the field properties and gives us observational constraints for the field generation models. In this review, I summarise the current observational picture of the large-scale magnetic fields of Sun-like stars, in particular solar-twins and planet-host stars. I discuss the observations of large-scale magnetic cycles, and compare these cycles to the solar cycle.

  6. Background independent algebraic structures in closed string field theory

    International Nuclear Information System (INIS)

    We construct a Batalin-Vilkovisky (BV) algebra on moduli spaces of Riemann surfaces. This algebra is background independent in that it makes no reference to a state space of a conformal field theory. Conformal theories define a homomorphism of this algebra to the BV algebra of string functionals. The construction begins with a graded-commutative free associative algebra C built from the vector space whose elements are orientable subspaces of moduli spaces of punctured Riemann surfaces. The typical element here is a surface with several connected components. The operation Δ of sewing two punctures with a full twist is shown to be an odd, second order derivation that squares to zero. It follows that (C,Δ) is a Batalin-Vilkovisky algebra. We introduce the odd operator δ=∂+ℎΔ, where ∂ is the boundary operator. It is seen that δ2=0, and that consistent closed string vertices define a cohomology class of δ. This cohomology class is used to construct a Lie algebra on a quotient space of C. This Lie algebra gives a manifestly background independent description of a subalgebra of the closed string gauge algebra. (orig.)

  7. Chiral symmety breaking in 3-flavor Nambu-Jona Lasinio model in magnetic background

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Bhaswar; Mishra, Hiranmaya [Theory Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009 (India); Mishra, Amruta [Department of Physics, Indian Institute of Technology, New Delhi-110016 (India)

    2011-07-15

    Effect of magnetic field on chiral symmetry breaking in a 3-flavor Nambu Jona Lasinio (NJL) model at finite temperature and densities is considered here using an explicit structure of ground state in terms of quark and antiquark condensates. While at zero chemical potential and finite temperature, magnetic field enhances the condensates, at zero temperature, the critical chemical potential decreases with increasing magnetic field.

  8. Chiral symmety breaking in 3-flavor Nambu-Jona Lasinio model in magnetic background

    International Nuclear Information System (INIS)

    Effect of magnetic field on chiral symmetry breaking in a 3-flavor Nambu Jona Lasinio (NJL) model at finite temperature and densities is considered here using an explicit structure of ground state in terms of quark and antiquark condensates. While at zero chemical potential and finite temperature, magnetic field enhances the condensates, at zero temperature, the critical chemical potential decreases with increasing magnetic field.

  9. Chiral symmety breaking in 3-flavor Nambu-Jona Lasinio model in magnetic background

    CERN Document Server

    Chatterjee, Bhaswar; Mishra, Amruta

    2011-01-01

    Effect of magnetic field on chiral symmetry breaking in a 3-flavor Nambu Jona Lasinio (NJL) model at finite temperature and densities is considered here using an explicit structure of ground state in terms of quark and antiquark condensates. While at zero chemical potential and finite temperature, magnetic field enhances the condensates, at zero temperature, the critical chemical potential decreases with increasing magnetic field.

  10. Magnetic surfaces in the reversed field geometry

    International Nuclear Information System (INIS)

    The achievement of field reversal is shown not to ensure a closed magnetic geometry. The closure of the reversed field geometry is found to be critically dependent on the shape of the toroidal component of the magnetic field no matter how small it may be

  11. DC-based magnetic field controller

    Science.gov (United States)

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  12. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  13. Synchrotron Applications of High Magnetic Fields

    International Nuclear Information System (INIS)

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R5(SixGe1-x)4: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF

  14. Linear spin-2 fields in most general backgrounds

    Science.gov (United States)

    Bernard, Laura; Deffayet, Cédric; Schmidt-May, Angnis; von Strauss, Mikael

    2016-04-01

    We derive the full perturbative equations of motion for the most general background solutions in ghost-free bimetric theory in its metric formulation. Clever field redefinitions at the level of fluctuations enable us to circumvent the problem of varying a square-root matrix appearing in the theory. This greatly simplifies the expressions for the linear variation of the bimetric interaction terms. We show that these field redefinitions exist and are uniquely invertible if and only if the variation of the square-root matrix itself has a unique solution, which is a requirement for the linearized theory to be well defined. As an application of our results we examine the constraint structure of ghost-free bimetric theory at the level of linear equations of motion for the first time. We identify a scalar combination of equations which is responsible for the absence of the Boulware-Deser ghost mode in the theory. The bimetric scalar constraint is in general not manifestly covariant in its nature. However, in the massive gravity limit the constraint assumes a covariant form when one of the interaction parameters is set to zero. For that case our analysis provides an alternative and almost trivial proof of the absence of the Boulware-Deser ghost. Our findings generalize previous results in the metric formulation of massive gravity and also agree with studies of its vielbein version.

  15. Linear spin-2 fields in most general backgrounds

    CERN Document Server

    Bernard, Laura; Schmidt-May, Angnis; von Strauss, Mikael

    2015-01-01

    We derive the full perturbative equations of motion for the most general background solutions in ghost-free bimetric theory in its metric formulation. Clever field redefinitions at the level of fluctuations enable us to circumvent the problem of varying a square-root matrix appearing in the theory. This greatly simplifies the expressions for the linear variation of the bimetric interaction terms. We show that these field redefinitions exist and are uniquely invertible if and only if the variation of the square-root matrix itself has a unique solution, which is a requirement for the linearised theory to be well-defined. As an application of our results we examine the constraint structure of ghost-free bimetric theory at the level of linear equations of motion for the first time. We identify a scalar combination of equations which is responsible for the absence of the Boulware-Deser ghost mode in the theory. The bimetric scalar constraint is in general not manifestly covariant in its nature. However, in the mas...

  16. Time-Dependent Meson Melting in External Magnetic Field

    CERN Document Server

    Ali-Akbari, M; Davody, A; Ebrahim, H; Shahkarami, L

    2015-01-01

    The dynamics of a probe D7-brane in an asymptotically AdS-Vaidya background has been investigated in the presence of an external magnetic field. Holographically, this is dual to the dynamical meson melting in the N = 2 super Yang-Milles theory. If the final temperature of the system is large enough, the probe D7-brane will dynamically cross the horizon (black hole embedding). By turning on the external magnetic field and raising it sufficiently, the final embedding of the corresponding D7-brane changes to Minkowski embedding. In the field theory side, this means that the mesons which melt due to the raise in the temperature, will form bound states again by applying an external magnetic field. We will also show that the evolution of the system to its final equilibrium state is postponed due to the presence of the magnetic field.

  17. Enhanced Cloud Disruption by Magnetic Field Interaction

    OpenAIRE

    Gregori, G.; Miniati, Francesco; Ryu, Dongsu; Jones, T. W.

    1999-01-01

    We present results from the first three-dimensional numerical simulations of moderately supersonic cloud motion through a tenuous, magnetized medium. We show that the interaction of the cloud with a magnetic field perpendicular to its motion has a great dynamical impact on the development of instabilities at the cloud surface. Even for initially spherical clouds, magnetic field lines become trapped in surface deformations and undergo stretching. The consequent field amplification that occurs ...

  18. Noncommutativity in space and primordial magnetic field

    International Nuclear Information System (INIS)

    In this paper we show that noncommutativity in spatial coordinates can generate magnetic field in the early Universe on a horizon scale. The strength of such a magnetic field depends on tin number density of massive charged particles present at a given moment. This allows us to trace back the temperature dependence of the noncommutativity scale from the bounds on primordial magnetic field coming from nucleosynthesis. (author)

  19. Beam Transport in Toroidal Magnetic Field

    CERN Document Server

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    The concept of a storage ring with toroidal magnetic field was presented in the two previous EPAC conferences. Here we report the first results of experiments performed with beam transport in toroidal magnetic fields and details of the injection system. The beam transport experiments were carried out with 30 degree toroidal segments with an axial magnetic field of 0.6T. The multi turn injection system relies on a transverse injection coil together with an electric kicker system.

  20. Minimizing magnetic fields for precision experiments

    CERN Document Server

    Altarev, I; Lins, T; Marino, M G; Nießen, B; Petzoldt, G; Reisner, M; Stuiber, S; Sturm, M; Singh, J T; Taubenheim, B; Rohrer, H K; Schläpfer, U

    2015-01-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a linear improvement in the systematic reach and a 40 % improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  1. Minimizing magnetic fields for precision experiments

    International Nuclear Information System (INIS)

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application

  2. Pulsed magnetic field magnetic force microscope and evaluation of magnetic properties of soft magnetic tips

    International Nuclear Information System (INIS)

    A pulsed magnetic field magnetic force microscope (PMF-MFM) is developed for evaluation of the magnetic properties of nano-scale materials and devices, as well as the characteristics of MFM tips. We present the setup of the PMF-MFM system, and focus on the evaluation of a FeCo soft magnetic tip by PMF-MFM. We find a new theoretical method to calculate tip magnetization curves (M-H curves) using MFM phase signals. We measure the MFM phase and amplitude signals for the FeCo tip during the presence of the pulsed magnetic fields oriented parallel and antiparallel to the initial tip magnetization direction, and acquire the tip coercivity H c ∼ 1.1 kOe. The tip M-H curves are also calculated using the MFM phase signals data. We obtain the basic features of the tip magnetic properties from the tip M-H curves. (paper)

  3. Magnetic field screening effect in electroweak model

    CERN Document Server

    Bakry, A; Zhang, P M; Zou, L P

    2014-01-01

    It is shown that in the Weinberg-Salam model a magnetic field screening effect for static magnetic solutions takes place. The origin of that phenomenon is conditioned by features of the electro-weak interaction, namely, there is mutual cancellation of Abelian magnetic fields created by the SU(2) gauge fields and Higgs boson. The effect implies monopole charge screening in finite energy system of monopoles and antimonopoles. We consider another manifestation of the screening effect which leads to an essential energy decrease of magnetic solutions. Applying variational method we have found a magnetic field configuration with a topological azimuthal magnetic flux which minimizes the energy functional and possesses a total energy of order 1 TeV. We suppose that corresponding magnetic bound state exists in the electroweak theory and can be detected in experiment.

  4. Domestic magnetic fields. Protocols, measurements and results

    International Nuclear Information System (INIS)

    The quantification of magnetic field exposure has been the subject of considerable debate. A number of surrogates have been used including, spot measurements, wire coding and 24 hour averages. The quantification of domestic magnetic fields including the identification of sources is important if any mitigation is required. The State Electricity Commission of Victoria has developed recording instrumentation and measurement protocols for the survey of domestic magnetic field strengths in the Melbourne area. A range of domestic locations in the Melbourne metropolitan area is chosen to test the influence of external installations and the effect of appliance usage and energy consumption on the domestic magnetic field environment. (author)

  5. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  6. Numerical Simulation of Level Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    According to Maxwell electromagnetic field theory and magnetic vector potential integral equation, a mathematical model of LMF (Level Magnetic Field) for EMBR (Electromagnetic brake) was proposed, and the reliable software for LMF calculation was developed. The distribution of magnetic flux density given by numerical simulation shows that the magnetic flux density is greater in the magnet and magnetic leakage is observed in the gap. The magnetic flux density is uniform in horizontal plane and a peak is observed in vertical plane. Furthermore, the effects of electromagnetic and structural parameters on magnetic flux density were discussed. The relationship between magnetic flux, electromagnetic parameters and structural parameters is obtained by dimensional analysis, simulation experiment and least square method.

  7. Rydberg EIT in High Magnetic Field

    Science.gov (United States)

    Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg

    2016-05-01

    We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.

  8. The strongest magnetic fields in the universe

    CERN Document Server

    Balogh, A; Falanga, M; Lyutikov, M; Mereghetti, S; Piran, T; Treumann, RA

    2016-01-01

    This volume extends the ISSI series on magnetic fields in the Universe into the domain of what are by far the strongest fields in the Universe, and stronger than any field that could be produced on Earth. The chapters describe the magnetic fields in non-degenerate strongly magnetized stars, degenerate stars (such as white dwarfs and neutron stars), exotic members called magnetars, and in their environments, as well as magnetic fields in the environments of black holes. These strong fields have a profound effect on the behavior of matter, visible in particular in highly variable processes like radiation in all known wavelengths, including Gamma-Ray bursts. The generation and structure of such strong magnetic fields and effects on the environment are also described.

  9. Magnetized quark matter with a magnetic-field dependent coupling

    CERN Document Server

    Li, Chang-Feng; Wen, Xin-Jian; Peng, Guang-Xiong

    2016-01-01

    It was recently derived that the QCD running coupling is a function of the magnetic field strength under the strong magnetic field approximation. Inspired by this progress and based on the self-consistent solutions of gap equations, the properties of 2-flavor and 3-flavor quark matter are studied in the framework of the Nambu-Jona-Lasinio model with a magnetic-field dependent running coupling. We find that the dynamical quark masses as a function of the magnetic field strength is not monotonous in the fully chirally broken phase. Furthermore, the stability of magnetized quark matter with the running coupling is enhanced by lowering the free energy per baryon, which is expected to be more stable than that of the conventional coupling constant case. It is concluded that the magnetized strange quark matter described by running coupling can be absolutely stable.

  10. Reducing Field Distortion in Magnetic Resonance Imaging

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  11. Magnetic field vector retrieval with HMI

    CERN Document Server

    Borrero, J M; Norton, A; Darnell, T; Schou, J; Scherrer, P; Bush, R; Lui, Y

    2006-01-01

    The Helioseismic and Magnetic Imager (HMI), on board the Solar Dynamics Observatory (SDO), will begin data acquisition in 2008. It will provide the first full disk, high temporal cadence observations of the full Stokes vector with a 0.5 arc sec pixel size. This will allow for a continuous monitoring of the Solar magnetic field vector. HMI data will advance our understanding of the small and large-scale magnetic field evolution, its relation to the solar and global dynamic processes, coronal field extrapolations, flux emergence, magnetic helicity and the nature of the polar magnetic fields. We summarize HMI's expected operation modes, focusing on the polarization cross-talk induced by the solar oscillations and how this affects the magnetic field vector determinations.

  12. Magnetic field visualization technique using neutrons

    International Nuclear Information System (INIS)

    Neutron radiography is utilized in the internal inspection of various materials due to the high sensitivity against light elements and excellent material transmission capability of neutrons. On the other hand, neutrons can interact directly with magnetic field because they have magnetic moment. As a result, neutron beams cause changes in spin state and orbit while passing through the magnetic field. If these changes can be detected for each position, the information about the magnetic field can be expressed as an image. This paper explains the characteristics of the magnetic field imaging using neutrons, in comparison with those of other techniques. Regarding the experimental examples of the visualization techniques using pulsed neutrons that have been performed in Japan, it introduces several examples in the stage of development at the Materials and Life Science Facility of J-PARC. In addition, it looks forward to the application and future of magnetic field imaging. (A.O.)

  13. Magnetic Energy of Force-Free Fields with Detached Field Lines

    Institute of Scientific and Technical Information of China (English)

    Guo-Qiang Li; You-Qiu Hu

    2003-01-01

    Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal field at the solar surface is the same or very close to that of a central dipole. The characteristic plasmaβ (the ratio between gas pressure and magnetic pressure) is taken to be so small (β = 10-4) that the magnetic field is close to being force-free. The system as a whole is then let evolve quasi-statically with a slow increase of either the annular magnetic flux or the axial magnetic flux of the rope, and the total magnetic energy of the system grows accordingly. It is found that there exists an energy threshold: the flux rope sticks to the solar surface in equilibrium if the magnetic energy of the system is below the threshold, whereas it loses equilibrium if the threshold is exceeded. The energy threshold is found to be larger than that of the corresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as to whether the background field is completely closed or partly open, or whether the magnetic energy is enhanced by an increase of annular or axial flux of the rope.This gives an example showing that a force-free magnetic field may have an energylarger than the corresponding open field energy if part of the field lines is allowed to be detached from the solar surface. The implication of such a conclusion in coronal mass ejections is briefly discussed and some comments are made on the maximum energy of force-free magnetic fields.

  14. Injection of a coaxial-gun-produced magnetized plasma into a background helicon plasma

    Science.gov (United States)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott

    2014-10-01

    A compact coaxial plasma gun is employed for experimental investigation of plasma bubble relaxation into a lower density background plasma. Experiments are being conducted in the linear device HelCat at UNM. The gun is powered by a 120-uF ignitron-switched capacitor bank, which is operated in a range of 5 to 10 kV and 100 kA. Multiple diagnostics are employed to investigate the plasma relaxation process. Magnetized argon plasma bubbles with velocities 1.2Cs, densities 1020 m-3 and electron temperature 13eV have been achieved. The background helicon plasma has density 1013 m-3, magnetic field from 200 to 500 Gauss and electron temperature 1eV. Several distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. Additionally a B-dot probe array has been employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify plasma bubble configurations. Experimental data and analysis will be presented.

  15. Tracing magnetic fields with ground state alignment

    International Nuclear Information System (INIS)

    Observational studies of magnetic fields are vital as magnetic fields play a crucial role in various astrophysical processes, including star formation, accretion of matter, transport processes (e.g. transport of heat), and cosmic rays. The existing ways of magnetic field studies have their limitations. Therefore, it is important to explore new effects that can bring information about magnetic field. We identified a process “ground state alignment” as a new way to determine the magnetic field direction in diffuse medium. The consequence of the process is the polarization of spectral lines resulting from scattering and absorption from aligned atomic/ionic species with fine or hyperfine structure. The alignment is due to anisotropic radiation impinging on the atom/ion, while the magnetic field induces precession and realign the atom/ion and therefore the polarization of the emitted or absorbed radiation reflects the direction of the magnetic field. The atoms get aligned at their low levels and, as the life-time of the atoms/ions we deal with is long, the alignment induced by anisotropic radiation is susceptible to extremely weak magnetic fields (1G≳B≳10-15G). Compared to the upper level Hanle effect, atomic realignment is most suitable for the studies of magnetic field in the diffuse medium, where magnetic field is relatively weak. The corresponding physics of alignment is based on solid foundations of quantum electrodynamics and in a different physical regime the alignment has become a part of solar spectroscopy. In fact, the effects of atomic/ionic alignment, including the realignment in magnetic field, were studied in the laboratory decades ago, mostly in relation to the maser research. Recently, the atomic effect has been already detected in observations from circumstellar medium and this is a harbinger of future extensive magnetic field studies. It is very encouraging that a variety of atoms with fine or hyperfine splitting of the ground or metastable

  16. Efficient magnetic fields for supporting toroidal plasmas

    CERN Document Server

    Landreman, Matt

    2016-01-01

    The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The properties of curl-free magnetic fields allow magnetic field distributions to be ranked in order of their difficulty of production from a distance. Plasma shapes with low curvature and spectral width may be difficult to support, whereas plasma shapes with sharp edges may be efficiently supported by distant coils. Two measures of difficulty, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally-produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix y...

  17. Magnetic fields and halos in spiral galaxies

    OpenAIRE

    Krause, Marita

    2014-01-01

    Radio continuum observations allow to reveal the magnetic field structure in the disk and halo of nearby spiral galaxies, their magnetic field strength and vertical scale heights. The spiral galaxies studied so far show a similar magnetic field pattern which is of spiral shape along the disk plane and X-shaped in the halo, sometimes accompanied by strong vertical fields above and below the central region of the disk. The strength of the halo field is comparable to that of the disk. The total ...

  18. Magnification bias as a novel probe for primordial magnetic fields

    CERN Document Server

    Camera, Stefano; Moscardini, Lauro

    2013-01-01

    In this paper we investigate magnetic fields generated in the early Universe. These fields are important candidates at explaining the origin of astrophysical magnetism observed in galaxies and galaxy clusters, whose genesis is still by and large unclear. Compared to the standard inflationary power spectrum, intermediate to small scales would experience further substantial matter clustering, were a cosmological magnetic field present prior to recombination. As a consequence, the bias and redshift distribution of galaxies would also be modified. Hitherto, primordial magnetic fields (PMFs) have been tested and constrained with a number of cosmological observables, e.g. the cosmic microwave background radiation, galaxy clustering and, more recently, weak gravitational lensing. Here, we explore the constraining potential of the density fluctuation bias induced by gravitational lensing magnification onto the galaxy-galaxy angular power spectrum. Such an effect is known as magnification bias. Compared to the usual g...

  19. CONSTRAINING PRIMORDIAL MAGNETIC FIELDS THROUGH LARGE-SCALE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Kahniashvili, Tina; Natarajan, Aravind; Battaglia, Nicholas [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Maravin, Yurii [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506 (United States); Tevzadze, Alexander G., E-mail: tinatin@andrew.cmu.edu [Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 3 Chavchavadze Avenue, Tbilisi 0128 (Georgia)

    2013-06-10

    We study primordial magnetic field effects on the matter perturbations in the universe. We assume magnetic field generation prior to the big bang nucleosynthesis (BBN), i.e., during the radiation-dominated epoch of the universe expansion, but do not limit analysis by considering a particular magnetogenesis scenario. Contrary to previous studies, we limit the total magnetic field energy density and not the smoothed amplitude of the magnetic field at large (of the order of 1 Mpc) scales. We review several cosmological signatures, such as halo abundance, thermal Sunyaev-Zel'dovich effect, and Ly{alpha} data. For a cross-check, we compare our limits with that obtained through the cosmic microwave background faraday rotation effect and BBN. The limits range between 1.5 nG and 4.5 nG for n{sub B} in (- 3; -1.5).

  20. Magnetic fields in Neutron Stars

    CERN Document Server

    Viganò, Daniele; Miralles, Juan A; Rea, Nanda

    2015-01-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  1. Evolution of Neutron Star Magnetic Fields

    Indian Academy of Sciences (India)

    Dipankar Bhattacharya

    2002-03-01

    This paper reviews the current status of the theoretical models of the evolution of the magnetic fields of neutron stars other than magnetars. It appears that the magnetic fields of neutron stars decay significantly only if they are in binary systems. Three major physical models for this, namely spindown-induced flux expulsion, ohmic evolution of crustal field and diamagnetic screening of the field by accreted plasma, are reviewed.

  2. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Aquino, D. [ERC Incorporated, Air Force Research Laboratory, 10 E. Saturn Blvd., Edwards AFB, CA 93524 (United States); Rinaldi, C., E-mail: carlos.rinaldi@bme.ufl.edu [J. Crayton Pruitt Family Department of Biomedical Engineering and Department of Chemical Engineering, University of Florida, PO Box 116131, Gainesville, FL 32611-6131 (United States)

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given. - Highlights: • Rosensweig's model for SAR was extended to high fields. • The MRSh relaxation equation was used to predict SAR at high fields. • Rotational Brownian dynamics simulations were used to predict SAR. • The results of these models were compared. • Predictions of effect of size and field conditions on SAR are presented.

  3. The magnetic field of $\\zeta$ Ori A

    CERN Document Server

    Blazère, A; Bouret, J-C; Tkachenko, A

    2014-01-01

    Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of $\\zeta$ Ori A. We also provide a new analysis of both the new and older data taking binarity into account. The aim of this study was to confirm the presence of a magnetic field in $\\zeta$ Ori A. We identify that it belongs to $\\zeta$ Ori Aa and characterize it.

  4. The magnetic field of ζ Ori A

    Science.gov (United States)

    Blazère, A.; Neiner, C.; Bouret, J.-C.; Tkachenko, A.

    2015-01-01

    Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation (Wade et al. 2013) and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of ζ Ori A. We also provide a new analysis of both the new and older data taking binarity into account. The aim of this study was to confirm the presence of a magnetic field in ζ Ori A. We identify that it belongs to ζ Ori Aa and characterize it.

  5. The magnetic field of zeta Orionis A

    OpenAIRE

    Blazère, A.; Neiner, C.; Tkachenko, A.; Bouret, J. -C.; Rivinius, Th.; collaboration, the MiMeS

    2015-01-01

    Zeta Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. We aim at verifying the presence of a magnetic field in zeta Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field.Very high signal-to-noise spectropolarimetric data were obtained with Narval at...

  6. Rotating artificial gauge magnetic and electric fields

    CERN Document Server

    Lembessis, V E; Alshamari, S; Siddig, A; Aldossary, O M

    2016-01-01

    We consider the creation of artificial gauge magnetic and electric fields created when a two-level atom interacts with an optical Ferris wheel light field.These fields have the spatial structure of the optical Ferris wheel field intensity profile. If this optical field pattern is made to rotate in space then we have the creation of artificial electromagnetic fields which propagate in closed paths. The properties of such fields are presented and discussed

  7. Covariant and single-field effective action with the background-field formalism

    CERN Document Server

    Safari, Mahmoud

    2016-01-01

    In the context of scalar quantum field theory we introduce a class of generically nonlinear quantum-background splits for which the splitting Ward identity, encoding the single field dependence in the effective action, can be solved exactly. We show that this can be used to construct an effective action which is both covariant and dependent on the background and fluctuation fields only through a single total field in a way independent from the dynamics. Moreover we discuss the criteria under which the ultraviolet symmetries are inherited by the quantum effective action. The approach is demonstrated through some examples, including the $O(N)$ effective field theory, which might be of interest for the Higgs sector of the Standard Model or its extensions.

  8. Separability of test fields equations on the C-metric background II. Rotating case and the Meissner effect

    CERN Document Server

    Kofroň, David

    2016-01-01

    We present the separation of the Teukolsky master equation for the test field of arbitrary spin on the background of the rotating C-metric. We also summarize and simplify some known results about Debye potentials of these fields on type D background. The equation for the Debye potential is also separated. Solving for the Debye potential of the electromagnetic field we show that on the extremely rotating C-metric no magnetic field can penetrate through the outer black hole horizon --- we thus recover the Meissner effect for the C-metric.

  9. Separability of test fields equations on the C-metric background II. Rotating case and the Meissner effect

    OpenAIRE

    Kofroň, David

    2016-01-01

    We present the separation of the Teukolsky master equation for the test field of arbitrary spin on the background of the rotating C-metric. We also summarize and simplify some known results about Debye potentials of these fields on type D background. The equation for the Debye potential is also separated. Solving for the Debye potential of the electromagnetic field we show that on the extremely rotating C-metric no magnetic field can penetrate through the outer black hole horizon --- we thus ...

  10. About the photon redshift in a magnetic field

    International Nuclear Information System (INIS)

    Previous results concerning the arising a tiny photon anomalous paramagnetic moment are also interpreted as a red-shift in analogy to the gravitational known effect. It is due to the photon interaction with the magnetized virtual electron-positron background which withdraw transverse momentum from photons and is polarization-dependent. The photon frequency red-shift implies a change in time and a clock would go faster for increasing magnetic field intensity. (author)

  11. Modeling the evolution of galactic magnetic fields

    International Nuclear Information System (INIS)

    An analytic model for evolution of galactic magnetic fields in hierarchical galaxy formation frameworks is introduced. Its major innovative components include explicit and detailed treatment of the physics of merger events, mass gains and losses, gravitational energy sources and delays associated with formation of large-scale magnetic fields. This paper describes the model, its implementation, and core results obtained by its means

  12. Strong magnetic field generation in laser plasma

    International Nuclear Information System (INIS)

    An attempt has been made to solve the magnetic field evolution equation by using Green function and taking convective, diffusion and nabla n x nabla T as a dominant source term. The maximum magnetic field is obtained to be an order of megagauss. (author). 14 refs, 1 fig

  13. Magnetic fields of HgMn stars

    DEFF Research Database (Denmark)

    Hubrig, S.; Gonzalez, J. F.; Ilyin, I.;

    2012-01-01

    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have fai...

  14. Helical Magnetic Fields in AGN Jets

    Indian Academy of Sciences (India)

    Y. J. Chen; G.-Y. Zhao; Z.-Q. Shen

    2014-09-01

    We establish a simple model to describe the helical magnetic fields in AGN jets projected on the sky plane and the line-of-sight. This kind of profile has been detected in the polarimetric VLBI observation of many blazar objects, suggesting the existence of helical magnetic fields in these sources.

  15. Programming the control of magnetic field measurements

    International Nuclear Information System (INIS)

    This paper gives a short review concerning the new NMR probe measurement control system. Then it presents the new program 'CYCLOCHAMP' attached to the magnetic field measurement which also allows to cycle the magnetic field inside the cyclotrons and to equilibrate it among the SSC sectors. (authors)

  16. Autoionization in a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Lemoigne, J.P.; Grandin, J.P.; Husson, X.; Kucal, H. (Institut des Sciences de la Matiere du Rayonnement, 14 - Caen (FR) Caen Univ., 14 (FR)); Zakrzewski, J.; Dohnalik, T. (Uniwersytet Jagiellonski, Krakow, (PL). Inst. Fizyki); Marcinek, R. (Wyzsza Szkola Pedagogiczna, Cracow (PL))

    1991-04-15

    The autoionization in the presence of a strong magnetic field is studied experimentally for 11s'(1/2) 1 argon level. It is shown that autoionizing resonance properties are strongly affected by the magnetic-field-induced modification of the continuum in which the resonance is embedded. A simple theoretical model explains essential features of the phenomenon.

  17. Vacuum magnetic fields with dense flux surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cary, J R

    1982-05-01

    A procedure is given for eliminating resonances and stochasticity in nonaxisymmetric vacuum toroidal magnetic field. The results of this procedure are tested by the surface of section method. It is found that one can obtain magnetic fields with increased rotational transform and decreased island structure while retaining basically the same winding law.

  18. Earth magnetism a guided tour through magnetic fields

    CERN Document Server

    Campbell, Wallace H

    2001-01-01

    An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates

  19. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  20. Magnetic field quality requirements for PEP

    International Nuclear Information System (INIS)

    The field quality of the cell quadrupole magnets of PEP was previously studied. With an improved formula, which takes into account the synchrotron oscillations, the field quality of the bending magnets and of the insertion quadrupole magnets is studied. An attempt is made to give a quality parameter. The instability prediction given by the betatron frequency shifts is compared with the instability prediction given by a particle tracing program

  1. Large-scale magnetic fields in cosmology

    International Nuclear Information System (INIS)

    Despite the widespread presence of magnetic fields, their origin, evolution and role are still not well understood. Primordial magnetism sounds appealing but is not problem free. The magnetic implications for the large-scale structure of the universe still remain an open issue. This paper outlines the advantages and shortcomings of early-time magnetogenesis and the typical role of B-fields in linear structure-formation scenarios.

  2. The magnetic field of rotating bodies

    International Nuclear Information System (INIS)

    The paper discusses the possibility of interpreting the magnetic fields of astronomical bodies in the framework of a unified field theory. Using one of the solutions of the generalized field theory, a direct relation between the polar magnetic field, the angular velocity and the gravitational potential of the body considered, is obtained. The model used for applications has spherical symmetry. The predictions of the theoretical formula, obtained from the model, are compared with available observational data, and with the empirical relation of Blackett. The theoretical formula gives a possible interpretation of a seed magnetic field which will develop and produce the largescale magnetic field observed for celestial objects. The formula shows that the field may be generated as a result of the rotation of the massive object. (author). 24 refs, 3 figs, 1 tab

  3. Comparison of adjustable permanent magnetic field sources

    CERN Document Server

    Bjørk, R; Smith, A; Pryds, N

    2014-01-01

    A permanent magnet assembly in which the flux density can be altered by a mechanical operation is often significantly smaller than comparable electromagnets and also requires no electrical power to operate. In this paper five permanent magnet designs in which the magnetic flux density can be altered are analyzed using numerical simulations, and compared based on the generated magnetic flux density in a sample volume and the amount of magnet material used. The designs are the concentric Halbach cylinder, the two half Halbach cylinders, the two linear Halbach arrays and the four and six rod mangle. The concentric Halbach cylinder design is found to be the best performing design, i.e. the design that provides the most magnetic flux density using the least amount of magnet material. A concentric Halbach cylinder has been constructed and the magnetic flux density, the homogeneity and the direction of the magnetic field are measured and compared with numerical simulation and a good agreement is found.

  4. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  5. Exposure guidelines for steady magnetic fields

    International Nuclear Information System (INIS)

    The powerful magnetic fields produced by many DOE energy-research experiments, including the Mirror Fusion Test Facility-B (MFTF-B) experiment at LLNL, necessitate the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers show that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. Further research is needed, however, to develop definitive exposure standards. An overview of the results of past research into the bioeffects of magnetic fields is presented, hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants are discussed, and the LLNL steady magnetic-field exposure guidelines are presented

  6. Organic Superconductors at Extremely High Magnetic Fields

    International Nuclear Information System (INIS)

    Intense magnetic fields are an essential tool for understanding layered superconductors. Fundamental electronic properties of organic superconductors are revealed in intense (60 tesla) magnetic fields. Properties such as the topology of the Fermi surface and the nature of the superconducting order parameter are revealed. With modest maximum critical temperatures ∼13K the charge transfer salt organic superconductors prove to be incredibly valuable materials as their electronically clean nature and layered (highly anisotropic) structures yield insights to the high temperature superconductors. Observation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillatory phenomena, magnetic field induced superconductivity and re-entrant superconductivity are some of the physical phenomena observed in the charge transfer organic superconductors. In this talk, I will discuss the nature of organic superconductors and give an overview of the generation of intense magnetic fields; from the 60 tesla millisecond duration to the extreme 1000 tesla microsecond pulsed magnetic fields.

  7. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    Science.gov (United States)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  8. Solar nebula magnetic fields recorded in the Semarkona meteorite

    DEFF Research Database (Denmark)

    Fu, Roger R.; Weiss, Benjamin P.; Lima, Eduardo A.;

    2014-01-01

    intensity of these fields. Here we show that dusty olivine-bearing chondrules from the Semarkona meteorite were magnetized in a nebular field of 54 ± 21 microteslas. This intensity supports chondrule formation by nebular shocks or planetesimal collisions rather than by electric currents, the x-wind, or...... other mechanisms near the Sun. This implies that background magnetic fields in the terrestrial planet-forming region were likely 5 to 54 microteslas, which is sufficient to account for measured rates of mass and angular momentum transport in protoplanetary disks....

  9. Bats Respond to Very Weak Magnetic Fields

    Science.gov (United States)

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (Preversed tens of times over the past fifty million years. PMID:25922944

  10. How do galaxies get their magnetic fields?

    Science.gov (United States)

    Beck, Alexander M.

    2016-06-01

    The origin of magnetic fields in high-redshift and present-day galaxies is a long-standing problem. In this talk, we present a model for the seeding and evolution of magnetic fields in protogalaxies. Supernova (SN) explosions during the assembly of a protogalaxy self-consistently provide magnetic seed fields, which are subsequently amplified by compression, shear flows and random motions.Our model explains the origin of strong magnetic fields of μG amplitude within the first starforming protogalactic structures shortly after the first stars have formed.We present cosmological simulations with the GADGET code of Milky Way-like galactic halo formation using a standard LCDM cosmology and analyse the strength and distribution of the evolving magnetic field.Within starforming regions and given typical dimensions and magnetic field strengths in canonical SN remnants, we inject a dipole-shape magnetic field at a rate of nG/Gyr. Subsequently, the magnetic field strength increases exponentially on timescales of a few ten million years within the innermost regions of the halo.Furthermore, turbulent diffusion, shocks and gas motions transport the magnetic field towards the halo outskirts. At redshift z=0, the entire galactic structures are magnetized and the field amplitude is of the order of a few microG in the center of the halo and nG at the virial radius. Additionally, we analyse the intrinsic rotation measure (RM) of the forming galactic halo over redshift. The mean halo intrinsic RM peaks between redshifts z=4 and z=2 and reaches absolute values around 1000 rad/m^2. Towards redshift z=0, the intrinsic RM values decline to a mean value below 10 rad/m^2. At high redshifts, the distribution of individual starforming and thus magnetized regions is widespread leading to a widespread distribution of large intrinsic RMs. Our model for the evolution of galactic magnetic fields solves the joint problem of magnetic field seeding and subsequent amplification and distribution. The

  11. Magnetic field dependence of rf surface impedance

    International Nuclear Information System (INIS)

    In this paper the surface impedance, Zs, is calculated for type-II superconductors subjected to a static magnetic field and small-amplitude microwave radiation. A complex penetration depth is calculated by using a model of vortex dynamics including a linear pinning restoring force and a viscous drag force. The static magnetic field dependence of the surface resistance Rs and surface reactance Xs is found by examining the dependence of the complex penetration depth on the length scales for low-field penetration, pinning penetration, and flux-flow penetration. In turn, from Rs, the static magnetic field dependence of the rate of energy dissipation is found

  12. Warm inflation in presence of magnetic fields

    CERN Document Server

    Piccinelli, Gabriella; Ayala, Alejandro; Mizher, Ana Julia

    2013-01-01

    We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales, which rises the possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger proper time method.

  13. Bending of magnetic filaments under a magnetic field

    Science.gov (United States)

    Shcherbakov, Valera P.; Winklhofer, Michael

    2004-12-01

    Magnetic beads and superparamagnetic (SP) colloid particles have successfully been employed for micromechanical manipulation of soft material, in situ probing of elastic properties, and design of smart materials (ferrogels). Here we derive analytical expressions for the equilibrium shape of magnetic fibers, considering two end-member cases, (a) SP or single-domain particles concentrated at the free end of cantilevered rods or tubes, and (b) filaments consisting of SP particles, with this case being mathematically equivalent to tubes containing SP particles. Our analysis yields also metastable equilibrium states (MES’s), which only exist above a critical filament length, but become more stable with increasing magnetic field. The MES’s for case (a) are, like the ground state, circular arcs, but more strongly bent. The multiform MES’s in case (b), which comprise hairpin, sinuous, or even closed shapes, have recently been observed in experiments, too. We also study the effect of gravity on the balance between bending and magnetic energy, which leads to curves with inflection point if the influence of gravity is stronger than that of the magnetic field. Because of their simple experimental realization, case (a) magnetic filaments are deemed highly suitable for micromechanical experiments on long chains of polymer molecules. Another potential application of cantilevered magnetic filaments with magnetic material attached to the free end is in scanning probe microscopes. Because the magnetic field due to the magnetic tip is comparatively weak, the magnetization structure of the sample to be investigated would not be affected by the probe. Thus, for the examination of magnetically soft materials, probes in the form of magnetic filaments may hold advantages over tips usually employed in magnetic force microscopy.

  14. Magnetic fields of rotating bodies

    International Nuclear Information System (INIS)

    After a short historical review of the magnetism of rotating bodies a new model, based on Stochastic Electrodynamics, is briefly presented. It is shown how the theory of cooperative phenomena applies to this model. The outcome of the theory is used to analyse results obtained in a laboratory experiment on the magnetism of rotating bodies

  15. The magnetic field of ζ Orionis A

    Science.gov (United States)

    Blazère, A.; Neiner, C.; Tkachenko, A.; Bouret, J.-C.; Rivinius, Th.

    2015-10-01

    Context. ζ Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. Aims: We aim at verifying the presence of a magnetic field in ζ Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field. Methods: Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the least-squares deconvolution technique to extract the magnetic information. Results: We confirm that ζ Ori A is magnetic. We find that the supergiant component ζ Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a period of 6.829 d. This is the only magnetic O supergiant known as of today. With an oblique dipole field model of the Stokes V profiles, we show that the polar field strength is ~140 G. Because the magnetic field is weak and the stellar wind is strong, ζ Ori Aa does not host a centrifugally supported magnetosphere. It may host a dynamical magnetosphere. Its companion ζ Ori Ab does not show any magnetic signature, with an upper limit on the undetected field of ~300 G. Based on observations obtained at the Télescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.Appendix A is available in electronic form at http://www.aanda.org

  16. Ohm's law for mean magnetic fields

    International Nuclear Information System (INIS)

    Spatially complicated magnetic fields are frequently treated as the sum of a large, slowly varying, mean field and a small, rapidly varying, field. The primary effect of the small field is to modify the Ohm's law of the mean field. A set of plausible assumptions leads to a form of the mean field Ohm's law which is fundamentally different from the conventional alpha effect of dynamo theory

  17. Magnetic monopole field exposed by electrons

    CERN Document Server

    Béché, A; Van Tendeloo, G; Verbeeck, J

    2013-01-01

    Magnetic monopoles have provided a rich field of study, leading to a wide area of research in particle physics, solid state physics, ultra-cold gases, superconductors, cosmology, and gauge theory. So far, no true magnetic monopoles were found experimentally. Using the Aharonov-Bohm effect, one of the central results of quantum physics, shows however, that an effective monopole field can be produced. Understanding the effects of such a monopole field on its surroundings is crucial to its observation and provides a better grasp of fundamental physical theory. We realize the diffraction of fast electrons at a magnetic monopole field generated by a nanoscopic magnetized ferromagnetic needle. Previous studies have been limited to theoretical semiclassical optical calculations of the motion of electrons in such a monopole field. Solid state systems like the recently studied 'spin ice' provide a constrained system to study similar fields, but make it impossible to separate the monopole from the material. Free space ...

  18. External-field-free magnetic biosensor

    International Nuclear Information System (INIS)

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6 dB from one iron oxide magnetic nanoparticle with 8 nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200 nm × 200 nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3 dB is achieved for 30 μl magnetic nanoparticles suspension (30 nm iron oxide particles, 1 mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices

  19. Quantitative modeling of planetary magnetospheric magnetic fields

    Science.gov (United States)

    Walker, R. J.

    1979-01-01

    Three new quantitative models of the earth's magnetospheric magnetic field have recently been presented: the Olson-Pfitzer model, the Tsyganenko model, and the Voigt model. The paper reviews these models in some detail with emphasis on the extent to which they have succeeded in improving on earlier models. The models are compared with the observed field in both magnitude and direction. Finally, the application to other planetary magnetospheres of the techniques used to model the earth's magnetospheric magnetic field is briefly discussed.

  20. Debye relaxation in high magnetic fields

    OpenAIRE

    Brooks, J. S.; Vasic, R.; Kismarahardja, A.; Steven, E.; Tokumoto, T.; Schlottmann, P.; Kelly, S.

    2008-01-01

    Dielectric relaxation is universal in characterizing polar liquids and solids, insulators, and semiconductors, and the theoretical models are well developed. However, in high magnetic fields, previously unknown aspects of dielectric relaxation can be revealed and exploited. Here, we report low temperature dielectric relaxation measurements in lightly doped silicon in high dc magnetic fields B both parallel and perpendicular to the applied ac electric field E. For B//E, we observe a temperatur...

  1. Ohm's law for mean magnetic fields

    International Nuclear Information System (INIS)

    The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity

  2. Magnetic fields and supergranule velocity fields on the quiet sun

    International Nuclear Information System (INIS)

    The author has carried out detailed study on the quiet sun magnetic fields and supergranule velocity fields. This thesis consists of 6 themes. (1) He studied the statistical properties of quiet sun magnetic fields, including size distribution, evolution, flux budget of magnetic flux elements, and the magnetic diffusion constant. From the observations, he derived that the magnetic diffusion constant is ≤ 150 km2/sec in the quiet region. (2) He studied the supergranule velocity fields. By observing the evolution of individual supergranule cells, he found that the average lifetime of supergranules is ≥ 50 hours. (3) He measured the contrast of faculae near the solar limb. The measurements show no obvious contrast increase or decrease near the solar limb. The observation fits neither the hot wall nor hot cloud fluxtube model. (4) He measured the separation velocities of new bipoles. The observed values are several times smaller than the values estimated by the theory of magnetic buoyancy. (5) He applied the local correlation tracking technique to BBSO Videomagnetogram data and detected an approximate radial intranetwork flow pattern. (6) He studied the relationship between magnetic fields and convection velocity fields. He found that ephemeral regions have a light tendency to emerge at or near the boundaries of supergranules; supergranules have the same scale, correlation lifetime and mean horizontal speed in enhanced network region as in the mixed polarity quiet sun; the velocity of moving magnetic features that surround sunspots is consistent with the direct Doppler measurements

  3. MICE Spectrometer Solenoid Magnetic Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Leonova, M. [Fermilab

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  4. Differential renormalization of scalar field theory in the background-field method

    CERN Document Server

    Chen, Y H; Nyeo, S L; Chen, Yaw Hwang; He, Min Tsung; Nyeo, Su Long

    1995-01-01

    We introduce an approach for calculating the quantum loop corrections in the \\phi^4 theory. Differential regularization and background-field method are essential tools and are used to calculate the effective action of the theory to two-loop order. Our approach is considerably simpler than other known methods and can be readily extended to higher-loop calculations and to other models.

  5. Efficient magnetic fields for supporting toroidal plasmas

    Science.gov (United States)

    Landreman, Matt; Boozer, Allen H.

    2016-03-01

    The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However, the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The efficiency of an externally generated magnetic field is a measure of the field's shaping component magnitude at the plasma compared to the magnitude near the coils; the efficiency of a plasma equilibrium can be measured using the efficiency of the required external shaping field. Counterintuitively, plasma shapes with low curvature and spectral width may have low efficiency, whereas plasma shapes with sharp edges may have high efficiency. Two precise measures of magnetic field efficiency, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix yields an efficiency ordered basis for the magnetic field distributions. Calculations are carried out for both tokamak and stellarator cases. For axisymmetric surfaces with circular cross-section, the SVD is calculated analytically, and the range of poloidal and toroidal mode numbers that can be controlled to a given desired level is determined. If formulated properly, these efficiency measures are independent of the coordinates used to parameterize the surfaces.

  6. Strongly interacting matter in magnetic fields

    International Nuclear Information System (INIS)

    Provides a first coherent and introductory account of this new topic. Edited and Authored by leading researchers in the field. Suitable as both self-study text and advanced course material for graduate courses, thematic schools and seminars. The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important new theoretical tool that will be revisited and which made much of the progress surveyed in this book possible is the holographic principle - the correspondence between quantum field theory and gravity in extra dimensions. Edited and authored by the pioneers and leading experts in this newly emerging field, this book offers a valuable resource for a broad community of physicists and graduate students.

  7. Quark matter under strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Peres Menezes, Debora [Universidade Federal de Santa Catarina, Depto de Fisica - CFM, Florianopolis, SC (Brazil); Laercio Lopes, Luiz [Universidade Federal de Santa Catarina, Depto de Fisica - CFM, Florianopolis, SC (Brazil); Campus VIII, Centro Federal de Educacao Tecnologica de Minas Gerais, Varginha, MG (Brazil)

    2016-02-15

    We revisit three of the mathematical formalisms used to describe magnetized quark matter in compact objects within the MIT and the Nambu-Jona-Lasinio models and then compare their results. The tree formalisms are based on 1) isotropic equations of state, 2) anisotropic equations of state with different parallel and perpendicular pressures and 3) the assumption of a chaotic field approximation that results in a truly isotropic equation of state. We have seen that the magnetization obtained with both models is very different: while the MIT model produces well-behaved curves that are always positive for large magnetic fields, the NJL model yields a magnetization with lots of spikes and negative values. This fact has strong consequences on the results based on the existence of anisotropic equations of state. We have also seen that, while the isotropic formalism results in maximum stellar masses that increase considerably when the magnetic fields increase, maximum masses obtained with the chaotic field approximation never vary more than 5.5%. The effect of the magnetic field on the radii is opposed in the MIT and NJL models: with both formalisms, isotropic and chaotic field approximation, for a fixed mass, the radii increase with the increase of the magnetic field in the MIT bag model and decrease in the NJL, the radii of quark stars described by the NJL model being smaller than the ones described by the MIT model. (orig.)

  8. Quark matter under strong magnetic fields

    International Nuclear Information System (INIS)

    We revisit three of the mathematical formalisms used to describe magnetized quark matter in compact objects within the MIT and the Nambu-Jona-Lasinio models and then compare their results. The tree formalisms are based on 1) isotropic equations of state, 2) anisotropic equations of state with different parallel and perpendicular pressures and 3) the assumption of a chaotic field approximation that results in a truly isotropic equation of state. We have seen that the magnetization obtained with both models is very different: while the MIT model produces well-behaved curves that are always positive for large magnetic fields, the NJL model yields a magnetization with lots of spikes and negative values. This fact has strong consequences on the results based on the existence of anisotropic equations of state. We have also seen that, while the isotropic formalism results in maximum stellar masses that increase considerably when the magnetic fields increase, maximum masses obtained with the chaotic field approximation never vary more than 5.5%. The effect of the magnetic field on the radii is opposed in the MIT and NJL models: with both formalisms, isotropic and chaotic field approximation, for a fixed mass, the radii increase with the increase of the magnetic field in the MIT bag model and decrease in the NJL, the radii of quark stars described by the NJL model being smaller than the ones described by the MIT model. (orig.)

  9. Quark matter under strong magnetic fields

    Science.gov (United States)

    Peres Menezes, Débora; Laércio Lopes, Luiz

    2016-02-01

    We revisit three of the mathematical formalisms used to describe magnetized quark matter in compact objects within the MIT and the Nambu-Jona-Lasinio models and then compare their results. The tree formalisms are based on 1) isotropic equations of state, 2) anisotropic equations of state with different parallel and perpendicular pressures and 3) the assumption of a chaotic field approximation that results in a truly isotropic equation of state. We have seen that the magnetization obtained with both models is very different: while the MIT model produces well-behaved curves that are always positive for large magnetic fields, the NJL model yields a magnetization with lots of spikes and negative values. This fact has strong consequences on the results based on the existence of anisotropic equations of state. We have also seen that, while the isotropic formalism results in maximum stellar masses that increase considerably when the magnetic fields increase, maximum masses obtained with the chaotic field approximation never vary more than 5.5%. The effect of the magnetic field on the radii is opposed in the MIT and NJL models: with both formalisms, isotropic and chaotic field approximation, for a fixed mass, the radii increase with the increase of the magnetic field in the MIT bag model and decrease in the NJL, the radii of quark stars described by the NJL model being smaller than the ones described by the MIT model.

  10. Separability of test fields equations on the C -metric background

    Science.gov (United States)

    KofroÅ, David

    2015-12-01

    In the Kerr-Newman spacetime the Teukolsky master equation, governing the fundamental test fields, is of great importance. We derive an analogous master equation for the nonrotating C -metric which encompasses a massless Klein-Gordon field, neutrino field, Maxwell field, Rarita-Schwinger field and gravitational perturbations. This equation is shown to be separable in terms of "accelerated spin-weighted spherical harmonics." It is shown that, contrary to ordinary spin-weighted spherical harmonics, the "accelerated" ones are different for different spins. In some cases, the equations for eigenfunctions and eigenvalues are explicitly solved.

  11. The magnetic field of Mercury, part 1

    Science.gov (United States)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1974-01-01

    An updated analysis and interpretation is presented of the magnetic field observations obtained during the Mariner 10 encounter with the planet Mercury. The combination of data relating to position of the detached bow shock wave and magnetopause, and the geometry and magnitude of the magnetic field within the magnetosphere-like region surrounding Mercury, lead to the conclusion that an internal planetary field exists with dipole moment approximately 5.1 x 10 the 22nd power Gauss sq cm. The dipole axis has a polarity sense similar to earth's and is tilted 7 deg from the normal to Mercury's orbital plane. The magnetic field observations reveal a significant distortion of the modest Hermean field (350 Gamma at the equator) by the solar wind flow and the formation of a magnetic tail and neutral sheet which begins close to the planet on the night side. The composite data is not consistent with a complex induction process driven by the solar wind flow.

  12. Enhanced Cloud Disruption by Magnetic Field Interaction

    CERN Document Server

    Gregori, G; Ryu, D; Jones, T W; Miniati, Francesco; Ryu, Dongsu

    1999-01-01

    We present results from the first three-dimensional numerical simulations of moderately supersonic cloud motion through a tenuous, magnetized medium. We show that the interaction of the cloud with a magnetic field perpendicular to its motion has a great dynamical impact on the development of instabilities at the cloud surface. Even for initially spherical clouds, magnetic field lines become trapped in surface deformations and undergo stretching. The consequent field amplification that occurs there and particularly its variation across the cloud face then dramatically enhance the growth rate of Rayleigh-Taylor unstable modes, hastening the cloud disruption.

  13. Thermal diffusivity measurements in magnetic field

    International Nuclear Information System (INIS)

    This paper presents the first observation of thermal diffusivity in magnetic field on superconducting oxides. The measurements are performed on sintered samples using a high resolution a.c. technique from 30 to 120 K in magnetic field up to 7 T. In magnetic field higher than 1 T the thermal diffusivity below the critical temperature decreases and the authors suggest this is due to the scattering between the phonons and the flux lines inside the grains. The cross section σ related to such a scattering is calculated; the authors obtain values from 1 to 7 x 10-7 cm when the temperature increases from 30 to 70 K

  14. The magnetic field in the Coma cluster

    OpenAIRE

    Feretti, L.; D. Dallacasa; Giovannini, G.; Tagliani, A.

    1995-01-01

    The polarization data of the radio galaxy NGC4869, belonging to the Coma cluster and located in its central region, allow us to obtain information on the structure of magnetic field associated with the cluster itself. A magnetic field of $\\sim$ 8.5 $\\mu$G, tangled on scales of the order of less than 1 kpc, is required to explain the observed fluctuations of the rotation measure. This magnetic field is more than one order of magnitude stronger than the equipartition value obtained for Coma C. ...

  15. Magnetic field quality analysis using ANSYS

    International Nuclear Information System (INIS)

    The design of superconducting magnets for particles accelerators requires a high quality of the magnetic field. This paper presents an ANSYS 4.4A Post 1 macro that computes the field quality performing a Fourier analysis of the magnetic field. The results show that the ANSYS solution converges toward the analytical solution and that the error on the multipole coefficients depends linearly on the square of the mesh size. This shows the good accuracy of ANSYS in computing the multipole coefficients. 2 refs., 16 figs., 4 tabs

  16. The National High Magnetic Field Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schneider-Muntau, H.J.; Brandt, B.L.; Brunel, L.C.; Cross, T.A.; Edison, A.S.; Marshall, A.G.; Reyes, A.P

    2004-04-30

    We describe two of the main user facilities of the National High Magnetic Field Laboratory (NHMFL): (a) the General Purpose DC Field Facility with nine resistive and hybrid magnet stations with continuous fields between 20 and 45 T, and (b) the CIMAR Facilities with 17 spectrometers for the NMR Spectroscopy and Imaging Program, the Fourier Transform ICR Mass Spectrometry Program and the Electron Magnetic Resonance Spectroscopy Program. The facilities are located in Tallahassee, and Gainesville, FL. Members of the worldwide science and engineering communities can access NHMFL facilities, generally without cost, through a peer-reviewed proposal process.

  17. Hyperon Stars in Strong Magnetic Fields

    CERN Document Server

    Gomes, R O; Vasconcellos, C A Z

    2013-01-01

    We investigate the effects of strong magnetic fields on the properties of hyperon stars. The matter is described by a hadronic model with parametric coupling. The matter is considered to be at zero temperature, charge neutral, beta-equilibrated, containing the baryonic octet, electrons and muons. The charged particles have their orbital motions Landau-quantized in the presence of strong magnetic fields (SMF). Two parametrisations of a chemical potential dependent static magnetic field are considered, reaching $1-2 \\times 10^{18}\\,G$ in the center of the star. Finally, the Tolman-Oppenheimer-Volkov (TOV) equations are solved to obtain the mass-radius relation and population of the stars.

  18. Magnetic field evolution of accreting neutron stars

    CERN Document Server

    Istomin, Ya N

    2016-01-01

    The flow of a matter, accreting onto a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the super conducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of $r$ width, narrowing with the depth, i.e. with increasing of the crust density $\\rho$, $r\\propto \\rho^{-1/4}$. Accordingly, the magnetic field $B$ in the tube increases with the depth, $B\\propto...

  19. The Pregalactic Origin for Galactic Magnetic Fields

    Science.gov (United States)

    Kulsrud, R.; Chandran, B.; Yamada, M.

    1996-11-01

    It has been generally accepted that there is no natural mechanism to create a strong primordial magnetic field. For this reason all the attention has been concentrated on the generation of the magnetic field by hydrodynamic turbulence in the galactic disk. But this approach suffers from the problem of the rapid amplification of small scale magnetic fields(R. Kulsrud and S. Anderson ApJ 306, 606, 1992). However, as the result of numerical simulations, it is now clear that there is a lot of turbulence present in the pregalactic state, when the galaxy is arising out of gravitational instabilities. The simulations further show that the thermolelectric term in Ohm's law produces a weak magnetic field, even from zero initial conditions. Further, the smallest eddy of the turbulence turns over several hundred times before the galaxy collapses to a virial state. This many turnovers amplifies the weak magnetic field by a large enough factor for it to reach saturation with the hydrodynamic turbulence at a considerable field strength. Lastly, it appears from a physical argument, and also by a DIA calculation that when the field becomes strong enough it straightens itself out and becomes coherent on a galactic scale. this coherence arises even in the absence of an `` α '' effect! It is proposed that this pregalactic process is the true origin of the galactic magnetic field. .

  20. Field simulations for large dipole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, A. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Cappuzzello, F. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy) and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy)]. E-mail: cappuzzello@lns.infn.it; Cunsolo, A. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Cavallaro, M. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); INFN - Sezione di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Khouaja, A. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Orrigo, S.E.A. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Winfield, J.S. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy)

    2007-01-01

    The problem of the description of magnetic field for large bending magnets is addressed in relation to the requirements of modern techniques of trajectory reconstruction. The crucial question of the interpolation and extrapolation of fields known at a discrete number of points is analysed. For this purpose a realistic field model of the large dipole of the MAGNEX spectrometer, obtained with finite elements three dimensional simulations, is used. The influence of the uncertainties in the measured field to the quality of the trajectory reconstruction is treated in detail. General constraints for field measurements in terms of required resolutions, step sizes and precisions are thus extracted.

  1. The field of a screened magnetic dipole

    Science.gov (United States)

    Greene, J. M.; Miller, R. L.

    1994-01-01

    The purpose of this note is to quantitatively study the asymptotic behavior of the dipole magnetic field in the tail region of a paraboloidal or cylindrical model of the magnetosphere, assuming the complete screening of the internal field by magnetopause currents. This screening assumption is equivalent to imposing the boundary condition that the normal component of the magnetic field is zero at the magnetopause. With this boundary condition, the screened dipole field falls off exponentially with distance down the tail, in sharp constrast to the bare dipole field. Analytic expressions for a cylindrical and paraboloidal magnetopause are given.

  2. Critical temperature of inhomogeneous magnetic superconductor: effective tensor field approach

    International Nuclear Information System (INIS)

    Superconducting state with the inhomogeneous effective exchange field background is studied. We calculate the critical temperature of magnetic superconductor on the basis of the Hamiltonian that takes into account the interaction of electrons with the effective exchange field in the direction of inhomogeneity. We use the local unitary rotation in spinor space to rewrite the Hamiltonian in the new basis, where this interaction is diagonal. In this case the exchange field becomes homogeneous but the effective tensor field appears. This method allows us to simplify the Gor'kov equations in many symmetric cases and to find the Green's functions and the critical temperature. We test our approach on the known case of magnetic superconductor with helical magnetization and focus on the critical temperature and the Fulde- Ferrell-Larkin-Ovchinnikov (FFLO) states

  3. Paleomagnetism. Solar nebula magnetic fields recorded in the Semarkona meteorite.

    Science.gov (United States)

    Fu, Roger R; Weiss, Benjamin P; Lima, Eduardo A; Harrison, Richard J; Bai, Xue-Ning; Desch, Steven J; Ebel, Denton S; Suavet, Clément; Wang, Huapei; Glenn, David; Le Sage, David; Kasama, Takeshi; Walsworth, Ronald L; Kuan, Aaron T

    2014-11-28

    Magnetic fields are proposed to have played a critical role in some of the most enigmatic processes of planetary formation by mediating the rapid accretion of disk material onto the central star and the formation of the first solids. However, there have been no experimental constraints on the intensity of these fields. Here we show that dusty olivine-bearing chondrules from the Semarkona meteorite were magnetized in a nebular field of 54 ± 21 microteslas. This intensity supports chondrule formation by nebular shocks or planetesimal collisions rather than by electric currents, the x-wind, or other mechanisms near the Sun. This implies that background magnetic fields in the terrestrial planet-forming region were likely 5 to 54 microteslas, which is sufficient to account for measured rates of mass and angular momentum transport in protoplanetary disks. PMID:25394792

  4. The CMS Magnetic Field Map Performance

    CERN Document Server

    Klyukhin, VI; Sarycheva, L I; Klyukhin, V I; Ball, A; Gaddi, A; Amapane, N; Gerwig, H; Andreev, V; Cure, B; Mulders, M; Loveless, R; Karimaki, V; Popescu, S; Herve, A

    2010-01-01

    The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field ...

  5. Magnetic fields in early protostellar disk formation

    CERN Document Server

    González-Casanova, Diego F; Lazarian, Alexander

    2016-01-01

    We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian & Vishniac (1999) model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called "magnetic braking catastrophe". In particular, we provide a detailed study of the dynamics of a 0.5 M$_\\odot$ protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, "reconnection diffusion", removes the magnetic flux from the disk, the other involves the change of the magnetic field's topology, but does not change the a...

  6. Position sensitive detection of neutrons in high radiation background field

    International Nuclear Information System (INIS)

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e− radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm2) spectroscopic Timepix detector adapted for neutron detection utilizing very thin 10B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10−4

  7. Unconventional superconductivity in strong magnetic field

    International Nuclear Information System (INIS)

    The Landau quantization effects are considered in low carrier concentration unconventional spin triplet p-wave superconductors in a high magnetic field region. The field dependence of the superconducting order parameter and the vortex lattice states for intra Landau level pairing are analyzed. The gap functions are calculated within mean field approximation. (author)

  8. High Field Pulse Magnets with New Materials

    Science.gov (United States)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  9. Mechanism of magnetic field effect in cryptochrome

    OpenAIRE

    Solov'yov, Ilia A.; Schulten, Klaus

    2011-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and migratory birds have an intriguing `sixth' sense that allows them to distinguish north from south by using the Earth's intrinsic magnetic field. Yet despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of the eyes. A photoreceptor, cryptochrome, has been suggested to endow...

  10. The magnetic field structure of Rotamak discharges

    International Nuclear Information System (INIS)

    This thesis describes an experimental study of a field-reversed compact torus configuration which is generated and sustained by a rotating magnetic field. Earlier studies of this so-called 'rotamak' concept used rotating magnetic fields of limited duration (∼15 μs). The present work extends these studies to a longer timescale (∼60 μs). The rotating magnetic field is produced by feeding RF currents, dephased by 90 deg., through two orthogonal Helmholtz coils which are wound around the outside of a spherical Pyrex vacuum vessel. Line generators are used to supply the RF current pulses. The experiments are performed using an argon plasma. From measurements of the driven toroidal current, two rotamak operating modes are identified. Detailed poloidal flux contour measurements prove that these modes are associated with either a closed magnetic field line, compact torus configuration or an open magnetic field line, mirror-like structure. In the compact torus configuration the driven toroidal current is shown to vary linearly with the magnitude of the externally applied equilibrium field. For the same initial conditions of filling pressure and externally applied equilibrium field, the plasma discharges are highly reproducible. The magnetic structures of the discharges are studied in detail for three such sets of initial conditions. In particular, poloidal flux contours are derived for each of the three conditions. Although no toroidal magnetic field is externally imposed in these experiments, under certain conditions a toroidal field is observed to be present. The toroidal field is in opposite directions in the upper and lower halves of the minor cross section. Measurements of the input power into the plasma show that this power is largely determined by the characteristics of the line-generators. The variation of this input power with time can explain all the features observed in the plasma discharges. The effects of a conducting 'shell' around the vacuum vessel are

  11. On the helicity of open magnetic fields

    International Nuclear Information System (INIS)

    We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice. For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field. However, for aperiodic fields, we show that the potential field can be twisted. We prove by construction that there always exists a possible untwisted reference field.

  12. Juno and Jupiter's Magnetic Field (Invited)

    Science.gov (United States)

    Bloxham, J.; Connerney, J. E.; Jorgensen, J. L.

    2013-12-01

    The Juno spacecraft, launched in August 2011, will reach Jupiter in early July 2016, where it will enter a polar orbit, with an 11 day period and a perijove altitude of approximately 5000 km. The baseline mission will last for one year during which Juno will complete 32 orbits, evenly spaced in longitude. The baseline mission presents an unparalleled opportunity for investigating Jupiter's magnetic field. In many ways Jupiter is a better planet for studying dynamo-generated magnetic fields than the Earth: there are no crustal fields, of course, which otherwise mask the dynamo-generated field at high degree; and an orbiting spacecraft can get proportionately much closer to the dynamo region. Assuming Jupiter's dynamo extends to 0.8 Rj, Juno at closet approach is only 0.3 Rc above the dynamo, while Earth orbiting magnetic field missions sample the field at least 1 Rc above the dynamo (where Rc is the respective outer core or dynamo region radius). Juno's MAG Investigation delivers magnetic measurements with exceptional vector accuracy (100 ppm) via two FGM sensors, each co-located with a dedicated pair of non-magnetic star cameras for attitude determination at the sensor. We expect to image Jupiter's dynamo with unsurpassed resolution. Accordingly, we anticipate that the Juno magnetic field investigation may place important constraints on Jupiter's interior structure, and hence on the formation and evolution of Jupiter.

  13. String field theory solution for any open string background

    Czech Academy of Sciences Publication Activity Database

    Erler, T.; Maccaferri, Carlo

    2014-01-01

    Roč. 10, Oct (2014), 1-37. ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : tachyon condensation * string field theory * conformal field models in string theory * bosonic strings Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014

  14. The magnetic field of zeta Orionis A

    CERN Document Server

    Blazère, A; Tkachenko, A; Bouret, J -C; Rivinius, Th

    2015-01-01

    Zeta Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. We aim at verifying the presence of a magnetic field in zeta Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field.Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the Least-Squares Deconvolution (LSD) technique to extract the magnetic information. We confirm that zeta Ori A is magnetic. We find that the supergiant component zeta Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a per...

  15. Studies of Solar Vector Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Jingxiu

    2011-01-01

    In this article, we report a few advances in the studies based on the solar vector magnetic field observations which were carried out mainly with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station in the 1990s. (1) We developed necessary methodology and concepts in vector magnetogram analysis (Wang et al. 1996). For the first time, we proposed to use the photospheric free magnetic energy to quantify the major flare productivity of solar active regions (ARs), and it had been proved to be the best parameter in representing the major flare activity. (2) We revealed that there was always a dominant sense of magnetic shear in a given AR (Wang 1994), which was taken as the premise of the helicity calculation in ARs; we made the first quantitative estimation of magnetic helicity evolution in ARs (Wang 1996). (3) We identified the first group of evidence of magnetic reconnection in the lower solar atmosphere with vector magnetic field observations and proposed a two-step reconnection flare model to interpret the observed association of flux cancellation and flares (Wang and Shi 1993). Efforts to quantify the major flare productivity of super active regions with vector magnetic field observations have been also taken.

  16. Extended gyrokinetic field theory for time-dependent magnetic confinement fields

    International Nuclear Information System (INIS)

    A gyrokinetic system of equations for turbulent toroidal plasmas in time-dependent axisymmetric background magnetic fields is derived from the variational principle. Besides governing equations for gyrocenter distribution functions and turbulent electromagnetic fields, the conditions which self-consistently determine the background fields varying on a transport time scale are obtained by using the Lagrangian which includes the constraint on the background fields. Conservation laws for energy and toroidal angular momentum of the whole system in the time-dependent background fields are naturally derived by applying Noether's theorem. It is shown that the ensemble-averaged transport equations of particles, energy and toroidal momentum given in the present work agree with the results from the conventional recursive formulation with the WKB representation except that collisional effects are disregarded here. (author)

  17. Estimating the magnetic field strength from magnetograms

    CERN Document Server

    Ramos, A Asensio; Sainz, R Manso

    2015-01-01

    A properly calibrated longitudinal magnetograph is an instrument that measures circular polarization and gives an estimation of the magnetic flux density in each observed resolution element. This usually constitutes a lower bound of the field strength in the resolution element, given that it can be made arbitrarily large as long as it occupies a proportionally smaller area of the resolution element and/or becomes more transversal to the observer and still produce the same magnetic signal. Yet, we know that arbitrarily stronger fields are less likely --hG fields are more probable than kG fields, with fields above several kG virtually absent-- and we may even have partial information about its angular distribution. Based on a set of sensible considerations, we derive simple formulae based on a Bayesian analysis to give an improved estimation of the magnetic field strength for magnetographs.

  18. Hydrogen atoms in a strong magnetic field

    International Nuclear Information System (INIS)

    The energies and wave functions of the 14 lowest states of a Hydrogen atom in a strong magnetic field are calculated, using a variational scheme. The equivalence between the atomic problem and the problems related with excitons and impurities in semiconductors in the presence of a strong magnetic field are shown. The calculations of the energies and wave functions have been divided in two regions: the first, for the magnetic field ranging between zero and 109G; in the second the magnetic field ranges between 109 and 1011G. The results have been compared with those obtained by previous authors. The computation time necessary for the calculations is small. Therefore this is a convenient scheme to obtain the energies and wave functions for the problem. Transition probabilities, wavelengths and oscillator strengths for some allowed transitions are also calculated. (Author)

  19. A Topology for the Penumbral Magnetic Fields

    CERN Document Server

    Almeida, J Sanchez

    2009-01-01

    We describe a scenario for the topology of the magnetic field in penumbrae that accounts for recent observations showing upflows, downflows, and reverse magnetic polarities. According to our conjecture, short narrow magnetic loops fill the penumbral photosphere. Flows along these arched field lines are responsible for both the Evershed effect and the convective transport. This scenario seems to be qualitatively consistent with most existing observations, including the dark cores in penumbral filaments reported by Scharmer et al. Each bright filament with dark core would be a system of two paired convective rolls with the dark core tracing the common lane where the plasma sinks down. The magnetic loops would have a hot footpoint in one of the bright filament and a cold footpoint in the dark core. The scenario fits in most of our theoretical prejudices (siphon flows along field lines, presence of overturning convection, drag of field lines by downdrafts, etc). If the conjecture turns out to be correct, the mild...

  20. KEK effort for high field magnets

    CERN Document Server

    Nakamoto, T

    2011-01-01

    KEK has emphasized efforts to develop the RHQNb3Al superconductor and a sub-scale magnet reaching 13 T towards the HL-LHC upgrade in last years. In addition, relevant R&D regarding radiation resistance has been carried out. For higher field magnets beyond 15 T, HTS in combination with A15 superconductors should be one of baseline materials. However, all these superconductors are very sensitive to stress and strain and thorough understanding of behaviour is truly desired for realization of high field magnets. KEK has launched a new research subject on stress/strain sensitivity of HTS and A15 superconductors in collaboration with the neutron diffraction facility at J-PARC and High Field Laboratory in Tohoku University. Present activity for high field magnets at KEK is reported.

  1. External magnetic field configurations for EXTRAP

    International Nuclear Information System (INIS)

    The strongly inhomogeneous magnetic field for stabilization of a pinch in an Extrap configuration can be created in various ways. Some possibilities both for the linear case and for the toroidal case are discussed. (author)

  2. EIT waves and coronal magnetic field diagnostics

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Magnetic field in the solar lower atmosphere can be measured by the use of the Zeeman and Hanle effects. By contrast, the coronal magnetic field well above the solar surface, which directly controls various eruptive phenomena, can not be precisely measured with the traditional techniques. Several attempts are being made to probe the coronal magnetic field, such as force-free extrapolation based on the photospheric magnetograms, gyroresonance radio emissions, and coronal seismology based on MHD waves in the corona. Compared to the waves trapped in the localized coronal loops, EIT waves are the only global-scale wave phenomenon, and thus are the ideal tool for the coronal global seismology. In this paper, we review the observations and modelings of EIT waves, and illustrate how they can be applied to probe the global magnetic field in the corona.

  3. Split-Field Magnet facility upgraded

    CERN Multimedia

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  4. Simulation of the Magnetic Field Evolution in Neutron Stars

    Science.gov (United States)

    Hoyos, J.; Reisenegger, A.; Valdivia, J. A.

    Using a numerical simulation, we study the effects of ambipolar diffusion and ohmic diffusion on the magnetic field evolution in the interior of an isolated neutron star (Goldreich & Reisenegger 1992; Reisenegger et al. 2005; Hoyos et al. 2007). We are interested in the behavior of the magnetic field on a long time scale, over which all Alfven and sound waves have been damped. We model the stellar interior as an electrically neutral plasma composed of neutrons, protons and electrons, which can interact with each other through collisions and electromagnetic forces. Weak interactions convert neutrons and charged particles into each other, erasing chemical imbalances. As a first step, we assume that the magnetic field points in one fixed Cartesian direction but can vary along an orthogonal direction. We start with a uniform-density background threaded by a homogeneous magnetic field and study the evolution of a magnetic perturbation as well as the density fluctuations it induces in the particles. We show that the system evolves through different quasi-equilibrium states and estimate the characteristic time scales on which these quasi-equilibria occur as a function of the magnetic field intensity, the collisional strength between the particles, the weak interaction rate, and the ohmic resistivity. We intend in a near future to extend this simulation to two dimensions in order to study an axially symmetric star geometry.

  5. Magnetic fields and massive star formation

    International Nuclear Information System (INIS)

    Massive stars (M > 8 M ☉) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 103 AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  6. Magnetic field dissipation in converging flows

    International Nuclear Information System (INIS)

    Converging flows (e.g., gas accreting on to compact objects) are often ionized and magnetized. As the gas in these systems compresses towards smaller radii, flux conservation acts to intensify the magnetic field B, which can attain superequipartition values. (Throughout this paper, equipartition is meant to imply a comparison between the energy density in the field and that of the particles only, not including turbulence.) Since such a field probably cannot remain anchored in the gas, it is often assumed that the field intensity in excess of equipartition (i.e., Beq) is dissipated as heat, and that B therefore saturates at its Beq value -the so-called 'equipartition assumption'. In this paper we make an attempt at developing a model for magnetic field dissipation based on resistive magnetic tearing, in order to provide a more realistic means of determining the evolution of B in cases where the contribution to the spectrum from magnetic bremsstrahlung is important. We find that the violation of equipartition can vary in degree from large to small radii, and in either direction. Thus the spectrum predicted on the basis of the equipartition assumption is not always an adequate representation of the actual state of the system. However, several major shortcomings remain in our formulation. For example, our approach in this paper is to consider the turbulence as being initiated primarily by hydrodynamic processes. Arguing that the magnetic field is frozen into the highly ionized plasma, we therefore adopt a magnetic field spatial distribution that mirrors that of the gas. This may be valid Only when the field is subequipartition, for otherwise the turbulent cascade may be influenced primarily by magnetic dissipation, rather than the hydrodynamics

  7. Core Processes: Earth's eccentric magnetic field

    DEFF Research Database (Denmark)

    Finlay, Chris

    2012-01-01

    Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause.......Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause....

  8. Magnetic fields and massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: qzhang@cfa.harvard.edu [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  9. High Precision Physics in Low Magnetic Fields

    OpenAIRE

    Lins, Tobias

    2016-01-01

    The search for particle EDMs is a key approach in understanding the origin of matter. The new neutron EDM experiment at TUM aims to improve the current sensitivity by two orders of magnitude. In this thesis, a concept to fully track magnetic field changes in 4 pi is introduced. A devised mechanism to actively damp external field changes as well as the measurements of the temporal stability of the full shield is presented. Finally, two approaches to search for magnetic monopoles are discussed.

  10. Chiral magnetic effect by synthetic gauge fields

    CERN Document Server

    Hayata, Tomoya

    2016-01-01

    We study the dynamical generation of the chiral chemical potential in a Weyl metal constructed from a three-dimensional optical lattice and subject to synthetic gauge fields. By numerically solving the Boltzmann equation with the Berry curvature in the presence of parallel synthetic electric and magnetic fields, we find that the spectral flow and the ensuing chiral magnetic current emerge. We show that the spectral flow and the chiral chemical potential can be probed by time-of-flight imaging.

  11. Orbit stability in billiards in magnetic field

    CERN Document Server

    Kovács, Z

    1997-01-01

    We study the stability properties of orbits in dispersing billiards in a homogeneous magnetic field by using a modified formalism based on the Bunimovich-Sinai curvature (horocycle method). We identify simple periodic orbits that can be stabilized by the magnetic field in the four-disk model and the square-lattice Lorentz gas. The stable orbits can play a key role in determining the transport properties of these models.

  12. Untwisting magnetic fields in the solar corona

    Science.gov (United States)

    Bhattacharyya, Ramit; Smolarkiewicz, Piotr; Chye Low, Boon

    2012-07-01

    The solar corona is the tenuous atmosphere of the Sun characterized by a temperature of the order of million degrees Kelvin, an ambient magnetic field of 10 to 15 Gauss and a very high magnetic Reynolds number because of which it qualifies as a near-ideal magnetofluid system. It is well known that for such a system, the magnetic flux across every fluid surface remains effectively constant to a good approximation. Under this so called ``frozen-in'' condition then, it is possible to partition this magnetofluid into contiguous magnetic subvolumes each entrapping its own subsystem of magnetic flux. Thin magnetic flux tubes are an elementary example of such magnetic subvolumes evolving in time with no exchange of fluid among them. The internal twists and interweaving of these flux tubes, collectively referred as the magnetic topology, remains conserved under the frozen-in condition. Because of the dynamical evolution of the magnetofluid, two such subvolumes can come into direct contact with each other by expelling a third interstitial subvolume. In this process, the magnetic field may become discontinuous across the surface of contact by forming a current sheet there. Because of the small spatial scales generated by steepening of magnetic field gradient, the otherwise negligible resistivity becomes dominant and allows for reconnection of field lines which converts magnetic energy into heat. This phenomenon of spontaneous current sheet formation and its subsequent resistive decay is believed to be a possible mechanism for heating the solar corona to its million degree Kelvin temperature. In this work the dynamics of spontaneous current sheet formation is explored through numerical simulations and the results are presented.

  13. On the Helicity of Open Magnetic Fields

    CERN Document Server

    Prior, C

    2014-01-01

    We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice. For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field. But for aperiodic fields, we show that the potential field can be twisted. We prove by constructi...

  14. Virasoro Conformal Blocks and Thermality from Classical Background Fields

    CERN Document Server

    Fitzpatrick, A Liam; Walters, Matthew T

    2015-01-01

    We show that in 2d CFTs at large central charge, the coupling of the stress tensor to heavy operators can be re-absorbed by placing the CFT in a non-trivial background metric. This leads to a more precise computation of the Virasoro conformal blocks between heavy and light operators, which are shown to be equivalent to global conformal blocks evaluated in the new background. We also generalize to the case where the operators carry U(1) charges. The refined Virasoro blocks can be used as the seed for a new Virasoro block recursion relation expanded in the heavy-light limit. We comment on the implications of our results for the universality of black hole thermality in $AdS_3$, or equivalently, the eigenstate thermalization hypothesis for $CFT_2$ at large central charge.

  15. RESOLVED MAGNETIC FIELD MAPPING OF A MOLECULAR CLOUD USING GPIPS

    International Nuclear Information System (INIS)

    We present the first resolved map of plane-of-sky magnetic field strength for a quiescent molecular cloud. GRSMC 45.60+0.30 subtends 40 × 10 pc at a distance of 1.88 kpc, masses 16,000 M☉, and exhibits no star formation. Near-infrared background starlight polarizations were obtained for the Galactic Plane Infrared Polarization Survey using the 1.8 m Perkins telescope and the Mimir instrument. The cloud area of 0.78 deg2 contains 2684 significant starlight polarizations for Two Micron All Sky Survey matched stars brighter than 12.5 mag in the H band. Polarizations are generally aligned with the cloud's major axis, showing an average position angle dispersion of 15 ± 2° and polarization of 1.8 ± 0.6%. The polarizations were combined with Galactic Ring Survey 13CO spectroscopy and the Chandrasekhar-Fermi method to estimate plane-of-sky magnetic field strengths, with an angular resolution of 100 arcsec. The average plane-of-sky magnetic field strength across the cloud is 5.40 ± 0.04 μG. The magnetic field strength map exhibits seven enhancements or 'magnetic cores'. These cores show an average magnetic field strength of 8.3 ± 0.9 μG, radius of 1.2 ± 0.2 pc, intercore spacing of 5.7 ± 0.9 pc, and exclusively subcritical mass-to-flux ratios, implying their magnetic fields continue to suppress star formation. The magnetic field strength shows a power-law dependence on gas volume density, with slope 0.75 ± 0.02 for nH2 ≥10 cm–3. This power-law index is identical to those in studies at higher densities, but disagrees with predictions for the densities probed here.

  16. Helical Fields Possessing Mean Magnetic Wells

    International Nuclear Information System (INIS)

    Recently Furth and Rosenbluth pointed out that a particular magnetic field having helical symmetry could provide a mean magnetic well, that is provide regions in which ∫dℓ/B decreases away from a magnetic axis (or equivalently a region in which V'' is negative). In this paper we examine helical fields in general and the circumstances in which they may exhibit the negative V'' property. This investigation is made possible by the use of the stream function formalism which provides a simple picture of the field geometry, The existence of negative V'' is related to the topology of the magnetic surfaces which in turn is connected with the positions of the stationary points of the stream function ψ. Detailed calculations are given of the shape of the flux surfaces and of the shape of the magnetic well (the variation of ∫dℓ/B across it) for several examples of helical fields. These include the Furth-Rosenbluth configuration and a new configuration which provides a mean magnetic well without the necessity for a central conductor. A survey is also made of the magnetic well properties of these two classes of helical field in terms of two simple criteria: (1) the ratio Q of the field strength on the axis and on the separatrix (which provides an estimate of the overall well depth); and (2) the value of V'' on the magnetic axis (which provides a measure of the ''curvature'' of the well). This latter quantity is calculated analytically by using a general expression for the value of V'' on an arbitrary magnetic axis; It is pointed out that Q alone does not provide a realistic indication of the well shape. (author)

  17. Magnetic fields in early-type stars

    OpenAIRE

    Grunhut, Jason H.; Neiner, Coralie

    2015-01-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these s...

  18. Wuhan pulsed high magnetic field center

    OpenAIRE

    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; Duan, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  19. Can slow roll inflation induce relevant helical magnetic fields?

    Science.gov (United States)

    Durrer, Ruth; Hollenstein, Lukas; Jain, Rajeev Kumar

    2011-03-01

    We study the generation of helical magnetic fields during single field inflation induced by an axial coupling of the electromagnetic field to the inflaton. During slow roll inflation, we find that such a coupling always leads to a blue spectrum with B2(k)proptok, as long as the theory is treated perturbatively. The magnetic energy density at the end of inflation is found to be typically too small to backreact on the background dynamics of the inflaton. We also show that a short deviation from slow roll does not result in strong modifications to the shape of the spectrum. We calculate the evolution of the correlation length and the field amplitude during the inverse cascade and viscous damping of the helical magnetic field in the radiation era after inflation. We conclude that except for low scale inflation with very strong coupling, the magnetic fields generated by such an axial coupling in single field slow roll inflation with perturbative coupling to the inflaton are too weak to provide the seeds for the observed fields in galaxies and clusters.

  20. Critical Magnetic Field Determination of Superconducting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Canabal, A.; Tajima, T.; /Los Alamos; Dolgashev, V.A.; Tantawi, S.G.; /SLAC; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  1. Stealth magnetic field in de Sitter spacetime

    CERN Document Server

    Mukohyama, Shinji

    2016-01-01

    In the context of a U(1) gauge theory non-minimally coupled to scalar-tensor gravity, we find a cosmological attractor solution that represents a de Sitter universe with a homogeneous magnetic field. The solution fully takes into account backreaction of the magnetic field to the geometry and the scalar field. Such a solution is made possible by scaling-type global symmetry and fine-tuning of two parameters of the theory. If the fine-tuning is relaxed then the solution is deformed to an axisymmetric Bianchi type-I universe with constant curvature invariants, a homogeneous magnetic field and a homogeneous electric field. Implications to inflationary magnetogenesis are briefly discussed.

  2. Magnetic Field Evolution During Neutron Star Recycling

    CERN Document Server

    Cumming, A

    2004-01-01

    I describe work on two aspects of magnetic field evolution relevant for the "recycling" scenario for making millisecond radio pulsars. First, many of the theoretical ideas for bringing about accretion-induced field decay rely on dissipation of currents in the neutron star crust. I discuss field evolution in the crust due to the Hall effect, and outline when it dominates Ohmic decay. This emphasises the importance of understanding the impurity level in the crust. Second, I briefly discuss the progress that has been made in understanding the magnetic fields of neutron stars currently accreting matter in low mass X-ray binaries. In particular, thermonuclear X-ray bursts offer a promising probe of the magnetic field of these neutron stars.

  3. Magnetic fields in early-type stars

    Science.gov (United States)

    Grunhut, Jason H.; Neiner, Coralie

    2015-10-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M ⊙) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have furthered our understanding of the interactions between the magnetic field and stellar wind, as well as the consequences and connections of this interaction with other observed phenomena.

  4. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    International Nuclear Information System (INIS)

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond Hc2 as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field Hc2. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic

  5. Suppressing drift chamber diffusion without magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Martoff, C.J. E-mail: cmartoff@nimbus.temple.edu; Snowden-Ifft, D.P.; Ohnuki, T.; Spooner, N.; Lehner, M

    2000-02-01

    The spatial resolution in drift chamber detectors for ionizing radiation is limited by diffusion of the primary electrons. A strong magnetic field along the drift direction is often applied (Fancher et al., Nucl. Instr. and Meth. A 161 (1979) 383) because it suppresses the transverse diffusion, improving the resolution but at considerable increase in cost and complexity. Here we show that transverse track diffusion can be strongly suppressed without any magnetic field. This is achieved by using a gas additive which reversibly captures primary ionization electrons, forming negative ions. The ions drift with thermal energies even at very high drift fields and low pressures (E/P=28.5 V/cm torr), and the diffusion decreases with increasing drift field. Upon arrival at the avalanche region of the chamber the negative ions are efficiently stripped and ordinary avalanche gain is obtained. Using this technique, r.m.s. transverse diffusion less than 200 {mu}m has been achieved over a 15 cm drift path at 40 torr with zero magnetic field. The method can provide high spatial resolution in detectors with long drift distances and zero magnetic field. Negative ion drift chambers would be particularly useful at low pressures and in situations such as space-based or underground experiments where detector size scaleability is important and cost, space, or power constraints preclude the use of a magnetic field.

  6. Pair production in strong SU(2) background fields

    CERN Document Server

    Jia, M R; Lv, C; Wan, F; Xie, B S

    2016-01-01

    The fermion particle pair production in strong SU(2) gauged chromoelectric fields is studied by using Boltzmann-Vlasov equation in a classical way. The existence of pre-production process in a classical description is shown with the distribution evolution of non-Abelian particle production. It is interesting to find that the distribution center of particle number density is on two islands and has a split on color charge sphere as it evolutes and reaches a steady state at last, which is related to the amplitude and the varying of the field.

  7. TANGLED MAGNETIC FIELDS IN SOLAR PROMINENCES

    International Nuclear Information System (INIS)

    Solar prominences are an important tool for studying the structure and evolution of the coronal magnetic field. Here we consider so-called hedgerow prominences, which consist of thin vertical threads. We explore the possibility that such prominences are supported by tangled magnetic fields. A variety of different approaches are used. First, the dynamics of plasma within a tangled field is considered. We find that the contorted shape of the flux tubes significantly reduces the flow velocity compared to the supersonic free fall that would occur in a straight vertical tube. Second, linear force-free models of tangled fields are developed, and the elastic response of such fields to gravitational forces is considered. We demonstrate that the prominence plasma can be supported by the magnetic pressure of a tangled field that pervades not only the observed dense threads but also their local surroundings. Tangled fields with field strengths of about 10 G are able to support prominence threads with observed hydrogen density of the order of 1011 cm-3. Finally, we suggest that the observed vertical threads are the result of Rayleigh-Taylor instability. Simulations of the density distribution within a prominence thread indicate that the peak density is much larger than the average density. We conclude that tangled fields provide a viable mechanism for magnetic support of hedgerow prominences.

  8. Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields

    Science.gov (United States)

    Patel, Jaykumar; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-01

    We report an experimental investigation of magnetic field dependent thermal conductivity of a transformer oil base magnetic fluid as a function of volume fractions. In the absence of magnetic field, thermal conductivity increases linearly with an increase in volume fraction, and magnitude of thermal conductivity thus obtained is lower than that predicted by Maxwell's theory. This reveals the presence of clusters/oligomers in the system. On application of magnetic field, it exhibits a non-monotonous increase in thermal conductivity. The results are interpreted using the concept of a two-step homogenization method (which is based on differential effective medium theory). The results show a transformation of particle cluster configuration from long chain like prolate shape to the aggregated drop-like structure with increasing concentration as well as a magnetic field. The aggregated drop-like structure for concentrated system is supported by optical microscopic images. This shape change of clusters reduces thermal conductivity enhancement. Moreover, this structure formation is observed as a dynamic phenomenon, and at 226 mT field, the length of the structure extends with time, becomes maximum, and then reduces. This change results in the increase or decrease of thermal conductivity.

  9. Neutrino oscillations in strong magnetic fields

    International Nuclear Information System (INIS)

    Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field Bcr as a function of characteristics of neutrinos in vacuum (Δm2ν, mixing angle θ), effective particle density of matter neff, neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ Bcr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs

  10. The Magnetic Field of Solar Spicules

    CERN Document Server

    Centeno, R; Ramos, A Asensio

    2009-01-01

    Determining the magnetic field of solar spicules is vital for developing adequate models of these plasma jets, which are thought to play a key role in the thermal, dynamic, and magnetic structure of the chromosphere. Here we report on magnetic spicule properties in a very quiet region of the off-limb solar atmosphere, as inferred from new spectropolarimetric observations in the HeI 10830 A triplet. We have used a novel inversion code for Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects (HAZEL) to interpret the observations. Magnetic fields as strong as 40G were unambiguously detected in a very localized area of the slit, which may represent a possible lower value of the field strength of organized network spicules.

  11. Cyclic evolution and reversal of the solar magnetic field. I. The large-scale magnetic fields

    OpenAIRE

    Ikhsanov, R. N.; V. G. Ivanov

    2003-01-01

    On the base of the solar magnetic field measurements obtained in Stanford in 1976--2003 the properties of the cyclic evolution of the large-scale magnetic field are investigated. Some regularities are found in longitudinal and latitudinal evolution of the magnetic field in cycles 21, 22 and 23. The cyclic development of the large-scale magnetic field can be divided into two main phases. The phase I, which includes a period approximately from two years before and until three years after the ma...

  12. QCD thermodynamics and magnetization in nonzero magnetic field

    CERN Document Server

    Tawfik, Abdel Nasser; Ezzelarab, Nada; Shalaby, Asmaa G

    2016-01-01

    In nonzero magnetic field, the magnetic properties and thermodynamics of the quantum-chromodynamic (QCD) matter is studied in the hadron resonance gas and the Polyakov linear-sigma models and compared with recent lattice calculations. Both models are fairly suited to describe the degrees of freedom in the hadronic phase. The partonic ones are only accessible by the second model. It is found that the QCD matter has paramagnetic properties, which monotonically depend on the temperature and are not affected by the hadron-quark phase-transition. Furthermore, raising the magnetic field strength increases the thermodynamic quantities, especially in the hadronic phase but reduces the critical temperature, i.e. inverse magnetic catalysis.

  13. Magnetic Field Analysis of a Permanent-Magnet Induction Generator

    Science.gov (United States)

    Tsuda, Toshihiro; Fukami, Tadashi; Kanamaru, Yasunori; Miyamoto, Toshio

    The permanent-magnet induction generator (PMIG) is a new type of induction machine that has a permanent-magnet rotor inside a squirrel-cage rotor. In this paper, a new technique for the magnetic field analysis of the PMIG is proposed. The proposed technique is based on the PMIG's equivalent circuit and the two-dimensional finite-element analysis (2D-FEA). To execute the 2D-FEA, the phasors of primary and secondary currents are calculated from the equivalent circuit, and the input data for the 2D-FEA is found by converting these phasors into the space vectors. As a result, the internal magnetic fields of the PMIG can be easily analyzed without complicated calculations.

  14. Plasma separation from magnetic field lines in a magnetic nozzle

    Science.gov (United States)

    Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.

    1993-01-01

    This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.

  15. Thin film metallic sensors in an alternating magnetic field for magnetic nanoparticle hyperthermia cancer therapy

    Science.gov (United States)

    Hussein, Z. A.; Boekelheide, Z.

    In magnetic nanoparticle hyperthermia in an alternating magnetic field for cancer therapy, it is important to monitor the temperature in situ. This can be done optically or electrically, but electronic measurements can be problematic because conducting parts heat up in a changing magnetic field. Microfabricated thin film sensors may be advantageous because eddy current heating is a function of size, and are promising for further miniaturization of sensors and fabrication of arrays of sensors. Thin films could also be used for in situ magnetic field sensors or for strain sensors. For a proof of concept, we fabricated a metallic thin film resistive thermometer by photolithographically patterning a 500Å Au/100Å Cr thin film on a glass substrate. Measurements were taken in a solenoidal coil supplying 0.04 T (rms) at 235 kHz with the sensor parallel and perpendicular to the magnetic field. In the parallel orientation, the resistive thermometer mirrored the background heating from the coil, while in the perpendicular orientation self-heating was observed due to eddy current heating of the conducting elements by Faraday's law. This suggests that metallic thin film sensors can be used in an alternating magnetic field, parallel to the field, with no significant self-heating.

  16. Secondary resonance magnetic force microscopy using an external magnetic field for characterization of magnetic thin films

    Science.gov (United States)

    Liu, Dongzi; Mo, Kangxin; Ding, Xidong; Zhao, Liangbing; Lin, Guocong; Zhang, Yueli; Chen, Dihu

    2015-09-01

    A bimodal magnetic force microscopy (MFM) that uses an external magnetic field for the detection and imaging of magnetic thin films is developed. By applying the external modulation magnetic field, the vibration of a cantilever probe is excited by its magnetic tip at its higher eigenmode. Using magnetic nanoparticle samples, the capacity of the technique which allows single-pass imaging of topography and magnetic forces is demonstrated. For the detection of magnetic properties of thin film materials, its signal-to-noise ratio and sensitivity are demonstrated to be superior to conventional MFM in lift mode. The secondary resonance MFM technique provides a promising tool for the characterization of nanoscale magnetic properties of various materials, especially of magnetic thin films with weak magnetism.

  17. Interaction of magnetic resonators studied by the magnetic field enhancement

    OpenAIRE

    Yumin Hou

    2013-01-01

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE osci...

  18. Study of marine magnetic field

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.

    intensity is ‘Oersted’ (Oe) in cgs units. Since this is considered a large unit, a simplified unit ‘gamma’ (also known as nanoTesla), which is equal to 10 -5 Oe is used. Magnetic reversals and geomagnetic time scale The paleomagnetic studies... T -1 s -1 )] × f s -1 F = 23.4866 × (10 -9 T) × f F = 23.4866 × f nanoTesla The marine Proton Precession magnetometer consists of three main units – sensor, tow cable and onboard equipment. The sensor in the Proton Precession Magnetometer...

  19. Classical and quantum particle dynamics in univariate background fields

    CERN Document Server

    Heinzl, Thomas; King, Ben

    2016-01-01

    We investigate deviations from the plane wave model in the interaction of charged particles with strong electromagnetic fields. A general result is that integrability of the dynamics is lost when going from lightlike to timelike or spacelike field dependence. For a special scenario in the classical regime we show how the radiation spectrum in the spacelike (undulator) case becomes well-approximated by the plane wave model in the high energy limit, despite the two systems being Lorentz inequivalent. In the quantum problem, there is no analogue of the WKB-exact Volkov solution. Nevertheless, WKB and uniform-WKB approaches give good approximations in all cases considered. Other approaches that reduce the underlying differential equations from second to first order are found to miss the correct physics for situations corresponding to barrier transmission and wide-angle scattering.

  20. Quantum Fields in Nonstatic background A Histories Perspective

    CERN Document Server

    Anastopoulos, C

    2000-01-01

    For a quantum field living on a non - static spacetime no instantaneous Hamiltonian is definable, for this generically necessitates a choice of inequivalent representation of the canonical commutation relations at each instant of time. This fact suggests a description in terms of time - dependent Hilbert spaces, a concept that fits naturally in a (consistent) histories framework. Our primary tool for the construction of the quantum theory in a continuous -time histories format is the recently developed formalism based on the notion of the history group . This we employ to study a model system involving a 1+1 scalar field in a cavity with moving boundaries. The instantaneous (smeared) Hamiltonian and a decoherence functional are then rigorously defined so that finite values for the time - averaged particle creation rate are obtainable through the study of energy histories. We also construct the Schwinger - Keldysh closed- time - path generating functional as a ``Fourier transform'' of the decoherence functiona...

  1. Brane inflation: A field theory approach in background supergravity

    CERN Document Server

    Choudhury, Sayantan

    2012-01-01

    We propose a model of inflation in the framework of brane cosmology driven by background supergravity. Starting from bulk supergravity we construct the inflaton potential on the brane and employ it to investigate for the consequences to inflationary paradigm. To this end, we derive the expressions for the important parameters in brane inflation, which are somewhat different from their counterparts in standard cosmology, using the one loop radiative corrected potential. We further estimate the observable parameters and find them to fit well with recent observational data. We have studied extensively reheating phenomenology, which explains the thermal history of the universe and leptogenesis through the production of thermal gravitino pertaining to the particle physics phenomenology of the early universe.

  2. Magnetic nanoparticles for applications in oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Peeraphatdit, Chorthip [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific

  3. Primordial magnetic fields from the string network

    Science.gov (United States)

    Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2016-08-01

    Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar-, vector-, and tensor-type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as aB(k,z)~4×10Gμ/1k)3.5 gauss on super-horizon scales, and aB(k,z)~2.4×10Gμ/1k)2.5 gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, and has a final amplitude of approximately B~10Gμ gauss at the k~1 Mpc scale today. This field might serve as a seed for cosmological magnetic fields.

  4. Energy of magnetic moment of superconducting current in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gurtovoi, V.L.; Nikulov, A.V., E-mail: nikulov@iptm.ru

    2015-09-15

    Highlights: • Quantization effects observed in superconducting loops are considered. • The energy of magnetic moment in magnetic field can not be deduced from Hamiltonian. • This energy is deduced from a history of the current state in the classical case. • It can not be deduced directly in the quantum case. • Taking this energy into account demolishes agreement between theory and experiment. - Abstract: The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment.

  5. Energy of magnetic moment of superconducting current in magnetic field

    International Nuclear Information System (INIS)

    Highlights: • Quantization effects observed in superconducting loops are considered. • The energy of magnetic moment in magnetic field can not be deduced from Hamiltonian. • This energy is deduced from a history of the current state in the classical case. • It can not be deduced directly in the quantum case. • Taking this energy into account demolishes agreement between theory and experiment. - Abstract: The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment

  6. Galactic magnetic fields and hierarchical galaxy formation

    CERN Document Server

    Rodrigues, Luiz Felippe S; Fletcher, Andrew; Baugh, Carlton

    2015-01-01

    A framework is introduced for coupling the evolution of galactic magnetic fields sustained by the mean-field dynamo with the formation and evolution of galaxies in the cold dark matter cosmology. Estimates of the steady-state strength of the large-scale and turbulence magnetic fields from mean-field and fluctuation dynamo models are used together with galaxy properties predicted by semi-analytic models of galaxy formation for a population of spiral galaxies. We find that the field strength is mostly controlled by the evolving gas content of the galaxies. Thus, because of the differences in the implementation of the star formation law, feedback from supernovae and ram-pressure stripping, each of the galaxy formation models considered predicts a distribution of field strengths with unique features. The most prominent of them is the difference in typical magnetic fields strengths obtained for the satellite and central galaxies populations as well as the typical strength of the large-scale magnetic field in galax...

  7. Galactic magnetic fields and hierarchical galaxy formation

    Science.gov (United States)

    Rodrigues, L. F. S.; Shukurov, A.; Fletcher, A.; Baugh, C. M.

    2015-07-01

    A framework is introduced for coupling the evolution of galactic magnetic fields sustained by the mean-field dynamo with the formation and evolution of galaxies in cold dark matter cosmology. Estimates of the steady-state strength of the large-scale and turbulent magnetic fields from mean-field and fluctuation dynamo models are used together with galaxy properties predicted by semi-analytic models of galaxy formation for a population of spiral galaxies. We find that the field strength is mostly controlled by the evolving gas content of the galaxies. Thus, because of the differences in the implementation of the star formation law, feedback from supernovae and ram-pressure stripping, each of the galaxy formation models considered predicts a distribution of field strengths with unique features. The most prominent of them is the difference in typical magnetic field strengths obtained for the satellite and central galaxy populations as well as the typical strength of the large-scale magnetic field in galaxies of different mass.

  8. Magnetic field on the baseball coil

    International Nuclear Information System (INIS)

    An expression is developed in spherical harmonics for the magnetic field of a baseball coil. A simple dipole-layer model for the coil, and the computer program, MAFCO, yield comparable expansion coefficients, and give practically identical fields near the center of the baseball. 13 refs

  9. Nonperturbative Physics in a Magnetic Field

    International Nuclear Information System (INIS)

    Non-Perturbative Quantum Field Theory has played an important role in the study of phenomena where a fermion condensate can appear under certain physical conditions. The familiar phenomenon of electric superconductivity, the color superconductivity of very dense quark matter, and the chiral symmetry breaking of low energy effective chiral theories are all examples of that sort. Often one is interested in the behavior of these systems in the presence of an external magnetic field. In this talk I will outline the effects of an external magnetic field on non-perturbative theories with either fermion-fermion or fermion-antifermion condensates.

  10. Nonperturbative Physics in a Magnetic Field

    CERN Document Server

    de la Incera, Vivian

    2010-01-01

    Non-Perturbative Quantum Field Theory has played an important role in the study of phenomena where a fermion condensate can appear under certain physical conditions. The familiar phenomenon of electric superconductivity, the color superconductivity of very dense quark matter, and the chiral symmetry breaking of low energy effective chiral theories are all examples of that sort. Often one is interested in the behavior of these systems in the presence of an external magnetic field. In this talk I will outline the effects of an external magnetic field on theories with either fermion-fermion or fermion-antifermion condensates.

  11. Primordial magnetic fields and nonlinear electrodynamics

    CERN Document Server

    Kunze, Kerstin E

    2007-01-01

    The creation of large scale magnetic fields is studied in an inflationary universe where electrodynamics is assumed to be nonlinear. After inflation ends electrodynamics becomes linear and thus the description of reheating and the subsequent radiation dominated stage are unaltered. The nonlinear regime of electrodynamics is described by lagrangians having a power law dependence on one of the invariants of the electromagnetic field. It is found that there is a range of parameters for which primordial magnetic fields of cosmologically interesting strengths can be created.

  12. Measurement of gradient magnetic field temporal characteristics

    International Nuclear Information System (INIS)

    We describe a technique of measuring the time dependence and field distortions of magnetic fields due to eddy currents (EC) produced by time-dependent magnetic field gradients. The EC measuring technique makes use of a large volume sample and selective RF excitation pulses and free induction decay (FID) (or a spin or gradient echo) to measure the out-of-phase component of the FID, which is proportional to γδB, i.e. the amount the signal is off resonance. The measuring technique is sensitive, easy to implement and interpret, and used for determining pre-emphasis compensation parameters

  13. Magnetic fields of young solar twins

    Science.gov (United States)

    Rosén, L.; Kochukhov, O.; Hackman, T.; Lehtinen, J.

    2016-09-01

    Aims: The goal of this work is to study the magnetic fields of six young solar-analogue stars both individually, and collectively, to search for possible magnetic field trends with age. If such trends are found, they can be used to understand magnetism in the context of stellar evolution of solar-like stars and to understand the past of the Sun and the solar system. This is also important for the atmospheric evolution of the inner planets, Earth in particular. Methods: We used Stokes IV data from two different spectropolarimeters, NARVAL and HARPSpol. The least-squares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a modern Zeeman-Doppler imaging code in order to reconstruct the magnetic topology of all stars and the brightness distribution of one of our studied stars. Results: Our results show a significant decrease in the magnetic field strength and energy as the stellar age increases from 100 Myr to 250 Myr, while there is no significant age dependence of the mean magnetic field strength for stars with ages 250-650 Myr. The spread in the mean field strength between different stars is comparable to the scatter between different observations of individual stars. The meridional field component is weaker than the radial and azimuthal field components in 15 of the 16 magnetic maps. It turns out that 89-97% of the magnetic field energy is contained in l = 1 - 3. There is also no clear trend with age and distribution of field energy into poloidal/toroidal and axisymmetric/non-axisymmetric components within the sample. The two oldest stars in this study show an octupole component that is twice as strong as the quadrupole component. This is only seen in 1 of the 13 maps of the younger stars. One star, χ1 Ori, displays two field polarity switches during almost 5 yr of observations suggesting a magnetic cycle length of 2, 6, or 8 yr. Based on observations made with the HARPSpol instrument on the ESO 3.6 m

  14. The Magnetic Field of Planet Earth

    DEFF Research Database (Denmark)

    Hulot, G.; Finlay, Chris; Constable, C. G.;

    2010-01-01

    The magnetic field of the Earth is by far the best documented magnetic field of all known planets. Considerable progress has been made in our understanding of its characteristics and properties, thanks to the convergence of many different approaches and to the remarkable fact that surface rocks...... observations have been made possible from space, leading to the possibility of observing the Earth’s magnetic field in much more details than was previously possible. The progressive increase in computer power was also crucial, leading to advanced ways of handling and analyzing this considerable corpus of data....... This possibility, together with the recent development of numerical simulations, has led to the development of a very active field in Earth science. In this paper, we make an attempt to provide an overview of where the scientific community currently stands in terms of observing, interpreting and...

  15. Jets, magnetic fields and the central engine

    International Nuclear Information System (INIS)

    Reviewing recent observations of jets unconfined by external pressure, the author suggests that self-confinement may be common. This requires current-carrying jets with helical magnetic fields. Such beams occur in the laboratory, in lightning, and in the Crab Nebula, where currents are apparently carried over distances greater than a light year. Self-confined jets require a significant torodial magnetic field emerging from the nozzle. The author suggests that the parallel/azimuthal magnetic field ratio may be the crucial nozzle parameter, causing asymmetries. Helical field configurations have remarkable stability properties and can evolve naturally as synchrotron losses in the jet lead to minimizing Lorentz forces. Current-carrying jets may provide a valuable clue to the physics of the central source. (Auth.)

  16. Measuring vector magnetic fields in solar prominences

    CERN Document Server

    Suárez, D Orozco; Bueno, J Trujillo

    2012-01-01

    We present spectropolarimetric observations in the He I 1083.0 nm multiplet of a quiescent, hedgerow solar prominence. The data were taken with the Tenerife Infrared Polarimeter attached to the German Vacuum Tower Telescope at the Observatorio del Teide (Tenerife; Canary Islands; Spain). The observed He I circular and linear polarization signals are dominated by the Zeeman effect and by atomic level polarization and the Hanle effect, respectively. These observables are sensitive to the strength and orientation of the magnetic field vector at each spatial point of the field of view. We determine the magnetic field vector of the prominence by applying the HAZEL inversion code to the observed Stokes profiles. We briefly discuss the retrieved magnetic field vector configuration.

  17. Measurement of 50 Hz magnetic fields in some Norwegian households

    International Nuclear Information System (INIS)

    An examination of 50 Hz magnetic fields has been made in ten different Norwegian dwellings. The aim was to measure the general background level of the 50 Hz magnetic fields. The investigation followed a protocol also used in Swedish measurements, and direct comparisons are therefore possible. A portable, commercial coil instrument was used. In september 1986 and January 1987 the magnetic fields in living rooms, sleeping rooms, and kitchens were measured according to the standardized procedure. Current consumption and temperature at the time of the measurements were also recorded. A clear correlation was noted between the magnetic field values and the current consumption. The mean values of the magnetic fields in the living rooms, sleeping rooms and kitchens, were 12 nT, 11 nT and 160 nT, respectively. The living and sleeping room values can be regarded as very low, and they are much lower than corresponding Swedish values. The kitchen values in the two countries seem, however, to be of the same order of magnitude. The report discusses the need for additional measurements in Norwegian houses

  18. Magnetic fields of young solar twins

    CERN Document Server

    Rosén, L; Hackman, T; Lehtinen, J

    2016-01-01

    The goal of this work is to study the magnetic fields of six young solar-analogue stars both individually, and collectively, to search for possible magnetic field trends with age. If such trends are found, they can be used to understand magnetism in the context of stellar evolution of solar-like stars and, the past of the Sun and the solar system. This is also important for the atmospheric evolution of the inner planets, Earth in particular. We used Stokes IV data from two different spectropolarimeters, NARVAL and HARPSpol. The least-squares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a modern Zeeman-Doppler imaging code in order to reconstruct the magnetic topology of all stars and the brightness distribution of one of our studied stars. Our results show a significant decrease in the magnetic field strength and energy as the stellar age increases from 100Myr to 250Myr while there is no significant age dependence of the mean magnetic field str...

  19. Measurements of Photospheric and Chromospheric Magnetic Fields

    CERN Document Server

    Lagg, Andreas; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2015-01-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Conseque...

  20. Field Models in Electricity and Magnetism

    CERN Document Server

    Barba, Paolo Di; Wiak, S

    2008-01-01

    Covering the development of field computation in the past forty years, Field Models in Electricity and Magnetism intends to be a concise, comprehensive and up-to-date introduction to field models in electricity and magnetism, ranging from basic theory to numerical applications. The approach assumed throughout the whole book is to solve field problems directly from partial differential equations in terms of vector quantities. Theoretical issues are illustrated by practical examples. In particular, a single example is solved by different methods so that, by comparison of results, limitations and advantages of the various methods are made clear. The subjects of the synthesis of fields and of the optimal design of devices, which are growing in research and so far have not been adequately covered in textbooks, are developed in addition to more classical subjects of analysis. Topics covered include: vector fields: electrostatics, magnetostatics, steady conduction; analytical methods for solving boundary-value probl...

  1. Magnetic fields in gaps surrounding giant protoplanets

    CERN Document Server

    Keith, Sarah L

    2015-01-01

    Giant protoplanets evacuate a gap in their host protoplanetary disc, which gas must cross before it can be accreted. A magnetic field is likely carried into the gap, potentially influencing the flow. Gap crossing has been simulated with varying degrees of attention to field evolution (pure hydrodynamical, ideal, and resistive MHD), but as yet there has been no detailed assessment of the role of the field accounting for all three key non-ideal MHD effects: Ohmic resistivity, ambipolar diffusion, and Hall drift. We present a detailed investigation of gap magnetic field structure as determined by non-ideal effects. We assess susceptibility to turbulence induced by the magnetorotational instability, and angular momentum loss from large-scale fields. As full non-ideal simulations are computationally expensive, we take an a posteriori approach, estimating MHD quantities from the pure hydrodynamical gap crossing simulation by Tanigawa et al. (2012). We calculate the ionisation fraction and estimate field strength an...

  2. Magnetic Fields and Massive Star Formation

    CERN Document Server

    Zhang, Qizhou; Girart, Josep M; Hauyu,; Liu,; Tang, Ya-Wen; Koch, Patrick M; Li, Zhi-Yun; Keto, Eric; Ho, Paul T P; Rao, Ramprasad; Lai, Shih-Ping; Ching, Tao-Chung; Frau, Pau; Chen, How-Huan; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain; Csengeri, Timea; Juarez, Carmen

    2014-01-01

    Massive stars ($M > 8$ \\msun) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 $\\mu$m obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of $\\lsim$ 0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within $40^\\circ$ of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the ...

  3. Magnetic Field Response Measurement Acquisition System

    Science.gov (United States)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  4. Magnetic Field Strengths in Photodissociation Regions

    CERN Document Server

    Balser, Dana S; Jeyakumar, S; Bania, T M; Montet, Benjamin T; Shitanishi, J A

    2015-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 GHz toward four HII regions with the Green Bank Telescope (GBT) to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi (2007) suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic (MHD) waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B ~ 100-300 micro Gauss in W3 and NGC6334A. Our results for W49 and NGC6334D are less well constrained with total magnetic field strengths between B ~ 200-1000 micro Gauss. HI and OH Zeeman measurements of the line-of-sight magnetic field strength (B_los), taken from the literature, are between a facto...

  5. Magnetic field evolution in interacting galaxies

    CERN Document Server

    Drzazga, Robert T; Jurusik, Wojciech; Wiorkiewicz, Krzysztof

    2011-01-01

    Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. We selected 16 systems of interacting galaxies and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15muG) as interaction advances, then it increases up to 2x, peaks at the nuclear coalescence (25muG), and decreases again, down to 5-6muG, for the post-merger remnants. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or loca...

  6. Reionization constraints on primordial magnetic fields

    CERN Document Server

    Pandey, Kanhaiya L; Sethi, Shiv K; Ferrara, Andrea

    2014-01-01

    We study the impact of the extra density fluctuations induced by primordial magnetic fields on the reionization history in the redshift range: $6 < z < 10$. We perform a comprehensive MCMC physical analysis allowing the variation of parameters related to primordial magnetic fields (strength, $B_0$, and power-spectrum index $n_{\\scriptscriptstyle \\rm B}$), reionization, and $\\Lambda$CDM cosmological model. We find that magnetic field strengths in the range: $B_0 \\simeq 0.05{-}0.3$ nG (for nearly scale-free power spectra) can significantly alter the reionization history in the above redshift range and can relieve the tension between the WMAP and quasar absorption spectra data. Our analysis puts upper-limits on the magnetic field strength $B_0 < 0.362, 0.116, 0.057$ nG (95 % c.l.) for $n_{\\scriptscriptstyle \\rm B} = -2.95, -2.9, -2.85$, respectively. These represent the strongest magnetic field constraints among those available from other cosmological observables.

  7. Introduction to the Standard Model in the electroweak background field method

    International Nuclear Information System (INIS)

    In this educational work, we review the formulation of the Standard Model (SM) SU(2)L x U(1)Y in the context of electroweak Background Field Method (BFM). Firstly, we analyze the different parts of the Lagrangian of the SM with certain detail. Secondly, we make the canonical quantization of SM, via path integral. In the same way, we quantize the SM in the BFM framework and we analyze its advantages We list some Ward identities from electroweak BFM For example, we calculate the electric charge and the magnetic moment of the neutrino and we how the transversality of the self-energy γB ZB at one-loop by direct calculation. Finally, we list the Feynman rules of the electroweak BFM in the 't Hooft-Feynman gauge (ξ Q = 1). (Author)

  8. Mechanism of magnetic field effect in cryptochrome

    CERN Document Server

    Solov'yov, Ilia A

    2011-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and migratory birds have an intriguing `sixth' sense that allows them to distinguish north from south by using the Earth's intrinsic magnetic field. Yet despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of the eyes. A photoreceptor, cryptochrome, has been suggested to endow birds with magnetoreceptive abilities as the protein has been shown to exhibit the biophysical properties required for an animal magnetoreceptor to operate properly. Here, we propose a concrete light-driven reaction cycle in cryptochrome that lets a magnetic field influence the signaling state of the photoreceptor. The reaction cycle ties together transient absorption and electron-spin-resonance observations with known facts on avian magnetoreception. Our analysis establishes the feasibility of cryptochrome to act as a g...

  9. On exact solutions of the Dirac equation in a homogeneous magnetic field in the Lobachevsky space

    CERN Document Server

    Ovsiyuk, E M; Red'kov, V M

    2010-01-01

    There are constructed exact solutions of the quantum-mechanical Dirac equation for a spin S=1/2 particle in Riemannian space of constant negative curvature, hyperbolic Lobachevsky space, in presence of an external magnetic field, analogue of the homogeneous magnetic field in the Minkowski space. A generalized formula for energy levels, describing quantization of the motion of the particle in magnetic field on the background of the Lobachevsky space geometry, has been obtained.

  10. MAGNETIC FIELDS FROM QCD PHASE TRANSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Tevzadze, Alexander G. [Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi 0128 (Georgia); Kisslinger, Leonard; Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Brandenburg, Axel, E-mail: aleko@tevza.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2012-11-01

    We study the evolution of QCD phase transition-generated magnetic fields (MFs) in freely decaying MHD turbulence of the expanding universe. We consider an MF generation model that starts from basic non-perturbative QCD theory and predicts stochastic MFs with an amplitude of the order of 0.02 {mu}G and small magnetic helicity. We employ direct numerical simulations to model the MHD turbulence decay and identify two different regimes: a 'weakly helical' turbulence regime, when magnetic helicity increases during decay, and 'fully helical' turbulence, when maximal magnetic helicity is reached and an inverse cascade develops. The results of our analysis show that in the most optimistic scenario the magnetic correlation length in the comoving frame can reach 10 kpc with the amplitude of the effective MF being 0.007 nG. We demonstrate that the considered model of magnetogenesis can provide the seed MF for galaxies and clusters.

  11. Magnetic Field Effects on Plasma Plumes

    Science.gov (United States)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  12. Evolution of primordial magnetic fields in mean-field approximation

    Science.gov (United States)

    Campanelli, Leonardo

    2014-01-01

    We study the evolution of phase-transition-generated cosmic magnetic fields coupled to the primeval cosmic plasma in the turbulent and viscous free-streaming regimes. The evolution laws for the magnetic energy density and the correlation length, both in the helical and the non-helical cases, are found by solving the autoinduction and Navier-Stokes equations in the mean-field approximation. Analytical results are derived in Minkowski spacetime and then extended to the case of a Friedmann universe with zero spatial curvature, both in the radiation- and the matter-dominated era. The three possible viscous free-streaming phases are characterized by a drag term in the Navier-Stokes equation which depends on the free-streaming properties of neutrinos, photons, or hydrogen atoms, respectively. In the case of non-helical magnetic fields, the magnetic intensity and the magnetic correlation length evolve asymptotically with the temperature, , as and . Here, , , and are, respectively, the temperature, the number of magnetic domains per horizon length, and the bulk velocity at the onset of the particular regime. The coefficients , , , , , and , depend on the index of the assumed initial power-law magnetic spectrum, , and on the particular regime, with the order-one constants and depending also on the cutoff adopted for the initial magnetic spectrum. In the helical case, the quasi-conservation of the magnetic helicity implies, apart from logarithmic corrections and a factor proportional to the initial fractional helicity, power-like evolution laws equal to those in the non-helical case, but with equal to zero.

  13. The Anisotropy of the Microwave Background to l = 3500 Deep Field Observations with the Cosmic Background Imager

    CERN Document Server

    Mason, B S; Readhead, A C S; Shepherd, M C; Sievers, J L; Udomprasert, P S; Cartwright, J K; Farmer, A J; Padin, S; Myers, S T; Bond, J R; Contaldi, C R; Pen, U L; Prunet, S; Pogosyan, D; Carlstrom, J E; Kovács, J; Leitch, E M; Pryke, C L; Halverson, N W; Holzapfel, W L; Altamirano, P; Bronfman, L; Casassus, S; May, J; Joy, M

    2003-01-01

    We report measurements of anisotropy in the cosmic microwave background radiation over the multipole range l ~ 200 - 3500 with the Cosmic Background Imager based on deep observations of three fields. These results confirm the drop in power with increasing l first reported in earlier measurements with this instrument, and extend the observations of this decline in power out to l \\~ 2000. The decline in power is consistent with the predicted damping of primary anisotropies. At larger multipoles, l = 2000 - 3500, the power is 3.1 sigma greater than standard models for intrinsic microwave background anisotropy in this multipole range, and 3.5 sigma greater than zero. This excess power is not consistent with expected levels of residual radio source contamination but, for sigma_8 >~ 1, is consistent with predicted levels due to a secondary Sunyaev-Zeldovich anisotropy. Further observations are necessary to confirm the level of this excess and, if confirmed, determine its origin.

  14. Magnetic fields in early-type stars

    CERN Document Server

    Grunhut, Jason H

    2015-01-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M_sun) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have fu...

  15. Diffusive processes in a stochastic magnetic field

    International Nuclear Information System (INIS)

    The statistical representation of a fluctuating (stochastic) magnetic field configuration is studied in detail. The Eulerian correlation functions of the magnetic field are determined, taking into account all geometrical constraints: these objects form a nondiagonal matrix. The Lagrangian correlations, within the reasonable Corrsin approximation, are reduced to a single scalar function, determined by an integral equation. The mean square perpendicular deviation of a geometrical point moving along a perturbed field line is determined by a nonlinear second-order differential equation. The separation of neighboring field lines in a stochastic magnetic field is studied. We find exponentiation lengths of both signs describing, in particular, a decay (on the average) of any initial anisotropy. The vanishing sum of these exponentiation lengths ensures the existence of an invariant which was overlooked in previous works. Next, the separation of a particle's trajectory from the magnetic field line to which it was initially attached is studied by a similar method. Here too an initial phase of exponential separation appears. Assuming the existence of a final diffusive phase, anomalous diffusion coefficients are found for both weakly and strongly collisional limits. The latter is identical to the well known Rechester-Rosenbluth coefficient, which is obtained here by a more quantitative (though not entirely deductive) treatment than in earlier works

  16. Magnetic fields and proper motions of sunspots

    International Nuclear Information System (INIS)

    Proper motions of the umbrae are compared with the structure of the magnetic field in the complex group of sunspots No. 420 from 20 to 27 October 1968. Maps of longitudinal and transverse magnetic field components and a series of photoheliograms have been obtained at the Crimean Astrophysical Observatory and at the Heliophysical Observatory in Debrecen (Hungary). The proper mot+ons are compared with the flare activity in the group too. It has been found, that spots in the p and f ends of the group move randomly with respect to the transversal magnetic field. At the same time in the centre of the group around the zero-line of the longitudinal field, the direction of movements is in good agreement with the direction of the transversal field. Around the zero-line and in the case of spots with large proper motion the effect of ''stretching out'' of magnetic field behind the moving spots is observed. The greatest flares in the group occur in the vicinity of the spot with the greatest speed of proper motion, and in some cases movements of spots in the direction to flares are observed

  17. The magnetic fields of hot subdwarf stars

    CERN Document Server

    Landstreet, John D; Fossati, Luca; Jordan, Stefan; O'Toole, Simon J

    2012-01-01

    Detection of magnetic fields has been reported in several sdO and sdB stars. Recent literature has cast doubts on the reliability of most of these detections. We revisit data previously published in the literature, and we present new observations to clarify the question of how common magnetic fields are in subdwarf stars. We consider a sample of about 40 hot subdwarf stars. About 30 of them have been observed with the FORS1 and FORS2 instruments of the ESO VLT. Here we present new FORS1 field measurements for 17 stars, 14 of which have never been observed for magnetic fields before. We also critically review the measurements already published in the literature, and in particular we try to explain why previous papers based on the same FORS1 data have reported contradictory results. All new and re-reduced measurements obtained with FORS1 are shown to be consistent with non-detection of magnetic fields. We explain previous spurious field detections from data obtained with FORS1 as due to a non-optimal method of ...

  18. POLARBEAR constraints on cosmic birefringence and primordial magnetic fields

    Science.gov (United States)

    Ade, Peter A. R.; Arnold, Kam; Atlas, Matt; Baccigalupi, Carlo; Barron, Darcy; Boettger, David; Borrill, Julian; Chapman, Scott; Chinone, Yuji; Cukierman, Ari; Dobbs, Matt; Ducout, Anne; Dunner, Rolando; Elleflot, Tucker; Errard, Josquin; Fabbian, Giulio; Feeney, Stephen; Feng, Chang; Gilbert, Adam; Goeckner-Wald, Neil; Groh, John; Hall, Grantland; Halverson, Nils W.; Hasegawa, Masaya; Hattori, Kaori; Hazumi, Masashi; Hill, Charles; Holzapfel, William L.; Hori, Yasuto; Howe, Logan; Inoue, Yuki; Jaehnig, Gregory C.; Jaffe, Andrew H.; Jeong, Oliver; Katayama, Nobuhiko; Kaufman, Jonathan P.; Keating, Brian; Kermish, Zigmund; Keskitalo, Reijo; Kisner, Theodore; Kusaka, Akito; Le Jeune, Maude; Lee, Adrian T.; Leitch, Erik M.; Leon, David; Li, Yun; Linder, Eric; Lowry, Lindsay; Matsuda, Frederick; Matsumura, Tomotake; Miller, Nathan; Montgomery, Josh; Myers, Michael J.; Navaroli, Martin; Nishino, Haruki; Okamura, Takahiro; Paar, Hans; Peloton, Julien; Pogosian, Levon; Poletti, Davide; Puglisi, Giuseppe; Raum, Christopher; Rebeiz, Gabriel; Reichardt, Christian L.; Richards, Paul L.; Ross, Colin; Rotermund, Kaja M.; Schenck, David E.; Sherwin, Blake D.; Shimon, Meir; Shirley, Ian; Siritanasak, Praween; Smecher, Graeme; Stebor, Nathan; Steinbach, Bryan; Suzuki, Aritoki; Suzuki, Jun-ichi; Tajima, Osamu; Takakura, Satoru; Tikhomirov, Alexei; Tomaru, Takayuki; Whitehorn, Nathan; Wilson, Brandon; Yadav, Amit; Zahn, Alex; Zahn, Oliver; Polarbear Collaboration

    2015-12-01

    We constrain anisotropic cosmic birefringence using four-point correlations of even-parity E -mode and odd-parity B -mode polarization in the cosmic microwave background measurements made by the POLARization of the Background Radiation (POLARBEAR) experiment in its first season of observations. We find that the anisotropic cosmic birefringence signal from any parity-violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The POLARBEAR nondetection translates into a 95% confidence level (C.L.) upper limit of 93 nanogauss (nG) on the amplitude of an equivalent primordial magnetic field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of B -modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the B -mode power spectrum. Using the POLARBEAR measurements of the B -mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. We perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at subdegree scales.

  19. Magnetic field reconstruction based on sunspot oscillations

    CERN Document Server

    Löhner-Böttcher, J; Schmidt, W

    2016-01-01

    The magnetic field of a sunspot guides magnetohydrodynamic waves toward higher atmospheric layers. In the upper photosphere and lower chromosphere, wave modes with periods longer than the acoustic cut-off period become evanescent. The cut-off period essentially changes due to the atmospheric properties, e.g., increases for larger zenith inclinations of the magnetic field. In this work, we aim at introducing a novel technique of reconstructing the magnetic field inclination on the basis of the dominating wave periods in the sunspot chromosphere and upper photosphere. On 2013 August 21st, we observed an isolated, circular sunspot (NOAA11823) for 58 min in a purely spectroscopic multi-wavelength mode with the Interferometric Bidimensional Spectro-polarimeter (IBIS) at the Dunn Solar Telescope. By means of a wavelet power analysis, we retrieved the dominating wave periods and reconstructed the zenith inclinations in the chromosphere and upper photosphere. The results are in good agreement with the lower photosphe...

  20. Solar Flare Magnetic Fields and Plasmas

    CERN Document Server

    Fisher, George

    2012-01-01

    This volume is devoted to the dynamics and diagnostics of solar magnetic fields and plasmas in the Sun’s atmosphere. Five broad areas of current research in Solar Physics are presented: (1) New techniques for incorporating radiation transfer effects into three-dimensional magnetohydrodynamic models of the solar interior and atmosphere, (2) The connection between observed radiation processes occurring during flares and the underlying flare energy release and transport mechanisms, (3) The global balance of forces and momenta that occur during flares, (4) The data-analysis and theoretical tools needed to understand and assimilate vector magnetogram observations and (5) Connecting flare and CME phenomena to the topological properties of the magnetic field in the Solar Atmosphere. The role of the Sun’s magnetic field is a major emphasis of this book, which was inspired by a workshop honoring Richard C. (Dick) Canfield.  Dick has been making profound contributions to these areas of research over a long and pro...

  1. Superfluorescent transitions in an external magnetic field

    International Nuclear Information System (INIS)

    Polarisation properties of the superfluorescence in the near-infrared regime have been investigated between high-lying levels of Sr and Ba under the influence of a static homogeneous external magnetic field. In some transitions the time-resolved measurements show a change of the polarisation of the superfluorescence depending on the magnetic field strenght. In suitable experimental conditions intensity modulations were observed. These were assigned as Zeeman quantum beats or indirectly observed Zeeman superfluorescent beats. The experimental findings of superfluorescence in two-level, three-level, or multi-level configurations in dependence on the magnetic field strength can be explained well in a semiclassical model of multi-level superfluorescence. (orig.)

  2. Generation of intense transient magnetic fields

    International Nuclear Information System (INIS)

    In a laser system, the return current of a laser generated plasma is conducted near a target to subject that target to a magnetic field. The target may be either a small non-fusion object for testing under the magnetic field or a laser-fusion pellet. In the laser-fusion embodiment, the laser-fusion pellet is irradiated during the return current flow and the intense transient magnetic field is used to control the hot electrons thereof to hinder them from striking and heating the core of the irradiated laser-fusion pellet. An emitter, e.g. a microballoon of glass, metal or plastics, is subjected to a laser pulse to generate the plasma from which the return current flows into a wire cage or a coil and then to earth. (author)

  3. Diffusive shock acceleration and magnetic field amplification

    CERN Document Server

    Schure, K M; Drury, L O'C; Bykov, A M

    2012-01-01

    Diffusive shock acceleration is the theory of particle acceleration through multiple shock crossings. In order for this process to proceed at a rate that can be reconciled with observations of high-energy electrons in the vicinity of the shock, and for cosmic rays protons to be accelerated to energies up to observed galactic values, significant magnetic field amplification is required. In this review we will discuss various theories on how magnetic field amplification can proceed in the presence of a cosmic ray population. On both short and long scales, cosmic ray streaming can induce instabilities that act to amplify the magnetic field. Developments in this area that have occurred over the past decade are the main focus of this paper.

  4. Magnetic Catalysis in Graphene Effective Field Theory

    CERN Document Server

    DeTar, Carleton; Zafeiropoulos, Savvas

    2016-01-01

    We report on the first observation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly-interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle. This in turn has been posited to account for the quantum-Hall plateaus that are observed at large magnetic fields.

  5. Effect of magnetic field in malaria diagnosis using magnetic nanoparticles

    Science.gov (United States)

    Liu, Quan; Yuen, Clement

    2011-07-01

    The current gold standard method of Malaria diagnosis relies on the blood smears examination. The method is laborintensive, time consuming and requires the expertise for data interpretation. In contrast, Raman scattering from a metabolic byproduct of the malaria parasite (Hemozoin) shows the possibility of rapid and objective diagnosis of malaria. However, hemozoin concentration is usually extremely low especially at the early stage of malaria infection, rendering weak Raman signal. In this work, we propose the sensitive detection of enriched β-hematin, whose spectroscopic properties are equivalent to hemozoin, based on surface enhanced Raman spectroscopy (SERS) by using magnetic nanoparticles. A few orders of magnitude enhancement in the Raman signal of β-hematin can be achieved using magnetic nanoparticles. Furthermore, the effect of magnetic field on SERS enhancement is investigated. Our result demonstrates the potential of SERS using magnetic nanoparticles in the effective detection of hemozoin for malaria diagnosis.

  6. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.

  7. Pulsed wire magnetic field measurement of MPW 14 at PLS

    International Nuclear Information System (INIS)

    A 14 cm-period multipole wiggler (MPW 14) was measured using a pulsed wire measurement (PWM) method. The PWM system uses a subminiature photo interrupter, which has a very sensitive output to the changes on the area of optical aperture. To improve the accuracy of measurement, the trigger pulses are synchronized with the background oscillation of the system. The magnetic field profile of the MPW 14 measured with PWM method was compared with that obtained with a Hall probe mapping

  8. Vertical gradients of sunspot magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Hagyard, M.J.; Teuber, D.; West, E.A.; Tandberg-Hanssen, E.; Henze, W. Jr.; Beckers, J.M.

    1983-04-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  9. Near-field aperture-probe as a magnetic dipole source and optical magnetic field detector

    CERN Document Server

    Denkova, Denitza; Silhanek, Alejandro V; Van Dorpe, Pol; Moshchalkov, Victor V

    2014-01-01

    Scanning near-field field optical microscopy (SNOM) is a technique, which allows sub-wavelength optical imaging of photonic structures. While the electric field components of light can be routinely obtained, imaging of the magnetic components has only recently become of interest. This is so due to the development of artificial materials, which enhance and exploit the typically weak magnetic light-matter interactions to offer extraordinary optical properties. Consequently, both sources and detectors of the magnetic field of light are now required. In this paper, assisted by finite-difference time-domain simulations, we suggest that the circular aperture at the apex of a metal coated hollow-pyramid SNOM probe can be approximated by a lateral magnetic dipole source. This validates its use as a detector for the lateral magnetic near-field, as illustrated here for a plasmonic nanobar sample. Verification for a dielectric sample is currently in progress. We experimentally demonstrate the equivalence of the reciproc...

  10. Doped spin ladders under magnetic field

    International Nuclear Information System (INIS)

    This thesis deals with the physics of doped two-leg ladders which are a quasi one-dimensional and unconventional superconductor. We particularly focus on the properties under magnetic field. Models for strongly correlated electrons on ladders are studied using exact diagonalization and density-matrix renormalization group (DMRG). Results are also enlightened by using the bosonization technique. Taking into account a ring exchange it highlights the relation between the pairing of holes and the spin gap. Its influence on the dynamics of the magnetic fluctuations is also tackled. Afterwards, these excitations are probed by the magnetic field by coupling it to the spin degree of freedom of the electrons through Zeeman effect. We show the existence of doping-dependent magnetization plateaus and also the presence of an inhomogeneous superconducting phase (FFLO phase) associated with an exceeding of the Pauli limit. When a flux passes through the ladder, the magnetic field couples to the charge degree of freedom of the electrons via orbital effect. The diamagnetic response of the doped ladder probes the commensurate phases of the t-J model at low J/t. Algebraic transverse current fluctuations are also found once the field is turned on. Lastly, we report numerical evidences of a molecular superfluid phase in the 3/2-spin attractive Hubbard model: at a density low enough, bound states of four fermions, called quartets, acquire dominant superfluid fluctuations. The observed competition between the superfluid and density fluctuations is connected to the physics of doped ladders. (author)

  11. Focus on Materials Analysis and Processing in Magnetic Fields

    OpenAIRE

    Yoshio Sakka, Noriyuki Hirota, Shigeru Horii and Tsutomu Ando

    2009-01-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in...

  12. High magnetic field ohmically decoupled non-contact technology

    Science.gov (United States)

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  13. High Field Magnetization of Tb Single Crystals

    DEFF Research Database (Denmark)

    Roeland, L. W.; Cock, G. J.; Lindgård, Per-Anker

    1975-01-01

    The magnetization of Tb single crystals was measured in magnetic fields to 34T along the hard direction at temperature of 1.8, 4.2, 65.5 and 77K, and along with easy direction at 4.2 and 77K. The data are compared with the results of a self-consistent spin wave calculation using a phenomenological...... data on Tb. The conduction-electron polarization at zero field and temperature is (0.33+or-0.05) mu B/ion, and the susceptibility is greater than the Pauli susceptibility calculated from the band-structure....

  14. Reduction of a Ship's Magnetic Field Signatures

    CERN Document Server

    Holmes, John

    2008-01-01

    Decreasing the magnetic field signature of a naval vessel will reduce its susceptibility to detonating naval influence mines and the probability of a submarine being detected by underwater barriers and maritime patrol aircraft. Both passive and active techniques for reducing the magnetic signatures produced by a vessel's ferromagnetism, roll-induced eddy currents, corrosion-related sources, and stray fields are presented. Mathematical models of simple hull shapes are used to predict the levels of signature reduction that might be achieved through the use of alternate construction materials. Al

  15. Magnetic field processing of inorganic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D.C.; Peterson, E.S. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  16. Helical magnetic fields via baryon asymmetry

    CERN Document Server

    Piratova, Eduard F; Hortúa, Héctor J

    2014-01-01

    There is strong observational evidence for the presence of large-scale magnetic fields MF in galaxies and clusters, with strength $\\sim \\mu$G and coherence lenght on the order of Kpc. However its origin remains as an outstanding problem. One of the possible explanations is that they have been generated in the early universe. Recently, it has been proposed that helical primordial magnetic fields PMFs, could be generated during the EW or QCD phase transitions, parity-violating processes and predicted by GUT or string theory. Here we concentrate on the study of two mechanisms to generate PMFs, the first one is the $\

  17. Homogeneous viscous universes with magnetic field

    International Nuclear Information System (INIS)

    In this thesis homogeneous universes are studied containing a large scale magnetic field. In the evolution three different phases are distinguished: the lepton, the plasma and the matter dominated eras. During the lepton and plasma eras, which form the radiation dominated phase, the material contents of the universe are taken to consist of a viscous fluid. The transport properties taking place during this radiation dominated period are described with the help of relativistic kinetic theory, thereby taking into account the effect of the magnetic field on the shear viscosity. In the matter dominated phase the contents of the universe mainly consists of dust and, therefore, viscosity is absent during this period. (Auth.)

  18. Magnetic Field Stabilization for Magnetically Shielded Volumes by External Field Coils

    OpenAIRE

    Brys, T.; Czekaj, S.; Daum, M.; Fierlinger, P.; George, D.; Henneck, R.; Hochman, Z.; Kasprzak, M.(Physics Department, University of Fribourg, Fribourg, CH-1700, Switzerland); Kohlik, K.; Kirch, K.; Kuzniak, M.; Kuehne, G.; Pichlmaier, A.; Siodmok, A.; Szelc, A.

    2005-01-01

    For highly sensitive magnetic measurements, e.g., a measurement of the neutron electric dipole moment (EDM), the magnetic field has to be stable in time on a level below picoTesla. One of several measures we employ to achieve this uses an external field coil system which can stabilize the ambient external field at a predefined value. Here we report on the construction and characterization of such a system in the magnetic test facility at PSI. The system actively stabilizes the field along the...

  19. Catastrophe of coronal magnetic flux ropes in fully open magnetic field

    Institute of Scientific and Technical Information of China (English)

    LI; Guoqiang(李国强); HU; Youqiu(胡友秋)

    2002-01-01

    The catastrophe of coronal magnetic flux ropes is closely related to solar explosive phenomena, such as prominence eruptions, coronal mass ejections, and two-ribbon solar flares. Using a 2-dimensional, 3-component ideal MHD model in Cartesian coordinates, numerical simulations are carried out to investigate the equilibrium property of a coronal magnetic flux rope which is embedded in a fully open background magnetic field. The flux rope emerges from the photosphere and enters the corona with its axial and annular magnetic fluxes controlled by a single "emergence parameter". For a flux rope that has entered the corona, we may change its axial and annular fluxes artificially and let the whole system reach a new equilibrium through numerical simulations. The results obtained show that when the emergence parameter, the axial flux, or the annular flux is smaller than a certain critical value, the flux rope is in equilibrium and adheres to the photosphere. On the other hand, if the critical value is exceeded, the flux rope loses equilibrium and erupts freely upward, namely, a catastrophe takes place. In contrast with the partly-opened background field, the catastrophic amplitude is infinite for the case of fully-opened background field.

  20. Measuring the absolute magnetic field using high-Tc SQUID

    International Nuclear Information System (INIS)

    SQUID normally can only measure the change of magnetic field instead of the absolute value of magnetic field. Using a compensation method, a mobile SQUID, which could keep locked when moving in the earth's magnetic field, was developed. Using the mobile SQUID, it was possible to measure the absolute magnetic field. The absolute value of magnetic field could be calculated from the change of the compensation output when changing the direction of the SQUID in a magnetic field. Using this method and the mobile SQUID, we successfully measured the earth's magnetic field in our laboratory

  1. Background information and technical basis for assessment of environmental implications of magnetic fusion energy

    International Nuclear Information System (INIS)

    This report contains background information for assessing the potential environmental implications of fusion-based central electric power stations. It was developed as part of an environmental review of the Magnetic Fusion Energy Program. Transition of the program from demonstration of purely scientific feasibility (breakeven conditions) to exploration of engineering feasibility suggests that formal program environmental review under the National Environmental Policy Act is timely. This report is the principal reference upon which an environmental impact statement on magnetic fusion will be based

  2. Nonrelativistic Charged Particle-Magnetic Monopole Scattering in the Global Monopole Background

    CERN Document Server

    De Oliveira, A L C

    2003-01-01

    We analyze the nonrelativistic quantum scattering problem of a charged particle by an Abelian magnetic monopole in the background of a global monopole. In addition to the magnetic and geometric effects, we consider the influence of the electrostatic self-interaction on the charged particle. Moreover, for the specific case where the electrostatic self-interaction becomes attractive, charged particle-monopole bound system can be formed and the respective energy spectrum is hydrogen-like one.

  3. SQUID-detected magnetic resonance imaging in microtesla magnetic fields

    International Nuclear Information System (INIS)

    We describe studies of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) of liquid samples at room temperature in microtesla magnetic fields. The nuclear spins are prepolarized in a strong transient field. The magnetic signals generated by the precessing spins, which range in frequency from tens of Hz to several kHz, are detected by a low-transition temperature dc SQUID (Superconducting QUantum Interference Device) coupled to an untuned, superconducting flux transformer configured as an axial gradiometer. The combination of prepolarization and frequency-independent detector sensitivity results in a high signal-to-noise ratio and high spectral resolution (∼1 Hz) even in grossly inhomogeneous magnetic fields. In the NMR experiments, the high spectral resolution enables us to detect the 10-Hz splitting of the spectrum of protons due to their scalar coupling to a 31P nucleus. Furthermore, the broadband detection scheme combined with a non-resonant field-reversal spin echo allows the simultaneous observation of signals from protons and 31P nuclei, even though their NMR resonance frequencies differ by a factor of 2.5. We extend our methodology to MRI in microtesla fields, where the high spectral resolution translates into high spatial resolution. We demonstrate two-dimensional images of a mineral oil phantom and slices of peppers, with a spatial resolution of about 1 mm. We also image an intact pepper using slice selection, again with 1-mm resolution. In further experiments we demonstrate T1-contrast imaging of a water phantom, some parts of which were doped with a paramagnetic salt to reduce the longitudinal relaxation time T1. Possible applications of this MRI technique include screening for tumors and integration with existing multichannel SQUID systems for brain imaging

  4. MAGNETIC FIELDS AND GALACTIC STAR FORMATION RATES

    International Nuclear Information System (INIS)

    The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to ≃0.5 pc. Including an empirically motivated prescription for star formation from dense gas (nH>105 cm−3) at an efficiency of 2% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. We find GMC fragmentation, dense clump formation, and SFR can be significantly affected by the inclusion of magnetic fields, especially in our strongest investigated B-field case of 80 μG. However, our chosen kiloparsec-scale region, extracted from a global galaxy simulation, happens to contain a starbursting cloud complex that is only modestly affected by these magnetic fields and likely requires internal star formation feedback to regulate its SFR

  5. Field measurement for large quadrupole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, A. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Cappuzzello, F. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy)], E-mail: cappuzzello@lns.infn.it; Cunsolo, A.; Cavallaro, M. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); INFN-Sezione di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Orrigo, S.E.A.; Rodrigues, M.R.D.; Winfield, J.S. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy)

    2008-06-21

    The results of the field measurement of the large quadrupole magnet of the MAGNEX spectrometer are presented and analyzed in the view of the possible application of modern techniques of ray reconstruction. The experimental data are checked against the symmetry conditions expected for the magnet. The observed deviations are related both to imperfections on the magnet manufacturing and to the not ideal positioning of the measurement device. In particular a quantitative estimation of the experimental error in the alignment of the probe with respect to the magnet is achieved. The measured field is also compared with the results from three-dimensional finite elements calculation. The obtained discrepancies between the measured and calculated field are too large for a direct application of the latter to ray-reconstruction methods. Nevertheless, these calculations are reliably used to study the impact of the observed inaccuracies in the probe alignment on the overall precision of field reconstruction and to set quantitative constraints on the field interpolation algorithms.

  6. Magnetic fields in primordial accretion disks

    CERN Document Server

    Latif, Muhammad A

    2016-01-01

    Magnetic fields are considered as a vital ingredient of contemporary star formation, and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations, and are subsequently amplified by the small-scale dynamo, leading to a strong tangled magnetic field. Here we explore how the magnetic field provided by the small-scale dynamo is further amplified via the $\\alpha-\\Omega$ dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop.~III star with $10$~M$_\\odot$ and an accretion rate of $10^{-3}$~M$_\\odot$~yr$^{-1}$, and a supermassive star with $10^5$~M$_\\odot$ and an accretion rate of $10^{-1}$~M$_\\odot$~yr$^{-1}$. For the $10$~M$_\\odot$ Pop.~III star, we find that coherent magnetic fields can be produced on scales of at least $100$~AU, which are sufficient to drive a jet with a luminosity of $100$~L$_\\odot$ and a mass outflow ra...

  7. Survey of residential magnetic field sources

    International Nuclear Information System (INIS)

    A nationwide survey of 1000 residences is underway to determine the sources and characteristics of magnetic fields in the home. This report describes the goals, statistical sampling methods, measurement protocols, and experiences in measuring the first 707 residences of the survey. Some preliminary analysis of the data is also included. Investigators designed a sampling method to randomly select the participating utilities as well as the residential customers for the study. As a first step in the project, 18 utility employee residences were chosen to validate a relatively simple measurement protocol against the results of a more complete and intrusive method. Using the less intrusive measurement protocol, researchers worked closely with representatives from EPRI member utilities to enter customer residences and measure the magnetic fields found there. Magnetic field data were collected in different locations inside and around the residences. Twenty-four-hour recorders were left in the homes overnight. Tests showed that the simplified measurement protocol is adequate for achieving the goals of the study. Methods were developed for analyzing the field caused by a residence's ground current, the lateral field profiles of field lines, and the field measured around the periphery of the residences. Methods of residential source detection were developed that allow identification of sources such as ground connections at an electrical subpanel, two-wire multiple-way switches, and underground or overhead net currents exiting the periphery of a residence

  8. Biomaterials and Magnetic fields for Cancer Therapy

    Science.gov (United States)

    Ramachandran, Narayanan; Mazuruk, Konstanty

    2003-01-01

    The field of biomaterials has emerged as an important topic in the purview of NASA s new vision of research activities in the Microgravity Research Division. Although this area has an extensive track record in the medical field as borne out by the routine use of polymeric sutures, implant devices, and prosthetics, novel applications such as tissue engineering, artificial heart valves and controlled drug delivery are beginning to be developed. Besides the medical field, biomaterials and bio-inspired technologies are finding use in a host of emerging interdisciplinary fields such as self-healing and self-assembling structures, biosensors, fuel systems etc. The field of magnetic fluid technology has several potential applications in medicine. One of the emerging fields is the area of controlled drug delivery, which has seen its evolution from the basic oral delivery system to pulmonary to transdermal to direct inoculations. In cancer treatment by chemotherapy for example, targeted and controlled drug delivery has received vast scrutiny and substantial research and development effort, due to the high potency of the drugs involved and the resulting requirement to keep the exposure of the drugs to surrounding healthy tissue to a minimum. The use of magnetic particles in conjunction with a static magnetic field allows smart targeting and retention of the particles at a desired site within the body with the material transport provided by blood perfusion. Once so located, the therapeutical aspect (radiation, chemotherapy, hyperthermia, etc.) of the treatment, now highly localized, can be implemented.

  9. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    Science.gov (United States)

    Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-01

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  10. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong-Joo, E-mail: sj.lee@kriss.re.kr; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min [Center for Biosignals, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 305-340 (Korea, Republic of)

    2015-03-09

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  11. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    International Nuclear Information System (INIS)

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible

  12. Cosmological magnetic fields from primordial helical seeds

    International Nuclear Information System (INIS)

    Most early universe scenarios predict negligible magnetic fields on cosmological scales if they are unprocessed during subsequent expansion of the universe. We present a new numerical treatment of the evolution of primordial fields and apply it to weakly helical seeds as they occur in certain early universe scenarios. If seed fields created during the electroweak phase transition have close to thermal strength and coherence lengths a few orders of magnitude below the horizon scale, initial helicities not much larger than the baryon to photon number can lead to fields of ∼10-13 G at scales up to 100 parsec today

  13. Near-field aperture-probe as a magnetic dipole source and optical magnetic field detector

    OpenAIRE

    Denkova, Denitza; Verellen, Niels; Silhanek, Alejandro V.; Van Dorpe, Pol; Moshchalkov, Victor V.

    2014-01-01

    Scanning near-field field optical microscopy (SNOM) is a technique, which allows sub-wavelength optical imaging of photonic structures. While the electric field components of light can be routinely obtained, imaging of the magnetic components has only recently become of interest. This is so due to the development of artificial materials, which enhance and exploit the typically weak magnetic light-matter interactions to offer extraordinary optical properties. Consequently, both sources and det...

  14. Field mapping of the KATRIN pinch magnet

    International Nuclear Information System (INIS)

    The Karlsruhe Tritium Neutrino experiment aims to probe the effective mass of the electron antineutrino in a model-independent way with an unsurpassed sensitivity of 200 meV/c2 (90% C.L.). The energy spectrum of the electrons from Tritium β-decay is analyzed by an electrostatic spectrometer which is based on the MAC-E filter principle. The so-called PINCH magnet - a superconducting solenoid located at the end of the spectrometer - is a crucial part of the MAC-E filter and its field strength of 6 T is directly related to the sensitivity of the experiment. Thus, a clear understanding of its field stability and field map is indispensable for the success of KATRIN. Along with an overview of the KATRIN experiment and the MAC-E filter principle this poster presents the results of a detailed study of the PINCH magnet's field map obtained with a 3-axis Hall probe.

  15. Field reconstruction in large aperture quadrupole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, A. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Cappuzzello, F. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95125 Catania (Italy)], E-mail: cappuzzello@lns.infn.it; Cunsolo, A.; Cavallaro, M. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95125 Catania (Italy); INFN-Sezione di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Orrigo, S.E.A.; Rodrigues, M.R.D.; Winfield, J.S. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Berz, M. [Department of Physics and Astronomy, Michigan State University, MI 48824 (United States)

    2009-04-21

    A technique to interpolate complex three-dimensional field distributions such as those produced by large magnets is presented. It is based on a modified charge density method where the elementary sources of the magnetic field are image charges with Gaussian shape placed on a three-dimensional surface. The strengths of the charges are found as the solution of a best-fit problem, whose special features are discussed in detail. The method is tested against the measured field of the MAGNEX large acceptance quadrupole, showing a high level of accuracy together with an effective compensation of the effect of the experimental errors present in the data. In addition the model field is in general analytical and Maxwellian. As a consequence, the reliability of the presented technique to the challenging problem of trajectory reconstruction in modern large acceptance spectrometers is demonstrated.

  16. Terrestrial magnetic field effects on large photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Leonora, E., E-mail: emanuele.leonora@ct.infn.it [INFN section of Catania, Via S.Sofia, 64, Catania 95125 (Italy)

    2013-10-11

    The effects of the Earth's magnetic field on the performance of large PMTs for a cubic-kilometer-scale neutrino telescope has been studied. Measurements were performed for three Hamamatsu PMTs: two 8″ R5912 types; one with a standard and the other with a super bialkali photocathode, and a 10″ R7081 type with a standard bialkali photocathode. The main characteristics of the PMTs, such as detection efficiency, transit time, transit time spread, gain, peak-to-valley ratio, charge resolution and fractions of spurious pulses were measured while varying the PMT orientations with respect to the Earth's magnetic field. The measurements were performed both with and without a mu-metal cage magnetic shielding. For the 8″ PMTs the impact of the magnetic field was found to be smaller than for the 10″ PMT. The magnetic shielding strongly reduced the orientation-dependent variations measured for the 10″ PMT and even improved the performance. Although less pronounced, improvements were also measured for the 8″ PMTs.

  17. Terrestrial magnetic field effects on large photomultipliers

    Science.gov (United States)

    Leonora, E.; KM3NeT Consortium

    2013-10-01

    The effects of the Earth's magnetic field on the performance of large PMTs for a cubic-kilometer-scale neutrino telescope has been studied. Measurements were performed for three Hamamatsu PMTs: two 8″ R5912 types; one with a standard and the other with a super bialkali photocathode, and a 10″ R7081 type with a standard bialkali photocathode. The main characteristics of the PMTs, such as detection efficiency, transit time, transit time spread, gain, peak-to-valley ratio, charge resolution and fractions of spurious pulses were measured while varying the PMT orientations with respect to the Earth's magnetic field. The measurements were performed both with and without a mu-metal cage magnetic shielding. For the 8″ PMTs the impact of the magnetic field was found to be smaller than for the 10″ PMT. The magnetic shielding strongly reduced the orientation-dependent variations measured for the 10″ PMT and even improved the performance. Although less pronounced, improvements were also measured for the 8″ PMTs.

  18. Terrestrial magnetic field effects on large photomultipliers

    International Nuclear Information System (INIS)

    The effects of the Earth's magnetic field on the performance of large PMTs for a cubic-kilometer-scale neutrino telescope has been studied. Measurements were performed for three Hamamatsu PMTs: two 8″ R5912 types; one with a standard and the other with a super bialkali photocathode, and a 10″ R7081 type with a standard bialkali photocathode. The main characteristics of the PMTs, such as detection efficiency, transit time, transit time spread, gain, peak-to-valley ratio, charge resolution and fractions of spurious pulses were measured while varying the PMT orientations with respect to the Earth's magnetic field. The measurements were performed both with and without a mu-metal cage magnetic shielding. For the 8″ PMTs the impact of the magnetic field was found to be smaller than for the 10″ PMT. The magnetic shielding strongly reduced the orientation-dependent variations measured for the 10″ PMT and even improved the performance. Although less pronounced, improvements were also measured for the 8″ PMTs

  19. Evolution of primordial magnetic fields in mean-field approximation

    CERN Document Server

    Campanelli, Leonardo

    2013-01-01

    We study the evolution of phase-transition-generated cosmic magnetic fields coupled to the primeval cosmic plasma in turbulent and viscous free-streaming regimes. The evolution laws for the magnetic energy density and correlation length, both in helical and non-helical cases, are found by solving the autoinduction and Navier-Stokes equations in mean-field approximation. Analytical results are derived in Minkowski spacetime and then extended to the case of a Friedmann universe with zero spatial curvature, both in radiation and matter dominated eras. The three possible viscous free-streaming phases are characterized by a drag term in the Navier-Stokes equation which depends on the free-steaming properties of neutrinos, photons, or hydrogen atoms, respectively. In the case of non-helical magnetic fields, the magnetic intensity $B$ and the magnetic correlation length $\\xi_B$ evolve asymptotically with the temperature $T$ as $B(T) \\simeq \\kappa_B (N_i v_i)^{\\varrho_1} (T/T_i)^{\\varrho_2}$ and $\\xi_B(T) \\simeq \\kap...

  20. Current helicity and electromotive force of magnetoconvection influenced by helical background fields

    CERN Document Server

    Ruediger, Guenther

    2016-01-01

    Motivated by the empirical finding that the known hemispheric rules for the current helicity at the solar surface are not strict, the excitation of small-scale current helicity by the influence of a large-scale helical magnetic background fields on nonrotating magnetoconvection is demonstrated. It is shown within a quasilinear analytic theory of driven turbulence and by nonlinear simulations of magnetoconvection that the resulting small-scale current helicity has the same sign as the large-scale current helicity while the ratio of both pseudo-scalars is of the order of the magnetic Reynolds number of the convection. The same models do not provide finite values of the small-scale kinetic helicity. On the other hand, a turbulence-induced electromotive force is produced including the diamagnetic pumping term as well as the eddy diffusivity but no alpha effect. It is thus argued that the relations by Pouquet & Patterson (1978) and Keinigs (1983) for the simultaneous existence of small-scale current helicity a...

  1. High magnetic field facilities in Latin America

    Science.gov (United States)

    Sato, R.; Grössinger, R.; Bertorello, H.; Broto, J. M.; Davies, H. A.; Estevez-Rams, E.; Gonzalez, J.; Matutes, J.; Sinnecker, J. P.; Sagredo, V.

    2006-11-01

    The EC supported a network (under the Framework 5 ALFA Programme) designated HIFIELD (Project number II0147FI) and entitled: "Measurement methods involving high magnetic fields for advanced and novel materials". As a result, high field facilities were initiated, constructed or extended at the following laboratories in Latin America: University Cordoba (Argentina), CES, Merida (Venezuela), CIMAV, Chihuahua (Mexico), University Federal de Rio de Janeiro (Brazil).

  2. Dynamical Axion Field in Topological Magnetic Insulators

    OpenAIRE

    Li, Rundong; Jing WANG; Qi, Xiaoliang; Zhang, Shou-Cheng

    2009-01-01

    Axions are very light, very weakly interacting particles postulated more than 30 years ago in the context of the Standard Model of particle physics. Their existence could explain the missing dark matter of the universe. However, despite intensive searches, they have yet to be detected. In this work, we show that magnetic fluctuations of topological insulators couple to the electromagnetic fields exactly like the axions, and propose several experiments to detect this dynamical axion field. In ...

  3. Measurement of Radio Frequency Magnetic Field

    Czech Academy of Sciences Publication Activity Database

    Bartušek, Karel; Gescheidtová, E.

    Cambridge: The Electromagnetic Academy, 2007, s. 182-185. ISBN 978-1-934142-00-4. [Progress in Electromagnetic s Research Symposium - PIERS 2007. Beijing (CN), 26.03.2007-20.03.2007] R&D Projects: GA ČR(CZ) GA102/07/0389 Institutional research plan: CEZ:AV0Z20650511 Keywords : RF field * magnetic field * MR tomography Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  4. Magnetic field effects in chemical systems

    OpenAIRE

    Rodgers, CT

    2009-01-01

    Chemical reactions that involve radical intermediates can be influenced by magnetic fields, which act to alter their rate, yield, or product distribution. These effects have been studied extensively in liquids, solids, and constrained media such as micelles. They may be interpreted using the radical pair mechanism (RPM). Such effects are central to the field of spin chemistry of which there have been several detailed and extensive reviews. This review instead presents an introductory account ...

  5. Primordial magnetic fields and nonlinear electrodynamics

    OpenAIRE

    Kunze, Kerstin E.

    2007-01-01

    The creation of large scale magnetic fields is studied in an inflationary universe where electrodynamics is assumed to be nonlinear. After inflation ends electrodynamics becomes linear and thus the description of reheating and the subsequent radiation dominated stage are unaltered. The nonlinear regime of electrodynamics is described by lagrangians having a power law dependence on one of the invariants of the electromagnetic field. It is found that there is a range of parameters for which pri...

  6. Cluster magnetic fields from active galactic nuclei

    CERN Document Server

    Sutter, P M; Yang, H -Y

    2009-01-01

    Active galactic nuclei (AGN) found at the centers of clusters of galaxies are a possible source for weak cluster-wide magnetic fields. To evaluate this scenario, we present 3D adaptive mesh refinement MHD simulations of a cool-core cluster that include injection of kinetic, thermal, and magnetic energy via an AGN-powered jet. Using the MHD solver in FLASH 2, we compare several sub-resolution approaches that link the estimated accretion rate as measured on the simulation mesh to the accretion rate onto the central black hole and the resulting feedback. We examine the effects of magnetized outflows on the accretion history of the black hole and discuss the ability of these models to magnetize the cluster medium.

  7. Heavy meson spectroscopy under strong magnetic field

    CERN Document Server

    Yoshida, Tetsuya

    2016-01-01

    Spectra of the neutral heavy mesons, $\\eta_c(1S,2S)$, $J/psi$, $\\psi(2S)$, $\\eta_b(1S,2S,3S)$, $\\Upsilon(1S,2S,3S)$, $D$, $D^\\ast$, $B$, $B^\\ast$, $B_s$ and $B_s^\\ast$, in a homogeneous magnetic field are analyzed in a potential model of constituent quarks. To obtain anisotropic wave functions and the corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the wave functions for transverse and longitudinal directions in the cylindrical coordinate are expanded by the Gaussian bases separately. Energy level structures in the wide range of magnetic field are obtained and the deformation of the wave functions is shown, which reflects effects of the spin mixing, the Zeeman splitting and quark Landau levels. The contribution from the magnetic catalysis in heavy-light mesons is discussed as a change of the light constituent quark mass.

  8. Magnetic fields and density functional theory

    International Nuclear Information System (INIS)

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules

  9. Magnetic fields and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Salsbury Jr., Freddie

    1999-02-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  10. Laboratory Measurements of Astrophysical Magnetic Fields

    Science.gov (United States)

    Murphy, C. D.; Miniati, F.; Edwards, M.; Mithen, J.; Bell, A. R.; Constantin, C.; Everson, E.; Schaeffer, D.; Niemann, C.; Ravasio, A.; Brambrink, E.; Benuzzi-Mounaix, A.; Koenig, M.; Gregory, C.; Woolsey, N.; Park, H.-S.; Remington, B.; Ryutov, D.; Bingham, R.; Gargate, L.; Spitkovsky, A.; Gregori, G.

    2010-11-01

    It has been proposed that high Mach number collisionless shocks propagating in an initially unmagnetized plasma play a major role in the magnetization of large scale structures in the Universe. A detailed study of the experimental configuration necessary to scale such environments down to laboratory dimensions will be presented. We will show initial results from preliminary experiments conducted at the Phoenix laser (UCLA) and the LULI laser (Ecole Polytechnique) where collisionless shocks are generated by the expansion of exploding foils driven by energetic laser beams. The time evolution of the magnetic field is probed with induction coils placed at 10 cm from the laser focus. We will discuss various mechanisms of magnetic field generation and compare them with the experimental results.

  11. Strain sensors for high field pulse magnets

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Christian [Los Alamos National Laboratory; Zheng, Yan [Los Alamos National Laboratory; Easton, Daniel [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.

  12. Electro-mechanical resonant magnetic field sensor

    International Nuclear Information System (INIS)

    We describe a new type of magnetic field sensor, which is termed as an Electro-Mechanical Resonant Sensor (EMRS). The key part of this sensor is a small conductive elastic element with low damping rate and therefore, a high Q fundamental mode of frequency f1. An AC current is driven through the elastic element which, in the presence of a magnetic field, causes an AC force on the element. When the frequency of the AC current matches the resonant frequency of the element, maximum vibration of the element occurs and this can be measured precisely by optical means. We have built and tested a model sensor of this type by using for the elastic element, a length of copper wire of diameter 0.030 mm formed into a loop shape. The wire motion was measured using a light-emitting diode photo-transistor assembly. This sensor demonstrated a sensitivity better than 0.001 G for an applied magnetic field of ∼1 G and a good selectivity for the magnetic field direction. The sensitivity can be easily improved by a factor of ∼10-100 by a more sensitive measurement of the elastic element motion and by having the element in vacuum to reduce the drag force

  13. High efficiency, low magnetic field gyroklystron amplifiers

    International Nuclear Information System (INIS)

    The possibility of operating a gyroklystron amplifier at high efficiency and low magnetic field is considered. Two devices are discussed: A two cavity second harmonic TE02 gyroklystron amplifier operating at 19.7 GHz with subharmonic bunching, and a fundamental mode TE01 gyrotwistron at 16 GHz. The nonlinear efficiency is given for both devices

  14. Historic Methods for Capturing Magnetic Field Images

    Science.gov (United States)

    Kwan, Alistair

    2016-01-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection…

  15. Checking the Quality of Gradient Magnetic Fields

    Czech Academy of Sciences Publication Activity Database

    Bartušek, Karel; Gescheidtová, E.; Kubásek, R.

    Gliwice : Politechnika Slaska, 2006, s. 207-210. ISBN 83-85940-28-6. [IC-SPETO 2006 International Conference on Fundamentals of Electrotechnics and Circuit Theory /29./. Gliwice (PL), 24.05.2006-27.05.2006] Institutional research plan: CEZ:AV0Z20650511 Keywords : MR * NMR * gradient magnetic field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  16. ATLAS Barrel Toroid magnet reached nominal field

    CERN Multimedia

    2006-01-01

     On 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph

  17. Historic Methods for Capturing Magnetic Field Images

    Science.gov (United States)

    Kwan, Alistair

    2016-03-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection processes.

  18. Evolution of magnetic fields in supernova remnants

    NARCIS (Netherlands)

    Schure, K.M.; Vink, J.; Achterberg, A.; Keppens, R.

    2009-01-01

    Supernova remnants (SNR) are now widely believed to be a source of cosmic rays (CRs) up to an energy of 10(15) eV. The magnetic fields required to accelerate CRs to sufficiently high energies need to be much higher than can result from compression of the circumstellar medium (CSM) by a factor 4, as

  19. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  20. Passive levitation in alternating magnetic fields

    Science.gov (United States)

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2010-09-14

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  1. Magnetic fields during primordial star formation

    CERN Document Server

    Schleicher, Dominik R G; Banerjee, Robi; Klessen, Ralf S; Federrath, Christoph; Arshakian, Tigran; Beck, Rainer; Spaans, Marco

    2011-01-01

    Recent FERMI observations provide a lower limit of 10^{-15} G for the magnetic field strength in the intergalactic medium (IGM). This is consistent with theoretical expectations based on the Biermann battery effect, which predicts such IGM fields already at redshifts z~10. During gravitational collapse, such magnetic fields can be amplified by compression and by turbulence, giving rise to the small-scale dynamo. On scales below the Jeans length, the eddy turnover timescale is much shorter than the free-fall timescale, so that saturation can be reached during collapse. This scenario has been tested and confirmed with magneto-hydrodynamical simulations following the collapse of a turbulent, weakly magnetized cloud. Based on a spectral analysis, we confirm that turbulence is injected on the Jeans scale. For the power spectrum of the magnetic field, we obtain the Kazantsev slope which is characteristic for the small-scale dynamo. A calculation of the critical length scales for ambipolar diffusion and Ohmic dissip...

  2. Magnetic field affects enzymatic ATP synthesis.

    Science.gov (United States)

    Buchachenko, Anatoly L; Kuznetsov, Dmitry A

    2008-10-01

    The rate of ATP synthesis by creatine kinase extracted from V. xanthia venom was shown to depend on the magnetic field. The yield of ATP produced by enzymes with 24Mg2+ and 26Mg2+ ions in catalytic sites increases by 7-8% at 55 mT and then decreases at 80 mT. For enzyme with 25Mg2+ ion in a catalytic site, the ATP yield increases by 50% and 70% in the fields 55 and 80 mT, respectively. In the Earth field the rate of ATP synthesis by enzyme, in which Mg2+ ion has magnetic nucleus 25Mg, is 2.5 times higher than that by enzymes, in which Mg2+ ion has nonmagnetic, spinless nuclei 24Mg or 26Mg. Both magnetic field effect and magnetic isotope effect demonstrate that the ATP synthesis is an ion-radical process, affected by Zeeman interaction and hyperfine coupling in the intermediate ion-radical pair. PMID:18774801

  3. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang;

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is...

  4. Passive levitation in alternating magnetic fields

    Science.gov (United States)

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2009-06-16

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  5. Magnetic properties and microstructure of bulk Nd-Fe-B magnets solidified in magnetic field

    International Nuclear Information System (INIS)

    The Nd-Fe-B bulk magnets with a slab shape of 0.9 x 4 x 15 mm3 were prepared by injection casting into a copper mold. The effects of applying a magnetic field during the casting process on the magnetic properties and microstructure of Nd9.5Fe71.5Ti2.5Zr0.5Cr1B14.5C0.5 alloy have been studied. The results show that the sample cast with magnetic field has a stronger (00L) texture of Nd2Fe14B phase with the c-axis perpendicular to the slab plane than the sample cast without magnetic field. The intensity of the texture weakens from surface to inner region of the bulk magnets. Applying a magnetic field during the casting process is helpful to refine the grain size effectively. As a result, the magnetic properties are improved from Br = 5.8 kG, iHc = 6.5 kOe, and (BH)max = 5.9 MGOe for thesample cast without magnetic field to Br = 6.1 kG, iHc = 10.3 kOe, and (BH)max = 7.3 MGOe for the sample cast with a 3.7 kOe magnetic field.

  6. Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata

    Directory of Open Access Journals (Sweden)

    Wiltschko Wolfgang

    2009-10-01

    Full Text Available Abstract Background Zebra finches can be trained to use the geomagnetic field as a directional cue for short distance orientation. The physical mechanisms underlying the primary processes of magnetoreception are, however, largely unknown. Two hypotheses of how birds perceive magnetic information are mainly discussed, one dealing with modulation of radical pair processes in retinal structures, the other assuming that iron deposits in the upper beak of the birds are involved. Oscillating magnetic fields in the MHz range disturb radical pair mechanisms but do not affect magnetic particles. Thus, application of such oscillating fields in behavioral experiments can be used as a diagnostic tool to decide between the two alternatives. Methods In a setup that eliminates all directional cues except the geomagnetic field zebra finches were trained to search for food in the magnetic north/south axis. The birds were then tested for orientation performance in two magnetic conditions. In condition 1 the horizontal component of the geomagnetic field was shifted by 90 degrees using a helmholtz coil. In condition 2 a high frequently oscillating field (1.156 MHz was applied in addition to the shifted field. Another group of birds was trained to solve the orientation task, but with visual landmarks as directional cue. The birds were then tested for their orientation performance in the same magnetic conditions as applied for the first experiment. Results The zebra finches could be trained successfully to orient in the geomagnetic field for food search in the north/south axis. They were also well oriented in test condition 1, with the magnetic field shifted horizontally by 90 degrees. In contrast, when the oscillating field was added, the directional choices during food search were randomly distributed. Birds that were trained to visually guided orientation showed no difference of orientation performance in the two magnetic conditions. Conclusion The results

  7. Magnetic Field Stabilization for Magnetically Shielded Volumes by External Field Coils.

    Science.gov (United States)

    Brys, T; Czekaj, S; Daum, M; Fierlinger, P; George, D; Henneck, R; Hochman, Z; Kasprzak, M; Kohlik, K; Kirch, K; Kuzniak, M; Kuehne, G; Pichlmaier, A; Siodmok, A; Szelc, A; Tanner, L

    2005-01-01

    For highly sensitive magnetic measurements, e.g., a measurement of the neutron electric dipole moment (EDM), the magnetic field has to be stable in time on a level below picoTesla. One of several measures we employ to achieve this uses an external field coil system which can stabilize the ambient external field at a predefined value. Here we report on the construction and characterization of such a system in the magnetic test facility at PSI. The system actively stabilizes the field along the axis of the EDM experiment by means of four coils in a Helmholtz-like configuration. Additional coils serve to compensate for transverse ambient field components. Because of the long integration times in the EDM experiment (about 100 s or more) only slow disturbances have to be corrected for. The performance of the system has been measured using static and moving magnetic sources and suppression factors in excess of 200 have been observed. PMID:27308117

  8. Magnetic field-line lengths inside interplanetary magnetic flux ropes

    CERN Document Server

    Hu, Qiang; Krucker, Sam

    2015-01-01

    We report on the detailed and systematic study of field-line twist and length distributions within magnetic flux ropes embedded in Interplanetary Coronal Mass Ejections (ICMEs). The Grad-Shafranov reconstruction method is utilized together with a constant-twist nonlinear force-free (Gold-Hoyle) flux rope model to reveal the close relation between the field-line twist and length in cylindrical flux ropes, based on in-situ Wind spacecraft measurements. We show that the field-line twist distributions within interplanetary flux ropes are inconsistent with the Lundquist model. In particular we utilize the unique measurements of magnetic field-line lengths within selected ICME events as provided by Kahler et al. (2011) based on energetic electron burst observations at 1 AU and the associated type III radio emissions detected by the Wind spacecraft. These direct measurements are compared with our model calculations to help assess the flux-rope interpretation of the embedded magnetic structures. By using the differen...

  9. Electron acceleration by parallel and perpendicular electric fields during magnetic reconnection without guide field

    Science.gov (United States)

    Bessho, N.; Chen, L.-J.; Germaschewski, K.; Bhattacharjee, A.

    2015-11-01

    Electron acceleration due to the electric field parallel to the background magnetic field during magnetic reconnection with no guide field is investigated by theory and two-dimensional electromagnetic particle-in-cell simulations and compared with acceleration due to the electric field perpendicular to the magnetic field. The magnitude of the parallel electric potential shows dependence on the ratio of the plasma frequency to the electron cyclotron frequency as (ωpe/Ωe)-2 and on the background plasma density as nb-1/2. In the Earth's magnetotail, the parameter ωpe/Ωe˜9 and the background (lobe) density can be of the order of 0.01 cm-3, and it is expected that the parallel electric potential is not large enough to accelerate electrons up to 100 keV. Therefore, we must consider the effect of the perpendicular electric field to account for electron energization in excess of 100 keV in the Earth's magnetotail. Trajectories for high-energy electrons are traced in a simulation to demonstrate that acceleration due to the perpendicular electric field in the diffusion region is the dominant acceleration mechanism, rather than acceleration due to the parallel electric fields in the exhaust regions. For energetic electrons accelerated near the X line due to the perpendicular electric field, pitch angle scattering converts the perpendicular momentum to the parallel momentum. On the other hand, for passing electrons that are mainly accelerated by the parallel electric field, pitch angle scattering converting the parallel momentum to the perpendicular momentum occurs. In this way, particle acceleration and pitch angle scattering will generate heated electrons in the exhaust regions.

  10. Collisionless reconnection: magnetic field line interaction

    Science.gov (United States)

    Treumann, R. A.; Baumjohann, W.; Gonzalez, W. D.

    2012-10-01

    Magnetic field lines are quantum objects carrying one quantum Φ0 = 2πh/e of magnetic flux and have finite radius λm. Here we argue that they possess a very specific dynamical interaction. Parallel field lines reject each other. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Anti-parallel field lines, on the other hand, attract each other. We identify the physical mechanism as being due to the action of the gauge potential field, which we determine quantum mechanically for two parallel and two anti-parallel field lines. The distortion of the quantum electrodynamic vacuum causes a cloud of virtual pairs. We calculate the virtual pair production rate from quantum electrodynamics and estimate the virtual pair cloud density, pair current and Lorentz force density acting on the field lines via the pair cloud. These properties of field line dynamics become important in collisionless reconnection, consistently explaining why and how reconnection can spontaneously set on in the field-free centre of a current sheet below the electron-inertial scale.

  11. Collisionless reconnection: magnetic field line interaction

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2012-10-01

    Full Text Available Magnetic field lines are quantum objects carrying one quantum Φ0 = 2πh/e of magnetic flux and have finite radius λm. Here we argue that they possess a very specific dynamical interaction. Parallel field lines reject each other. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Anti-parallel field lines, on the other hand, attract each other. We identify the physical mechanism as being due to the action of the gauge potential field, which we determine quantum mechanically for two parallel and two anti-parallel field lines. The distortion of the quantum electrodynamic vacuum causes a cloud of virtual pairs. We calculate the virtual pair production rate from quantum electrodynamics and estimate the virtual pair cloud density, pair current and Lorentz force density acting on the field lines via the pair cloud. These properties of field line dynamics become important in collisionless reconnection, consistently explaining why and how reconnection can spontaneously set on in the field-free centre of a current sheet below the electron-inertial scale.

  12. Analytical magnetic field analysis of Halhach magnetized permanent-magnet machines

    OpenAIRE

    Xia, Z.P.; Zhu, Z. Q.; Howe, D.

    2004-01-01

    We develop analytical models for predicting the magnetic field distribution in Halbach magnetized machines. They are formulated in polar coordinates and account for the relative recoil permeability of the magnets. They are applicable to both internal and external rotor permanent-magnet machines with either an iron-cored or air-cored stator and/or rotor. We compare predicted results with those obtained by finite-element analyses and measurements. We show that the air-gap flux density varies si...

  13. Determination of the Coronal Magnetic Field by Hot Loop Oscillations

    CERN Document Server

    Wang, T; Qiu, J; Wang, Tongjiang; Innes, Davina E.; Qiu, Jiong

    2006-01-01

    We apply a new method to determine the magnetic field in coronal loops using observations of coronal loop oscillations. We analyze seven Doppler shift oscillation events detected by SUMER in the hot flare line Fe XIX to obtain oscillation periods of these events. The geometry, temperature, and electron density of the oscillating loops are measured from coordinated multi-channel soft X-ray imaging observations from SXT. All the oscillations are consistent with standing slow waves in their fundamental mode. The parameters are used to calculate the magnetic field of coronal loops based on MHD wave theory. For the seven events, the plasma $\\beta$ is in the range 0.15-0.91 with a mean of 0.33$\\pm$0.26, and the estimated magnetic field varies between 21-61 G with a mean of 34$\\pm$14 G. With background emission subtracted, the estimated magnetic field is reduced by 9%-35%. The maximum backgroud subtraction gives a mean of 22$\\pm$13 G in the range 12-51 G. We discuss measurement uncertainties and the prospect of dete...

  14. Quadratic helicities and the energy of magnetic fields

    OpenAIRE

    Akhmet'ev, Petr M.

    2011-01-01

    Two non-local asymptotic invariants of magnetic fields for the ideal magnetohydrodynamics are introduced. The velocity of variation of the invariants for a non-ideal magnetohydrodynamics with a small magnetic dissipation is estimated. By means of the invariants the spectra of electromagnetic fields are investigated. A possible role of higher magnetic helicities during a relaxation of magnetic fields is discussed.

  15. Cosmological perturbations: Vorticity, isocurvature and magnetic fields

    Science.gov (United States)

    Christopherson, Adam J.

    2014-10-01

    In this paper, I review some recent, interlinked, work undertaken using cosmological perturbation theory — a powerful technique for modeling inhomogeneities in the universe. The common theme which underpins these pieces of work is the presence of nonadiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or nonadiabatic pressure perturbations. This generalizes Crocco's theorem to a cosmological setting. I then introduce isocurvature perturbations in different models, focusing on the entropy perturbation in standard, concordance cosmology, and in inflationary models involving two scalar fields. As the final topic, I investigate magnetic fields, which are a potential observational consequence of vorticity in the early universe. I briefly review some recent work on including magnetic fields in perturbation theory in a consistent way. I show, using solely analytical techniques, that magnetic fields can be generated by higher order perturbations, albeit too small to provide the entire primordial seed field, in agreement with some numerical studies. I close this paper with a summary and some potential extensions of this work.

  16. Resistive Magnetic Field Generation at Cosmic Dawn

    Science.gov (United States)

    Miniati, Francesco; Bell, A. R.

    2011-03-01

    Relativistic charged particles (CRs for cosmic rays) produced by supernova explosion of the first generation of massive stars that are responsible for the reionization of the universe escape into the intergalactic medium, carrying an electric current. Charge imbalance and induction give rise to a return current, \\vec{j}_t, carried by the cold thermal plasma which tends to cancel the CR current. The electric field, \\vec{E}=η\\vec{j}_t, required to draw the collisional return current opposes the outflow of low-energy CRs and ohmically heats the cold plasma. Owing to inhomogeneities in the resistivity, η(T), caused by a structure in the temperature, T, of the intergalactic plasma, the electric field possesses a rotational component which sustains Faraday's induction. It is found that a magnetic field is robustly generated throughout intergalactic space at a rate of 10-17 to 10-16 G Gyr-1, until the temperature of the intergalactic medium is raised by cosmic reionization. The magnetic field may seed the subsequent growth of magnetic fields in the intergalactic environment. The role of CR-driven instabilities is discussed, and nonlinear effects are briefly considered.

  17. RESISTIVE MAGNETIC FIELD GENERATION AT COSMIC DAWN

    International Nuclear Information System (INIS)

    Relativistic charged particles (CRs for cosmic rays) produced by supernova explosion of the first generation of massive stars that are responsible for the reionization of the universe escape into the intergalactic medium, carrying an electric current. Charge imbalance and induction give rise to a return current, j-vectort, carried by the cold thermal plasma which tends to cancel the CR current. The electric field, E-vector =η j-vectort, required to draw the collisional return current opposes the outflow of low-energy CRs and ohmically heats the cold plasma. Owing to inhomogeneities in the resistivity, η(T), caused by a structure in the temperature, T, of the intergalactic plasma, the electric field possesses a rotational component which sustains Faraday's induction. It is found that a magnetic field is robustly generated throughout intergalactic space at a rate of 10-17 to 10-16 G Gyr-1, until the temperature of the intergalactic medium is raised by cosmic reionization. The magnetic field may seed the subsequent growth of magnetic fields in the intergalactic environment. The role of CR-driven instabilities is discussed, and nonlinear effects are briefly considered.

  18. The ESRF Miniature Pulsed Magnetic Field System

    Science.gov (United States)

    van der Linden, Peter J. E. M.; Strohm, Cornelius; Roth, Thomas; Detlefs, Carsten; Mathon, Olivier

    2010-06-01

    We have developed a portable system to provide pulsed magnetic fields on the ESRF X-ray beamlines. The complete system consists of a power supply, liquid Helium and liquid Nitrogen dewars with a siphon each, control electronics and a double cryostat for separate coil and sample cooling. The liquid nitrogen cooled solenoids reach a maximum field of 30 Tesla for a total pulse duration of one milisecond. They are constructed for optimised cooling rate after the pulse to obtain a high duty cycle, the repetition rate is five pulses per minute at maximum field. The sample is cooled in an independent Helium flow cryostat which is inserted into the bore of the magnet. The flow cryostat has a temperature range from 5 to 250 Kelvin with a direct contact between the sample and Helium flow. This overview gives a general presentation of the system and we will show recent results.

  19. Magnetic field fluctuations in the Venus magnetosheath

    Science.gov (United States)

    Luhmann, J. G.; Tatrallyay, M.; Russell, C. T.; Winterhalter, D.

    1983-01-01

    Using a model for the convection pattern of the shocked solar wind flow around the Venus obstacle, Pioneer Venus observations of ultra-low-frequency (about 10-40 s period) magnetic field fluctuations in the magnetosheath have been traced along streamlines to the regions of the quasi-parallel bow shock. The periods and polarizations of the sinusoidal fluctuations are similar to those observed upstream of the quasi-parallel bow shock, where streaming superthermal particles are believed to produce MHD waves by a beam-plasma instability. The results suggest that both disturbances at the ionopause at Venus and the earth's magnetopause may be caused by convection of turbulent magnetic fields from the subsolar bow shock when the interplanetary field direction produces a quasi-parallel shock there.

  20. The inception of pulsed discharges in air: simulations in background fields above and below breakdown

    International Nuclear Information System (INIS)

    We investigate discharge inception in air, in uniform background electric fields above and below the breakdown threshold. We perform 3D particle simulations that include a natural level of background ionization in the form of positive and O2− ions. In background fields below breakdown, we use a strongly ionized seed of electrons and positive ions to enhance the field locally. In the region of enhanced field, we observe the growth of positive streamers, as in previous simulations with 2D plasma fluid models. The inclusion of background ionization has little effect in this case. When the background field is above the breakdown threshold, the situation is very different. Electrons can then detach from O2− and start ionization avalanches in the whole volume. These avalanches together create one extended discharge, in contrast to the ‘double-headed’ streamers found in many fluid simulations. (paper)